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ABSTRACT 

 
 

Under this project entitled “Memory Architecture Design of a 32-bit 
Embedded Processor using VHDL”, the following are modeled using VHDL. 

 
1. A basic 32-bit embedded processor core using VHDL. It uses Register 

Transfer Level (RTL) description to model the processor. The processor modeled is 
based on MIPS Architecture. The design uses a 32 bit register file  which is an array 
of thirty two 32-bit registers uses to store data, a 32bit register to store the 
instruction,  32-bit register to store operational data at various stage, an ALU for 
arithmetic and logic manipulation  and an ALU control which decodes the function to 
be performed by ALU. Control is implemented using a Finite State Machine model. 
Multiplexers are used to select from different input signals in each functional blocks. 

 
2. Behavioral model of a 32 bit Random Access Memory with burst transfer 

protocol implemented 
 
3. Behavioral model of a Direct Mapped Write Through Cache Memory block 

which utilizes the burst transfer protocol while loading from the Random Access 
Memory. 

 
The simulation is performed using ACTIVE HDL Version 6.3  of ALDEC  

Corporation. 
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1. INTRODUCTION 

We are living in a second age industrial revolution, when the availability and 
processing of information are causing untold changes in our lives.  In 1971 Intel 
produced the first microprocessor, the 4004, which handled data as 4 bit numbers 
and contained 2250 transistors. It followed this soon with 8008, and within a few 
years number of companies were making their own microprocessor offerings. By the 
end of 1970s two trends were emerging for these remarkable devices. One was to 
scale down in size, if  not computing power, the general purpose computer, this led 
quickly to the first desktop machines. The other, much more revolutionary was to 
place the microprocessor in products which apparently had nothing to do with 
computing. They began to find their way into photocopiers, washing machines, and a 
host of other products. While the first trend led to an inexorable demand for faster 
and bigger processors, the second placed lower demand on computational power and 
speed. It wanted physically small and cheap devices, with as much functionality of 
the system as possible squeezed on to one integrated circuit. Such microprocessors 
became known as micro controllers and  the systems they controlled, embedded 
system. 

MIPS architecture was chosen by Hennessey & Patterson [1] as a vehicle for 
teaching principle of Computer Architecture. It is a 32-bit Reduced Instruction Set 
Computer (RISC). Here we use the MIPS processor for developing a high level 
abstraction of in VHDL first. Then we develop a memory hierarchy to support this 
processor model to evaluate the importance of Cache Memory in improving the 
overall memory performance. 

Developed more than 20 years ago at Stanford University, the MIPS architecture is a 
simple, streamlined, highly scalable RISC architecture. Its fundamental 
characteristics - such as the large number of registers, the number and the character 
of the instructions, and the visible pipeline delay slots - enable the MIPS architecture 
to deliver the highest performance per square millimeter and lowest energy 
consumption in today's SOC designs.  

1.1 MIPS32 
The MIPS32 Architecture sets a new performance standard for 32-bit embedded 
processors. The MIPS architecture is the leading embedded architecture because of 
its robust instruction set, scalability from 32-bits to 64-bits, broad-spectrum of 
software development tools. The MIPS32 architecture is a superset of the previous 
MIPS I and MIPS II Instruction Set Architectures (ISA) and incorporates powerful 
new instructions specifically for embedded applications, as well as proven memory 
management and privileged mode control mechanisms. By incorporating powerful 
new features, standardizing privileged mode instructions, and supporting past ISAs, 
the MIPS32 architecture provides a solid high-performance foundation for all future 
32-bit MIPS processor-based development. 

The MIPS32 architecture is based on a fixed-length, regularly encoded instruction set 
and uses a load/store data model. The architecture is streamlined to support 
optimized execution of high-level languages. Arithmetic and logic operations use a 
three-operand format, allowing compilers to optimize complex expressions 
formulation. Availability of 32 general-purpose registers enables compilers to further 
optimize code generation by keeping frequently accessed data in registers. 
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Flexibility of its high-performance caches and memory management schemes 
continues to be a strength of the MIPS architecture. The MIPS32 architecture 
extends this advantage with well-defined cache control options. The size of the 
instruction and data caches can range from 256 bytes to 4Mbytes. The data cache 
can employ either a write-back or write-through policy. A no-cache option can also 
be specified.  

  
1.2 Features  

• Fully MIPS I and MIPS II ISA compatible  
• Enhanced with conditional move and data-prefetch instructions  
• Standardized DSP operations: multiply (MUL), multiply and add 

(MADD), and count leading 0/1s (CLZ/O)  
• Privileged cache load/control operations  
• Robust load/store RISC instruction set with 3-operand 

instructions in most formats (3 register, 2 registers + 
immediate), branch/jump options, and delayed jump 
instructions.  

• 32 general purpose 32-bit registers (GPRs)  
• Optional floating-point support:  
• 32 single precision 32-bit or 16 double precision 64-bit floating 

point registers (FPRs)  
• Floating-point condition code register  
• Optional Memory Management Unit with:  

o TLB or BAT address translation mechanisms  
o Programmable page size  
o Optional caches:  
o Instruction and or data cache options  
o Write-back or write-through data-cache options  
o Virtual or physical addressing  
o Enhanced JTAG (EJTAG) support for non-intrusive debug 

support  

MIPS32 compatible processors are intended for high performance, low-
power, system-on-a-chip (SOC) embedded applications. 

1.3 Applications 

Security Devices 

• Smart cards  
• Smart card readers  
• Point of Deployment (POD) devices  

Digital Consumer Devices 

• Digital Cameras  
• Set-top Boxes  
• Game Platforms  
• DVD Players  
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Office Automation 

• Printers  
• Copiers  
• Scanners  
• Multifunction Peripherals  

Other 

• Industrial Controllers  
• Mass Storage Systems  
• Automotive Systems  
• Navigation (GPS)  
• PC Peripherals  
• Graphics Systems  
• Dedicated Terminals (POS, ATM, e-cash) 
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2. INTRODUCTION TO VHDL 

 
 
As integrated circuit technology has improved to allow more and more components 
on a chip, digital systems have continued to grow in complexity.  As digital systems 
have become more complex, detailed design of the systems at the gate and flip-flop 
level has become very tedious and time consuming.   For this reason, use of 
hardware description languages in the digital design process continues to grow in 
importance.  A hardware description language allows a digital process continues to 
grow in importance.  A hardware description language allows a digital system to be 
designed and debugged at a higher level before conversion to the gate and flip-flop 
level.  Use of synthesis computer-aided design tools to do this conversion is 
becoming more widespread.   This is analogous to writing software programs in a 
high-level language such as C and then using a compiler to convert the programs to 
machine language.  The two most popular hardware description languages are VHDL 
and Verilog. 
 
 VHDL is a hardware description language used to describe the behavior and 
structure of digital systems.  The acronym VHDL stands for VHSIC Hardware 
Description Language, and VHSIC in turn stands for very High Speed Integrated 
Circuit.   However, VHDL is a general purpose hardware description language that 
can be used to describe and simulate the operation of a wide variety of digital 
systems, ranging in complexity from a few gates to an interconnection of many 
complex integrated circuits.  VHDL was originally developed for the military to allow 
a uniform  method for specifying digital systems.   The VHDL language has since 
become and IEEE standard, and it is widely used in industry. 
 
 VHDL can describe a digital system at several different levels-behavioral, data 
flow, and structural.  For example, a binary adder could be described at the 
behavioral level in terms of its function of adding two binary numbers, without giving 
any implementation details.  The same adder could be described at the data flow 
level by giving the logic equations for the adder.   Finally, the adder could be 
described at the structural level by specifying the interconnections of the gates that 
comprise the adder. 
 
 VHDL leads naturally to a top-down design methodology, in which the system 
is first specified at a high level and tested using a simulator.   After the system is 
debugged at this level, the design can gradually be refined, eventually leading to a 
structural description closely related to the actual hardware implementation.   VHDL 
was designed to be technology independent.   If a design is described in VHDL and 
implemented in today’s technology, the same VHDL description could be used as a 
starting point for a design in some future technology. 
 
  
2.1 VHDL description of combinational networks 
 
Below given is description of  a simple gate network in VHDL.   If each gate in the 
network of figure has a 5-ns propagation delay, the network can be described as 
follows: 

 
C <= A  and   B  after 5 ns; 
E <=  C or D  after 5 ns; 
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Where A, B, C, D and E are signals.  A signal in VHDL usually corresponds to a signal 
in a physical system.   The symbol “<=” is the signal assignment operator, which 
indicates the value computed on the right side is assigned to the signal on the left 
side.   When these statements are simulated, the first statement will be evaluated 
any time A or B changes, and the second statement will be evaluated any time C or 
D changes.  Suppose that initially A=1, and B=C=D=E=0.   If B changes to 1 at time 
0, C will change to 1 at time=5 ns.  Then E will change to 1 at time = 10 ns. 
 
 
 

E 

A 

B 

 

C

D 

 
 
 
 
 
 
 
 
 

 
 
 

 
Fig. 2.1 GATE NETWORK 

 
 
 

VHDL signal assignment statements, like the ones in the preceding example, are 
called concurrent statements when they are not contained in a VHDL process or 
block.   The VHDL simulator monitors the right-hand side of each concurrent 
statement, and any time a signal changes, the expression on the right-hand side is 
immediately re-evaluated.  The new value is assigned to the signal on the left-hand 
side after an appropriate delay. 

 
When we initially describe a network, we may not be concerned about propagation 
delays.  If we write 

 
 C<=A  and B; 
 
 E<=C or D; 
 

This implies  that the propagation delays are 0 ns.   In this case, the simulator will 
assume an infinitesimal delay referred to as (delta).   
 
Unlike a sequential program, the order of the preceding statements is unimportant.   
If we write 

 
 E<=C or D; 
 C<=A and B; 
 

The simulation results would be exactly the same as before.  Even if a VHDL program 
has no explicit loops, concurrent statements may execute repeatedly as if they were 
in a loop.  The VHDL statement 
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 CLK <= not  CLK; 
 

Will cause a run-time error during simulation.  Since there is 0 delay, the value of 
CLK will change at time 0 +1   ,0+2…,0+3…etc, and real time will never advance. 

 
In general, VHDL is not case sensitive; that is, capital and lowercase letters are 
treated the same by the compiler and simulator.  Thus the statements 

 
 CLK <= NOT CLK After 10 NS; 
 
 And  CLK <=NOT CLK after 10 ns; 
 

Are treated exactly the same.  Signal names and other VHDL identifiers may contain 
letters, numbers, and the underscore character (_).   An identifier must start with a 
letter, and it cannot end with an underscore.   Thus C123 and ab_23 are legal 
identifiers, but 1 ABC and ABC-are not.  Every VHDL statement must be terminated 
with a semicolon. 

 
2.2 Entity-Architecture Pairs 

 
To write a complete VHDL program, we must declare all the input and output signals 
and specify the type of each signal.  As an example, we will describe the full adder of 
above figure. A complete description must include an entity declaration and an 
architecture declaration.   The entity declaration specifies the inputs and outputs of 
the adder module: 

 
Entity Full Adder is 
  Port (X,Y, Cin: in bit;         -- inputs 
          Cout, Sum: out bit);    -- outputs 
 
End Full Adder; 
 

The words entity, is port, in, out and end are reserved words (or keywords), which 
have a special meaning to the VHDL compiler. Anything that follows a double dash (-
-) is a VHDL comment.   The port declaration specifies that X,Y and Cin are input 
signals of type  bit, which means it can assume only values of ‘0’ or ‘1’. 

 
 
 
 

The  operation of the full adder is specified by an architecture declaration: 
 
architecture Equations of Full Adder is 
begin 
 

Sum <=X xor Y xor Cin after 10 ns; 
Cout <= (X and Y) or (X and Cin) or (Y and Cin) after 10 ns; 

  
end Equations; 
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Fig. 2.2  VHDL Program Structure 
 
 

In this example, the architecture name (Equations) is arbitrary; but the entity name 
(Full Adder) must match the name used in the associated entity declaration.  The 
VHDL assignment statements for Sum and Cout represent the logic equations for the 
full adder.  Several other architectural descriptions, such as a truth table or an 
interconnection of gates could have been used instead.   In the Cout equation, 
parenthesis are required around (X and Y), since VDHL does not specify an order of 
precedence for the logic operators. 

 
When we describe a system in VHDL, we must specify an entity and an architecture 
at the top level, and also specify an entity and architecture for each of the 
component modules that are part of the system.  Each entity declaration includes a 
list of interface signals that can be used to connect to other modules or to the 
outside world.  We will use entity declarations of the form 

 
entity entity_name is 
 
 [port (interface-signal-declaration);] 
 
end [entity]  [entity_name]; 
 
 

The items enclosed in brackets are optional.   The interface-signal-declaration 
normally has the following form; 

 
list-of-interface-signals: mode type [:=initial-value] 

 
Input signals are of mode in, output signals are of mode out, and bi-directional 
signals are of mode inout. The optional initial value is used to initialize the signals on 
the associated list; otherwise, the default initial value is used for the specified type.  
For example, the port declaration 
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Port (A, B: in integer :=2; C,D: out bit); 
Indicates that A and B are input signals of type integer, which are initially set 
to 2, and C and D are output signals of type bit, which  are initialized by 
default to ‘0’. 
 

 
 

Associated with each entity is one or more architecture declarations of the form 
 
architecture architecture_name of entity_name is 
 
 (declaration) 
 
begin 
 
 architecture body 
 
end [architecture] [architecture_name]; 
 

2.3 Compilation and Simulation of VHDL code 
 

After describing a digital system in VHDL, simulation of the VHDL code is important 
for two reasons.   First, we need to verify the VHDL code correctly implements the 
intended design; second, we need to verify that the design meets its specifications.  
Before the VHDL model of a digital system can be simulated, the VHDL code must 
first be compiled.  The VHDL compiler, also called an analyzer, first checks the VHDL 
source code to see that it conforms to the syntax and semantic rules of VHDL.   If 
there is a syntax error such as a missing semicolon, or if there is a semantic error 
such as trying to add two signals of incompatible types, the compiler will output an 
appropriate error message.   The compiler also checks to see that references to 
libraries are correct.   If the VHDL code confirms to all the rules, the compiler 
generates intermediate code, which can be used by a simulator or by a synthesizer. 

 
In preparation for simulation, the VHDL intermediate code must be converted to a 
form that can be used by the simulator.   This step is referred to as elaboration.  
During elaboration, ports are created for each instance of a component, memory 
storage is allocated for the required signals, the interconnections among the port 
signals are specified, and a mechanism is established for executing the VHDL 
processes in the proper sequence.  The resulting data structure represents the digital  
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Fig. 2.3 Compilation, Elaboration, and Simulation of VHDL Code 
 
 
system being simulated.   After an initialization phase, the simulator enters the 
execution phase.   The simulator accepts simulation commands, which control the 
simulation of the digital system and specify the desired simulator output. 

 
2.4 Variables, Signals and Constants 
 
Variables may be used for local storage in process, procedures, and functions.  A 
variable declaration has the form : 
 

Variable list_of_variable_names :  type_name [:=initial_value]; 
 
Variables must be declared within the process in which they are used and are local to 
that process. An exception to this rule is shared variables. Signals, on the other 
hand, must be declared outside of a process.   Signals declared at the start of an 
architecture can be used anywhere within that architecture. 
   
A signal declaration has the form 
 

signal list_of signal_names : type_name [:=initial_value]; 
 
A common form of constant declaration is 
 

constant constant_name : type_name := constant_value; 
 
A constant delay of type time having the value of 5 ns can be defined as 
 

constant delay :time : = 5 ns; 
 
Constants declared at the start of an architecture can be used anywhere within that 
architecture, but constants declared within a process are local to that process. 
 
Variables are updated using a variable assignment statement of the form 
 

variable_name :=expression; 
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When this statement is executed, the variable is instantaneously updated with no 
delay not even a delta delay.  In contrast, consider a signal assignment of the form 
 

signal_name<=expression [after delay]; 
 
The expression is evaluated when this statement is executed, and the signal is 
scheduled to change after delay.   If no delay is specified, then the signal is 
scheduled to be updated after a delta delay. 
 
2.5 Arrays 
 
In order to use an array in VHDL, we must first declare an array type and then 
declare an array object.   For example,  the following declaration defines a one-
dimensional array type names SHORT_WORD: 

 
type SHORT_WORD is array (15 down to 0) of bit; 
 

An array of this type has an integer index with a range from 15 down to 0, and each 
element of the array is of type bit. 

 
Next, we declare array objects of type SHORT_WORD: 

 
signal DATA_WORD : SHORT_WORD; 
 
variable  ALT_WORD : SHORT_WORD: = “0101010101010101”; 
 
constant  ONE_WORD: SHORT_WORD := (others = ‘1’); 
 

DATA_WORD  is a signal array of 16 bits, indexed 15 down to 0, which is initialized 
(by default) to all ‘0’ bits.  ALT_WORD is a variable array of 16 bits, which is 
initialized to alternating 0s and 1s.  ONE_WORD is a constant array of 16 bits, all bits 
are set to 1 by (others => ‘1’).  We can reference individual elements of the array by 
specifying an index value.  For example, ALT_WORD (0) accesses the rightmost  bit 
of ALT_WORD.   We can also specify a portion of the array by specifying an index 
range:   ALT_WORD (5 downto 0) accesses the low-order 6 bits of  ALT_WORD , 
which have an initial value of 010101.    

 
The array type and array object declarations illustrated here have the general forms 

 
type array_type_name is array index_range of element_type; 
 
signal array_name:  array_type_name [:= initial_values]; 
 

In the preceding declaration, signal may be replaced with variable or constant. 
 

Multidimensional array types may also be defined with two or more dimensions.     
The following example defines a two-dimensional array variable, which is a matrix of 
integers with four rows and three columns: 

 
type matrix_4x3 is array (1 to 4, 1 to 3) of integer; 
variable matrix_a : matrix_4x3 := ((1,2,3), (4,5,6), (7,8,9), (10,11,12)); 
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The variable matrix_a,  will be initialized to 
 
1   2     3 
4     5     6 

 7     8     9 
 10  11   12 
 
The array element matrix A (3,2) references the element in the third row and second 
column, which has a value of 8. 
 
2.6 VHDL Operators 
 

Predefined VHDL operators can be grouped into seven classes: 
 
1. Binary logical operators: and or nand nor xor xnor 
2. Relational operators : =/  =  <  <=  >  >= 
3. Shift operators: sll  srl  sla  sra  rol  ror 
4. Adding operators:  +  -  & (concatenation) 
5. Unary sign operators :  +  - 
6. Multiplying operators : * / mod rem 
7. Miscellaneous  operators :  not abs ** 

 
When parentheses are not used, operators in class 7 have precedence and are 
applied first, followed by class 6, then class 5 etc.   Class 1 operators have lowest 
precedence and are applied last.  Operators in the same class have the same 
precedence and are applied from left to right in an expression. The precedence order 
can be changed by using parentheses. 
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3. IMPLEMENTATION 
 
 
Any processor will two distinctive parts. One is Datapath and the other one being   
Control. MIPS datapath can be either single cycle or multicycle. 

 
3.1 Single Cycle  
 
Datapath executes all instructions in 1 clock cycle.   This means that no datapath 
resource can be used more than once per instructions, so any element needed more 
than once must be duplicated.   Inefficient because clock cycle is determined by the 
longest possible path in the machine (usually load instructions) so the overall 
performance of the single cycle instruction is not likely to be good as several of the 
instructions can be completed in a shorter cycle. 

 
3.2 Multicycle 
 
Each instruction is broken into several steps and each of such steps take one clock 
cycle to executes.   This allows functional units to be used more than once per 
instruction as long as it is used in different clock cycle. 
 
In this project we are modeling a multicycle datapath with finite state machine 
control for a 32-bit MIPS processor. 
 
In a multicycle implementation, each step in the execution will take 1 clock cycle.  
The multicycle implementation allows a  functional unit to be used more than once 
per instruction, as long as it is used on different clock cycles.   This sharing can help 
reduce the amount of hardware required.   The ability to allow instructions to take 
different numbers of clock cycles and the ability to share functional units within the 
execution of a single instruction  are the major advantages of a multicycle design.   
 
At the end of a clock cycle, all data that are used in subsequent clock cycles must be 
stored in a state element.   Data used by subsequent instructions in a later clock 
cycle is stored into one of the programmer-visible state elements (i.e., the register 
file, the PC, or the memory).   In contrast, data used by the same instruction in a 
later cycle must be stored into one of these additional registers. 
 
Thus the position of the additional registers is determined by the two factors:  what 
combinational units will fit in a clock cycle and what data are needed in later cycles 
implementing the instruction.   In this multicycle design, we assume that the clock 
cycle can accommodate at most one of the following operations:  a memory access, 
a register file access (two reads or one write), ore an ALU operation.  Thus any data 
produced by one of these three functional units (the memory, the register file, or the 
ALU) must be saved into a temporary register for use on a later cycle. 
 
 
3.3 Components of Datapath 
 
A reasonable way to start a datapath design is to examine the major elements to 
required to execute each class of MIPS instruction. At the end of a clock cycle, all 
data that are used in subsequent clock cycles must be stored in a state element Data 
used by subsequent instructions in a Later Clock Cycle is stored into one of the 
programmer visible state elements (register file, the PC or the memory) where as 
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the data used by the same instruction in a later cycle is stored into one of the 
general purpose registers provided after each main functional unit. 
 
The datapath will have the following two types of components. 
 

Combinational Elements (Adder, MUX, ALU) 
Storage Elements ( Register, Register File) 

 
 
 
A multicycle datapath is shown in the figure 3.1. It contains the following   
 

  
(1) Register array          - 32 registers of  32- bit size   

 
(2)  Register 32 bit                 -Memory Data Register 
 
     Register A 
 
     Register B 
 
     ALU Out Register 
 
(3) Registers 32 bit with          - These are used where programmer visible 
registers   
 enable input   are needed 
 

(i) Instruction Register (Write is controlled 
with IRWrite Signal from PSM) 

(ii) Program Counter (32 bit) write is 
controlled with PC Write control signal   

 
(4) Multiplexers   All controlled with signals coming from PSM  

Control unit. 
 

 
    (5) Control Unit 
 
 
3.4 Register file 
 
The processors 32 registers are stored in a structure called a register file.  A register 
file is collection of register in which any register can be read or written by specifying 
the number of the register in the file.   It has three inputs for selecting the register 
to be operated (2 for read operation and one in case of write operation) 
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                      Fig. 3.1 MIPS DATAPATH  & CONTROL 
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                                                      RegWrite        

 
Read Register1 
                                                Read Data1
Read Register2 
 
 
Write Register1 
                                                Read Data2
 
Write Data 

 
 

Register Files 
 

Fig. 3.2 Register File 
 
 
To write data into the register file, we need 2 inputs one to specify the register 
number one to supply the data.   The register file always outputs the contents of 
whatever register numbers are on the Read register inputs. Writes however are 
controlled by write control signal (Regwrite) which must be asserted for a write to 
occur at the clock cycle. 
 
3.5 MIPS instruction format 

 
The layout of instruction is called the instruction format. MPIS instructions are 
classified into three types. 
 

 
R-type 
 
31                                                    0 
Op Rs Rt Rd Shamt funct 
      6bits  5 bits  5bits  5bits  5bits  6bits 
 

 
 

I-type 
 
31                        0 
Op Rs Rt Immediate 
 6 bits  5bits  5bits   16bits 
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J TYPE 
 
31                           0 
Op Target address ( 26bits) 
      6bits   
 
 
As it can be seen all MIPS instructions are 32 bit long. 
 
The different fields are : 

• op    - operation of the instruction 
• rs,rt,rd  - source and destination registers 
• shamt  - shift amount 
• funct  - selects the variant of  operation in Op field. 

 
 
 
 
Here we will simulating MIPS datapath for R type (Arithmetic Operations)   and I 
type (Load/Store Operations).   
 

R Type Instructions 
 

R type instructions have an OP-code of ‘0’ always. These instructions have three 
register operands : rs, rt and rd. Field rs and rt are the source registers and rd 
is the destination. ALU function is in the funct field and is decoded by the ALU 
control. The R type instruction that we implement are add, sub, and, or and slt 
( set on less than). The shamt field is only used in shift instructions which we 
will ignore presently. 
 
 
R type instructions implemented here are   
 
ADD  rd, rs, rt      =>  rd = rs + rt 
 
SUB   rd, rs, rt     => rd = rs  - rt 
 
AND  rd, rs, rt     => rd = rs & rt 
 
OR   rd, rs, rt     => rd = rs || rt 
 
SLT rd, rs, rt     => if rs < rt, rd=1 else rd=0 
 
 
 
Fields in the case of ADD instruction 
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As mentioned earlier, for and R type instruction the OP and SHAMT fields will be 
zero always ( first and fifth fields). The second field gives the number of the 
register that is the first source operand (rs) and the third field indicates the 
second source operand (rt). Fourth  field  indicated the destination where the 
addition result will be stored (rd). Sixth filed defined the function to be 
performed, in this case it will be 100000 (32) for addition. 
 
The above explanation is valid for other R type instructions as well. The only field 
that will change is that of function. 
 

 
R TYPE 

INSTRUCTION 
FUNCTION FIELD 

ENTRY 
 

ADD 100000  (32) 

SUB 100010  (34) 

AND 100100  (36) 

OR 100101  (37) 

SLT 101010  (42) 

 
 
 
3.6 ALU CONTROL 

 
The control input to the data path are coming from several fields of Instruction 
Register and from the FSM controller. ALU has three control inputs. Only five of the 
possible eight input combinations are used. 
 
 

ALU CONTROL 
INPUT 

FUNCTION 

000 AND 

001 OR 

010 ADD 

110 SUBTRACT 

111 SET ON LESS THAN 

 
Depending on the instruction class the ALU will need to perform one of these five 
functions.   For load word (LW) and store word (SW) instructions we use ALU to 
compute the memory address by addition.   For R type instruction ALU needs to 
perform for the five functions (Addition, Subtraction, AND, OR and SLT)  depending 
on the value of 6 bit function feed in the lower bits of the instruction. 
 
We can generate the 3 bit ALU Control using a small control unit that has as inputs 
the function field of the instruction and a 2 bit control field which is ALUOp.   Table 
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illustrates the way in which the ALU Control input is decided  using ALUOp and 
function code. 
 
 
 
 
 
 
Instruction 

OPCODE 
ALUOp Function Field Desired ALU action ALU control 

input 
LW 00 XXXXXX ADD 010 
SW 00 XXXXXX ADD 010 

R - TYPE 10 100000 ADD 010 
R - TYPE 10 100010 SUBTRACT 110 
R - TYPE 10 100100 AND 000 
R - TYPE 10 100101 OR 001 
R - TYPE 10 101010 SET ON LESS THAN 111 

 
 
This style of using multiple levels of decoding (i.e. the main control unit generates 
the ALUOp bits , which then are used as inputs to the ALU control that generates the 
actual  signal to control the ALU Control) can reduce the size of the main control unit 
which in turn increases the speed of control unit. 
 
 
3.7 CONTROL UNIT 
 
The control is implemented using a finite state machine.  A finite state machine 
consists of a set of states and directions on how to change states.  The directions are 
defined by next-state functions, which maps the current state and the inputs to a 
new state.  When we use a finite state machine, each state also specifies a set of 
outputs that are asserted when the machine is in that state.   The implementation of 
a finite state machine usually assumes that all outputs are not explicitly asserted are 
deasserted.   The correct operation of the datapath depends on the fact that a signal 
that is not explicitly asserted is reasserted, rather than acting as a don’t care. 
 
 Multiplexer controls are slightly different, since they select one of the inputs 
whether they are 0 or 1.   Thus in the finite state machine, we always specify the 
setting of all the multiplexer controls that we care about. 
 
 The finite state control essentially corresponds to the five steps of execution 
that will be discussed later.     The finite state machine will consists of several parts.   
Since the first 2 states of FSM are identical for every instruction, the initial two states 
of the FSM will be common to all instructions.   Step 3 through 5 differ, depending on 
the OPcode.   After the execution of the last step for a particular instruction class, 
the FSM will return to the initial state to begin fetching the next instruction. 
 
 Figure 3.3 in the next page graphically represents the FSM used in the case.   
The signals that are asserted in each case state are shown within the circle 
representing the state.   The arcs between the states define the next states and are 
labeled with conditions that select a specific next state when multiple states are 
possible.   The process of branching to different states depending on the instruction  

 23



 
 
 
 
 
 
  

Fig 3.3   The Combined control unit 
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is called decoding, since the choice of next state and hence the actions that follow, 
depend on the instruction class. 

 
 For memory reference, the first state after fetching the instruction and 
registers computes the memory address (state 2).  To compute the memory 
address, the ALU input multiplexers must be set so that the first input is the A 
register while the second is the sign extended displacement field, the result is written 
into the ALUOut register.   After the memory address calculation the memory should 
be read or written, this requires two different states.  If the instruction OPcode is LW, 
then state 3 does the memory read. 

 
Output of memory is always written into MDR.   If it is SW, state 5 does a memory 
write.  In state 3 and 5, the signal IorD is set to 1 to force the memory address to 
come from the ALU.   After performing a write, the SW instruction has completed 
execution, and next state is 0.   If the instruction is a load, however another state 
(state 4) is needed to write the result from memory into the register file.   After this 
state, corresponding to the memory read completion step, next state is 0. 

 
To implement R type instruction requires two states corresponding to step 3 
(execute) and 4 (R type completion).  State 6 asserts ALUSrcA and ALUSrcB signal to 
00, this forces the two registers that were read from the register file to be used as 
inputs to the ALU setting ALUOp to cause ALU control unit to use the function field to 
set the ALU control signed.   In state 7, RegWrite signal is asserted to cause register 
file write. 
 

 
3.8 Breaking the instruction Execution into Clock Cycles 
 

 
Given the datapath details, we now need to look at what should happened in each 
clock cycle of the multicycle execution, since this will determine what additional 
control signals may be needed, as well as the setting of the control signals.    

 
 
 

All the operations listed in one steps occur in parallel within 1 clock cycle while 
successive steps operate in series in different clock cycles.  The limitation of 1 ALU 
operations, one memory access, one register file access determines what can fit in 
one step. 

 
Step 1  
 
Instruction Fetch step 

 
 IR  =  Memory (PC) 
 
 PC  =  PC + 4 
 

Operation :  Send the PC to the memory as address perform a read and write the 
instruction into the Instruction Register (IR).   Also increment PC BY 4. 
   
 
To implement this the following control signals are needed 
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Mem Read = 1 
IR Write = 1 
IorD =  0    (to select PC as the source of address) 
ALUSrcA = 0   (sending PC to ALU) 
ALUSrcB = 01  (sending 4 to ALU) 
ALUOp = 00   (To make ALU add  
PC write = 1  (For storing the incremented instruction address back to PC 

 
 
 

The increment of PC and instruction memory access occur in parallel.  The new value 
of PC is not visible until the next clock cycle. 
 
Step 2  
 
Only optimistic actions are performed in this step as the exact nature of instruction is 
not known yet.  So, action performed in this step is access the register file to read 
register rs and rt and store the result into registers A and B. 

 
A =  Reg [IR(25-21)], 
 
B =  Reg [IR (20-16)]; 
 

Step 3  
 
Execution, or Memory address computation. 

 
This is the first cycle during which the datapath operation is determined by the 
instruction class.  In all the cases, the ALU is operating on the operands prepared in 
the previous step, performing one of the following functions depending on the 
instruction class. 

 
(i) Memory reference: 

 
ALUOut = A+ sign Extend [IR(15-0)] 
 
To implement this the following control signals are needed 
 
ALUSrcA  = 1 
 
ALUSrcB  = 10 
 
So that output of sign extension unit is used for second ALU input ALU 
output will be 00 causing ALU to Add. 
 

(ii) Arithmetic – logic Unit (R-type) 
 

ALUOut = A op B 
 
ALU is performing the function specified by the function field on the two values read 
from the register file.  ALUSrcA= 1 and ALUSrcB = 10 causing A & B to be used as 
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ALU inputs.  ALUOp is set to ‘10’ so that function field is used to determine the ALU 
control signal. 
 
Step 4  
 
Memory Access or R type Instruction completion step:   During this step, a load or 
store instruction accesses  memory and a arithmetic logic instruction writes its result 
when a value is stored into the memory data register (MDR), where it must be used 
on the next clock cycle. 
 
MDR =  Memory (ALUOut) 
 
 Or 
 
Memory (ALUOut) = B 
 
In either case, the address used, is the one computed during the previous step and 
stored in ALUOut. 
 
The signal MemRead  or MemWrite is asserted for loads, IorD is set to 1 to force 
memory address to come from the ALU 
 
In the case of R-type instructions  
   
 Reg [IR(15-11)]  = ALUOut 
 
Place the content of ALUOut into result register.  RegDst is set to 1 (to force rd 15-
11) field to be used to select register file entry to write.  RegWrite is asserted and 
MemtoReg is set to ‘0’ so that ALUOut is written to the register file as opposed to the 
memory data output. 
 
Step 5 
 
 
Memory read completion step during this step, load complete by writing back the 
value from memory 
 
Reg [IR(20-16)] = MDR 
 
MemtoReg =1 to write the result from memory 
 
RegWrite = 1 (to cause a write) 
 
RegOut = 0 to choose rt (20-16) as register 
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4. MEMORY 

 
While designing memory we take advantage of principle of locality by implementing 
the memory of computer as a memory hierarchy. A memory hierarchy consist of 
multiple levels of memory with different speeds and sizes. Faster memories are more 
expensive per bit than the slower memories and thus are usually smaller.  
 
Today there are three primary technologies used in building memory hierarchy. Main 
memory is implemented using DRAM ( Dynamic Random Access Memory )  while 
levels closer to the CPU are implemented using SRAM (Static Random Access 
Memory ). DRAM is less costly per bit than SRAM, although it is substantially slower. 
The price difference arises because DRAM uses significantly less area per bit of 
memory and DRAMs thus have larger capacity for the same amount of silicon.  
Because of the difference of cost and access time, it is advantageous to build 
memory as hierarchy of levels with faster memory closer to the CPU and slower less 
expansive memory below that as shown in figure 4.1 
 
The memory system is organized as a hierarchy , a level closer to the process is a 
subset of any level further away and all data is stored in the lowest level. 
 

CPU

Level 1 

Level 2 

Level n 

Size of the Memory on each level

Increasing  distance from 
the CPU in access time  

 
 
                       Figure 4.1 Memory Hierarchies 
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A memory hierarchy can consists of multiple levels, but data is copied between only 
two adjacent levels at a time. If the data requested by the CPU appears in some 
block in the upper  level, this is called a hit and if data is not present in the upper 
level the request is called a miss. Since performance is a major reason for having a  
memory hierarchy, the speed of hits and misses is important.  Hit time is the time to 
access the upper level of memory which includes the time needed to determine 
whether the access is a hit or a miss. The miss penalty is the time to replace a block 
in the upper level with the corresponding block from the lower level  plus the time to 
deliver this block to the CPU. 
 
Program exhibit both temporal locality, the tendency to reuse recently accessed data 
items and spatial locality, the tendency to refer data items that are close to other 
recently accessed items. Memory hierarchy takes advantage of temporal locality by 
keeping more recently accessed data items closer to the CPU. Memory hierarchy 
takes advantage of spatial  locality by moving blocks of multiple contiguous words in 
memory to upper level of hierarchy. 
 
In our design a main memory is containing both  data and instruction area. A write 
through direct mapped cache is designed for data memory. All instructions are 
maintained in the main memory itself. As soon as the first data access is initiated, 
data from adjacent locations are also copied to the cache memory using burst 
transfer.  
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5. VHDL CODES & SIMULATION RESULTS 
 
 
 
------------------------------------------------------ 

 -- *****simulation of mips processor  ******** 
 -- 32 bit instruction register 
 ------------------------------------------------------- 
 library IEEE; 
 use IEEE.std_logic_1164.all; 
 use IEEE.numeric_bit.all; 
 -------------------------------------------------------- 
 entity instreg is 
 port( A  : IN std_logic_vector(31 downto 0); 
  clk  : IN std_logic; 
  IRWrite :   IN bit; 
  IR  : OUT unsigned (31 downto 0)); 
 end instreg; 
 ------------------------------------------------------ 
 architecture a_instreg of instreg is 
 begin  
  process   
  begin 
  wait on clk until rising_edge(clk)and IRWrite ='1' ; 
  IR <= unsigned (to_bitvector(A)); 
  end process; 
 end a_instreg; 
  ------------------------------------------------------- 
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          ---------------------------------------------------- 
          library IEEE; 
 use IEEE.std_logic_1164.all; 
 ---------------------------------------------------- 
 
 entity reg_32bit is 
 
  port( 
   A  : IN std_logic_vector(31 downto 0); 
   clk  : IN std_logic; 
   Y  : OUT std_logic_vector(31 downto 0)); 
 
 end reg_32bit; 
 ----------------------------------------------------- 
 
 architecture a_reg_32bit of reg_32bit  is 
 
 begin 
 
  process   
  begin 
  wait until clk'event and clk= '1'; 
  Y <= A; 
  end process; 
 
 end a_reg_32bit; 
 
 ----------------------------------------------------- 
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 ------------------------------------------------------- 
 library IEEE; 
 use IEEE.std_logic_1164.all; 
 use IEEE.std_logic_arith.all; 
 use IEEE.std_logic_unsigned.all; 
 -------------------------------------------------------- 
 entity reg_32we is 
 port( 
  A  :        in std_logic_vector(31 downto 0); 
  clk  :        in std_logic; 
  write_en :        in bit; 
  reset  :        in bit; 
  Y  :        out std_logic_vector (31 downto 0)); 
 end reg_32we; 
 ------------------------------------------------------ 
 architecture a_reg_32we of reg_32we is 
 begin  
  process (clk)  
  begin 
  if clk = '1' and clk'event then  
   if reset = '1' then 
    Y <= x"0000_0000";  
   elsif write_en ='1'  then 
    Y<= A; 
   end if; 
  end if; 
  end process; 
 end a_reg_32we; 
 ------------------------------------------------------- 
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---------------------------------------------------- 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.numeric_bit.all;  
--------------------------------------------------- 
entity register_file is  
 port( 
   write_en  :      in bit; 
   rd_reg1 :      in unsigned (4 downto 0); 
   rd_reg2  :      in unsigned (4 downto 0); 
   wr_reg  :      in unsigned (4 downto 0); 
   data   :      in std_logic_vector(31 downto 0); 
   reg1   :      out std_logic_vector(31 downto 0); 
   reg2   :      out std_logic_vector(31 downto 0)); 
end register_file; 
-------------------------------------------------------- 
 
architecture a_register_file of register_file is 
begin  
  
  
 
 regtag: process ( rd_reg1, rd_reg2, wr_reg, data, write_en) is  
  
    type reg_array is array (0 to 31 ) of std_logic_vector(31 downto 0); 
 variable reg_file : reg_array; 
 variable index1,index2,index3 : natural;  
   
 begin  
   
  reg_file(0) := X"00000001"; 
  reg_file(1) := X"00000002"; 
  reg_file(2) := X"00000003"; 
  reg_file(3) := X"00000004"; 
  reg_file(6) := X"00000000"; 
  --write port 
  if write_en = '1' then 
   index3 := to_integer(wr_reg); 
   reg_file(index3) := data; 
  end if; 
   
  --read port1   
  index1 := to_integer(rd_reg1); 
  reg1 <= reg_file(index1) ;   
   
  --read port2 
   
  index2 := to_integer(rd_reg2); 
  reg2 <= reg_file(index2) ; 
 end process regtag;   
end a_register_file; 
 --------------------------------------------------------- 
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   -------------------------------------------------- 
          library IEEE; 
 use IEEE.std_logic_1164.all;   
 use IEEE.numeric_bit.all; 
 -------------------------------------------------- 
 entity mux_m1 is 
  port ( 
   s : in bit; 
   d0 :  in std_logic_vector (31 downto 0); 
   d1 : in std_logic_vector (31 downto 0); 
   y : out unsigned (31 downto 0)); 
 end  mux_m1; 
 -------------------------------------------------- 
 architecture a_mux_m1 of mux_m1 is 
  
 begin  
  
 process (s,d0,d1) 
  
 begin      
  case  s is 
  when '0' => 
  y <= unsigned (to_bitvector(d0)); 
  when '1' => 
  y <= unsigned (to_bitvector(d1)); 
  end case; 
 end process; 
  
 end architecture a_mux_m1; 
 ----------------------------------------------- 
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-------------------------------------------------- 
library IEEE; 

 use IEEE.std_logic_1164.all;  
 use IEEE.numeric_bit.all;  
 -------------------------------------------------- 
 entity mux_m2 is 
  port ( 
   s : in bit; 
   d0 :  in unsigned (4 downto 0); 
   d1 : in unsigned (4 downto 0); 
   y : out unsigned (4 downto 0)); 
 end mux_m2; 
 -------------------------------------------------- 
 architecture a_mux_m2 of mux_m2 is 
 
 begin  
 process (s, d0,d1) 
 begin 
  
  case  s is  
   when '0' => 
   y <=  d0 ; 
   when '1'=>  
   y  <= d1 ; 
  end case; 
 end process; 
    
 end a_mux_m2; 
 
 ----------------------------------------------- 
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 ------------------------------------------------------- 
 library IEEE; 
 use IEEE.std_logic_1164.all; 
 -------------------------------------------------- 
 entity mux_m3 is 
  port ( 
   s : in   bit; 
   d0 :  in   std_logic_vector (31 downto 0); 
   d1 : in   std_logic_vector (31 downto 0); 
   y : out std_logic_vector (31 downto 0)); 
 end mux_m3; 
 -------------------------------------------------- 
 architecture a_mux_m3 of mux_m3 is 
 
 begin   
  
 process (s, d0, d1) 
 begin 
  case s is 
   when '0' => 
   y <= d0; 
   when '1' => 
   y <= d1; 
    
  end case; 
   
 end process; 
  
 end a_mux_m3; 
 
 ----------------------------------------------- 
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          -------------------------------------------------- 
 library IEEE; 
 use IEEE.std_logic_1164.all; 
 -------------------------------------------------- 
 entity mux_m4 is 
  port ( 
   s : in bit_vector(1 downto 0); 
   d0 :  in std_logic_vector (31 downto 0); 
   d1 : in std_logic_vector (31 downto 0); 
   d2 :  in std_logic_vector (31 downto 0); 
   d3 : in std_logic_vector (31 downto 0); 
 
   y : out std_logic_vector (31 downto 0)); 
 end mux_m4; 
 -------------------------------------------------- 
 architecture a_mux_m4 of mux_m4 is 
 
 begin   
  
 process (s, d0, d1,d2,d3) 
 begin 
  case s is 
   when "00" => 
   y <= d0; 
   when "01" => 
   y <= d1; 
   when "10" => 
   y <= d2; 
   when "11" => 
   y <= d3; 
 
    
  end case; 
   
 end process; 
  
 end a_mux_m4; 
 
 ----------------------------------------------- 
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          --------------------------------------------------------- 
 -- ***simulation of MIPS Processor  *********** 
  
 -- Finite State Machine for MIPS Processor 
 -------------------------------------------------------- 
 LIBRARY ieee; 
 USE IEEE.std_logic_1164.ALL; 
 use IEEE.numeric_bit.all;  
 ------------------------------------------------------ 
 ENTITY fsm IS 
 PORT ( 
 clk  : IN std_logic; 
 OP_code : IN  unsigned ( 5 DOWNTO 0 ); 
 Ready  : IN    bit; 
 RegDst : OUT   bit; 
 ALUSrcA : OUT bit; 
 ALUSrcB : OUT bit_vector ( 1 DOWNTO 0 ); 
 MemtoReg : OUT bit;  
 IorD  : OUT bit; 
 ALUOp  : OUT  bit_vector ( 1 DOWNTO 0 ); 
 PCSource : OUT  bit_vector ( 1 DOWNTO 0 ); 
 RegWrite : OUT   bit; 
 MemRead : OUT bit; 
 MemWrite : OUT   bit; 
 IRWrite : OUT bit; 
 PCWrite : OUT bit); 
 END fsm; 
 ------------------------------------------------------- 
 ARCHITECTURE a_fsm OF  fsm  IS 
 
 TYPE state IS (ST0,ST1,ST2,ST3,ST4,ST5,ST6,ST7); 
 SIGNAL current_state,next_state : state; 
 
 BEGIN 
 
Proc1: PROCESS  
 BEGIN 
 CASE current_state IS 
  
 WHEN ST0 => 
    
  ALUOp  <= "00"; 
  RegWrite <= '0'; 
  MemRead <= '1'; 
  MemWrite <= '0'; 
  IRWrite <= '1'; 
  PCWrite <= '1', '0' after 200ns; 
  ALUSrcB <= "01"; 
  PCSource <= "00"; 
  ALUSrcA <= '0'; 
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  IorD  <= '0';  
     
  WAIT UNTIL ready'EVENT  and ready = '1'; 
  next_state <= ST1; 
     
 WHEN ST1 =>  
  ALUOp  <= "00"; 
  RegWrite <= '0'; 
  MemRead <= '0'; 
  MemWrite <= '0'; 
  IRWrite <= '0'; 
  PCWrite <= '0'; 
  ALUSrcB <= "11"; 
  ALUSrcA <= '0';  
  if OP_code = "000000" then 
   next_state <= ST6; 
  else if OP_code = "100011"  

      or OP_code = "101011" then    --LW(35) or SW(43) 
 

   next_state <= ST2; 
  end if; 
  end if; 
     
     
 WHEN ST2 => 
     
  ALUOp  <= "00"; 
  RegWrite <= '0'; 
  MemRead <= '0'; 
  MemWrite <= '0'; 
  IRWrite <= '0'; 
  PCWrite <= '0';  
     
  ALUSrcB <= "10"; 
  ALUSrcA <= '1';  
  if OP_code = "100011" then  --LW(35) 
   next_state <= ST3;  
  else   
   next_state <= ST5;  --SW(43) 
      
  end if; 
          
 WHEN ST3 => 
     
  ALUOp  <= "00"; 
  RegWrite <= '0'; 
  MemRead <= '1'; 
  MemWrite <= '0'; 
  IRWrite <= '0'; 
  PCWrite <= '0';  
     
  IorD  <= '1';  
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  WAIT UNTIL ready'EVENT  and ready = '1'; 
     
   next_state <= ST4; 
     
 WHEN ST4 => 
     
  ALUOp  <= "00"; 
  RegWrite <= '1'; 
  MemRead <= '0'; 
  MemWrite <= '0'; 
  IRWrite <= '0'; 
  PCWrite <= '0';    
  MemtoReg <= '1'; 
  RegDst <= '0'; 
     
   next_state  <= ST0; 
     
 WHEN ST5 =>  
     
  ALUOp  <= "00"; 
  RegWrite <= '0'; 
  MemRead <= '0'; 
  MemWrite <= '1'; 
  IRWrit  <= '0'; 
  PCWrit  <= '0';   
  IorD  <= '1';  
     
  WAIT UNTIL ready'EVENT  and ready = '1'; 
         
   next_state  <= ST0; 
     
 WHEN ST6 => 
     
  ALUOp  <= "10"; 
  RegWrite <= '0'; 
  MemRead <= '0'; 
  MemWrite <= '0'; 
  IRWrite <= '0'; 
  PCWrite <= '0';   
         
  ALUSrcA  <= '1'; 
  ALUSrcB  <= "00"; 
      
  next_state <= ST7; 
      
 WHEN ST7 =>  
  ALUOp  <= "00" ; 
  RegWrite <= '1'; 
  MemRead <= '0'; 
  MemWrite <= '0'; 
  IRWrite <= '0'; 
  PCWrite <= '0';   
  RegDst   <= '1'; 
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  MemtoReg  <= '0'; 
   next_state <= ST0; 
END CASE; 
WAIT ON current_state; 
END PROCESS; 
 
Proc2: PROCESS (clk) 
  BEGIN  
   IF clk'event AND clk =  '1' THEN 
    current_state <= next_state ; 
   END IF; 
  END PROCESS; 
 
 END ARCHITECTURE  a_fsm; 
-------------------------------------------------------- 
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----------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
use IEEE.numeric_bit.all; 
----------------------------------------- 
entity mips_toplevel is 
  port( 
   ready   : in bit; 
   clk   : in std_logic; 
   reset    : in bit; 
   MemRead  : out bit; 
   MemWrite : out bit; 
   DataFetch  : out bit; 
   Address : out unsigned (31 downto 0); 
   data_in : in std_logic_vector(31 downto 0); 
   data_out : out std_logic_vector(31 downto 0) 
      ); 
end mips_toplevel; 
------------------------------------------------ 
  
architecture mips_toplevel of mips_toplevel is 
  
 component instreg is 
 
 port( 
  A  : in std_logic_vector(31 downto 0); 
  clk  : in std_logic;  
  IRWrite : in  bit; 
  IR   : out  unsigned(31 downto 0)); 
 
 end  component instreg;  
  
 component  register_file is  
 port( 
   write_en : in bit; 
   rd_reg1  : in unsigned (4 downto 0); 
   rd_reg2  : in unsigned (4 downto 0); 
   wr_reg   : in unsigned (4 downto 0); 
   data      : in std_logic_vector(31 downto 0); 
   reg1      : out std_logic_vector(31 downto 0); 
   reg2      : out std_logic_vector(31 downto 0) 
      ); 
 end component register_file;  
  
  
 component reg_32bit is 
 
 port( 
   a : in std_logic_vector(31 downto 0); 
   clk : in std_logic; 
   y : out std_logic_vector(31 downto 0)); 
 
 end component reg_32bit;   
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component reg_32we is 
 
 port( 
  a    : in std_logic_vector(31 downto 0); 
  clk    : in std_logic; 
  write_en :      in bit; 
  reset      :  in bit; 
  y    : out std_logic_vector (31 downto 0)); 
 
 end component reg_32we;  
  
  
 component fsm is 
 port ( 
  clk  : in std_logic; 
  OP_Code : in  unsigned ( 5 downto 0 ); 
  ready  : in    bit; 
  RegDst : out   bit; 
  ALUSrcA : out bit; 
  ALUSrcB : out bit_vector ( 1 downto 0 ); 
  MemtoReg : out bit;  
  IorD  : out bit; 
  PCSource : out  bit_vector ( 1 downto 0 ); 
  ALUOp  : out  bit_vector ( 1 downto 0 ); 
  RegWrite : out   bit; 
  MemRead : out bit; 
  MemWrite : out   bit; 
  IRWrite : out bit; 
  PCWrite : out bit); 
   
 end component fsm; 
 
 component extender is 
  port( 
   ext_in : in unsigned (15 downto 0); 
   ext_out : out std_logic_vector(31 downto 0) 
      ); 
 end component extender;   
  
  
 component alu_control is 
 port( 
  alu_op  : in bit_vector (1 downto 0); 
  func  : in unsigned (5 downto 0); 
  alu_control : out bit_vector (2 downto 0)); 
 end component alu_control;  
  
  
 component alu is 
 port ( 
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  a  : in std_logic_vector ( 31 downto 0 ); 
  b  : in  std_logic_vector ( 31 downto 0 ); 
  alu_control : in bit_vector ( 2 downto 0 ); 
  alu_result : out std_logic_vector ( 31 downto 0 )); 
 end component alu; 
  
  

 
component  mux_m1 is 
  port ( 

   s : in bit; 
   d0 :  in std_logic_vector (31 downto 0); 
   d1 : in std_logic_vector (31 downto 0); 
   y : out unsigned (31 downto 0)); 
 end  component mux_m1; 
  
  
 component mux_m2 is 
  port ( 
   s : in bit; 
   d0 :  in unsigned (4 downto 0); 
   d1 : in unsigned (4 downto 0); 
   y : out unsigned (4 downto 0)); 
 end component mux_m2;  
  
 component mux_m3 is 
  port ( 
   s : in bit; 
   d0 :  in std_logic_vector (31 downto 0); 
   d1 : in std_logic_vector (31 downto 0); 
   y : out std_logic_vector (31 downto 0)); 
 end component mux_m3;  
  
 component mux_m4 is 
  port ( 
   s : in bit_vector (1 downto 0); 
   d0 :  in std_logic_vector (31 downto 0); 
   d1 : in std_logic_vector (31 downto 0); 
   d2 : in std_logic_vector (31 downto 0); 
   d3 : in std_logic_vector (31 downto 0); 
   y : out std_logic_vector (31 downto 0)); 
 end component mux_m4;  
  
signal ir_out : unsigned(31 downto 0); 
signal mux2_out : unsigned(4 downto 0); 
signal mux3_out : std_logic_vector(31 downto 0); 
signal mux6_out : std_logic_vector(31 downto 0); 
signal mdr_out :  std_logic_vector(31 downto 0); 
signal extender_out :  std_logic_vector(31 downto 0); 
signal regfile_out1 :  std_logic_vector(31 downto 0); 
signal regfile_out2 :  std_logic_vector(31 downto 0); 
signal rega_out :  std_logic_vector(31 downto 0); 
signal regb_out :  std_logic_vector(31 downto 0); 
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signal pc_out :  std_logic_vector(31 downto 0) ; 
signal alu_in1 :  std_logic_vector(31 downto 0);  
signal alu_in2 :  std_logic_vector(31 downto 0); 
signal alu_out :  std_logic_vector(31 downto 0); 
signal regalu_out :  std_logic_vector(31 downto 0); 
signal fsm_pcwrite : bit; 
signal fsm_iord : bit; 
signal fsm_memtoreg : bit; 
signal fsm_irwrite : bit; 
signal fsm_alusrca : bit; 
signal fsm_regwrite : bit; 
signal fsm_regdst : bit; 
signal fsm_aluop : bit_vector(1 downto 0); 
signal fsm_alusrcb : bit_vector(1 downto 0); 
signal fsm_pcsource : bit_vector(1 downto 0); 
signal alu_control_out : bit_vector(2 downto 0); 
signal mem_ready : bit; 
 
       
begin  
  
ir: component instreg  
 port map (   
 a  => data_in, 
 clk  => clk, 
 irwrite => fsm_irwrite, 
 ir  => ir_out);  
   
   
mdr:component reg_32bit  
 port map ( 
 a => data_in, 
 clk => clk, 
 y => mdr_out); 
  
m2: component mux_m2  
 port map( 
   s => fsm_regdst, 
   d0 =>  ir_out(20 downto 16), 
   d1 => ir_out(15 downto 11), 
   y => mux2_out); 
    
m3: component mux_m3  
 port map( 
   s => fsm_memtoreg, 
   d0 => regalu_out, 
   d1 => mdr_out, 
   y => mux3_out); 
    
rf: component  register_file   
 port map( 
   write_en  => fsm_regwrite, 
   rd_reg1  => ir_out(25 downto 21),  
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   rd_reg2  => ir_out(20 downto 16), 
   wr_reg  => mux2_out, 
   data   => mux3_out, 
   reg1   => regfile_out1, 
   reg2   => regfile_out2 ); 
    
ext: component extender 
  port map ( 
  ext_in  => ir_out(15 downto 0), 
  ext_out  => extender_out);  
   
rega: component reg_32bit  
  port map ( 
  a => regfile_out1, 
  clk => clk, 
  y => rega_out); 
   
regb: component reg_32bit  
  port map ( 
  a => regfile_out2, 
  clk => clk, 
  y => regb_out); 
   
data_out <= regb_out; 
 
m4:  component mux_m4  
  port map ( 
   s => fsm_alusrcb, 
   d0 => regb_out, 
   d1 => x"0000_0004", 
   d2 => extender_out, 
   d3 => x"0000_0000", 
   y => alu_in2 );  
    
m5:  component mux_m3 
  port map ( 
  s => fsm_alusrca, 
  d0 => pc_out, 
  d1 => rega_out, 
  y => alu_in1); 
   
   
alc: component alu_control  
  port map( 
  alu_op  => fsm_aluop,  
  func  => ir_out (5 downto 0),  
  alu_control => alu_control_out ); 
   
al:  component alu  
  port map ( 
  a   => alu_in1,  
  b   => alu_in2, 
  alu_control => alu_control_out, 
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  alu_result => alu_out  ); 
   
regal: component reg_32bit  
  port map ( 
  a => alu_out, 
  clk => clk, 
  y => regalu_out);  
   
m6:  component mux_m4  
  port map ( 
   s => fsm_pcsource, 
   d0 => alu_out, 
   d1 => regalu_out, 
   d2 => x"0000_0000", 
   d3 => x"0000_0000", 
   y => mux6_out );  
   
pc:  component reg_32we  
  port map ( 
  a   => mux6_out, 
  clk   => clk, 
  reset  => reset, 
  write_en => fsm_pcwrite, 
  y   => pc_out); 
   
   
m1:  component mux_m1 
  port map ( 
  s => fsm_iord, 
  d0 => pc_out, 
  d1 => regalu_out, 
  y => address);  
   
fs:   component fsm 
  port map (  
  clk   => clk, 
  op_code  => ir_out(31 downto 26),  
  ready   => ready, 
  regdst   => fsm_regdst, 
  alusrca   => fsm_alusrca, 
  alusrcb  => fsm_alusrcb, 
  memtoreg  => fsm_memtoreg,  
  iord   => fsm_iord, 
  pcsource  => fsm_pcsource, 
  aluop   => fsm_aluop, 
  regwrite  => fsm_regwrite, 
  memread  => memread, 
  memwrite  => memwrite, 
  irwrite   => fsm_irwrite, 
  pcwrite  => fsm_pcwrite);  
   
 datafetch <= fsm_iord; 
  

 54



 end mips_toplevel; 
----------------------------------------------------- 
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library IEEE; 
use IEEE.std_logic_1164.all;  
use IEEE.numeric_bit.all; 
-------------------------------------------------------------- 
entity mips_mem is 
   
port   (  
address  : in unsigned ( 31 downto 0); 
clk  : in std_logic; 
data_in : in std_logic_vector (31 downto 0); 
data_out : out std_logic_vector (31 downto 0); 
burst  : in bit; 
ready  : out bit; 
MemWrite : in bit; 
MemRead  : in bit); 
end entity mips_mem; 
 
------------------------------------------------------------ 
     
architecture a_mips_mem  of mips_mem is 
 
 
constant mem_size : natural := 65536; 
constant access_time  : delay_length := 200 ns; 
constant access_time_burst  : delay_length := 50 ns; 
constant propagation_delay : delay_length := 2 ns; 
  
begin 
 
ram1: process is 
  
constant high_address : natural := mem_size - 1; 
type mem_array is array (natural range <>) of unsigned (31 downto 0); 
variable ram : mem_array ( 0 to high_address/4) 

:= (others => X"0000_0000"); 
variable address_byte, address_word : natural; 
variable write_enable : boolean; 
 
procedure program_load_proc is 
   
begin  
   ram(0)  := "10001100110001110000000000101100";   
   ram(1)  := "10001100110001110000000000110000"; 
   ram(2)  := "10001100110001110000000000110100"; 
   ram(3)  := "10001100110001110000000000111000"; 
   ram(4)  := "10001100110001110000000000111100"; 
   ram(5)  := "10001100110001110000000001000000"; 
   ram(6)  := "10001100110001110000000001000100"; 
   ram(7)  := "10001100110001110000000001001000"; 
   ram(8)  := "10001100110001110000000001001100"; 
   ram(9)  := "10001100110001110000000001010000"; 
   ram(11) := "11111111111111111111111111111111";      
   ram(12) := "00000000000000000000000000000001"; 
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   ram(13) := "00000000000000000000000000000011"; 
   ram(14) := "00000000000000000000000000000111"; 
   ram(15) := "00000000000000000000000000011111"; 
   ram(16) := "00000000000000000000000111111111"; 
   ram(17) := "00000000000000000111111111111111"; 
   ram(18) := "00000000000000111111111111111111"; 
   ram(19) := "00000000000000000000000000000001"; 
    
end program_load_proc; 
 
procedure write_cycle_proc is 
begin 
ram(address_word) := unsigned (to_bitvector(data_in)); 
end write_cycle_proc; 
 
procedure read_cycle_proc is 
begin 
data_out <= to_X01(bit_vector(ram(address_word))); 
end read_cycle_proc; 
  
begin 
  
program_load_proc; 
  
ready <= '0'after propagation_delay ; 
  
loop 
 
wait on clk until rising_edge(clk)and (MemWrite= '1' or MemRead ='1'); 
 
address_byte := to_integer(address); 
write_enable := MemWrite ='1'; 
if address_byte <= high_address then 
 address_word := address_byte/4; 
  
 if write_enable then 
  write_cycle_proc; 
  wait for access_time; 
   
 else  
  wait for access_time; 
  read_cycle_proc; 
 end if;   
 wait until rising_edge(clk); 
 ready <= '1' after propagation_delay; 
 wait until rising_edge(clk); 
 ready <= '0' after propagation_delay; 
   
 while burst = '1' loop 
  address_word := address_word + 1; 
  wait until rising_edge(clk); 
  if write_enable then 
   write_cycle_proc; 
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   wait for access_time_burst; 
  else 
   wait for access_time_burst; 
   read_cycle_proc; 
     
  end if; 
  wait until rising_edge(clk); 
  ready <= '1' after propagation_delay; 
  wait until rising_edge(clk); 
  ready <= '0' after propagation_delay; 
  end loop;  
   
 end if; 
 end loop; 
end process ram1; 
 
end a_mips_mem; 
------------------------------------------------------ 
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------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
use IEEE.numeric_bit.ALL; 
------------------------------------------------- 
entity mipswithmem is 
 port( 
 clk  : in  STD_LOGIC; 
 reset : in  bit; 
 result : OUT  STD_LOGIC_VECTOR(31 downto 0) 
 );  
  
end entity mipswithmem;   
----------------------------------------------------- 
 
architecture a_mipswithmem of  mipswithmem is  
 
 
 COMPONENT  mips_toplevel is 
  port( 
 ready : in bit; 
 clk : in STD_LOGIC; 
 reset : in bit; 
 MemRead : out bit; 
 MemWrite : out bit; 
 address : out unsigned (31 downto 0); 
 data_in : in STD_LOGIC_VECTOR(31 downto 0); 
 data_out : out STD_LOGIC_VECTOR(31 downto 0) 
      ); 
end  COMPONENT mips_toplevel;  
 
COMPONENT mips_mem is 
   

port   ( 
address : in unsigned ( 31 downto 0); 

 clk  : in std_logic; 
 data_in : in std_logic_vector (31 downto 0); 
 data_out: out std_logic_vector (31 downto 0); 
 burst : in bit; 
 ready : out bit; 
 MemWrite: in bit; 
 MemRead : in bit); 
end COMPONENT mips_mem; 
 
signal mem_ready_signal, write_signal, read_signal : bit; 
signal address_signal : unsigned ( 31 downto 0); 
signal data_in_signal, data_out_signal : std_logic_vector (31 downto 0);    
 
begin  
  
  
CPU:  component mips_toplevel  
  port map ( 
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   ready  => mem_ready_signal, 
   clk  => clk,  
   reset  => reset, 
   MemRead  => read_signal, 
   MemWrite  => write_signal, 
   address  => address_signal, 
   data_in  => data_in_signal, 
   data_out  => data_out_signal 
      ); 
    
    
mem: component mips_mem  
   
 port map   (  
  address => address_signal,   
  clk  => clk,   
  data_in => data_out_signal, 
  data_out => data_in_signal, 
  burst  => '0' ,  
  ready  => mem_ready_signal, 
  MemWrite  => write_signal, 
  MemRead   => read_signal ); 
 
 
end  architecture a_mipswithmem; 
----------------------------------------------------------- 
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------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.all;  
use IEEE.numeric_bit.all; 
------------------------------------------------ 
entity cache_mem is 
  port( 
   DataFetch : in bit; 
   MemRd_in : in bit; 
   Ready_in : in bit; 
   Ready_out : out bit; 
   clk : in std_logic; 
   ad_in : in unsigned(31 downto 0); 
   data_in : in STD_LOGIC_VECTOR(31 downto 0); 
   burst : out bit; 
   MemRd_out : out bit; 
   data_out : out STD_LOGIC_VECTOR(31 downto 0); 
   ad_out : out unsigned(31 downto 0) 
      ); 
end cache_mem; 
 
---------------------------------------------------- 
 
architecture cache_mem of cache_mem is 
begin 
process is 
  type cache_array is array (natural range <>) of STD_LOGIC_VECTOR (31 
downto 0); 
 variable cache_data : cache_array ( 0 to 9):= (others => X"0000_0000"); 
 type address_array is array (natural range <>) of unsigned (31 downto 0); 
 variable cache_address : address_array  ( 0 to 9):= (others => 
X"0000_0000"); 
  
 variable cache_valid_data : natural :=0; 
 variable cache_index : natural; 
 variable cache_access : boolean;  
  
 procedure cache_load is 
 variable address : unsigned (31 downto 0); 
  
 begin 
   MemRd_out <= MemRd_in; 
   ad_out <= ad_in; 
   address := ad_in; 
   burst <= '1';   
   Ready_out <= '0'; 
   for i in 1 to 9 loop 
    wait until rising_edge(clk) and Ready_in = '1'; 
    cache_data(i) := data_in; 
    cache_address(i) := address; 
    address := address + 4; 
    ad_out <= address; 
   end loop; 
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   cache_valid_data := 1; 
   burst <= '0'; 
   data_out <= cache_data(1); 
   wait until rising_edge(clk); 
   Ready_out <= '1'; 
   wait until rising_edge(clk); 
   Ready_out <= '0';  
    
 end procedure cache_load; 
    
    
begin  
 Ready_out <= '0'; 
 loop 
  wait until rising_edge(clk) and MemRd_in ='1'; 
  cache_access := DataFetch = '1' and MemRd_in = '1'; 
  if cache_access then 
   if cache_valid_data = 0 then 
    cache_load; 
   else 
    for i in 0 to 9 loop 
     if cache_address(i) = ad_in then 
      cache_index := i; 
     end if; 
    end loop; 
    data_out <= cache_data(cache_index); 
    wait until rising_edge(clk); 
    Ready_out <= '1'; 
    wait until rising_edge(clk); 
    Ready_out <= '0';  
   end if; 
  else 
   ad_out <= ad_in; 
   MemRd_out <= MemRd_in; 
   Ready_out <= Ready_in; 
   data_out <= data_in; 
   burst <= '0'; 
  end if; 
 end loop; 
   
end process; 
 
   
 
end cache_mem; 
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------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
use IEEE.numeric_bit.ALL; 
------------------------------------------ 
entity mipswithcache is  
 port( 
 clk  : in  STD_LOGIC; 
 reset : in  bit; 
 result : OUT  STD_LOGIC_VECTOR(31 downto 0) 
 );  
  
end mipswithcache; 
 
------------------------------------------------- 
 
architecture mipswithcache of mipswithcache is  
 
component  mips_toplevel is 
  port( 
   ready : in bit; 
   clk : in STD_LOGIC; 
   reset : in bit; 
   MemRead : out bit; 
   MemWrite : out bit; 
   DataFetch : out bit; 
   address : out unsigned (31 downto 0); 
   data_in : in STD_LOGIC_VECTOR(31 downto 0); 
   data_out : out STD_LOGIC_VECTOR(31 downto 0) 
      ); 
end component  mips_toplevel; 
 
component   mips_mem is 
   
 port   ( address  : in unsigned ( 31 downto 0); 
  clk  : in std_logic; 
  data_in : in std_logic_vector (31 downto 0); 
  data_out : out std_logic_vector (31 downto 0); 
  burst  : in bit; 
  ready  : out bit; 
  MemWrite : in bit; 
  MemRead  : in bit); 
end component  mips_mem;   
 
component cache_mem is 
  port( 
   DataFetch  : in bit; 
   MemRd_in  : in bit; 
   Ready_in  : in bit; 
   Ready_out  : out bit; 
   clk   : in std_logic; 
   ad_in   : in unsigned(31 downto 0); 
   data_in  : in STD_LOGIC_VECTOR(31 downto 0); 
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   burst   : out bit; 
   MemRd_out  : out bit; 
   data_out  : out STD_LOGIC_VECTOR(31 downto 0); 
   ad_out  : out unsigned(31 downto 0) 
      ); 
end component cache_mem; 
 
signal cpu_data_out : STD_LOGIC_VECTOR(31 downto 0); 
signal cpu_MemWrite_out : bit; 
signal cpu_address_out : unsigned(31 downto 0); 
signal cpu_MemRead_out : bit; 
signal cpu_Ready_in : bit; 
signal cpu_data_in : STD_LOGIC_VECTOR(31 downto 0); 
signal cpu_DataFetch : bit; 
signal cache_ad_out : unsigned(31 downto 0); 
signal cache_MemRd_out : bit; 
signal cache_Ready_in : bit; 
signal cache_data_in : STD_LOGIC_VECTOR(31 downto 0); 
signal cache_burst_out : bit; 
 
 
begin 
 
cpu: component  mips_toplevel 
   port map( 
   ready   => cpu_Ready_in, 
   clk   => clk , 
   reset   => reset, 
   MemRead  => cpu_MemRead_out, 
   MemWrite  => cpu_MemWrite_out, 
   DataFetch  => cpu_DataFetch, 
   address  => cpu_address_out, 
   data_in  => cpu_data_in, 
   data_out  => cpu_data_out 
      ); 
 
 
mem: component   mips_mem  
  port map (  
  address  => cache_ad_out, 
  clk  => clk, 
  data_in => cpu_data_out, 
  data_out  => cache_data_in, 
  burst  => cache_burst_out, 
  ready  => cache_Ready_in , 
  MemWrite  => cpu_MemWrite_out, 
  MemRead  => cache_MemRd_out); 
  
 
cac: component cache_mem  
   port map( 
   DataFetch  => cpu_DataFetch, 
   MemRd_in  => cpu_MemRead_out, 
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   Ready_in  => cache_Ready_in, 
   Ready_out  => cpu_Ready_in, 
   clk   => clk, 
   ad_in   => cpu_address_out, 
   data_in  =>cache_data_in, 
   burst   => cache_burst_out, 
   MemRd_out => cache_MemRd_out, 
   data_out  => cpu_data_in, 
   ad_out  => cache_ad_out 
      ); 
    
end mipswithcache; 
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6. CONCLUSION 
 

The designed 32-bit Processor is simulated with Main Memory and Cache Memory 
included. The instruction area in the Main Memory is loaded with the program code 
to be executed. Data area in the Main Memory is filled with following nine constants: 
FF, 01, 03, 07, 1F, 1FF, 7FFF, 3FFFF and 01. Sequence of Instructions executed is 
Load Word (lw) to load consecutive words in the data memory to Register number 8 
in Register file.  
 
Design is initialized with Reset input set to ‘1’. At 100 ns, Reset input is changed to 
‘0’ and simulation is executed till 10 microseconds. 
 
When the microprocessor and the memory are configured in the design and applied 
all the inputs, the Microprocessor starts working by fetching the instructions stored in 
the Memory and executing each instruction. The result is analyzed by monitoring the 
output and the corresponding current state of the finite state control. In a lw 
instruction ST4 of FSM correspond to the register write of result. 
 
First the simulation is done with Processor and Main Memory connected together in 
the design.  After noting the resulted timing, during the next simulation Cache 
Memory also is included in the design. Access time delay of 200ns and burst access 
time delay of 50ns is set as the Memory variable during compilation. The below given 
table illustrates the timing comparison of both the simulations. 
 
 
 

Data 
Fetched 

from 
Memory 

Time at which the fetched 
data is written to 

microprocessor  register  
when Data Cache memory 

excluded 

Time at which the fetched 
data is written to 

microprocessor register 
when Data Cache memory 

included 
FF 1150 ns 950 ns 
01 2450 ns 2050 ns 
03 3750 ns 3150 ns 
07 5050 ns 4250 ns 
1F 6350 ns 5350 ns 
1FF 7650 ns 6450 ns 

 
 
 
Thus it is concluded that the simulation is functioning as desired and there 
is an improvement in the data access response when Data Cache is included 
in the design. 
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7. SCOPE FOR FURTHER IMPROVEMENT   
 
 
In the present design a basic model of Cache Memory is developed for data 
memory area only. The model developed can be further   modified to handle 
Cache misses. Moreover for Instruction Memory also Cache Memory can be 
developed. Data path can be modified to handle jump instructions as well. 
Once that is done, some sort of benchmarking program can be written and 
executed in a loop to evaluate the overall Cache performance.  
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	3.5 MIPS instruction format 
	 
	R-type 
	 
	 
	I-type 
	 
	 
	 
	 
	 
	 
	 
	J TYPE 


	ALUOp
	Function Field
	Desired ALU action
	Fig 3.3   The Combined control unit 
	4. MEMORY 
	------------------------------------------------- 
	library IEEE; 
	use IEEE.STD_LOGIC_1164.all;  
	use IEEE.numeric_bit.all; 
	------------------------------------------------ 
	entity cache_mem is 
	  port( 
	   DataFetch : in bit; 
	   MemRd_in : in bit; 
	   Ready_in : in bit; 
	   Ready_out : out bit; 
	   clk : in std_logic; 
	   ad_in : in unsigned(31 downto 0); 
	   data_in : in STD_LOGIC_VECTOR(31 downto 0); 
	   burst : out bit; 
	   MemRd_out : out bit; 
	   data_out : out STD_LOGIC_VECTOR(31 downto 0); 
	   ad_out : out unsigned(31 downto 0) 
	      ); 
	end cache_mem; 
	 
	---------------------------------------------------- 
	 
	architecture cache_mem of cache_mem is 
	begin 
	process is 
	  type cache_array is array (natural range <>) of STD_LOGIC_VECTOR (31 downto 0); 
	 variable cache_data : cache_array ( 0 to 9):= (others => X"0000_0000"); 
	 type address_array is array (natural range <>) of unsigned (31 downto 0); 
	 variable cache_address : address_array  ( 0 to 9):= (others => X"0000_0000"); 
	  
	 variable cache_valid_data : natural :=0; 
	 variable cache_index : natural; 
	 variable cache_access : boolean;  
	  
	 procedure cache_load is 
	 variable address : unsigned (31 downto 0); 
	  
	 begin 
	   MemRd_out <= MemRd_in; 
	   ad_out <= ad_in; 
	   address := ad_in; 
	   burst <= '1';   
	   Ready_out <= '0'; 
	   for i in 1 to 9 loop 
	    wait until rising_edge(clk) and Ready_in = '1'; 
	    cache_data(i) := data_in; 
	    cache_address(i) := address; 
	    address := address + 4; 
	    ad_out <= address; 
	   end loop; 
	   cache_valid_data := 1; 
	   burst <= '0'; 
	   data_out <= cache_data(1); 
	   wait until rising_edge(clk); 
	   Ready_out <= '1'; 
	   wait until rising_edge(clk); 
	   Ready_out <= '0';  
	    
	 end procedure cache_load; 
	    
	    
	begin  
	 Ready_out <= '0'; 
	 loop 
	  wait until rising_edge(clk) and MemRd_in ='1'; 
	  cache_access := DataFetch = '1' and MemRd_in = '1'; 
	  if cache_access then 
	   if cache_valid_data = 0 then 
	    cache_load; 
	   else 
	    for i in 0 to 9 loop 
	     if cache_address(i) = ad_in then 
	      cache_index := i; 
	     end if; 
	    end loop; 
	    data_out <= cache_data(cache_index); 
	    wait until rising_edge(clk); 
	    Ready_out <= '1'; 
	    wait until rising_edge(clk); 
	    Ready_out <= '0';  
	   end if; 
	  else 
	   ad_out <= ad_in; 
	   MemRd_out <= MemRd_in; 
	   Ready_out <= Ready_in; 
	   data_out <= data_in; 
	   burst <= '0'; 
	  end if; 
	 end loop; 
	   
	end process; 
	 
	   
	 
	end cache_mem; 
	 
	 
	 
	 ------------------------------------------- 
	library IEEE; 
	use IEEE.STD_LOGIC_1164.all; 
	use IEEE.numeric_bit.ALL; 
	------------------------------------------ 
	entity mipswithcache is  
	 port( 
	 clk  : in  STD_LOGIC; 
	 reset : in  bit; 
	 result : OUT  STD_LOGIC_VECTOR(31 downto 0) 
	 );  
	  
	end mipswithcache; 
	 
	------------------------------------------------- 
	 
	architecture mipswithcache of mipswithcache is  
	 
	component  mips_toplevel is 
	  port( 
	   ready : in bit; 
	   clk : in STD_LOGIC; 
	   reset : in bit; 
	   MemRead : out bit; 
	   MemWrite : out bit; 
	   DataFetch : out bit; 
	   address : out unsigned (31 downto 0); 
	   data_in : in STD_LOGIC_VECTOR(31 downto 0); 
	   data_out : out STD_LOGIC_VECTOR(31 downto 0) 
	      ); 
	end component  mips_toplevel; 
	 
	component   mips_mem is 
	   
	 port   ( address  : in unsigned ( 31 downto 0); 
	  clk  : in std_logic; 
	  data_in : in std_logic_vector (31 downto 0); 
	  data_out : out std_logic_vector (31 downto 0); 
	  burst  : in bit; 
	  ready  : out bit; 
	  MemWrite : in bit; 
	  MemRead  : in bit); 
	end component  mips_mem;   
	 
	component cache_mem is 
	  port( 
	   DataFetch  : in bit; 
	   MemRd_in  : in bit; 
	   Ready_in  : in bit; 
	   Ready_out  : out bit; 
	   clk   : in std_logic; 
	   ad_in   : in unsigned(31 downto 0); 
	   data_in  : in STD_LOGIC_VECTOR(31 downto 0); 
	   burst   : out bit; 
	   MemRd_out  : out bit; 
	   data_out  : out STD_LOGIC_VECTOR(31 downto 0); 
	   ad_out  : out unsigned(31 downto 0) 
	      ); 
	end component cache_mem; 
	 
	signal cpu_data_out : STD_LOGIC_VECTOR(31 downto 0); 
	signal cpu_MemWrite_out : bit; 
	signal cpu_address_out : unsigned(31 downto 0); 
	signal cpu_MemRead_out : bit; 
	signal cpu_Ready_in : bit; 
	signal cpu_data_in : STD_LOGIC_VECTOR(31 downto 0); 
	signal cpu_DataFetch : bit; 
	signal cache_ad_out : unsigned(31 downto 0); 
	signal cache_MemRd_out : bit; 
	signal cache_Ready_in : bit; 
	signal cache_data_in : STD_LOGIC_VECTOR(31 downto 0); 
	signal cache_burst_out : bit; 
	 
	 
	begin 
	 
	cpu: component  mips_toplevel 
	   port map( 
	   ready   => cpu_Ready_in, 
	   clk   => clk , 
	   reset   => reset, 
	   MemRead  => cpu_MemRead_out, 
	   MemWrite  => cpu_MemWrite_out, 
	   DataFetch  => cpu_DataFetch, 
	   address  => cpu_address_out, 
	   data_in  => cpu_data_in, 
	   data_out  => cpu_data_out 
	      ); 
	 
	 
	mem: component   mips_mem  
	  port map (  
	  address  => cache_ad_out, 
	  clk  => clk, 
	  data_in => cpu_data_out, 
	  data_out  => cache_data_in, 
	  burst  => cache_burst_out, 
	  ready  => cache_Ready_in , 
	  MemWrite  => cpu_MemWrite_out, 
	  MemRead  => cache_MemRd_out); 
	  
	 
	cac: component cache_mem  
	   port map( 
	   DataFetch  => cpu_DataFetch, 
	   MemRd_in  => cpu_MemRead_out, 
	   Ready_in  => cache_Ready_in, 
	   Ready_out  => cpu_Ready_in, 
	   clk   => clk, 
	   ad_in   => cpu_address_out, 
	   data_in  =>cache_data_in, 
	   burst   => cache_burst_out, 
	   MemRd_out => cache_MemRd_out, 
	   data_out  => cpu_data_in, 
	   ad_out  => cache_ad_out 
	      ); 
	    
	end mipswithcache; 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 6. CONCLUSION 
	 
	The designed 32-bit Processor is simulated with Main Memory and Cache Memory included. The instruction area in the Main Memory is loaded with the program code to be executed. Data area in the Main Memory is filled with following nine constants: 
	 
	 
	Thus it is concluded that the simulation is functioning as desired and there is an improvement in the data access response when Data Cache is included in the design. 
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