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ABSTRACT
 

 

This thesis present space time block coding, a new paradigm for communication over fading channels using multiple transmit antennas. Data is encoded using a space time block code and the encoded data is split into n streams which are simultaneously transmitted using n transmit antennas. The received signal at each receive antenna is a linear superposition of the n transmitted signals perturbed by noise. 

 

Space time block codes are designed to achieve the maximum diversity order for a given number of transmit and receive antennas subject to the constraint of having a simple decoding algorithm. The classical mathematical framework of orthogonal designs is shown to construct space time block codes. It is shown that space time block codes constructed in this way only exist for few sporadic values of n. Subsequently, a generalization of orthogonal designs is shown to provide space time block codes for both real and complex constellations for any number of transmit antennas. These codes achieve the maximum possible transmission rate for any number of transmit antennas using any arbitrary real constellation.

  

Here we have simulated various MRRC & STBC schemes in Matlab enviournment .Then they were used to simulate the relationship between the signal to noise ratio (SNR) and bit error rate (BER). It has been shown  that the performance of the 1x1 scheme vs. that of the 2x1 scheme and 1x2 scheme vs. that of the 2x2 scheme by exploiting transmit diversity results in a lower bit error rate even though the same number of receive antennas and transmitted power was used.
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        CHAPTER 1 

INTRODUCTION

 

     
The Next generation wireless systems are required to have high voice quality as compared to current cellular mobile radio standards and provide high bit rate data services. At the same time, the remote units are supposed to be small lightweight pocket communicators. Furthermore, they are to operate reliably in different types of environments: macro, micro, and picocellular; urban, suburban, and rural; indoor and outdoor. In other words, the next generation systems are supposed to have better quality and coverage, be more power and bandwidth efficient, and be deployed in diverse environments. Yet the services must remain affordable for widespread market acceptance. Inevitably, the new pocket communicators must remain relatively simple. Fortunately, however, the economy of scale may allow more complex base stations. In fact, it appears that base station complexity may be the only plausible trade space for achieving the requirements of next generation wireless systems. 

     
The fundamental phenomenon which makes reliable wireless transmission difficult is time-varying multipath fading. It is this phenomenon which makes tetherless transmission a challenge when compared to fiber, coaxial cable, line-of-sight microwave or even satellite transmissions.

     
Increasing the quality or reducing the effective error rate in a multipath fading channel is extremely difficult. In additive white Gaussian noise (AWGN), using typical modulation and coding schemes, reducing the effective bit error rate (BER) from 10-2  to 10 –3 may require only 1- or 2-dB higher signal to noise ratio (SNR). Achieving the same in a multipath fading environment, however, may require up to 10 dB improvement in SNR. The improvement in SNR may not be achieved by higher transmit power or additional bandwidth, as it is contrary to the requirements of next generation systems. It is therefore crucial to effectively combat or reduce the effect of fading at both the remote units and the base stations, without additional power or any sacrifice in bandwidth.

 1.1 DIVERSITY
 

     
Unlike the Gaussian channel, the wireless channel suffers from attenuation due to destructive addition of multipaths in the propagation media and due to interference from other users. Severe attenuation makes it impossible for the receiver to determine the transmitted signal unless some less-attenuated replica of the transmitted signal is provided to the receiver. This resource is called diversity and it is the single most important contributor to reliable wireless communications. 

 

1.1.1 Time diversity

 

      
Channel coding in combination with limited interleaving is used to provide time diversity. However, while channel coding is extremely effective in fast-fading environments (high mobility), it offers very little protection under slow fading (low mobility) unless significant interleaving delays can be tolerated.
 

1.1.2 Frequency diversity

 

 
    The fact that signals transmitted over different frequencies induce different multipath structures and independent fading is exploited to provide frequency diversity (sometimes referred to as path diversity). In time division multiple access (TDMA) systems, frequency diversity is obtained by the use of equalizers when the multipath delay spread is a significant fraction of a symbol period. The global system for mobile communications (GSM) uses frequency hopping to provide frequency diversity. In direct sequence code division multiple access (DS-CDMA) systems, RAKE receivers  are used to obtain path diversity. When the multipath delay spread is small, as compared to the symbol period, however, frequency or path diversity does not exist.
1.1.3 Space diversity
 

  

The receiver/transmitter uses multiple antennas that are separated for reception/transmission and/or differently polarized antennas to create independent fading channels. Currently, multiple antennas at base stations are used for receive diversity at the base. It is difficult, however, to have more than one or two antennas at the portable unit due to the size limitations and cost of multiple chains of RF down conversion.

 

Receiver Diversity: Traditionally smart antenna systems employ receiver diversity like maximum ratio combining in order to improve the received signal quality. The major problem with these schemes is the cost , size and power in the remote units tending to be high. Receiver Diversity is well studied subject. But recently there has been much interest in another form of diversity called a transmit diversity in context of space time coding.

 

Transmit Diversity : The idea behind these schemes is to introduce controlled redundancies at the transmitter which can be exploited by appropriate signal processing techniques at the receiver. Note that traditional channel coding can be considered a form of transmit diversity  ,however with advent of Space Time Block Coding (which is a form of space time coding) this concept is extended to encompass spatial diversity schemes. Space time codes for MIMO in general exploit both transmit and receiver diversity and as a result provide diversity advantage over traditional wireless systems (as latter only exploit receiver diversity).

 

Another advantage of incorporating transmit diversity schemes in modern mobile communication systems is that we can reduce the complexity of the remote devices and transfer it to the base station. Potable hand –held mobile units are required to be inexpensive and low-complexity . Although economics of scale will help in bringing down the cost of mobile units, increasing the complexity of the base station (via adaptation of space time coding techniques ) may be only other possible trade space for meeting the requirement of next generation communication systems.  

1.2 SPACE TIME CODES 

     
Space-Time Codes (STC) were first introduced by Tarokh  from AT&T research labs in 1998 as a novel means of providing transmit diversity for the multiple-antenna fading channel. Previously, multipath fading in multiple antenna wireless systems was mostly dealt with by other diversity techniques, such as temporal diversity, frequency diversity and receive antenna diversity, with receive antenna diversity being the most widely applied technique. However, it is hard to efficiently use receive antenna diversity at the remote units because of the need for them to remain relatively simple, inexpensive and small. Therefore, for commercial reasons, multiple antennas are preferred at the base stations, and transmit diversity schemes are growing increasingly popular as they promise high data rate transmission over wireless fading channels in both the uplink and downlink while putting the diversity burden on the base station.

     
The space-time coding scheme by Tarokh , is essentially a joint design of coding, modulation, transmit and receive diversity, and has been shown to be a generalization of other transmit diversity schemes, such as the bandwidth efficient transmit diversity scheme by Witneben and the delay diversity scheme by Seshadri and Winters .There are two main types of STCs, namely space-time block codes (STBC) and space-time trellis codes (STTC). 

1.2.1 Space Time Block Codes

     
Space-time block codes operate on a block of input symbols, producing a matrix output whose columns represent time and rows represent antennas. In contrast to single-antenna block codes for the AWGN channel, space-time block codes do not generally provide coding gain, unless concatenated with an outer code. Their main feature is the provision of full diversity with a very simple decoding scheme. 

1.2.2 Space Time Trellis Codes

     
On the other hand, space-time trellis codes operate on one input symbol at a time, producing a sequence of vector symbols whose length represents antennas. Like traditional TCM (trellis coded modulation) for a single-antenna channel, space-time trellis codes provide coding gain. Since they also provide full diversity gain, their key advantage over space-time block codes is the provision of coding gain. Their disadvantage is that they are extremely hard to design and generally require high complexity encoders and decoders.

CHAPTER 2
SPACE TIME BLOCK CODES

      
Theoretically, the most effective technique to mitigate multipath fading in a wireless channel is transmitter power control. If channel conditions as experienced by the receiver on one side of the link are known at the transmitter on the other side, the transmitter can predistort the signal in order to overcome the effect of the channel at the receiver. There are two fundamental problems with this approach. The major problem is the required transmitter dynamic range. For the transmitter to overcome a certain level of fading, it must increase its power by that same level, which in most cases is not practical because of radiation power limitations and the size and cost of the amplifiers. The second problem is that the transmitter does not have any knowledge of the channel experienced by the receiver except in systems where the uplink (remote to base) and downlink (base to remote) transmissions are carried over the same frequency. Hence, the channel information has to be fed back from the receiver to the transmitter, which results in throughput degradation and considerable added complexity to both the transmitter and the receiver. Moreover, in some applications there may not be a link to feed back the channel information.

      
Other effective techniques are time and frequency diversity. Time interleaving, together with error correction coding, can provide diversity improvement. The same holds for spread spectrum. However, time interleaving results in large delays when the channel is slowly varying. Equivalently, spread spectrum techniques are ineffective when the coherence bandwidth of the channel is larger than the spreading bandwidth or, equivalently, where there is relatively small delay spread in the channel.

     
In most scattering environments, antenna diversity is a practical, effective and, hence, a widely applied technique for reducing the effect of multipath fading . The classical approach is to use multiple antennas at the receiver and perform combining or selection and switching in order to improve the quality of the received signal. The major problem with using the receive diversity approach is the cost, size, and power of the remote units. The use of multiple antennas and radio frequency (RF) chains (or selection and switching circuits) makes the remote units larger and more expensive. As a result, diversity techniques have almost exclusively been applied to base stations to improve their reception quality. A base station often serves hundreds to thousands of remote units. It is therefore more economical to add equipment to base stations rather than the remote units. For this reason, transmit diversity schemes are very attractive. For instance, one antenna and one transmit chain may be added to a base station to improve the reception quality of all the remote units in that base station’s coverage area.1 The alternative is to add more antennas and receivers to all the remote units. The first solution is definitely more economical.

     
Recently, some interesting approaches for transmit diversity have been suggested. A delay diversity scheme was proposed by Wittneben for base station simulcasting and later, independently, a similar scheme was suggested by Seshadri and Winters for a single base station in which copies of the same symbol are transmitted through multiple antennas at different times, hence creating an artificial multipath distortion. A maximum likelihood sequence estimator (MLSE) or a minimum mean squared error (MMSE) equalizer is then used to resolve multipath distortion and obtain diversity gain. Another interesting approach is space–time trellis coding, where symbols are encoded according to the antennas through which they are simultaneously transmitted and are decoded using a maximum likelihood decoder. This scheme is very effective, as it combines the benefits of forward error correction (FEC) coding and diversity transmission to provide considerable performance gains. The cost for this scheme is additional processing, which increases exponentially as a function of bandwidth efficiency (bits/s/Hz) and the required diversity order. Therefore, for some applications it may not be practical or cost-effective.

     
The technique proposed here is a simple transmit diversity scheme which improves the signal quality at the receiver on one side of the link by simple processing across two transmit antennas on the opposite side. The obtained diversity order is equal to applying maximal-ratio receiver combining (MRRC) with two antennas at the receiver. The scheme may easily be generalized to two transmit antennas and M receive antennas to provide a diversity order of 2M. This is done without any feedback from the receiver to the transmitter and with small computation complexity. The scheme requires no bandwidth expansion, as redundancy is applied in space across multiple antennas, not in time or frequency. 

      
The new transmit diversity scheme can improve the error performance, data rate, or capacity of wireless communications systems. The decreased sensitivity to fading may allow the use of higher level modulation schemes to increase the effective data rate, or smaller reuse factors in a multicell environment to increase system capacity. The scheme may also be used to increase the range or the coverage area of wireless systems. In other words, the new scheme is effective in all of the applications where system capacity is limited by multipath fading and, hence, may be a simple and cost-effective way to address the market demands for quality and efficiency without a complete redesign of existing systems. Furthermore, the scheme seems to be a superb candidate for next-generation wireless systems, as it effectively reduces the effect of fading at the remote units using multiple transmit antennas at the base stations.

2.1 CLASSICAL MAXIMAL-RATIO RECEIVE COMBINING (MRRC) SCHEME

 

 
    Fig. 1 shows the baseband representation of the classical two-branch MRRC. At a given time, a signal so is sent from the transmitter. The channel including the effects of the transmit chain, the airlink, and the receive chain may be modeled by a complex multiplicative distortion composed of a magnitude response and a phase response. The channel between the transmit antenna and the receive antenna zero is denoted by ho and between the transmit antenna and the receive antenna one is denoted by h1 where

ho = αoejθo
h1 = α1ejθ1






(1)

Noise and interference are added at the two receivers. The resulting received baseband signals are 

r0   = h0s0 + n0

r1   = h1s0 + n1                                                                              

(2)
 where n0 and n1  represent complex noise and interference.
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Figure 1 Two-branch MRRC.

 
   Assuming n0 and n1  are Gaussian distributed, the maximum likelihood decision rule at the receiver for these received signals is to choose signal si if and only if (iff)

d²( r0 , h0si )+ d²( r1 , h1si )   ≤ d²( r0 , h0sk )+ d²( r1 , h1sk ), ( i ≠ k                                      

     (3)
 where d²(x,y) is the squared Euclidean distance between signals x and y calculated by the following expression:
d²(x,y) = (x-y)(x*-y*)

(4)

 The receiver combining scheme for two-branch MRRC is as follows

 



šo= h0* r0+ h1* r1
    



   = h0*( h0s0+no)+ h1*( h1s0+n1)

                                                   = (α02 + α12)s0+ h0* n0+ h1* n1

       

(5)

Expanding (3) and using (4) and (5) we get

Choose  si iff

(α02 + α12)|si|2 -  šosi*- šo*si  ≤ (α02 + α12)|sk|2 -  šosk*- šo*sk , ( i ≠ k











(6)

or equivalently

choose si  iff 

(α02 + α12-1)|si|2 + d²( šo , si)  ≤  (α02 + α12-1)|sk|2 + d²( šo , sk), ( i ≠ k

(7)

For PSK signals (equal energy constellations )

|si|2 =  |sk|2 = Es , ( i ≠ k
(8)

 

where Es is the energy of the signal. Therefore, for PSK signals, the decision rule in (7) may be simplified to

 choose si  iff 

d²( šo , si)  ≤  d²( šo , sk)  , ( i ≠ k
(9)

The maximal-ratio combiner may then construct the signal šo ,as shown in Fig. 1, so that the maximum likelihood detector may produce ŝ0 , which is a maximum likelihood estimate of s0 .

 

2.2 THE NEW TRANSMIT DIVERSITY SCHEME

 

2.2.1  Two-Branch Transmit Diversity with One Receiver
 

     
Fig. 2 shows the baseband representation of the new two branch transmit diversity scheme. The scheme uses two transmit antennas and one receive antenna and may be defined by the following three functions:
 

• the encoding and transmission sequence of information symbols at the transmitter;

• the combining scheme at the receiver;

• the decision rule for maximum likelihood detection.
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Figure 2 The new two-branch transmit diversity scheme with one receiver.

 

 The Encoding and Transmission Sequence



At a given symbol period, two signals are simultaneously transmitted from the two antennas. The signal transmitted from antenna zero is denoted by s0 and from antenna one by s1. During the next symbol period signal (-s1* ) is transmitted from antenna zero, and signal s0* is transmitted from antenna one where * is the complex conjugate operation. This sequence is shown in Table I

 

In Table I, the encoding is done in space and time (space–time coding). The encoding, however, may also be done in space and frequency. Instead of two adjacent symbol periods, two adjacent carriers may be used (space–frequency coding).
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Table 1

The encoding and transmission sequence for 

the two branch transmit diversity scheme

 

The channel at time t may be modeled by a complex multiplicative distortion h0(t)for transmit antenna zero and h1(t) for transmit antenna one. Assuming that fading is constant across two consecutive symbols, we can write

 

h0(t)   =   h0( t + T )   =   h0 =   αoejθo

h1(t)   =   h1( t + T )   =   h1 =   α1ejθ1
(10) 
where T is the symbol duration. The received signals can then be expressed as

 

       r0    =   r(t)  =  h0s0 + h1s1 + n0
r1    =   r(t + T )  =  -h0s1* + h1s0* + n1

(11)

where r0 and r1 are the received signals at time t and t+T and n0and n1 are complex random variables representing receiver noise and interference.

The Combining Scheme

 
   The combiner shown in Fig. 2 builds the following two combined signals that are sent to the maximum likelihood detector:

 

š0= h0*r0+ h1 r 1*

š1= h1*r0- h0 r 1*

(12)

It is important to note that this combining scheme is different from the MRRC in (5). Substituting (10) and (11) into (12) we get

 

š0   =   (α02 + α12)s0+ h0*n0+ h1 n1*

š1   =   (α02 + α12)s1- h0 n1*+ h1* n0
(13)

 

The Maximum Likelihood Decision Rule

 

      
These combined signals are then sent to the maximum likelihood detector which, for each of the signals s0 and s1 , uses the decision rule expressed in (7) or (9) for PSK signals. 

      
The resulting combined signals in (13) are equivalent to that obtained from two-branch MRRC in (5). The only difference is phase rotations on the noise components which do not degrade the effective SNR. Therefore, the resulting diversity order from the new two-branch transmit diversity scheme with one receiver is equal to that of two-branch MRRC.

 2.2.2 Two-Branch Transmit Diversity with M  Receivers

     
There may be applications where a higher order of diversity is needed and multiple receive antennas at the remote units are feasible. In such cases, it is possible to provide a diversity order of 2M with two transmit and M receive antennas. For illustration, we discuss the special case of two transmit and two receive antennas in detail. The generalization to M receive antennas is trivial.
 

Fig. 3 shows the baseband representation of the new scheme with two transmit and two receive antennas. The encoding and transmission sequence of the information symbols for this configuration is identical to the case of a single receiver, shown in Table I. Table II defines the channels between the transmit and receive antennas, and Table III defines the notation for the received signal at the two receive antennas.

[image: image5.png]st

x,,'

x antenna 0 V’ {7 tx antenna 1

), Y
7x antenna 0 N/ reantenna 1
o interference interference ny
,,4'67 & noise &noise <Py

. hy ‘ A
channel L |

estimator

maimun lkelihood detector





Fig. 3. The new two-branch transmit diversity scheme with two receivers.
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Table 2 

The definition of channels between the transmit and receive antennas  
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Table 3

The notation for the received signals at the two receive antennas

 

Where

 

r0   = h0s0 + h1s1 + n0

r1   = -h0s1* + h1s0* + n1
r2   = h2s0 + h3s1 + n2
r4   = -h2s1* + h3s0* + n3

(14)

n0, n1, n2, and n3 are complex random variables representing receiver thermal noise and interference. The combiner in Fig. 3 builds the following two signals that are sent to the maximum likelihood detector:

 

šo= h0* r0+ h1 r1* + h2* r2+ h3r3*

š1= h1* r0- h0 r1* + h3* r2- h2 r3*

(15)

 

Substituting the appropriate equations we have

 

š0   =   (α02 + α12 + α22 +  α32 )s0+ h0*n1+ h1 n1*+ h2*n2+ h3 n3*

š1   =   (α02 + α12 + α22 +  α32 )s1- h0n1*+ h1* n0- h2n3*+ h3* n2
(16)

These combined signals are then sent to the maximum likelihood decoder which for signal s0 uses the decision criteria expressed in (17) or (18) for PSK signals

choose si  iff

(α02 + α12 + α22 +  α32 -1)|si|2+ d²( š0 , si)  ≤   (α02 + α12 + α22 +  α32 -1)|sk|2 + d²( šo , sk),( i ≠ k
(17)

choose si  iff

d²( š0 , si)  ≤  d²( šo , sk) ,( i ≠ k
(18)

Similarly, for s1 using the decision rule is to choose signal si  iff

(α02 + α12 + α22 +  α32 -1)|si|2+ d²( š1 , si)  ≤   (α02 + α12 + α22 +  α32 -1)|sk|2 + d²( š1 , sk)
                 (19)

or, for PSK signals,

 choose si  iff

 

d²( š1 , si)  ≤  d²( š1 , sk),  ( i ≠ k
(20)

  

The combined signals in (16) are equivalent to that of fourbranch MRRC, not shown in the paper. Therefore, the resulting diversity order from the new two-branch transmit diversity scheme with two receivers is equal to that of the four-branch MRRC scheme.

 

It is interesting to note that the combined signals from the two receive antennas are the simple addition of the combined signals from each receive antenna, i.e., the combining scheme is identical to the case with a single receive antenna. We may hence conclude that, using two transmit and M receive antennas, we can use the combiner for each receive antenna and then simply add the combined signals from all the receive antennas to obtain the same diversity order as 2M-branch MRRC. In other words, using two antennas at the transmitter, the scheme doubles the diversity order of systems with one transmit and multiple receive antennas. 

 

An interesting configuration may be to employ two antennas at each side of the link, with a transmitter and receiver chain connected to each antenna to obtain a diversity order of four at both sides of the link.

2.3 IMPLEMENTATION ISSUES 

 

      
So far in this report, we have shown, mathematically, that the new transmit diversity scheme with two transmit and receive antennas is equivalent to MRRC with one transmit antenna and receive antennas. From practical implementation aspects, however, the two systems may differ. This section discusses some of the observed difference between the two schemes.

 

2.3.1. Power Requirements  

 

    
The new scheme requires the simultaneous transmission of two different symbols out of two antennas. If the system is radiation power limited, in order to have the same total radiated power from two transmit antennas the energy allocated to each symbol should be halved. This results in a 3-dB penalty in the error performance. However, the 3-dB reduction of power in each transmit chain translates to cheaper, smaller, or less linear power amplifiers. A 3-dB reduction in amplifiers power handling is very significant and may be desirable in some cases. It is often less expensive (or more desirable from intermodulation distortion effects) to employ two half-power amplifiers rather than a single full power amplifier. Moreover, if the limitation is only due to RF power handling (amplifier sizing, linearity, etc.), then the total radiated power may be doubled and no performance penalty is incurred.
 

2.3.2 Sensitivity to Channel Estimation Errors

    
Throughout this paper, it is assumed that the receiver has perfect knowledge of 

the channel. The channel information may be derived by pilot symbol insertion and extraction . Known symbols are transmitted periodically from the transmitter to the receiver. The receiver extracts the samples and interpolates them to construct an estimate of the channel for every data symbol transmitted. 

    
There are many factors that may degrade the performance of pilot insertion and extraction techniques, such as mismatched interpolation coefficients and quantization effects. The dominant source of estimation errors for narrowband systems, however, is time variance of the channel. The channel estimation error is minimized when the pilot insertion frequency is greater or equal to the channel Nyquist sampling rate, which is two times the maximum Doppler frequency. Therefore, as long as the channel is sampled at a sufficient rate, there is little degradation due to channel estimation errors. For receive diversity combining schemes with M antennas, at a given time, M independent samples of the M channels are available. With M transmitters and a single receiver, however, the estimates of the M channels must be derived from a single received signal. The channel estimation task is therefore different. To estimate the channel from one transmit antenna to the receive antenna the pilot symbols must be transmitted only from the corresponding transmit antenna. To estimate all the channels, the pilots must alternate between the antennas (or orthogonal pilot symbols have to be transmitted from the antennas). In either case, M times as many pilots are needed. This means that for the two-branch transmit diversity schemes discussed in this report, twice as many pilots as in the two-branch receiver combining scheme are needed.

2.3.3 The Delay Effect 

 

 
    With N branch transmit diversity, if the transformed copies of the signals are transmitted at N distinct intervals from all the antennas, the decoding delay is N symbol periods. That is, for the two-branch diversity scheme, the delay is two symbol periods. For a multicarrier system, however, if the copies are sent at the same time and on different carrier frequencies, then the decoding delay is only one symbol period.
 

2.3.4 Antenna Configuration 

 

 
   For all practical purposes, the primary requirement for diversity improvement is that the signals transmitted from the different antennas be sufficiently uncorrelated (less than 0.7 correlation) and that they have almost equal average power (less than 3-dB difference). Since the wireless medium is reciprocal, the guidelines for transmit antenna configurations are the same as receive antenna configurations. For instance, there have been many measurements and experimental results indicating that if two receive antennas are used to provide diversity at the base station receiver, they must be on the order of ten wavelengths apart to provide sufficient decorrelation. Similarly, measurements show that to get the same diversity improvement at the remote units it is sufficient to separate the antennas at the remote station by about three wavelengths. This is due to the difference in the nature of the scattering environment in the proximity of the remote and base stations. The remote stations are usually surrounded by nearby scatterers, while the base station is often placed at a higher altitude, with no nearby scatterers.

 
    Now assume that two transmit antennas are used at the base station to provide diversity at the remote station on the other side of the link. The important question is how far apart should the transmit antennas be to provide diversity at the remote receiver. The answer is that the separation requirements for receive diversity on one side of the link are identical to the requirements for transmit diversity on the other side of link. This is because the propagation medium between the transmitter and receiver in either direction are identical. In other words, to provide sufficient decorrelation between the signals transmitted from the two transmit antennas at the base station, we must have on the order of ten wavelengths of separation between the two transmit antennas. Equivalently, the transmit antennas at the remote units must be separated by about three wavelengths to provide diversity at the base station.

 
    It is worth noting that this property allows the use of existing receive diversity antennas at the base stations for transmit diversity. Also, where possible, two antennas may be used for both transmit and receive at the base and the remote units, to provide a diversity order of four at both sides of the link. 

 

2.3.5 Soft Failure 

 

     
One of the advantages of receive diversity combining schemes is the added reliability due to multiple receive chains. Should one of the receive chains fail, and the other receive chain is operational, then the performance loss is on the order of the diversity gain. In other words, the signal may still be detected, but with inferior quality. This is commonly referred to as soft failure. Fortunately, the new transmit diversity scheme provides the same soft failure. To illustrate this, we can assume that the transmit chain for antenna one in Fig. 2 is disabled, i.e h0 = 0, . Therefore, the received signals may be described as

r0    =    h0s0     + n0
r1    =   -h0s1*  + n1

(21)

The combiner shown in Fig. 2 builds the following two combined signals according to :

 

š0   =  h0*r0 =    h0*(h0 s0 + n0)=α02 s0+ h0*n0
š1   = - h0 r1*= - h0(-h0*s1+  n1*)  =α02 s1- h0 n1*

(22)

 
    These combined signals are the same as if there was no diversity. Therefore, the diversity gain is lost but the signal may still be detected. For the scheme with two transmit and two receive antennas, both the transmit and receive chains are protected by this redundancy scheme.

 

2.3.6 Impact of Interference 

  
    

     
The new scheme requires the simultaneous transmission of signals from two antennas. Although half the power is transmitted from each antenna, it appears that the number of potential interferers is doubled, i.e., we have twice the number of interferers, each with half the interference power. It is often assumed that in the presence of many interferers, the overall interference is Gaussian distributed. Depending on the application, if this assumption holds, the new scheme results in the same distribution and power of interference within the system. If interference has properties where interference 
cancellation schemes (array processing techniques) may be effectively used, however, the scheme may have impact on the system design. It is not clear whether the impact is positive or negative. The use of transmit diversity schemes (for fade mitigation) in conjunction with array processing techniques for interference mitigation has been studied for space-time trellis codes . Similar efforts are under way to extend these techniques to the new transmit diversity scheme.
 

 

CHAPTER 3

UNIVERSAL ROATED SPACE TIME BLOCK CODES

 

 
    To improve the performance of a wireless transmission system in which the channel quality fluctuates, researchers suggested that the receiver be provided with multiple received signals generated by the same underlying data. These suggestions are referred to as diversity which exists in different forms including temporal diversity, frequency diversity, and antenna diversity.

 
   Temporal diversity includes channel coding in conjunction with time interleaving which involve redundancy in time domain. Frequency diversity refers to transmission on different frequencies which provides redundancy in frequency domain. Antenna diversity can be viewed as redundancy in spatial domain and implemented by using multiple antennae at both the transmit side (base station) and the receive side (mobile units). Space-time coding refers to channel coding techniques for transmission with multiple transmit and receive antennae. The following parameters notations which we will use.
 
n: number of transmit antennae.

m: number of receive antennae.

αi,j : path gain from transmitter i to receiver, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Assume they are

independent and have Gaussian distribution with mean zero and variance 1/2 per (real)

dimension.

l: length of block codes.

cti :   transmitted signal at time t by transmit antenna i, 1 ≤ t ≤ l, 1 ≤ i ≤n.

rtj : received signal at time t by receive antenna j,1 ≤ t ≤ l, 1 ≤ j ≤n.

ηtj : additive white Gaussian noise with mean zero and variance 1/SNR per dimension.

 

In this section, we model a multiple-antenna wireless communication system under the assumption that fading is quasistatic and flat. We review the diversity criterion for code design assuming this model. This diversity criterion is crucial for our studies of space–time block codes.

    

We consider a wireless communication system where the base station is equipped with n and the remote is equipped with m antennas. At each time slot , signals cti i =1,2,….n are transmitted simultaneously from the n transmit antennas. The coefficient αi,j is the path gain from transmit antenna to receive antenna . The path gains are modeled as samples of independent complex Gaussian random variables with variance 0.5 per real dimension. The wireless channel is assumed to be quasi-static so that the path gains are constant over a frame of length and vary from one frame to another. 

 

At time the signal rtj received at antenna j is given by




                              n

rtj = Σ αi,j cti + ηtj



                             i=1

(1)

where ηtj are independent samples of a zero-mean complex Gaussian random variable with variance 1/(2 SNR) per complex dimension. The average energy of the symbols transmitted from each antenna is normalized to be 1/n .

Assuming perfect channel state information is available, the receiver computes the decision metric
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Σ Σ    rtj -Σ αi,j cti                                                          
                                                                                    t=1  j=1               i=1
                                                                                                                   (2)

 over all codewords

 

c11 c12 ....c1n c21 c22 …..c2n ….cl1 cl2 …cln
and decides in favor of the codeword that minimizes this sum.

 

Given perfect channel state information at the receiver, we may approximate the probability that the receiver decides erroneously in favor of a signal

e =e11 e12 ....e1n e21 e22 …..e2n ….el1 el2 …eln
 assuming that 

c = c11 c12 ....c1n c21 c22 …..c2n ….cl1 cl2 …cln
 was transmitted. This analysis leads to the following diversity criterion.
 

Diversity Criterion For Rayleigh Space–Time Code: 

 
  In order to achieve the maximum diversity mn, the matrix B(c,e) = 

 

e11 - c11       e21 – c21………. e11 - c11
e12 - c12       e22 – c22………. e12 - c12
e13 - c13       e23 – c23……. …e13 - c13

..                 ..          ..           ..

..                 ..          ..           ..

 e1n - c1n       e2n – c2n………. e1n - c1n
 

     
has to be full rank for any pair of distinct codewords c and e .If B(c,e) has minimum rank r over the set of pairs  of distinct codewords, then a diversity of rm is achieved.  It has been shown that codes designed using the above criterion continue to perform well in Rician environments in the absence of perfect channel state information and under a variety of mobility conditions and  environmental effects.
 

3.1 ORTHOGONAL DESIGNS AS CODES FOR WIRELESS CHANNELS
 

     
In this section, we consider the application of real orthogonal designs (Section 3.1.1) to coding for multiple-antenna wireless communication systems. Unfortunately, these designs only exist in a small number of dimensions Encoding using orthogonal designs is shown to be trivial in Section 3.1.2. Maximum-likelihood decoding is shown to be achieved by decoupling of the signals transmitted from different antennas and is proved to be based only on linear processing at the receiver (Section 3.1.3). The possibility of linear processing at the transmitter, leads to the concept of linear processing orthogonal designs developed in 3.1.4

 

3.1.1 Real Orthogonal Designs
 

A real orthogonal design of size n is an n X n orthogonal matrix with entries the indeterminates   ( x1( x2,………( xn . The existence problem for orthogonal designs is known as the Hurwitz–Radon problem in the mathematics literature, and was completely settled by Radon in another context at the beginning of this century. In fact, an orthogonal design exists if and only if n = 2,4,or 8.

 

Given an orthogonal design O, one can negate certain columns of O, to arrive at another orthogonal design where all the entries of the first row have positive signs. By permuting the columns, we can make sure that the first row of O is x1, x2,………xn . Thus we may assume without loss of generality that O has this property.

Examples of orthogonal designs are the 2X2 design
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the 4 X 4 design
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and the 8 X 8 design
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(5)

with the complex number x1   +    x2i and the quaternionic number  

x1   +    x2i  + x3j   +    x4k

 

3.1.2 The Coding Scheme 

 

 
    In this section, we apply orthogonal designs to construct space–time block codes that achieve diversity. We assume that transmission at the baseband employs a real signal constellation A with 2b elements. We focus on providing a diversity order of nm. Since the maximum transmission rate is b bits per second per hertz (bits/s/Hz). We provide this transmission rate using nXn orthogonal design. At time slot 1,nb bits arrive at the encoder and select constellation signals s1, s2,……, sn . Setting for xi= si for i =1,2,3….n , we arrive at a matrix C = O(s1, s2,……… sn )with entries ( s1,(s2,………( sn. At each time slot t= 1,2,….n the entries Cti ,i = 1,2,…n are transmitted simultaneously from transmit antennas 1,2,…n. 

  

Clearly, the rate of transmission is b bits/s/Hz. We now demonstrate that the diversity order of such a space–time block code is nm
 

Theorem 1 The diversity order of the above coding is mn.

Proof: The rank criterion requires that the matrix O(š1,…….., šn)-O(s1,……, sn) be nonsingular for any two distinct code sequences (š1,…….., šn) ((s1,……, sn). Clearly,  O(š1- s1,….., šn- sn)=O(š1,…….., šn)-O(s1,……, sn)where O(š1- s1,….., šn- sn)is the matrix constructed from O by replacing xi with for all i=1,2,…,n. The determinant of the orthogonal matrix O is easily seen to be
 

det(OOT)1/2   =   | (xi2   |   n/2


                                                        i 

where OT is the transpose of O. Hence 

det[O(š1- s1,….., šn- sn)]   =      | (| š1- s1| 2  |     n/2
 

which is nonzero. It follows that O(š1,…….., šn)-O(s1,……, sn) is nonsingular and the maximum diversity order nm is achieved.
 

  3.1.3 THE DECODING ALGORITHM
 

 
    Next, we consider the decoding algorithm. Clearly, the rows of O are all permutations of the first row of O with possibly different signs. Let (1,….., (n denote the permutations corresponding to these rows and let (k(i) denote the sign of xi in the kth row of O. Then (k(p)=q means that xp is up to a sign change the (k,q)th element of O . Since the columns of O are pairwise-orthogonal, it turns out that minimizing the metric of (2) amounts to minimizing

                                                                                                       n

( Si

                                                                                                       i=1     
(6) 

where 
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 (7)

and where (*εt(i),j denotes the complex conjugate of (εt(i),j . The value of Si only depends on the code symbol si , the received symbols rtj , the path coefficients αi,j, and the structure of the orthogonal design O .It follows that minimizing the sum given in (6) amounts to minimizing (7) for all 1≤ i≤ n. Thus the maximum-likelihood detection rule is to form the decision variables
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for all i=1,2,…n and decide in favor of si among all the constellation symbols s if 
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 This is a very simple decoding strategy that provides diversity
 

3.1.4 Linear  Processing Orthogonal Designs

 

 There are two attractions in providing transmit diversity via orthogonal designs.

 

• There is no loss in bandwidth, in the sense that orthogonal designs provide the maximum possible transmission rate at full diversity.

• There is an extremely simple maximum-likelihood decoding algorithm which only uses linear combining at the receiver. The simplicity of the algorithm comes from the orthogonality of the columns of the orthogonal design.

 
    The above properties are preserved even if we allow linear processing at the transmitter. Therefore, we relax the definition of orthogonal designs to allow linear processing at the transmitter. Signals transmitted from different antennas will now be linear combinations of constellation symbols.

 

Definition 1 : A linear processing orthogonal design in variables x1 ,x2 ,…. xn is an n X n matrix ε such that:

 

• The entries of ε are real linear combinations of variables x1 ,x2 ,…. xn
• εTε=D , where D is a diagonal matrix with (i,i)th diagonal element of the form ( l1i x12 + l2i x22 +……+ lni xn2), with the coefficients all l1i, l2i,…, lni strictly positive numbers. It is easy to show that transmission using a linear processing orthogonal design provides full diversity and a simplified decoding algorithm as above. The next theorem shows that we may, with no loss of generality, constrain the matrix in above definition  to be a scaled identity matrix.
 

Theorem 2: A linear processing orthogonal design ε in Variables x1 ,x2 ,…. xn exists if and only if there exists a linear processing orthogonal design L such that

 

LLT=  LTL        =   (x12+x22+…………+xn2 )I

 

Proof: Let (   =  x1A1 +……..+ xnAn be a linear processing orthogonal design, and let
 

(T(   =  x12D1 +……..+ xn2Dn
 

 where the matrices Di are diagonal and full-rank (since the coefficients l1i, l2i,…, lni , i=1,2,…..,n are strictly positive). Then it follows that

 

AiT Ai   =   Di ,             i = 1,…..,n

 (9)

AiT Aj   
=    - AjT Ai  ,   1 ≤ i < j ≤ n

 (10)

and Di  is a full-rank diagonal matrix with positive diagonal entries. Let Di1/2 denote the diagonal matrix having the property that Di1/2 Di1/2   = Di. We define Ui =  AiDi-1/2 .Then the matrices Ui satisfy the following properties:

 

UiT Ui   =   I ,             i = 1,…..,n

 (11)

UiT Uj   
=    - UjT Ui  ,   1 ≤ i < j ≤ n

 (12)

It follows that L   =  x1U1 +……..+ xnUn is a linear processing orthogonal array having the property

 

LLT=  LTL        =   (x12+x22+…………+xn2 )I

In view of the above theorem, we may, without any loss of generality, assume that a linear processing orthogonal design

satisfies

 

LLT=  LTL        =   (x12+x22+…………+xn2 )I

 

3.1.5 The  Hurwitz - Radon Theory

 

 

In this section, we define a Hurwitz–Radon family of matrices. These matrices encode the interactions between variables in an orthogonal design.

 Definition 2: A set of n X n real matrix { B1 ,B2 …….,Bk } is called a size Hurwitz–Radon family of matrices if
 

BiT Bi   =   I

BiT    =    -Bi    ,       i = 1,…..,k

and

Bi Bj   
=    - Bj Bi  ,   1 ≤ i < j ≤ k
 

 Theorem 3: Let n =  2ab where b is odd and a = 4c+d with 0 ≤ d < 4and 0≤c . Any Hurwitz–Radon family of n X n matrices contains strictly less than ρ(n) = 8c + 2d matrices. Furthermore ρ(n) ≤ n  . A Hurwitz–Radon family containing n-1 matrices exists if and only if n=2,4 or 8
Definition 3: Let A= [ai,j ]be a p X q matrix and let B be any arbitrary matrix. The tensor product A( B is the matrix given by
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Definition 4 : A matrix is called an integer matrix if all of its entries are in the set {-1,0,1}.

 

Lemma 1 : For any n there exists a Hurwitz–Radon family of matrices of size ρ(n)-1 whose members are integer matrices.

 Proof: The proof is by explicit construction. Let Ib denote the identity matrix of size b. We first notice that if n = 2ab with b odd, then ρ(n) = ρ(2a)  . Moreover, given a family of 2a  X 2a Hurwitz–Radon integer matrices { A1 ,A2 ,…. As }of size s = ρ(2a) -1  , the set

 

{ A1 (Ib ,A2 (Ib,…. As ( Ib}

is a Hurwitz–Radon family of n X n integer matrices of size ρ(n) -1 . In light of this observation, it suffices to prove the lemma for n= 2a . To this end
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and
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Let 

 




n1      =   24s+3
n2      =   24(s+1)
n3      =   24(s+1)+1
n4      =   24(s+1)+2
and

n5      =   24(s+1)+3
 

Then

ρ(n2)    =   ρ(n1) + 1

ρ(n3)    =   ρ(n1) + 2

ρ(n4)    =   ρ(n1) + 4

ρ(n5)    =   ρ(n1) + 8
 

We observe that R is a Hurwitz–Radon integer family of size ρ(2) –1,{ R (I2 ,P (R,Q ( R}is a Hurwitz–Radon integer family of size ρ(22 ) –1 and 

 

{ I2(R(I2 , I2(P(R , Q(Q(R , P(Q(R , R(P(Q , R(P(P , R(Q(I2 }
 

is an integer Hurwitz–Radon family of size  ρ(23 ) –1.
 

The reader may easily verify that if { A1 ,A2 ,…. As } is an integer Hurwitz–Radon family of n X n  matrices, then 

 

{ R(In}U{ Q(Ai , i = 1,2,….,s}

 (17)

is an integer Hurwitz–Radon family of s+1 integer matrices (2nX2n)

 

If, in addition, { L1 ,L2 …….,Lm }is an integer Hurwitz–Radon family of  k X k matrices, then 

 

{ P(Ik(Ai , i = 1,2,….,s }U{ Q(Lj(In , j = 1,2,….,m}U{ R(Ink }

 (18)

is an integer Hurwitz–Radon family of  s+m+1 matrices, then (2nk X 2nk)

 

We proceed by induction. For n = 23, we already constructed  an integer Hurwitz–Radon family of size ρ(23 ) –1 with entries in the set {-1,0,1}. Now (17) gives the transition from n1 to n2. By using (18) and letting  k = n1 , n = 2,we get the transition from n1 to n3.Similarly,with k = n1 , n = 4,and k = n1 , n = 8, we get the transition from n1 to n4 and  to n5.
 

The next theorem shows that relaxing the definition of orthogonal designs to allow linear processing at the transmitter does not expand the set of dimensions for which there exists an orthogonal design of size n.

 

Theorem 4: A linear processing orthogonal design of size n ≥ 2 exists if and only if and only if n = 2, 4, and 8.

 Proof: Let L denote a linear processing orthogonal design. Since the entries of L are linear combinations of variables x1 ,x2 ,…. xn  we can write row i of L as XAi , where Ai is an appropriate real-valued  n X n matrix and X = { x1 ,x2 ,…. xn }. Orthogonality of L translates into the following set of matrix equalities: 

Ai AiT   = AiT Ai   =  I ,             i = 1,…..,n

 (19)

Ai AjT   
=    - Aj AiT  ,   1 ≤ i < j ≤ n

 (20)

where I is the identity matrix. We now construct a Hurwitz–Radon set of matrices from the original design. Let Bi = A1T Ai for i = 1,…..,n . Then B1 = I and we have 

 

BiT Bi   =   I                  i = 1,…..,n

(21)

BiT    =    -Bi    ,       i = 1,…..,n

(22)

and

Bi Bj   
=    - Bj Bi  ,   2 ≤ i < j ≤ n

(23)

 

 These equations imply that {B2,B3 ,…. Bn } is a Hurwitz–Radon family of matrices. By the Hurwitz–Radon Theorem , we can conclude that ρ(n) = n-1 and n = 2,4, or 8.

 

In particular , we have the following special case.

Corollary 1: An orthogonal design of size exist if and only if n=2,4,8.

 
 To summarize, relaxing the definition of orthogonal designs, by allowing linear processing at the transmitter, fails to provide new transmission schemes and only adds to the hardware complexity at the transmitter.
3.2 GENERALIZED REAL ORTHOGONAL DESIGNS

 

 

The previous results show the limitations of providing transmit diversity through linear processing orthogonal designs based on square matrices. Since the simple maximum likelihood decoding algorithm described above is achieved because of orthogonality of columns of the design matrix, we may generalize the definition of linear processing orthogonal designs. Not only does this create new and simple transmission schemes for any number of transmit antennas, but also generalizes the Hurwitz–Radon theory to nonsquare matrices
 

In this section, we introduce generalized real orthogonal designs and pose the fundamental question of generalized orthogonal design theory. The answer to this fundamental question provides us with transmission schemes that are in some sense optimal in terms of the decoding delay. We then settle the fundamental question of generalized orthogonal design theory for full-rate orthogonal designs (in a sense to be defined in the sequel) and construct full-rate transmission schemes for any number of transmit antennas

3.2.1 Construction and Basic Properties  

 

Definition 5: A generalized orthogonal design G of size n is a p X n matrix with entries 0,( x1 , (x2 ,… (xk such that GTG = D where D is a diagonal matrix with diagonal Dii, i = 1,2,…,n of the form ( l1i x12 + l2i x22 +……+ lki xk2),and coefficients l1i, l2i,…, lki are strictly positive integers. The rate of G is R = k/p
 

Theorem 5: A generalized orthogonal design ( in variables x1 ,x2 ,…. xk exists if and only if there exists a generalized orthogonal design G in the same variables and of the same size such that

 

GTG        =   (x12+x22+…………+xk2 )I

 
 
   In view of the above theorem, without any loss of generality, we assume that any p X n generalized orthogonal design G in variables x1 ,x2 ,…. xk satisfies
 

GTG        =   (x12+x22+…………+xk2 )I

 

 
    Transmission using a generalized orthogonal design is discussed next. We consider a real constellation A of size 2b. Throughput of kb/p can be achieved as described in earlier Section . At time slot 1,kb bits arrive at the encoder and select constellation symbols  s1 ,s2 ,…. ,sn . The encoder populates the matrix by setting xi = si , and at time t = 1,2…,p the signals Gt1 … , Gtn are transmitted simultaneously from antennas 1,2,…,n. Thus kb bits are sent during each p transmissions. It can be proved, as in Theorem 3.1, that the diversity order is nm . It should be mentioned that the rate of a generalized orthogonal design is different from the throughput of the associated code. To motivate the definition of the rate, we note that the theory of space–time coding proves that for a diversity order of nm, it is possible to transmit b bits per time slot and this is best possible. Therefore, the rate R of this coding scheme is defined to be kb / pb which is equal to k/p.

 

The goal of this section is to construct high-rate linear processing orthogonal designs with low decoding complexity and full diversity order. We must, however, take the memory requirements into account. This means that given R and n,we 

must attempt to minimize p.

 

Definition 6: For a given R,n, we define A(R,n) to be the minimum number p such that there exists a p X n generalized orthogonal design with rate at least R. If no such orthogonal design exists, we define A(R,n) = ( .A generalized orthogonal design attaining the value A(R,n) is called delay-optimal.

 
The value of A(R,n) is the fundamental question of generalized orthogonal design theory. The most interesting part of this question is the computation of A(1,n) since the generalized orthogonal designs of full rate are bandwidth efficient. To address this question, we will need the following construction. 

 

Construction I: Let X = (x1 ,x2 ,…., xp)and n ( ((p). In Lemma 1, we explicitly constructed a family of integer p X p matrices with ((p)- 1members (A1 ,A2 ,…., A((()- 1). 

Let A0 = I and consider the p X n matrix G whose jth column is Aj-1XT for j = 1,2…,n. The Hurwitz–Radon conditions imply that G is a generalized orthogonal design of full rate. 

 

Theorem 6 : The value A(1,n) is the smallest number p such that n ( ((p).

Proof: Let p be a number such that n ( ((p) .Let X = (x1 ,x2 ,…., xp) and apply Construction I to arrive at G,a p X n generalized orthogonal design of full rate. By definition, A(1,n) ( p ,and hence

A(1,n)  (  min(p) < (
          n(((p)


(24)

 

Next, we consider any generalized   orthogonal design G of size p X n in p

variables (rate one) where p = A(1,n) . The columns of G are linear combinations of the variables x1 ,x2 ,…., xp . The ith column can be written as BiXT for some real-valued pXp

matrix Bi. Since the columns of G are orthogonal we have
 

BiT Bi   =   I ,             i = 1,…..,n

 (25)

BiT Bj   
=    - BjT Bi  ,   1 ≤ i < j ≤ n
 (26)

This means that the matrices Aj  = B1T Bj  , j = 2,…,n are a Hurwitz-Radon family of size n-1.Thus n-1 ( ((p) – 1 and n ( ((p), and A(1,n) = p ( min n(((p) (p) . Combining this result with inequality (24) concludes the proof..                             
Corollary 2: For any R,A(R,n)< (
Proof: The proof follows immediately from above theorem 

Corollary 3: The value A(1,n) = min(2 4c+d ), where the minimization is taken over the set

 

{c,d | 0 ≤ c, 0≤ d <4 and 8c + 2d   ≥ n}

 

In particular , A(1,2) = 2 , A(1,3) = A(1,4) = 4 , and A(1,n)=8 for 5≤ n≤ 8

Proof: Let p = A(1,n). We first claim that p is a power of two. To this end, suppose that p = 2ab where b > 1 is an odd .Then (( 2a) = ((p) ( n But  2a  < p the fact that .This contradicts p = min n(((p) (p) and proves the claim. Thus p = 2a for some a. An application of the explicit formula for (( 2a) given in Theorem 3 completes the proof.

 

It follows that orthogonal designs are delay optimal for n = 2 ,4 and 8.We have explicitly constructed a Hurwitz–Radon family of matrices of size p with  ((p) members such that all the matrices in the family have entries in the set {-1,0,1}. Given such a family of Hurwitz–Radon matrices of size p = A(1,n), we can apply Construction I to provide a p X n generalized orthogonal design with full rate. This full-rate generalized 

orthogonal design has entries of the form 0,( x1 , (x2 ,… (xp. This is the method used to prove the following theorem which completes the construction of delay-optimal generalized orthogonal designs of rate one for n ≤ 8 transmit antennas. 

 Theorem 7: The orthogonal designs
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are delay-optimal designs with rate one. 

Proof: The orthogonal designs constructed above achieve the value A(1,n) for n = 3,5,6,7

3.3 GENERALIZED COMPLEX ORTHOGONAL DESIGNS AS SPACE TIME BLOCK CODES

 

 

The simple transmit diversity schemes described above assume a real signal constellation. It is natural to ask for  extensions of these schemes to complex signal constellations. Hence the notion of complex orthogonal designs is introduced in Section 3.3.1. We recover the Alamouti scheme as a 2 X 2 complex orthogonal designs in Section 3.3.2. Motivated by the possibility of linear processing at the transmitter, we define complex linear processing orthogonal designs in Section 3.3.3, but we shall prove that complex linear processing orthogonal designs only exist in two dimensions. This means that the Alamouti Scheme is in some sense unique. However, we would like to have coding schemes for more than two transmit antennas that employ complex constellations. Hence the notion of generalized complex orthogonal designs is introduced in Section 3.3.5. We then prove by explicit construction that rate ½ generalized complex orthogonal designs exist in any dimension. In Section 3.3.6, it is shown that this is not the best rate that can be achieved. Specifically, examples of rate ¾ generalized complex linear processing orthogonal designs in dimensions three and four are provided.

 

3.3.1 Complex Orthogonal Designs 

 

We define a complex orthogonal design of size Oc  of size n as an orthogonal matrix with entries the indeterminates,  ( x1 , (x2 ,… (xn their conjugates ( x1* , (x2* ,… (xn*, or multiples of these indeterminates by ( i where i = √-1. Without loss of generality, we may assume that the first row of  Oc is   x1 , x2 ,… xn.

 

 The method of encoding presented in Section 3.1.1 can be applied to obtain a transmit diversity scheme that achieves the full diversity . The decoding metric again separates into decoding metrics for the individual symbols x1 , x2 ,… xn. An example of a 2 X 2 complex orthogonal design is given by
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3.3.2 The Alamouti Scheme 

 

The space – time block code proposed by Alamouti uses the complex orthogonal design
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Suppose that there are 2b signals in the constellation. At the first time slot, 2b bits arrive at the encoder and select two complex symbols s1 and s2 . These symbols are transmitted simultaneously from antennas one and two, respectively. At the second time slot, signals –s2 * and s1 * are transmitted simultaneously from antennas one and two, respectively. 

 

Maximum-likelihood detection amounts to minimizing the decision statistic
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over all possible values of s1 and s2  . The minimizing values are the receiver estimates of s1and s2, respectively. As in the previous section, this is equivalent to minimizing the decision statistic
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for detecting s1 and the decision statistic
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for decoding s2. This is the simple decoding scheme described in previous chapter, and it should be clear that a result analogous to Theorem 1 can be established here. Thus Alamouti’s scheme provides full diversity 2m using m receive antennas. This is also established by Alamouti  who proved that this scheme provides the same performance as 

level maximum ratio combining.

 

3.3.3 On the Existence of Complex Orthogonal Designs 

 

 

In this section, we consider the existence problem for complex orthogonal designs. First, we show that a complex orthogonal design of size n determines a real orthogonal design of size 2n.

 

Construction II: Given a complex orthogonal design Oc of size n, we replace each complex variable xi = xi 1+ xi 2i , 1≤ i ≤n by the 2 X 2 real matrix 
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 In this way xi* is represented by
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ixi is represented by 


                                                                                                                                        (36)                                  

and so forth. It is easy to see that the 2n X 2n matrix formed in this way is a real orthogonal design of size 2n.

 

Theorem 8 : A complex orthogonal design Oc of size exists only if n = 2 or n = 4. 

Proof: Given a complex orthogonal design of size n, apply Construction II to provide a real orthogonal design of size 2n. Since real orthogonal designs can only exist for n = 2,4 and 8, it follows that complex orthogonal designs of size n cannot exist unless  n = 2 or n = 4.

 
   For n =2 , Alamouti’s scheme gives a complex orthogonal design. We will prove later that complex orthogonal design do not exist even for four transmit antennas.

 

3.3.4 Complex Linear Processing Orthogonal Designs

 

Definition 7: A complex linear processing orthogonal  design in variables x1 , x2 ,… xn is an n X n matrix Ec  such that 

 

• the entries of Ec are complex linear combinations of variables x1 , x2 ,… xn and their conjugates;

• Ec*Ec = D where D is a diagonal matrix where all diagonal entries are linear combinations of  |x1| 2, |x2| 2………|xn| 2 with all strictly positive real coefficients. 

 

The proof of the following theorem is similar to that of Theorem 2.

Theorem 9: A complex linear processing orthogonal design Ec in variables x1 , x2 ,…....xn 
exists if and only if there exists a complex linear processing orthogonal design Lc such that

 

LcLc* =  Lc*Lc = (|x1|2, |x2|2………|xn|2)I
In view of the above theorem, without any loss of generality, we assume that any complex linear processing orthogonal design Lc satisfies

 

LcLc* =  Lc*Lc = (|x1|2, |x2|2………|xn|2)I
 

We can now prove the following theorem:
Theorem 10: A complex linear processing orthogonal design of size n exists if and only if n = 2 .
Proof: We apply Construction II to the complex linear processing orthogonal design of size n to arrive at a linear processing orthogonal design of size 2n . Thus 2n = 4 or 2n =8 

which implies that  n = 2 or n = 4. For n = 2, Alamouti’s matrix is a complex linear processing orthogonal design. Therefore, it suffices to prove that for n = 4 complex linear processing orthogonal designs do not exist.

We can now immediately recover the following result. 

 

Corollary 4 : A complex orthogonal design of size n exists if and only if n = 2.

Proof: Immediate from Theorem 10. 

 

 
We conclude that relaxing the definition of complex orthogonal designs to allow linear processing will only add to hardware complexity at the transmitter and fails to provide transmission schemes in new dimensions.

 

3.3.5 Generalized Complex Orthogonal

 

We next define generalized complex orthogonal designs. 

 Definition 7: Let Gc be a p X n matrix whose entries are 

0,( x1 , (x1*,( x2 , (x2*… ,( xk , (xk*
or their product with i. If Gc *Gc = Dc where Dc is a diagonal matrix with (i , i)th diagonal element of the form

(l1i|x1|2 + l2i|x2|2……… +lki|xn|2)
and the coefficients l1i,l2i,…,lki all strictly positive numbers, then Gc is referred to as a generalized orthogonal design of size n and rate R = k/p

  
Theorem 11: A p X n complex generalized linear processing orthogonal design (c in variables

0,( x1 , (x1*,( x2 , (x2*… ,( xk , (xk*

 

exists if and only if there exists a complex generalized linear processing orthogonal design Gc in the same variables and of the same size such that 

 

Gc*Gc = (|x1|2+ |x2|2………|xk|2)I

 

In view of the above theorem, without any loss of generality, we assume that any p X n generalized orthogonal design in variables 

 

0,( x1 , (x1*,( x2 , (x2*… ,( xk , (xk*

 satisfies the equality

Gc*Gc = (|x1|2+ |x2|2………|xk|2)I

 

after the appropriate normalization.

 

Transmission using a complex generalized orthogonal design is similar to that of a generalized orthogonal design.Maximum-likelihood decoding is analogous to that of Alamouti’s scheme and can be done using linear processing at the receiver. The goal of this section is to construct high-rate complex generalized linear processing orthogonal designs with low decoding complexity that achieve full diversity. We must, however, take the memory requirements into account. This means that given R and n, we must attempt to minimize p.

 

Definition 8: For a given R and n, we define Ac(R,n) the minimum number p for which there exists a complex generalized linear processing orthogonal design of size p X n and rate at least R.If no such orthogonal design exists, we define Ac(R,n) = (

 
    The question of the computation of the value of Ac(R,n) is the fundamental question of generalized complex orthogonal design theory. To address this question to some extent, we will establish the following Theorem

Theorem 12: The following inequalities hold. 

 • i ) For any R, we have A(R,2n)( 2Ac(R,n) 

• ii) For any R, we have  Ac(R,n) ( 2A(2R,n) 

 Proof: We first prove Part i). If Ac(R,n) = (, then there is nothing to be proved. Thus we assume that p = Ac(R,n) < ( and consider a complex generalized linear processing orthogonal design Gc of rate at least equal to R and size p X n. By applying Construction II, we arrive at a 2p X 2n real generalized linear processing orthogonal design of rate at least equal to R..Thus 2Ac(R,n) =2p (A(R,2n)

 
To prove Part ii), we consider a real orthogonal design G of size p X n and rate at least equal to 2R in variables x1 , x2 ,..xk where p = A(2R,n). We construct a complex array Gc of size 2p X n . We replace the symbols x1 , x2 ,..xk everywhere in G by their symbolic conjugates x1* , x2 *,..xk *to arrive at a new array G*. Then we define Gc to be the 2p X n array with the row the i (pth row of G and the row p<i ( 2p the (i-p)th row of G*. It is easy to see that Gc is a complex generalized orthogonal design of rate at least equal to R . Thus Ac(R,n) (2p = 2A(2R,n)  . 

 

Corollary 5: For R ( 0.5, we have Ac(R,n) = (.

Proof: It follows immediately from Part ii) of Theorem 12 and Corollary 2.

Remark: Corollary 5 proves there exists rate ½ complex generalized orthogonal designs, and the proof of Part ii) of Theorem 12 gives an explicit construction for these designs. For instance, rate ½ codes for transmission using three and four transmit antennas are given by
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and
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These transmission schemes and their analogs for higher give full diversity but lose half of the theoretical bandwidth efficiency.

 

3.3.6 Few Sporadic Codes 

 

 

It is natural to ask for higher rates than ½ when designing generalized complex linear processing orthogonal designs for transmission with n multiple antennas. For n=2 ,Alamouti’s scheme gives a rate one design. For n = 3 and 4,we construct rate ¾ generalized complex linear processing orthogonal designs given by
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 For n = 3 and
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 For n = 4 . These codes are designed using the theory of  amicable designs . 

 

Apart from these two designs, we do not know of any other generalized designs in higher dimensions with rate greater than 0.5. We believe that the construction of complex generalized designs with rate greater than is difficult and we hope that 

these two examples stimulate further work.

 

Theorem 13 : A complex orthogonal design of size 4 does not exist. 

Proof: The proof is divided into six steps. 

 

Step I: In this step, we provide necessary and sufficient conditions for a 4 X 4 matrix of indeterminates to be a complex linear processing generalized orthogonal design. To this end, let Lc be a complex linear processing generalized orthogonal design of size n = 4. Each entry of Lc is a linear combination of  x1 ,x1*, x2 ,x2*… , x4 , x4*. It follows that

 

Lc  =  x1 A1+x1*B1+ x2 A2+x2*B2+  ………. x4 A4+x4*B4
(41)

where A1, B1 , A2 , B2, ………., A4, B4 are complex 4 X 4 matrices. Since

 

LcLc* = Lc*Lc = (|x1|2, |x2|2………|xk|2)I

 

we can conclude from the above that

AiAi*+ BiBi*   =  Ai*Ai+ Bi*Bi   = I,
i = 1,….,4
AiAj*+ BjBi*   =  Ai*Aj+ Bj*Bi   = 0
1( i≠ j (4
AiAj*+ BjAi*   =  AiBj *+ Aj*Bi  = 0
1( i≠ j(4

AiBi*   =  Ai*Bi   = 0,

1( i (4

(42)

 Conversely, any set of 4 X 4complex matrices A1, B1 , A2 , B2, ………., A4, B4 satisfying the above equations defines a linear processing complex orthogonal design
 

Step II: In this step, we will prove that given a complex linear processing generalized orthogonal design Lc, we could construct another complex linear processing generalized orthogonal design ε such that for any row, one of xj and xj*does not occur in the entries of that row of ε. In other words, for any i = 1,2,3,4

 

4               4

εik  =    Σai,j,k xj + Σbi,j,k xj*

   j=1                    j = 1

 where for any fixed i either bi,j,k = 0 for all k = 1,2,3,4or ai,j,k =0 for all k = 1,2,3,4. In the former (respectively, latter) case we say xj* (respectively, xj ) does not occur in the ith row of ε.

                   Using (42), we first observe that

Ai= Ai (I) = Ai (Ai*Ai+ Bi*Bi)= Ai Ai*Ai

Hence

Ai Ai*= Ai Ai*Ai Ai* = (Ai Ai*)2

 
    Similarly, Bi Bi* =  (Bi Bi*)2. This means that the matrices Ai Ai* and Bi Bi* are idempotent for i = 1,2,3,4. Since Ai Ai* + Bi Bi*= I, the matrices Ai Ai* and Bi Bi* represent projections onto perpendicular vector spaces Wi and Wi( and thus are diagonalizable with all eigen values in the set {0,1} .If pi = rank(Wi) and qi = rank(Wi()= 4-p, then exactly pi (respectively,qi ) of eigen values of Ai Ai* (respectively, Bi Bi*) are 1. 

Next, using (42), we observe that for i ( j

Ai Ai*Aj Aj* = - Ai Bj* Bi Aj* = Aj Bi* Bi Aj* = - Aj Bi* Bj Ai* = Aj Aj* Ai Ai*

     
Thus the matrices Ai Ai*and Aj Aj*commute. Similarly, it follows that { Ai Ai*, Bi Bi*,i =1,2,3,4}is a commuting family of diagonalizable matrices. Hence, these matrices are simultaneously diagonalizable. Since the eigenvalues of Ai Ai* are in the set {0,1} , we conclude that there exists a unitary transformation U such that

UAiAi*U*   = Di1

UBiBi*U*   = Di2

where {Di1, Di2,i =1,2,3,4}are diagonal matrices with diagonal entries in the set {0,1}. Moreover, because

Di1+ Di2 = U(AiAi*+ BiBi*)U*   =I

the (j,j)th entry of Di1is zero (respectively, one) if and only (j,j)th entry of Di2 is one (respectively, zero). Since 

Di1UBiU*   = UAiAi*U*UBiU*    = 0

the nonzero entries of UBiU* appear in those rows j where the (j,j)th element of Di1
is zero. Similarly, 

Di2UAiU*   = UBiBi*U*UAiU*    = 0

implies that the nonzero entries of UAiU*   appear in those rows, where the corresponding diagonal element of Di2 is zero. Thus the nonzero entries of UAiU*   and UBiU*   occur in different rows. 

Let

           4               

ε   =    Σ(UAiU*xi*   + UBiU*xi*)
                                                                                  i=1                  

then it follows from the matrix equations given in Step I that ε is a complex linear processing generalized orthogonal design with the desired property.

Step III: We can now assume without any loss of generality that Lc orthogonal design with the properties described in Step II. 

 
     In this step, we apply Construction II to Lc and study the properties of the associated real linear processing generalized orthogonal design. 

 
    By interchanging xi   with xi*everywhere in the design if necessary, we can further assume that only x1 , x2 ,x3 , x4  occur in the first row of Lc. We next apply Construction II to Lc and construct a real orthogonal design O of size 8 in variables x11, x12, x21, x22,……………… x41, x42 . The matrix O can be written as 

O = C1x11+ C2x12+ C3x21+ C4x22+………+ C7x41+ C8x42

(43)

where C1, C2,…….., C7, C8 are real 8 X 8 matrices. Furthermore, assuming the property established in Step II, we can easily observe by direct computation that

C2= J1 C1
C4= J2 C3

C6= J3 C5

C8= J4 C7

(44)

Where
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where Fi is a diagonal matrix of size 4 whose diagonal entries, belong to the set {-1,1}. Moreover, the (1,1)th entry of Fi , i = 1,2,3,4 equals 1 . We let εi  = (εi,1,…., εi,4 )denote the vector whose jth component is the (j,j)th element of Fi . The jth element of  εi is equal to 1 (respectively,-1 )if xi (respectively, xi*) occurs in row j.

Using (43) and

                                                                        4

OOT = OTO =     (Σ [(xi1)2+( xi2 )2] )I

                                                                       i=1         

we arrive at the following set of equations :

CiCiT
 =
 I8, i = 1,…,8

CiCjT
= 
-CjCiT , 1 ( i < j (  8

(45)

Let Ei = CiC1T, then using (44) and (45) we have

E1  =  I8

(46)

E2  =  J1

(47)

E4  =  J2 E3  

(48)

E6  =  J3 E5  

(49)

E8  =  J4 E7

(50)

EiT  =  -Ei                                       i = 2,….,8
(51)

EiTEi  = EiEiT = I8  ,           i = 1,….,8

(52)

EiEjT = - Ej EiT ,                     1 ( i < j (  8

(53)

Step IV: We next prove that the matrices E2i-1,E2i , i = 2,3,4 anticommute with J1 and Ji but commute with Jj ,j ( 1 and j ( i .First, we observe that by (51) and (53) 

E2i-1J1T+ J1ET2i-1= E2i-1E2T+ E2ET2i-1=0

Ji E2i-1+ ET2i-1JiT= E2i+ ET2i=0

Since the matrices J1 ,Ji and E2i-1are antisymmetric, the above equations prove that E2i-1 anticommutes with J1and Ji . Furthermore, since (Ji E2j-1)T = ET2j-1JjT, we conclude from (46)–(53) that when j ( 1 and j ( i 

Jj E2j-1 ET2i-1+ E2i-1 ET2j-1JjT= E2jET2i-1+ E2i-1ET2j=0

E2j-1ET2i-1+ E2i-1ET2j-1=0

which implies that 

-Jj E2j-1 E2i-1- E2j-1 E2i-1Jj =Jj E2j-1ET2i-1- E2j-1 ET2i-1JTj = Jj E2j-1ET2i-1+ E2i-1 ET2j-1JTj =0

Since Jj anticommutes with E2j-1 ,we arrive at 

E2j-1 Jj E2i-1 = E2j-1 E2i-1Jj
Because E2j-1 is orthogonal, it is invertible and thus whenever j ( 1 and j ( i , we have

Jj E2i-1 = E2i-1Jj
The assertion for E2i now easily follows since E2i = Ji E2i-1

Step V: Recall that εi  = (εi,1,…., εi,4 ) is the vector whose jth component is the (j,j)th element of Fi . In this step, we prove that any two vectors εi and εj have Hamming distance exactly equal to two. To this end, since E2i-1 commutes with Jj for j ( 1 , j ( i and anticommutes with J1 and Jj , we can easily conclude from the nonsingularity of E2i-1 that Jj ( Ji , for 1 ( i ( j (  4 and Jj ( -Ji for 1 ( i ( j (  4.Thus the Hamming distance of any two distinct vectors εi and εj is neither zero nor four. We first prove that the Hamming distance of any two distinct vectors εi and εj cannot be one. 

     
To this end, let us suppose that two distinct vectors εi and εj have Hamming distance one and differ only in the kth position. Then in the kth row of Lc we have either occurrences of xi and xj* or occurrences of xi* and xj but not both. In any other row of Lc , we have either occurrences of xi and xj or occurrences of xi*and xj* but not both. It is easy to see that the columns of Lc cannot be orthogonal to each other. 

 
    We next prove that the Hamming distance of any two distinct vectors εi and εj cannot be three. To this end, let us suppose that two distinct vectors εi and εj have Hamming distance three. Since εk,1 = 1for all k = 1,2,3,4 we conclude that εi,k = - εj,k for all k = 2,3,4. We can now choose  l(i, j and observe that the vector εl is distinct with both εi and εj . Moreover, it coincides with both εi and εj in the first position. It follows using a simple counting argument that has Hamming distance one with either εi or εj . But we just proved that this is not possible. We conclude that any two distinct vectors εi and εj have Hamming distance exactly equal to two. 

Step VI: In this step, we will arrive at a contradiction that concludes the proof.

 
    Because any two distinct vectors εi and εj have Hamming distance exactly equal to two, the matrix H whose ith row is εi is a Hadamard matrix. It follows that any two distinct columns of H also have Hamming distance 2. Thus we can now assume without loss of generality that (after possible renaming of the variables and by exchanging the role of some variables with their conjugates) x1 , x2 ,x3 , x4  occur in row one and x1* , x2* ,x3 , x4  occur in row two of Lc.

 

Lc is thus x1v1 + x2v2 + x3v3 + x4v4 expressible as and the second row of is of Lc the form x1*w1 + x2*w2 + x3v3 + x4v4 for appropriate vectors vi, wi,i = 1,2,3,4. Because

LcLc* = (|x1|2, |x2|2………|x4|2)I

we observe that vi, wi are vectors of unit length. Moreover, if i(j the vectors vi and vj are orthogonal to each other. Since the first and second rows of Lc are orthogonal, we observe that w3 is orthogonal to vi, i = 1,2,3,4. This means that {w3, v1, v2, v3, v4}contains a set of five orthonormal vectors in complex space of dimension 4 This contradiction proves the result.

CHAPTER 4

IMPLEMENTATION OF VARIOUS MRRC& STBC SCHEMES IN MATLAB

4.1 Maximal Ratio Receiver Combining (MRRC)
The basic operation of the transmitter section of the file is as follows for a given SNR:

1. Binary data is placed into packets 

2. The packets are converted into DPSK symbols (i.e. +-1) 

3. Symbols are then encoded and upsampled

4. The signal is finally modulated and transmitted out of a antenna. 

The receiver section brings the signal back from 20kHz into its original data stream. Note: it is assumed that the receiver has perfect knowledge of the channel to enable comparison of the several schemes
4.1.1 Code For 1 X 1 MRRC Scheme

%###########

% Name:
mxbase1x1

%Purpose: 1x1 BPSK 

%###########

% TRANSMITTER

M.fc = 20000;
 % carrier frequency

M.fs = 1500000; % sampling frequency

M.data = [0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1]; % data stream.

h0 = abs(sqrt(0.5)*randn(size(M.data)));

k = 1;

n = 1;

while k<= length(M.data)

%### Binary into DPSK ###

if M.data(k) == 1

   s0 = 1;

elseif M.data(k) == 0

      s0 = -1;

end

if M.data(k+1) == 1

   s1 = 1;

elseif M.data(k+1) == 0

      s1 = -1;

end

%### Uncoded symbols ###


ant0_cyc1 = s0;


ant0_cyc2 = s1;

%### Upsample ###

samp_per_sym = M.fs/M.fc;

up_a0c1 = ones(1,samp_per_sym)*ant0_cyc1;

up_a0c2 = ones(1,samp_per_sym)*ant0_cyc2;

%### Modulate ###

Tmax = 1/M.fc;

dt = Tmax/samp_per_sym;

time = [0:dt:Tmax-dt];

wc = 2*pi*M.fc;

c = cos(wc*time);

mup_a0c1 = up_a0c1.*c;

mup_a0c2 = up_a0c2.*c;

%### Transmission Stream ###

%# Tx-ant0 #

Tx0(1:samp_per_sym) = mup_a0c1;

Tx0(1+samp_per_sym:2*samp_per_sym) = mup_a0c2;

%### Power recticication ###

Tx0 = Tx0; 

%### SNR adjust ###

%SNR = 1;%5dB

Tx0 = Tx0*SNR;

%### Channel Effects ###

%## Fading ##

ch0_a0a0= Tx0*h0(n);

%RECEIVER ARRAY

rx0 = ch0_a0a0;

r0 = rx0(1:75);

r1 = rx0(76:150);

%### Noise at receiver ###

noise_ant0 = 1.3*randn(size(rx0)); 

n0 = noise_ant0(1:samp_per_sym);

n1 = noise_ant0(1+samp_per_sym:2*samp_per_sym);

r0 = r0+n0;

r1 = r1+n1;

%### Demodulated signals ###

Tmax = 1/M.fc;

dt = Tmax/samp_per_sym;

time = [0:dt:Tmax-dt];

wc = 2*pi*M.fc;

c = sin(wc*time);

r0 = r0.*c;

r1 = r1.*c;

%### Combiner ###

s0bar = r0; %h0(n)*

s1bar = r1;

sum_s0 = sum(s0bar(1:19))-sum(s0bar(20:38))+sum(s0bar(39:57))-sum(s0bar(58:75));

sum_s1 = sum(s1bar(1:19))-sum(s1bar(20:38))+sum(s1bar(39:57))-sum(s1bar(58:75));

s0hat=sign(sum_s0);

s1hat=sign(sum_s1);

rsym=[s0hat,s1hat];

%### DPSK to Binary ###

if rsym(1) == 1

   r_s0 = 1;

elseif rsym(1) == -1

      r_s0 = 0;

else 'DPSK2BIN_s0 Error'

end

if rsym(2) == 1

   r_s1 = 1;

elseif rsym(2) == -1

      r_s1 = 0;

else 'DPSK2BIN_s0 Error'

end

rdata(k:k+1)= [r_s0,r_s1];

k = k+2;

n = n+1;

end

rdata;

4.1.2 Code For 1 X 2 MRRC Scheme

%###########

% Name:
mxbase1x2

%Purpose: 1x2 BPSK MRRC

%###########

%TRANSMITTER

M.fc = 20000;
 % carrier frequency

M.fs = 1500000; % sampling frequency

M.data = [0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1]; % data stream.

h0 = abs(sqrt(0.5)*randn(size(M.data)));

h2 = abs(sqrt(0.5)*randn(size(M.data)));

k = 1;

n = 1;

while k<= length(M.data)

%### Binary into DPSK ###

if M.data(k) == 1

   s0 = 1;

elseif M.data(k) == 0

      s0 = -1;

end

if M.data(k+1) == 1

   s1 = 1;

elseif M.data(k+1) == 0

      s1 = -1;

end

%### Uncoded symbols ###


ant0_cyc1 = s0;


ant0_cyc2 = s1;

%### Upsample ###

samp_per_sym = M.fs/M.fc;

up_a0c1 = ones(1,samp_per_sym)*ant0_cyc1;

up_a0c2 = ones(1,samp_per_sym)*ant0_cyc2;

%### Modulate ###

Tmax = 1/M.fc;

dt = Tmax/samp_per_sym;

time = [0:dt:Tmax-dt];

wc = 2*pi*M.fc;

c = cos(wc*time);

mup_a0c1 = up_a0c1.*c;

mup_a0c2 = up_a0c2.*c;

%### Transmission Stream ###

%# Tx-ant0 #

Tx0(1:samp_per_sym) = mup_a0c1;

Tx0(1+samp_per_sym:2*samp_per_sym) = mup_a0c2;

%### Power recticication ###

Tx0 = Tx0;

%### SNR adjust ###

%SNR = 1;%0dB

Tx0 = Tx0*SNR;

%### Channel Effects ###

%## Fading ##

ch0_a0a0= Tx0*h0(n);

ch2_a0a1= Tx0*h2(n);

%RECEIVER ARRAY

rx0 = ch0_a0a0;

rx1 = ch2_a0a1;

r0 = rx0(1:75);

r1 = rx0(76:150);

r2 = rx1(1:75);

r3 = rx1(76:150);

%### Noise at receiver ###

noise_ant0 = 1.3*randn(size(rx0)); 

n0 = noise_ant0(1:samp_per_sym);

n1 = noise_ant0(1+samp_per_sym:2*samp_per_sym);

r0 = r0+n0;

r1 = r1+n1;

noise_ant1 = 1.3*randn(size(rx1)); 

n2 = noise_ant1(1:samp_per_sym);

n3 = noise_ant1(1+samp_per_sym:2*samp_per_sym);

r2 = r2+n2;

r3 = r3+n3;

%### Demodulated signals ###

Tmax = 1/M.fc;

dt = Tmax/samp_per_sym;

time = [0:dt:Tmax-dt];

wc = 2*pi*M.fc;

c = sin(wc*time);

r0 = r0.*c;

r1 = r1.*c;

r2 = r2.*c;

r3 = r3.*c;

%### Combiner ###

s0bar= h0(n)*r0+h2(n)*r2;

s1bar= h0(n)*r1+h2(n)*r3; 

sum_s0 = sum(s0bar(1:19))-sum(s0bar(20:38))+sum(s0bar(39:57))-sum(s0bar(58:75));

sum_s1 = sum(s1bar(1:19))-sum(s1bar(20:38))+sum(s1bar(39:57))-sum(s1bar(58:75));

s0bar=sum_s0/75;

s1bar=sum_s1/75;

%### Maximum likelihood detection ###

si = 1;

sk =-1;

d2_s0bar_si =(s0bar-si)*(conj(s0bar)-conj(si));

d2_s0bar_sk =(s0bar-sk)*(conj(s0bar)-conj(sk));

if d2_s0bar_si <= d2_s0bar_sk

   s0hat= si;

else s0hat = sk;

end

%choose si iff

%d^2(s1bar,si)<=d^2(s1bar,sk)

%where d^2(x,y)=(x-y)(x*-y*)

d2_s1bar_si =(s1bar-si)*(conj(s1bar)-conj(si));

d2_s1bar_sk =(s1bar-sk)*(conj(s1bar)-conj(sk));

if d2_s1bar_si <= d2_s1bar_sk

       s1hat= si;

else s1hat = sk;

end

rsym=[s0hat,s1hat];

%### DPSK to Binary ###

if rsym(1) == 1

   r_s0 = 1;

else r_s0 = 0;

end

if rsym(2) == 1

   r_s1 = 1;

else r_s1 = 0;

end

rdata(k:k+1)= [r_s0,r_s1];

k = k+2;

n = n+1;

end

rdata;

4.2 SPACE TIME BLOCK CODES

The basic operation of the transmitter section of the file is as follows for a given SNR:

1. Binary data is placed into packets 

2. The packets are converted into DPSK symbols (i.e. +-1) 

3. Symbols are then encoded and upsampled 

4. The signal is finally modulated and transmitted out of two separate antennas 

The receiver section brings the signal back from 20kHz into its original data stream. Note: it is assumed that the receiver has perfect knowledge of the channel to enable comparison of the several schemes
4.2.1 Code For 2 X  1 STBC Scheme

%###########

% Name:
mxbase2x1

%Purpose: 2x1 BPSK STBC

%###########

%TRANSMITTER ARRAY

M.fc = 20000;
 % carrier frequency

M.fs = 1500000; % sampling frequency

M.data = [0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1]; % data stream.

h0 = abs(sqrt(0.5)*randn(size(M.data)));

h1 = abs(sqrt(0.5)*randn(size(M.data)));

k = 1;

n = 1;

while k<= length(M.data)

%### Binary into DPSK ###

if M.data(k) == 1

   s0 = 1;

elseif M.data(k) == 0

      s0 = -1;

end

if M.data(k+1) == 1

   s1 = 1;

elseif M.data(k+1) == 0

      s1 = -1;

end

%### Encoded symbols ###


ant0_cyc1 = s0;


ant1_cyc1 = s1;

ant0_cyc2 = -conj(s1);

ant1_cyc2 = conj(s0);

%### Upsample ###

samp_per_sym = M.fs/M.fc;

up_a0c1 = ones(1,samp_per_sym)*ant0_cyc1;

up_a1c1 = ones(1,samp_per_sym)*ant1_cyc1;

up_a0c2 = ones(1,samp_per_sym)*ant0_cyc2;

up_a1c2 = ones(1,samp_per_sym)*ant1_cyc2;

%### Modulate ###

Tmax = 1/M.fc;

dt = Tmax/samp_per_sym;

time = [0:dt:Tmax-dt];

wc = 2*pi*M.fc;

c = cos(wc*time);

mup_a0c1 = up_a0c1.*c;

mup_a1c1 = up_a1c1.*c;

mup_a0c2 = up_a0c2.*c;

mup_a1c2 = up_a1c2.*c;

%### Transmission Stream ###

%# Tx-ant0 #

Tx0(1:samp_per_sym) = mup_a0c1;

Tx0(1+samp_per_sym:2*samp_per_sym) = mup_a0c2;

%# Tx-ant1 #

Tx1(1:samp_per_sym) = mup_a1c1;

Tx1(1+samp_per_sym:2*samp_per_sym) = mup_a1c2;

%### Power recticication ###

Tx0 = (1/sqrt(2))*Tx0; 

Tx1 = (1/sqrt(2))*Tx1;

%### SNR adjust ###

%SNR = 3 ;%5dB

Tx0 = Tx0*SNR;

Tx1 = Tx1*SNR;

%### Channel Effects ###

%## Fading ##

ch0_a0a0= Tx0*h0(n);

ch1_a1a0= Tx1*h1(n);

%RECEIVER ARRAY

rx0 = ch0_a0a0+ch1_a1a0;

r0 = rx0(1:75);

r1 = rx0(76:150);

%### Noise at receiver ###

noise_ant0 = 1.3*randn(size(rx0));

n0 = noise_ant0(1:samp_per_sym);

n1 = noise_ant0(1+samp_per_sym:2*samp_per_sym);

r0 = r0+n0;

r1 = r1+n1;

%### Demodulated signals ###

Tmax = 1/M.fc;

dt = Tmax/samp_per_sym;

time = [0:dt:Tmax-dt];

wc = 2*pi*M.fc;

c = sin(wc*time);

r0 = r0.*c;

r1 = r1.*c;

%### Combiner ###

s0bar= h0(n)*r0+h1(n)*r1;

s1bar= h1(n)*r0-h0(n)*r1;

sum_s0 = sum(s0bar(1:19))-sum(s0bar(20:38))+sum(s0bar(39:57))-sum(s0bar(58:75));

sum_s1 = sum(s1bar(1:19))-sum(s1bar(20:38))+sum(s1bar(39:57))-sum(s1bar(58:75));

s0bar=sum_s0/75;

s1bar=sum_s1/75;

%### Maximum likelihood detection ###

si = 1;

sk =-1;

d2_s0bar_si =(s0bar-si)*(conj(s0bar)-conj(si));

d2_s0bar_sk =(s0bar-sk)*(conj(s0bar)-conj(sk));

if d2_s0bar_si <= d2_s0bar_sk

   s0hat= si;

else s0hat = sk;

end

%choose si iff

%d^2(s1bar,si)<=d^2(s1bar,sk)

%where d^2(x,y)=(x-y)(x*-y*)

d2_s1bar_si =(s1bar-si)*(conj(s1bar)-conj(si));

d2_s1bar_sk =(s1bar-sk)*(conj(s1bar)-conj(sk));

if d2_s1bar_si <= d2_s1bar_sk

   s1hat= si;

else s1hat = sk;

end

rsym=[s0hat,s1hat];

%### DPSK to Binary ###

if rsym(1) == 1

   r_s0 = 1;

else r_s0 = 0;

end

if rsym(2) == 1

   r_s1 = 1;

else r_s1 = 0;

end

rdata(k:k+1)= [r_s0,r_s1];

k = k+2;

n = n+1;

end

rdata;

4.2.2 Code For 2 X  2 STBC Scheme

%###########

% Name:
mxbase2x2

%Purpose: 2x2 BPSK STBC

%###########

%TRANSMITTER ARRAY

M.fc = 20000;
 % carrier frequency

M.fs = 1500000; % sampling frequency

M.data = [0 0 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 0 1]; % data stream.

h0 = abs(sqrt(0.5)*randn(size(M.data)));

h1 = abs(sqrt(0.5)*randn(size(M.data)));

h2 = abs(sqrt(0.5)*randn(size(M.data)));

h3 = abs(sqrt(0.5)*randn(size(M.data)));

k = 1;

n = 1;

while k<= length(M.data)

%### Binary into DPSK ###

if M.data(k) == 1

   s0 = 1;

elseif M.data(k) == 0

      s0 = -1;

end

if M.data(k+1) == 1

   s1 = 1;

elseif M.data(k+1) == 0

      s1 = -1;

end

%### Encoded symbols ###


ant0_cyc1 = s0;


ant1_cyc1 = s1;

ant0_cyc2 = -conj(s1);

ant1_cyc2 = conj(s0);

%### Upsample ###

samp_per_sym = M.fs/M.fc;

up_a0c1 = ones(1,samp_per_sym)*ant0_cyc1;

up_a1c1 = ones(1,samp_per_sym)*ant1_cyc1;

up_a0c2 = ones(1,samp_per_sym)*ant0_cyc2;

up_a1c2 = ones(1,samp_per_sym)*ant1_cyc2;

%### Modulate ###

Tmax = 1/M.fc;

dt = Tmax/samp_per_sym;

time = [0:dt:Tmax-dt];

wc = 2*pi*M.fc;

c = cos(wc*time);

mup_a0c1 = up_a0c1.*c;

mup_a1c1 = up_a1c1.*c;

mup_a0c2 = up_a0c2.*c;

mup_a1c2 = up_a1c2.*c;

%### Transmission Stream ###

%# Tx-ant0 #

Tx0(1:samp_per_sym) = mup_a0c1;

Tx0(1+samp_per_sym:2*samp_per_sym) = mup_a0c2;

%# Tx-ant1 #

Tx1(1:samp_per_sym) = mup_a1c1;

Tx1(1+samp_per_sym:2*samp_per_sym) = mup_a1c2;

%### Power recticication ###

Tx0 = (1/sqrt(2))*Tx0; 

Tx1 = (1/sqrt(2))*Tx1;

%### SNR adjust ###

%SNR = 1;%0dB

Tx0 = Tx0*SNR;

Tx1 = Tx1*SNR;

%### Channel Effects ###

%## Fading ##

ch0_a0a0= Tx0*h0(n);

ch1_a1a0= Tx1*h1(n);

ch2_a0a1= Tx0*h2(n);

ch3_a1a1= Tx1*h3(n);

%RECEIVER ARRAY

rx0 = ch0_a0a0+ch1_a1a0;

rx1 = ch2_a0a1+ch3_a1a1;

r0 = rx0(1:75);

r1 = rx0(76:150);

r2 = rx1(1:75);

r3 = rx1(76:150);

%### Noise at receiver ###

noise_ant0 = 1.2*randn(size(rx0));

n0 = noise_ant0(1:samp_per_sym);

n1 = noise_ant0(1+samp_per_sym:2*samp_per_sym);

r0 = r0+n0;

r1 = r1+n1;

noise_ant1 = 1.2*randn(size(rx1));

n2 = noise_ant1(1:samp_per_sym);

n3 = noise_ant1(1+samp_per_sym:2*samp_per_sym);

r2 = r2+n2;

r3 = r3+n3;

%### Demodulated signals ###

Tmax = 1/M.fc;

dt = Tmax/samp_per_sym;

time = [0:dt:Tmax-dt];

wc = 2*pi*M.fc;

c = sin(wc*time);

r0 = r0.*c;

r1 = r1.*c;

r2 = r2.*c;

r3 = r3.*c;

%### Combiner ###(unnecessary conj's removed)

s0bar= h0(n)*r0+h1(n)*r1+h2(n)*r2+h3(n)*r3;

s1bar= h1(n)*r0-h0(n)*r1+h3(n)*r2-h2(n)*r3;

sum_s0 = sum(s0bar(1:19))-sum(s0bar(20:38))+sum(s0bar(39:57))-sum(s0bar(58:75));

sum_s1 = sum(s1bar(1:19))-sum(s1bar(20:38))+sum(s1bar(39:57))-sum(s1bar(58:75));

s0bar=sum_s0/75;

s1bar=sum_s1/75;

%### Maximum likelihood detection ###

si = 1;

sk =-1;

d2_s0bar_si =(s0bar-si)*(conj(s0bar)-conj(si));

d2_s0bar_sk =(s0bar-sk)*(conj(s0bar)-conj(sk));

if d2_s0bar_si <= d2_s0bar_sk

   s0hat= si;

else s0hat = sk;

end

%choose si iff

%d^2(s1bar,si)<=d^2(s1bar,sk)

%where d^2(x,y)=(x-y)(x*-y*)

d2_s1bar_si =(s1bar-si)*(conj(s1bar)-conj(si));

d2_s1bar_sk =(s1bar-sk)*(conj(s1bar)-conj(sk));

if d2_s1bar_si <= d2_s1bar_sk

   s1hat= si;

else s1hat = sk;

end

rsym=[s0hat,s1hat];

%### DPSK to Binary ###

if rsym(1) == 1

   r_s0 = 1;

else r_s0 = 0;

end

if rsym(2) == 1

   r_s1 = 1;

else r_s1 = 0;

end

rdata(k:k+1)= [r_s0,r_s1];

k = k+2;

n = n+1;

end

rdata;

CHAPTER 5

EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Maximal Ratio Receiver Combining (MRRC) 

5.1.1 Examples of Output Generated for 1X1 MRRC Scheme

Binary Input to the transmitter

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Binary Output at the Receiver

For SNR = 1db

     1     1     0     1     1     0     1     1     1     1     0     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     0     1     0     0     0     0

     0     0     1     1     1     1     1     0     0     1     1     0     1     0     1     0     0     0

     1     1     1     0     1     0     0     0     1     0     0     1     0     0     1     0     1     0

     0     1     0     0     0     1     0     0     0     0     0     0     1     1     1     1     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors = 12

For SNR = 2 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     1     1     1     0     1     0     1     1     1     1     1     0     0     0     1

     1     1     1     1     1     1     1     0     0     0     0     0     0     0     1     1     1     0

     1     1     1     0     1     1     0     0     1     0     0     1     1     0     0     0     0     1

     0     1     0     0     0     1     0     1     1     1     1     0     1     1     1     0     1     0

     0     1     0     0     1     0     1     0     0     1

Total no of Errors = 9

For SNR = 3 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     1     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     0     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     0     0     0     1

Total no of Errors = 6

For SNR = 5 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     1     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     1     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     0     1     1     0     1     0     0     1

Total no of Errors = 4

For SNR = 10 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     1     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors = 1

For SNR =15 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors = 0

5. 1.2 Examples of Output Generated for 1X2 MRRC Scheme

Binary Input to the transmitter

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Binary Output at the Receiver

For SNR = 1db

     0     1     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     0     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     1     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     1     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors = 4

For SNR = 2 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     1     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     1     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors = 2

For SNR = 3 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1 

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors = 0

For SNR = 5 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors = 0

For SNR = 10 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors =0

For SNR = 15 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors =0

5.2 SPACE TIME BLOCK CODES

5.2.1 Examples of Output Generated for 2X1 STBC Schemes

Binary Input to the transmitter

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Binary Output at the Receiver

For SNR = 1db

     0     0     0     1     1     0     1     1     1     1     1     1     0     1     0     0     1     1

     1     0     0     0     1     1     0     1     0     1     1     0     0     1     0     0     0     1

     0     0     1     1     1     0     1     0     0     1     0     0     1     1     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     0     0     1     0     1     0     0     1

Total no of Errors = 6

For SNR = 2 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     0     0     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     0

Total no of Errors =3

For SNR = 3 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors =0

For SNR = 5 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     1     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors = 0

For SNR = 10 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors =0

For SNR = 15 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors = 0

5.2.2 Examples of Output Generated for 2X2 STBC Schemes

Binary Input to the transmitter

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Binary Output at the Receiver

For SNR = 1db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     0     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     0     0     1     0     0     1

Total no of Errors =2

For SNR = 2 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors =0

For SNR = 3 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors =0

For SNR = 5 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors =0

For SNR = 10 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors =0

For SNR = 15 db

     0     0     0     1     1     0     1     1     1     1     1     0     0     1     0     0     0     1

     1     0     0     0     1     1     0     1     0     1     1     0     1     1     0     0     0     1

     0     0     1     1     1     1     1     0     0     1     0     0     1     0     1     1     0     0

     1     1     1     0     1     1     0     0     1     0     0     1     0     0     0     0     0     1

     0     1     0     0     0     1     0     1     0     1     0     0     1     1     1     0     1     0

     0     1     1     0     1     0     1     0     0     1

Total no of Errors =0

5.3 PERFORMANCE COMPARISION OF MRRC &  STBC SCHEMES
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Figure 1: The BER vs. Eb/N0 performance comparison of four BPSK transmission schemes


The performance of the 1x1 scheme vs. that of the 2x1 scheme shows that exploiting transmit diversity results in a lower bit error rate even though the same number of receive antennas and transmitted power was used. As the Eb/N0 ratio is increased the 2x1 scheme’s bit error rate pulls away from that of the 1x1 scheme. This results in greater and greater transmitted power savings as Eb/N0 increases, or alternatively as the required bit error rate decreases. A similar result is readily seen for the comparison of the 1x2 MRRC scheme to the 2x2 scheme, with the 2x2 outperforming its counterpart.
CONCLUSIONS AND FUTURE WORK  

Here we have simulated  1x1, 2x1, 1x2, and 2x2 schemes(transmitter X receiver system ) in matlab. The 1x1 and 1x2 schemes were uncoded, though the 1x2 system had maximum likelihood detection. The 2x1 and 2x2 were Space-Time Block Coded Systems.


Two assumptions were made during simulation of these systems over the signal to noise ratio range of 0dB to 16dB. The first assumption was that the receiver had full knowledge of the channel, i.e. the fading due to the channel and when the packets began. The second assumption was that the average power at each receive antenna from each transmit antenna was the same. These assumptions were made so that the systems could be readily compared to each other, though in practice the receiver would have no knowledge of the channel.

The results shown were recorded for an uncoded BPSK (1x1), a two-branch MRRC (1x2), and Space-Time Block Codes for one and two transmit antennas. The transmission rate was 1 bit/s/Hz

 
The performance of the 1x1 scheme vs. that of the 2x1 scheme shows that exploiting transmit diversity results in a lower bit error rate even though the same number of receive antennas and transmitted power was used. As the Eb/N0 ratio is increased the 2x1 scheme’s bit error rate pulls away from that of the 1x1 scheme. This results in greater and greater transmitted power savings as Eb/N0 increases, or alternatively as the required bit error rate decreases. A similar result is readily seen for the comparison of the 1x2 MRRC scheme to the 2x2 scheme, with the 2x2 outperforming its counterpart.

The possible future work, which may be carried out, related to this thesis work could be  a system can be designed where  the receiver should not have any knowledge of the channel and the average power at each receive antenna from each transmit antenna should need not to be the same.
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