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Abstract—The two dimensional step discontinuity of the junction of
two different dielectric rectangular waveguides has been solved using
integral equation arising from the field matching of the discrete modes
and the continuous spectrum. Accurate numerical solution has been
obtained using Ritz-Galerkin variational approach with appropriate
sets of expanding functions. The results in the form of scattering
parameters for varying step ratio’s have been depicted graphically.
Computed results from generalized integral expressions are found to
be in excellent agreement with results obtained in one dimensional
case.

Introduction

2 Analysis of Discontinuity
2.1 Scattering Matrix Formulation (TE Case)

2.2 Scattering Formulation for the Single Step Discontinuity,
Magnetic Field Formulation

2.3 Radiation Loss at the Step
2.4 Choice of Basis Functions for TE Case

3 Numerical Results
4 Conclusion

References



886 Asok De, Attimarad, and Sharma

1. INTRODUCTION

Step discontinuities in planar dielectric waveguides are commonly
used in integrated circuits ranging from sub-millimeter to optical
frequencies. The step discontinuity in dielectric slab guides is. in fact,
a basic one for several components such as distributed feedback lasers,
gratings, transformers, antenna feeds, and others. It is thus important
to have accurate and reliable theoretical predictions of the behavior of
this discontinuity. The need for theoretical models is made more acute
by the difficulties of tuning integrated components once they are built.
In addition, theoretical understanding of the scattering properties
of a single step discontinuity provides considerable insight into the role
played by the continuous spectrum in discontinuity problems. Because
of the unboundedness of the structure and the presence of continuous
spectrum, the analysis of the discontinuity is more difficult than that of
closed waveguides. For problems with step discontinuity, some authors
have replaced the unbounded configuration by bounded [1]. Rozzi [2]
presented a rigorous analysis of arbitrarily large steps based on Ritz-
Galerkin approach with appropriate sets of expanding functions. In
an another approach a novel integration formulation [3] is derived for
handling the discontinuity problem. In all these analysis they have used
one dimensional structure with same refractive index distribution for
waveguide I & II (fig. 1). In this paper we have extended the analysis
for two dimensional case based on the rigorous analysis of Rozzi and
also calculated the scattering parameters for different refractive index
ratio.

2. ANALYSIS OF DISCONTINUITY

The diffraction problem at an abrupt discontinuity can be solved by
using a field matching technique, which requires field description on
either side of the discontinuity in terms of modes. The complete field
propagating in an open slab waveguide can be resolved into a finite
set of surface wave modes and a continuum of radiative modes. In the
following we considered a two dimensional dielectric waveguide, excited
by transverse electric (TE) waves with the transverse field components
Ey, & H;. The two dimensional discontinuity structure considered
is shown in Figure 1. Because of the symmetry about z-axis we have
shown only half portion. The refractive index distribution of waveguide
I (2 <0)is n1 & waveguide II (2 > 0) is ng and outside the guide is
ny. Here n? = g1, n3 = g9, n3 = £3 are dielectric constants of dielectric
waveguide I, air, and waveguide II, respectively.
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Figure 1. Two dimensional dielectric waveguide with single step
discontinuity.

2.1. Scattering Matrix Formulation (TE Case)

For a TE mode excitation with variation along the z-y direction, all
five components exist and they are related as shown in Figure 1.

i ad 9
E, = 0 Hm:m(@—f“w ,ue)np (1a)
O 1 9%
E, = — H,=— 1b
4 0z Y jwp 0xdy (1b)
5, 1 82
E, = 22 H,=— 2° (1c)
Oy jwp Oxdy
These field components are related as
1 0 3
Hm('r:yaz) = maEy(lgS‘Z) — u},uEy(xvytz) (ld)

Where w, i, 3 are angular frequency, permeability and propagation
constant respectively. FE,(z,y,z) may be expressed as a modal
expression

By = {Z an(, y) ek, y)+ffb(km B i B, ky)dka.dk‘y} i (wt=02)
k 00
(2)

ap(z,y) & b(ke, k,) are unknown amplitudes of the surface and
continuum modes respectively. In the following we consider the
problem for the even TE case.
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Surface wave modes

The surface mode function ¢g(x,y) has been expressed for a
symmetrical waveguide with dimensions d & d; as

plx,y) = Acoskxcoskiy :x<d, y<d
Acos kde”®D cog kdieW—d) g > d, y>dy (3)

Where A is the normalization constant such that

[ [ ¢ yydady =1 (4)
0 0

Furthermore, the transverse propagation constants and wavenumbers
¥, V1, K, &1 satisfy the eigen value equations

Ktankd = 7y
kitankidy, = m (6)

as well as the conservation of wave numbers with kg free space wave
number

— -+ 4 = niks in air
k?+ K1+ 682 = n?k2 in the slab waveguide (7)

Continuous modes

The normalized mode functions pertaining to the continuum are
given as

21 21
qﬁ(m,y):\/'cosqm/——cosqu in the slab (z < d, y < d;)
T e Te

2
\/ - coslkz(x — d) + a]y/ = coslky(y — d1) + 1] in the air (8)
w T
Where

2

2
ga= \/1 + Z—g sin?(qd) c1=,|1+ % sin?(q1d;) (9)
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tana = 2 tangd tana; = gL tan gy d;
Kiss R

normalized or effective frequencies are
V= (n% — n%)k‘od & " = (?’L:l') = ?’?%)k‘odl
The transverse wave numbers g, g1, k, and k, satisfy the relations
2, 2
f2 = nikg — ¢° qf = naky — ki — k (10)

Clearly, for 0 < k2+k2 < n3kZ, B is real and positive and the continuum
modes in this range propagate to give the radiation modes, otherwise /3
1s negative and imaginary, and modes are evanescent, thus representing
the reactive part of the continuum.

Surface wave modes

The surface mode function @g(z,y) has been expressed for a
symmetrical waveguide with dimensions dy & ds as

o(z,y) = Ay coskazcoskgy 1z <do, y < ds
Aj cos Kodee?(®79%) cog kadse W) g > dy y > ds (11)

Where A, is the normalization constant such that

o ole o
//wz(mvy)dwdyil (12)
0 0
A= | —2 (13
dods +
Y273

Furthermore, the transverse propagation constants and wavenumbers
Y2,73, K2, k3 satisfy the eigen value equations

Ko tan kods = Y2

kytankgds = 3 (14)

as well as the conservation of wave numbers

—¥2 -2+ 87 = n2k2 inair

K3+ K3+ B2 = n2kl in the slab waveguide (15)
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Continuous modes

The normalized mode functions pertaining to the continuum are
given as

2 il 21
P(z,y) = 4/ —— cos gaz\/ —— cos g3y
T miE3

€2
in the slab (z < da, y < d3)
2 2
\/jcos[km(x —da) + ag]\/j(:os[ky(y — d3)+ag] in the air
T T
(16)
Where

2 UQ .
ca=4/1+ E sin (Qde) c3= |1+ k—; 81112(q;3d3) (17)

Yy

tan oo = gﬁ tan gode  tanag = 2—3 tan gsds

normalized or effective frequencies are
vo = 1/ (n% — nd)kods & v3 = (n% — n2)kods
The transverse wave numbers g, g3, k and k, satisfy the relations
2 _ 2,9 2 W)
32 =n3k — g3 — g5 = n3ki — k2 — k, (18)

Clearly, for 0 < k2 + k‘2 < n3k3, /1 is real and positive and the
continuum modes in this range propagate to give the radiation modes,
otherwise 3; is negative and imaginary, and modes are evanescent, thus
representing the reactive part of the continuum.

2.2. Scattering Formulation for the Single Step
Discontinuity, Magnetic Field Formulation

Let us consider a steady-state and source free problem, with two
different semi-infinite two dimensional waveguides forming a step
discontinuity at z = 0 (Fig. 1). The incident field considered here
will be composed of surface waves only. For now, let us assume that
there are n; surface modes which are capable of propagating in guide
I (left), and n, surface modes which can propagate in guide II (right),
with the total number of propagating surface waves given by

Ny = Nj + Ny (19)
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Continuity of electric field £, (z,y, 2) and the magnetic field H,(x.,y, z)
at z = 0 is expressed as

Ey(z,y,0)

T

Z (Vi + Vi ou(z, +// VI (e, k)0 (3 Koo s by ) dbiadlly
= 0 0

.

= Y (Vi+V)ek(x.y +/]V”(f‘cmky)(b”(:z:;kx,y;ky)dkmdky
0 0

A",:nj—i—l
(20)
H, (:f y,0)
7 VI (ky, k) (x5 ks, y;
:Z (Vi VDou(a, u)+j/ ( ;}ﬁ(m L.

g

VI(ky, k)™ (i k)
== e V = 2 ﬂ"dk:'[
_Ern Jr: : 5 ( Vk—l- k )ka L, y) '/[ fo(k;,-;, ky) d;"-l Y

(21)

Since a scattering formulation is sought, the incident V; and reflected
Vi surface wave amplitudes are made explicit where as V/(k,, k, )

and V! (k,, k,) represent the amplitudes of the (scattered) continuum
fields in cru1de I and II, respectively. It is interesting to note that
matching of magnetic fields H,(z,y,2) at 2 = 0 is equivalent to
matching the gradient of electric fields Ey(z,y,2) at z = 0. By using
orthogonality of the modal functions in (21), one may express the
unknown modal amplitudes in terms of the magnetic field H,(z. v, 0)
as

Vi=Vi+ ﬁkzkf_/@k(ﬂ” y)Hy(z,y,0)dedy (22)

VH (K, k) ‘/fqﬁff(m;kz,y;ky)z(km,ky)Hx(:B,y,O)d:r;dy (23)
00

where

s =1 k<nj
=-1 k>n; (24)
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Upon substituting the above expressions into Eq. (20) and re-
arranging, one obtains

oo OO
Zékaw(‘r Y) f[Z x5, sy ) e (o', o Yo' dyf (25)
k=1 0 0
where
1 i
Z(z,y,%',y) Zzw;c(r y)er(2',y)

k 1

! 7“” Z! (ke k)@ (s Ko, i k)0 (@' KR+ ] Qo
+20 0/ ZM (ko ky) ' (5 ks s Ry )T (& B 5 By) |0 0
The summation on the left hand side of Eq. (25) represents the total
incident electric field 1mp1ng1ng on either side of the discontinuity.
The term Z(z,y,z’,y') is a Green’s function witch may be viewed
as a “impedance” of the step discontinuity, [G(z,z’) represents the
impedance at some point x caused by the unit impulse source at
the point z'] then the scattered field due to magnetic field H,(z',y’)
over entire range 0 to infinity is given by above formula. The linear
relationship between scattered (reflected and transmitted) and incident
modal amplitudes in Eq. (22) suggests that we may obtain a scattering
matrix formulation of the form

V= Syt (27)

Let first consider the case of single surface wave incident on the
discontinuity. Since the amplitude of the incident surface mode is
arbitrary, it is possible to set

Vi=1 Vigy=

and Eq. (27) reduces to
Vi = Sk (28)

Let the corresponding scattered magnetic field be hj(x,y) then
according to (25) we have

oo o0
sVies@ww) = [ [ 2@y v)hi@ y)aday  (29)
0 0

In the above equation, hj;(z,y) is the unknown function to be
determined by discretization of Eq. (29) by means of a Ritz-Galerkin
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procedure. In this procedure an orthonormal basis functions set,
f(z,y), is introduced in the interval 0 < =z, y < infinity and the
magnetic field is represented as

hi(@,y) = > Anjfulz,y) (30)
n=>0

By using the above Equation in (29) and testing the latter eq. With
the weight functions fi(x,y), we obtain

o0 o0

%Wf/hmw%mwm@

0
5,55

Am/// Te(z,y)Z(z,y, 2", y) fu(x, y)dedyda' dy’ (31)
5 T S
Je(@, y)pi(z,y) (32)

Zk‘n =

2
I
3
0\8 9\8 ([_L‘M?;

:
[

/ f Fo(@0) 2 (3,9, &, ) fu (o, y) dacdyd'dy' - (33)
0O 0

-

And of the vectors

Q1 A1j
Q2; A2;
Qi=|1 | Hg=| (34)
an /\nj
can be written in matrix form as
Aj = SjZﬁle (35)
The scattering matrix is obtained from (22), (28), (35) as
oo CO oo
Swi = On+onze [ [ on@,0) Y Ansfala, y)drdy
00 m=il
= O+ sksjzQL Z71Q; (36)

where dy; is the kronecker delta and Q% denotes transposition of Q
matrix.
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Giving the transformation ratio

1
V %k

where 2, is the characteristic impedance of the k-th surface mode. This

means that the new incident (V') and reflected (V") wave amplitudes
are related to the old values by the linear transformation.

1=

(38)

P = v (39)
T

i E N A - (40)
T

Which by using V7 = SV implies

V'z: = 8§23V (41)
V' = Z:8Z3V° (42)

The normalized scattering matrix is obtained by inserting above
equations into V™ = SV* Thus giving

K=

5 = Z318% (43)
sl By (44)

or in the form of (36) as
Ek:j = 63433 -+ SkSi /ZijQ;';Z_le (45)

which now displays the symmetry required by the reciprocity of the
junction.

Owing to the orthogonality of modes, the scattering formulation
between continuous modes and surface modes can be easily derived

S ki, = Sk 252(Kl, k) QT 271 QKL keyy) (46)

2.3. Radiation Loss at the Step

The radiation loss at the step is a consequence of excitation of the
radiative part of the continuum modes from the incident guided
field, i.e., from the surface mode. However, unlike in closed wave
guides, radiation modes are also propagating causing interaction with
neighboring circuit elements. When this is the case, radiation modes
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Figure 2. Generalized 2n-port scattering network.
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Figure 3. Normalized scattering network with embedded ideal
transformers.

The above equation specifies the scattering coefficient of the
incident jt" surface mode to the k' surface mode. In the Ritz-Galarkin
approach, the infinite column matrices @ and @, and square matrix
7 are replaced by their finite truncations (0 < n < N)

By the careful choice of expanding functions, the oscillations in the
solution will decrease rapidly with increasing order and convergence is
quickly achieved. The step discontinuity is therefore represented by a
generalized (n; + n,) port scattering network as shown in the Fig. 2.

However, the step discontinuity is a reciprocal junction and its
scattering matrix ought to be symmetrical this will only be so if all
ports are terminated by the same matching impedance and these are
all normalized to unity. Hence, the normalized scattering matrix is
obtained by introducing ideal transformers connected at each ports as
shown in Figure 3. Such that

o2

> =1=n’2 (37)
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must also be considered accessible. The difference in power between the
incident surface mode(s) and the scattered surface mode(s) provides
the amount of radiation loss. Since the power loss to radiation is given

by
T
Prad =1- H ; %: Sﬂlws;rw (47)

Where n is the total number of incident surface waves. For loss less
junction or step the P,,4 is zero. If the junction or step is lossy then
Frpa = 0.

2.4. Choice of Basis Functions for TE Case

Most of the energy of the field in the waveguides is carried by surface
waves. Modal functions as given by Eq. (3), shows that the surface
waves have a cosine shape in the guide and an exponential decay
outside. This suggests a possible appropriate choice of the expanding
functions for symmetric fields as: Cosine-Laguerre (7) hybrid set
Cosine-Laguerre hybrid set for two dimensional case

e : my
Cm(z,y) =4/ % cos m;rq:1 KZ—T COS le

where ¢, = 1 for m = 0 and e,, = 2 for m # 0, for the region
0 <z <d,0<y<d (inside the slab)

1 x—d\ _#=a 1 y — dy _y—dy
L«lﬂ‘*d, *d :ﬁ—LTL TO L 2yo
n(2 y —di) = ( . ) e ? —Ln ( o ) e 2
(49)

for the region = > d, y > d; (outside the slab).
L, ("“*d> L, (%‘L‘) are the general Laguerre polynomials with an

zTo
arbitrary scale variable zo & yo. The above functions are orthogonal

in their intervals of definition so that

(48)

d dy

/ Cul; )G, g)daedy = b (50)
0 0

f_/Lm(I—d7’y—d1)Ln(:C—d,y-d1) :5TTL72.

d dy

However, in order to compute Zx,, overlapping integrals between
the basis functions and the modal fields must be evaluated. The
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overlapping integral with surface modes inside the slab is given by

d di d dy

Qi = fffm (z,y)p(z,y)dedy = f /ACO:: K cos k1ydrdy

0
= AVend 1" S }A‘/—dl Sl [ et
1)

while the overlapping integral in air is given by

Qm = /f e(z,y)Lm(z — d,y — di1)dzdy
d d
= Ay/zocos kd(qro — 0.5)™(qzo +0.5) ™!
Av/zocos k1di (q1ro — 0.5)" (q1zo + 0.5) "™t (52)

The overlapping integrals with continuum modes inside the slab are
given by

d d
k'a:ak;y f c;b(m;kw,y;ky)cm(m,y)da:dy
0 0
_ [2em (l)m[ qd sin qd } 2w (—l)m[ qldlsinqldl]
Vord ¢ gd)2—(mm)2\ nd1 e1 [(qud1)?2—(mm)?

(53)

(B By) /[qsa:km,yk (@ — d,y — di)dady
d di

1 5 5 m ) il —2m—1
271*3:0( nm (1 + kizxo ) el (5 —jkxaro)
) T —2m—1 1 1 : m
+Bija (2 +j}€1-&,“0) } Qﬂyo(_l)m(i —I—k‘f,yoz)
) 1 —2m—1 ) 1 —2m—1
[8301 (5 = jkyyo) Jop 04 (§+jk'yyo) } (54)

In above equation (54) j represents the imaginary.
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Figure 4. Scattering parameters |S11], |S22], |S12], for varying step
ratio d/dy with different values of di/d3 step ratio. The geometric
dimensions are kody = 1, kodz = 1, £ = g4 = b, g5 = L.

3. NUMERICAL RESULTS

It is now interesting to observe the scattering behavior of the step
discontinuity. All above formulas are valid for the waveguide IT with
dimensions do & d3 in z and y direction respectively. Figure 4. is
illustrates the variation of scattering parameters for varying width d
and d; of the smaller guide. Since the example refers to a slab with
fairly high refractive index, radiation losses are low for small steps.
The numerically calculated scattering parameters using math-CAD
software are well matching with the results calculated by Rozzi (2)
for dy = d3 and e; = e3 indicating the one dimensional case.

In case of two dimensional the variation in the scattering
parameters as compared to the one dimension for different step ratio’s
is due to the variation in the impedance. The variation in the d as
well as d; both in z and y direction makes the changes in the 3
value inturn the impedance. This is because 3 is related with Z as
& = %‘i From the graph it is obvious the scattering parameters
have more value as compared to one dimension. This is because of
the discontinuity in both the direction increases the magnitude of the
scattering parameters. The transmission coeflicient also decreases for
increasing step size, as energy leaks out in the form of radiation.
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Table 1. Scattering parameters for fixed step ratio’s d/ds = dy/d3 =
0.6 with €1 = 5, g2 = 1 and different values of €3 of waveguide 1I for
the structure shown in Fig. 1.

£3 |S1] | S22 | S12]
2 0.17 0.696 2.45
3 0.16 0.688 1.85
4 0.15 0.502 1.45
5 0.14 0.256 1.25

It is also apparent that more power is radiated (calculated from
Equation. (47)) for waves incident from left i.e. from the thinner guide.
The physical interpretation is that, the guided mode being closer to
the dielectric cutoff, less reflected power is captured by the reflected
guided wave and lost through backward radiation. In addition, it is
interesting to note that S;; also remains fairly small since for small
values of d & d; the surface waves is no longer guided.

Above table shows the variation of scattering parameters for
different values of £3. It is observed that as the ratio of refractive
index for waveguide I & II is small, there will be less scattering of
wave at the step discontinuity.

4. CONCLUSION

In this paper a rigorous analysis of discontinuity in two dimensional
dielectric waveguide has been presented. The validity of the generalized
integral expressions has been tested for the one dimensional case. The
variation in curves is due to the discontinuity in two dimension as
compared to one dimension. Further the analysis is extended for
different refractive indices n1 & ns for the structure shown in Fig. 1
and we can conclude that there will be a reduction in the scattering
parameters values for decrement in refractive index ratio at the step
discontinuity. This fact is particularly useful in the optical frequency
region where the refractive-index variation is usually small.
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