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ABSTRACT
In this project, different methods of estimating parameters of induction motor are discussed. The estimation methods such as  H-G diagrams, Microprocessor based approach. Neural Networks are mainly used in estimating parameters of induction motor such as rotor resistance, stator resistance and magnetizing inductance. An artificial neural network (ANN) based methods have been used to estimate the rotor resistance of a field oriented controlled (FOC) induction motor.
The main advantage of using artificial neural networks is that they can be used for the online 

Identification of induction motor parameters. The feed forward and recurrent networks are 
developed to build ANN as memory for computing the parameters during transients.
In this project complete mathematical model of FOC induction motor is described and 

simulated in matalab .For simulation studies a  120 kW ,460 V ,60 Hz induction motor has 
been  considered .The performance of FOC drive with proportional plus integral (PI) and NN 
controller are presented and analysed. The variation of rotor resistance during operation of 
FOC drive is also estimated using ANN techniques and its effect on drive performance is 
observed.
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Chapter I




               
    Introduction
1.1 General 

The induction motor is a nonlinear dynamic system with parameters that vary with temperature, frequency, saturation and operating point. The induction motors are widely used in industrial applications, and the parameters have a significant effect on the accuracy and efficiency of the motors and the overall system performance. So it is essential to develop algorithms for the online parameter estimation of the induction motor. These algorithms can be performed in real time because of the progress in the use of digital signal processors and microelectronics.

Artificial neural networks can be used to identify and control the nonlinear dynamic systems because they can approximate a wide range of nonlinear functions to any desired degree of accuracy. We can implement them in parallel and therefore shorter computational time is achieved. They have immunity to harmonic ripples and have fault tolerant capabilities. We can use neural networks in modulation systems, in breakdown detection, in control, in the estimation of state variables. Many times we can see the use of artificial neural networks for the estimation of rotor angular speed. There are generally two types of ANN design. One is based on the machine model and other one uses stator currents and direct voltages for direct speed estimation 
There are different methods of parameter estimation of induction motor such as H-G diagram based, microprocessor based, and sensitivity approach based. But it can be best estimated using ANN, as the artificial neural network can be used for the online identification of parameters.
One can observe that using Neural Network controllers in estimating parameters of induction motor results in better performance, less transients and more stability.

1.2 Methods of Parameter Estimation

There are various methods of parameter estimation. Few of them are described here
1.2.1 Parameter Identification of Induction Motors Using Dynamic Encoding Algorithm for Searches (DEAS)
The principle of DEAS is based on distinct properties of binary strings . If a binary digit 0 or 

1 is appended to any binary string as a least –significant bit (LSB), the decoded real number

 of a new binary string decreases for 0 and increases for 1 compared with that of the original 

binary string .Moreover, if a binary string undergoes increment addition or decrement 

subtraction , the real number of each proposed string increases or decreases equidistantly. 

These two characteristics of binary strings are exploited for the determination of search 

directions and step lengths in the parameter identification
1.2.2 Sliding-Mode Flux Observer with Online Rotor Parameter Estimation for Induction Motors
In this technique two sliding surfaces representing combinations of estimated flux and current 

errors are used to enforce the flux and current estimates to their real values. Switching 
functions are used to drive the sliding surfaces to zero. The equivalent values of the switching

functions are proven to be the rotor resistance and the inverse of time constant . This property
 is used to simultaneously estimate the rotor resistance and the inverse of the time constant
 without the knowledge of rotor resistance and magnetizing inductance.

1.2.3 Microprocessor –Based Vector Control System for Induction Motor Drives with Rotor Time Constant Identification Function

In this method a high performance current control method is used which can operate stably even when the saturation of a supplied voltage occurs. To estimate the rotor flux vector accurately , the powerful identification method of the rotor time constant is  used , which does not require additional sensors for estimation of rotor time constant. The vector control system is developed by making use of single high speed 16 bit microprocessor

1.2.4 Parameter Estimation for Induction Machines Based on Sensitivity Analysis

Generally the induction machine parameters supplied by the manufacturers are usually 
sufficient for short-circuit analysis only. But the system studies that involve transient 
simulations of machines require additional parameters that are not readily available  but 

nonetheless are essential for an accurate modeling of the machines. The method utilizes 

machine equations to estimate the parameters and then performs sensitivity analyses with 

respect to circuit parameters to match the given performance characteristics.
1.2.5 Simplified Exponentially Convergent Rotor Resistance Estimation for Induction Motors

One of the main problems in Induction motor control is the lack of knowledge about the actual value of the rotor resistance which is subjected to large variations during operation. In this method we had proposed two adaptive identifiers based on different standing assumptions. Its main advantage is it high simplicity and the low dimension of the regresses vectors.  

1.2.6 Least Square Technique for the Estimation of the Induction Motor Parameters 
In this method a new neuron called the TLS EXIN is  exploited . it is then after wards applied numerically and experimentally for retrieving the parameters of an induction motor by means of a test  bench. Afterwards for the case of a very noisy data , a refinement of the TLS estimation has been obtained by the application of a constrained optimization algorithm which takes into account the relationships among the K-parameters

1.2.7 Parameter Estimation of the Induction Motor with Magnetic Flux Monitoring

This identication scheme is based on model reference adaptive system approach. A novel parallel adaptive observer has been designed. The most important features of this method are as follows rapidity and accuracy of the identification process, low computational burden, excellent noise rejection, avoidance of incorrect parameter estimation due to magnetic saturation phenomenon
1.2.8 Induction Motor Parameter Estimation through an Output Error Technique

This method is introduced because system studies are often hampered by unavailable and 

inaccurate parameter data, this method uses an output error technique combined with supply 

voltage perturbations . This method uses optimum parameter values with minimum 
description to the machines normal operation.

1.2.9 H-G Diagram Based Rotor Parameter Identication for Induction Motor

This method is generally used for the motor thermal monitoring purpose. The H-G diagram is 

established from the analysis of the induction motors measurement of induction motor 

measurement of active and reactive power consumption for each operating point..

1.2.10 An Extended Kalman Filter Approach to Rotor Time Constant Measurement in PWM Induction Motor Drives

In this  approach  a rotor time constant estimation technique for the purpose of updating the 

control gains of an induction motor field –oriented controller is implemented. An extended 

Kalman filter is employed to estimate the inverse rotor time constant online using 

measurements of the stator voltages and currents and rotor speed of an induction motor and

 the motor is driven by a pulse width modulated inverter with current loops or even without 

current loops
 1.3 Neural Network Based Parameter Estimation of Field Oriented Controlled Induction Motor Drive 
Induction Motor is a nonlinear multivariable dynamic system with parameters that vary with 

temperature, frequency, saturation and operating point. Since the induction motors are widely 

used in industrial applications, these parameters have a significant effect  on the accuracy
 and efficiency of the motors and the overall system performance 

It is essential to develop algorithms for online estimation of the induction motor. Various 

methods have been proposed. The Luenberger observer system is implemented for flux 

 estimation and the speed observer system is utilised for rotor –speed estimation.

Artificial Neural Networks (ANNs) can be used to identify and control the nonlinear dynamic 
systems because they can approximate a wide range of nonlinear functions to any degree of 
accuracy. They can be implemented in parallel and therefore shorter compuatational time can 
be achieved. They have immunity to harmonic ripples and have fault tolerant capabilities. 
Here we have used feedforward and recurrent networks for the parameter estimation of 
induction motor
1.4 Outline of the Project
This project contains five chapters. The details of such chapters are as follows. 
Chapter I present a brief introduction to the methods of parameter estimation and Neural Network based parameter estimation of induction motor. 

Chapter II, this chapter covers an extensive literature review of Parameter Estimation and Neural Networks. 
Chapter III, this chapter includes basic principle and methodology of field oriented controlled induction motor. The methods of estimation of parameters of induction motor with the help of Neural Networks. 
Chapter IV, this chapter presents simulation results of induction motor using PI control and Neural Network controllers. This chapter also presents method of estimating rotor resistance through simulation results
Chapter V, this chapter presents a brief conclusion of the work carried out in the project. ANN based on feedforward and recurrent networks are proved to be an effective tool for the online identification of induction motor parameters
Chapter II             


 
            Literature Review
2.1 General 
This chapter intends to give a brief literature review of the work being carried out a field oriented control IM drive during last decade. Brief descriptions of methods of estimation of induction motor parameters are also described.
2.2 Literature Review
An extensive literature study was made on the topic Parameter Estimation of induction motor and a brief  summary of different research papers are presented.
Amuliu Bogdan Proca in [3] had demonstrated that techniques without flux
 measurements depend on the parameters of the motor , particularly on the rotor 
resistance or rotor time constant, as these parameters change continuously as afunction
 of temperature , it is important that the value of rotor resistance is continuously
 estimated online. A fourth order sliding –mode flux observer is developed in this paper.
 Two sliding surfaces representing combinations of estimated flux and current
 estimates to their real values. Switching functions are used to drive the sliding surfaces
 to zero. The equivalent values of the switching functions are proven to be the rotor 
 resistance and the inverse of the time constant. Without prior knowledge of either the 
rotor resistance or the magnetizing inductance.
Maurizio Cirrincione [4] presented the analytical solution of the application of the 
constrained least squares minimization of induction machines .This constrained minimization 
is derived from the classical linear dynamic model of the induction machine and therefore it 
is able to estimated the steady state value of the electrical parameters of the induction motor
under different magnetization levels . The methodology has been verified in simulation with a
 dynamical model which takes into account iron path saturation effects.
Jong- Wook Kim [5] introduces a newly developed optimization algorithm called the 
dynamic encoding algorithm for searches and then it is applied to the parameter estimation of 
an induction motor for vector control and fault detection. Digital computations are conducted 
on startup with no load and normal operation with load disturbance. This method has been 
compared with the continuous –time predictions error method and the genetic algorithm via 
identification performance using the startup signals.
Kan Akatsu [8] had suggested that  in the speed sensorless control of the induction motor the
 machine parameters have a strong influence on the speed estimation . It is known that the 
simultaneous estimation of the rotor speed and R2 is impossible in the slip frequency type 
vector control, because the rotor flux is constant . But the rotor flux is not always constant in 
the speed tramsient state . In this paper , the R2 estimation in the transient state without signal 
injection to the stator current is proposed . this algorithm uses the least mean square 
algorithm and the adaptive algorithm and it is possible to estimate R2 exactly.
Mohamed Said[9] presents an effective method for induction motor parameter parameter 
identification , especially rotor parameters based on the H-G diagram for thermal monitoring 
purpose . The H-G diagram is established from the analysis of the induction motor 
measurement of active and reactive power consumption for each operating point. Computer 
simulations and experimental tests are carried out for a 4 KW four – pole squirrel cage 
induction motor.

Faa – Jeng Lin [11] introduced the recursive least square estimator and online adaptive rotor 
time-constant estimator . The estimation of the rotor time constant is on the basis of the 
model reference adaptive system and the rotor inertia constant , the damping constant and the 
distributed load torque of the induction motor are estimated by the RLS estimator which 
constitutes RLS estimator and a torque observer
Jennifer Stephan [15] presents a new method for the real –time estimation of the parameters 
and fluxes of induction motors. The procedure is potentially useful for the design of self 
commissioning drives ie drives that can adjust controller parameters automatically for a wide 
range of motors and loads Another possible application is for the detection of failures . In the 
recursive form the algorithm can be used for the adaptation to parameters that vary with time 
and for the estimation of the rotor fluxes in a field –oriented controlled drive.
The estimation method is based on a standard model of the induction motor expressed in 
rotor coordinates . It is assumed that current and position measurements are available. The 
rotor fluxes are not assumed to be measured . The interesting features of the method are that 

(1) It does not rely on special tests such as the locked rotor test or the no-load test

(2) The method provides estimates of the rotor fluxes together with the estimates of the 
JA de kock [16] thinks that simulations of induction motors for power system studies are 
often hampered by unavailable and inaccurate parameter data. A method for the in situ 
measurement of the parameters of a machine and load combination ha had presented . This 
uses the output error estimation technique combined with supply voltage perturbations. The
 technique yield optimum parameter values with minimum disruption to the machines 
normal operation 

He had conducted verifying tests on individual motors as well as group of machines. The 
results indicate good correlation between estimated values and values obtained from 
conventional tests

N.R Klaes [17] illustrates the basic dependencies of induction machine parameters on flux 
and current and describes them by simple equations. Differences of the magnetizing currents 
at single phase and three phase excitation are considered . A novel identification technique 
determines accurately all parameters and their dependencies on saturation from a few easy –
to- perform offline measurements. It has been designed for use at traction drives with direct 
self Control during system startup.

Li –cheng zai[18] describes a rotor time constant estimation technique for the purpose of 
updating the control gains ofa induction motor field oriented controller . an extended kalman 
filter is employed to estimate the inverse rotor time constant online using measurements of 
the stator voltages and currents and rotor speed of an induction motor. The motor is driven by 
a pulse-width modulated inverter with or without current feedback loops
2.3 Parameter Estimation
2.3.1  IEEE Definitions
According to C .C Chan  an effective method for rotor resistance identification is generally 
presented for the purpose of improving the performance of vector control of induction motor 
drives. The method is mathematically derived from proper selection of coordinate axes and 
utilization of the steady –state model of the induction motor . The major advantage of the 
method lie in its simplicity and accuracy.
In another paper a method to estimate ac induction machine mutual inductance and rotor resistance based upon terminal voltage, current and shaft speed as input signals are discussed, for certain operating regions of the machine it is verified that the mutual inductance can be accurately estimated regardless of wide stator resistance variations.
MASATO KOYAMA in his paper has discussed the microprocessor based vector control system for Induction Motor drives using rotor time constant identification function. He had employed the high performance current control method which can operate stably even when the saturation of a supplied voltage occurs. To estimate the rotor flux vector accurately he had investigated rotor time constant.

FRIEDRICH   LOESER and PHILIPP K.SATTLER in his paper “ Identification and compensation of the Rotor Temperature of AC Drives by an Observer” has discussed how the magnetic flux of induction motors fed by current- source or current-controlled voltage –source inverters is influenced by rotor temperature. He had discussed regarding the accuracy of model and the measurement of data . He had demonstrated the feedback from the estimation program to the analog inverter
There are various papers that has been discussed regarding the parameter estimation for induction machines based on sensitivity analysis. In one paper author had told that parameters supplied by manufacturers are usually efficient for short circuit analysis only.

[image: image46.emf]
Fig  2.1   Control system for the induction motor with speed observer, ANN corrector, and parameters identification 

2.4 Neural Networks
Neural networks are composed of simple elements operating in parallel. These elements are inspired by biological nervous systems. As in nature, the network function is determined largely by the connections between elements. We can train a neural network to perform a particular function by adjusting the values of the connections (weights) between elements.

Commonly neural networks are adjusted, or trained, so that a particular input leads to a specific target output.  is shown below. Thus, the network is adjusted, based on a comparison of the output and the target, until the network output matches the target. Typically many such input/target pairs are needed to train a network.

Neural networks have been trained to perform complex functions in various fields, including pattern recognition, identification, classification, and speech, vision, and control systems.

Today neural networks can be trained to solve problems that are difficult for conventional computers or human beings. Throughout the toolbox emphasis is placed on neural network paradigms that build up to or are themselves used in engineering, financial, and other practical applications.

2.5 Neural Network Based Parameter Estimation
2.5.1 Identification and control of Induction Machines Using Artificial Neural 
Networks
Artificial Neural networks are used to identify and control an induction machine. Two 
systems are presented ; a system to adaptively control the stator currents via identification of 
the electrical dynamics and a system to adaptively control the rotor  speed via identification 
of the mechanical and current –fed system dynamics. There are various advantages of this 
method  over other conventional methods and the performances are compared as well.

2.5.2 Neural Network Based Estimation of Feedback Signals for a Vector Controlled 
Induction Motor Drive

Neural Networks generally are widely acceptable in power electronics and motion control 
systems. They can be employed in the control of drives and converters but their application in 
the estimation is generally new. There are so many new technologies that had been 
developed for the estimation of feed back signals in an induction motor drive. A feed forward 
neural network receives the machine terminal signals at the input and calculates flux , torque 
and unit vectors at the output which are then used in the control of a direct vector controlled 

drive system. The three layer network has been trained extensively by Neural Networks 

Professional to emulate the DSP based computational characteristics. The neural network 

estimator has the advantages of faster execution speed , harmonic ripple immunity, and fault 

tolerance characteristics compared to DSP based estimator.
2.5.3 Identification and control of Dynamical Systems using Neural Networks
The neural networks can be used effectively for the identification and control of nonlinear 

dynamical systems. Generally static and dynamic back-propagation methods for the 

adjustment of parameters are developed , the multilayer and recurrent networks are 

interconnected in novel configuration 
2.6 Conclusion
In this chapter detailed study of the different methods for estimating parameters of the induction motor has been carried out. It has been found that among the different methods that have been discussed Neural Network based parameter estimation is more effective.

.
Chapter III 
Mathematical Modelling and MATLAB Simulation of Field Oriented Controlled Induction Motor Drive 
3.1 General



The field oriented controlled induction motor drives play an important role in steel, paper and cement factories. Field oriented controlled is such a drive technique which is widely being employed in all the industry to improve the efficiency of process.

In this chapter principle of field oriented control, mathematical model of induction motor and methods of estimation of parameters of induction motor drive with the help of Neural Network is described in detail.

A Neural Network controller is employed for speed control in field oriented control induction motor drive. 

3.2 Description of Field Oriented Control Induction Motor Drive
A block diagram of field oriented controlled drive is shown in fig.3.1.The induction motor is fed by a current-controlled PWM inverter. The motor drives a mechanical load characterized by inertia J, friction coefficient B, and load torque TL. The speed control loop uses a neural network controller controller instead of a simple proportional-integral controller . The motor flux is controlled by the direct-axis current reference id*. Block d-q_abc is used to convert id* and iq* into current references ia*, ib*, and ic* for the current regulator. 
3.2.1 Inverter
Three-Phase IGBT Inverter The inverter consists essentially of six power switches that can be metal-oxide semiconductor field-effect transistors (MOSFET), gate turnoff thyristors (GTO), or insulated gate bipolar transistors (IGBT), depending on the drive power capacity and the inverter switching frequency (Hz). The preceding figure shows a simplified diagram of a three-phase IGBT inverter
The inverter converts the DC link voltage into an adjustable three-phase AC voltage. Different control schemes can be used to control the inverter output voltage and frequency. One of the most utilized schemes is pulse width modulation (PWM) in which a three-phase variable sinusoidal voltage waveforms is obtained by modulating the on and off times of the power switches. 
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With   being the   firing angle value, [image: image54.png]


 the phase angle of phase A, f the AC frequency, 
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 the rectified output current  value   The DC voltage source represents the average 

voltage value of the rectified   voltage waveform according to the equation
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Fig 3.1
block diagram of field oriented control induction motor drive
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Fig 3.2block diagram of speed controller block
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Fig 3.3Block diagram of field oriented controller block

In industrial drive applications, the PWM inverter operates as a three-phase variable-frequency, variable-voltage source with fundamental frequency varying from zero to three times the motor nominal frequency.
.3.2.2 Hysteresis Current Controller.
A hysteresis current controller is used, where the motor current tracks the reference current within a hysteresis band. The controller generates the sinusoidal reference current of desired magnitude and frequency that is compared with the actual motor line current. If the current exceeds the upper limit of the hysteresis band, the upper switch of the inverter arm is turned off and the lower switch is turned on. As a result, the current starts to decay. If the current crosses the lower limit of the hysteresis band, the lower switch of the inverter arm is turned off and the upper switch is turned on. As a result, the current gets back into the hysteresis band. Hence, the actual current is forced to track the reference current within the hysteresis band. 
3.2.3 d-q  to abc Transformation
Consider a symmetrical three-phase induction machine with stationary as-bs-cs axes at 2π/3 angle apart. To transform the three-phase stationary reference frame (as-bs-cs) variable into two-phase stationary reference frame (ds-qs) variables and then transform these to synchronously rotating reference frame(de-qe).and following transformation equations are used.
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The corresponding inverse relation is 
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Where  voss is added as the zero sequence component, which may or may not be present. We have considered voltage as the variable. The current and flux linkage can be transformed by similar equations.
Here θ is the angle of the orthogonal set α-β-0 with respect to any arbitrary reference .if the   α-β-0 axes are stationary and the α axis is aligned with the stator a-axis, then θ = 0 at all times, thus 
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(3.7)

If the orthogonal set of reference rotates at the synchronous speed ω1, its angular position at any instant is given by
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(3.8)

The orthogonal set is then referred to as d- q- 0 axes. The three-phase rotor variables, transformed to the synchronously rotating frame, are
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         (3.9)
It should be noted that the difference [image: image77.png]


 is the relative speed between the synchronously rotating reference frame and the frame attached to the rotor. This difference is also the slip frequency, [image: image79.png]=



, which is the frequency of rotor.

3.2.4 θe Calculation Block
The rotor flux position θe required for coordinates transformation is generated from the rotor 
speed ωm and slip frequency ωsl.  
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The slip frequency is calculated from the stator reference current iqs* and the motor 
parameters.  
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3.2.5 Ids Calculation Block
The stator direct-axis current reference ids* is obtained from rotor flux reference input | ψr|*
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3.2.6 Iqs Calculation Block
The stator quadrature-axis current reference iqs* is calculated from torque reference Te* as  
[image: image87.png]T 190 | ot












       (3.13)
where Lr is the rotor inductance, Lm is the mutual inductance, and | ψr|est is the estimated rotor
 flux linkage.
3.3 Mathematical Model of Induction Motor
The d-q model of an induction motor in synchronously rotating de-qe frame 
  are as follows. We can write the following circuit equations. 
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Where [image: image93.png]
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are q-axis and d-axis stator flux linkages, respectively .when these equation are converted to [image: image97.png]


 frame the following equation can be written as.
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Where all the variables are in the rotating form. The last term in equation (3.7) and (3.8) can be defined as speed emf due to rotation of the axis ,that is ,when ωe =0 ,the equation revert to stationary form. Note that the flux linkage in the de and qe axes induce emf in the qe and de axes, respectievely with π/2 lead angle.

If the rotor is not moving, that is, ωr=0 the rotor equation for a double fed wound rotor machine will be similar to equation (3.7)-(3.8):
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Where all the variables and parameters are referred to stator. Since the rotor actually moves at speed ωr, the d-q axes fixed on the rotor move at speed [image: image107.png]


 relative to the synchronously rotating frame.  
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Fig 3.4 de-qe equivalent circuit of induction machine

Fig.3.4 shows the de-qe equivalent circuit that satisfy the equation (3.7)-(3.8) and (3.11)-(3.12).a special advantage of the de-qe dynamic model of the machine is that all the sinusoidal variables in stationary frame appears as dc quantities in synchronous frame.
The flux linkage expression in term of can be written from figure as follows
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Combining the above expressions with equations (3.7),(3.8),(3.11) and (3.12), the electrical transient model in terms of voltage and currents can be given in the matrix form as 
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Where S is the Laplace operator. for a singly feed machine, such a cage motor, vqr=vdr=0  

3.4 MATLAB Model of Field oriented Control IM Drive
Fig.3.1 shows the MATLAB model of the field oriented control induction motor drive. In comprises of a three phase IM drive. In comprises of a three phase IM 120 kW, 460V, 60 Hz, driven by a three phase PWM inverter block. A hysteresis current controller is used to control the PWM inverter, according to the difference in actual and estimated motor line current. The details of the other subsystem are as follows.
3.4.1 Hysteresis Current Regulator
The current regulator, which consists of three hysteresis controllers, is built with Simulink blocks. The motor actual currents are provided by the measurement output of the Asynchronous Machine block. The actual motor currents and reference current are compared in hysteresis type relay.
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Fig 3.5 Current regulator

3.4.2 Universal Bridge

[image: image273.png]
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Fig. 3.6 Universal Bridge block
The Universal Bridge block implements a universal three-phase power converter that consists of up to six power switches connected in a bridge configuration. The types of power switch and converter configuration are selectable from the dialog box. Power Electronic device and Port configuration options are selected as IGBT/Diode and ABC as output terminals respectively.  Snubber capacitance Cs is been assigned infinity value 
Rs>2[image: image131.png]
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Where
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= Nominal power of single or three phase converter (VA)
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= Nominal line to line AC voltage (Vrms)

f= fundamental frequency (Hz)
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= sample time(s)

3.4.3 Flux Calculation Block
The rotor flux is calculated by the flux calculation block. Id 
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Fig. 3.7 Flux Calculation Block
Lr = .0003027 H
Tr = Lr / Rr = .03  sec
Rr =  .0092956 Ω
Phir = Lm *Id  / (1 +Tr .s)
3.4.4 Theta Calculation Block
The rotor flux position (θe) is calculated by the Theta Calculation Block.
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Fig 3.8 Theta Calculation block

3.4.5 d-q to abc Transformation Blocks
The conversions between abc and dq reference frames are executed by the  dq0_to_abc Transformation blocks. Function f(u) calculated from equation (3.1).
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Fig 3.9  d-q to abc transformation blocks

3.4.6abc to d-q Transformation Blocks
The conversions between abc and dq reference frames are executed by the  abc _to_ dq Transformation blocks. Function f(u) calculated from equation (3.2).
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Fig. 3.10 abc to d-q Transformation Blocks
We have to specify the reference frame that is used to convert input voltages

 to the dq reference frame, and output currents  to the abc reference frame. We can choose 

among the following reference frames transformations

Rotor (Park transformation)

Stationary (Clarke or a ß transformation)

Synchronous
The following relationships describe the abc-to-dq reference frame transformations

applied to the Asynchronous Machine phase-to-phase voltages.
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In the equations ,  𝜃 is the angular position   of the reference frame ; while 𝛽=𝜃-[image: image170.png]


 is the 
difference between the position of the reference frame and the position of the rotor. The 
following relationships describes the dq to abc transformations 
3.4.7   Induction Machine 
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Fig 3.11 induction machine block
3.4.8   Inverter
Fig 3.12   inverter block [image: image172.emf]5
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3.4.9 Braking Chopper
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Fig 3.13 braking chopper block
3.5 Rotor Resistance Identification 

The rotor resistance identification scheme can be explained with the help of this algorithm

For small estimation errors of the stator current components in the Luenberger observer , it is 

possible to assume that
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Here  [image: image183.png]


  is the rotor resistance and the variables with subscript denotes the estimated 
parameters .The left sides of the aforementioned equations are derived from the motor model 
and the right sides are obtained from the observer system
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Using the motor equations 
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The rotor resistance can be calculated as follows
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Therefore, taking these relations from the motor model and observer system into account 
yields
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 Fig 3.14 Structure of the rotor-resistance estimation algorithm using ANN as associating memory

3.6 Estimation of Rotor Resistance with ANN
The rotor resistance as mathematical parameter of the machine model is not constant and 
changes with time , temperature and speed . During transients which is when the speed 
changes the resistance estimation algorithm shows a large estimation error although filtering 
is used which guarantess that the rotor resistance is remembered at the steady states and is 
determined during transients. For the estimation of rotor resistance a steady state detection 

block is used . ANN is trained online on the basis of the rotor resistance. The delta method 
for the output layer and back propagations method for the hidden layer is used for the online 

training of the ANN. The training coefficient is varied in accordance with the moving 

window rule .The network training is experimentally performed in the nonlinear closed loop 

control system for the induction motor
In this scheme of estimating rotor resistance with the help of feedforward neural networks .
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and -1 are the inputs  and [image: image236.png]


  is the output
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Fig 3.15       ANN architecture for remembering the rotor resistance, feedforward ANN

3.7 Rotor Mutual Inductance Identification

The mutual inductance parameter can be calculated by using the Luenberger observer system 

and a multiscalar model. The   method depends on the iterative identification of this 

parameter at the steady state, at the kth step of the observer sampling , the 
equation has the following form
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Where     [image: image241.png]x5, (k) and x;,(k)



are the estimated values at the kth step of the observer 
sampling .  a  simple relationship for the calculation of the mutual inductance using the 

estimated current and rotor flux has been developed 
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We can find that the iterative method for mutual inductance identification gives a result that 

is close to the real value . an  acceleration of the identification process was used 
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Here  is the value obtained from the previous equation . The acceleration factor k  depends on 

the variable  [image: image253.png]Xqq



  and [image: image255.png]


  . The estimation of the mutual inductance at the steady state 
and during transients using ANN’s with a recurrent-network structure has been proposed.
In this scheme [image: image257.png]
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 are the inputs and the [image: image261.png]


 is the output 
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Fig 3.16   Structure of mutual-inductance identification system 

3.8 Estimation of Rotor Mutual Inductance with ANN

Mutual inductance is calculated from the steady- state relationship.This parameter decreases 
with the saturation of the magnetic path, this means an inverse relationship. In order to 
identify the input values to the ANN , the position –vector method is used. The ANN is 
trained online with a variable training coefficient.

A feed forward MLP with five neurons in a hidden layer with sigmoid bipolar active function 

and one linear output neuron is used. The use of the linear active function with saturation 

results in the necessity to optimise the training data in accordance with the saturation range. 

The inputs Vp and output  Lm values that exceed the range of 1 are the subject of 

normalisation. The back propagation method with a variable training coefficient is used as a 

training method.
Here the scheme of estimating motor mutual inductance with the the recurrent neural 
network has been described. Here [image: image264.png]X, W,



and -1 are the inputs and [image: image266.png]


  is the output
[image: image267.emf]
Fig 3.17 Recurrent ANN for mutual-inductance identification

3.9 Conclusion
In this chapter a complete model of field oriented controlled induction motor has been discussed and methods of estimating parameters of induction motor have been discussed. The methods that has been discussed are how to estimate rotor resistance and how to estimate rotor inductance
Chapter ІV 
         Result and Discussion
4.1 Simulation Results
The matlab simulation of a field oriented controlled induction motor is presented in this chapter. For simulation studies a 120 kW ,460V,60 Hz induction motor has been considered. Its parameters are given in appendix. The conventional PI and NN based speed controllers have been developed and their comparative performances are presented.

The variation of rotor resistance of the motor during its operation is also estimated through a ANN based scheme.
4.2 Performance of Field Oriented Control IM Using P-I Control
Fig.4.1 shows the performance characteristic of a 120 kW, 460V, 60 Hz IM, with a PI speed controller and PI flux controller. Following observations from the graph are noted At time t = 0 s, the speed set point is 500 rpm. Observe that the speed follows precisely the acceleration ramp. At t = 0.5 s, the full load torque is applied to the motor shaft while the motor speed is still ramping to its final value. This forces the electromagnetic torque to increase to the user-defined maximum value (1200 N.m) and then to stabilize at 820  N.m once the speed ramping is completed and the motor has reached 500 rpm. At t = 1 s, the speed set point is changed to 0 rpm. The speed decreases down to 0 rpm by following precisely the deceleration  ramp even though the mechanical load is inverted abruptly, passing from 792 N.m to - 792 N.m, at t = 1.5 s. Shortly after, the motor speed stabilizes at 0 rpm.  Finally, note how well the DC bus voltage is regulated during the whole simulation
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Fig 4.1 performance of field oriented control IM usiing P-I control 

4.3 Performance of Field Oriented Control  IM Using NN Predictive  Controller in Speed Controller Block and Flux Controller Block

Fig.4.2 shows the performance characteristic of a 120 kW, 460V, 60 Hz IM, with a NN predictive  speed controller and NN predictive flux controller. Following observations from the graph are noted At time t = 0 sec, the speed set point is 500 rpm. Observe that the speed follows precisely the acceleration ramp. . At t = 1.2 s, the speed  reaches its set point and with the passage of time it shoots upto 800 rpm .   Finally, note how well the DC bus voltage is regulated during the whole simulation and load torque is low .
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  Fig 4.2     performance of field oriented control using NN Predictive speed   controller and NN predictive flux controller 

4.4 Performance of Field Oriented Control  IM Using Narma L2  Controller in Speed Controller Block and flux controller block
Fig.4.3 shows the performance characteristic of a 120 kW, 460V, 60 Hz IM, with a Narma L2   speed controller and Narma L2 flux controller. Following observations from the graph are noted At time t = 0 s, the speed set point is 500 rpm. Observe that the speed follows precisely the acceleration ramp. . At t = 1.2 s, the speed  reaches its set point and with the passage of time it stabilizes at 600 rpm .   Finally, note how well the DC bus voltage is regulated during the whole simulation and load torque is low .
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   Fig 4.3       performance of field oriented control using Narma L2 speed   controller and Narma L2  flux controller 

4.5 Performance of Field Oriented Control  IM Using Model Reference  Controller in Speed Controller Block and Flux Controller Block

Fig.4.4 shows the performance characteristic of a 120 kW, 460V, 60 Hz IM, with a Model reference  speed controller and Model Reference flux controller. Following observations from the graph are noted At time t = 0 s, the speed set point is 500 rpm. Observe that the speed  rises slowly . At t = 1.2 s, the speed  reaches its set point and with the passage of time it stabilizes at 700 rpm .   Finally, note how well the DC bus voltage is regulated during the whole simulation and load torque is low .
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 Fig 4.4   performance of field oriented control using Model Reference speed   controller and Model Reference  flux controller 

4.6  Estimation of Rotor Resistance using PI control

Fig  4.5  shows the simulation results of rotor resistance estimation of a 120 kW , 460V, 
60 Hz induction motor. We can make the following observations from the graph that it is 
very very less almost zero as it is found in a typical induction motor  and somewhat transitory 
in nature.
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Fig 4.5  Rotor resitance estimation simulation result using PI control
4.10 Conclusion 

In this chapter simulation results of 120 kW , 460V, 60 Hz induction motor using PI control and several Neural Network Controllers are presented. Neural Network controller that has been used are NN predictive controller, Narma L2 controller, Model Reference Controller. It has been found that it is giving better results using Neural Network controllers. In the end we had presented the  simulation results of  rotor resistance estimation using PI control
Chapter V   Conclusion and Future Scope of Work
5.1 Conclusion
In this  project  different  methods of  parameters estimations in induction motor has been 

discussed .There are different methods of estimating parameters of induction motor such as 

H-G diagram based , microprocessor based approach, extended Kalman filter based 

approach and Sliding –Mode Flux observer and Artificial neural network based approach.

 Induction  motor is a nonlinear dynamic system and its parameters are widely 

influenced by the change in temperature,saturation,frequency and operating time  .It is

 therefore necessary for online identification of induction motor . Among the different 
methods artificial neural networks found to be very effective in estimation of rotor resistances
 of induction motor.  They have shorter  computational time and  has  greater
 fault tolerant capabilities. It offers immunity to ripples. There are different methods of
 estimating rotor resistance and rotor inductance through  neural networks such asfeedforward 
multilayer  perceptrons and recurrent networks. For implementation of ANN based estimation 
 mathematical model of induction motor has been developed and MATLAB model of the
 field oriented controlled induction motor has been described . .Simulation results of 120 
kW,460 V , 60 Hz  field oriented controlled induction motor with PI controller,  NN 
predictive controller, Model Reference controller and Narma L2 controller for speed control 
and flux control block has been presented. It is found that field oriented controlled induction 
motor is giving better results using neural network  controllers .In the end simulation results 
showing rotor resistance estimation in PI  based speed control  is also determined and 
analysed
5.2       Future Scope of Work
In this project a neural network is used for the online estimation of rotor resistance of 

induction motor during its operation. The variation of rotor resistance could be used 

for performance improvement of the FOC IM drive during its long run operation.

Though in the present project a ANN is trained with the data of PI based speed and 

flux controller, the ANN could be trained with neuro-fuzzy controllers also to improve 

the accuracy of estimated rotor resistance. Also, for verification of on-line 
identification a proto type FOC induction motor drive could be developed and tested
 with different controllers.
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APPENDIX
Induction Motor Parameters Used For Simulation

Machine type



3-phase induction motor

Rotor type



squirrel cage

Stator and Rotor


Y-connection to an internal neutral point

Reference Frame


rotor
Power




120 kW 
L-L Voltage



460V

Frequency 



60Hz

Stator resistance


0.01485Ω

Rotor resistance


0.0092956Ω

Stator inductance


0.0003027H 

Rotor inductance


0.0003027H

Mutual inductance


0.01046H

Inertia 




3.1Kg.m2
Friction factor



0.1N.m.s

No of pole



2
Inverter parameters used for simulation




Power electronics device


IGBT

Number of bridge arms


3

Snubber resistance



5000Ω

Snubber capacitance



infinite
Internal resistance



1mΩ





Forward voltage



0.8V

Fall time




1μs

Tail time




2μs
Rectifier parameters used for simulation
Power electronic devices                               diodes
No of bridge arms                                          3
Snubber Resistance                                       1000 Ω
Snubber Capacitance
         20 nF

Rectifier parameters used for simulation

Chopper activation voltage                            700V

Chopper shutdown voltage                            660V

Braking chopper frequency                           4000Hz

Dc bus capacitance                                        7.5 mF

Speed Controller block Parameters

Proportional gain                                                     300

Integral  gain                                                           2000

Low pass filter cut off frequency                            1000Hz

Controller sampling time                                         100 μs

Machine nominal flux                                              0.73 weber
3

