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ABSTRACT
.        In this thesis, it is the aim to gain fundamental insight into the State Reduction of Stochastic Finite State System. State reduction is carried out by an optimization process and applied for a practical case i.e. Economic load dispatch in power system. A power system problem is converted into a stochastic finite state system and its state reduction leads to fuel Cost Reduction for the Power System. 

The optimization Process which is used here is Particle Swarm Optimization (PSO). Although extensive research on the PSO algorithm has been conducted but understanding of the algorithm still seems lacking. In this work Fortran 77 is used to implement the algorithm of PSO. 
             Particle swarm optimization is a stochastic, population-based computer problem-solving algorithm; it is a kind of swarm intelligence that is based on social- principles and provides insights into social behavior, as well as contributing to social-psychological engineering applications.

             It is observed that a swarm of birds or insects or a school of fish searches for food, protection, etc. in a very typical manner. If one of the members of the swarm sees a desirable path to go, the rest of the swarm will follow quickly. Every member of the swarm searches for the best in its locality - learns from its own experience. Additionally, each member learns from the others, typically from the best performer among them. Even human beings show a tendency to learn from their own experience, their immediate neighbors and the ideal performers.

            In Particle Swarm optimization method of every individual of the swarm is considered as a particle in a multidimensional space that has a position and a velocity. These particles fly through hyperspace and remember the best position that they have seen. Members of a swarm communicate good positions to each other and adjust their own position and velocity based on these good positions.  
.          PSO has simple concept, easy implementation, robust search ability and fast evolution, it makes problem easier because the probability of finding a solution by chance is large. The basic operating procedure of PSO is quite easy to follow and can be effectively and extensively adopted for optimization of various fields. 

ORGANIZATION OF THESIS

Economic load dispatch (ELD) is an important optimization task in power system operation for generation allocation among the committed units with the objective of dividing the power economically, whereas satisfying various constraints. . The First Chapter of the thesis gives the basic introduction to Stochastic Finite State Systems, state reduction and it’s theory to present ELD optimization as a stochastic.finite state system.  The next Chapter presents literature review of optimization algorithms and historical background for heuristic optimization problems with conflicting objectives is given. Third Chapter of the thesis discusses the theoretical background of Particle swarm optimization (PSO) algorithm and its operators. In the fourth chapter the PSO algorithm has been used to solve economic load dispatch problems. In ensuring Chapter results of test problem are depicted to prove the validity of the proposed method. In last Chapter, conclusions and future scope of the thesis work are presented. 

CHAPTER 1
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INTRODUCTION
1.1 Stochastic Finite-State System
In the theory of computation, a stochastic finite state system or nondeterministic finite automaton (NFA) is a finite state machine where for each pair of state and input symbol there may be several possible next states. This distinguishes it from the deterministic finite automaton (DFA), where the next possible state is uniquely determined. Although the DFA and NFA have distinct definitions, it may be shown in the formal theory that they are equivalent, in that, for any given NFA, one may construct an equivalent DFA, and vice-versa: this is the powerset construction. Both types of automata recognize only regular languages. Non-deterministic finite state machines are sometimes studied by the name subshifts of finite type. Non-deterministic finite state machines are generalized by probabilistic automata, which assign a probability to each state transition.

Nondeterministic finite automata were introduced in 1959 by Michael O. Rabin and Dana Scott, who also showed their equivalence to deterministic finite automata

1.1 Intuitive definition

An NFA, similar to a DFA, consumes a string of input symbols. For each input symbol it transitions to a new state until all input symbols have been consumed.

Unlike a DFA, it is non-deterministic in that, for any input symbol, its next state may be any one of several possible states. Thus, in the formal definition, the next state is an element of the power set of states. This element, itself a set, represents some subset of all possible states to be considered at once.

An extension of the NFA is the NFA-lambda (also known as NFA-epsilon or the NFA with epsilon moves), which allows a transformation to a new state without consuming any input symbols. For example, if it is in state 1, with the next input symbol an a, it can move to state 2 without consuming any input symbols, and thus there is an ambiguity: is the system in state 1, or state 2, before consuming the letter a? Because of this ambiguity, it is more convenient to talk of the set of possible states the system may be in. Thus, before consuming letter a, the NFA-epsilon may be in any one of the states out of the set {1,2}. Equivalently, one may imagine that the NFA is in state 1 and 2 'at the same time': and this gives an informal hint of the powerset construction: the DFA equivalent to an NFA is defined as the one that is in the state q={1,2}. Transformations to new states without consuming an input symbol are called lambda transitions or epsilon transitions. They are usually labeled with the Greek letter λ or ε.

The notion of accepting an input is similar to that for the DFA. When the last input symbol is consumed, the NFA accepts if and only if there is some set of transitions that will take it to an accepting state. Equivalently, it rejects, if, no matter what transitions are applied, it would not end in an accepting state.

1.2 Formal definition
Two similar types of NFAs are commonly defined: the NFA and the NFA with ε-moves. The ordinary NFA is defined as a 5-tuple, (Q, Σ, T, q0, F), consisting of

· a finite set of states Q
· a finite set of input symbols Σ

· a transition function T : Q × Σ → P(Q).

· an initial (or start) state q0 ∈ Q
· a set of states F distinguished as accepting (or final) states F ⊆ Q.

Here, P(Q) denotes the power set of Q. The NFA with ε-moves (also sometimes called NFA-epsilon or NFA-lambda) replaces the transition function with one that allows the empty string ε as a possible input, so that one has instead

T : Q × (Σ ∪{ε}) → P(Q).

It can be shown that ordinary NFA and NFA with epsilon moves are equivalent, in that, given either one, one can construct the other, which recognizes the same language.

1.3 1.2 Properties of NFA-ε
For all [image: image40.png]
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, the set of states that can be reached from p is called the epsilon-closure or ε-closure of p, and is written as

[image: image47.png]


.

For any subset [image: image48.png]


, define the ε-closure of P as
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The epsilon-transitions are transitive, in that it may be shown that, for all [image: image50.png]Jo.q1, qo € )
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Let x be a string over the alphabet Σ∪{ε}. An NFA-ε M accepts the string x if there exist both a representation of x of the form x1x2 ... xn, where xi ∈ (Σ ∪{ε}), and a sequence of states p0,p1, ..., pn, where pi ∈ Q, meeting the following conditions:

1. p0 [image: image58.png]


E({q0})

2. pi [image: image59.png]


E(T(pi-1, xi )) for i = 1, ..., n
3. pn [image: image60.png]


F.

1.4 1.3 Implementation
There are many ways to implement a NFA:

· Convert to the equivalent DFA. In some cases this may cause exponential blowup in the size of the automaton and thus auxiliary space proportional to the number of states in the NFA (as storage of the state value requires at most one bit for every state in the NFA)

· Keep a set data structure of all states which the machine might currently be in. On the consumption of the last input symbol, if one of these states is a final state, the machine accepts the string. In the worst case, this may require auxiliary space proportional to the number of states in the NFA; if the set structure uses one bit per NFA state, then this solution is exactly equivalent to the above.

· Create multiple copies. For each n way decision, the NFA creates up to n − 1 copies of the machine. Each will enter a separate state. If, upon consuming the last input symbol, at least one copy of the NFA is in the accepting state, the NFA will accept. (This, too, requires linear storage with respect to the number of NFA states, as there can be one machine for every NFA state.)

· Explicitly propagate tokens through the transition structure of the NFA and match whenever a token reaches the final state. This is sometimes useful when the NFA should encode additional context about the events that triggered the transition. (For an implementation that uses this technique to keep track of object references have a look at Tracematches.)

1.5 Example
The following example explains a NFA M, with a binary alphabet, which determines if the input contains an even number of 0s or an even number of 1s. (Note that 0 occurrences is an even number of occurrences as well.) Let M = (Q, Σ, T, s0, F) where

· Σ = {0, 1},

· Q = {s0, s1, s2, s3, s4},

· E({s0}) = { s0, s1, s3 }

· F = {s1, s3}, and

· The transition function T can be defined by this state transition table:

	
	0
	1
	ε

	S0
	{}
	{}
	{S1, S3}

	S1
	{S2}
	{S1}
	{}

	S2
	{S1}
	{S2}
	{}

	S3
	{S3}
	{S4}
	{}

	S4
	{S4}
	{S3}
	{}


The state diagram for M is:



M can be viewed as the union of two DFAs: one with states {S1, S2} and the other with states {S3, S4}.

The language of M can be described by the regular language given by this regular expression:

[image: image62.png]



1.6 Application of NFA-ε
NFAs and DFAs are equivalent in that if a language is recognized by an NFA, it is also recognized by a DFA and vice versa. The establishment of such equivalence is important and useful. It is useful because constructing an NFA to recognize a given language is sometimes much easier than constructing a DFA for that language. It is important because NFAs can be used to reduce the complexity of the mathematical work required to establish many important properties in the theory of computation. For example, it is much easier to prove the following properties using NFAs than DFAs:

· The union of two regular languages is regular.

· The concatenation of two regular languages is regular.

· The Kleene Closure of a regular language is regular.

1.4 State Reduction and State Assignment

If one is able to reduce the total number of states, one may be able to save on the number of flip-flops required for a design. This is the optimal situation. For example if a finite state machine drops from 7 states to 4 states and compact state assignments are used, the design drops from three flip-flops to two flip-flops. A sub optimal situation is when the number of states is reduced, but the number of flip-flops is not. This does add don't cares to the combinational logic that generates the next state equations. This will most likely drop the over all cost of the finite state machine. Once the number of states is at a minimum, then a judicious assignment of states may

further reduce the cost of the next state equations and/or the cost of the output equations. A set of heuristic rules is proposed where each rule is directed toward the reduction of the combinational logic in the finite state machine design. As opposed to compact state assignments, one may propose a one-hot state assignment. One-hot is a set of state assignments in which a unique bit is one in the assignment for each state. This often leads to a reduction in the logic cost for the outputs, because in one and only one state a given output is asserted.

Given a stochastic machine description,the state set can always be partitioned into classes of equivalent states  by a finite number of  calculations. If equivalence classes containing two or more states are found, it should be possible to condense the machine description in such a way has to leave the family of distinct input-output relations invariant.

If to each state of a stochastic  machine M there corresponds an equivalent state of machine N and to each state of N there corresponds an equivalent state of machine M, Which say that M & N are state equivalent machines. Among the machines which are state equivalent to a given machine M those having the smallest no of states are called Reduced Forms of M. A machine for which any two states are distinguishable is said to be in reduced form. The terminology is consistant since the reduced forms of any machine M are precisely those machines which are state equivalent to M and in reduced form.

1.5  OPTIMIZATION: STATE-OF-THE-ART

A rigorous mathematical approach is used to identify a set of design alternatives and to select the best candidate from that set, such engineering optimization was developed as a means of helping engineers to design systems that are both more efficient as will as less expensive and to develop new ways of improving the performance of existing systems. Thanks to the breathtaking growth in computer technology that has occurred over the past decade, optimization techniques are usually used to find creative solutions to larger, more complex problems than ever before. As a consequence, optimization is emerged out an indispensable tool of the trade for engineers working in many different industries, especially the aerospace, automotive, chemical, manufacturing and electrical industries.
Optimization is the act of obtaining the best result under given circumstances. In design, construction, and maintenance of any engineering system, engineers have to take many technological and managerial decisions at several stages. The ultimate goal of all such decisions is either to minimize the effort required or to maximize the desired benefit. Since the effort required or the benefit desired in any practical situation can be expressed as a function of certain decision variables. So, optimization problem is defined as the process of finding the conditions that gives the maximum value of an objective function [14]. Fig. 1.1 depicts that a point [image: image64.png]


 corresponds to the minimum value of function[image: image66.png]F)



. The same point also corresponds to the maximum value of the negative of the function[image: image68.png]—f(@)



. Thus, without loss of generality, optimization problem can be considered as minimization since the maximum of the objective function can be obtained by seeking the minimum of the negative of the same objective function. There is no single method available for solving all optimization problems efficiently. Hence, a number of optimization methods have been developed for solving different types of optimization problems.
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Fig. 1.1:  Minimum of [image: image71.png]f(x)
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 Optimization problems
An optimization or mathematical programming problem is generally stated as follows.

Find X[image: image75.png]


  such that Maximize/Minimize f (X)                                   (1.1)                                                    

Subjected to;

i. Inequality constraints
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ii. Equality constraints
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iii. Bound as variables
[image: image79.png]. (14)



                                                                                                                                     
Where, 

X is an n-dimensional vector called the design vector, [image: image81.png]F(x)



 is termed the objective function, [image: image83.png]


(X) and [image: image85.png]


(X) are known as inequality and equality constraints, respectively.[image: image87.png]E)
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 are the minimum and maximum bound on variable [image: image91.png]


. The number of variables n and the number of constraints p, q and/or r need not to be related in any way. 

The problem stated in Eq. (1.1) is called a constrained optimization problem. Some optimization problems do not involve any constraints and are stated as:

Find X[image: image93.png]


  which minimize f (X)                                                          (1.5)

Such problems are called unconstrained optimization problems [27]. 

 OPTIMIZATION THEORY
Optimization is the act of obtaining the best results under given circumstances. A simple approach to optimization involves listing the feasible solutions, applying the objective function to each, and choosing one that attains the optimum, which could be the maximum or minimum. However, this approach does not work for most of problems. The reason is that there are usually too many feasible solutions. In design, construction and maintenance of any engineering system, engineers have to take many technological and managerial decisions at several stages. Optimization algorithms are becoming increasingly popular in engineering design activities, primarily because of the availability and affordability of high speed computers. These are extensively used in those engineering design problems where the emphasis is on minimizing or maximizing a certain goal [5]. Optimization algorithms are routinely used by aerospace, chemical, mechanical, production and civil engineering to optimize the systems. All of the above mentioned systems involve either minimization or maximization of an objective. A designer specialized in a particular design is usually informed about different factors governing the design. However, expert designer must know a few aspects of the formulation procedure so that the designer can choose a proper optimization algorithm for the chosen optimal design problem.

Since the effort needed or the benefit desired are expressed as a function of certain decision variables, optimization is defined as the process of finding the necessary and sufficient conditions that give maximum or minimum value of a function. Thus without the loss of generality, optimization problem can be taken as minimization problem since the maximum of a function is found by seeking the minimum of the negative of the same function. Since there is no single method available for solving all optimization problems efficiently, hence a number of optimization methods have been developed for solving different types of optimization problems. The optimum seeking methods are also known as mathematical programming techniques. 
In many applications, a native optimal design is achieved by comparing a few alterative design solutions created by using a priori problem knowledge. In such an activity, the feasibility of each design solution is first investigated. Thereafter, an estimate of underlying objective (cost, profit, etc.) of each solution is computed and the best design solution is adopted. This native method is often followed because of the time and resource limitation and also due to the lack of knowledge of existing optimization procedures [5]. Since an optimization algorithm requires comparison of a number of design solutions, it is usually time consuming and computationally expensive. Thus the optimization procedure must only be used in those problems where there is definite need of achieving a qualitative product or competitive product. It is expected that the design solution obtained through an optimization procedure is better than other solutions in terms of the chosen objective cost, efficiency, safety etc.

The current approach is altogether different approach for optimal systems and is normally referred to as optimal control theory or modern control theory. The essential idea here is that a functional of planned variables and control variables are specified or selected, conditions are imposed on these variables and a control law or sequence is derived by finding an extremes of the fundamental by some variation method. There are several immediate problems with optimization relative to mathematical performance criteria (or called performance index PI). Firstly, it is not clear whether a given criteria completely describes the main goal of a particular design endeavor. Further more, satisfying a given criteria, does not necessarily mean that other basic requirements in practical system such as, stability under the disturbance will also be granted. Indeed it is rather inconceivable that for a complex system a single performance index can encompass all the qualities that are desired in an ideal system.
The purpose of formulation procedure is to create a mathematical model of the optimal design problem, which then is solved using an optimization algorithm. Since, an optimization algorithm accepts an optimization problem in particular format; every optimal design problem must be formulated in that format. Fig.1.2 shows an outline of the steps usually involved in an optimal design formulation process [5].
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Fig1.2:  A flowchart of the optimal design procedure.

The formulation of optimal design problems involves various considerations, such as design variables, constants, objective function, and variable bounds. These all are discussing in the following subsections. 
 Design variables

The formulation of optimization problem begins with identifying the design variables, which are primarily varied during the optimization process. Design problem usually involves many design variables, of which some are highly sensitive to the proper working of the design. These parameters are called design variables in the parlance of optimization procedures. Other design variables usually remain fixed or vary in relation to design variables. The choice of important parameter in an optimization problem largely depends on the user, however the efficiency and speed of an algorithm depends on the number of chosen variables. By selectively choosing the design variables, the efficiency of optimization process is increased. In the context of optimal control theory, the design variables are also called the control variables.

 Objective function

An objective function is a mathematical expression that involves design variables and other problem parameters, with respect to which, the design is optimized. The choice of objective function is governed by the nature of problem. Although most of objectives are expressed in a mathematical form, there are some cases which cannot be quantified easily. In such cases, an approximating mathematical expression is used. In many real world optimization problems, there could be more than one objective that the designer may want to optimize simultaneously, these kind of situations are termed as multi-objective and are usually avoided, instead the designer choose the most important objective as the objective function and the other objectives are include as constraints by restricting there values within a certain range. The objective functions are of two types, either the objective function is to be maximized or it has to be minimized. Usually the minimization problems are converted into maximization problem by using the duality principle [5].   

 Constraints

The constraints represent some functional relationship among the design variables and other design variables satisfying certain physical phenomenon and certain resource limitations. Some of these considerations require that the design remain in static or dynamic equilibrium. There is, however, no unique way to formulate a constraint in all problems. The nature and number of constraints to be included depends upon the user. There are usually two types of constraints that emerge from most considerations, either the constraints are of inequality type or of an equality type. Inequality constraints state that that the functional relationship among design variables are either greater than or smaller than, a resource values. Equality constraints state that the functional relationship should exactly match a resource value and are difficult to handle, therefore need to be avoided if possible.  
 Variable bounds

The final task of the formulation procedure is to set the minimum and the maximum bounds on each design variable. Certain optimization algorithms do not require this information. In these problems, the constraints completely surround the feasible region. Other problems require this information in order to confine the search algorithm within these bounds. In general, all n design variables are restricted to lie within the minimum and the maximum bound as follows:
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  for i = 1, 2, …, n
Where,
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.
  REVIEW OF SOLUTION METHODOLOGY

In the engineering design process, there is a demand for the capability to perform automatic optimization, minimizing or maximizing some derived quantity, as a measure of “fitness" of the design. For real-world problems, these objective function values are often computed using sophisticated and realistic numerical simulations of physical Phenomena [5]. This is an extremely computationally intensive process when models must be run many times to effectively search design parameter space. Current high performance computing systems mostly derive their capacity from parallel architectures, so for optimization methods to be practical and effective, the algorithms employed must preferably have a large degree of concurrency. Fig.1.3 shows a simple classification of methods, those are implemented used for optimization. 
Optimization methods may be divided into gradient and non-gradient methods.  Non-gradient methods are more robust in locating the global optima and are applicable in a broader set of problems. Another advantage of non-gradient methods is that these do not require any derivatives of the objective function in order to find the optimum. Hence, these are also known as black box methods. Mostly, the objectives are of complex nature, thus the derivatives of the objective function are not explicitly known. The disadvantages are however
that it is difficult to prove that the actual optimum is found. This is partly true for gradient methods also as these might get caught in local optima. By conducting several optimizations with different initial conditions, it could be made probable that the global optimum is truly found. Another disadvantage with non-gradient methods is that these usually require more 
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Fig1.3: Classification of methods for optimization
 function calls than gradient methods, and are thus more computationally expensive. However, as the capacities of the computers are increasing, this disadvantage is diminishing. Furthermore, non-gradient methods are well suited for implementation on parallel processors.
Gradient descent algorithms, based on classical, Newtonian methods of analysis, generally exhibit rapid local convergence, but due to the iterative steps of gradient determination and some form of line search method employed, these are inherently sequential in nature. In real-world design processes, there are limits imposed on problem parameters by virtue of their nature. Various authors have exploited this bounding of engineering problems to enhance the parallelism of line searching to some extent. The greatest concurrency is offered by population-based methods, in which large numbers of objective function evaluations are typically performed in parallel, evolving solutions over several generations. It is only over the past decade that the computational capacity available to scientists and engineers has increased to the point where population-based methods of optimization have become practical for the solution of real-world problems. Moreover, in engineering design, the evaluation of the objective function is so much slower than the rest of the algorithm, that such codes demonstrate excellent speed-up in spite of the need for global communication at each iteration. Evolutionary Programming now may be frequently encountered in application to engineering problems. It has inherent, easily exploitable parallelism and attractive global convergence probabilities and low convergence rate. The low convergence rate of EP in function optimization is improved by incorporating Gradient descent methods with Evolutionary Programming.
 Gradient Methods
Evolutionary gradient search (EGS) is an approach to optimization that combines features of gradient strategies with ideas from evolutionary computation. Gradient descent algorithms, based on classical, Newtonian methods of analysis, generally exhibit rapid local convergence [21], but due to the iterative steps of gradient determination and some form of line search method employed, these are inherently sequential in nature. Basic gradient search methods are (i) Steepest Descent and (ii) Conjugate Gradients. Both methods make use of the first derivative of the criterion function and therefore require less memory than for instance the Gauss-Newton, Levenberg-Marquardt and BFS methods, which make use also of the Hessian matrix. Both are iterative methods 

     Steepest  descent is a first order optimization algorithm to find local minimum of a function using gradient descent, one takes steps proportional to the negative of the gradient (or the approximate gradient) of the function at the current point. Steepest descent is also known as Gradient descent, or the method of steepest descent. The method of Steepest Descent is the simplest of the gradient methods.
   Directed Search

Direct search methods [15] were formally proposed and widely applied in the 1960s but fell out of favour with the mathematical optimization community by the early 1970s because they lacked coherent mathematical analysis.

The various advantages of search methods are mentioned below:

· These methods are used to provide solutions to some problems, which cannot be solved using classical methods.

· These methods can work even if the objective function is discontinuous and non differentiable at some points.

· These methods provide faster solutions to problems as compared to classical methods. direct

· Direct search methods can be easily implemented on computers as these methods use repeated and identical arithmetic operations with simple logic.

· These methods are capable of providing approximate solutions at every step during the process of problem solving. 

· These methods can be used to find the global minimum when the objective function possesses several relative minima.

 The method come under this search are:

· Hooke and jeeves method

· Simplex method
  Hooke and Jeeves Method 
In Finland, the growth and yield models for tree stands are simulation programs that consist of several sub-models. These models are often non-smooth and non differentiable. Direct search methods such as the Hooke-Jeeves algorithm (HJ) are suitable tools for optimizing stand management with this kind of complicated models. The HJ method needs an initial solution vector x. The search begins with exploratory search in the directions of coordinate axes (one decision variable altered at a time). After completing one round of exploratory searches the algorithm goes to pattern search if the exploratory search is successful. The pattern search alters the values of more than one decision variable simultaneously. If exploratory search cannot improve the solution the step size used in exploratory search is halved and the search is repeated. The search is stopped once the step size becomes smaller than a predefined

stopping criterion. Let [d1, …, dm]T be the coordinate directions and let y1 = x1 and k = j = 1. The algorithm works as follows:

Exploratory search

1) If f(yj + ∆dj) > f(yj) (success), let yj+1 = yj + ∆dj and go to Step 2. Otherwise if f(yj – ∆dj) > f(yj) (success), let yj+1 = yj – ∆dj and go to Step 2. Otherwise let yj+1 = yj and go to Step 2 (no improvement found in direction j). 

2) If j < m, replace j by j + 1 and repeat Step 1 (go to next decision variable). Otherwise go to Pattern search if f(ym+1) > f(xk) (at least one successful change detected in the directions of coordinate axes). If f(ym+1) ≤ f(xk) go to Step size reduction.

Pattern search

 Let xk+1 = ym+1 and let y1 = xk+1 + α(xk+1 – xk). Replace k by k + 1,       let j = 1, and go to Step 1.

Step size reduction

If ∆ ≤ (, stop. Otherwise replace ∆ by ∆ / 2. Let y1 = xk, xk+1 = xk, j =         1, replace k by k + 1, and repeat Step 1. 

The method has three parameters: initial steps size (∆), stopping criterion ((), and α. The initial step size was different for different decision variables; it was 0.1 times the range [aj,bj] of the  variable. The stopping criterion was equal to 0.01 times the initial steps size. The search was stopped once the step size was smaller than the stopping criterion for every decision variable. Parameter α was taken as 1.0. 
  Simplex Search Method
Simplex search method is an old faithful solver to LP- problems. George Dantzig mainly developed it in the middle of the 20th century, during World War II. Dantzig was working at Pentagon with military planning for the U.S Air Force. He developed mathematical models and solved them with a desk calculator. But it was not just mathematical models he developed, he also developed an efficient solver to this kind of problem, in fact the simplex method. The simplex method can be described in two parts, usually named phase-I and phase-II.

· In simplex phase-I the algorithm searches for a feasible basic solution.

· In simplex phase-II the algorithm iterates toward the optimum from vertex to vertex.

In simplex phase I slack variables will be added to the problem to find a value of the decision variable where all the constraints are fulfilled and feasible solution is found to start the search for optimization in phase-II. In phase-II the algorithm will search from vertex to vertex to find the optimal solution. The next vertex will be chosen such that the search direction is in the steepest feasible direction and following same procedure the optimum will finally be reached. 

 Simulated Annealing

Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of applied mathematics, namely locating a good approximation to the global minimum of a given function in a large search space. It is often used when the search space is discrete.
     The method was independently described by Kirkpatrick [6], Gelatt and Vecchi [3]. The method is an adaptation of the Metropolis-Hastings algorithm, a Monte Carlo method to generate sample states of a thermodynamic system, invented by Metropolis et al [22].



                               
(a) Fast cooling schedule                                        (b) Slow cooling schedule                                              

Fig1.4: Effect of cooling schedule 

     In the simulated annealing (SA) method, each point s of the search space is analogous to a state of some physical system, and the function E(s) to be minimized is analogous to the internal energy of the system in that state. The goal is to bring the system, from an arbitrary initial state, to a state with the minimum possible energy.

Algorithm
SA candidate solution is randomly generated and the algorithm starts at a high starting temperature T0. The following sections explain the steps of the simulated annealing algorithm.

Begin


T = T0


tstop = ts

current_gain = calcutate_gain()


while tstop > 0 do


        accept_move = FALSE

                   for I = 1 to M do


         randomly select vertex V to move from one partition to another

                    ∆gain = new  gain – current gain


         If accept gain change(∆gain,T) then




Current gain = new gain




Accept move = TRUE

                    Else




Return V to orginal partition



 If accept  move  then


            tstop = ts



else



           tstop = tstop  -1



T = T *α


End

Gain Calculation

The gain of a partitioning solution is calculated by use of the ratio cut formula 

Gain = (cutsize)/A-B

Where,
         A is the number of vertices in group A, B is the number of vertices in group B.
Accepting Vertex Moves

A vertex is randomly selected as a candidate to move from its original group to the other group. When a vertex V is randomly selected for movement from one partition to another, its score or acceptance of move is evaluated according to the function. A move is always rejected if it will result in an unbalanced partition, while a move is always accepted if it will improve the solution. Otherwise a move is randomly accepted with the probability of acceptance dependent on the system temperature T. The higher temperature has greater the probability that an inferior move will be selected. This process allows the candidate solution to explore more regions of the solution space at the early stages of the algorithm. The objective is to keep the solution from converging to a local optimum.

Stopping Criteria

After each iteration, the temperature, T is scaled by a cooling factor α (0<α<1). The algorithm stops if there have been no changes to the solution after ts iterations.



2  Evolution Strategy
Evolution strategies [1] use natural problem-dependent representations, and primarily mutation and selection as search operators. As common with evolutionary algorithms, the operators are applied in a loop. An iteration of the loop is called a generation. The sequence of generations is continued until a termination criterion is met. As far as real-valued search spaces are concerned, mutation is normally performed by adding a normally distributed random value to each vector component. The step size or mutation strength is often governed by self-adaptation. Individual step sizes for each coordinate or correlations between coordinates are either governed by self-adaptation or by covariance matrix adaptation. The (environmental) selection in evolution strategies is deterministic and only based on the fitness rankings, not on the actual fitness values. The simplest ES operates on a population of size two: the current point (parent) and the result of its mutation. Only if the mutant has a higher fitness than the parent, it becomes the parent of the next generation. Otherwise the mutant is disregarded. 
  Genetic Algorithm
A genetic algorithm [1] is a search technique used in computing to find exact or approximate solutions to optimization and search problems. Genetic algorithms are a particular class of evolutionary algorithms (also known as evolutionary computation) that use techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover (also called recombination). Traditionally, solutions are represented in binary as strings of 0s and 1s, but other encodings are also possible. The evolution usually starts from a population of randomly generated individuals and happens in generations. In each generation, the fitness of every individual in the population is evaluated, multiple individuals are stochastically selected from the current population (based on their fitness), and modified (recombined and possibly randomly mutated) to form a new population. The new population is then used in the next iteration of the algorithm. Commonly, the algorithm terminates when either a maximum number of generations has been produced, or a satisfactory fitness level has been reached for the population. If the algorithm has terminated due to a maximum number of generations, a satisfactory solution may or may not have been reached.

A typical genetic algorithm requires:

1. A genetic representation of the solution domain. 

2. A fitness function to evaluate the solution domain. 

Initialization

Initially many individual solutions are randomly generated to form an initial 

population. The population size depends on the nature of the problem, but typically 

contains several hundreds or thousands of possible solutions. 

2.1.1 Selection
During each successive generation, a proportion of the existing population is selected to breed a new generation. Individual solutions are selected through a fitness-based process, where fitter solutions (as measured by a fitness function) are typically more likely to be selected. Certain selection methods rate the fitness of each solution and preferentially select the best solutions. 

2.1.2 Reproduction
For each new solution to be produced, a pair of "parent" solutions is selected for breeding from the pool selected previously. By producing a "child" solution using the above methods of crossover and mutation, a new solution is created which typically shares many of the characteristics of its "parents". New parents are selected for each child, and the process continues until a new population of solutions of appropriate size is generated. Although reproduction methods that are based on the use of two parents are more "biology inspired", recent researches suggested more than two "parents" are better to be used to reproduce a good quality chromosome.
Termination
This generational process is repeated until a termination condition has been reached. Common terminating conditions are:

· A solution is found that satisfies minimum criteria 

· Fixed number of generations reached 

· Allocated budget (computation time/money) reached 

· The highest ranking solution's fitness is reaching or has reached a plateau such that successive iterations no longer produce better results 

· Manual inspection 

· Combinations of the above 

2.1.3   Simple Generational Genetic Algorithm 
1. Choose initial population 

2. Evaluate the fitness of each individual in the population 

3. Repeat until termination: (time limit or sufficient fitness achieved) 

1. Select best-ranking individuals to reproduce. 

2. Breed new generation through crossover and/or mutation (genetic operations) and give birth to offspring 

3. Evaluate the individual fitness’s of the offspring 

4. Replace worst ranked part of population with offspring 
Particle Swarm Optimization

Particle swarm optimization [22] is a swarm intelligence based algorithm to find a solution to an optimization problem in a search space, or model and predict social behavior in the presence of objectives. The particle swarm optimization algorithm was first described in 1995 by James Kennedy and Russell C. Eberhart.

     The particle swarm simulates this kind of social optimization. A problem is given, and some way to evaluate a proposed solution to it exists in the form of a fitness function. A communication structure or social network is also defined, assigning neighbors for each individual to interact with. Then a population of individuals defined as random guesses at the problem solutions is initialized. These individuals are candidate solutions. They are also known as the particles, hence the name particle swarm. An iterative process to improve these candidate solutions is set in motion. The particles iteratively evaluate the fitness of the candidate solutions and remember the location where they had their best success. The individual's best solution is called the particle best or the local best. Each particle makes this information available to their neighbors. They are also able to see where their neighbors have had success. Movements through the search space are guided by these successes, with the population usually converging, by the end of a trial, on a problem solution better than that of non-swarm approach using the same methods. The swarm is typically modeled by particles in multidimensional space that have a position and a velocity. These particles fly through hyperspace and have two essential reasoning capabilities: their memory of their own best position and knowledge of the global or their neighborhood's best. In a minimization optimization problem, problems are formulated so that "best" simply means the position with the smallest objective value. Members of a swarm communicate good positions to each other and adjust their own position and velocity based on these good positions. So a particle has the following information to make a suitable change in its position and velocity:

· A global best that is known to all and immediately updated when a new best position is found by any particle in the swarm. 

· Neighborhood best that the particle obtains by communicating with a subset of the swarm. 

     As the swarm iterates, the fitness of the global best solution improves (decreases for minimization problem). It could happen that all particles being influenced by the global best eventually approach the global best, and from there on the fitness never improves despite however many runs the PSO is iterated thereafter. The particles also move about in the search space in close proximity to the global best and not exploring the rest of search space. This phenomenon is called 'convergence'. If the inertial coefficient of the velocity is small, all particles could slow down until they approach zero velocity at the global best. The selection of coefficients in the velocity update equations affects the convergence and the ability of the swarm to find the optimum. One way to come out of the situation is to reinitialize the particles positions at intervals or when convergence is detected.

3   Ant Colony Optimization
The ant colony optimization algorithm (ACO), is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs. Ant colony algorithms family, in swarm intelligence methods, and it constitutes some metaheuristic optimizations. The first algorithm was aiming to search for an optimal path in a graph; based on the behavior of ants seeking a path between their colony and a source of food and upon finding food return to their colony while laying down pheromone trails. If other ants find such a path, they are likely not to keep travelling at random, but to instead follow the trail, returning and reinforcing it if they eventually find food.

     Over time, however, the pheromone trail starts to evaporate, thus reducing its attractive strength. The more time it takes for an ant to travel down the path and back again, the more time the pheromones have to evaporate. A short path, by comparison, gets marched over faster, and thus the pheromone density remains high as it is laid on the path as fast as it can evaporate. Pheromone evaporation has also the advantage of avoiding the convergence to a locally optimal solution. If there were no evaporation at all, the paths chosen by the first ants would tend to be excessively attractive to the following ones. In that case, the exploration of the solution space would be constrained.

     Thus, when one ant finds a good path from the colony to a food source, other ants are more likely to follow that path, and positive feedback eventually leads all the ants following a single path. The idea of the ant colony algorithm is to mimic this behavior with "simulated ants" walking around the graph representing the problem to solve.



Fig1.5: Ants search for shortest path.

1. The first ant finds the food source (F), via any way , then returns to the nest (N), leaving behind a trail pheromone.

2. Ants indiscriminately follow four possible ways, but the strengthening of the runway makes it more attractive as the shortest route. 

3. Ants take the shortest route; long portions of other ways lose their trail pheromones. 

     In a series of experiments on a colony of ants with a choice between two unequal length paths leading to a source of food, biologists have observed that ants tended to use the shortest route [13,33].
1.6 OBJECTIVE
· Real world complex problems have no predefined procedure for solving. It is impossible to define and determine the exect solution of these problems. These are called Stochastic or probabilistic system.

· We consider a Fossil Fired (Oil, Coal, and Gas) generator power system unit. To get the desired output power at lowest cost, the power system unit is designed as a stochastic finite state system.
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Fuel Input
Fig1.6. Model of a Fossil Plant


The componnts of cost thet fall under the category of dispatching procedures are the costs of the fuel burnt in the fossil plant. The total cost of operation includes the fuel cost, cost of labour, supplies, maintainance. Generally costs of labour, supplies and maintanance are fixed percentages of incoming fuel cost.

For dispatching purposes, the cost is usually approximated by quadratic segments as 
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   Fig1.7. Relationship between operating cost & o/p power
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 is the minimun loading limit below which it is un economical to operate the unit.
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 is the maximum output limit.

Economic load dispatch algorithm can be converted as a stochastic finite state system and the state reduction of the stochastic finite state system will lead to cost reduction for power generation system.

The state diagran shown in figure is a two state finite state system one is non optimized state and another is optimized state. Getting realizable decision demand as an input the transition of non optimized state to optimized state which lead cost reduction output. If the cost is lowest then there is no further transition, but if the cost is not lowest then the previous optimized state is behave as non optimized state for next iteration. 
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CHAPTER 2

REVIEW OF LITERATURE 

2.1  HISTORICAL SKETCH
The need for solving optimization problems arises in almost every field. As a consequence, many analytic and numerical optimization techniques have been developed. However, there exist a great number of functions, such as discontinuous, non-differentiable, non-convex, or multi-model, which are beyond analytical methods and present profound difficulties for numerical techniques. Moreover, traditional optimization techniques depend highly on a deterministic relationship between the model’s parameters and its performance; to date, these techniques have been unable to optimize the performance of complex systems. Consequently, new and more robust optimization techniques which are capable of handling such problems are needed.                                                                                                                          

                      Recently, A method inspired by the social behavior of animals is used, this method is known as Particle Swarm optimization. The Particle swarm optimization algorithm shows one of the most promising techniques that has the potential for optimizing complex systems. PSO is a method of evolutionary computation based on the behavior of flocks of birds [7, 20]. A set of simple rules such as estimate, observe, and simulate, direct a flock of birds to the target (usually, this is a place for rest or eating). The laws that specify the motion pattern of a flock allow it to move in a group, without having a constant leader. The presented rules written in the form of mathematical equations can be applied to numerical optimization and search. 

                The basic operating procedure of PSO is quite easy to follow and can be effectively and extensively adopted for optimization of various fields and some special features of PSO are [17]:

1. simple concept

2. easy implementation

3. fast computation

4. robust search ability

 2.2 OVERVIEW OF PSO

The last three decades have witnessed the development in efficient and effective stochastic optimizations. In contrast to the traditional adaptive stochastic search algorithms, Evolutionary Computation (EC) techniques exploit a set of potential solutions, namely a population, and detect the optimal solution through cooperation and competition among the individuals of the population. These techniques often detect optima in difficult optimization problems faster than traditional methods [25]. One of the most powerful swarm intelligence-based optimization techniques, named PSO, was introduced by Kennedy and Eberhart [10, 20]. PSO is inspired by the swarming behavior of animals, and human social behavior. During the last decade many studies focused on this method and almost all of them, strongly confirmed the abilities of this newly proposed optimization technique [10,20,24,30,32], e.g. fast convergence, finding global optimum in presence of several local optima, simple programming and adaptability with constrained problems. Some papers attempted to enhance the algorithm by developing new variations such as variable inertia coefficient, constriction factor [24], maximum Velocity limit, parallel optimization [30], deflection, repulsion, stretching [20],mutation [32] etc.
                 Particle swarm optimization (PSO) was invented by Russ Eberhart and James Kennedy in 1995 through simplifying a social simulation model which was originally developed to simulate the process of birds seeking food. The PSO algorithm is a population-based evolutionary algorithm. Like other evolutionary algorithms, each individual (called particle in PSO) in the population represents a candidate solution to the problem to be solved. Unlike other evolutionary algorithms each individual/particle has a velocity parameter associated with it in addition to its position parameter in the solution space, which is the only parameter that an individual in other evolutionary algorithms has. Each particle “flies” through the solution space with a velocity which is dynamically changed according to its own flying experience and its companion’s flying experience. It is this velocity changing rule through which all the particles communicate and share information among themselves. Furthermore, it is this sharing and communicating mechanism that enables particles to fly towards better and better search areas [19] while at the same time to risk to be stuck into local minima 

                                The search process or flying trajectories of particles are complicated and nonlinear. To search for good enough solutions, especially for the multi-modal optimization problems, the search process needs to have the ability to converge at some time while diverging at other times in order to have the ability to find good enough solutions and to be able to avoid to be stuck in un-wanted local minima. Therefore, it is critical to have a capability to monitor the search process of PSO in order to first understand the PSO search process and then design a better algorithm or even have possibilities to control the search process later. 

                A straightforward approach to measure the diversity of PSO is to use the standard deviation of the fitness values of all the population particles. Population fitness values are attributes of the PSO behaviors and not the PSO particles themselves directly. Therefore, this kind of diversity measurement is simple but it is an indirect measurement of the population diversity. The diversity of PSO has been looked at from different perspectives. Each particle in a PSO has an n-dimensional velocity associated with it in addition to its position as in other evolutionary algorithms. Therefore, diversities depend on particles’ positions and velocities instead of only the position diversity as in other evolutionary algorithms. Velocity diversity has velocity speed diversity and velocity directional diversity. The velocity speed tells how fast a particle is flying and the velocity direction tells where a particle is flying towards.
2.3 PARTICLE SWARM OPTIMIZATION ALGORATHIM

The Particle swarm optimization algorithm (PSO) is an optimization and search technique based on the principles of social behavior of animals. The method was developed in 1995 by James Kennedy and Russell Eberhart. PSO mimics the collective intelligent behavior of “unintelligent” creatures. PSO is very good at finding good enough solutions for a large range of problems, such as constrained optimization problems, multi-objective optimization problems, etc.
                              The original PSO algorithm is very simple in concept and easy in implementation. The initial swarm is generally created with all particles randomly distributed throughout the design space, each with a random initial velocity vector. We use Eq. (2.1) for obtaining the random initial position & Eq. (2.2) for velocity vector It can be formulated as:

 xi0 = xmin+ rand () (xmax−xmin)                                                                             (2.1)

vi0=    xmin +rand () (xmax−xmin)                                                                            (2.2)

                           Δt 

Where rand () are random number between 0 and 1.Xmin & Xmax are the vectors of lower bounds and upper bounds respectively. New velocity & Position can be formulated as [9, 28,  29]:   
vid(t+1) =wid(t) vid(t)+c1rand()(pid(t) − xid(t) )+c2rand()(pgd(t)−xid(t))                      (2.3)                                    
xid(t + 1) =xid(t) + vid(t + 1).                                                                                        (2.4)

where c1 and c2 are positive constants, and rand() and Rand() are two random functions in the range [0,1] and are different for all dimensions and all particles; xid(t) represents the dth position value of the ith particle at time step t; pid(t) represents the dth position value of the best previous position (the position giving the best fitness value) of the ith particle at the time step t; The symbol g represents the index of the best particle among all the particles in its neighborhood; vid(t) represents the rate of the dth position value

              Change (velocity) for particle i at time step t; wid(t) is the inertia weight for the dth element of particle i at time step t. Usually, all the wid(t) will have the same value for simplicity but the inertia weight can be dynamically adjusted according to the current and historical performance of the particles, which will improve the PSO’s performance since the search process of a PSO algorithm is nonlinear and complicated

.             A simple and straightforward approach is to linearly decrease inertia weigh over the course of PSO. Other PSO parameters can be fixed and/or even can be dynamically changed to affect the search process in the hope of having a more diverse or better performed PSO particles

                  Equation (2.3) is the equation governing the flying trajectory of particles. Eq. (2.3) tells how the velocity is to be changed. In order not to violate the physical law, the velocity can not be changed abruptly and shall be changed from the current velocity, which is reflected by the first part of the Eq. (2.3) as a “flying” particle’s momentum. The other two parts of the Eq. (2.3) reflect the learning and collaboration capability of a particle. The second part reflects a particle’s self-learning capability or self-cognition, that is, a particle learns from its own flying experience. The third part reflects particle’s collaboration capability, that is, a particle learns from “flying” experience of its neighboring particles. The position of a “flying” particle is adjusted according to the Eq. (2.4).

                    There are two most commonly used versions of PSOs, global version and local version. In a global version PSO, a single and unique gbest is shared by all particles in the whole population. In a local version PSO, each particle in the population may have different gbest which is the best performed particle within the particle’s own neighborhood. In both global and local version PSO, particles fly through the search space with dynamically changed velocities according to the Eq. (2.3). The neighborhood of each particle is generally defined as its topologically nearest particles at each side instead of Euclidean neighborhood. The global version PSO can be considered as a special case of a local version PSO if the whole population is considered as each particle’s neighborhood. It has been claimed that the global version PSO converges fast, but with potential to converge to the local minimum, while the local version PSO might have more chances to find better solutions slowly.

                             The process for asynchronously implementing the global version of PSO is shown in fig. (2.1).













Fig. 2.1 Flow chart for the PSO algorithm

The above steps loop through cycle by cycle until usually a good enough solution has been found or a pre-set maximum number of generations have been reached.
CHAPTER 3 

THEORETICAL BACKGROUND 
The use and development of heuristics techniques have significantly grown. Since they use a population of solutions in their search, multiple Pareto-optimal solutions can be found in one single run. These models can be efficiently used to eliminate most of the difficulties of classical methods. Particle swarm optimization (PSO) method is one of heuristics-based optimization technique and was successfully applied in diverse optimization tasks. Particle swarm optimization (PSO) is an efficient, robust and simple optimization algorithm. Most studies are mainly concentrated on better understanding of the standard PSO control parameters, such as acceleration coefficients, etc [53]. PSO shows incomparable advantages in searching speed and precision [13]. In short, the PSO is characterized as a simple heuristic of well-balanced mechanism with flexibility to enhance and adapt to both global and local exploration abilities, which gains lots of attention in scheduling of an flexible manufacturing system [4], power and voltage control [10, 50], neural network training, mass-spring systems, task assignment, supplier selection and ordering problem, automated drilling, state estimation for electric power distribution systems [10, 50], etc.. PSO is very good at finding good enough solutions for a large range of problems, such as constrained optimization problems [23], multi-objective optimization problems [39], etc.

The conventional economic load dispatch problem of power generation involves allocation of power generation to different thermal units to minimize the operating cost subject to diverse equality and inequality constraints of the power system. This makes the economic load dispatch problem a large-scale highly non-linear constrained optimization problem However, as a result of public awareness of environmental protection, diverse emission compliance strategies have emerged [13]. These strategies include emission dispatching or trading, fuel switching and/or blend, installation of emission reduction equipment in the existing thermal plants, and retirement of old fuel-burning equipment or generating unit and replacement with cleaner and efficient one. Among these strategies, unit dispatch considering emission and cost minimization has received widespread attention due to its effective short-term results and smaller capital outlay.

                      The economic load dispatch (ELD) problem is one of the most important operational functions of the modern energy management system. The purpose of the ELD is to find the optimum generation among the existing units, such that the total generation cost is minimized while simultaneously satisfying the power balance equations and various other constraints in the system. However, it is realized that the conventional techniques become very complicated when dealing with increasingly complex dispatch problems, and are further limited by their lack of robustness and efficiency in a number of practical applications.
3.1  OVERVIEW OF PARTICLE SWARM OPTIMIZATION

The last three decades have witnessed the development in efficient and effective stochastic optimizations. In contrast to the traditional adaptive stochastic search algorithms, evolutionary computation (EC) techniques exploit a set of potential solutions, namely a population, and detect the optimal solution through cooperation and competition among the individuals of the population. These techniques often detect optima in difficult optimization problems faster than traditional methods [32]. One of the most powerful swarm intelligence-based optimization techniques, named PSO, was introduced by Kennedy and Eberhart [14, 25]. PSO is inspired by the swarming behavior of animals, and human social behavior. During the last decade many studies focused on this method and almost all of them, strongly confirmed the abilities of this newly proposed optimization technique [14, 25, 34, 49], e.g. fast convergence, finding global optimum in presence of several local optima, simple programming and adaptability with constrained problems. Some author attempted to enhance the algorithm by developing new variations such as variable inertia coefficient, constriction factor [34], maximum velocity limit, parallel optimization, deflection, repulsion, stretching [25], mutation [49] etc.

 Particle swarm optimization (PSO) was invented by Russ Eberhart and James Kennedy in 1995 through simplifying a social simulation model which was originally developed to simulate the process of birds seeking food. The PSO algorithm is a population-based evolutionary algorithm. Like other evolutionary algorithms, each individual (called particle in PSO) in the population represents a candidate solution to the problem to be solved. Unlike other evolutionary algorithms each individual/particle has a velocity parameter associated with it in addition to its position parameter in the solution space, which is the only parameter that an individual in other evolutionary algorithms has. Each particle “flies” through the solution space with a velocity which is dynamically changed according to its own flying experience and its companion’s flying experience. It is this velocity changing rule through which all the particles communicate and share information among themselves. Furthermore, it is this sharing and communicating mechanism that enables particles to fly towards better and better search areas while at the same time to risk to be stuck into local minima. 

The search process or flying trajectories of particles are complicated and nonlinear. To search for good enough solutions, especially for the multi-modal optimization problems, the search process needs to have the ability to converge at some time while diverging at other times in order to have the ability to find good enough solutions and to be able to avoid to be stuck in un-wanted local minima. Therefore, it is critical to have a capability to monitor the search process of PSO in order to first understand the PSO search process and then design a better algorithm or even have possibilities to control the search process later. 

 A straightforward approach to measure the diversity of PSO is to use the standard deviation of the fitness values of all the population particles. Population fitness values are attributes of the PSO behaviors and not the PSO particles themselves directly. Therefore, this kind of diversity measurement is simple but it is an indirect measurement of the population diversity. The diversity of PSO has been looked at from different perspectives. Each particle in a PSO has an n-dimensional velocity associated with it in addition to its position as in other evolutionary algorithms. Therefore, diversities depend on particles’ positions and velocities instead of only the position diversity as in other evolutionary algorithms. Velocity diversity has velocity speed diversity and velocity directional diversity. The velocity speed tells how fast a particle is flying and the velocity direction tells where a particle is flying towards [42].

3.2  PARTICLE SWARM OPTIMIZATION ALGORATHIM

The Particle swarm optimization algorithm (PSO) is an optimization and search technique based on the principles of social behavior of animals. The method was developed in 1995 by James Kennedy and Russell Eberhart. PSO mimics the collective intelligent behavior of “unintelligent” creatures. PSO is very good at finding good enough solutions for a large range of problems, such as constrained optimization problems, multi-objective optimization problems, etc. The original PSO algorithm is very simple in concept and easy in implementation.
Initialization
 The initial swarm is generally created with all particles randomly distributed throughout the design space, each with a random initial velocity vector. Eq. (3.1) is used for obtaining the random initial position and Eq. (3.2) for velocity vector, it can be formulated as:
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where,
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   represents the dth position value of the ith particle at time step t;
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  represents the rate of the dth position value change (velocity) for particle i at time step t;
· r1 and r2 are random number within the range of [0,1]

· Xmin is the vectors of lower bound. 
· Xmax is the vector of upper boand.

· Δt is taken as unity.  
Parameters of particle swarm optimization are also initializing. c1 and c2 are positive constants, known as thrust parameter. Generalized value of c1 and c2 is 2 and c1 + c2 ≤ 4.[image: image130.png]


 is the inertia of the particles.

Updating position and velocity
New velocity and Position can be updated using Eq. (3.3a) and Eq. (3.3b) respectively. These equations are formulated as [41]:   
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where
· c1 and c2 are positive constants,
· r3 and r4 are random number within the range of [0,1].
· [image: image136.png]


 is the inertia of the particles.
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  represents the dth position value of the ith particle at time step t.
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 represents the dth position value of the best previous position (the position giving the best fitness value) of the ith particle at the time step t.
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 represents the index of the best particle among all the particles
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   represents the dth position value of the ith particle at time step t;
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  represents the rate of the dth position value change (velocity) for particle i at time step t;
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where
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  represents the dth position value of the ith particle at time step t.
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  represents the dth position value of the ith particle at time step t+1.
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  represents the rate of the dth position value change (velocity) for particle i at time step t+1.
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where
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 is the inertia of the particle.
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 represents upper limit of inertia weight.
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 represents lower limit of inertia weight.
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 represents number of iteration.
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 represents maximum number of iteration.
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 will have the same value for simplicity but the inertia weight can be dynamically adjusted according to the current and historical performance of the particles, which will improve the PSO’s performance since the search process of a PSO algorithm is nonlinear and complicated

A simple and straightforward approach is to linearly decrease inertia weigh over the course of PSO. Other PSO parameters can be fixed and/or even can be dynamically changed to affect the search process in the hope of having a more diverse or better performed PSO particles

Equation (3.3) is the equation governing the flying trajectory of particles. Eq. (3.3a) tells how the velocity is to be changed. In order not to violate the physical law, the velocity can not be changed abruptly and shall be changed from the current velocity, which is reflected by the first part of the Eq. (3.3a) as a “flying” particle’s momentum. The other two parts of the Eq. (3.3a) reflect the learning and collaboration capability of a particle. The second part reflects a particle’s self-learning capability or self-cognition, that is, a particle learns from its own flying experience. The third part reflects particle’s collaboration capability, that is, a particle learns from “flying” experience of its neighboring particles. This is shown in the Fig. 3.1. The position of a “flying” particle is adjusted according to the Eq. (3.3b).

There are two most commonly used versions of PSOs, global version and local version. In a global version PSO, a single and unique gbest is shared by all particles in the whole population. In a local version PSO, each particle in the population may have different gbest which is the best performed particle within the particle’s own neighborhood. In both global and local version PSO, particles fly through the search space with dynamically changed velocities according to the Eq. (3.3a). The neighborhood of each particle is generally defined as its topologically nearest particles at each side instead of Euclidean neighborhood. The global version PSO can be considered as a special case of a local version PSO if the whole population is considered as each particle’s neighborhood. It has been claimed that the global version PSO converges fast, but with potential to converge to the local minimum, while the local version PSO might have more chances to find better solutions slowly.
Convergence criterion
Changes in the objective function are monitored for a specified number of consecutive design iteration. If the maximum change in the objective function is less than a predefined allowable change, convergence is assumed. Evolution flowchart is shown below in Fig. 3.2.










3.3  OPTIMIZATION PROBLEM FORMULATION

Economic load dispatch (ELD) is an important topic in the operation of power plants which can help to build up effective generating management plans. The ELD problem has nonsmooth cost function with equality and inequality constraints which make it difficult to be effectively solved [31]. Real cost functions are more complex than conventional second order cost functions when multi-fuel operations, valve-point effects, accurate curve fitting, etc., are considering in deregulated changing market[43].
The ELD problem may be expressed by minimizing the fuel cost of generator units under constraints. Depending on load variations, the output of generators has to be changed to meet the balance between loads and generation of a power system. The power system model consists of n generating units already connected to the system [24]. 

The fuel-cost function without valve-point loadings of the generating units is given by
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Subjects to;

i. Power balance constraints
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and,
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ii. Generating capacity constraints
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where,

[image: image174.png]


, [image: image176.png]


 and [image: image178.png]


 are the cost coefficients of the ith generator 

n is the number of generators 
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 is the real power output of the ith generator (MW) 
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 is the operating cost of unit i (Rs/h)
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 is the transmission losses (MW) 
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 is the maximum generation output of the ith generator 
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 is the minimum generation output of the ith generator 
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-coefficients 
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 is the total demand (MW).

The key factor in solving an ELD problem is how to handle the several constraints relating to the problem. Over the last few decades, kinds of approaches had been proposed to handle the

constraints. These can be grouped into four categories: ideas that preserve the feasibility of solutions, penalty-based approaches, methods that clearly distinguish between feasible and unfeasible solutions, and hybrid techniques [34]. In this thesis the penalty function is adopted to address the constraints in an ELD problem. The introduction of the penalty term enables to transform a constrained optimization problem into an unconstrained one. As a result, the fuel cost function is written as:
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where,

The value of the penalty coefficient [image: image197.png]


 is checked at each iteration.
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 is the equality constrained defined as
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Most of these methods were based on penalty formulations that transform Eq. (3.4b) into an unconstrained function [image: image202.png]F, (x;,7)



 as shown in Eq. (3.5), which consisting of a sum of the objective and the constraints weighted by penalties, and use PSO to minimize[image: image204.png]F, (x;,7)
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3.3.1.   Initialization
First parameters of particle swarm optimization are initialize. c1 and c2 are positive constants, known as thrust parameter. Generalized value of c1 and c2 is 2 and c1 + c2 ≤ 4.[image: image206.png]


 is the inertia of the particles. The initial swarm is generally created with all particles randomly distributed throughout the design space, each with a random initial velocity vector. Eq. (3.1) is used for obtaining the random initial position & Eq. (3.2) for velocity vector.
3.3.2.   Fitness Function 

The role of the evolution function is to represent the requirements to adapt the solution. The evolution function is commonly called as the fitness function in Evolutionary computation. Mathematically, it is trivial to change minimization function into maximization function and vice versa. In case, the problem is a minimization problem, it is to be converted to maximization problem as follows: 
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where, 
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 is a vector of variables.
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 is the objective function of the problem to be minimized and is given in Eq. (3.6).

3.4 Algorithm
 The step-wise procedure of the Economic load dispatch using Particle swarm optimization algorithm is outlined below:
1. Initialization: Generate swarm size; initialize initial position and velocity vector of the particle. Equations for position and velocity vector are formulated as:
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Initial parameters are also initialized.
2. Swarm’s manipulation: The particles, except the best of them regulate their velocities in accordance with the equation                    
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3. Best particle’s manipulation: The best particle in the swarm updates its velocity using a random coordinator calculated between its position and the position of a randomly chosen particle in the swarm.
4. Velocity bounds’ oscillations: Check if the bounds of velocities are enforced, if the bounds are violated then they are replaced by the respective limits.
5. Position update: The positions of particles are updated using equation
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6. Position limits: Check if the limits of particles’ positions (generators prohibited operating zones) are enforced 
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7. Evaluation: Objective function is evaluated to minimize fuel cost. Objective function is formulated as
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8. Update search intervals and swarm size: If there is no improvement in the global best then increase swarm size and update search intervals.
9. Stopping criteria: The PSO algorithm will be terminated if the maximum number of allowed iterations is achieved.
10. Global optimal solution: Choose the optimal solution as the global best achievement.
     CHAPTER 4

RESULTS AND DISCUSSION


One of the inherent characteristics associated with complex real world optimal control or decision making problems is their inescapably multi-nature. Recently, Particle swarm optimization techniques (PSO) have proved useful in general function optimization. These appear to apt for addressing non-linearly constrained optimization problems. PSO techniques are generally constructed to cope effectively with the difficulties of convexity and differentiability.

This chapter contains the testing of developed PSO algorithm. The PSO algorithm is developed in Fortran 77, object oriented language and has been successfully tested on  benchmark test problems, which involve constraints on state variables and control variables. The obtained results are widely affected by the search area boundaries, number of iteration and tuning of parameter. 
The different benchmark test examples undertaken for study are presented in the ensuing section. 

4.1  ECONOMIC LOAD DISPATCH PROBLEM

The economic load dispatch problem can be described as an optimization (minimization) process with the objective:  
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Subject to: 

(i) Power balance constraints: [image: image226.png]
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In this thesis, the transmission losses are disregarded. 
(ii) Generating  capacity constraints:
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                 i = 1, 2, …, n   
           
                          (4.3)

where

          Fi (xi) is the fuel cost function of the ith  unit 
          PD  is the system load demand and
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 are the minimum and maximum power outputs of the  ith  unit.

The fuel-cost function without valve-point loadings of the generating units is given by
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where

          ai, bi , and ci are the fuel-cost coefficients of the ith  unit.

         In this section, the PSO has been tested on two sample electric power systems consisting 13-generators. The iteration was varied and the penalty multiplier was taken as 100 for all selected methods.

4.2  13- GENERATORS

A 13-generators electric power system considering valve-point loading effect has been studied in this test. In this case, the load demand, PD is taken as 1800MW. 13- generators result are given in Tables 4.8. Although the acquired best solution is not guaranteed to be the global solution, the Particle swarm optimization succeeded in finding the satisfactory solution. The respective operating cost coefficients for each generator are given in Table 4.1  

Table 4.1: Fuel-cost coefficients: 13-generators.

	Generator number
	Generator limits
	Fuel cost coefficients
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 (MW)
	ai

(Rs/h)
	bi

(Rs/MWh)
	ci

(Rs/MW²h)


	1
	00
	680
	0.00028
	8.10
	550

	2
	00
	360
	0.00056 
	8.10
	309

	3
	00
	360
	0.00056 
	8.10
	307

	4
	60
	180
	0.00324 
	7.74
	240

	5
	60
	180
	0.00324 
	7.74
	240

	6
	60
	180
	0.00324 
	7.74
	240

	7
	60
	180
	0.00324 
	7.74
	240

	8
	60
	180
	0.00324 
	7.74
	240

	9
	60
	180
	0.00324 
	7.74
	240

	10
	40
	120
	0.00284
	8.6
	126

	11
	40
	120
	0.00284
	8.6
	126

	12
	55
	120
	0.00284
	8.6
	126

	13
	55
	120
	0.00284
	8.6
	126


Swarm size is taken as 200, plenty parameter is set to 100, error is 10-4 for this problem, c1 and c2 are taken as 2. The obtained results are presented Table 4.2. Economic load dispatch problem for 13-generators data is graphically shown in Figure 4.1. 
Table 4.2:  Result of economic load dispatch problem for 13-generators 

	S.N0
	Iterations
	F(P)

	1
	40
	22973.91

	2
	                          50
	22983.79

	3
	60
	23455.60

	4
	80
	22550.63

	5
	100
	22024.40

	6
	110
	22145.90

	7
	120
	18189.83

	8
	130
	18177.25

	9
	140
	18161.07
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Fig. 4.1: Variation of cost with respect number of iterations for 13-generator power system

Particle swarm optimization appears to be the most efficient in terms of faster convergence rate and quality of solution, which makes it to be much efficient in finding the global optimum.
Table 4.3 shows the generation schedule for 13 generators power system



Chapter 5

CONCLUSION AND FUTURE SCOPE

The real world optimization problems are usually of multi-furious nature. The ultimate goal of the optimization problem is to find a global solution from a group of global solutions The optimization algorithms are applicable to functions that are multimodal, non differentiable and discontinuous. Particle swarm optimization is a stochastic, population-based computer problem-solving algorithm; it is a kind of swarm intelligence that is based on social- principles and provides insights into social behavior, as well as contributing to social-psychological engineering applications
                    This paper proposed PSO for power system ELD problem considering as a stochastic finite state system. The results show that the PSO is better than other in terms of the speed and accuracy.  it greatly enhances the searching ability and efficiently manages the system constraints. It makes problem easier because the probability of finding a solution by chance is large.  The successful optimizing performance on the validation data set illustrates the efficiency of the approach and shows that it can be used as a reliable tool for ELD problem.             This work presents an application of Particle swarm optimization based algorithms techniques to solve the constrained optimization problems. An algorithm in Fortran 77 object oriented programming language has been developed for the solution of ELD problem, in present work the economic dispatch optimization problem has been solved using PSO for 13-Generator power system. The proposed technique improves the quality of the solution and reduces the computation time.  

.            The algorithms are tested on number of sample problems. Numerical results for a test case show that the PSO-algorithms are capable of finding very nearly global solutions within a reasonable time.
                    Several interesting directions need to be explored in the future work. For example, we will study in our future work the approach to more effectively incorporate the impact of constraints into the inherent search mechanism of PSO which, at the same time, remains the advantageous features of PSO such as simplicity, fast convergence and easy implementation. Evaluating the performance of the improved algorithm on a wider variety of benchmark functions is also an interesting work. In addition, a lot of work needs to be done to further improve the global optimization ability of our algorithm.
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APPENDIX A
RANDOM NUMBER GENERATION

The important part to implement the genetic algorithm is random number generation. The random numbers are stored in an array whose index (location) is randomly selected. The random number array can be reshuffled when all the random numbers stored in an array are utilized. The random number generation is performed as given below.
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where,
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 means remainder from division of two numbers.

To initiate the process of random number generation, the following values are assumed.
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These values are update to continue the process of random number generation.
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Positiveness of the random number is checked. Negative numbers are changed to positive.
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The random number can be generated from the following equation.
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                                                                     (A.5)

where,                                    
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The random number generator will produce the maximum cycle length N of pseudo random number with any initial value of S under either of these conditions.

1. N is a power of 10

A ends in (unit digits) 1, 3, 7, or 9

M – 1 is multiple of 20
2. N is a power of 12

A is odd.

M – 1 is multiple of 4

For example, the number may be taken as: N = 10000, A = 4857 and M = 8601

            The generated random numbers can be reshuffled to get more numbers as given below and are ensure to be positive numbers.
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                                                          (A.6)

where,
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A random integer number can be created between two integer numbers, [image: image269.png][min
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, with the relation
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where,

                     X is a random number

            [image: image274.png][min



 is the minimum value of integer number
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  is the maximum value of integer number.

            Flipping of the coin is a powerful tool to decide for an action, whether to take place or not to take place. The coin is flipped with a probability to decide for an action. To flip a coin with a probability p, the following relation can be used.
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          where, 

                     R is any random number

                     p is the probability to flip a coin.
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Fig. 3.1  Particle velocity as resultants of three components 
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Fig. 3.2 Evaluation flowchart
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