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                                                     ABSTRACT 

 

Economic load dispatch problem allocates loads to plants at minimum cost while meeting the 

constraints. It is done by an optimization problem which minimizes the total fuel cost of all 

committed plants while meeting the demand and losses. 

 

There are various objectives of power system- cost of generation, transmission losses and 

environment pollution etc. In this work the cost of generation and transmission losses have been 

considered as objectives for optimization. 

 

The multiobjective optimal power dispatch (MOPD) problem is formulated using weighting 

method and a number of noninferior solutions are generated in 2D space by varying weights for 

IEEE 5, 14 and 30 bus systems.  

 

Ideal Point (IP) is one where all the objectives are minimum and it is impossible to achieve this 

point because of conflicting nature of the objectives therefore an attempt is made to minimize the 

Euclidean distance between the Ideal Point (IP) and set of noninferior solutions. This gives the 

Target Points (TP) or the best compromise solution for all these system in 2D space. 
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                                 CHAPTER – 1 

                                     INTRODUCTION 

 

1.1 Overview  

The optimal power system operation is achieved when are various objectives of power system  

-cost of generation, system transmission losses and environmental pollution etc. are 

simultaneously attained. But these objectives are conflicting in nature and cannot be handled by 

conventional single objective optimization techniques. Single objective optimization techniques 

give optimal solution in respect of a single aspect, i.e. they give the best value of the objective 

function under consideration. The values of other objectives at such a solution may be 

intolerably bad. But there is no other solution to facilitate the decision making process. The way 

out, therefore, lies in the multiobjective approach [27, 28] to problem solving. 

 

Multiobjective optimization (or programming), [18, 19, 20] also known as multi-criteria or 

multi-attribute optimization, is the process of simultaneously optimizing two or more conflicting 

objectives subject to certain constraints. The solution of multiobjective optimization gives us a 

number of solutions called noninferior solution. 

 

The multiobjective considered for optimal power dispatch are – cost of generation (FC) and 

transmission losses (FL). In economic load dispatch, cost of generation is considered as the 

objective function is to be minimized while satisfying load demand. 

 



 
2 

 

A feasible solution to a multiobjective programming problem is noninferior if there exists no 

other feasible solution that will yield an improvement in one objective without causing 

degradation in at least one of other objectives [18, 24]. A given noninferior solution or may not 

be acceptable to the decision maker. However, it is important to note that, it is one of these 

noninferior solutions for which decision maker looks for.   

 

The ideal situation where one would like to operate the power systems is one where all the 

objectives are minimizing. But this is not feasible due to conflicting nature of objectives. 

Therefore, one can achieve a point which is non-inferior and at the minimum distance from the 

ideal point. Such a point is known as the Target Point (TP) or the best compromise solution. 

 

There are various techniques for generating noninferior solutions- weighting method [23], 

constraint method and NIES method etc. In this thesis; the MOPD problem has been formulated 

using weighting method and has been solved by GA tool of MATLAB. This gives us noninferior 

noninferior solutions in 2D space for IEEE 5, 14, and 30 bus systems. Such analysis, the power 

system operation point can be determined. The distance of all the feasible operating points 

(noninferior solutions) from the ideal power system operation point is calculated by minimum 

distance method and the optimal power system operation is one for which this distance is 

minimum. This method directly gives the best compromise solution.   

 

1.2 Objective and Methodology 

Our objective in this work is to solve multiobjective optimal power dispatch (MOPD) problem 

by using minimum distance method with the help of GA tool. GA (Genetic Algorithm) is based 
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on the technique of natural selection. Genetic algorithms are often applied as approaches to solve 

global optimization problems. 

 

1.2.1 Tool (GA tool) in MATLAB 

Genetic algorithm software extends the optimization capabilities in MATLAB optimization 

toolbox. GA tool use these algorithms for problems that are difficult to solve with traditional 

optimization techniques, including problems that are not well defined or are difficult to model 

Mathematically.GA is also used when computation of the objective function is discontinuous, 

highly nonlinear, stochastic, or has unreliable or undefined derivatives. 

 

The Genetic Algorithm Toolbox is closely integrated with MATLAB and the Optimization 

toolbox. We can use the genetic algorithm and pattern search to find adept Starting points and 

then use the Optimization Toolbox solvers or MATLAB routines to further refine optimization. 

Solvers are available for both constrained and unconstrained optimization problems. 

 

GA Toolbox complements other optimization methods, helps to find best fitness value and 

minimum point of the objective function. GA tool varies on various optional parameters like 

population, selection, fitness scaling, crossover, mutation, stopping criteria, plot function and 

output function, display to command window for finding the best fitness value. It's important to 

understand that the functioning of such an algorithm does not guarantee success. It has been 

shown that the genetic algorithm finds the best fitness. 
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1.2.2 Executing constrained and unconstrained minimization 

The various problem constrained and unconstrained minimization of functions both single 

variable and multi variable. The analysis of results and accuracy are checked by varying the 

various stopping criterion. 

1.3 Literature Survey 

The literature of the economic dispatch problem and its solution methods are surveyed in [2] and 

[22]. Recently, a global optimization technique known as genetic algorithm which is a kind of 

the probabilistic heuristic algorithm has been studied to solve the power system optimization 

problems. Sheble, et al. [10, 12] used GA to solve the economic dispatch problem and presented 

the results for three units. Bakirtzis et al [11] have proposed a simple genetic algorithm solution 

to the economic dispatch problem. The operation cost obtained from GA was slightly higher than 

the optimum cost. Chang and Chen [13] have presented a genetic algorithm for solving economic 

dispatch problem. The proposed method can take into account network losses, ramp rate and 

valve point zone. A fuzzy logic controlled genetic algorithm has been applied to environmental – 

economic dispatch by Song et al. [14] Song and Chou [15] have proposed a hybrid GA that is 

combination strategy involving local search algorithms and genetic algorithm. 

 

The analysis of multiobjective programming has evolved over the last years, in the areas of 

operations research, economies and psychology, applied mathematics and engineering. The 

theoretical work of Kuhn and Tucker [16] provided the basis for later algorithmic developments 

of mathematical programming. Gass and Satty [17] provided the first approach to multiobjective 

programming problems. They generated noninferior solutions in two – objective problems by 

parametrically varying the coefficients of objective function. 
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Chen and Chen [29] solved the multiobjective power dispatch (MPD) problem with line flow 

constraints consisting of minimization of cost of generation and system transmission losses using 

the fast Newton-Raphson approach. 

 

Abido and Al-Ali [31] presented a Multiobjective Differential Evolution (MODE) based 

approach to solve the optimal power flow (OPF) problem. OPF problem has been treated as a 

true multiobjective constrained optimization problem. Different objective functions and different 

operational constraints have been considered in the problem formulation. A clustering algorithm 

is applied to manage the size of the Pareto set. Also, an algorithm based on fuzzy set theory is 

used to extract the best compromise solution. Simulation results on IEEE-30 bus test system 

show the effectiveness of the proposed approach in solving true multi-objective OPF and also 

finding well distributed Pareto solutions.  

Wadhwa and Jain [23] formulated the multiobjective OPF problem using Weighting method as 

weighted sum of the cost of generation (FC) and system transmission (FL). Detailed studies are 

carried out on three standard systems [1, 3] by considering various values of weights for cost of 

generation and system transmission losses. The final operating point or Target Point is chosen to 

be the one for which percentage saving in cost of generation and system transmission losses are 

same. 

 

Jain and Wadhwa [26] considered three aspects of optimal load flow (OLF) problem- cost of 

generation, system transmission loss and pollution. The multiobjective optimal power flow is 

formulated using weighting method as the weighted sum of the objective functions. Numerous 
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multiobjective optimal power flow studies are carried out on 5 bus system with various values of 

weights attached to three objective functions. The distance of each of the feasible point from the 

ideal point the point which has coordinates (FCmin, FLmin, FEmin)) is calculated and the point with 

the minimum distance from the ideal point is chosen to be the Target Point.  

 

Nangia, Jain and Wadhwa [30] formulated the Multiobjective optimal load flow based on ideal 

distance minimization in 3D space. Three objectives of Multiobjective optimal load flow 

(MOLF) problem- cost of generation; system transmission loss and pollution- are considered. 

The MOLF problem is formulated as a Multiobjective optimization problem using weighting 

method and a number of noninferior solutions are generated in 3D space. The optimal power 

system operation is attained by ideal distance minimization Euclidean distance between Ideal 

Point (IP) and set of noninferior solutions. This method has been applied to three IEEE standard 

systems.     

 

1.4 Object of dissertation 

The scope of the thesis work is summarized as follows: 

1. Main objective of project is to solve multiobjective optimal power dispatch (MOPD)- 

consisting of cost of generation and system transmission loss. 

2. Use global search techniques like GA (Genetic Algorithm) to find the optimal solution. 

3. MOPD problem has been formulated using weighting method. The noninferior set is 

generated by varying the weights and solving the problem using GA. The Target Point 

(TP) is determined using minimum distance method. 
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CHAPTER-2 

Economic Load Dispatch 

 

2.1 Introduction  

Electrical energy can not be stored but is generated from natural sources and delivered as the 

demand raises. A transmission system is used for the delivery of bulk power over considerable 

distances. The power system consist of three parts, generator, which produces electricity, 

transmission line, which transmits it to far away places and load, which uses it. This 

configuration is applicable to all the interconnected networks but the number of elements may 

vary. The transmission networks are interconnected through tie lines so that utilities may 

interchange power, share reserve and render assistance to one another at the time of need. Since 

the sources of energy are so diverse, so the choice of the required sources is made on economic, 

technical and geographical basis. As there are few facilities to store electrical energy, the net 

production of a utility must clearly track its total load. For an interconnected system, it is 

necessary to minimize the expenses. The economic load dispatch (ELD) is used to define the 

production level of each plant, so that the total cost of generation and transmission is minimum 

for a prescribed schedule of load or ELD may also be defined as the process of allocating 

generation levels to the generating units in the mix, so that the system load may be supplied 

entirely and most economically.  
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2.2 Load Dispatching 

Nowadays operation of a modern power system has become very complex. It is necessary to 

maintain frequency and voltage within limits, which is done by matching the generation of active 

and reactive power with the load demand. In addition, for ensuring reliability of power system it 

is mandatory to put additional generation capacity into the system in the event of outage of 

generating equipment at some station. Above all cost of electric supply should be ensured at 

minimum. The total interconnected network is controlled by the load dispatch centre which 

allocates the MW generation to each grid depending upon the prevailing MW demand in that 

area. Each load dispatch centre controls load and frequency of its own by matching generation in 

various generating stations with total required MW demand plus MW losses. Therefore, the task  

of load control centre is to keep the exchange of power between various zones and system 

frequency at desired values. 

 

2.3 Economics of Power Generation of Thermal Plant 

In all engineering works, the question of cost is of first importance. The electrical power supplier 

is required to supply power to a large number of consumers to meet their requirements. While 

designing electrical power generating stations and other systems efforts are made to achieve 

overall economy so that per unit cost of generation is the lowest possible. This will enable the 

supplier to supply electrical energy to its consumer at reasonable rates. The cost depends on the 

number of hours the plant is in operation or upon the number of units of electrical energy 

generated i.e. the operating cost is approximately proportional to units generated. Total annual 

cost incurred in the power generation is represented by the expression (2.1). 

 



 
9 

 

Ci (P¡ (t)) = Σ(ai Pi² + b¡ P¡ + Ci )                                                                                                (2.1)                               

                                                                                              Where (i=1,2,.......,Ng)                       

                                                                                               Ng = number of generators 

 

The factors influencing power generation at minimum cost are operating efficiencies of 

generators, fuel cost and transmission losses. The most efficient generator in the system does not 

guaranteed minimum cost as it may be located in an area where fuel cost is high. Also, if the 

plant is located far from the load centre, transmission losses may be considerably higher and 

hence, the plant may be overly uneconomical. Hence, the problem is to determine the generation 

of different plants such that the total operating cost is minimum. The operating cost plays an 

important role in the economic scheduling. 

 

The cost of fuel used for economic of power generation is specified by the input-output curve of 

a generating unit. The input to the thermal plant is generally measured in BTU/hr and the output 

is measured in MW. A simplified input output curve of the thermal unit known as heat rate curve 

is given in following fig. 2.1(a). The Converting the ordinate of heat rate curve from BTU/hr to 

Rs/hr. results in the fuel cost curve shown in fig. 2.1(b) 
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Fig. 2.1(a) Heat-rate curve 

 

 

Fig 2.1(b) Fuel-rate curve 

 

In all practical cases, the fuel cost of generator i can be represented as a quadratic function of 

real power generation from equation (2.1).An important characteristic is obtained by plotting the 

derivative of fuel cost curve vs. real power. This is known as the incremental fuel cost curve 

shown in fig. 2.1(c). 
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     dC¡/dP¡ = 2a¡ P¡ + b¡                                                                                                             (2.2) 

  

The incremental fuel cost curve is measure of how costly it will be to produce the next increment 

of power. The total operating cost includes the fuel cost, and the cost of labor, supplies and 

maintenance. These costs are assumed to be a fixed percentage of the fuel cost and are generally 

included in the incremental fuel cost curve. 

 

 

Fig. 2.1(c) Incremental fuel-cost curve 

 

2.4 Transmission Losses 

When transmission distances are very small and load density is very high, transmission losses 

may be neglected and the optimal dispatch of generation is achieved with all plants operating at 

equal incremental production cost. However, in a large inter connected network where power is 

transmitted over long distances with low load density areas, transmission losses are major factor 

and affect the optimum dispatch of generation. One common practice for including the effect of 
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transmission losses is to express the total transmission loss as a quadratic function of the 

generator power outputs. The simplest quadratic form is 

 

PL=ΣΣ Pi Bij Pj                                                                  (i, j=1, 2,……,Ng)                           (2.3) 

 

Where i=j= number of generating units or plants i.e. i=j=1,2,3,….,Ng 

Where Ng = number of generators. 

A more general formula containing a linear term and a constant term, referred to the  

Kron’s loss formula, is 

 

PL = ΣΣ P¡ B¡j Pj + Σ B0¡ P¡ + B00                                                                                             (2.4) 

 

The coefficients Bij are called loss coefficients or B-coefficients. These B coefficients for a given 

system are assumed to remain constant, and reasonable accuracy can be expected provided the 

actual operating conditions are close to the base case where the B constants are computed. There 

are various ways of arriving at a loss equation. 

 

2.5 ELD Formulation 

The economic dispatching problem is to minimize the overall generating cost which is the 

function of plant output given by 

 

     Ci (P¡ (t)) = Σ ai Pi² + b¡ P¡ + Ci                                 (i=1,2,.......,Ng)                                   (2.5) 
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Subject to the constraints that generation should equal total demand plus losses, i.e. 

 

     Σ Pi = PD + PL                                                                                                                         (2.6) 

 

Satisfying the inequality constraints, expressed as follows: 

 

   Pi(max) ≤ Pi ≤ Pi(min)                  (i=1,2,……,Ng)                                                                             (2.7)         

                                                                             

Where Pi(min) and Pi(max) are the minimum and maximum generating limits, respectively, for plant 

i. 
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CHAPTER-3 

Genetic Algorithm 

 

3.1 Introduction 

A global optimization technique known as genetic algorithm (GA) has emerged as a candidate 

due to its flexibility and efficiency for may optimization applications. Genetic Algorithm is a 

stochastic searching algorithm. The Darwinian Survival of the fittest principle with genetic 

operation, abstracted from nature to form a robust mechanism that is very effective at finding 

optimal solution to complex-real world problems. Evolutionary computing is an adaptive search 

technique based on the principles of genetics and natural selection. They operate on string 

structures. The string is a combination of binary digits representing a coding of the control 

parameters for a given problem. Many such string structures are considered simultaneously, with 

the most fit of these structures receiving exponentially increasing opportunities to pass on 

genetically important material to successive generation of string structures. Genetic algorithms 

search for many points in the search space at ones, and yet continually narrow the focus of the 

search to the areas of the observed best performance. The basic elements of genetic algorithms 

are reproduction, crossover, and mutation. 

 

The first step is the coding of control variables as string in binary numbers. In reproduction, the 

individuals are selected based on their fitness values relative to those of the population. In the 

crossover operation, two individual strings are selected random from the mating pool and a 
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crossover site is selected at random along the string length. The binary digits are interchanged 

between two strings at the crossover site. In mutation, an occasional random alteration of a 

binary digit is done. 

 

3.2 Algorithm: Genetic Algorithm 

1. Code the problem variables into binary strings. 

2. Randomly generate initial population strings. Tossing of a coin can be used. 

3. Evaluate fitness values of population members. 

4. Is solution available among the population? If ‘yes’ then GOTO step9. 

5. Select highly fit strings as parents and produce off springs according to their fitness. 

6. Create new strings by mating current off spring. Apply crossover and mutation  

7. Operators to introduce variations and form new strings. 

8. New strings replace existing one. 

9. GOTO step 4 and repeat. 

10. Stop 

 

          GA differs from more traditional optimization techniques as 

- Genetic algorithms use objective function information to guide the search, not derivative 

or other auxiliary information. Evolution of a given function uses the  

- Parameters, encoded in the string structures. 

- Genetic algorithms use a coding of the parameters used to calculate the objective function 

in guiding the search, not the parameters themselves. 
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- Genetic algorithms search through many points in the solution space at one time, not a 

single point. 

- Genetic algorithms use probabilistic rules, not deterministic rules, in moving from one set 

of solution (a population) to the next. 

 

3.3 Fitness Function 

GA is usually suitable for solving maximization and minimization problems [7]. Minimization 

problems are usually transformed into maximization problems by some suitable transformation. 

In general, fitness function F(x) is first derived from the objective function and used in 

successive genetic operations. 

 

Certain genetic operators require that fitness function be non-negative, although certain operators 

do not have this requirement. Consider the following transformation 

 

F(x) = f(x)   for maximization problem 

F(x) = 1/f(x)   for minimization problem, if f(x) ≠ 0 

F(x) = 1/(1+f(x)),  if  f(x) = 0 

 

A number of such transformations are possible. The fitness function value of the string is known 

as string’s fitness. 
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3.4 Example 

Two uniform bars are connected by pins at A and B and supported at A. A horizontal force P acts 

at C. knowing the force, length of bars and its weight determined the equilibrium configuration 

of the system if friction at all joints are neglected (see Fig.) 

 

 

Fig 3.1 Two bar pendulum 

 

Given P=W1=W2=L1=L2=2 

The total potential for two bar pendulum is written as 

∏= -P[L1 Sin(θ1) + L2 Sin(θ2)]-(W1L1/2)Cos(θ1)-W2[(L2)/2 Cos(θ2)+L1Cos(θ1)]                     (3.1)                                                                                                                                         

Putting the values for P, W1, W2 and L1, L2 

∏(θ1, θ2) = -4Sin(θ1)-6Cos(θ1)-4Sin(θ2)-2Cos(θ2)                                                                     (3.2) 

0≤θ1, θ2≤90                                                                                                                                 (3.3) 

Equilibrium configuration is the one which makes ∏ a minimum. 
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Solution:   

                        δ∏ = 0, for ∏ to be maximum or minimum 

 

                        δ∏ = (d∏/dθ1) + (d∏/dθ2) = 0                                                                           (3.4) 

 

d1, d2 are arbitrary, therefore we get, 

d∏/d θ1 = 4Cos(θ1) - 6Sin(θ1) = 0                                                                                              (3.5) 

d∏/d θ2 = 4Cos(θ2) - 2Sin(θ2)  = 0                                                                                             (3.6) 

 

from equation (5) & (6), 

tanθ1= 2/3,    θ1= 33.7° (0.588 radians) 

tanθ2 = 2,      θ2= 63.43° (1.107 radians)  

for which     ∏ = -11.68 

 

Since there are two unknowns and in this problem, we will use 4 bit binary string for  

each unknown. 

                     Accuracy = (Xⁿ - Xª) / (2²×2² – 1) = 90/15 = 6° 

Hence the binary coding and the corresponding angles are given as 

                      X¡ = (X¡ª) + [(X¡ⁿ -X¡ª) / (2²×2² – 1) ] S¡ 

 

Where, S¡ is the decoded value of the ¡th chromosome. The binary coding and the  

corresponding angles are given in Table-3.1. 
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Table-3.1 Binary coding and the corresponding angles                  

S. NO. Binary coding Angle 

1 0000 0 

2 0001 6º 

3 0010 12º 

4 0011 18º 

5 0100 24º 

6 0101 30º 

7 0110 36º 

8 0111 42º 

9 1000 48º 

10 1001 54º 

11 1010 60º 

12 1011 66º 

13 1100 72º 

14 1101 78º 

15 1110 84º 

16 1111 90º 

 

Since the objective function is negative, instead of minimizing the function ‘f’ let us maximize –

f=f’. The maximum value of f = 8 when θ1, θ2 are zero. Hence the fitness function F is given as 

F = f’ – 7 = -f – 7 

First randomly generate eight populations with 8-bit strings as shown in Table-3.2                    
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                   Table-3.2 Computation of fitness function 

 

 

The objective function of the problem is given in equation (3.2). The contours of the objective 

function as well as the 2D plot are shown in Fig.3.2 

 

 

                     Fig 3.2 Contours of equal objective function 
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3.5 Reproduction 

Reproduction is usually the first operator applied on population. Chromosomes are selected from 

the population to be parents to crossover and produce offspring. According to Darwin’s 

evolution theory of survival of the fittest, the best ones should survive and create new offspring. 

That is why reproduction operator is sometime known as the selection operator. The various 

method of selecting chromosome for parents to crossover is roulette-wheel selection, tournament 

selection, rank selection and elitism. 

 

3.6.1 Roulette-wheel selection 

The commonly used reproduction operator is the proportionate reproductive operator where a 

string is selected from the mating pool with a probability proportional to the fitness. Thus, ith 

string in the population is selected with a probability proportional to Fi where Fi is the fitness 

value for that string. Since the population size is usually kept fixed in simple GA, the sum of the 

probability of each string being selected for the mating pool must be one. The probability of the 

ith selected string is 

 

 

Where ‘n’ is the population size. For the example problem discussed in 3.5 Example the 

probability values of each string are given in Table-3.3   
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    Table-3.3 Probability of individual string 

 

 

One way to implement this selection scheme is to imagine a roulette-wheel with its 

circumference for each string marked proportionate to string’s fitness (see Fig-3.3).  

 

 

Fig-3.3 Roulette-wheel marked for eight individuals according to fitness 



 
23 

 

The fitness of the population is calculated as roulette wheel is spun ‘n’ times, each time selecting 

an instance of the string chosen by the roulette-wheel pointer. Since the circumference of the 

wheel is marked according to a string’s fitness. The roulette-wheel mechanism is expected to 

make  copies of ith string of the mating pool                                                                        

The average fitness   

                                              

Fig-3.3 shows a Roulette-wheel for eight individuals having different fitness values. Since the 

fifth individual has a higher fitness than any other, it is expected that the Roulette-wheel section 

will choose the fifth individual more than any other individual. 

 

3.6 Crossover 
The basic operator for producing new chromosome is crossover. In this operator, information is 

exchanged among strings of matting pool to create new strings. The aim of the crossover 

operator is to search the parameter space. Crossover is a recombination operator, which proceeds 

in three steps. First, the reproduction operator selects at random a pair of two individual string 

for mating, then a crossover site is selected at random along the string length and the position 

values are swapped between two string following the cross site. Single point crossover, Two 

point crossover, Multi point crossover, Uniform crossover, Matrix crossover etc. In the single 

point crossover, two individual strings are selected at random from the matting pool. Next, a 

crossover site is selected randomly along the string length and binary digits (alleles) are swapped 

between the two strings at crossover site. Suppose site 3 is selected at random. It means starting 
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from the 4th bit and onwards, bits of strings will be swapped to produce offspring which is given 

in Example-1. 

 

Example-1 Single point crossover operation 

Parent 1:              X1 = { 0 1 0 1 1 0 1 0 1 1 } 

Parent 2:              X2 = { 1 0 0 0 0 1 1 1 0 0 } 

 

Offspring 1:          X1 = { 0 1 0 0 0 1 1 1 0 0 } 

Offspring 2:          X2 = { 1 0 0 1 1 0 1 0 1 1 } 

 

In a two point crossover operator, two random sites are chosen and the contents bracketed by 

these sites are exchanged between two mated parents. If the cross site 1 is three and cross site 2 

is six, the strings between three and six are exchanged which is shown in Example-2. In a 

multipoint crossover, again there are two cases. One is even no of cross sites and other is odd no 

of sites. For even no of sites the string is treated as a string and cross sites are selected around the 

circle uniformly at random. 

 

Example-2 Two point crossover operation 

Parent 1:           X1 = {0 1 0 1 1 0 1 0 1 1} 

Parent 2:          X2 = {1 0 0 0 0 1 1 1 0 0} 

 

Offspring 1:      X1 = {0 1 0 0 0 1 1 0 1 1} 

Offspring 2:      X2 = {1 0 0 1 1 0 1 1 0 0} 
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Sites are selected around the circle uniformly at random if the number of cross sites is odd, then 

a different cross point is always assumed at the string beginning. 

 

3.7 Mutation 

The final genetic operator in the algorithm is mutation. In general evolution, mutation is a 

random process where one allele of a gene is replaced by another to produce a new genetic 

structure. Mutation is an important operation, because newly created individuals have no new 

inheritance information and the number of alleles is constantly decreasing. This process results in 

the contraction of the population to one point, which is wished at the end of convergence 

process. Diversity is one goal of the learning algorithm to search always in regions not viewed 

before. Therefore, it is necessary to enlarge the information contained in the population. One 

way to achieve this goal is mutation. The role of mutation is often seen as providing a guarantee 

that the probability of searching any given string will never be zero and acting as safety net to 

recover good genetic material that may be lost through the action of selection and crossover. In 

GA’s mutation is randomly applied with low probability in the range of 0.001 & 0.01 and 

modifies elements in the chromosome. Here, binary mutation flips the value of the bit at the loci 

selected to be the mutation point. Given that mutation is applied uniformly to an entire 

population of strings, it is possible that a given string may be mutated at more than one point. 

 

Example-3 Mutation operation  

Offspring                X1: 1 1 1 1 0 1 0 

New offspring        X2: 1 1 0 1 0 1 0 
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3.9 Minimize a fitness function using GA toolbox 

This is a demonstration of how to create and minimize fitness function of unconstraint problem 

with the help of genetic algorithm (GA). 

3.9.1 Unconstrained Minimization Problem 

Here we want to minimize a objective function of two variables 

 

since the objective function is negative, instead of minimizing the function ‘f’ let us  

maximize –f=f’. 

 

3.9.2 Coding the Fitness Function 

We create an M-file named fitness_2bp.m with the following code in it: 

   function y = fitness_2bp(x) 

   y = -4*sin(x(1))-6*cos(x(1))-4*sin(x(2))-2*cos(x(2)); 

The Genetic Algorithm solver assumes the objective function will take one input x, where x is a 

row vector with as many elements as number of variables in the problem. The fitness function 

computes the value of the function and returns that scalar value in its one return argument y.  
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3.9.3 Maximizing Using GA 

To maximize our objective function using the GA function, we need to pass in a function handle 

to the objective function as well as specifying the number of variables in the problem.  

FitnessFunction = @fitness_2bp; 

numberOfVariables = 2; 

[x,fval]=ga(@fitness_2bp,2) 

 

Optimization terminated: average change in the fitness value less than options. TolFun. 

x = 

    0.5717    1.1076 

 

    fval = -11.6823   

                        

3.9.4 Maximizing unconstraint problem using gatool 

In fitness function box we have mentioned the name toolbox and saved M-file with starting 

character as @fitness_2bp and number of variable box we have to mention the below toolbox 

(no. of variables present in the given fitness function). We have to select plot function (at least 1)  

to show the plot. By default display to command window is off so it is required to choose an 

option other than off. When we click the start button, we get the best fitness point and minimum 

point of the fitness function. 
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FitnessFunction = @fitness_2bp; 

numberOfVariables = 2; 

 

 

 

Optimization terminated: average change in the fitness value less than options. TolFun. 

 

x = 

        0.589    1.105 

 

fval = -11.6832 
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3.10 Advantages of GA 

Advantages of GA’s are given below as discussed in [5, 27]. 

-  Simple to understand and to implement, and early give a good near solution 

-  Optimizes with continuous or discrete variables. 

- Doesn’t require derivative information. 

-  Simultaneously searches from a wide sampling of the cost surface. 

- Deals with a large number of variables. 

-  Is well suited for parallel computers. 

- Optimizes variables with extremely complex cost surfaces (they can jump out 

           of a local minimum). 

- Provides a list of optimum variables, not just a single solution. 

- Can encode the variables so that the optimization is done with the encoded variables. 

-  Works with numerically generated data, experimental data, or analytical encoded 

variables. 

- Works with numerically generated data, experimental data, or analytical functions. 

Therefore, works on a wide range of problems. 

-  For each problem of optimization in GAs, there are number of possible encodings. 

 

These advantages are intriguing and produce stunning results where traditional optimization 

approaches fail miserably. Due to various advantages as discussed above, GAs is used for a 

number of different application areas. In power system, the GAs has been used in following 

areas: 
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- Loss reduction using Active Filter 

- Power system restoration planning 

- Controllers 

- Optimal load dispatch 

- Voltage stability 

 

3.11 Disadvantages of GA 

In spite of its successful implementation, GA does posses some weaknesses leading to 

- Longer computation time. 

- Less guaranteed convergence, particularly in case of epistemic objective function 

containing highly correlated parameters [6, 8]. 

- Premature convergence of GA is accompanied by a very high probability of entrapment 

into the local optimum [9]. 

- GAs tends to fail with the more difficult problems and need good problem knowledge to 

be tuned. 

- Need much more function evaluations than linearized methods. 

- No guaranteed convergence even to local minimum [9]. 

- Have to discretize parameter space [6, 8]. 
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3.12 Multiobjective optimization using GA 

Being a population-based approach, GA is well suited to solve multiobjective optimization 

problems. A generic single objective GA can be modified to find a set of multiple non-dominated 

solutions in a single run. The ability of GA to simultaneously search different regions of a 

solution space makes it possible to find a diverse set of solutions for difficult problems with non-

convex, discontinuous, and multi-modal solutions spaces. The crossover operator of GA may 

exploit structures of good solutions with respect to different objectives to create new non 

dominated solutions in unexplored parts of the Pareto front. In addition, most multiobjective GA 

do not require the user to prioritize, scale, or weight objectives. Therefore, GA has been the most 

popular heuristic approach to multiobjective design and optimization problems.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
32 

 

CHAPTER- 4 

Multiobjective Optimal Power Dispatch (MOPD) 

Using Weighting Method 

 

4.1 Introduction 

The optimization Process consists of three basic components: an objective function, variables, 

and constraints.  It finds the value of the variables that minimize or maximizes the objective 

function while satisfying the constraints. The problem relies on many variables and therefore 

various combinations of values of the variables have to be explored to obtain the optimized 

objective function [33]. Confliction criteria such as cost, capacity performance and reliability are 

to be considered simultaneously and most suitable one is selected. This is also called a multi 

objective optimization problem (MOOP). 

 

If a multiobjective problem is well formed, there should not be a single solution that 

simultaneously minimizes each objective to its fullest. In each case we are looking for a solution  

for which each objective has been optimized to the extent that if we try to optimize it any further, 

 then the other objective(s) will suffer as a result. Finding such a solution, and quantifying how  

much better this solution is compared to other such solutions (there will generally be many) is 

the goal when setting up and solving multiobjective optimization problem. 
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Optimal economic dispatch in electric power systems has gained increasing importance as the 

cost associated with generation and transmission of electric energy keeps on increasing. The 

procedure involves the allocation of total generation requirements among the available 

generating units in the system in such a manner that the constraint imposed on different system 

variables are adequately satisfied and the achieved overall cost associated with it is a minimum. 

 

4.2 Formulation of multiobjective problem 

In mathematical terms, the multiobjective problem can be written as: 

Minimize 

                     

S.t. 

                     g(x) ≤ 0 

                     x ≥ 0 

                     h(x) = 0 

 

 Where [Z1(x), Z2(x), ……………, Zn(x)] is the multi objective function,  g and h  are the 

inequality and equality constraints, respectively, and x is the vector of optimization or decision 

variables. 

 

Multiobjective Optimal power dispatch (MOPD) studies have been carried out on IEEE 5, 14 

and 30 bus systems in 2D space. The data of IEE 5, 14 and 30 bus systems is given in Appendix-
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II. In 2D space, two objectives i.e. cost of generation and system transmission Losses are 

considered. 

 

The ideal situation where one would like to operate the power systems is one where all the 

objectives i.e. cost of generation and system transmission losses are minimum. Such a point is 

called the ideal point. In 2D space, it is represented by (FCmin, FLmin).  Therefore, while 

considering multiobjective optimal power dispatch problem, a strategy has to be adopted by the 

power systems analyst or operator to achieve optimum values as per his satisfaction level and 

requirements. The operating point so obtained is called the Target Point (TP) or the best 

compromise solution.  

      

4.3 Weighting Method 

The weighting method identify the noninferior set, which the best compromise solution lies [33],  

also known as the parametric approach, has been the most common method used for solving 

multiobjective problems until recently. Multiobjective problem is converted in this method into 

scalar optimization as given below: 

 

                                                                                  

Subject to                    x є X                                                                  (4.2) 

                                       

Where Wi is the weighting coefficients. 
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The approach yields meaningful results to the decision maker only when solved many times for 

different values of wi (i=1,2,……..,G). Though very little is usually known about the values of 

weighting coefficient, the DM still choose them, presumably on the basis of his institution. The 

weighting coefficients do not reflect proportionally the relative importance of the objectives but 

are only factors which, when varied, locate points in the noninferior set. 

 

3.4 Formulation of MOPD Problem 

Two aspects of the optimal power dispatch (OPD) problem considered in 2D space are: 

1- To minimize the cost of generation. 

2- To minimize the system transmission losses. 

 

The objective function to minimize the cost of generation is given as, 

 

      FC=Σ F[Ci(Pgi)]                                            (i=1,2,…….,NG)                            (4.6) 

 

Where Pgi is the power generation at the ith generator, Ci is the cost of generation for ith 

generator and NG is the total number of generators in the system. 

 

PL=ΣΣ Pi Bij Pj                                                                  (i, j=1, 2,……,Ng)               (4.7) 

Where i=j= number of generating units or plants i.e. i=j=1,2,3,….,Ng 

Where Ng = number of generators. 
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In 2D space, the multiobjective function comprises of cost of generation and system transmission 

losses i.e.  

 

                          F = [ FC, FL]                                                                                                    (4.4) 

 

To generate the noninferior solution of multiobjective optimization problem, the weighting 

method is used. In this method the problem is converted into a scalar optimization problem as 

 

Minimize            

                       F = FCFC +WLFL                                                                                               (4.5) 

Where,    

                FC is the cost of generation and  

                WC is the Weight attached cost of generation. 

                 FL is the System transmission loss 

                 WL is the weight attached system transmission losses. 

 

The multiobjective optimal power dispatch (MOOPD) problem is subjected to inequality and 

equality constraints are given as. 

 

4.5 Ideal distance minimization method 

This method [30] employs the concept of an ‘Ideal Point’ (IP) scalarize the problems having 

multiple objectives and minimizes the Euclidean distance between the IP and the set of feasible 

or non inferior solutions. 
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The ideal situation where one would like to operate the power system is the one where both 

objectives namely cost of generation (Fc) and system transmission loss (FL) are minimum. In 

order to locate the target points in 2D space, the following distance functions are proposed: 

 

In 2D space, it is defined as: 

Distance = [(Fc - FCmin)²+(FL-FLmin)² ]½                                                                                    (4.8) 

Where 

          FCmin – The value of cost of generation obtained by individually minimizing Fc. 

          FLmin – The value of system transmission losses obtained by individually minimizing FL. 

             

This represents the distance of any feasible point from the ideal point. The Target Point to be 

selected is one for which the distance from the ideal point is minimum. 
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CHAPTER-5 

Results and discussion 

 

5.1 Introduction  

The distance function as defined by eq. (4.8) is formulated for multiobjective optimal power 

dispatch (MOPD) in 2D space respectively to locate the target points. This method also gives the 

target points in three steps only, for 5, 14 and 30 bus system in 2D space. The non inferior set 

generate in 2D by varying the weights attached to the objective functions. 

 

5.2 IEEE 5-bus system in 2D space 

The objective function minimizes with respect to weights. Problem has been formulated as 

shown below. 

            Minimize  

                              F = W1 FC + W2 FL 

Where FC = C1 + C2 

Where, C1 and C2 are the cost characteristic as given in APPENDIX-II.                    

Subject to inequality constraint 

 

              30 ≤ Pi ≤ 120              for i=1, 2. 
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And equality constraint 

PGeneration – PDemand – PLoss = 0 

PLoss=ΣΣ Pi Bij Pj      (i, j=1, 2,……,Ng)                

Where i=j= number of generating units or plants i.e. i=j=1,2,3,….,Ng 

Where Ng = number of generators. 

 

5.2.1 M-File for IEEE 5- bus dispatch problem 

Objective function file 

function z = objective_5bus(x) 

z=W1*((50*(x(1)/100)*(x(1)/100))+(351*(x(1)/100))+44.4+(50*(x(2)/100)*(x(2)/100))+(38  

 9*(x(2)/100))+40.6)+W2*((0.00035336*x(1)*x(1))+2*0.0000103196*x(1)*x(2)+0.0003689 

92*x(2)*x(2)); 

 

Constraint function file 

function [c,ceq]=constraint_5bus(x) 

c=[-x(1)+30;x(1)-120;-x(2)+30;x(2)-120]; 

ceq=(x(1)+x(2)-0.00035336*x(1)*x(1)-2*0.0000103196*x(1)*x(2)- 

0.000368992*x(2)*x(2)-160); 

                                      

Run the above program with the help of GA tool from the results. We will obtain P1 and P2 

values when these values are substituted in cost (FC) and loss (FL) function then between Ideal 

Point (IP) and Target Point (TP) will be found. 

                                         



 
40 

 

 Table-5.1 Results of MOPD studies with varying weights in 2D space                            

                                  (IEEE 5-bus system) 

 

S.no. WC WL FC FL Distance 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

10 

1 

0 

0.01 

0.05 

0.1 

0.5 

1 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0.01 

763.1833 

760.951 

760.9597 

760.9628 

760.9614 

760.9595 

760.9644 

761.2431 

761.57 

761.8217 

762.0106 

762.1547 

762.2672 

762.3545 

762.4329 

762.4886 

762.5433 

760.9597 

5.0582 

5.1812 

5.1811 

5.1805 

5.1798 

5.1745 

5.1684 

5.1088 

5.0856 

5.0753 

5.0699 

5.0667 

5.0647 

5.0633 

5.0623 

5.0615 

5.061 

5.1811 

0.022323 

0.0246 

0.02458 

0.02446 

0.02432 

0.02326 

0.02204 

0.010533 

0.008267 

0.009355 

0.010851 

0.012156 

0.013226 

0.014072 

0.014842 

0.1539 

0.015933 

0.02458 
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19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 
 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 
 

0.05 

0.1 

0.5 

1 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 
 

760.9597 

760.9601 

760.9604 

760.9615 

760.9644 

760.984 

761.0039 

761.0321 

761.0637 

761.0982 

761.1353 

761.1704 

761.2036 

761.2392 
 

5.1811 

5.181 

5.181 

5.1797 

5.1684 

5.1577 

5.1483 

5.1403 

5.1333 

5.1271 

5.1217 

5.1169 

5.1126 

5.1087 
 

0.02458 

0.02456 

0.02456 

0.0243 

0.02204 

0.019903 

0.018028 

0.01644 

0.016459 

0.013858 

0.012833 

0.011943 

0.011169 

0.010503 
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Table-5.2 Active power of two generation of IEEE 5-bus system 

 

    S.no W1 W2 
 

P1 P2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

10 

10 

1 

0 

0.01 

0.05 

0.1 

0.5 

1 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0.01 

0.05 

96.568 

97.248 

97.253 

97.218 

97.182 

96.901 

96.568 

92.625 

90.439 

89.169 

88.339 

87.753 

87.318 

86.982 

86.715 

86.497 

86.316 

97.253 

97.252 

68.6 

67.933 

67.928 

67.963 

67.998 

68.273 

68.6 

72.484 

74.646 

75.906 

76.731 

77.314 

77.747 

78.081 

78.348 

78.564 

78.745 

67.928 

67.929 
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20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 
 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 
 

0.1 

0.5 

1 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 
 

97.249 

97.246 

97.181 

96.568 

95.953 

95.396 

94.891 

94.43 

94.007 

93.619 

93.261 

92.929 

92.621 
 

67.932 

67.935 

67.999 

68.6 

69.205 

69.752 

70.249 

70.703 

71.12 

71.503 

71.856 

72.183 

72.487 
 

 

 

 

 

 

 

 

 

 



 
44 

 

Noninferior set for IEEE 5-bus has been shown in graph of fig 5.1, graph has been plotted from 

table 5.1 between transmission loss function (as X- axis) and cost of generation function (Y-

axis), IP shows the Ideal Point which is feasible and TP shows the Target Point or best 

compromise solution which is at minimum distance from Ideal Point, From graph Red point 

indicates Ideal Point (FCmin, FLmin) and Blue point indicates Target Point (FC,*  FL*)) of 

noninferior set.                                                                                     

 

Fig 5.1 2D plot between cost of genration and trnsmission losses 

 

Observation ;  

Cost of generation obtained FC* = 761.57 $/hr 

Transmission loss obtained FL* = 5.0856 MW 

Hence the target point is (FC,*  FL*) or (761.57, 5.0856) and the minimum distance from ideal 

point (760.9515, 0.0582) to target point (761.57, 5.0856) is 0.008265. 
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5.3 IEEE 14- bus system in 2D space 

The objective function is minimizing with respect the weights. We have formulated the problem 

in the following manner: 

              Minimize 

                               F = W1 FC + W2 PLoss 

 

Where FC = C1 + C2+ C6 

Where, C1, C2 and C6 are the cost characteristic as given in APPENDIX-II.   

Subject to inequality constraint 

 

              50 ≤ Pi ≤ 150              for i=1, 2, 6. 

 

And equality constraint 

 

PGeneration – PDemand – PLoss = 0 

PLoss = ΣΣ Pi Bij Pj    (i, j=1, 2,……,Ng)     

            

Where i=j= number of generating units or plants i.e. i=j=1,2,3,….,Ng 

Where Ng = number of generators. 
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5.3.1 M-File for IEEE 14- bus dispatch problem 

Objective function file 

function z = objective_14bus(x) 

z=W1*(((50*(x(1)/100)*(x(1)/100))+(245*(x(1)/100))+105+(50*(x(2)/100)*(x(2)/100))+(351 

*(x(2)/100))+44.4+(50*(x(3)/100)*(x(3)/100))+(389*(x(3)/100))+40.6))+W2*(100*(((x(1)/1 

00)*(x(1)/100)*0.0231)+(2*(x(1)/100)*(x(2)/100)*0.0078)+(2*(x(1)/100)*(x(3)/100)*(0.000 

7))+((x(2)/100)*(x(2)/100)*0.0182)+(2*(x(2)/100)*(x(3)/100)*0.0022)+((x(3)/100)*(x(3)/10 

0)*0.0329))); 

 

Constraint function file 

function [c,ceq]=constraint_14bus(x) 

c=[-x(1)+50;x(1)-150;-x(2)+50;x(2)-150;-x(3)+50;x(3)-150]; 

ceq=(x(1)+x(2)+x(3)-259- 

(100*(((x(1)/100)*(x(1)/100)*0.0231)+(2*(x(1)/100)*(x(2)/100)*0.0078)+(2*(x(1)/100)*(x(3 

)/100)*(0.0007))+((x(2)/100)*(x(2)/100)*0.0182)+(2*(x(2)/100)*(x(3)/100)*0.0022)+((x(3)/ 

100)*(x(3)/100)*0.0329)))); 

 

Run the above program with the help of GA tool from the results. We will obtain P1, P2 and P3 

values when these values are substituted in cost of generation (FC) and transmission losses (FL) 

function then between Ideal Point (IP) and Target Point (TP) will be found. 

 

 

 



 
47 

 

Table-5.3 Results of MOPD studies with varying weights in 2D space 

(IEEE 14-bus system) 

S.no. WC WL FC FL Distance 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

10 

10 

10 

10 

10 

1 

0 

0.01 

0.05 

1 

5 

10 

20 

25 

40 

55 

60 

90 

95 

0 

1 

0.01 

0.05 

0.1 

1189 

1137.5 

1137.5 

1137.5 

1137.8 

1137.8 

1139.6 

1142.1 

1144.6 

1152.8 

1157.5 

1158.8 

1164.8 

1165.6 

1137.5 

1137.5 

1137.5 

1137.5 

1137.5 

7.4 

8.7 

8.7 

8.7 

8.6 

8.6 

8.4 

8 

7.9 

7.7 

7.6 

7.6 

7.5 

7.5 

8.7 

8.7 

8.7 

8.7 

8.7 

51.5 

45.5 

45.5 

45.5 

42.0011 

42.0011 

35.0629 

22.1678 

19.8648 

18.5564 

21.1896 

22.4207 

27.5234 

28.3171 

45.5 

45.5 

45.5 

45.5 

45.5 
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20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 
 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 
 

0.5 

1 

5 

10 

15 

20 

25 

30 

35 

45 

50 

55 

60 

65 

70 

75 

80 

85 

90 

95 

100 
 

1137.5 

1137.5 

1137.5 

1137.5 

1137.5 

1137.5 

1137.5 

1137.5 

1137.5 

1137.7 

1137.8 

1137.9 

1138 

1138.1 

1138.2 

1138.5 

1138.7 

1138.9 

1139.2 

1139.4 

1139.6 
 

8.7 

8.7 

8.7 

8.7 

8.7 

8.7 

8.7 

8.7 

8.7 

8.6 

8.6 

8.6 

8.6 

8.6 

8.5 

8.5 

8.5 

8.5 

8.4 

8.4 

8.4 
 

45.5 

45.5 

45.5 

45.5 

45.5 

45.5 

45.5 

45.5 

45.5 

42.0005 

42.0011 

42.0019 

42.003 

42.0043 

38.513 

38.5064 

38.5187 

38.5254 

35.0413 

35.0515 

35.0629 
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Table-5.4 Active power of three generation of IEEE 14- bus system 

    S.no W1 W2 
 

P1 P2 P3 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

10 

10 

10 

10 

10 

10 

1 

0 

0.01 

0.05 

1 

5 

10 

20 

25 

40 

55 

60 

90 

95 

0 

1 

0.01 

0.05 

0.1 

0.5 

81.59 

150 

150 

150 

147.675 

147.675 

140.707 

129.446 

125.341 

116.463 

110.627 

109.098 

102.512 

101.711 

150 

150 

150 

150 

150 

150 

109.108 

67.692 

67.692 

67.692 

69.944 

69.944 

73.905 

78.524 

80.48 

85.186 

88.614 

89.555 

93.796 

94.833 

67.692 

67.692 

67.692 

67.692 

67.692 

67.692 

75.733 

50 

50 

50 

50 

50 

52.769 

59.068 

61.113 

65.096 

67.406 

67.972 

70.235 

70.726 

50 

50 

50 

50 

50 

50 



 
50 

 

 

 

                                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 
 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 
 

1 

5 

10 

15 

20 

25 

30 

35 

45 

50 

55 

60 

65 

70 

75 

80 

85 

90 

95 

100 
 

150 

150 

150 

150 

150 

150 

150 

150 

148.314 

147.675 

147.049 

146.437 

145.838 

145.252 

144.478 

143.683 

142.09 

142.156 

141.422 

140.707 
 

67.692 

67.692 

67.692 

67.692 

67.692 

67.692 

67.692 

67.692 

69.324 

69.444 

70.551 

71.144 

71.725 

72.294 

72.611 

72.873 

73.134 

73.393 

73.65 

73.905 
 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50 

50.932 

50.932 

51.417 

51.884 

52.335 

52.769 
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Noninferior set for IEEE 5-bus has been shown in graph of fig 5.2, graph has been plotted from 

table 5.1 between transmission loss function (as X- axis) and cost of generation function (Y-

axis), IP shows the Ideal Point which is feasible and TP shows the Target Point or best 

compromise solution which is at minimum distance from Ideal Point, From graph Red point 

indicates Ideal Point (FCmin, FLmin) and Blue point indicates Target Point (FC,*  FL*)) of 

noninferior set.   

 

Fig 5.2- 2D plot between cost of generation and transmission losses 

 

Observation ;  

Cost of generation obtained FC* = 1152.8 $/hr 

Transmission loss obtained FL* = 7.7 MW 

Hence the target point is (FC,*  FL*) or (1152.8, 7.7) and the minimum distance from ideal point 

(1137.5, 7.4) to target point (1152.8, 7.7) is 18.5564. 
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 5.4 IEEE 30- bus system in 2D space 

 The objective function is minimizing with respect the weights. We have formulated the problem 

in the following manner: 

              Minimize  

                              F = W1 FC + W2 PLoss 

 

Where FC = C1 + C2+ C8 

Where, C1, C2 and C3 are the cost characteristic as given in appendix.   

 

Subject to inequality constraint 

 

              50 ≤ Pi ≤ 150              for i=1, 2, 8. 

 

And equality constraint 

 

PGeneration – PDemand – PLoss = 0 

PLoss = ΣΣ Pi Bij Pj    (i, j=1, 2,……,Ng)                

 

Where i=j= number of generating units or plants i.e. i=j=1,2,3,….,Ng 

Where Ng = number of generators. 
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5.4.1 M-File for IEEE 30- bus load dispatch problem 

 

Objective function file 

function z=objective_30bus(x) 

z=W1*(50*(x(1)/100)*(x(1)/100)+245*(x(1)/100)+105+50*(x(2)/100)*(x(2)/100)+351*(x(2) 

/100)+44.4+50*(x(3)/100)*(x(3)/100)+389*(x(3)/100)+40.6)+W2*(100*(((x(1)/100)*(x(1)/1 

00)*0.0307)+(2*(x(1)/100)*(x(2)/100)*0.0129)+(2*(x(2)/100)*(x(3)/100)*0.0002)+((x(2)/10 

0)*(x(2)/100)*0.0152)+(2*(x(2)/100)*(x(3)/100)*(-0.0011))+((x(3)/100)*(x(3)/100)*0.0190))); 

 

Constraint function file 

function [c,ceq]=constraint_30bus(x) 

c=[-x(1)+50;x(1)-150;-x(2)+50;x(2)-150;-x(3)+50;x(3)-150]; 

ceq=(x(1)+x(2)+x(3)-283.4- 

(100*(((x(1)/100)*(x(1)/100)*0.0307)+(2*(x(1)/100)*(x(2)/100)*0.0129)+(2*(x(2)/100)*(x(3 

)/100)*0.0002)+((x(2)/100)*(x(2)/100)*0.0152)+(2*(x(2)/100)*(x(3)/100)*(-

0.0011))+((x(3)/100)*(x(3)/100)*0.0190)))); 

 

Run the above program with the help of GA tool from the results. We will obtain P1, P2 and P3 

values when these values are substituted in cost of generation (FC) and transmission losses (FL) 

function then between Ideal Point (IP) and Target Point (TP) will be found. 
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Table-5.5 Results of MOPD studies with varying weights in 2D space 

(IEEE 30-bus system) 

S.no. WC WL FC FL Distance 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0.01 

0.05 

0.1 

1 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

1361.2 

1257.1 

1257.1 

1257.1 

1257.1 

1257.1 

1260.2 

1267.4 

1275.4 

1283.3 

1290.7 

1297.6 

1303.9 

1309.8 

1315.2 

1320.1 

1324.7 

1329 

7 

11.8 

11.8 

11.8 

11.8 

11.7 

10.8 

9.8 

9.2 

8.7 

8.4 

8.1 

7.9 

7.8 

7.6 

7.5 

7.4 

7.4 

1.041 

1.248 

1.248 

1.248 

1.248 

1.222 

0.988486 

0.73525 

0.600561 

0.513817 

0.495371 

0.495803 

0.52324 

0.561915 

0.601579 

0.643273 

0.683953 

0.726483 
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19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

1 

1 

1 

1 

1 

1 

1 

1 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

65 

70 

75 

80 

85 

90 

95 

100 

0 

0.01 

0.5 

0.1 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

1333 

1336.6 

1340.1 

1340.1 

1346.3 

1349.1 

1351.8 

1354.3 

1257.1 

1257.1 

1257.1 

1257.1 

1257.1 

1257.2 

1257.2 

1257.6 

1258 

1258.5 

1259 

1259.8 

1260.2 

1260.8 

1261.5 

7.3 

7.3 

7.2 

7.2 

7.1 

7.1 

7.1 

7 

11.8 

11.8 

11.8 

11.8 

11.7 

11.7 

11.6 

11.5 

11.3 

11.2 

11.1 

10.9 

10.8 

10.7 

10.6 

0.762997 

0.798817 

83.1627 

83.1627 

0.892379 

0.920367 

0.947357 

0.972 

1.248 

1.248 

1.248 

1.248 

1.222 

1.222 

1.196 

1.170011 

1.118036 

1.09209 

1.066169 

1.014359 

0.988486 

0.962711 

0.937034 
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42 

43 

44 

45 

46 

47 

48 
 

10 

10 

10 

10 

10 

10 

10 
 

65 

70 

75 

80 

85 

95 

100 
 

1262.9 

1262.9 

1263.6 

1264.3 

1265.1 

1266.6 

1267.4 
 

10.4 

10.3 

10.2 

10.1 

10.1 

9.9 

9.8 
 

0.885901 

0.859958 

0.834535 

0.809209 

0.80996 

0.759961 

73.525 
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Table-5.6 Active power of three generation of IEEE 30 bus system 

 

    S.no W1 W2 
 

P1 P2 P3 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0.01 

0.05 

0.1 

1 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

50 

150 

150 

150 

150 

150 

139.523 

125.262 

114.217 

105.339 

98.008 

91.83 

86.537 

81.944 

77.915 

74.348 

71.164 

68.304 

65.714 

114.965 

82.304 

82.286 

82.213 

82.121 

80.525 

80.351 

83.511 

86.727 

89.818 

92.718 

95.407 

97.894 

100.185 

102.197 

104.246 

106.048 

107.717 

109.266 

125.424 

62.875 

62.893 

62.964 

63.051 

64.583 

74.317 

84.43 

91.612 

96.946 

101.046 

104.282 

106.893 

109.039 

110.829 

112.342 

113.635 

114.752 

115.73 
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20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

1 

1 

1 

1 

1 

1 

1 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

70 

75 

80 

85 

90 

95 

100 

0 

0.01 

0.5 

0.1 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

63.169 

61.224 

59.258 

57.447 

55.775 

54.226 

52.784 

150 

150 

150 

150 

150 

150 

150 

148.409 

146.514 

144.681 

142.906 

141.188 

139.522 

137.907 

136.339 

134.816 

110.707 

112.049 

113.302 

114.475 

115.574 

116.606 

117.577 

82.304 

82.303 

82.295 

82.286 

80.525 

79.677 

78.855 

78.92 

79.192 

79.473 

79.76 

80.054 

80.353 

80.657 

80.964 

81.275 

116.58 

117.335 

118.007 

118.608 

119.149 

119.149 

120.082 

62.876 

62.878 

62.885 

62.893 

64.583 

65.398 

66.188 

67.573 

69.038 

70.442 

71.787 

73.078 

74.317 

75.508 

76.653 

77.754 
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43 

44 

45 

46 

47 

48 
 

10 

10 

10 

10 

10 

10 
 

70 

75 

80 

85 

95 

100 
 

133.337 

131.899 

130.5 

129.138 

126.521 

125.264 
 

81.589 

81.906 

82.225 

82.545 

83.189 

83.512 
 

78.815 

79.837 

80.822 

81.772 

83.574 

84.429 
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Noninferior set for IEEE 5-bus has been shown in graph of fig 5.3, graph has been plotted from 

table 5.1 between transmission loss function (as X- axis) and cost of generation function (Y-

axis), IP shows the Ideal Point which is feasible and TP shows the Target Point or best 

compromise solution which is at minimum distance from Ideal Point, From graph Red point 

indicates Ideal Point (FCmin, FLmin) and Blue point indicates Target Point (FC,*  FL*)) of 

noninferior set.   

 

Fig 5.3 2D Plot between cost of generation and transmission losses 

Observation ;  

Cost of generation obtained FC* = 1290.7 $/hr 

Transmission loss obtained FL* = 8.4 MW 

Hence the target point is (FC,*  FL*) or (1290.7, 8.4) and the minimum distance from ideal point 

(1257.1, 7) to target point (1290.7, 8.4) is 0.495371. 
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CHAPTER-6 

Conclusion and future scope 

 

6.1 Conclusion 

In this work, Formulation of solution methods to obtain the optimum solution of Mutiobjective 

optimal power dispatch (MOPD) problem has been implemented successfully using weighting 

method with the help of GA tool.  

 

The focus of this thesis work concentrates on simultaneously minimization of two objectives of 

power system – cost of generation and transmission loss using weighting method. Mutiobjective 

optimal power dispatch (MOPD) problem has been formulated by using weighting method. The 

noninferior set for IEEE 5, 14 and 30 bus systems obtained by parametrically varying weights 

attached to the objective. MOPD problem has been solved by GA tool of MATLAB and from the 

result Target Point (TP) or best compromise solution is obtained with minimum computational 

effort. Optimal weights have been derived for IEEE 5, 14 and 30 bus systems which give the 

Target Point (TP) in single step, thereby saving a lot of computational effort. 

 

6.2 Scope for Future work  

Present work of Multiobjective optimal power dispatch (MOPD) problem can be extended to 

solve using weighting method on IEEE standard system viz. 5, 14 and 30 bus systems in 3D 
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space by varying weights. This objective function can be minimized to reach the Target Point 

(TP) or best compromise solution. 

 

Multiobjective optimal power dispatch (MOPD) problem can be solved using different methods. 

There are various techniques for generating noninferior solutions, e.g. Constraint method, 

noninferior estimation (NISE) method and step method (STEM) can be using MOPD problem 

with the help of GA tool of MATLAB. These methods generate noninferior set in 2D and 3D 

space respectively for IEEE 5, 14 and 30 bus systems. Approximation of the noninferior set is 

the most desirable feature for practical problems.  
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APPENDIX - I 

 

1. GA Problem solved by hand 

     Consider  the example-3.5 of CHAPTER-3 

 

Minimize  

                 F(θ1, θ2) = -4Sin(θ1)-6Cos(θ1)-4Sin(θ2)-2Cos(θ2) 

                                  

Let us choose an initial population size of 8 

 

0º ≤θ ≤ 90º 

 

String type used is Bit string 

String size is 4. 

For minimization problem  

     

                 F= -f -7 

 

This transformation converts minimization problem to an equivalent maximization problem. 
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Table-1 Problem continuation (Iteration –1) 
 

 
 
To find best fitness value, graph has been plotted form table-1 between population θ1 (X-axis) 
and θ2 (Y-axis). 
 

Fig 1. contours of equal objective function 
 

         
 

As observed from 2-D plot that there are many fitness values so the objective function are 

unable to predict the best fitness value. Hence scatter points are moving to next generation 

for finding the best fitness value. 
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Selection of population for the next generation 

 

Elite child is the one which is having the best fitness value. Its string value is 0110   1010. 

Crossover fraction is set to 0.8. Here out of 7 populations other than elite child in the first 

generation, the fraction of 0.8 gives 6 strings to be crossed. 

Mutation fraction is set to 0.2. So, one string is to be mutated. 

 

Application of Crossover for producing next generation 

 

Before Crossover              After Crossover 

 

0001   0101                       0010   0100 

0010   1000                       0001   1001 

 

0010   1000                        0011   1000 

0111   1100                        0110   1100 

 

0110   1010                       0111   1000                                                   

0111   1100                       0110   1110 
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       Application of Mutation for producing next generation 

Before mutation the string is             

   1110   1000 

After mutation the string becomes      

1100 1010 

 

 
New population for the second iteration 

Elite child    

0110   1010 

 

Crossover children                                          

0010   0110  

0101   1001 

0010   1010 

0110   1000 

0011   1000 

1100   1010 

 

Muted child     

  1100    1110 
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Table-2 Problem continuation (Iteration –2) 
 

 
 
To find best fitness value, graph has been plotted form table-2 between population θ1 (X-axis) 
and θ2 (Y-axis). 
 

Fig 2. Contours of equal objective function 
 

 
 

Similarly, as observe from 2-D plot that there are many fitness values so the objective 

function are unable to predict the best fitness value. Hence scatter points are moving to next 

generation for finding the best fitness value. 
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Table-3 Problem continuation (Iteration –3) 
 

 
          
 To find best fitness value, graph has been plotted form table-3 between population θ1 (X-axis) 
and θ2 (Y-axis).        

Fig 3. Contours of equal objective function 

 
 

On comparing this plot again with previous, it is observed that the points are closer to each other 

and also that this plot is better than the previous plot. However from this too, the best fitness 

value cannot be predicted. Hence another generation is chosen and selection of population for the 

next generations similarly is done.        
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Table-4 Problem continuation (Iteration –4) 
 

 
    
To find best fitness value, graph has been plotted form table-4 between population θ1 (X-axis) 
and θ2 (Y-axis).                

Fig 4. Contours of equal objective function 

 
 

The figure shown cannot decide the best fitness value of the objective function but we get better 

contours of equal objective function because the scattering and diversity among points is 

reduced. Hence, it is required to move to next generation for finding the best fitness and similarly 

selection of population for the next generations. 
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Table-5 Problem continuation (Iteration –5) 
 

 
 
To find best fitness value, graph has been plotted form table-5 between population θ1 (X-axis) 
and θ2 (Y-axis). 

Fig 5. Contours of equal objective function 

 
 

Similarly, this figure cannot decide the best fitness value of the objective function but there are 

better contours of equal objective function because the scattering and diversity among points is 

reduced. Hence, it is desirable move to next generation for finding best fitness and selection of 

population for the next generation 
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Table-6 Problem continuation (Iteration–6) 

 

 
      
To find best fitness value, graph has been plotted form table-6 between population θ1 (X-axis) 
and θ2 (Y-axis).            

Fig 6. Contours of equal objective function 

 
 

Similarly, this figure cannot decide the best fitness value of the objective function but there are 

better contours of equal objective function because the scattering and diversity among points is 

reduced. Hence, it is desirable move to next generation for finding best fitness and selection of 

population for the next generation. 
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Table-7 Problem continuation (Iteration –7) 
 

 

 
To find best fitness value, graph has been plotted form table-7 between population θ1 (X-axis) 
and θ2 (Y-axis). 

Fig 7. Contours of equal objective function 

 
 

From the above graph observation can be made that the points are reduced to two, among then 

best fitness value is choosen based on the column actual count from roulette wheel in table 7. If 

it is one then that point will choosen as best fitness value accordingly that point has been marked 

circle as shown in the above graph.   
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RESULTS 

If there are numerous fitness values that are scattered far away and decision for best fitness value 

is difficult then we continue to next generation until decision best fitness value can be made from 

the graph. 
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                                        APPENDIX – II 

 

                                       IEEE 5- Bus test system 

Table-1 Impedance data 

 

Line Destination *R 

p.u. 

*X 

p.u. 

Line Charging 

1-2 

1-4 

1-5 

2-3 

2-4 

3-5 

0.10 

0.15 

0.05 

0.05 

0.10 

0.05 

0.4 

0.6 

0.2 

0.2 

0.4 

0.2 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

 

*The impedance are based on MVA as 100. 
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Table-2 Operating condition 

Bus no.         Generation 

MW         Voltage  

               magnitude 

        Load 

MW           MVAR 

1 

2 

3 

4 

5 

…              1.02 

…               … 

100            1.04 

…               … 

…               … 

…               … 

60              30 

…              … 

40             10 

60             20 

. 

* Slack bus 

 

  Table-3 Regulated bus data 

Bus 

no. 

Voltage 

magnitude 

Minimum 

MVAR 

capability 

Maximum 

MVAR 

capability 

Minimum 

MW 

capability 

Maximum 

MW 

capability 

1 

2 

1.02 

1.04 

0.0 

0.0 

60 

60 

30 

30 

120 

120 

 

The nodal load voltage inequality is 0.9 ≤ IViI ≤ 1.05. 
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Cost characteristics 

C1 = 50P1²+245P1+105   $/hr 

C2 = 50P2²+351P2+44.4   $/hr 

 

Here for the 5 bus system we have taken, the total load demand of the system is 160 MW. 

Maximum and minimum active power constraint on the generator bus for the given system is 

120 MW and 30 MW respectively. Voltage magnitude constraint for generator bus 3 is 1.04.  

 

 

B-coefficients of 5 bus system 

B11 = 0.00035336 

B12 = 0.0000103196 

B21 = 0.0000103196 

B22 = 0.000368992 
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                   IEEE 14- Bus test system 

Table- 4 Impedance and line charging data 

Line 

destination 

Resistance 

p.u.* 

Reactance 

p.u.* 

Line charging 

p.u.* 

1-2 

1-5 

2-3 

2-4 

2-5 

3-4 

4-5 

4-7 

4-9 

5-6 

6-11 

6-12 

6-13 

7-8 

7-9 

9-10 

9-14 

10-11 

0.01938 

0.05403 

0.04699 

0.05811 

0.05695 

0.06701 

0.01335 

0.0 

0.0 

0.0 

0.09498 

0.12291 

0.06615 

0.0 

0.0 

0.03181 

0.12711 

0.08205 

0.05917 

0.22304 

0.19797 

0.17632 

0.17388 

0.17103 

0.04211 

0.20912 

0.55618 

0.25202 

0.19890 

0.25581 

0.13027 

0.17615 

0.11001 

0.08450 

0.26038 

0.19207 

0.0264 

0.0246 

0.0219 

0.0187 

0.0170 

0.0173 

0.0064 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 
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12-13 

13-14 

0.22092 

0.17093 

0.19988 

0.34802 

0.0 

0.0 

 

* Impedance and line-charging susceptance in p.u. on a 100 MVA base. Line charging one-half 

of total charging of line. 

 

  Table-5 Operating conditions 

 

Bus no. 

Starting bus voltage 

Magnitude        Phase 

p.u.                  Angle deg 

  Generation 

 

MW      MVAR 

      Load 

 

MW     MVAR 

1* 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

1.06                              0.0 

1.0                                0.0 

1.0                                0.0 

1.0                               0.0 

1.0                               0.0 

1.0                               0.0 

1.0                               0.0 

1.0                               0.0 

1.0                               0.0 

1.0                               0.0 

1.0                               0.0 

1.0                               0.0 

0.0                 0.0 

40                  0.0 

0.0                 0.0 

0.0                 0.0 

0.0                0.0 

0.0                0.0 

0.0                0.0 

0.0                0.0 

0.0                0.0 

0.0                0.0 

0.0                0.0 

0.0                0.0 

0.0                 0.0 

21.7               12.7 

94.2               19.0 

47.8              -3.9 

7.6                 1.6 

11.2              7.5 

0.0                0.0 

0.0                0.0 

29.5              16.6 

9.0                5.8 

3.5                1.8 

6.1                1.6 
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13 

14 

1.0                               0.0 

1.0                               0.0 

0.0                0.0 

0.0                0.0 

13.5              5.8 

14.9              5.0 

 

*Slack bus 

 

TABLE-6 Regulated bus data 

Bus 

number 

Voltage 

Magnitude, p.u.  

Minimum  

MVAR capability 

Maximum 

MVAR capabilty 

2 

3 

6 

8 

1.045 

1.010 

1.070 

1.090 

-40 

0 

-6 

-6 

50 

40 

24 

24 

 

 

Cost characteristics 

C1 = 50P1²+245P1+105   $/hr 

C2 = 50P2²+351P2+44.4   $/hr 

C6 = 50P6²+389P6+40.6   $/hr 
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B-coefficients of 14 bus system 

B11 = 0.0231 

 B12 = 0.0078 

B13 = -0.0007 

B21 = 0.0078 

B22 = 0.0182 

B23 = 0.0022 

B31= -0.0007 

B32 = 0.0022 

B33 = 0.0329 

 

IEEE 30- Bus test system 

Table- 7 Impedance and line charging data 

Line 

destination 

Resistance 

p.u.* 

Reactance 

p.u.* 

Line charging 

p.u.* 

1-2 

1-3 

2-4 

3-4 

2-5 

2-6 

0.0192 

0.0452 

0.0570 

0.0132 

0.0472 

0.0581 

0.0575 

0.1852 

0.1737 

0.0379 

0.1983 

0.1763 

0.0264 

0.0204 

0.0184 

0.0042 

0.0209 

0.0187 
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4-6 

5-7 

6-7 

6-8 

6-9 

6-10 

9-10 

9-11 

4-12 

12-13 

12-14 

12-15 

12-16 

14-15 

16-17 

15-18 

18-19 

19-20 

10-20 

10-17 

10-21 

10-22 

21-22 

0.0119 

0.0460 

0.0267 

0.0120 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.1231 

0.0662 

0.0945 

0.2210 

0.0824 

0.1070 

0.0639 

0.0340 

0.0936 

0.0324 

0.0348 

0.0727 

0.0116 

0.0414 

0.1160 

0.0820 

0.0420 

0.2080 

0.5560 

0.2080 

0.1100 

0.2560 

0.1400 

0.2559 

0.1304 

0.1987 

0.1997 

0.1923 

0.2185 

0.1292 

0.0340 

0.0936 

0.0324 

0.0348 

0.0727 

0.0116 

0.0045 

0.0102 

0.0085 

0.0045 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 
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15-23 

22-24 

23-24 

24-25 

25-26 

25-27 

27-28 

27-29 

27-30 

29-30 

8-28 

6-28 

 

 

0.0100 

0.1150 

0.1320 

0.1885 

0.2544 

0.1093 

0.0 

0.2198 

0.3202 

0.2399 

0.0636 

0.0169 

 

 

 

0.1000 

0.1150 

0.1320 

0.1885 

0.2544 

0.1093 

0.0 

0.2198 

0.3202 

0.2399 

0.0636 

0.0169 

0.0 

0.0 

0.0 

0.00.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0214 

0.0065 

 

* Impedance and line-charging susceptance in p.u. on a 100 MVA base. Line charging one-half 

of total charging of line. 
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Table-8 Operating conditions 

 

Bus no. 

Starting bus voltage 

Magnitude        Phase 

p.u.                  Angle deg 

  Generation 

 

MW      MVAR 

          Load 

 

MW           MVAR 

1* 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

1.06                           0 

1.0                             0 

1.0                             0 

1.0                             0 

1.0                             0  

1.0                             0 

1.0                             0 

1.0                             0 

1.0                             0 

1.0                             0 

1.0                             0 

1.0                                0 

1.0                                0 

1.0                                0 

1.0                                0 

1.0                                0 

1.0                                0 

0                             0 

40                           0 

0                             0 

0                             0 

0                             0  

0                             0 

0                             0 

0                             0 

0                             0 

0                             0 

0                             0 

0                                0 

0                                0 

0                                0 

0                                0 

0                                0 

0                                0 

0                            0 

217                        12.7 

2.4                          1.2 

7.6                           1.6 

94.2                         19.0  

0                               0 

22.8                          10.9 

30                             30.0 

0                               0 

5.8                            2.0 

0                               0 

11.2                         7.5 

0                              0 

6.2                           1.6 

8.2                           2.5 

3.5                           1.8 

9                               5.8 
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18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

1.0                                0 

1.0                                0 

1.0                                0 

1.0                                0 

1.0                                0 

1.0                                0 

1.0                                0 

1.0                                0 

1.0                                0 

1.0                                0 

1.0                                0 

1.0                                0 

1.0                                0 

 

0                                0 

0                                0 

0                                0 

0                                0 

0                                0 

0                                0 

0                                0 

0                                0 

0                                0 

0                                0 

0                                0 

0                                0 

0                                0 

 

3.2                            0.9 

9.5                            3.4 

2.2                            0.7 

17.5                          11.2 

0                                0 

3.2                             1.6 

8.7                             6.7 

0                                0 

3.5                            2.3 

0                               0 

0                               0 

2.4                            0.9 

10.6                          1.9 

 

 

*Slack bus 

      

 

 

 

 

                                      



 
85 

 

Table-9 Regulated bus data 

Bus 

number 

Voltage 

Magnitude, p.u. 

Minimum 

MVAR capability 

Maximum 

MVAR capabilty 

2 

5 

8 

11 

13 

1.045 

1.01 

1.01 

1.082 

1.071 

-40 

-40 

-10 

-6 

-6 

50 

40 

40 

24 

24 

 

 

 Table-10 Transformer Data 

Transformer 

destination 

Tap setting 

4-12 

6-9 

6-10 

28-27 

0.932 

0.978 

0.969 

0.968 
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Table-11 Static capacitor data 

Bus no. Susceptance*  p.u. 

10 

24 

0.19 

0.043 

 

*Susceptance in p.u. on 100 MVA base. 

 

Cost characteristics 

C1 = 50P1²+245P1+105   $/hr 

C2 = 50P2²+351P2+44.4   $/hr 

C8 = 50P8²+389P8+40.6   $/hr 

 

B-coefficients of 30 bus system 

B11 = 0.0307 

 B12 = 0.0129 

B13 = -0.0002 

B21 = 0.0129 

B22 = 0.0152 

B23 = 0.0011 

B31= -0.0002 

B32 = 0.0011 

B33 = 0.0190 
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APPENDIX-III 

 

Mathematical statement of noninferiority 

Single objective problems are characterized by complete ordering of their feasible solution. Any 

two feasible solutions X1 and X2 are comparable in terms of the objective function; i.e. either 

 

Z(X1) = Z(X2), Z(X1) > Z(X2), Z(X1) > Z(X2). 

 

This comparison can be made for all the feasible solutions, and the solution X* for which their 

exists no other solution X such that Z(X) < Z(X*) is called optimal for solution for a 

minimization problem. But, in multiobjective problems, it is not possible to compare all the 

feasible solutions because the comparison on the basis of one objective function may contradict 

the comparison based on another objective function. Suppose there are two objective functions, 

 

Z(X) = [Z1(X), Z2(X) ] 

And two solutions X1, X2. Then, 

Z(X1) = [Z1(X1), Z2(X1)] 

Z(X2) = [Z1(X2), Z2(X2)] 

X1 is better than X2 if 

Z1(X1) < Z2(X2) and Z2(X1) ≤ Z2(X2) 

 or 

Z1(X1) ≤ Z2(X2) and Z2(X1) <  Z2(X2) 
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But if Z1(X1) < Z2(X2) and Z2(X1) > Z2(X2), then nothing can be said about the two solutions - 

X1, X2, i.e. they are incomparable. This is what is meant by partial ordering. All solutions are not 

comparable on the basis of the values of objective functions only. Since a complete order is not 

available, the notion of optimality must be dropped. 

 

The partial ordering in multiobjective problems does allow some feasible solutions to be 

eliminated. Inferior solutions, which are dominated by at least one feasible solution, may be 

dropped. Noninferior solutions are the alternatives of interest. 

Mathematically, a solution X is noninferior for a minimization problem if there exists no feasible 

Y such that 

 

ZK(Y) ≤  ZK(X)            

And  

ZK(Y) < ZK(X)                  for at least one K= 1,2,………h 

 

The noninferior set generally includes many alternatives, all of which obviously cannot be 

selected. The objectives must be traded off against other in moving from one noninferior 

alternative to another and a strategy has to be adopted by the analyzer to achieve optimum values 

as per his satisfaction level and requirements. The preferred alternative is called the Target Point 

or the best – compromise solution.       
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