A MUTUALLY EXCLUSIVE APPROACH FOR MANAGING MOVABLE DATA OBJECTS
A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF

MASTER OF ENGINEERING

(COMPUTER TECHNOLOGY & APPLICATIONS)

BY

RUCHIKA BALA

College Roll No. 20/CTA/03

Delhi University Roll No. 9004

[image: image1.jpg]

DEPARTMENT OF COMPUTER ENGINEERING

DELHI COLLEGE OF ENGINEERING, NEW DELHI-110042

(UNIVERSITY OF DELHI)

JULY-2006
CERTIFICATE

This is to certify that the dissertation entitled “A Mutually Exclusive Approach for Managing Movable Data Objects” submitted by Ruchika Bala in the partial fulfillment of the requirement for the award of degree of Master of Engineering in Computer Technology and Applications, Delhi College of Engineering is an account of her work carried out under my guidance and supervision.
The work embodies in this dissertation has not been submitted for the award of any other degree to the best of my knowledge.

Dr. Goldie Gabrani

Head of Department

Department of Computer Engineering

Delhi College of Engineering

Delhi

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extent my heartiest felt gratitude to everybody who helped me throughout the course of this project.

I would like to express my heartiest felt regards to Dr. Goldie Gabrani, Head of Department (CTA) for the constant motivation and support during the project. It is my privilege and owner to have worked under her supervision. Her invaluable guidance and timely discussions in every stage of this thesis really helped me in materializing this project. It is indeed difficult to put her contribution in few words.

I would also like to take this opportunity to present my sincere regards to my teachers’ viz. Dr S. K. Saxena, Mr. Rajeev Kumar and Mrs. Rajni Jindal for their support and encouragement.

I am thankful to my friends and classmates for their unconditional support and motivation during this project.

Ruchika Bala

M.E. (Computer Technology & Applications)

College Roll No. 20/CTA/03

Delhi University Roll No. 9004

ABSTRACT
An operating system is a program that manages the resources of a computer system and provides users with a friendly interface to the system. A distributed system extends the concepts of the resource management and user friendly interface for shared memory computers a step further, encompassing a distributed computing systems consisting of several autonomous computers connected by a communication network.

The problem of mutual exclusion frequently arises in distributed systems, whenever concurrent access to shared resources by several nodes is involved. In the mutual exclusion problem, concurrent access to a shared resource by several uncoordinated user-requests is serialized to secure the integrity of the shared resources.

In an environment where movable data objects are required, it is necessary to develop a method to manage the location of these objects. Here an algorithm is proposed that manages the location of multiple movable resources in distributed system whose sites communicates only by message passing and do not share memory. This algorithm maintains the integrity of shared resources by satisfying the properties – safety, liveness, fairness.

This algorithm uses data structure local information structure at each site to record the partial information about the various data objects and their location. For the latest information, movCount counters are also associated with each movable data object. Different states are also associated with all the sites indicating whether they are having the data object, executing on it or not holding the data object to maintain the mutual exclusion in a system with multiple movable data objects where each site is capable of handling multiple requests related to different data objects simultaneously.

	CONTENTS

1 Introduction………………………………………………………………………….
	1

	
	1.1
	Distributed Systems……………………………………………………...
	1

	
	
	1.1.1

1.1.2
	Distributed System Architecture………………………………
Advantages of Distributed Systems……………………………
	2
3

	
	1.2
	Concurrent programming……………………………………………….
	3

	
	1.3
	Inter process Architecture………………………………………………
	6

	
	
	1.3.1

1.3.2
	Structure of message passing ………………………………...
Naming Conventions…………………………………………..
	6
7

	
	1.4
	Mutual Exclusion Mechanisms…………………………………………
	9
9
9
9

	
	
	1.4.1

1.4.2

1.4.3
	Polling or Busy Waiting……………………………………….
Disabling Interrupts…………………………………………
Semaphores…………………………………………………….
	

	
	1.5
	Communication and Synchronization…………………………………
	11

	
	1.6
	Standard Synchronization Tasks………………………………………
	12

13

13

14

	
	
	1.6.1

1.6.2

1.6.3
	Dining philosopher problem…………………………………..
Producer-Consumer problem…………………………………
Reader-Writer problem………………………………………..
	

	
	1.7
	Dissertation organization………………………………………………..
	16

	2 Distributed Mutual Exclusion………………………………………………………
	17

	
	2.1
	Requirements of Mutual Exclusion Algorithm…………………………
	18

	
	2.2
	Measuring Performance of Mutual Exclusion Algorithm……………
	18

	
	2.3
	Central Approach to Distributed Mutual Exclusion …………………
	19

	
	2.4
	Types of Distributed Mutual Exclusion Algorithm…………………….
	20

	
	
	2.4.1
	Non Token Based Algorithm………………………………….
	20

	
	
	
	2.4.1.1

2.4.1.2
2.4.1.3
	Lamport’s Algorithm………………………………

Ricart Agarwala’s Algorithm……………………...

Maekawa’s Algorithm
	21

22

22

	
	
	2.4.2
	Token Based Algorithm……………………………………….
	24
25
26
28
29
31

	
	
	
	2.4.2.1

2.4.2.2

2.4.2.3

2.4.2.4

2.4.2.5
	Suzuki Kasami’s Algorithm……………………….
Singhal’s Heuristic Algorithm…………………….
Raymond’s Algorithm……………………………..
Naimi Trehel’s Algorithm…………………………
Helary’s Algorithm………………………………..
	

	3 Network Fundamentals……………………………………………………………...
	33

	
	3.1
	Broadband Networks….…………………………………………………
	33
33
34
35

	
	
	3.1.1

3.1.2

3.1.3
	Single network for multiple services………………………….
Virtual circuit Switching………………………………………
Routing in ATM Networks…………………………………….
	

	
	3.2
	Location Management…………………………………………………..
	36

	4 Proposed Model……………………………………………………………………...
	43

	
	4.1
	A mutually exclusive approach for managing movable data…………
	43

	
	4.2
	System behavior………………………………………………………….
	43

43

44

44

	
	
	4.2.1

4.2.2

4.2.3
	System Description…………………………………………….
Performance measures.………………………………………..
Network Structure.…………………………………………….
	

	
	4.3
	Data Structures…………………………………………………………..
	45

	
	4.4
	Message declaration……………………………………………………..
	47

	
	4.5
	Initialization……………………………………………………………...
	48

	
	4.6
	The Algorithm…………………………………………………………...
	50

	
	4.7
	Detailed description of algorithm….……………………………………
	52

	
	4.8
	Correctness of the algorithm…..………………………………………
	58

	
	
	4.8.1

4.8.2

4.8.3
	No mutual exclusion…….…………………………………….
Starvation freedom……….……………………………………
Deadlock Avoidance…….……………………………………..
	58

58

58

	5
	Performance Analysis…………………….…………………………………….
	60

60

62

	
	5.1

5.2
	Total Message Count…………………………………………………….
Total Time Cost………………………………………………………….
	

	6 Conclusions and Future Work…………….…………………………………..….
	66

	References……………………………….……………………………………………..
	68

CHAPTER 1

 INTRODUCTION

1.1 Distributed Systems

A distributed system is a collection of autonomous computers or sites, connected through a network and distributed operating system software, which enables computers to coordinate their activities and to share the objects of the system, so that users perceive the system as a single, integrated computing facility. Interaction is achieved using a computer network [1-4]. These sites do not have global memory, so they communicate by exchanging messages between them. Any site has only partial or incomplete view of the total system. No system wide global clocks exist, that is the ordering of events at any specific site is only temporal. These two characteristics make distributed algorithms much more complicated than those of traditional centralized systems. Another thing that makes these algorithms more difficult is that the algorithm should be resilient in nature, which is they should work in several failure situations like crashing, network partitions etc.

In distributed system, the users access remote objects in the same sense as they do local objects. Data and process migration from one site to another is under the control of the distributed system [2].

Distributed means the data are distributed if it must exist in multiple computers for admin and ownership reasons, Computation is distributed if applications taking advantage of parallelism and multiple processors and users are also distributed if users communicate and interact via application (shared objects).

All the users in this system can access services and run applications over a heterogeneous collection of computers and networks. Heterogeneous system may have sites with different operating system, different networks, hardware, programming languages and databases. For example, The Internet consists of many different types of networks (Ethernet, Token Ring, ATM etc) their differences are masked by the fact that all of the computers attached to them use the TCP/IP suite of protocols to communicate with each other. In computer hardware - Data types, eg. Integers, are represented in different ways on different hardware (Byte ordering - Big endian, Little endian ; Size - 16 bits, 32 bits, 64 bits). These differences must be dealt with if messages are to be exchanged between programs running on different hardware. UNIX and Windows 2000 provide different APIs to interface to the TCP/IP Suite of protocols. Different programming languages and Databases use different representations for characters and data structures - arrays and records. These differences must be resolved [1].

Distributing a system over several processing sites can make things happen concurrently, can replicate functionality, users and other actors in different locations can readily be served, not all the functional sites need be up at once and diverse systems may be connected. But some issues are also reported like if things happen concurrently then interference and deadlocks may occur. Different sites may get out of synchronization. Communication between the sites may be unreliable, slow, and erratic. The execution environments running the distributed parts may differ (different languages, operating systems, performance, objects available).

Ordering of Requests: The ordering of events in a distributed system is a key point to ensure control in distributed mutual exclusion algorithms [5-6]. Such algorithms need a rule that provides a total order of requests. Most algorithm use the timestamp method proposed be Lamport to obtain a total order of request. Each process i has n integral value that represent its logical clock. Each time i send a message, it increment by one its logical clock and the new value of the later is attached to the message. Each time i receive a message from process j, it updates its logical clock according to the following rules:

If timestampi < timestampj then timestampi = timestampj + 1

This rule induces an ordering on the communication events seen it implies that the event of the transmission of a message occurs before its reception [5]. Any way, this rule gives only a particular order of events seems more than one message may have the same timestamp in order to obtain total order, we say that a message if i precedes a message of j iff :

(timestampi < timestampj) || ((timestampi == timestampj) && (i < j))

1.1.1 Distributed system Architecture

In a distributed system all components are not shared by all users and all objects may not be accessible. Here software runs in concurrent processes on different processors. There are multiple points of control and multiple points of failure (but more fault tolerant).

[image: image2]
1.1.2 Advantages of Distributed systems

There are many advantages of distributed systems over traditional time-sharing systems

· much better price/performance ratio

· resource sharing

· enhanced performance: tasks can be executed concurrently

· higher reliability: data replication

· easier modular expansion: hardware and software resources can be easily added without replacing existing resources

1.2 Concurrent Programming

A sequential program has a single thread of control and its execution is called a process. A concurrent program has multiple threads of control and they may be executed as parallel processes. The operating system allocates all objects that are needed for the process (a running program). A thread is a dispatching unit within a process. That means that a process can have a number of threads running within the scope of that particular process.
Process: A process is a program whose execution has started but is not yet complete. A process can have any of the following three basic states:

Running: The processor is executing the instructions of the corresponding process.

Ready: A Process is ready to be executed but process is not available.

Blocked: A process is waiting for an event to occur. eg. an I/O operation waiting to be completed, memory to be made available, a message to be received etc.

Thread: It is a basic unit of CPU utilization and consists of a program counter, a register set and a stack space. It shares with its peer threads its code section, data section and operating–system objects such as open files and signals, collectively known as tasks.

[image: image3]
This basic property leads us to a number of conclusions:

Communication between threads created within a single process is simple because the threads share all the variables. Thus, a value produced by one thread is immediately available for all the other threads. Threads take less time to start, stop or swap than the processes, because they use the address space already allocated for the current process.

Concurrent programs are governed by three key principles. These are:

Safety:

This principle states "nothing bad can happen". Safety in general means that only one thread can access the data at a time, and ensures that the data remain in a consistent state during and after the operation. For ex, Suppose, functions "A" and "B" below run concurrently. What is a resultant value of "x"?

x = 3 if operations x = x + 1 and x = x + 2 are atomic, i.e. cannot be interrupted. x = 1,2 or 3 if operations x = x + 1 and x = x + 2 can interrupt one another. If we read/modify/write a file and allow operations to interrupt one another, the file might be easily corrupted. Safety is ensured by implementing mutual exclusion and condition synchronization when operating on shared data.

Mutual exclusion means that that only one thread can access the data at a time, and ensures that the data remain in a consistent state during and after the operation (atomic update). It is the assurance that only one process is given access to a shared object at any one time. Condition synchronization means that operations may be delayed if shared objects are in the wrong state (e.g., read from empty buffer).

Livenes :

This principle states that "eventually, something good happens". Mutual exclusion solves many safety issues, but gives rise to other problems. A deadlock occurs when a set of processes in a system are blocked waiting on requirements that can never be satisfied. A system makes progress towards the execution of the one critical section, i.e. a deadlock situation may never occur.

Fairness:

Starvation occurs when a process waits for a object that continually becomes available but is never assigned to that process because of priority or design flaw in the scheduler. Each request is eventually satisfied, i.e. no starvation occurs. The algorithm should not be biased towards any particular site.

1.3 Inter-Process Communication (IPC)

IPC provides a mechanism to allow processes to communicate [4] and to synchronize their actions. Inter process communication is best provided by a message system. Message system can be defined in many different ways.

1.3.1 Structure of Message Passing

The function of the message system is to allow processes to communicate with each other without the need to resort to shared variables. An IPC facility provides at least two operations: send (message) and receive (message). Different operating systems have different system calls for their execution. Messages sent by a process can be of either fixed or variable size. If only fixed sized message can be sent, the physical implementation is straight forward. This restriction, however, makes the task of programming more difficult. On the other hand, variable sized messages require a more complex physical implementation, but the programming task becomes simpler.

If process P and Q communicate, they must send messages to receive messages from each other; a communication link must exist between them. This link can be implemented in a variety of ways. We are concerned here with the link’s physical implementation, but rather with the issues of the logical implementation, such as its logical properties. Some of the basic implementation questions are these:

· How are links established?

· Can a link be associated with more than two processes?

· How many links can be there be between every pair of processes?

· What is the capacity of the link? That is, does the link have some buffer space? If it does, how much?

· Is a link unidirectional or bidirectional? That is, if a link exists between P and Q can messages flow in one direction or in both directions.

In this dissertation, we have considered ATM network, so all these issues will be explained in the chapter 3 while discussing networking fundamentals and in chapter 4 while discussing the system behavior.

1.3.2 Naming Conventions

Processes that want to communicate must have a way to refer to each other. They can use either direct communication or indirect communication

1 Direct Communication

In the direct communication discipline, each process that wants to communicate must explicitly name the recipient or sender of the communication. In this scheme send and receive primitives are defined as follows:

Send (P, message) send a message to process P

Receive (Q, message) receive a message from process Q

The communication link in this scheme has the following properties:

· A link is established automatically between every pair of processes that want to communicate. The processes need to know only each other identity to communicate.

· A link is associated with exactly two processes.

· Between each pair of processes, there exists exactly one link.

· The link may be unidirectional, but is usually bidirectional.

2 Indirect Communications

With indirect communication, the messages are sent to and received from mailboxes. A mailbox can be viewed abstractly as an object into which messages can be placed by processes and from which messages can be removed. Each mailbox has a unique identification. In this scheme, a process can communicate with some other process via a number of different mailboxes. Two processes can communicate only if the processes have a shared mailbox. The send and receive primitives are defined as follows:

Send (A, message) send a message to mailbox A.

Receive (A, message) receive a message from mailbox A.

The communication link in this scheme has the following properties:

· A link is established automatically between every pair of processes that want to communicate only if they have shared mailbox.

· A link may be associated with more than two processes.

· Between each pair of processes, there may be number of different links, each link corresponding to one mailbox.

· The link may be either unidirectional or bidirectional.

When concurrent processes (or threads) interact through a shared variable, the integrity of the variable may be violated if access to the variable is not coordinated. Examples of integrity violations are (1) the variable does not record all the changes (2) a process may read inconsistent values (3) the final values of the variable may be inconsistent.

A solution to this problem requires that the processes are synchronized such that only one process can access the variable at any one time. This is why this problem is widely referred as problem of Mutual Exclusion. A critical section is a code segment in a process in which a shared object is accessed. A solution to this problem must satisfy the following requirements.

Mutual exclusion: Only one process can execute its critical section at any one time.

Progress: When no process is executing in its critical section, any process that requests entry to its critical section must be permitted to enter without delay.

Deadlock Freedom: When two or more processes compete to enter their respective critical sections, the selection cannot be postponed indefinitely.

Starvation Freedom: No process can prevent any other process from entering its critical section indefinitely.
1.4 Mutual Exclusion Mechanism

There are many ways to ensure mutual exclusion in a system. eg polling and buy waiting, disabling interrupts, test and set, semaphores, monitors etc

1.4.1 Polling or Busy waiting

In this mechanism, a process continuously tests the value of a status variable to find if the shared object is free. If at nay time it can not enter its critical section. The status variable records the status of shared object. The main problems with this approach are the wastage of CPU cycles and memory access bandwidth.

1.4.2 Disabling Interrupts

Here, process disables interrupts before entering the critical section and enables interrupts immediately after exiting the critical section. Mutual exclusion is achieved because a process is not interrupted during the execution of its critical section. The problems with this method are that it is applicable only to uni-processor systems and important I/O events are mishandled.

1.4.3 Semaphores

A semaphore is an integer variable S [4] and an associated group of waiting processes for which only two operations may be performed:

Types of semaphores:

a) Binary Semaphore

it is the most simplest kind of semaphore which is used to control access to a single object. It is essentially the same as a mutex. It is always initialized with the value 1. When the object is in use, the accessing thread calls P(S) to decrease this value to 0, and restores it to 1 with the V operation when the object is ready to be freed

b) Counting Semaphore

We have a thread A that needs information from two databases, before it can proceed. Access to these databases is controlled by two separate threads B, C. These two threads have a message-processing loop; anybody desirous of their service needs to post a message into their message queue. Thread A initializes a semaphore S with init(S,-1). A then posts a data request, including a pointer to the semaphore S, to both B and C. Then A calls P(S), which blocks. The other two threads meanwhile take their time obtaining the information; when each thread finishes obtaining the information, it calls V(S) on the passed semaphore. Only after both threads have completed will the semaphore's value be positive and A be able to continue. A semaphore used in this way is called a "counting semaphore.

There are some weakness of semaphores : difficult to verify program correctness, difficult to implement, omission of an operation may lead to deadlock, need to know which other processes are using semaphore.

1.5 Communication and Synchronization

Communication: how do processes exchange information?

Synchronization: how do processes maintain consistency?

There are different Communication & Synchronization Techniques that are roughly equivalent in expressive power and can be used to implement each other.

Processes atomically set and test shared variables. Condition synchronization is easy to implement: to signal a condition, a process sets a shared variable to wait for a condition, a process repeatedly tests the variable.

Procedure Oriented (Busy-Waiting, Semaphores, Monitors, Path Expressions) Message Oriented (Message Passing) busy-waiting is primitive but effective.
A monitor is a single process that encapsulates objects and provides Lock/Unlock operations that manipulate them.

Message transfer may be:

Asynchronous:

 Send operations never block.
Buffered:

Sender may block if the buffer is full.

Synchronous:
Sender and receiver must both be ready. The synchronous message transfer method is also known as Rendezvous.

1.6 Standard Synchronization Tasks

Process is a calculation, application of a finite set of operations to the finite set of data. Two processes are considered to be parallel, if execution of the first operation of one process begins before the termination of the other process. Objects used by several processes are called shared objects. Critical object is a shared object which simultaneously can be used no more than by one process. Interconnected processes are processes using common shared object or exchanging by information. To synchronize processes means to formulate restrictions superimposed on the order of process performing. These restrictions are assigned by means of rules of synchronizing, which are described by means of mechanisms of synchronizing (primitives).

Standard synchronization tasks are the following:

· dining philosophers

· producers - consumers

· readers - writers

1.6.1 Dining philosophers Problem

In the Dining philosophers’ problem, four philosophers spend their time eating and thinking. They are sitting around a dinining table with a large bowl of rice in the center of the table. There are four plates at the table and four forks set between the plates. Eating the rice requires the use of two forks which the philosophers pick up one at a time. The philosophers never speak to each other which creates a dangerous possibility of deadlock in which every philosopher holds a left fork and waits perpetually for a right fork (or vice versa).

Originally used as a means of illustrating the problem of deadlock, this system reaches deadlock when there is a 'cycle of ungranted requests'. In this case philosopher P1 waits for the fork grabbed by philosopher P2 who is waiting for the fork of philosopher P3 and so forth, making a circular chain.

Starvation might also occur independently of deadlock if a philosopher is unable to acquire both forks due to a timing issue. For example there might be a rule that the philosophers put down a fork after waiting five minutes for the other fork to become available and wait a further five minutes before making their next attempt. This scheme eliminates the possibility of deadlock (the system can always advance to a different state) but still suffers from the problem of livelock. If all four philosophers appear in the dining room at exactly the same time and each picks up their left fork at the same time the philosophers will wait five minutes until they all put their forks down and then wait a further five minutes before they all pick them up again.

[image: image4.wmf]

Р

1

Р

3

Р

2

Р

4

в

3

в

1

в

2

в

4

Р

1

, P

2

, P

3

, P

4

–

 philosophers

в

1

, в

2

, в

3

, в

4

–

 forks

Two forks are needed to eat

Figure 1.6.1 (a)
One solution (Dijkstra's Solution) is to order the forks and require the philosophers to pick the forks up in increasing order. In this solution the philosophers are labeled P1, P2, P3, and P4 and the forks are likewise labeled E1, E2, E3, and E4. The first philosopher (P1) will pick up the first fork (E1) before he is allowed to pick up the second fork (E2). Philosophers P2 through P3 will behave in a similar fashion, picking up the fork Ex before picking up fork Ex+1. Philosopher P4 however picks up fork E1 before picking up fork E4. This change in behavior for P4 creates an asymmetry that prevents deadlock

1.6.2 Producers – consumers Problem

The producer-consumer problem illustrates the need for synchronization in systems where many processes share a object. In the problem, two processes share a fixed-size buffer. One process produces information and puts it in the buffer, while the other process consumes information from the buffer. These processes do not take turns accessing the buffer, they both work concurrently. Herein lies the problem. What happens if the producer tries to put an item into a full buffer? What happens if the consumer tries to take an item from an empty buffer?
In order to synchronize these processes, block the producer when the buffer is full, and block the consumer when the buffer is empty
1.6.3 Reader-Writer Problem

Readers-writers task is the following: there is a shared object - a region of the memory, to which it is required access for processes of two types: processes-readers which may gain access to the object simultaneously, they read information (not-damaging reading); processes-writers mutually exclude each other and readers. Two variants of this task are known:

1) Reader requested access to the object, must get it as quickly as possible.

2) Reader requested access to the object, must get it as quickly as possible, if there are no requests from writers. Writer, requiring access to the object, must get it as quickly as possible, but after servicing the readers which have come to object before the first writer. It deals with situations in which many threads must access the same shared memory at one time, some reading and some writing, with the natural constraint that no process may access the share for reading or writing while another process is in the act of writing to it.

It is possible to protect the shared data behind a mutex, in which case clearly no thread can access the data at the same time as another writer. However, this solution is suboptimal, because it is possible that a reader R1 might have the lock, and then another reader R2 request access. It would be foolish for R2 to wait until R1 was done before starting its own read operation; instead, R2 should start right away. This is the motivation for the first readers-writers problem, in which the constraint is added that no reader shall be kept waiting if the share is currently opened for reading.
Suppose we have a shared memory area protected by a mutex. This solution is suboptimal, because it is possible that a reader R1 might have the lock, a writer W be waiting for the lock, and then a reader R2 request access. It would be foolish for R2 to jump in immediately, ahead of W; if that happened often enough, W would starve. Instead, W should start as soon as possible. This is the motivation for the second readers-writers problem, in which the constraint is added that no writer, once added to the queue, shall be kept waiting longer than absolutely necessary
1.7 Dissertation Organization
The organization of this dissertation is as follows.

Chapter 1: Explains the basic concept of distributed systems, concurrent systems, inter process communication, mutual exclusion and various critical section problems in detail.

Chapter 2: Explains the concepts of distributed mutual exclusion, different types of token based and permission based mutual exclusion algorithms.

Chapter 3: Explains the basic networking concepts including ATM networks, switching techniques, location management and different algorithms already developed for managing the location of the moving data objects.

Chapter 4: Provides complete system design for managing the location of the multiple movable data objects. It also includes the description of various data structures involved.

Chapter 5: Presents the performance analysis of the proposed algorithm with respect to different number of sites, data objects for different values of Request_Mov counter and inter request delay.

Chapter 6: Presents the conclusion over the various aspects of the proposed design and the extension of the project for future.
References

CHAPTER 2

 DISTRIBUTED MUTUAL EXCLUSION

In the problem of mutual exclusion, concurrent access to a shared object by several uncoordinated user requests is serialized to secure the integrity of shared object. It requires that the action performed by a user on a shared object must be atomic.
The problem of mutual exclusion frequently arises in distributed systems whenever concurrent access to shared objects by several sites is involved [7]. For correctness, it is necessary that the shared object be accessed by a single site (or process) at a time. A typical example is directory management, where an update to a directory must be done atomically because if updates and reads to a directory proceed concurrently, reads may obtain inconsistent information. If any entry contains several fields, a read operation may read some fields before the update and some after the update. Mutual Exclusion is the fundamental issue in the design of distributed systems and an efficient and robust technique for mutual exclusion is essential to the viable design of distributed systems.

Mutual Exclusion in single-computer systems vs. distributed systems:

In single-computer systems, the status of a shared object and the status of users are readily available in the shared memory, and solutions to the mutual exclusion problem can be easily implemented using shared variables (eg. semaphores). However, in distributed systems, both the shared objects and the users may be distributed and shared memory does not exist. Consequently, approaches based on shared variables are not applicable to distributed systems and approaches based on message passing must be used.

The problem of mutual exclusion in distributed systems becomes much more complex because of lack of both shared memory and a common physical clock and because of unpredictable message delays.

Actually, distributed environment can be categorized into two categories based on the way of collaboration. One is shared memory. Shared memory is a segment of physical or logical memory, which is shared by more than one process and provides a method for different processes to exchange data. The other is message passing, in which a site can read and write only its local data structures and can know about other sites only by exchanging messages.
2.1 Requirements of Mutual Exclusion Algorithms

Following characteristics are considered important in a mutual exclusion algorithm:

Freedom from deadlock:

Two or more sites should not endlessly wait for messages that will never arrive.

Freedom from starvation:

 A site should not be forced to wait indefinitely to execute critical section while other sites are repeatedly executing critical section. That is, every requesting site should get an opportunity to execute critical section in a finite time.

Fault tolerance:

A mutual exclusion algorithm is fault-tolerant if in the wake of failure, it can recognize itself so that it continues to function without any disruptions.

2.2 Measuring Performance of Mutual Exclusion Algorithms

The performance of mutual exclusion algorithms is generally measured by the following four metrics [2]:

· Number of messages necessary per critical section invocation.

· Synchronization delay, which is the time required after a site leaves a critical section and another site enters the critical section.

[image: image5]
· Response time, which is the time interval a request, waits for its critical section execution to be over after its request messages have been sent out.

[image: image6]
· System throughput, which is the rate at which the system executes requests for critical section. If sd is the synchronization delay and E is the average critical section execution time, then the throughput is given by the following equation :

System throughput = 1 / (sd + E)

· Low and High Load performance :
 Under Low load conditions, there is seldom more than one request for mutual exclusion simultaneously in the system. Under High load conditions, there is always a pending request for mutual exclusion at a site. Thus, after having executed a request, a site immediately initiates activities to let next site execute its critical section.

2.3 A Central Approach to Distributed Mutual Exclusion

The most straightforward way to achieve mutual exclusion in a distributed system is to simulate how it is done in a one-processor system. One process is elected as the coordinator (e.g., the one running on the machine with the highest network address). Whenever a process wants to enter a critical region, it sends a request message to the coordinator stating which critical region it wants to enter and asking for permission. If no other process is currently in that critical region, the coordinator sends back a reply granting permission. When the reply arrives, the requesting process enters the critical region.

The coordinator takes the first item off the queue of deferred requests and sends that process a grant message. If the process was still blocked (i.e., this is the first message to it), it unblocks and enters the critical region. If an explicit message has already been sent denying permission, the process will have to poll for incoming traffic or block later. Either way, when it sees the grant, it can enter the critical region. It is easy to see that the algorithm guarantees mutual exclusion: the coordinator only lets one process at a time into each critical region. It is also fair, since requests are granted in the order in which they are received. No process ever waits forever (no starvation). The scheme is easy to implement, too, and requires only three messages per use of a critical region (request, grant, release). It can also be used for more general object allocation rather than just managing critical regions.

This centralized solution has several drawbacks.

· There is single point of failure, the coordinator/ control site, so if it crashes, the entire system may go down. If processes normally block after making a request, they cannot distinguish a dead coordinator from ‘‘permission denied’’ since in both cases no message comes back. In addition, in a large system, a single coordinator can become a performance bottleneck.

· The control site is likely to be swamped with extra work. Also, the communication links near the control site are likely to be congested and become a bottleneck.

· Synchronization delay of this algorithm is 2T because a site should first release permission to the control site and then the control site should grant permission to the next site to execute the critical section.

This has serious implications for the system throughput, which is equal to 1/(2T + E) in this algorithm. If synchronization delay is reduced to T, the system throughput is almost doubled to 1/(T+E).

2.4 Types of Distributed Mutual Exclusion Algorithms

Distributed Mutual Exclusion Algorithms via message passing can be divided into two major categories:

Non-Token-Based (Permission Based) Algorithms

Token-Based Algorithms

2.4.1 Non-Token-Based (Permission Based) Algorithms

In the permission-based group the right to enter a critical section is formalized by receiving permission from a set of sites in the system. A site wishing to enter its critical section asks the others to give it their permission to proceed; and then it waits until these permissions have arrived. A site enters its CS only after receiving permission from all sites in a set. Non-requesting sites send their permission to requesting ones. Each site may grant its permission to only one site at a time [5, 6, 19].

A priority or an order of events has to be established between competing requesting sites so only one of them receives permission from all other sites in the set. Only one site, the one that has received permission from all members of a given set of sites, is allowed to enter the critical section. This enforces the requirement for mutual exclusion. Granting the privilege to enter the critical section is performed by the set of sites that send their permission to requesting sites.

Conflicts are solved by a priority or an order of events mechanism. The problem of finding a minimal number of sites from which a site has to obtain permission to enter its CS has to be considered. This can be translated as to how many rights a site has to collect in order to proceed to the execution of the critical section. Many protocols have been developed to find a majority or quorum of sites from which rights have to be collected. The solution to this problem has a direct impact in the cost of messages exchanged per mutual exclusion invocation. Some non-token-based algorithms which will be discussed are mentioned below:

· Lamport’s algorithm

· Ricart-Agrawala algorithm
· Maekawa’s algorithm

2.4.1.1 Lamport’s algorithm

There are N sites where Si represents site. Each site maintains a request set. Every site keeps a request-queuei containing mutual exclusion requests ordered by their timestamps. This algorithm requires messages to be delivered in the FIFO order between every pair of sites on the basis of timestamp. tsi - timestamp of site i. To request entering the CS, site Pi sends a REQUEST (tsi, i) message to every site (including itself) puts the request on request-queuei. When site Pj receives REQUEST (tsi, i), it places it on its request-queuej and sends a time-stamped REPLY (acknowledgement) to Pi. To enter in CS, Site Pi satisfies following two conditions:

Pi's request is at the head of request-queuei.

Pi has received a (REPLY, RELEASE) message from every other site time-stamped later than tsi. When exiting the CS, site Pi removes its request from head of its request-queue and sends a time-stamped RELEASE to every other site.

When Pj receives a RELEASE from Pi, it removes Pi's request from its request queue.

Performance for each CS invocation:

(N-1) REQUEST, (N-1) REPLY, (N-1) RELEASE so there are total 3(N-1) messages and synchronization delay Sd will be equal to average delay.
2.4.1.2 Ricart-Agrawala algorithm

This algorithm is an extension and optimization of Lamport's Distributed Mutual Exclusion Algorithm, by removing the need for release messages [19]. For every requesting pair of sites, the site with higher priority (lower time-stamp) request will always defer the request of the lower priority site.

For any one request of the critical section: The requesting site is the site which is requesting entry into the critical section. The receiving site is every other site which is receiving the request from the requesting site. ts refers to the local timestamp of the system according to its logical clock.

Pi send a request to site Pj but Pj is not requesting or executing the critical section. Pj is requesting the critical section but sent a request with a higher timestamp than the timestamp on Pj Otherwise, Pj will defer the reply message

Site Pi enters its critical section only after receiving all reply messages. Upon exiting the critical section, Pi sends all deferred reply messages.

The Number of messages per critical section execution are 2*(N-1) .

2.4.1.3 Maekawa’s algorithm

In this algorithm, a site does not request permission from every other site, but only from a subset of sites (Quorum). There is atleast one common site between the request sets of any two sites, every pair of sites has a common site that mediates conflicts between the pair.

A site can have only one outstanding REPLY message at any time, that is, it grants permission to the incoming request of it has not granted permission to any other site. Therefore, mutual exclusion is guranteed.

Three types of messages are handled :

FAILED: a FAILED message from site A to site B indicates that site A can not grant site B request because it has currently granted permission to a site with a higher priority request.

INQUIRE : an INQUIRE message from site A to site B indicates that site A would like to find out from site B if it has succeeded in locking all the sites in its request set.

YIELD : a YIELD message from site A to site B indicates that site A is returning the permission to site B (to yield to a higher priority request at site B).

A site can send a REPLY (LOCKED) message only if it has not been LOCKED.

Requesting Site:

A requesting site Pi sends a message request(ts,i) to all sites in its request site Ri.
Receiving Site:
Upon reception of a request(ts,i) message, the receiving site Pj will:
· If site Pj does not have an outstanding grant message (that is, a grant message that has not been released), then site Pj sends a grant(j) message to site Pi.

· If site Pj has an outstanding grant message with a process with higher priority than the request, then site Pj sends a failed(j) message to site Pi and site Pj queues the request from site Pi.

· If site Pj has an outstanding grant message with a process with lower priority than the request, then site Pj sends an inquire(j) message to the process which has currently been granted access to the critical section by site Pj. (That is, the site with the outstanding grant message.)
Upon reception of a inquire(j) message, the site Pk will:

· Send a yield(k) message to site Pj if and only if site Pk has received a failed message from some other site or if Pk has sent a yield to some other site but have not received a new grant.

Upon reception of a yield(k) message, site Pj will:

· Send a grant(j) message to the request on the top of its own request queue.

· Place Pk into its request queue.

Upon reception of a release(i) message, site Pj will:

· Delete Pi from its request queue.

· Send a grant(j) message to the request on the top of its request queue.

Critical Section:

· Site Pi enters the critical section on reciving a grant message from all sites in Ri.

· Upon exiting the critical section, Pi sends a release(i) message to all sites in Ri.

2.4.2 Token-Based Algorithms:

In the token-based group [11-18], the only one site can enter in its critical section decided by an object called token. The token is unique in the whole system. Sites requesting to enter their critical section are allowed to do so when they possess the token. The token gives to a site the privilege of entering the critical section. A token is a special type of message. The singular existence of the token implies the enforcement of mutual exclusion.

At any given time the token must be possessed by one site at most. Granting the privilege to enter the critical section is performed by a single site, which is the current owner of the token. This site chooses the next token owner and sends it the token. A distinction has to be made between the mechanisms used to move the token among the sites in the system. If sites are logically organized in a direct ring structure, the token can travel around the ring from site to site to give them the right to enter the critical section. If a site receives the token and it is interested in the critical section (CS), it can proceed to its execution. After the site exits its CS the token is released to circulate again. On the other hand, if the site is not interested in its CS it just passes the token to the next site in the logical ring.

If the ring is unidirectional, starvation freedom is ensured. Under light load this method has a high cost since the token message circulates even if no site wants to enter the CS, but it is very effective under high load. Another method to move the token in the system is by asking for it when a site wants to enter its CS. A requesting site sends a request message to the token holder and waits for the token arrival. After completing the execution of its CS, the site holding the token chooses a requesting site and sends it the token.

If no site wants to use the token, the token holder does not need to send the token away. Using this method a major concern is how to locate the token holder in order to minimize message exchanges originated by a requesting site. The token-based approach is highly susceptible to the loss of the token, since this can induce a deadlock situation. Also, problems can occur with the existence of duplicated tokens. Complex token regeneration must be executed to ensure the uniqueness of the token.

There are different ways to search a token in a networking topology explained below. Some of them which will be discussed are:

· Suzuki-Kasami’s Broadcast algorithm

· Singhal’s Heuristic algorithm

· Raymond’s tree-based algorithm

· Naimi-Trehel’s algorithm

· Helary- Plouzeau’s algorithm

2.4.2.1 Suzuki-Kasami’s Broadcast algorithm

In Suzuki algorithm [24], a site that wants to access the critical section will send REQUEST message to all other N-1 sites and then this site waits for the TOKEN. The site can stay in the critical section until it passes the TOKEN to other site. This algorithm uses two kinds of message transferred in the system: REQUEST and TOKEN.

REQUEST message uses two parameters in the form of REQUEST (i, m), where i is the site identifier and m is a sequence number which indicates the site i is now requesting its mth execution in the critical section, it also means that site i has already successfully finished m-1 times of invocation on the critical section. The form of TOKEN message is TOKEN (Q, LN). It also specify two parameters in its prototype. Q is a FIFO queue. Requests that have not been satisfied are recorded in Q. LN is an array of size N. LN[i] (i=1..N) records the sequence number of site i granted most recently. There is only one LN and one Q in the whole system, which are bound with the TOKEN. In each site, there is a variable RN. RN is an array with the size of N. It records the largest sequence number received from every other site to avoid the duplicate requests. RN[i] will denote the site i own sequence number. Each element in RN will be initialized to 0 in the beginning.

In the beginning, we let site 1 hold the TOKEN. When a site i that has the token and exits the critical section, it will update LN in the TOKEN with LN[i]=RN[i]. Because (site i)’s latest request that has been satisfied has the sequence no RN[i]. Then site i will check RN[j] for such j that 1≤j≤N and j≠i, if RN[j]=LN[j]+1, site i will append site identifier j to Q in the TOKEN. This means that site j has a new request but has not been satisfied. If Q is empty, site i just keep the TOKEN, until a REQUEST is received.

Initialize RN in every site and LN in the TOKEN; every element in RN and LN i s set to 0.

When a site i want to enter the critical section, if site i has no TOKEN, it increments the sequence number and send the REQUEST to all other sites and wait for TOKEN message. When a site i receives a REQUEST (j, m) from site j with the sequence no n. Site i update its knowledge of RN[j] as RN[j] = ma x (RN[j], m); If (site i has the TOKEN) and (site i does not need the TOKEN) and (RN[j] = LN[j]+1), site I sends the TOKEN to site j.

When a site i receives a TOKEN and it wants to enter the critical section, it enters the critical section. When a site i exits the critical section Update LN[i]=RN[i]; Append such j to Q that RN[j]=LN[j]+1 and j is not in Q If Q is not empty, extract the head of Q and sends the TOKEN to it.
2.4.2.2 Singhal’s Heuristic algorithm

In this algorithm, each site maintains information about the state of the system. Whenever a site wants to enter its critical section, it uses a heuristic function of the staircases to deduce from its available state information what sites are probably holding the token and sends a request only to those sites, rather than to all other sites in the system. The heuristic is used in order to minimize the number of messages sent to locate the token. This algorithm is based on the basis of Suzuki kasami.

Each site uses a local sequence number counter SN to keep track of its last request invocation. Two vectors are used by each site to store the information about the state of the system. The state vector SV stores the latest known states of all sites. The possible states are: requesting, not requesting, executing its critical section, and holding an idle token. The other vector indicates the latest known request invocation for each site. The token message also contains two vectors, one for storing the state of each site and the other one for storing sequence numbers for each site.

When a site i wants to enter its critical section and is not holding the token, it increments its sequence number counter and sends a request message of the form request (i, SN[i]), where SN[i] indicates its latest request. Site i use the state information it has about the system and sends a request to only those sites which are in the "requesting" state. One of these sites is likely to know the location of the token, or the token will be granted to it in a finite amount of time. After sending its request message, site i wait for the arrival of the token. If site i is holding the token or the token arrives, it can proceed to execute its critical section.

When site j receives a request from i, it checks the request sequence number against its sequence number vector SN to discard out-dated requests. If the request is a new one from site i, then it verifies the information in its state vector to update i's state. If site j is requesting and the state information for i, before the update, was not "requesting," then j sends a request message to i because it became one of the sites that probably know the location of the token. If site j is holding an idle token, then it sends the token to i.

When a site completes the execution of its critical section, it compares the information of its own state vectors against the vectors in the token, and updates all vectors with the most current information about the state of each site. The update rule is such that if the vectors in the token hold out-dated information, these are updated with the information contained in the site's state vectors, and vice versa.

After the state information has been updated, the site uses arbitration rules to determine which requesting site should get the token. The token will be granted to the nearest requesting site with the lowest sequence number. Sites are ordered in an unidirectional logical ring by their unique number identification. This rule guarantees that sites which have executed their critical section least frequently will get the token, and prevents a site from obtaining the token twice while some other site is waiting for it.

The algorithm assumes that message propagation delay is finite, but unpredictable. The number of messages exchanged for an entry to a critical section is (N+1)/2 in case of light traffic, and it is N in the case of heavy traffic. In light traffic a site holding an idle token does not need to send a request message if it wants to enter its critical section. Singhal discusses the impact of site and communication link failures, and presents recovery procedures that could be incorporated into the algorithm.

2.4.2.2 Raymond’s tree-based algorithm

In Raymond's algorithm, a static logical tree structure is used. Sites are arranged in an un-rooted tree structure and communicate only with their neighbors. Each site holds information about its own neighbors only. The location of the token is always kept with respect to those neighbors.

A site, say s1, holding the token becomes the privileged site and its neighbors, say s2, s3, and s4, know s1 holds the token. Neighbors of s4, say s5 and s6, do not know that s1 is holding the token. They only know that s4 represents the relative location of the token. If site s5 wants to enter its critical section, it sends a request to s4 after placing itself in its own request queue. Site s4 adds s5's request in its request queue and sends a request to A on its own behalf. Suppose now that site s4 receives a request from its neighbor site F, it enqueues F's request, but it does not send another request to A since it has already done so.

[image: image7]
Furthermore, site s4 now wants to enter its critical section, so it enqueues its own request in its request queue, but it does not send a request to s1 since it has already done it. Site s1 receives only one request from site s4. It enqueues request of s4 in its request queue. After completing the execution of its critical section, s1 sends the token to the first site in its queue, say s4, and learns that site s4 will now be the relative location of the token. If s1 discovers that there are still sites enqueued in its request queue, or if s1 wants to enter its critical section again, it sends a request to site s4. When site s4 receives the token, it finds that site s5's request is the oldest one in its request queue. It sends the token to s5, and learns that the relative location of the token is now site s5. It also discovers that its request queue is not empty (s6's request and s4's own request are enqueued) and sends a request message to s5 (the relative location of the token).

Upon receiving the token, site E finds its own request as the oldest in the queue. When it receives the request from site s4, it adds it to its queue of pending requests. When it releases the critical section, finds the oldest request in its queue, s4's request in this case; sends the token to s4 and learns that the relative location of the token is now site s4.

Site s4 receives the token and finds that the oldest request is from site s6. It sends the token to s6 and learns that the relative location of the token is site s6. Since its queue is not empty, it sends a request to s6. And the site continues. If for site s4 the relative location of the token is site s6, this could be seen as a directed edge s4->s6. As the token travels along the un-rooted tree, the directions of the edges change. At one point, the edges in the system would represent a directed acyclic graph, and a single directed path could be deduced from each site to the token holder. The algorithm assumes a reliable communications network and finite but unpredictable transfer delays. It does not require message order preservation. Messages do not need sequence numbers to enforce the order of events and requests are granted in a first-come-first-served manner. The total number of messages exchanged for an entry to a critical section is typically in the order of magnitude of log N. A piggyback strategy could be used to reduce the number of messages. A recovery procedure from the failure of a site is presented and it could be incorporated to the algorithm. The system can recover from a failed site, providing that not all of its neighbors also fail. Nevertheless, it cannot recover from the failure of the site holding the token and all of its neighbors.

2.4.2.4 Naimi- Trehel’s algorithm

In this algorithm, a dynamic logical structure is used on the communications topology. Requesting sites are logically arranged, by their requests, as a rooted tree. As a request from site s1 travels along the path from site s1 to the root site, site s1 becomes the new parent of each site on the path, except for itself. Thus, site s1 becomes the new root site of the tree.

Here, there is no need to maintain the queue of pending request neither for the sites nor for the token. It is implicitly maintained by the state of each site in the system. Each site keeps two integer variables, last and next. The former indicates the last site from which a request was received and the neighbor site in the path to the root that this site will send a request message the next time it wants to enter its critical section. Next indicates the site to that the token will be granted after this site leaves its critical section. When a site s1 wants to enter its critical section (CS) and last1 <> 1 (site s1 is not holding the token), it sends a request to site last1, it sets last1:=1, and waits for the token to arrive. If it has the token or the token gets the token from any other site, it enters its CS directly. When the request from site s1 arrives at a non-privileged site s2 in the path to the token holder site (the privileged site), site s2 forwards the request from s1 to site last2. Site s2 sets the value of last2:=2. When the request from site s2 arrives at the privileged site, say site s3, and s3 is the root site of the tree (last3:=3) and it is in its critical section, then site 3 sets next1:=1 and last3:=1. If 3 is the root site and is holding an idle token, then it sends the token to site 1 and sets last3:=1. In the case when site 3 is not the root site, it forwards the request from site 1 to site last3. The latter happens when site 3 received a request from another site prior to the request from site 1 and thus it became part of the path form site 1 to the root site.

When a privileged site 3 holding the token leaves the critical section, it sends the token to site next3 and sets s3:=0. If there were no pending requests (next3:=0), the site keeps the idle token. The queue of pending requests can be deduced by following the path of the next state in each site. The head of the queue is the privileged site. The token moves sequentially traversing this path in the tree. The algorithm does not require sequence numbers for ordering the events. Messages are very small since very simple variables are transmitted. This reduces the overhead in the network. This algorithm can easily be used in a low speed networks also.

This algorithm proves that the average number of messages exchanged for an entry to the critical section is in the order of log N. If the site is idle, it does not need to send a request to enter its critical section again. This algorithm assumes the existence of a fully reliable communications network. Transmission delays are finite and messages need not be delivered in the order they are sent.

2.4.2.5 Helary- Plouzeau’s algorithm

In their algorithm, a site sends a request only to its neighbors when it wants to enter its critical section and not possessing the token and waits for the token. If it is holding the token or it gets the token from any other site, it can proceed to enter in the critical section. After completing the execution of its critical section, the site calls a procedure for transmitting the token. A request message contains the identification of the site initiating the request, the request time based on a logical clock following Lamport's rules [5], the identification of the site forwarding the request, and a set of sites for which a request has already been sent. Requests are propagated in the network based on a knowledge-transfer control method. A site receiving a request knows who originated it, which neighbor forwarded it, and finds out to which of its own neighbors the request has not been sent yet. Next, it propagates the request only to those neighbors. While forwarding the request, the reverse path to the requesting site is constructed with the identification of the sites that have propagated the request.

When the site holding the token has completed the execution of its critical section it can send the token directly to the requesting site following the return path. Upon receiving a request from its neighbor site j, site i updates outdated information that it maintains for j. This would take care of out of-order messages from site j and of deleting requests already granted to j. The request is added to i's set of known pending requests. Site I synchronizes its logical clock, finds out the set of neighbors to which it will propagate the request, adds itself to the return path, and propagates the request.

If site i is holding an idle token means site I does not need that token, then it calls a procedure for transmitting the token. In the procedure for transmitting the token, site i finds the oldest request from its own set of pending ones, updates the time of that request in the token's array with its logical clock, and sends the token through the return path. When a site k receives the token message and the token final destination site is not itself, it checks the return path and forwards the token to its neighbor following the return path. If the token is addressed to k, then it can proceed to enter its critical section. The algorithm assumes the existence of a reliable communications network and finite but unpredictable transfer delays.

The algorithm does not require message-order preservation. Sites do not to have any prior knowledge of the network topology [12]. They have knowledge of only the name of its neighbors. The number of messages sent to locate the token is reduced by using a flooding broadcast technique and a knowledge-transfer control technique. The number of messages required per critical section entry depends on the actual network topology. Whatever topology is considered, if the requesting site owns the token there is no need to send any request messages. For a linear topology, the total number bounds are N and 2(N-1). The total number of messages varies from N to 2N in a ring topology. In a complete network the total message number is N. Requests are fully ordered by the use of logical clocks and are granted in a FCFS.

In all these algorithms, it is assumed that there is only single data object. In chapter 4, we will discuss that how to manage multiple data object in a mutual exclusive manner.

CHAPTER 3

NETWORK FUNDAMENTALS

3.1 Broadband Networks

A computer network is a system for communication among two or more autonomous computers. Networks are sued to interconnect various computer systems at various different sites to allow them to exchange information such as file sharing, Internet connection and data storage. Basically, a network is two or more machines connected together by some type of medium such as: Ethernet, token ring, wireless, broadband etc.

In traditional networks for every individual telecommunication service, we need at least one network that takes the responsibility to transports this service. Each of these networks was specialized which means that only specific service is provided by that network and is often not at all applicable for transporting another service. For designing the future network, one must take into account all possible existing and future services [33-34]. They suffered from various disadvantages: Service dependence, inflexibility, inefficiency, etc.

Day by day society is becoming more informational and visually oriented. Personal computing facilitates easy access, manipulation, storage, and exchange of information. These sites require reliable transmission of information. Communicating documents by audio and visual information provide a more natural and informative mode of human interaction than just voice and data. Video teleconferencing enhances group interaction at a distance.
3.1.1 Single network for multiple services
As we have discussed above that in the traditional networks, that for different service, we need different network. These networks are largely engineered for a specific application and are not suited for other applications. For example, the traditional telephone network is too noisy and inefficient for burst data communication. On the other hand, data networks which store and forward messages using computers have very limited connectivity, usually do not have sufficient bandwidth for digitized voice and video signals, and suffer from unacceptable delays for the real-time signals. Television networks using the radio or the cable medium are largely broadcast networks with minimum switching facilities. Benefits of a single network for multiple services: flexibility, efficient use of available resources, less expensive etc.

ATM is an example of such network that can provide all these services. It is based on asynchronous time division multiplexing and the use of fixed length cells. It is considered as a virtual circuit switched network that carried data over a virtual circuit by specifying a separate virtual circuit identifier for that circuit.
3.1.2 Virtual circuit Switching

Virtual circuit packet switching is a packet switching technique which combines the features of circuit switching and store and forward switching. Like circuit switching, virtual switching also set up a circuit before transmitting data. While transmitting the data, it stores the data at one hop and then forward further by looking into the routing configuration. Each packet carries a circuit identifier which is local to a link and updated by each switch on the path of the packet from its source to its destination.

In Virtual circuit switching, routing is performed at circuit establishment time to keep packet forwarding fast. Unlike Datagram Packet Switched networks which automatically re-compute routing tables on a topology change like a link failure, in virtual circuit switching all virtual circuits that pass through a failed link are interrupted. Hence, rerouting in virtual circuit switching relies on traffic engineering techniques. Timing diagram of the virtual circuit switching is shown in the fig 3.1.2 (a). Three links have been considered here from A to B, B to C and then from C to D. In the first phase, circuit is established from A to D. while setting up the connection each intermediate processor keeps on making entries in the routing table, which will be used while forwarding the data. Finally there is a connection release phase also in which all the entries of the table and the unique virtual identifies are removed.
[image: image8.png]

[image: image9]
3.1.3 Routing in ATM Network

ATM is virtual circuit switched network. Before transferring data from the one node to the network, a logical virtual circuit is set. Signaling and user information are carried on separate virtual channels. Two types of connections are possible: Virtual Channel Connections VCC and Virtual Path Connections VPC. When switching or multiplexing on cells is to be performed, it must first be done on VPC, then on the VCC.

ATM header includes a sub field – virtual circuit identifier (VCI) which has the responsibility of virtual circuit during call set up phase. Since the ATM network is connection oriented each connection is characterized by a VCI which is assigned at call set up. A VCI has only a local significance on the link between ATM sites and will be translated in the ATM sites. Every time whenever the connection is released, the VCI values on the involved links will be released and can be reused by other connections. An advantage of this VCI principle is the use of multiple VCI values for multi component services. For instance video telephony can be composed of 3 components: voice, video and data. Each of which will be transported over a separate VCI. This allows the network to add or remove components during the connection.

The network has to support semi-permanent connections, which have to transport a large number of simultaneous connections. As ATM is connection oriented, connections are established either semi-permanently, or for the duration of a call, in case of switched services. This establishment includes the allocation of a VCI (Virtual Channel Identifier) and/or VPI (Virtual Path Identifier), and also the allocation of the required objects on the user access and inside the network. These objects are expressed in terms of throughput and Quality of Service. They may be negotiated between user and network for switched connection during the call set up phase.

There is no physical limitation on the user access rate to the physical transmission medium in ATM networks, apart from the physical cell rate on the medium itself. Multiplexing equipment will do its utmost to avoid cell loss to offer the highest possible throughput whatever the user chooses to send. As virtual connections share physical objects, transmission media and buffer space, unforeseen excessive occupation of objects by one user may impair traffic for other users.

In principle, no flow control will be applied to information streams at the ATM layer of the network. In some cases it will be necessary to be able to control the flow of traffic on ATM connections from a terminal to the network. In order to cope with this general flow control mechanism may be used. This function is supported by a specific field in the ATM cell header.

3.2 Location Management

We use the following terms for simplicity: An operation begin site is the site which issues an data-request message, a expected data is the date object to be accessed, and a destination site is one of the sites which hold one of the expected data objects.

Now, we describe the various data location management methods derived from those for mobile hosts as follows. Note that each method is composed of actions for two kinds of events, i.e., an object moving and an operation to the object.

1 The Broadcast Notification (BN) method

Each time a data object moves from one location to another, the new location of the data object is notified by broadcast throughout the network. Thus, all sites in the system always know the precise location of each data object [36]. When a site wants to access a certain data object, it can directly send a data-request message to the destination site.

Example: Site A informs all sites in the network about the new location of the data object.

[image: image10]

[image: image11]
2 The default Forwarding (DF) method:

Each time a data object moves, only the centralized location management server is notified of the new location [36]. Thus, only this server knows the precise location of each data object. The operations begin site first sends an data-request message to the server and then the server forwards it to the destination site.

Example: Site A informs Location management server that objects has moved. Now if site B wants to access the same data object, it will send the operations begin request to the server and then server will form the connection from the site B to the respective destination site say D.

[image: image12]

[image: image13]
3 The default Query (DQ) method:

Similar to the DF method, only the centralized location management server knows the precise location of each data object [36]. The operations begin site first asks the location management server for the location of the expected data object and identifies the destination site. Then, it sends an data –request message to the destination site.

Example: Site A informs centralized Location management server that objects has moved. Now if site B wants to access the same data object, it will send the data-begin request to the server and then server will response the destination site to site B. finally site B can form the connection to the respective destination site say D.

[image: image14]

[image: image15]
4 The Broadcast Forwarding (BF) method:

No location management server exists and no site is notified of the migrations of data objects [36]. The operations begin site broadcasts the data-request message but only the destination site receives the message (and the other sites simply ignore or discard it).

Example: Site A wants to access the data object and have no knowledge of the destination site. So it will flood the data begin request message to all the sites. Let say site D is the destination site so only D will accept it and rest all will discard it.

[image: image16]

[image: image17]
5 The Broadcast Query (BQ) method:

Similar to BF method, there is no location management server, and no site is notified of the migrations of data objects [36]. The operations begin site first broadcasts a query message to every other site to learn and identify the location of the target object. Then, the operations begin site sends the data-request message to the destination site.

[image: image18]

[image: image19]
Example: Site A wants to access the data object and have no knowledge of the destination site. So it will flood the query message to all the sites to get the location of the destination site. Now site D will send the operations begin site to destination site i.e. site D.

Now, we assume that the result of performing the operation in every method is sent over as SVC connection which is established from the operations begin site to the destination site, consisting that the site may continuously initiate the operations to the same data object.

6 The Chain Forwarding (CF) method:

Each site maintains information table called the LL structure in which the initial location of each data object is maintained [36]. Then, the LL structure is updated locally at each site according to the update rules:

Update rules:

· If the data object moves from site1 to site2, the current location of data object in LL structure at both site1 and site2 are updated from site1 to site2.
· If the operations begin site site1 send a message to site2 to access data object D according to its own LL structure but finds that D currently resides at another location site3, current location o D in the INFO structure at site1 is updated from site2 to site3.

When a site accesses data object D, the operations begin site sends a data-request message according to its own LL structure. If the site which receives the message does not hold the destination data, site forwards the received message according to its own LL structure. After successive message forwarding, it finally reaches the destination site. Then the operation is performed on D and the result together with the current location of D is sent from the destination site to the operations begin site.

7 The Chain Query (CQ) method:

Similar to CF, the operation begin site first sends the operation request message to a certain site according to its own LL structure [36]. If the site which receives the message does not hold the entry for D, the site sends information of D in its own LL structure to the operation begin site. Then the operations begin site updates the entry for D in its own LL structure based on reply message and sends the data request message again to the new location of D. This site continues till the destination site is found.

8 The Extended Chain Forwarding (ECF) method:

The principal of the ECF is same as CF but in addition, object migration counter is recorded together with the location information of each data object in the LL structure [10]. The value of this counter is incremented by one each time when the object is relocated from one location to another. If the value of the counter is n it means that location of this data object has been changed n times. On comparing these, we can identify which location information is latest. Contents of the LL structure are sent together with the operation request message by the operations begin site. After the message reaches destination site, the contents of the LL structure are sent in backward direction following all those sites along which the message have been sent.

If the data object D moves from site1 to site2, the entry of current location of D in LL structure at both sites are updated from site1 to site2 and their object migration counts are also updated to the value one larger than that of site1. If the site receives the LL structure, the object migration count in its structure is compared with the counter of the received message. If the object migration counter of the received message is greater than the site’s own counter, it will update the LL structure with the latest information.

9 The Extended Chain Query (ECQ) method:

Similar to CQ method, but in addition, object migration counter is recorded together with the location information of each data object in the LL structure [10]. The value of this counter is incremented by one each time when the object is relocated from one location to another. The operations begin site sends the contents of LL structure together with the data request message. Then, at each site along which the message is sent, the above update is performed. When the message reaches destination site the same update is performed. After the message reaches destination site, the contents of the LL structure are sent in backward direction following all those sites along which the message have been sent.

CHAPTER 4

 PROPOSED MODEL
4.1 A Mutually Exclusive Approach for managing movable Data

The basic idea in our algorithm is to use the local information structure available at each site to find the location and access the movable data objects in the distributed system. After accessing the data objects, it is the responsibility of each site participating in the communication to update other sites with the latest information structure so that all the sites will be having the reliable information about the network [35]. This algorithm is based on extended chain forwarding technique proposed by Takahiro et al [10] where they have used tree topology for ATM networks with the initial assumption that each data object j is kept with site Sj. After trying different scenarios, it has been observed that if we use the same algorithm with initial assumption of random locations of the data objects in the network topology or with closed topology networks, certain variables are to be added eg sequence number, LR_flag array and states of the site etc.

We use the following terms for ease:
 An operation begin site is the site which issues an data-request message, a expected data object is the data object to be expected and accessed and a destination site is one of the sites which hold one of the expected data object.
4.2 System Behavior
4.2.1 System Description

A distributed system consists of N sites, uniquely identifies from 0 to N-1. Each site contains a process that makes a request to mutually exclusive access the CS. This request is communicated to other processes. Message propagation delay is finite but unpredictable. The communication network is assumed to be reliable (i.e. message are neither lost nor duplicated and are transmitted error- free) and sites do not crash. There is one CS in the system for each data object, and any process currently in the CS will exit in the finite time. Each site may have more than one process running [35]. A site cannot issue another request for the same data object until the current request of that data object is granted and the process itself exits the CS.

4.2.2 Performance Measures

The operation of mutual exclusion algorithm is very complex and is quite difficult to analyze mathematically. Analytical performance study of the mutual exclusion algorithm is intractable due to rapid growth of the cardinality of the state space with the number of the sites in the system. Therefore we carried out the performance analysis using the simulation techniques. We assume that the requests for CS arrives at a site according to the exponential distribution with parameter x. Message propagation delay (mpd) between any two sites is taken as 0.005msec, the total processing delay (tpd) at both sites is taken as 0.01msec, r be the constant routing delay which is taken as 0.002msec and R be the constant time for router configuration at each ATM switch considered as 0.01msec. Simulation experiments were carried out for a homogeneous system of 32, 64 and 128 sites for various values of x. in our simulation experiments, 5000 or 10,000 operations are processed by each method, in which mean request delay is changed by 10 seconds from 10 seconds to 3 minutes and Request_Mov count is varied from 1 to 15. In this performance model, we will consider two performance measures:
· Total Message Count: It is specified as the average number of the messages transferred among all the sites per critical section execution.

· Total Delay Cost: The average time delay in granting the CS, which is the period of time between the instant a site invokes mutual exclusion and the instant when the site enters the CS.

The performance of the algorithm is studied by simulating it using parsec simulation language [26].

4.2.3 Network Structure

The performance analysis is carried out on tree topology of N sites. The degree (N) of the tree is considered as 32, 64 and 128 sites.

[image: image20.png]

[image: image21]
4.3 Data Structures
N:
total number of sites in network topology

M:
total number of movable data objects

Each site i maintains the following information:

1 INFO (Information) Structure

typedef struct

{

int SiteId,

int movCount;

} INFO_msg;

struct

{

int SiteId;

int movCount;

}INFO[N][M];

At each site i, information structure is maintained in which the initial location of each movable data object is kept. This database will help in finding out the location of the movable data objects. This structure stores SiteId and movCount specifying site id and movable counter for each data id. Higher value of the movCount gives latest information about the network.

2 Sequence Number SN

typedef struct

{

int DataId[M];

int seqno[M];

}SITE_;

struct

{

SITE_ sites[N];

}SN[N];

Each site keeps record of the requests received from all other sites for each data objects. At each site i, SN[i] stores DataId[] and seqno[] specifying data ids and sequence numbers with respect to the sites[], site ids of the operation begin site.

3State Information

#define IDLE_ 1

#define HAVING_ 2

#define EXECUTING_ 3

int siteState[N][M];

Each site i keeps an array to maintain the state. For example, If site i is having data object j then it stores arrState[i][j] = 2

4 LR_flag

This flag is used by the site with the data request message to specify the data object access either locally or remotely. If LR_flag = 0, local access (data has to be moved from its location) otherwise remote access.

5 Site Queue

int msgQueue[N][N];

int LRFQueue[N][N];

If the site i receive requests when it is busy in execution, it maintains a queue named msgQueue to store the pending requests. Along with site id, LR_flag is also stored in a queue named LRFQueue that helps in moving of the objects while handling the pending requests

6 Connection Establishment Information

int VC_Path[N], VCPath_count;

VC_Path is used to store the path from the operation begin site to the destination site and VCPath_count is used to store the length of the path. This path helps in the message transmission and for updating the information structure.

4.4 Message Declaration

The following messages are used to exchange information among the sites in the network topology:

1 Data Request Message:

message data_req

{

int DataId;

int SiteId;

int VC_Path[N];

int VCPath_count;

int LR_flag;

INFO_msg info_msg[M];

int seq;

};

This message is sent by any operations begin site which doesn’t own the expected data object.

2 Update Information Table

message update_info

{

int SiteId;

int DataId;

int VC_Path[N];

int VCPath_count;

};

This message is sent for updating the Information Structure.

3 Message from Destination site to s Begin Site

message update_op_beg

{

int SiteId;

int DataId;

};

This message is sent directly to the operations begin site from destination site.

4.5 Initialization

1 INFO (Information) Structure

for(i=0;i<N;i++)

{

for(j=0;j<M;j++)

{

INFO[i][j].SiteId = j;

INFO[i][j].movCount = 0;

}

}

2 Sequence Number SN

for(i=0;i<N;i++)

{

for(j=0;j<N;j++)

{

for(k=0;k<M;k++)

{

SN[i].sites[j].DataId[k]=k;

SN[i].sites[j].SiteId[k]=0;

}

}

}

3 State Information

for(i=0;i<N;i++)

{

for(j=0;j<M;j++)

{

siteState[i][j] = IDLE_; // IDLE

seqno[i][j] = 0;

if(I = = j)

siteState[i][j] = HAVING_; // HAVING

}

}

4 Site Queue

for(i=0;i<N;i++)

{

for(j=0;j<N;j++)

{

msgQueue[i][j] = -1;

LRFQueue[i][j] = -1;

}

}

4.6 The Algorithm

Site Si executes the following steps to access movable data object in mutually exclusive Distributed System,

Step 1:

Site Si requests expected data Dj,

a) Increment the sequence number for expected data Dj and store in the array SN

SN[i].sites[i].DataId[j] = j;

seqno[i][j] = seqno[i][j] + 1;

SN[i].sites[i].seqno[j] = seqno[i][j] ;

Send the Data request message to the site according to the INFO structure.

Step 2:

Site Si receives a data-request for expected data Dj,

a) Check the sequence number of the request received with the SN array available at site Si to avoid the duplicate requests

b) if the request is not duplicate,

i) Check if the site Si is not the expected data Dj,

if it is not having Dj or siteState[i][j] = IDLE_,

then forward the data-request to the site according to the INFO structure of site Si.

ii) Check if the site Si is having the expected data Dj,

If (siteState[i][j] == HAVING_)

Check the msgQueue,

 if empty then siteState[i][j] = EXECUTING_; Execute CS

 otherwise

 {

add the site Si in the msgQueue and LR_flag in the LRFQueue

check the LR_flag of the site in the front of the queue

if (LRFQueue[FRONT] == 1)

siteState[msgQueue[FRONT]][j] = EXECUTING_; Execute CS

otherwise

{

siteState[msgQueue[FRONT]][j] = EXECUTING_; Execute CS

siteState[i][j] = IDLE_;

 Send Update_info to all sites in the msgQueue and delete all the

 entries from the msgQueue.
}

 }

If (siteState[i][j] = = EXECUTING_)

add the site Si in the msgQueue and LR_flag in the LRFQueue

Step 3:

Site Si receives an update_info message from Site Sk

a) If the VC_Path[] array is not NULL then

Check, If the data movCount of the site Sk is more than of the site Si , update the full INFO structure at site Si .

if(INFO[i][j].movCount< INFO [k][j].movCount)

{

INFO[i][j].movCount = INFO [k][j].movCount;

INFO[i][j]. SiteId = INFO [k][j].SiteId;

}

b) delete one site from the VC_Path array, if the array is not NULL send the update_info to the next site in the VC_Path array.

Step 4:

Site Si receives update_op_beg message from Site Sk

For all the data objects, it is checked that if the object movCount of the site Sk is more than that of the site Si, the value of the object movCount and the site is updated at site Si to provide the reliable information.

if(INFO[i][j].movCount< INFO [k][j].movCount)

{

INFO [i][j].movCount = INFO[k][j].movCount;

INFO [i][j].SiteId = INFO [k][j].SiteId;

}

4.7 Detailed Description of the Algorithm

We assume the all the sites in the network do not share any clock or memory and communicate completely with the help of message passing. With the recent development in the network technologies, broadband ATM makes it possible to provide very high speed data transmission facilities. The propagation delay is almost equal in the narrowband and in broadband networks. But the data transmission time is very small in broadband networks. This feature is being used in our algorithm for sending high volume of the data for updating the local information database available at each site. Sites use unique sequence number to distinguish between duplicate requests. The sequence number for all data objects at all sites is initialized by 0. Initially we assume that the sites don’t crash and medium is reliable or noise free.

There are many applications where migration of data is required in the distributed environment for load balancing in the system with low location dependency. eg. -database migration, Transaction processing methods for data item migration, mobile computing environment, etc

Update Rules:

· If the expected data object Dt is moved from site Si to site Sj, the location of Dt is updated at both the sites Si and Sj. at the same time the object movCount of the expected data object is incremented by one.

· If site Si receives the update_info message including INFO structure, site Si compares the data movCount of each data object of update message with the data movCount of each object at site Si. If the received message has latest information then the INFO structure of site Si is updated with the latest information of the update_info message.

· After locating the expected data object, site Si changes the state to EXECUTING_ and execute critical section.

· After exiting the critical section, depending upon the LR_flag, state is changed from EXECUTING_ to either IDLE_ or HAVING_ for remote or local access respectively.

· If site Si receives the update message including INFO structure, site Si checks location of the entire data object. If the location of the data object is the site Si itself, the state is changed to HAVING_ at site Si.

· Whenever any operations begin site gets ready to request for data object, it increments the sequence number by 1

Here we have considered simple prototypes for various messages which are used in the algorithm to make it easy for understanding. Eg, Request(source site, destination site, expected data), update_op_beg(source site, destination site), update_info(source site, destination site) etc.

Case 1:

As soon as any operations begin site gets ready to request for data object, it increments the sequence number and can enter in the critical section if it is having the expected data.

Example: site A wants to access data object D2. According to INFO structure entry, site A is having the expected data.

INFO structure at site A:
	D1
	C
	1

	D2
	A
	0

	…
	
	

[image: image22]
Case 2:

If the site does not possess the data object, it sends the data request to the site according to the local information available in the INFO structure at operations begin site.

Example: Site A wants to access data D1. If we consider the same INFO structure given in case 1 then after checking its own INFO structure, site A finds that it does not possess the expected data so it will forward the request to site C.

INFO Structure at site C:

	D1
	C
	1

	D2
	A
	0

	…
	…
	…

	…
	…
	…

[image: image23]
Case 3:

On receiving this request by any other intermediate site, first of all it checks its INFO structure. If the location of the destination data object is the intermediate site itself and the state of the intermediate site is _HAVING means it is only having and not executing on the expected data object, then this site checks the message queue. If the queue is empty the state of the operations begin site is changed to executing and it is allowed to enter in the critical section.

Example: Site C is having data object D1 and there is no pending request in the queue. Now site C will update the INFO structure by incrementing the movCount if local access is required and changing the location of the data D1. Finally it sends update_op_beg message to site A to update INFO structure at site A.

[image: image24]
Case 4:

If the site is having the data but the queue is not empty, the new request is added in the queue and its access flag is stored in the LR_flag queue. Now the site which is stored in the beginning of the message queue is granted the access to enter in the critical section and this site’s state is also changed to executing. Finally after execution of either a new request or pending request of the queue, the data may be transferred from its old location to new one. In this case, destination site will update the location of the expected data at its own site as well as on the operations begin site by sending a message called update_op_beg. Finally one update message is sent to all the intermediate sites informing about the latest information to make the network reliable.

Example: Site A wants to access object D1. Site C is having data object D1 and there are pending requests in the queue.

INFO Structure at site C:

	D1
	C
	1

	D2
	A
	0

	…
	…
	…

	…
	…
	…

msqQueue at site C:

	E
	D
	A
	
	

LRFQueue at site C:

	0
	1
	1
	
	

[image: image25]
Site C will add the site A’s request in the msgQueue and access flag in the LRFQueue. Site C now allows the front site stored in the msgQueue i.e E to enter in the critical section and delete it from the msgQueue. The local access is required by this site therefore the object will be moved from site C to site E. Site C will update INFO structure locally by incrementing the movCount and by changing the location of data object D1 to site E. Then it sends update_op_beg message to front site E for updating its INFO structure. Finally it sends update_op_beg message to all sites in the msgQueue (D,A) informing about the change in the location of their expected data.

Case
5:

On receiving a request, if the site does not possess the expected data it will forward the request to the next site according to its INFO structure. At the same time it will maintain one VC_Path array that will keep record of all the intermediate sites of the path through which expected data is located. This VC_Path array will help in connection establishment and finally data will be transmitted through this path with the help of VC_Path array. Along with the data transmission, it also helps in updating the INFO structure at each site helped in communication.

[image: image26]
Example: Site A wants to access data object D1. According to A’s INFO structure Data object D1 is with site C, but C’s INFO structure says that it is with site D. so finally C will forward to request to site D and site D will allow the site A to enter in the critical section and sending update_op_beg message directly to A for updating INFO structure. It will also send update_info to C to update its INFO structure and consequently site C will send update_info to site A.

4.8 Correctness of the Algorithm

4.8.1 No Mutual Exclusion

As in our network, we have M number of data objects so M critical sections can be possible at one moment of time with the assumption that all these object are distinct. To access any data object, first of all the location of the data object is to be determined on the basis of the local information structure available in the INFO structure at each site. Once the location is determined the requesting site will see the state of the expected site. If its state is HAVING_ and the msgQueue is empty, operations begin site will be allowed to enter in the critical section. At the same time this will change the destination site’s state to IDLE_. So if any other request for the data to same site, it can not allow that site to execute on data object now because its state has been changed. After completing the execution, the destination site’s state is again changed to HAVING_, if the operations begin site has accessed the object remotely. Now any other site can enter in the critical section. So this ensures the mutual exclusion in the network.

4.8.2 Starvation Freedom

Starvation freedom means that any site requesting the CS, eventually locates the data object and can execute on it within finite amount of time period. As we know already that in our algorithm, each site locates the data object by using INFO structure in finite time. But if the destination site is busy, it stores the requesting site in the msgQueue. It may happen that before the requesting site reach in the beginning of the msgQueue, that data object is moved from this location. In this case it is the responsibility of this destination site to update all those sites which are waiting in the queue to inform them that the location has been changed. So finally all sites will get the updated information and accordingly can access the destination data. So if the frequency of the data object migration is very high, sites may have to wait for long to enter in the critical section but still the delay would be finite because of timely updating.

4.8.3 Deadlock Avoidance
The system is deadlocked when no site is in the critical section and all sites wishing to enter in the critical section are not able to do so. According to our algorithm, if the msgQueue of the destination site is empty and the destination site possesses the destination data object also then the operations begin site can enter in critical section. Even if the msgQueue is not empty, in that case front site can get the opportunity to execute on data object or enter in the critical section. So in any case it never happens that the object is idle and no site is getting an opportunity to enter in the critical section. It may happen that site has to wait for some time but system would still be in safe state.

CHAPTER 5

 PERFORMANCE ANALYSIS

In the simulation results, we have considered the N as number of sites which can be 32, 64 or 128 and M as the number of movable data objects that can be 25, 35 or 50.

5.1 Total Message Count

In figure 5.1 (a) and (b), it has been shown that for different values of Request_Mov counter, if we increase the number of sites in the network, the total number of messages also increase for inter request delay equal to 90 sec and 180 sec.

[image: image27.emf]0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 101112131415

Request_Mov Counter (Inter Request Delay=90)

Messages per Request

N=32

N=64

N=128

[image: image28]
[image: image29.emf]0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 101112131415

Request_Mov Counter(Inter Request Delay=180)

Messages per Request

N=32

N=64

N=128

[image: image30]
In figure 5.1 (c) and (d), it has been shown that for different values of Request_Mov counter, if we increase the number of available data objects in the network, the total number of messages also increase for inter request delay equal to 90 sec and 180 sec.

[image: image31.emf]0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 101112131415

Request_Mov Counter (Inter Request Delay=90)

Messages per request

M=25

M=35

M=50

[image: image32]
[image: image33.emf]0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 101112131415

Request_Mov Counter (Inter Request Delay=180)

Messages Per Request

M=25

M=35

M=50

[image: image34]
5.2 Total Time Cost:

In figure 5.2 (a), (b) and (c), it has been shown that if we increase the number of the sites in the topology for different values of inter request delay from 10 sec to 3 minutes, the time delay also increase. These results are with respect to 3 different values of Request_Mov counter (1, 7, 15).

[image: image35.emf]0

100

200

300

400

500

600

700

1 3 5 7 9 11 13 15 17

Inter Request Delay(Request_Mov Counter=1)

Delay Per Cycle

N=32

N=64

N=128

[image: image36]
[image: image37.emf]0

100

200

300

400

500

600

700

800

900

1 3 5 7 9 11 13 15 17

Inter Request Delay(Request_Mov Counter=7)

Delay Per Cycle

N=32

N=64

N=128

[image: image38]
[image: image39.emf]0

100

200

300

400

500

600

700

800

900

1 3 5 7 9 11 13 15 17

Inter Request Delay(Request_Mov Counter=15)

Delay Per Cycle

N=32

N=64

N=128

[image: image40]
In figure 5.2 (d), (e) and (f), it has been shown that if we increase the number of the available movable data objects in the topology for different values of inter request delay from 10 sec to 3 minutes, the time delay also increase. These results are with respect to 3 different values of Request_Mov counter (1, 7, 15).

[image: image41.emf]360

380

400

420

440

460

480

500

1 2 3 4 5 6 7 8 9101112131415161718

Inter Request Delay(Request_Mov Counter=1)

Delay Per Cycle

M=25

M=35

M=50

[image: image42]
[image: image43.emf]0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9101112131415161718

Inter Request Delay(Request_Mov Counter=7)

Delay Per Cycle

M=25

M=35

M=50

[image: image44]
[image: image45.emf]0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9101112131415161718

Inter Request Delay(Request Mov Counter=15)

Delay Per Cycle

M=25

M=35

M=50

[image: image46]
CHAPTER 6

 CONCLUSION AND FUTURE WORK
1. Conclusion
In this dissertation, we have proposed an algorithm which is based on extended chain forwarding technique. Along with our algorithm, nine data object location management methods have been discussed here. Five of them are based on the traditional existing methods for mobile and distributed environment and four of them are based on the features of the ATM networks.
The proposed method is also based on ATM networks which integrated multiple services into single network. In a distributed environment with movable data objects, it is necessary to develop a method to manage the location of these data objects. Our algorithm manages the location of multiple movable data objects in distributed system whose sites communicates only by message passing and do not share memory. The proposed algorithm maintains the integrity of shared data objects by satisfying the properties – safety, liveness, fairness.

It has many features to maintain the mutual exclusion in a system with multiple movable data objects. To simulate this model, we have used various data structures like information structure at each site, state array at each site which specifies three states IDLE_, HAVING_ and EXECUTING_ which will help in locating the expected data object dynamically, LR_flag for local and remote access of the data objects, various queues are used for maintaining the pending requests and for the flags to access the data object locally or remotely and sequence numbers to avoid the duplicate requests in the network which was not earlier used with the extended chain forwarding etc.

This algorithm helps in maintaining the consistency of the movable data objects on the basis of the various states maintained at each site. One feature of the algorithm is that it never uses token for maintaining the mutual exclusion in the system.

After accessing the data objects, it is the responsibility of each site participating in the communication to update other sites with the latest information structure so that all the sites will be having the reliable information about the network. In order to maintain this, along with these data structures, we have used three messages named data_request, update_info and update_op_begin for sending the request for the data, updating the INFO structure at each site and for locating the data object.

With performance analysis, we have shown the effect of our algorithm by increasing the number of sites (N), the number of maximum requests per cycle, and number of data objects available (M) in the system. Proposed algorithm’s performance does not degrade on increasing the number of sites or data objects which can be seen in chapter 5.

This algorithm will work even if more than one process is running in a site with the help of different states and message queues maintained at each site. Here we have highlighted the applications where it is necessary to move the data object or part of that from the practical point of view like database migration, transaction processing application, mobile environment etc. In all of these applications, each site has its own responsibility which will keep on changing dynamically. To handle all these requests dynamically, each site is rich enough to have information about the topology with the help of local information structure. However the model proposed in this dissertation is simple and should be used in various applications of mutual exclusion with multiple movable data objects.
2. Future Work

In this dissertation, we have considered only single instance of the each data object. To extend the same model in the future for various applications, we can incorporate the concept of K-Mutex with the proposed one. We can try this model with the multiple instances of the data objects available in the system. In addition to this, we can also add different scheduling algorithms., e.g. priority based methods, shortest job first etc in place of first come first serve which is used in this algorithm. Along with that we can apply this algorithm for various other networks also.

REFERENCES

[1] Andrew S. Tanenbaum, Albert S. Woodhull: Operating Systems Design and Implementation, Second Edition, Pearson Education, 2004.

[2] Mukash Singhal, Niranjan Shivaratri: Advanced concepts in operating systems, Distributed, database and multiprocessor operating systems. TMH,2001.

[3] Silberchatz and Galvin: Operating System Concepts, Fifth Edition, Wiley and sons, 2000.

[4] W. Stallings: Operating Systems, Second Edition, Prentice Hall, 1995.

[5] Lamport L: How to make a Multiprocessor Computer that Correctly Executes Multiprocessor Programs. IEEE Transactions on Computers, C-28(9):690-691, 1997.

[6] L. Lamport: Time, clocks and the ordering of events in a distributed system , Communications of the ACM, Vol. 21, No. 7, pp. 558-565, July 1978.

[7] D. Agrawal, A. El Abbadi: An Efficient and Fault-Tolerant Solution for Distributed Mutual Exclusion, ACM Trans. on Computer Systems, pp. 1-20, Feb. 1991.

[8] Y.-I. Chang: A Simulation Study of Distributed Mutual Exclusion, Journal of Parallel and Distributed Computing, Vol. 33, No. 2, March 15, 1996.

[9] Y.-I. Chang, M. Singhal, M. T. Liu: An improved O(log n) mutual exclusion algorithm for distributed systems, International Conference on Parallel Processing, pp. III 295-302, 1990.

[10] Takahiro Hara, K. Harumoto, M. Tsukamoto, S Nishio: ”Location Management methods of Migratory data resources in ATM Networks”
[11] Y.-I. Chang, M. Singhal, M. Liu: A hybrid approach to mutual exclusion for distributed systems, Proc. of the 14th IEEE Annual International Computer Software and Applications Conference, pp. 289-294, 1990.

[12] Helary, J.M., Mostefaoui, A. and Raynal, M.: A General Scheme for Token- and Tree-Based Distributed Mutual Exclusion Algorithms, IEEE Trans on Parallel and Dist. Systems, 5 (11), pp. 1185-1196. Nov 1994

[13] K. Makki, K. Been, N. Pissinou: A Simulation Study of Token-Based Mutual Exclusion Algorithms in Distributed Systems, Int. Journal in Computer Simulation, 4(1), 1994.

[14] M. Naimi, M. Trehel: An improvement of the log(n) distributed algorithm for mutual exclusion, 7th International Conference on Distributed Computing, pp. 371-375, 1987.

[15] M. Naimi, M. Trehel, A. Arnold: A log(N) Distributed Mutual Exclusion Algorithm Based on Path Reversal, Journal of Parallel and Distributed Computing 34, pp. 1-13, 1996.

[16] Raynal, M.: A simple taxonomy for distributed mutual exclusion algorithms , Operating Systems Review, Vol. 25, No. 2, April 1991, pp. 47-49.

[17] K. Raymond: A Tree-Based Algorithm for Distributed Mutual Exclusion, ACM Transactions on Computer Systems, Vol. 7, No. 1, pp. 61-77, 1989.

[18] K. Raymond: A distributed algorithm for multiple entries to a critical section, Information processing letters, 27: 189-197, 1989

[19] G. Ricart, A. K. Agrawala: A n optimal algorithm for mutual exclusion in computer networks, Communications of the ACM, 24(1), pp. 9-17, Jan. 1981.

[20] M. Singhal: A heuristically-aided algorithm for mutual exclusion in distributed systems, IEEE Transactions on Computers, Vol. 38, No. 5, pp. 651-662May 1989,

[21] M. Singhal: A Taxonomy of Distributed Mutual Exclusion, Journal of Parallel and Distributed Computing 18, pp. 94-101, 1993.

[22] Kamal J., Singhal M.: On Formal Verification of Distributed Mutual Exclusion Algorithms , Ohio State University, Dept. of Computer Science, Technical Report, April 1993.

[23] M. Singhal: A dynamic information-structure mutual exclusion algorithm for distributed systems , IEEE Transactions on Parallel and Distributed Systems, Vol. 3, No. 1, pp. 121-125, Jan. 1992.

[24] I. Suzuki, T. Kasami: A distributed mutal exclusion algorithm, ACM Transaction on Computer Systems, Vol. 3, No. 4, pp. 344-349, Nov. 1985.

[25] http://citeseer.ist.psu.edu
[26] pcl.cs.ucla.edu/projects/parsec

[27] Bezalel Gavish, Olivia R. Liu Sheng: Dynamic File Migration in Distributed Computer Systems, Communication of the ACM, Vol. 33, p 177-189 Feb 1990.

[28] ANNA HAC: A distributed Algorithm for performance improvement through File Replication, File Migration and Process Migration, IEEE transaction on software engineering, Vol. 15, No 11, Nov 1989.

[29] Evaggelia Pitoura, George Samaras: Locating object in mobile computing, IEEE transaction on Knowledge and Data Engineering, Vol 13, No 4, July/ August 2001.

[30] P. K. Srimani and R.L.N Reddy: Another distributed algorithm for multiple entries to a critical section. Information Processing Letters, 41: p 51-57, 1991.

[31] D. Agrawal and A. El Abbadi: The generalized tree quorum protocol: An efficient approach for managing replicated data. ACM Transaction s on database Systems, 17(4): 689-717, 1992.

[32] http://en.wikipedia.org
[33] http://bytes.com
[34] http://www.cs.virginia.edu/
[35] Hara, T., harumoto, K., tsukamato, M.. and Nishio, S.: database migration for Transaction Processing in ATM Networks, Proc of the International Conference on information networking. ICOIN -11

[36] Kadobayashi, R. and Tsukamoto M: Performance Comparison of mobile Computing and Networking pp 218-225, 1995

Figure 5.2(f)

Figure 5.2(e)

Figure 5.2(d)

Figure 5.2(c)

Figure 5.2(b)

Figure 5.2(a)

Figure 5.1(d)

Figure 5.1(c)

Figure 5.1(b)

Figure 5.1(a)

Fig 4.7 (e)

 Request(C,D,D1)

Update_info(C,A,D1)

Update_info(D,C,D1)

 update_op_beg (D,A)

Request(A,C,D1)

E

D

C

B

A

Figure 4.7 (d)

 Msg_ti(C,D)

 Update_op_beg(C,E)

 Update_op_beg(C,A)

Request(A,C,D1)

E

D

C

B

A

Figure 4.7 (c)

 Update_op_beg (C,A)

Request(A,C,D1)

E

D

C

B

A

Figure 4.7 (b)

Request(A,C,D1)

E

D

C

B

A

Figure 4.7 (a)

Request (A,A,D2)

E

D

C

B

A

Figure 4.2.3 (a) Tree Topology

Figure 3.2 (e)

Operation begin

Query message

Query message

Query message

Query message

B

C

E

A

D

Figure 3.2 (d)

Operation begin

Request Accepted

Request Discarded

Request Discarded

Operation begin

Operation begin

Operation begin

B

C

E

A

D

Request Discarded

Figure 3.2 (c)

4

Operation begin request

2

Destination site location Reply

3

1

Request for the Destination site location

D

Object moved

Location Management Server

B

E

A

C

Figure 3.2 (b)

3

2

1

Connection to the Destination site

Operation begin request

D

Operation begin Site

Object moved

Location Management Server

B

E

A

C

Figure 3.2 (a)

Object moved

Object moved

Object moved

Object moved

B

C

E

A

D

 Figure 3.1.2 (a)

Figure 2.4.2.2 (a)

S61

S51

S41

S31

S21

S11

Fig 2.2(b)

CS execution time

site enters CS

Time

 Response Time

site exits CS

Its request messages sent out

Fig 2.2(a)

Time

Synchronization delay

Next site enters CS

Last site exits CS

function receiver()�{�var Message = new Buffer(); . . .�// point of Rendezvous �// wait if the sender is not ready�x = Message;�}

function sender(mX)�{�. . .�m = mX;�send(m,"receiver");�. . .�}

var iAmReady = false;�function A()�{�. . .�// signal (!)�iAmReady = true;�. . .�}

function B()�{�. . .�if (!iAmReady){�// wait 300 mseconds� setTimeout("B()",300);return;}�. . .�}

Signal state V(S):

if wait queue for S is not empty then remove a process from the queue and give it the object

else

S := S + 1

end if

Wait state P(S):

 if S (1 then S := S – 1

else

executing process waiting for the semaphore S joins the wait queue for S and forfeits the object;

end if

var x = 0;�function A()�{

x = x + 1;

}�function B()�{

x = x + 2;

}

Interrupt

Figure 1.2 (a) States of Process

Dispatch

I/O or event wait

I/O or event completion

blocked

running

ready

Figure 1.1.1 (a) Architecture of a distributed system

Memory

Disk

CPU

Memory

Disk

CPU

Memory

Disk

CPU

Memory

Disk

CPU

Communication Network

PAGE
1

_1095859798.doc

Р1

Р3

Р2

Р4

в3

в1

в2

в4

Р1, P2, P3, P4 – philosophers

в1, в2, в3, в4 – forks

Two forks are needed to eat

