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ABSTRACT. For certain meromorphic function g and A, we study a class of functions f(z) =
27+ 5% | fnz™, (fn 2 0), defined in the punctured unit disk A*, satisfying

(£ +9)) s
%(m)>a (ZEA,OS <1).

Coefficient inequalities, growth and distortion inequalities, as well as closure results are ob-
tained. Properties of an integral operator and its inverse defined on the new class is also dis-
cussed. In addition, we apply the concepts of neighborhoods of analytic functions to this class.
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1. INTRODUCTION

Let X denote the class of normalized meromorphic functions f of the form
1 o0
(1)) Fa) =+ fui®,
n=1

defined on the punctured unit disk A* := {z € C:0<|z] <1}). A function feXis
meromorphic starlike of order o (0 < o < 1) if

zf'(z) .
—R @ >a (2€A:=A"U{0}).

The class of all such functions is denoted by 2*(cx). Similarly the class of convex functions of
order « is defined. Let X, be the class of functions f €  with f, > 0. The subclass of X,

consisting of starlike functions of order « is denoted by %7 (a). The following class M R,(q) is
related to the class of functions with positive real part:

MRy(a) := {fIR{-2*f'(2)} >a, 0 < a < 51

In Definition 1.1 below, we unify these classes by using convolution. The Hadamard product
or convolution of two functions f (2) given by (1.1) and

1 o0
(12) 92) =2+ gud"
n=1

is defined by
1 e "
(f % 9)(2) := - s n§=1 Fagaz™,

Definition 1.1. Let0 < o < 1. Let f(z) € I, be given by (1.1) and 9(2z) € £, be given by
(1.2) and

= 1 - n

(1.3) Mz) = - + ;hnz :
Let hy, gn be real and g, + (1 — 2a)h, <0 < @hy — gn. The class M,(g, h, @) is defined by

(f * 9)(2)) }
Milg, ha)=3fen E]?(———-m >ap.
o) = {7 5y ({208

Of course, one can consider a more general class of functions satisfying the subordination:
(f * 9)(2)
(f % h)(2)

However the results for this class will follow from the corresponding results of the class M, (g, h, ).
See [5] for details.

< h(z) (z€A4).

When i .
z
=-_-_Z h(z) = ——,
afe) =2 G R 2(1—2)
we have g, = —n and h,, = 1 and therefore My(g, h, @) reduces to the class 5 (a). Similarly
when 1 ]
z
9(z) = PR gD and h(z) = =
we have

My(g,h, @) = {f| = R{z"f'(2)} > a} =t MR,(a).
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MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS 3

In this paper, coefficient inequalities, growth and distortion inequalities, as well as closure

results for the class M, (g, h, a) arc obtained. Properties of an integral operator and its inverse
defined on the new class M,(g, h, ) is also discussed.

2. COEFFICIENTS INEQUALITIES

Our first theorem gives a necessary and sufficient condition for a function J to be in the class
Mp(g: h’: Ot) J

Theorem 2.1. Let f(2) € T, be given by (1.1). Then f € My(g, h, @) if and only if

o0

2.1) > (@hy —gi)fa<1-a.
n=1
Proof. 1f f € M,(g,h, ), then

i) -} .

By letting z — 1~, we have

{ bt 3o Jtin } -

L+ 2 nss fuhn
This shows that (2.1) holds.
Conversely, assume that (2.1) holds. Since
Rw>a ifandonlyif |w— 1 <|w+1-2al
it is sufficient to show that '
(f x9)(2) = (f * h)(2)
(f #9)(2) + (1 - 2a)(f = h)(2)
Using (2.1), we see that
J (f *9)(2) — (f * h)(2)
(f *9)(2) + (1 - 2a)(f * h)(z)

<1l (zeA).

o } Efﬁ_—l Jo(gn — hy)2™t1

h 2(1 - 04) =+ Z:}:l[gn = (1 T Qa)hn]fnzﬂ+1
7?;1 fn(h’n - Qn)

= 30— a) - oo = Vi gl =

Thus we have f € M,(g, h,a). a
Corollary 2.2. Let f(z) € %, be given by (1.1). Then f € y(a) if and only if

Z(n+a)fn <1l-—oa.

n=1

Corollary 2.3. Let f(z) € , be given by (1.1). Then f ¢ MRy(a) if and only if Y% nf,
<1l-a.

Our next result gives the coefficient estimates for functions in My(g,h, ).
Theorem 2.4. If f € M,(g, h, ), then
l—a

L =1,2,3,....
fn £ ahy, — gn, m
The result is sharp for the functions F,.(z) given by
Fn(z)=1+-ﬂ~zn, n=1,23,....

z  ah, —g,
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Proof. If f € My(g, h, c), then we have, for each n,

(ah’ﬂ - gl’l)fﬂ S Z(th B gﬂ)f’ﬂ S 1 — Q.
n=1
Therefore we have
11—«

n < —.
f - ahﬂ — On
Since

1 l=a . o
=t e

satisfies the conditions of Theorem 2.1, F,,(z) € M,(g, h,a) and the inequality is attained for
this function.

O
Corollary 2.5. If f € ¥5(«), then
1)
fuf 22 pedgm
n+ao
Corollary 2.6. If f € M R,(c), then
1=
fns a: n:112131""
n
Theorem 2.7. Let ahy — gy < ahy, — gn. If f € M,(g, h, @), then
1 11—« 1 l—«
-———r < e e ——— =7
g SWEN S T+ = (el =)
The result is sharp for
1 1-—
2.2) f@)=-+——2 2
z  ah—q
Proof. Since f(z) = 1+ 3> | f.2", we have
O P T T PE e o
4 n=1 " oT n=1 v
Since ahy — g1 < ahy — gn, we have
(@h1=g1) Y fa £ (0hn—gn)fn<1-a,
n=1 n=1
and therefore
22 l—a
an 3 T el
n=1 D:h]_ 0
Using this, we have
1 l—-aw
g A Y
P < -+ et
Similarly
1 l—-a
S S =TT
@2 ;= er
The result is sharp for f(2) = | + 7=2-z. a

Similarly we have the following:
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Theorem 2.8. Let ah; — g, < (ah —9)/n If f € My(g,h,q), then
1 1- 1 l-a

< L=+ — = i}
7w SIS o (d=n)
The result is sharp for the ﬁmctmn given by (2.2).

3. CLOSURE THEOREMS
Let the functions £} (z) be given by
1 oo
3.1 F(z) == 2 =1,2,...,m.
G.1) M= 24D fud m

We shall prove the following closure theorems for the class My,(g, h, a).

Theorem 3.1. Let the function Fi(2) defined by (3.1) be in the class M. L

g, h,a) for every
k=1,2,...,m. Then the Junction f(z) defined by

:;—l—Zanz“ (an > 0)
n=1

belongs to the class M, (g, h, ), where a,, = T Fadn=12,...)
Proof. Since Fy,(z) € M,(g, h, ), it follows from Theorem 2.1 that

(3:2) }:(ah ~gn)fak <1-a
forevery k = 1,2,...,m. Hence
o0 o0 1 m
Z(ahn - gn)a'n = Z(ahn = g'n) (_ Z fn,k)
n=1 n=1 e k=1
1 m
= _T)_’l (nzﬂ gﬂ)fn k)
<1-oa.
By Theorem 2.1, it follows that f(z) € My(g,h, c). O

Theorem 3.2. The class M,(g, h, @) is closed under convex linear combination.

Proof. Let the function Fj(z) given by (3.1) be in the class M,(g, h, ). Then it is enough to
show that the function

H(z) =AM(2)+ (1 - NF(z) (0<A<1)
is also in the class M,(g, h, @). Since for0 < A < 1,
1 4
H(z)=>+ );WHJ + (1= A) fasl2",

we observe that

o]

Z(ah _"gn)[Afnl"l‘(l_ fn2] —/\Z — Un fn1+(1— )Z(ah’n'—gn)an
=1 n=1
<l-a.
By Theorem 2.1, we have H(z) € My(g,h, ). O
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'ﬂwmm&&Laﬂu):gmdﬂ@)=§+JﬁEWﬁm1=Lz”"ﬁmf@)e“
My(g, b, «) if and only if f(z) can be expressed in the form f(z) = S°%° A\ F,(z), where
A 2 Oand 3% X = 1.

Proof. Let
= 1 = A(l-a) =
f(z) _nZﬂAnFn(z) = ;+;mz :
Then

[ee]

Z)\n(l—a)ahn—gn=i)m:1_)\051_

et oh,—g, 11—
By Theorem 2.1, we have f(2) € My(g, h, a).
Conversely, let f(z) € M,(g, h, a). From Theorem 2.4, we have

n=1

fng-l_—a for n=1,2,...
ahy — gy
we may take
ho —
An=——-—a" g"fn for n=12...
l—a
and
do=1-3"x.
n=1
Then

fl2y=3" MFilz).

n=0

4, INTEGRAL OPERATORS
In this section, we consider integral transforms of functions in the class My(g, h, ).

Theorem 4.1. Let the function f(z) given by (1.1) be in M, (g, h, ). Then the integral operator
1
F(z)=cf ulf(uz)du 0<u<1,0<c<c0)
0
is in My(g, h,§), where

(c+2)(ahy — g1) + (1 — a)eqy
(C+ 2)(ah1 = g1) + (1 - Ot)Chl '
The result is sharp for the function f(z) = L + J1=a_,

ahi—g1 7"
Proof. Let f(z) € M,(g, h,a). Then

F(z) = c/o u’ f(uz)du

1 uc—l ool
=c / -+ Z Faultez™ | du
0 - n=1

1 = c
e it n
_z+;c+n+1fnz

]
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It is sufficient to show that

i c(0hy, — gn)
e L erne =gl <t

n=1

Since [ € M,(g, h, a), we have
= ahy — g,
e A
2w
Note that (4.1) is satisfied if

c(éh’n == gn) & G‘hn =
(c+n+1)(1-48) = (1-q) "
Rewriting the inequality, we have

c(Ohn —g)(l—a) < (c+n+ 1)(1-68)(ahy — g,)
Solving for §, we have

fo (@hn = gn)(c+n+1) + cga(1 - a)
" chn(l = a) + (ahn — g;)(c+ 1 +1)
A computation shows that
Fn+1) - F(n)
(1 s Q)C[(l B Cr){n 55 l)gnhﬂﬂ + (hn - gn)(ahnH iy 9n+1)] >0

[cha(1 - a) + (ahy — gu)(c+1 + Dlehnia(1 = a) + (@hns1 — gupr)(c +n + 2)]
for all n, This means that F(n) is increasing and F(n) > F(1). Using this, the results follows,
]

= F(n).

In particular, we have the following result of Uralegaddi and Ganigi [4]:
Corollary 4.2. Let the function [(2) defined by (1.1) be in 5 (). Then the integral operator

F(z)=c/01u°f(uz)du 0<u<1,0<e <)

is in 33(0), where 6 = Y& Tho yosylt is sharp for the Junction

fle)=2+122

z l+az'

Also we have the following:
Corollary 4.3. Let the function (=) defined by (1.1) be in MR,(a). Then the integral operator
1
F(z)zc/ u f(uz)du O<u<1l,0<c<o0)
0

is in M Ry(2:2). The result is sharp for the function f(z) = 1 + (1 - a)z.
Theorem 4.4, Let f(2), given by (1.1), be in Mg, h, @),

42) F(z)=%[(c+1)f{z}+zf’(z)]=%+Ec+2+]fnz“, ¢>0.

n=1
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Then F(z) is in My(g, h, 8) for |2| < r(a, B), where

1

Tl = in C(l = ﬁ)(ﬂih“ —gn) T o )
(a, B) nf((l—ct)(c-}-n-{—l)(ﬁhu__gn)) : 1,2,3,....

The result is sharp for the function fn(2) =1 4 L=a_n 1,2.3:. ...

z ahp—g, <~ ?

Proof. Letw = %. Then it is sufficient to show that

|'w+1—2,6"

A computation shows that this is satisfied if
o (Bhn — go)(c+n + 1.
4.3 = P n+l <,
Since [ € M,(g, h, @), by Theorem 2.1, we have
z:(m‘i.,1 =) € 1~
n=1

The equation (4.3) is satisfied if

(Bh, _(.‘;'n)(;;‘;n i3 1)fn]z|n+1 < —-————(ah?; = gn)fn.
= —igy
Solving for |z|, we get the result. O

In particular, we have the following result of Uralegaddi and Ganigi [4]:

Corollary 4.5. Let the function f (2) defined by (1.1) be in X, () and F(z) given by (4.2). Then
F(z) is in 23(a) for |2| < r(, B), where

c(l - B)(n+a) T B
r(a,f) = 1nf((1—a)(c+n+1)(n+ﬁ) W T e

The result is sharp for the function falz) =1+ 3\;; R S

Corollary 4.6. Let tkeﬁmcnon F(2) defined by (1.1) be in MR,(c) and F(z) given by (4.2).
Then F'(z) is in M R,(c) for |z| < r(a, A), where

(L=p) &
(o, B) = mf({l—a)(c—i—n—i—l)) i =123 ..

The result is sharp for the function f,(z) = 1 s+ =123 ...

5. NEIGHBORHOODS FOR THE CLASS M{" (g, ), )

In this section, we determine the neighborhood for the class M (g, h, ), which we define
as follows:

Definition 5.1. A function f € 2y Is said to be in the class M, m(g, h, &) if there exists a
function g € M,,(g, h, @) such that

(5.1) fz)

9(z) :

<1-—4, (z€,0<y<).
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Following the earlier works on neighborhoods of analytic functions by Goodman [1] and
Ruscheweyh [3], we define the §-neighborhood of a function f e X,by

5.2) Ns(f) := {g €T, @ gle)= % B anzﬂ and Zn|an — by < 5} .
n=1 n=1

Theorem 5.1, If g € My(g, h,a) and

d(ahy — g1)
5.3 =1- ,
L i alb +1) — (g1 + 1)
then

Ns(g) € M{"(g, h, ).
Proof. Let f € Nj(g). Then we find from (5.2) that

(5.4) > nlan, - by| <6,
n=1
which implies the coefficient inequality
(5.5) Y lan—b. <6, (neN).
n=1
Since g € M, (g, h, @), we have [cf. equation (2.1)]
= l-a
(5.6) B pr——y
;fﬂ (ah1 — g1)
so that
6| Bl
9(z) 1= Eﬁil br
_ S(ahy — 1)
a(hi+1) - (g1 +1)
=1- Y,
provided «y is given by (5.3). Hence, by definition, f € M,S"’) (g, h, @) for ~ given by (5.3),
which completes the proof. &l
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