

Memory Architecture Design of a
32-bit Embedded Processor

using VHDL

A

Dissertation submitted to
University of Delhi

In partial
 fulfillment of the requirements for

the award of the
Master of Engineering

in Electronics & Communication Engineering,

BY

MANOJ K N
Roll No. 16/E&C/2001
University Roll No 4092

UNDER THE GUIDANCE OF

Prof. ASOK BHATTACHARYYA
AND

MRS. S. INDU

DEPARTMENT OF
ELECTRONICS & COMMUNICATION ENGINEERING

DELHI COLLEGE OF ENGINEERING
DELHI UNIVERSITY

CERTIFICATE

This is to certify that the dissertation entitled Memory Architecture Design of a
32-bit Embedded Processor using VHDL being submitted by Manoj K N for the
degree of M E in Electronics & Communication is a record of his own work carried out
under our supervision and guidance. The matter contained in this report has not
been submitted for the award of any other degree or diploma.

 Mrs. S INDU Dr. ASOK BHATTACHARYYA
 Lecturer Professor & H O D
 Dept of ECE Dept of ECE
 Delhi College of Engineering Delhi College of Engineering

Department of
Electronics & Communication Engineering

Delhi College of Engineering
Bawana Road, New Delhi – 110 042

 2

ACKNOWLEDGMENT

With great pleasure, I express my sincere thanks to Dr. Asok Bhattacharyya,
Professor & HOD, Department of Electronics & Communication Engineering, Delhi
College of Engineering for his keen interest and encouragement in completing this
project.

I am very much thankful and grateful to Mrs. S. Indu, Lecturer, Department of
Electronics & Communication Engineering, for her valuable guidance during this
project.

I am also thankful to other staff members of Delhi College of Engineering and all my
fellow students, who helped me directly or indirectly in the completion of this project.

 Manoj K N

 3

ABSTRACT

Under this project entitled “Memory Architecture Design of a 32-bit
Embedded Processor using VHDL”, the following are modeled using VHDL.

1. A basic 32-bit embedded processor core using VHDL. It uses Register

Transfer Level (RTL) description to model the processor. The processor modeled is
based on MIPS Architecture. The design uses a 32 bit register file which is an array
of thirty two 32-bit registers uses to store data, a 32bit register to store the
instruction, 32-bit register to store operational data at various stage, an ALU for
arithmetic and logic manipulation and an ALU control which decodes the function to
be performed by ALU. Control is implemented using a Finite State Machine model.
Multiplexers are used to select from different input signals in each functional blocks.

2. Behavioral model of a 32 bit Random Access Memory with burst transfer

protocol implemented

3. Behavioral model of a Direct Mapped Write Through Cache Memory block

which utilizes the burst transfer protocol while loading from the Random Access
Memory.

The simulation is performed using ACTIVE HDL Version 6.3 of ALDEC

Corporation.

 4

CONTENTS

1. Introduction 6
1.1 MIPS32 6
1.2 Features 7
1.3 Applications 7

2. Introduction to VHDL 9
2.1 VHDL Description of combinational networks 9
2.2 Entity-Architecture Pair 11
2.3 Compilation and Simulation of VHDL Codes 11
2.4 Variables, Signals and Constants 14
2.5 Arrays 15
2.6 VHDL Operators 16

3. Implementation 17
3.1 Single Cycle 17
3.2 Multi Cycle 17
3.3 Components of Data path 17
3.4 Register File 18
3.5 MIPS Instruction Format 20
3.6 ALU Control 22
3.7 Control Unit 23
3.8 Breaking Instructions in to clock cycles 25

4. Memory 28

5. VHDL code and Simulation Results 31

6. Conclusion 72

7. Scope for further improvement 73

8. References 74

 5

1. INTRODUCTION

We are living in a second age industrial revolution, when the availability and
processing of information are causing untold changes in our lives. In 1971 Intel
produced the first microprocessor, the 4004, which handled data as 4 bit numbers
and contained 2250 transistors. It followed this soon with 8008, and within a few
years number of companies were making their own microprocessor offerings. By the
end of 1970s two trends were emerging for these remarkable devices. One was to
scale down in size, if not computing power, the general purpose computer, this led
quickly to the first desktop machines. The other, much more revolutionary was to
place the microprocessor in products which apparently had nothing to do with
computing. They began to find their way into photocopiers, washing machines, and a
host of other products. While the first trend led to an inexorable demand for faster
and bigger processors, the second placed lower demand on computational power and
speed. It wanted physically small and cheap devices, with as much functionality of
the system as possible squeezed on to one integrated circuit. Such microprocessors
became known as micro controllers and the systems they controlled, embedded
system.

MIPS architecture was chosen by Hennessey & Patterson [1] as a vehicle for
teaching principle of Computer Architecture. It is a 32-bit Reduced Instruction Set
Computer (RISC). Here we use the MIPS processor for developing a high level
abstraction of in VHDL first. Then we develop a memory hierarchy to support this
processor model to evaluate the importance of Cache Memory in improving the
overall memory performance.

Developed more than 20 years ago at Stanford University, the MIPS architecture is a
simple, streamlined, highly scalable RISC architecture. Its fundamental
characteristics - such as the large number of registers, the number and the character
of the instructions, and the visible pipeline delay slots - enable the MIPS architecture
to deliver the highest performance per square millimeter and lowest energy
consumption in today's SOC designs.

1.1 MIPS32
The MIPS32 Architecture sets a new performance standard for 32-bit embedded
processors. The MIPS architecture is the leading embedded architecture because of
its robust instruction set, scalability from 32-bits to 64-bits, broad-spectrum of
software development tools. The MIPS32 architecture is a superset of the previous
MIPS I and MIPS II Instruction Set Architectures (ISA) and incorporates powerful
new instructions specifically for embedded applications, as well as proven memory
management and privileged mode control mechanisms. By incorporating powerful
new features, standardizing privileged mode instructions, and supporting past ISAs,
the MIPS32 architecture provides a solid high-performance foundation for all future
32-bit MIPS processor-based development.

The MIPS32 architecture is based on a fixed-length, regularly encoded instruction set
and uses a load/store data model. The architecture is streamlined to support
optimized execution of high-level languages. Arithmetic and logic operations use a
three-operand format, allowing compilers to optimize complex expressions
formulation. Availability of 32 general-purpose registers enables compilers to further
optimize code generation by keeping frequently accessed data in registers.

 6

Flexibility of its high-performance caches and memory management schemes
continues to be a strength of the MIPS architecture. The MIPS32 architecture
extends this advantage with well-defined cache control options. The size of the
instruction and data caches can range from 256 bytes to 4Mbytes. The data cache
can employ either a write-back or write-through policy. A no-cache option can also
be specified.

1.2 Features

• Fully MIPS I and MIPS II ISA compatible
• Enhanced with conditional move and data-prefetch instructions
• Standardized DSP operations: multiply (MUL), multiply and add

(MADD), and count leading 0/1s (CLZ/O)
• Privileged cache load/control operations
• Robust load/store RISC instruction set with 3-operand

instructions in most formats (3 register, 2 registers +
immediate), branch/jump options, and delayed jump
instructions.

• 32 general purpose 32-bit registers (GPRs)
• Optional floating-point support:
• 32 single precision 32-bit or 16 double precision 64-bit floating

point registers (FPRs)
• Floating-point condition code register
• Optional Memory Management Unit with:

o TLB or BAT address translation mechanisms
o Programmable page size
o Optional caches:
o Instruction and or data cache options
o Write-back or write-through data-cache options
o Virtual or physical addressing
o Enhanced JTAG (EJTAG) support for non-intrusive debug

support

MIPS32 compatible processors are intended for high performance, low-
power, system-on-a-chip (SOC) embedded applications.

1.3 Applications

Security Devices

• Smart cards
• Smart card readers
• Point of Deployment (POD) devices

Digital Consumer Devices

• Digital Cameras
• Set-top Boxes
• Game Platforms
• DVD Players

 7

Office Automation

• Printers
• Copiers
• Scanners
• Multifunction Peripherals

Other

• Industrial Controllers
• Mass Storage Systems
• Automotive Systems
• Navigation (GPS)
• PC Peripherals
• Graphics Systems
• Dedicated Terminals (POS, ATM, e-cash)

 8

2. INTRODUCTION TO VHDL

As integrated circuit technology has improved to allow more and more components
on a chip, digital systems have continued to grow in complexity. As digital systems
have become more complex, detailed design of the systems at the gate and flip-flop
level has become very tedious and time consuming. For this reason, use of
hardware description languages in the digital design process continues to grow in
importance. A hardware description language allows a digital process continues to
grow in importance. A hardware description language allows a digital system to be
designed and debugged at a higher level before conversion to the gate and flip-flop
level. Use of synthesis computer-aided design tools to do this conversion is
becoming more widespread. This is analogous to writing software programs in a
high-level language such as C and then using a compiler to convert the programs to
machine language. The two most popular hardware description languages are VHDL
and Verilog.

 VHDL is a hardware description language used to describe the behavior and
structure of digital systems. The acronym VHDL stands for VHSIC Hardware
Description Language, and VHSIC in turn stands for very High Speed Integrated
Circuit. However, VHDL is a general purpose hardware description language that
can be used to describe and simulate the operation of a wide variety of digital
systems, ranging in complexity from a few gates to an interconnection of many
complex integrated circuits. VHDL was originally developed for the military to allow
a uniform method for specifying digital systems. The VHDL language has since
become and IEEE standard, and it is widely used in industry.

 VHDL can describe a digital system at several different levels-behavioral, data
flow, and structural. For example, a binary adder could be described at the
behavioral level in terms of its function of adding two binary numbers, without giving
any implementation details. The same adder could be described at the data flow
level by giving the logic equations for the adder. Finally, the adder could be
described at the structural level by specifying the interconnections of the gates that
comprise the adder.

 VHDL leads naturally to a top-down design methodology, in which the system
is first specified at a high level and tested using a simulator. After the system is
debugged at this level, the design can gradually be refined, eventually leading to a
structural description closely related to the actual hardware implementation. VHDL
was designed to be technology independent. If a design is described in VHDL and
implemented in today’s technology, the same VHDL description could be used as a
starting point for a design in some future technology.

2.1 VHDL description of combinational networks

Below given is description of a simple gate network in VHDL. If each gate in the
network of figure has a 5-ns propagation delay, the network can be described as
follows:

C <= A and B after 5 ns;
E <= C or D after 5 ns;

 9

Where A, B, C, D and E are signals. A signal in VHDL usually corresponds to a signal
in a physical system. The symbol “<=” is the signal assignment operator, which
indicates the value computed on the right side is assigned to the signal on the left
side. When these statements are simulated, the first statement will be evaluated
any time A or B changes, and the second statement will be evaluated any time C or
D changes. Suppose that initially A=1, and B=C=D=E=0. If B changes to 1 at time
0, C will change to 1 at time=5 ns. Then E will change to 1 at time = 10 ns.

E

A

B

C

D

Fig. 2.1 GATE NETWORK

VHDL signal assignment statements, like the ones in the preceding example, are
called concurrent statements when they are not contained in a VHDL process or
block. The VHDL simulator monitors the right-hand side of each concurrent
statement, and any time a signal changes, the expression on the right-hand side is
immediately re-evaluated. The new value is assigned to the signal on the left-hand
side after an appropriate delay.

When we initially describe a network, we may not be concerned about propagation
delays. If we write

 C<=A and B;

 E<=C or D;

This implies that the propagation delays are 0 ns. In this case, the simulator will
assume an infinitesimal delay referred to as (delta).

Unlike a sequential program, the order of the preceding statements is unimportant.
If we write

 E<=C or D;
 C<=A and B;

The simulation results would be exactly the same as before. Even if a VHDL program
has no explicit loops, concurrent statements may execute repeatedly as if they were
in a loop. The VHDL statement

 10

 CLK <= not CLK;

Will cause a run-time error during simulation. Since there is 0 delay, the value of
CLK will change at time 0 +1 ,0+2…,0+3…etc, and real time will never advance.

In general, VHDL is not case sensitive; that is, capital and lowercase letters are
treated the same by the compiler and simulator. Thus the statements

 CLK <= NOT CLK After 10 NS;

 And CLK <=NOT CLK after 10 ns;

Are treated exactly the same. Signal names and other VHDL identifiers may contain
letters, numbers, and the underscore character (_). An identifier must start with a
letter, and it cannot end with an underscore. Thus C123 and ab_23 are legal
identifiers, but 1 ABC and ABC-are not. Every VHDL statement must be terminated
with a semicolon.

2.2 Entity-Architecture Pairs

To write a complete VHDL program, we must declare all the input and output signals
and specify the type of each signal. As an example, we will describe the full adder of
above figure. A complete description must include an entity declaration and an
architecture declaration. The entity declaration specifies the inputs and outputs of
the adder module:

Entity Full Adder is
 Port (X,Y, Cin: in bit; -- inputs
 Cout, Sum: out bit); -- outputs

End Full Adder;

The words entity, is port, in, out and end are reserved words (or keywords), which
have a special meaning to the VHDL compiler. Anything that follows a double dash (-
-) is a VHDL comment. The port declaration specifies that X,Y and Cin are input
signals of type bit, which means it can assume only values of ‘0’ or ‘1’.

The operation of the full adder is specified by an architecture declaration:

architecture Equations of Full Adder is
begin

Sum <=X xor Y xor Cin after 10 ns;
Cout <= (X and Y) or (X and Cin) or (Y and Cin) after 10 ns;

end Equations;

 11

Entity Architecture

Entity Architecture Entity Architecture
Module 2

Module 1

 Entity Architecture

Module N

Fig. 2.2 VHDL Program Structure

In this example, the architecture name (Equations) is arbitrary; but the entity name
(Full Adder) must match the name used in the associated entity declaration. The
VHDL assignment statements for Sum and Cout represent the logic equations for the
full adder. Several other architectural descriptions, such as a truth table or an
interconnection of gates could have been used instead. In the Cout equation,
parenthesis are required around (X and Y), since VDHL does not specify an order of
precedence for the logic operators.

When we describe a system in VHDL, we must specify an entity and an architecture
at the top level, and also specify an entity and architecture for each of the
component modules that are part of the system. Each entity declaration includes a
list of interface signals that can be used to connect to other modules or to the
outside world. We will use entity declarations of the form

entity entity_name is

 [port (interface-signal-declaration);]

end [entity] [entity_name];

The items enclosed in brackets are optional. The interface-signal-declaration
normally has the following form;

list-of-interface-signals: mode type [:=initial-value]

Input signals are of mode in, output signals are of mode out, and bi-directional
signals are of mode inout. The optional initial value is used to initialize the signals on
the associated list; otherwise, the default initial value is used for the specified type.
For example, the port declaration

 12

Port (A, B: in integer :=2; C,D: out bit);
Indicates that A and B are input signals of type integer, which are initially set
to 2, and C and D are output signals of type bit, which are initialized by
default to ‘0’.

Associated with each entity is one or more architecture declarations of the form

architecture architecture_name of entity_name is

 (declaration)

begin

 architecture body

end [architecture] [architecture_name];

2.3 Compilation and Simulation of VHDL code

After describing a digital system in VHDL, simulation of the VHDL code is important
for two reasons. First, we need to verify the VHDL code correctly implements the
intended design; second, we need to verify that the design meets its specifications.
Before the VHDL model of a digital system can be simulated, the VHDL code must
first be compiled. The VHDL compiler, also called an analyzer, first checks the VHDL
source code to see that it conforms to the syntax and semantic rules of VHDL. If
there is a syntax error such as a missing semicolon, or if there is a semantic error
such as trying to add two signals of incompatible types, the compiler will output an
appropriate error message. The compiler also checks to see that references to
libraries are correct. If the VHDL code confirms to all the rules, the compiler
generates intermediate code, which can be used by a simulator or by a synthesizer.

In preparation for simulation, the VHDL intermediate code must be converted to a
form that can be used by the simulator. This step is referred to as elaboration.
During elaboration, ports are created for each instance of a component, memory
storage is allocated for the required signals, the interconnections among the port
signals are specified, and a mechanism is established for executing the VHDL
processes in the proper sequence. The resulting data structure represents the digital

 13

VHDL
Source
code

Compiler
 (Analyzer)

Resource
library

Elaborator Simulator Working
library

Simulator
output

 Simulator

commands

Fig. 2.3 Compilation, Elaboration, and Simulation of VHDL Code

system being simulated. After an initialization phase, the simulator enters the
execution phase. The simulator accepts simulation commands, which control the
simulation of the digital system and specify the desired simulator output.

2.4 Variables, Signals and Constants

Variables may be used for local storage in process, procedures, and functions. A
variable declaration has the form :

Variable list_of_variable_names : type_name [:=initial_value];

Variables must be declared within the process in which they are used and are local to
that process. An exception to this rule is shared variables. Signals, on the other
hand, must be declared outside of a process. Signals declared at the start of an
architecture can be used anywhere within that architecture.

A signal declaration has the form

signal list_of signal_names : type_name [:=initial_value];

A common form of constant declaration is

constant constant_name : type_name := constant_value;

A constant delay of type time having the value of 5 ns can be defined as

constant delay :time : = 5 ns;

Constants declared at the start of an architecture can be used anywhere within that
architecture, but constants declared within a process are local to that process.

Variables are updated using a variable assignment statement of the form

variable_name :=expression;

 14

When this statement is executed, the variable is instantaneously updated with no
delay not even a delta delay. In contrast, consider a signal assignment of the form

signal_name<=expression [after delay];

The expression is evaluated when this statement is executed, and the signal is
scheduled to change after delay. If no delay is specified, then the signal is
scheduled to be updated after a delta delay.

2.5 Arrays

In order to use an array in VHDL, we must first declare an array type and then
declare an array object. For example, the following declaration defines a one-
dimensional array type names SHORT_WORD:

type SHORT_WORD is array (15 down to 0) of bit;

An array of this type has an integer index with a range from 15 down to 0, and each
element of the array is of type bit.

Next, we declare array objects of type SHORT_WORD:

signal DATA_WORD : SHORT_WORD;

variable ALT_WORD : SHORT_WORD: = “0101010101010101”;

constant ONE_WORD: SHORT_WORD := (others = ‘1’);

DATA_WORD is a signal array of 16 bits, indexed 15 down to 0, which is initialized
(by default) to all ‘0’ bits. ALT_WORD is a variable array of 16 bits, which is
initialized to alternating 0s and 1s. ONE_WORD is a constant array of 16 bits, all bits
are set to 1 by (others => ‘1’). We can reference individual elements of the array by
specifying an index value. For example, ALT_WORD (0) accesses the rightmost bit
of ALT_WORD. We can also specify a portion of the array by specifying an index
range: ALT_WORD (5 downto 0) accesses the low-order 6 bits of ALT_WORD ,
which have an initial value of 010101.

The array type and array object declarations illustrated here have the general forms

type array_type_name is array index_range of element_type;

signal array_name: array_type_name [:= initial_values];

In the preceding declaration, signal may be replaced with variable or constant.

Multidimensional array types may also be defined with two or more dimensions.
The following example defines a two-dimensional array variable, which is a matrix of
integers with four rows and three columns:

type matrix_4x3 is array (1 to 4, 1 to 3) of integer;
variable matrix_a : matrix_4x3 := ((1,2,3), (4,5,6), (7,8,9), (10,11,12));

 15

The variable matrix_a, will be initialized to

1 2 3
4 5 6

 7 8 9
 10 11 12

The array element matrix A (3,2) references the element in the third row and second
column, which has a value of 8.

2.6 VHDL Operators

Predefined VHDL operators can be grouped into seven classes:

1. Binary logical operators: and or nand nor xor xnor
2. Relational operators : =/ = < <= > >=
3. Shift operators: sll srl sla sra rol ror
4. Adding operators: + - & (concatenation)
5. Unary sign operators : + -
6. Multiplying operators : * / mod rem
7. Miscellaneous operators : not abs **

When parentheses are not used, operators in class 7 have precedence and are
applied first, followed by class 6, then class 5 etc. Class 1 operators have lowest
precedence and are applied last. Operators in the same class have the same
precedence and are applied from left to right in an expression. The precedence order
can be changed by using parentheses.

 16

3. IMPLEMENTATION

Any processor will two distinctive parts. One is Datapath and the other one being
Control. MIPS datapath can be either single cycle or multicycle.

3.1 Single Cycle

Datapath executes all instructions in 1 clock cycle. This means that no datapath
resource can be used more than once per instructions, so any element needed more
than once must be duplicated. Inefficient because clock cycle is determined by the
longest possible path in the machine (usually load instructions) so the overall
performance of the single cycle instruction is not likely to be good as several of the
instructions can be completed in a shorter cycle.

3.2 Multicycle

Each instruction is broken into several steps and each of such steps take one clock
cycle to executes. This allows functional units to be used more than once per
instruction as long as it is used in different clock cycle.

In this project we are modeling a multicycle datapath with finite state machine
control for a 32-bit MIPS processor.

In a multicycle implementation, each step in the execution will take 1 clock cycle.
The multicycle implementation allows a functional unit to be used more than once
per instruction, as long as it is used on different clock cycles. This sharing can help
reduce the amount of hardware required. The ability to allow instructions to take
different numbers of clock cycles and the ability to share functional units within the
execution of a single instruction are the major advantages of a multicycle design.

At the end of a clock cycle, all data that are used in subsequent clock cycles must be
stored in a state element. Data used by subsequent instructions in a later clock
cycle is stored into one of the programmer-visible state elements (i.e., the register
file, the PC, or the memory). In contrast, data used by the same instruction in a
later cycle must be stored into one of these additional registers.

Thus the position of the additional registers is determined by the two factors: what
combinational units will fit in a clock cycle and what data are needed in later cycles
implementing the instruction. In this multicycle design, we assume that the clock
cycle can accommodate at most one of the following operations: a memory access,
a register file access (two reads or one write), ore an ALU operation. Thus any data
produced by one of these three functional units (the memory, the register file, or the
ALU) must be saved into a temporary register for use on a later cycle.

3.3 Components of Datapath

A reasonable way to start a datapath design is to examine the major elements to
required to execute each class of MIPS instruction. At the end of a clock cycle, all
data that are used in subsequent clock cycles must be stored in a state element Data
used by subsequent instructions in a Later Clock Cycle is stored into one of the
programmer visible state elements (register file, the PC or the memory) where as

 17

the data used by the same instruction in a later cycle is stored into one of the
general purpose registers provided after each main functional unit.

The datapath will have the following two types of components.

Combinational Elements (Adder, MUX, ALU)
Storage Elements (Register, Register File)

A multicycle datapath is shown in the figure 3.1. It contains the following

(1) Register array - 32 registers of 32- bit size

(2) Register 32 bit -Memory Data Register

 Register A

 Register B

 ALU Out Register

(3) Registers 32 bit with - These are used where programmer visible
registers
 enable input are needed

(i) Instruction Register (Write is controlled
with IRWrite Signal from PSM)

(ii) Program Counter (32 bit) write is
controlled with PC Write control signal

(4) Multiplexers All controlled with signals coming from PSM

Control unit.

 (5) Control Unit

3.4 Register file

The processors 32 registers are stored in a structure called a register file. A register
file is collection of register in which any register can be read or written by specifying
the number of the register in the file. It has three inputs for selecting the register
to be operated (2 for read operation and one in case of write operation)

 18

 Fig. 3.1 MIPS DATAPATH & CONTROL

 19

 RegWrite

Read Register1
 Read Data1
Read Register2

Write Register1
 Read Data2

Write Data

Register Files

Fig. 3.2 Register File

To write data into the register file, we need 2 inputs one to specify the register
number one to supply the data. The register file always outputs the contents of
whatever register numbers are on the Read register inputs. Writes however are
controlled by write control signal (Regwrite) which must be asserted for a write to
occur at the clock cycle.

3.5 MIPS instruction format

The layout of instruction is called the instruction format. MPIS instructions are
classified into three types.

R-type

31 0
Op Rs Rt Rd Shamt funct
 6bits 5 bits 5bits 5bits 5bits 6bits

I-type

31 0
Op Rs Rt Immediate
 6 bits 5bits 5bits 16bits

 20

J TYPE

31 0
Op Target address (26bits)
 6bits

As it can be seen all MIPS instructions are 32 bit long.

The different fields are :

• op - operation of the instruction
• rs,rt,rd - source and destination registers
• shamt - shift amount
• funct - selects the variant of operation in Op field.

Here we will simulating MIPS datapath for R type (Arithmetic Operations) and I
type (Load/Store Operations).

R Type Instructions

R type instructions have an OP-code of ‘0’ always. These instructions have three
register operands : rs, rt and rd. Field rs and rt are the source registers and rd
is the destination. ALU function is in the funct field and is decoded by the ALU
control. The R type instruction that we implement are add, sub, and, or and slt
(set on less than). The shamt field is only used in shift instructions which we
will ignore presently.

R type instructions implemented here are

ADD rd, rs, rt => rd = rs + rt

SUB rd, rs, rt => rd = rs - rt

AND rd, rs, rt => rd = rs & rt

OR rd, rs, rt => rd = rs || rt

SLT rd, rs, rt => if rs < rt, rd=1 else rd=0

Fields in the case of ADD instruction

 21

As mentioned earlier, for and R type instruction the OP and SHAMT fields will be
zero always (first and fifth fields). The second field gives the number of the
register that is the first source operand (rs) and the third field indicates the
second source operand (rt). Fourth field indicated the destination where the
addition result will be stored (rd). Sixth filed defined the function to be
performed, in this case it will be 100000 (32) for addition.

The above explanation is valid for other R type instructions as well. The only field
that will change is that of function.

R TYPE

INSTRUCTION
FUNCTION FIELD

ENTRY

ADD 100000 (32)

SUB 100010 (34)

AND 100100 (36)

OR 100101 (37)

SLT 101010 (42)

3.6 ALU CONTROL

The control input to the data path are coming from several fields of Instruction
Register and from the FSM controller. ALU has three control inputs. Only five of the
possible eight input combinations are used.

ALU CONTROL
INPUT

FUNCTION

000 AND

001 OR

010 ADD

110 SUBTRACT

111 SET ON LESS THAN

Depending on the instruction class the ALU will need to perform one of these five
functions. For load word (LW) and store word (SW) instructions we use ALU to
compute the memory address by addition. For R type instruction ALU needs to
perform for the five functions (Addition, Subtraction, AND, OR and SLT) depending
on the value of 6 bit function feed in the lower bits of the instruction.

We can generate the 3 bit ALU Control using a small control unit that has as inputs
the function field of the instruction and a 2 bit control field which is ALUOp. Table

 22

illustrates the way in which the ALU Control input is decided using ALUOp and
function code.

Instruction

OPCODE
ALUOp Function Field Desired ALU action ALU control

input
LW 00 XXXXXX ADD 010
SW 00 XXXXXX ADD 010

R - TYPE 10 100000 ADD 010
R - TYPE 10 100010 SUBTRACT 110
R - TYPE 10 100100 AND 000
R - TYPE 10 100101 OR 001
R - TYPE 10 101010 SET ON LESS THAN 111

This style of using multiple levels of decoding (i.e. the main control unit generates
the ALUOp bits , which then are used as inputs to the ALU control that generates the
actual signal to control the ALU Control) can reduce the size of the main control unit
which in turn increases the speed of control unit.

3.7 CONTROL UNIT

The control is implemented using a finite state machine. A finite state machine
consists of a set of states and directions on how to change states. The directions are
defined by next-state functions, which maps the current state and the inputs to a
new state. When we use a finite state machine, each state also specifies a set of
outputs that are asserted when the machine is in that state. The implementation of
a finite state machine usually assumes that all outputs are not explicitly asserted are
deasserted. The correct operation of the datapath depends on the fact that a signal
that is not explicitly asserted is reasserted, rather than acting as a don’t care.

 Multiplexer controls are slightly different, since they select one of the inputs
whether they are 0 or 1. Thus in the finite state machine, we always specify the
setting of all the multiplexer controls that we care about.

 The finite state control essentially corresponds to the five steps of execution
that will be discussed later. The finite state machine will consists of several parts.
Since the first 2 states of FSM are identical for every instruction, the initial two states
of the FSM will be common to all instructions. Step 3 through 5 differ, depending on
the OPcode. After the execution of the last step for a particular instruction class,
the FSM will return to the initial state to begin fetching the next instruction.

 Figure 3.3 in the next page graphically represents the FSM used in the case.
The signals that are asserted in each case state are shown within the circle
representing the state. The arcs between the states define the next states and are
labeled with conditions that select a specific next state when multiple states are
possible. The process of branching to different states depending on the instruction

 23

Fig 3.3 The Combined control unit

 24

is called decoding, since the choice of next state and hence the actions that follow,
depend on the instruction class.

 For memory reference, the first state after fetching the instruction and
registers computes the memory address (state 2). To compute the memory
address, the ALU input multiplexers must be set so that the first input is the A
register while the second is the sign extended displacement field, the result is written
into the ALUOut register. After the memory address calculation the memory should
be read or written, this requires two different states. If the instruction OPcode is LW,
then state 3 does the memory read.

Output of memory is always written into MDR. If it is SW, state 5 does a memory
write. In state 3 and 5, the signal IorD is set to 1 to force the memory address to
come from the ALU. After performing a write, the SW instruction has completed
execution, and next state is 0. If the instruction is a load, however another state
(state 4) is needed to write the result from memory into the register file. After this
state, corresponding to the memory read completion step, next state is 0.

To implement R type instruction requires two states corresponding to step 3
(execute) and 4 (R type completion). State 6 asserts ALUSrcA and ALUSrcB signal to
00, this forces the two registers that were read from the register file to be used as
inputs to the ALU setting ALUOp to cause ALU control unit to use the function field to
set the ALU control signed. In state 7, RegWrite signal is asserted to cause register
file write.

3.8 Breaking the instruction Execution into Clock Cycles

Given the datapath details, we now need to look at what should happened in each
clock cycle of the multicycle execution, since this will determine what additional
control signals may be needed, as well as the setting of the control signals.

All the operations listed in one steps occur in parallel within 1 clock cycle while
successive steps operate in series in different clock cycles. The limitation of 1 ALU
operations, one memory access, one register file access determines what can fit in
one step.

Step 1

Instruction Fetch step

 IR = Memory (PC)

 PC = PC + 4

Operation : Send the PC to the memory as address perform a read and write the
instruction into the Instruction Register (IR). Also increment PC BY 4.

To implement this the following control signals are needed

 25

Mem Read = 1
IR Write = 1
IorD = 0 (to select PC as the source of address)
ALUSrcA = 0 (sending PC to ALU)
ALUSrcB = 01 (sending 4 to ALU)
ALUOp = 00 (To make ALU add
PC write = 1 (For storing the incremented instruction address back to PC

The increment of PC and instruction memory access occur in parallel. The new value
of PC is not visible until the next clock cycle.

Step 2

Only optimistic actions are performed in this step as the exact nature of instruction is
not known yet. So, action performed in this step is access the register file to read
register rs and rt and store the result into registers A and B.

A = Reg [IR(25-21)],

B = Reg [IR (20-16)];

Step 3

Execution, or Memory address computation.

This is the first cycle during which the datapath operation is determined by the
instruction class. In all the cases, the ALU is operating on the operands prepared in
the previous step, performing one of the following functions depending on the
instruction class.

(i) Memory reference:

ALUOut = A+ sign Extend [IR(15-0)]

To implement this the following control signals are needed

ALUSrcA = 1

ALUSrcB = 10

So that output of sign extension unit is used for second ALU input ALU
output will be 00 causing ALU to Add.

(ii) Arithmetic – logic Unit (R-type)

ALUOut = A op B

ALU is performing the function specified by the function field on the two values read
from the register file. ALUSrcA= 1 and ALUSrcB = 10 causing A & B to be used as

 26

ALU inputs. ALUOp is set to ‘10’ so that function field is used to determine the ALU
control signal.

Step 4

Memory Access or R type Instruction completion step: During this step, a load or
store instruction accesses memory and a arithmetic logic instruction writes its result
when a value is stored into the memory data register (MDR), where it must be used
on the next clock cycle.

MDR = Memory (ALUOut)

 Or

Memory (ALUOut) = B

In either case, the address used, is the one computed during the previous step and
stored in ALUOut.

The signal MemRead or MemWrite is asserted for loads, IorD is set to 1 to force
memory address to come from the ALU

In the case of R-type instructions

 Reg [IR(15-11)] = ALUOut

Place the content of ALUOut into result register. RegDst is set to 1 (to force rd 15-
11) field to be used to select register file entry to write. RegWrite is asserted and
MemtoReg is set to ‘0’ so that ALUOut is written to the register file as opposed to the
memory data output.

Step 5

Memory read completion step during this step, load complete by writing back the
value from memory

Reg [IR(20-16)] = MDR

MemtoReg =1 to write the result from memory

RegWrite = 1 (to cause a write)

RegOut = 0 to choose rt (20-16) as register

 27

4. MEMORY

While designing memory we take advantage of principle of locality by implementing
the memory of computer as a memory hierarchy. A memory hierarchy consist of
multiple levels of memory with different speeds and sizes. Faster memories are more
expensive per bit than the slower memories and thus are usually smaller.

Today there are three primary technologies used in building memory hierarchy. Main
memory is implemented using DRAM (Dynamic Random Access Memory) while
levels closer to the CPU are implemented using SRAM (Static Random Access
Memory). DRAM is less costly per bit than SRAM, although it is substantially slower.
The price difference arises because DRAM uses significantly less area per bit of
memory and DRAMs thus have larger capacity for the same amount of silicon.
Because of the difference of cost and access time, it is advantageous to build
memory as hierarchy of levels with faster memory closer to the CPU and slower less
expansive memory below that as shown in figure 4.1

The memory system is organized as a hierarchy , a level closer to the process is a
subset of any level further away and all data is stored in the lowest level.

CPU

Level 1

Level 2

Level n

Size of the Memory on each level

Increasing distance from
the CPU in access time

 Figure 4.1 Memory Hierarchies

 28

 29

A memory hierarchy can consists of multiple levels, but data is copied between only
two adjacent levels at a time. If the data requested by the CPU appears in some
block in the upper level, this is called a hit and if data is not present in the upper
level the request is called a miss. Since performance is a major reason for having a
memory hierarchy, the speed of hits and misses is important. Hit time is the time to
access the upper level of memory which includes the time needed to determine
whether the access is a hit or a miss. The miss penalty is the time to replace a block
in the upper level with the corresponding block from the lower level plus the time to
deliver this block to the CPU.

Program exhibit both temporal locality, the tendency to reuse recently accessed data
items and spatial locality, the tendency to refer data items that are close to other
recently accessed items. Memory hierarchy takes advantage of temporal locality by
keeping more recently accessed data items closer to the CPU. Memory hierarchy
takes advantage of spatial locality by moving blocks of multiple contiguous words in
memory to upper level of hierarchy.

In our design a main memory is containing both data and instruction area. A write
through direct mapped cache is designed for data memory. All instructions are
maintained in the main memory itself. As soon as the first data access is initiated,
data from adjacent locations are also copied to the cache memory using burst
transfer.

 30

5. VHDL CODES & SIMULATION RESULTS

--

 -- *****simulation of mips processor ********
 -- 32 bit instruction register

 library IEEE;
 use IEEE.std_logic_1164.all;
 use IEEE.numeric_bit.all;
 --
 entity instreg is
 port(A : IN std_logic_vector(31 downto 0);
 clk : IN std_logic;
 IRWrite : IN bit;
 IR : OUT unsigned (31 downto 0));
 end instreg;
 --
 architecture a_instreg of instreg is
 begin
 process
 begin
 wait on clk until rising_edge(clk)and IRWrite ='1' ;
 IR <= unsigned (to_bitvector(A));
 end process;
 end a_instreg;

 31

 32

 --
 library IEEE;
 use IEEE.std_logic_1164.all;
 --

 entity reg_32bit is

 port(
 A : IN std_logic_vector(31 downto 0);
 clk : IN std_logic;
 Y : OUT std_logic_vector(31 downto 0));

 end reg_32bit;

 architecture a_reg_32bit of reg_32bit is

 begin

 process
 begin
 wait until clk'event and clk= '1';
 Y <= A;
 end process;

 end a_reg_32bit;

 33

 34

 library IEEE;
 use IEEE.std_logic_1164.all;
 use IEEE.std_logic_arith.all;
 use IEEE.std_logic_unsigned.all;
 --
 entity reg_32we is
 port(
 A : in std_logic_vector(31 downto 0);
 clk : in std_logic;
 write_en : in bit;
 reset : in bit;
 Y : out std_logic_vector (31 downto 0));
 end reg_32we;
 --
 architecture a_reg_32we of reg_32we is
 begin
 process (clk)
 begin
 if clk = '1' and clk'event then
 if reset = '1' then
 Y <= x"0000_0000";
 elsif write_en ='1' then
 Y<= A;
 end if;
 end if;
 end process;
 end a_reg_32we;

 35

 36

--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_bit.all;

entity register_file is
 port(
 write_en : in bit;
 rd_reg1 : in unsigned (4 downto 0);
 rd_reg2 : in unsigned (4 downto 0);
 wr_reg : in unsigned (4 downto 0);
 data : in std_logic_vector(31 downto 0);
 reg1 : out std_logic_vector(31 downto 0);
 reg2 : out std_logic_vector(31 downto 0));
end register_file;
--

architecture a_register_file of register_file is
begin

 regtag: process (rd_reg1, rd_reg2, wr_reg, data, write_en) is

 type reg_array is array (0 to 31) of std_logic_vector(31 downto 0);
 variable reg_file : reg_array;
 variable index1,index2,index3 : natural;

 begin

 reg_file(0) := X"00000001";
 reg_file(1) := X"00000002";
 reg_file(2) := X"00000003";
 reg_file(3) := X"00000004";
 reg_file(6) := X"00000000";
 --write port
 if write_en = '1' then
 index3 := to_integer(wr_reg);
 reg_file(index3) := data;
 end if;

 --read port1
 index1 := to_integer(rd_reg1);
 reg1 <= reg_file(index1) ;

 --read port2

 index2 := to_integer(rd_reg2);
 reg2 <= reg_file(index2) ;
 end process regtag;
end a_register_file;

 37

 38

 --
 library IEEE;
 use IEEE.std_logic_1164.all;
 use IEEE.numeric_bit.all;
 --
 entity mux_m1 is
 port (
 s : in bit;
 d0 : in std_logic_vector (31 downto 0);
 d1 : in std_logic_vector (31 downto 0);
 y : out unsigned (31 downto 0));
 end mux_m1;
 --
 architecture a_mux_m1 of mux_m1 is

 begin

 process (s,d0,d1)

 begin
 case s is
 when '0' =>
 y <= unsigned (to_bitvector(d0));
 when '1' =>
 y <= unsigned (to_bitvector(d1));
 end case;
 end process;

 end architecture a_mux_m1;

 39

 40

--
library IEEE;

 use IEEE.std_logic_1164.all;
 use IEEE.numeric_bit.all;
 --
 entity mux_m2 is
 port (
 s : in bit;
 d0 : in unsigned (4 downto 0);
 d1 : in unsigned (4 downto 0);
 y : out unsigned (4 downto 0));
 end mux_m2;
 --
 architecture a_mux_m2 of mux_m2 is

 begin
 process (s, d0,d1)
 begin

 case s is
 when '0' =>
 y <= d0 ;
 when '1'=>
 y <= d1 ;
 end case;
 end process;

 end a_mux_m2;

 41

 library IEEE;
 use IEEE.std_logic_1164.all;
 --
 entity mux_m3 is
 port (
 s : in bit;
 d0 : in std_logic_vector (31 downto 0);
 d1 : in std_logic_vector (31 downto 0);
 y : out std_logic_vector (31 downto 0));
 end mux_m3;
 --
 architecture a_mux_m3 of mux_m3 is

 begin

 process (s, d0, d1)
 begin
 case s is
 when '0' =>
 y <= d0;
 when '1' =>
 y <= d1;

 end case;

 end process;

 end a_mux_m3;

 42

 --
 library IEEE;
 use IEEE.std_logic_1164.all;
 --
 entity mux_m4 is
 port (
 s : in bit_vector(1 downto 0);
 d0 : in std_logic_vector (31 downto 0);
 d1 : in std_logic_vector (31 downto 0);
 d2 : in std_logic_vector (31 downto 0);
 d3 : in std_logic_vector (31 downto 0);

 y : out std_logic_vector (31 downto 0));
 end mux_m4;
 --
 architecture a_mux_m4 of mux_m4 is

 begin

 process (s, d0, d1,d2,d3)
 begin
 case s is
 when "00" =>
 y <= d0;
 when "01" =>
 y <= d1;
 when "10" =>
 y <= d2;
 when "11" =>
 y <= d3;

 end case;

 end process;

 end a_mux_m4;

 43

 -- ***simulation of MIPS Processor ***********

 -- Finite State Machine for MIPS Processor
 --
 LIBRARY ieee;
 USE IEEE.std_logic_1164.ALL;
 use IEEE.numeric_bit.all;
 --
 ENTITY fsm IS
 PORT (
 clk : IN std_logic;
 OP_code : IN unsigned (5 DOWNTO 0);
 Ready : IN bit;
 RegDst : OUT bit;
 ALUSrcA : OUT bit;
 ALUSrcB : OUT bit_vector (1 DOWNTO 0);
 MemtoReg : OUT bit;
 IorD : OUT bit;
 ALUOp : OUT bit_vector (1 DOWNTO 0);
 PCSource : OUT bit_vector (1 DOWNTO 0);
 RegWrite : OUT bit;
 MemRead : OUT bit;
 MemWrite : OUT bit;
 IRWrite : OUT bit;
 PCWrite : OUT bit);
 END fsm;

 ARCHITECTURE a_fsm OF fsm IS

 TYPE state IS (ST0,ST1,ST2,ST3,ST4,ST5,ST6,ST7);
 SIGNAL current_state,next_state : state;

 BEGIN

Proc1: PROCESS
 BEGIN
 CASE current_state IS

 WHEN ST0 =>

 ALUOp <= "00";
 RegWrite <= '0';
 MemRead <= '1';
 MemWrite <= '0';
 IRWrite <= '1';
 PCWrite <= '1', '0' after 200ns;
 ALUSrcB <= "01";
 PCSource <= "00";
 ALUSrcA <= '0';

 44

 IorD <= '0';

 WAIT UNTIL ready'EVENT and ready = '1';
 next_state <= ST1;

 WHEN ST1 =>
 ALUOp <= "00";
 RegWrite <= '0';
 MemRead <= '0';
 MemWrite <= '0';
 IRWrite <= '0';
 PCWrite <= '0';
 ALUSrcB <= "11";
 ALUSrcA <= '0';
 if OP_code = "000000" then
 next_state <= ST6;
 else if OP_code = "100011"

 or OP_code = "101011" then --LW(35) or SW(43)

 next_state <= ST2;
 end if;
 end if;

 WHEN ST2 =>

 ALUOp <= "00";
 RegWrite <= '0';
 MemRead <= '0';
 MemWrite <= '0';
 IRWrite <= '0';
 PCWrite <= '0';

 ALUSrcB <= "10";
 ALUSrcA <= '1';
 if OP_code = "100011" then --LW(35)
 next_state <= ST3;
 else
 next_state <= ST5; --SW(43)

 end if;

 WHEN ST3 =>

 ALUOp <= "00";
 RegWrite <= '0';
 MemRead <= '1';
 MemWrite <= '0';
 IRWrite <= '0';
 PCWrite <= '0';

 IorD <= '1';

 45

 WAIT UNTIL ready'EVENT and ready = '1';

 next_state <= ST4;

 WHEN ST4 =>

 ALUOp <= "00";
 RegWrite <= '1';
 MemRead <= '0';
 MemWrite <= '0';
 IRWrite <= '0';
 PCWrite <= '0';
 MemtoReg <= '1';
 RegDst <= '0';

 next_state <= ST0;

 WHEN ST5 =>

 ALUOp <= "00";
 RegWrite <= '0';
 MemRead <= '0';
 MemWrite <= '1';
 IRWrit <= '0';
 PCWrit <= '0';
 IorD <= '1';

 WAIT UNTIL ready'EVENT and ready = '1';

 next_state <= ST0;

 WHEN ST6 =>

 ALUOp <= "10";
 RegWrite <= '0';
 MemRead <= '0';
 MemWrite <= '0';
 IRWrite <= '0';
 PCWrite <= '0';

 ALUSrcA <= '1';
 ALUSrcB <= "00";

 next_state <= ST7;

 WHEN ST7 =>
 ALUOp <= "00" ;
 RegWrite <= '1';
 MemRead <= '0';
 MemWrite <= '0';
 IRWrite <= '0';
 PCWrite <= '0';
 RegDst <= '1';

 46

 MemtoReg <= '0';
 next_state <= ST0;
END CASE;
WAIT ON current_state;
END PROCESS;

Proc2: PROCESS (clk)
 BEGIN
 IF clk'event AND clk = '1' THEN
 current_state <= next_state ;
 END IF;
 END PROCESS;

 END ARCHITECTURE a_fsm;
--

 47

 48

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.numeric_bit.all;

entity mips_toplevel is
 port(
 ready : in bit;
 clk : in std_logic;
 reset : in bit;
 MemRead : out bit;
 MemWrite : out bit;
 DataFetch : out bit;
 Address : out unsigned (31 downto 0);
 data_in : in std_logic_vector(31 downto 0);
 data_out : out std_logic_vector(31 downto 0)
);
end mips_toplevel;
--

architecture mips_toplevel of mips_toplevel is

 component instreg is

 port(
 A : in std_logic_vector(31 downto 0);
 clk : in std_logic;
 IRWrite : in bit;
 IR : out unsigned(31 downto 0));

 end component instreg;

 component register_file is
 port(
 write_en : in bit;
 rd_reg1 : in unsigned (4 downto 0);
 rd_reg2 : in unsigned (4 downto 0);
 wr_reg : in unsigned (4 downto 0);
 data : in std_logic_vector(31 downto 0);
 reg1 : out std_logic_vector(31 downto 0);
 reg2 : out std_logic_vector(31 downto 0)
);
 end component register_file;

 component reg_32bit is

 port(
 a : in std_logic_vector(31 downto 0);
 clk : in std_logic;
 y : out std_logic_vector(31 downto 0));

 end component reg_32bit;

 49

component reg_32we is

 port(
 a : in std_logic_vector(31 downto 0);
 clk : in std_logic;
 write_en : in bit;
 reset : in bit;
 y : out std_logic_vector (31 downto 0));

 end component reg_32we;

 component fsm is
 port (
 clk : in std_logic;
 OP_Code : in unsigned (5 downto 0);
 ready : in bit;
 RegDst : out bit;
 ALUSrcA : out bit;
 ALUSrcB : out bit_vector (1 downto 0);
 MemtoReg : out bit;
 IorD : out bit;
 PCSource : out bit_vector (1 downto 0);
 ALUOp : out bit_vector (1 downto 0);
 RegWrite : out bit;
 MemRead : out bit;
 MemWrite : out bit;
 IRWrite : out bit;
 PCWrite : out bit);

 end component fsm;

 component extender is
 port(
 ext_in : in unsigned (15 downto 0);
 ext_out : out std_logic_vector(31 downto 0)
);
 end component extender;

 component alu_control is
 port(
 alu_op : in bit_vector (1 downto 0);
 func : in unsigned (5 downto 0);
 alu_control : out bit_vector (2 downto 0));
 end component alu_control;

 component alu is
 port (

 50

 a : in std_logic_vector (31 downto 0);
 b : in std_logic_vector (31 downto 0);
 alu_control : in bit_vector (2 downto 0);
 alu_result : out std_logic_vector (31 downto 0));
 end component alu;

component mux_m1 is
 port (

 s : in bit;
 d0 : in std_logic_vector (31 downto 0);
 d1 : in std_logic_vector (31 downto 0);
 y : out unsigned (31 downto 0));
 end component mux_m1;

 component mux_m2 is
 port (
 s : in bit;
 d0 : in unsigned (4 downto 0);
 d1 : in unsigned (4 downto 0);
 y : out unsigned (4 downto 0));
 end component mux_m2;

 component mux_m3 is
 port (
 s : in bit;
 d0 : in std_logic_vector (31 downto 0);
 d1 : in std_logic_vector (31 downto 0);
 y : out std_logic_vector (31 downto 0));
 end component mux_m3;

 component mux_m4 is
 port (
 s : in bit_vector (1 downto 0);
 d0 : in std_logic_vector (31 downto 0);
 d1 : in std_logic_vector (31 downto 0);
 d2 : in std_logic_vector (31 downto 0);
 d3 : in std_logic_vector (31 downto 0);
 y : out std_logic_vector (31 downto 0));
 end component mux_m4;

signal ir_out : unsigned(31 downto 0);
signal mux2_out : unsigned(4 downto 0);
signal mux3_out : std_logic_vector(31 downto 0);
signal mux6_out : std_logic_vector(31 downto 0);
signal mdr_out : std_logic_vector(31 downto 0);
signal extender_out : std_logic_vector(31 downto 0);
signal regfile_out1 : std_logic_vector(31 downto 0);
signal regfile_out2 : std_logic_vector(31 downto 0);
signal rega_out : std_logic_vector(31 downto 0);
signal regb_out : std_logic_vector(31 downto 0);

 51

signal pc_out : std_logic_vector(31 downto 0) ;
signal alu_in1 : std_logic_vector(31 downto 0);
signal alu_in2 : std_logic_vector(31 downto 0);
signal alu_out : std_logic_vector(31 downto 0);
signal regalu_out : std_logic_vector(31 downto 0);
signal fsm_pcwrite : bit;
signal fsm_iord : bit;
signal fsm_memtoreg : bit;
signal fsm_irwrite : bit;
signal fsm_alusrca : bit;
signal fsm_regwrite : bit;
signal fsm_regdst : bit;
signal fsm_aluop : bit_vector(1 downto 0);
signal fsm_alusrcb : bit_vector(1 downto 0);
signal fsm_pcsource : bit_vector(1 downto 0);
signal alu_control_out : bit_vector(2 downto 0);
signal mem_ready : bit;

begin

ir: component instreg
 port map (
 a => data_in,
 clk => clk,
 irwrite => fsm_irwrite,
 ir => ir_out);

mdr:component reg_32bit
 port map (
 a => data_in,
 clk => clk,
 y => mdr_out);

m2: component mux_m2
 port map(
 s => fsm_regdst,
 d0 => ir_out(20 downto 16),
 d1 => ir_out(15 downto 11),
 y => mux2_out);

m3: component mux_m3
 port map(
 s => fsm_memtoreg,
 d0 => regalu_out,
 d1 => mdr_out,
 y => mux3_out);

rf: component register_file
 port map(
 write_en => fsm_regwrite,
 rd_reg1 => ir_out(25 downto 21),

 52

 rd_reg2 => ir_out(20 downto 16),
 wr_reg => mux2_out,
 data => mux3_out,
 reg1 => regfile_out1,
 reg2 => regfile_out2);

ext: component extender
 port map (
 ext_in => ir_out(15 downto 0),
 ext_out => extender_out);

rega: component reg_32bit
 port map (
 a => regfile_out1,
 clk => clk,
 y => rega_out);

regb: component reg_32bit
 port map (
 a => regfile_out2,
 clk => clk,
 y => regb_out);

data_out <= regb_out;

m4: component mux_m4
 port map (
 s => fsm_alusrcb,
 d0 => regb_out,
 d1 => x"0000_0004",
 d2 => extender_out,
 d3 => x"0000_0000",
 y => alu_in2);

m5: component mux_m3
 port map (
 s => fsm_alusrca,
 d0 => pc_out,
 d1 => rega_out,
 y => alu_in1);

alc: component alu_control
 port map(
 alu_op => fsm_aluop,
 func => ir_out (5 downto 0),
 alu_control => alu_control_out);

al: component alu
 port map (
 a => alu_in1,
 b => alu_in2,
 alu_control => alu_control_out,

 53

 alu_result => alu_out);

regal: component reg_32bit
 port map (
 a => alu_out,
 clk => clk,
 y => regalu_out);

m6: component mux_m4
 port map (
 s => fsm_pcsource,
 d0 => alu_out,
 d1 => regalu_out,
 d2 => x"0000_0000",
 d3 => x"0000_0000",
 y => mux6_out);

pc: component reg_32we
 port map (
 a => mux6_out,
 clk => clk,
 reset => reset,
 write_en => fsm_pcwrite,
 y => pc_out);

m1: component mux_m1
 port map (
 s => fsm_iord,
 d0 => pc_out,
 d1 => regalu_out,
 y => address);

fs: component fsm
 port map (
 clk => clk,
 op_code => ir_out(31 downto 26),
 ready => ready,
 regdst => fsm_regdst,
 alusrca => fsm_alusrca,
 alusrcb => fsm_alusrcb,
 memtoreg => fsm_memtoreg,
 iord => fsm_iord,
 pcsource => fsm_pcsource,
 aluop => fsm_aluop,
 regwrite => fsm_regwrite,
 memread => memread,
 memwrite => memwrite,
 irwrite => fsm_irwrite,
 pcwrite => fsm_pcwrite);

 datafetch <= fsm_iord;

 54

 end mips_toplevel;

 55

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_bit.all;
--
entity mips_mem is

port (
address : in unsigned (31 downto 0);
clk : in std_logic;
data_in : in std_logic_vector (31 downto 0);
data_out : out std_logic_vector (31 downto 0);
burst : in bit;
ready : out bit;
MemWrite : in bit;
MemRead : in bit);
end entity mips_mem;

--

architecture a_mips_mem of mips_mem is

constant mem_size : natural := 65536;
constant access_time : delay_length := 200 ns;
constant access_time_burst : delay_length := 50 ns;
constant propagation_delay : delay_length := 2 ns;

begin

ram1: process is

constant high_address : natural := mem_size - 1;
type mem_array is array (natural range <>) of unsigned (31 downto 0);
variable ram : mem_array (0 to high_address/4)

:= (others => X"0000_0000");
variable address_byte, address_word : natural;
variable write_enable : boolean;

procedure program_load_proc is

begin
 ram(0) := "10001100110001110000000000101100";
 ram(1) := "10001100110001110000000000110000";
 ram(2) := "10001100110001110000000000110100";
 ram(3) := "10001100110001110000000000111000";
 ram(4) := "10001100110001110000000000111100";
 ram(5) := "10001100110001110000000001000000";
 ram(6) := "10001100110001110000000001000100";
 ram(7) := "10001100110001110000000001001000";
 ram(8) := "10001100110001110000000001001100";
 ram(9) := "10001100110001110000000001010000";
 ram(11) := "11111111111111111111111111111111";
 ram(12) := "00000000000000000000000000000001";

 56

 ram(13) := "00000000000000000000000000000011";
 ram(14) := "00000000000000000000000000000111";
 ram(15) := "00000000000000000000000000011111";
 ram(16) := "00000000000000000000000111111111";
 ram(17) := "00000000000000000111111111111111";
 ram(18) := "00000000000000111111111111111111";
 ram(19) := "00000000000000000000000000000001";

end program_load_proc;

procedure write_cycle_proc is
begin
ram(address_word) := unsigned (to_bitvector(data_in));
end write_cycle_proc;

procedure read_cycle_proc is
begin
data_out <= to_X01(bit_vector(ram(address_word)));
end read_cycle_proc;

begin

program_load_proc;

ready <= '0'after propagation_delay ;

loop

wait on clk until rising_edge(clk)and (MemWrite= '1' or MemRead ='1');

address_byte := to_integer(address);
write_enable := MemWrite ='1';
if address_byte <= high_address then
 address_word := address_byte/4;

 if write_enable then
 write_cycle_proc;
 wait for access_time;

 else
 wait for access_time;
 read_cycle_proc;
 end if;
 wait until rising_edge(clk);
 ready <= '1' after propagation_delay;
 wait until rising_edge(clk);
 ready <= '0' after propagation_delay;

 while burst = '1' loop
 address_word := address_word + 1;
 wait until rising_edge(clk);
 if write_enable then
 write_cycle_proc;

 57

 wait for access_time_burst;
 else
 wait for access_time_burst;
 read_cycle_proc;

 end if;
 wait until rising_edge(clk);
 ready <= '1' after propagation_delay;
 wait until rising_edge(clk);
 ready <= '0' after propagation_delay;
 end loop;

 end if;
 end loop;
end process ram1;

end a_mips_mem;
--

 58

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.numeric_bit.ALL;

entity mipswithmem is
 port(
 clk : in STD_LOGIC;
 reset : in bit;
 result : OUT STD_LOGIC_VECTOR(31 downto 0)
);

end entity mipswithmem;

architecture a_mipswithmem of mipswithmem is

 COMPONENT mips_toplevel is
 port(
 ready : in bit;
 clk : in STD_LOGIC;
 reset : in bit;
 MemRead : out bit;
 MemWrite : out bit;
 address : out unsigned (31 downto 0);
 data_in : in STD_LOGIC_VECTOR(31 downto 0);
 data_out : out STD_LOGIC_VECTOR(31 downto 0)
);
end COMPONENT mips_toplevel;

COMPONENT mips_mem is

port (
address : in unsigned (31 downto 0);

 clk : in std_logic;
 data_in : in std_logic_vector (31 downto 0);
 data_out: out std_logic_vector (31 downto 0);
 burst : in bit;
 ready : out bit;
 MemWrite: in bit;
 MemRead : in bit);
end COMPONENT mips_mem;

signal mem_ready_signal, write_signal, read_signal : bit;
signal address_signal : unsigned (31 downto 0);
signal data_in_signal, data_out_signal : std_logic_vector (31 downto 0);

begin

CPU: component mips_toplevel
 port map (

 59

 ready => mem_ready_signal,
 clk => clk,
 reset => reset,
 MemRead => read_signal,
 MemWrite => write_signal,
 address => address_signal,
 data_in => data_in_signal,
 data_out => data_out_signal
);

mem: component mips_mem

 port map (
 address => address_signal,
 clk => clk,
 data_in => data_out_signal,
 data_out => data_in_signal,
 burst => '0' ,
 ready => mem_ready_signal,
 MemWrite => write_signal,
 MemRead => read_signal);

end architecture a_mipswithmem;

 60

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.numeric_bit.all;
--
entity cache_mem is
 port(
 DataFetch : in bit;
 MemRd_in : in bit;
 Ready_in : in bit;
 Ready_out : out bit;
 clk : in std_logic;
 ad_in : in unsigned(31 downto 0);
 data_in : in STD_LOGIC_VECTOR(31 downto 0);
 burst : out bit;
 MemRd_out : out bit;
 data_out : out STD_LOGIC_VECTOR(31 downto 0);
 ad_out : out unsigned(31 downto 0)
);
end cache_mem;

--

architecture cache_mem of cache_mem is
begin
process is
 type cache_array is array (natural range <>) of STD_LOGIC_VECTOR (31
downto 0);
 variable cache_data : cache_array (0 to 9):= (others => X"0000_0000");
 type address_array is array (natural range <>) of unsigned (31 downto 0);
 variable cache_address : address_array (0 to 9):= (others =>
X"0000_0000");

 variable cache_valid_data : natural :=0;
 variable cache_index : natural;
 variable cache_access : boolean;

 procedure cache_load is
 variable address : unsigned (31 downto 0);

 begin
 MemRd_out <= MemRd_in;
 ad_out <= ad_in;
 address := ad_in;
 burst <= '1';
 Ready_out <= '0';
 for i in 1 to 9 loop
 wait until rising_edge(clk) and Ready_in = '1';
 cache_data(i) := data_in;
 cache_address(i) := address;
 address := address + 4;
 ad_out <= address;
 end loop;

 61

 cache_valid_data := 1;
 burst <= '0';
 data_out <= cache_data(1);
 wait until rising_edge(clk);
 Ready_out <= '1';
 wait until rising_edge(clk);
 Ready_out <= '0';

 end procedure cache_load;

begin
 Ready_out <= '0';
 loop
 wait until rising_edge(clk) and MemRd_in ='1';
 cache_access := DataFetch = '1' and MemRd_in = '1';
 if cache_access then
 if cache_valid_data = 0 then
 cache_load;
 else
 for i in 0 to 9 loop
 if cache_address(i) = ad_in then
 cache_index := i;
 end if;
 end loop;
 data_out <= cache_data(cache_index);
 wait until rising_edge(clk);
 Ready_out <= '1';
 wait until rising_edge(clk);
 Ready_out <= '0';
 end if;
 else
 ad_out <= ad_in;
 MemRd_out <= MemRd_in;
 Ready_out <= Ready_in;
 data_out <= data_in;
 burst <= '0';
 end if;
 end loop;

end process;

end cache_mem;

 62

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.numeric_bit.ALL;
--
entity mipswithcache is
 port(
 clk : in STD_LOGIC;
 reset : in bit;
 result : OUT STD_LOGIC_VECTOR(31 downto 0)
);

end mipswithcache;

architecture mipswithcache of mipswithcache is

component mips_toplevel is
 port(
 ready : in bit;
 clk : in STD_LOGIC;
 reset : in bit;
 MemRead : out bit;
 MemWrite : out bit;
 DataFetch : out bit;
 address : out unsigned (31 downto 0);
 data_in : in STD_LOGIC_VECTOR(31 downto 0);
 data_out : out STD_LOGIC_VECTOR(31 downto 0)
);
end component mips_toplevel;

component mips_mem is

 port (address : in unsigned (31 downto 0);
 clk : in std_logic;
 data_in : in std_logic_vector (31 downto 0);
 data_out : out std_logic_vector (31 downto 0);
 burst : in bit;
 ready : out bit;
 MemWrite : in bit;
 MemRead : in bit);
end component mips_mem;

component cache_mem is
 port(
 DataFetch : in bit;
 MemRd_in : in bit;
 Ready_in : in bit;
 Ready_out : out bit;
 clk : in std_logic;
 ad_in : in unsigned(31 downto 0);
 data_in : in STD_LOGIC_VECTOR(31 downto 0);

 63

 burst : out bit;
 MemRd_out : out bit;
 data_out : out STD_LOGIC_VECTOR(31 downto 0);
 ad_out : out unsigned(31 downto 0)
);
end component cache_mem;

signal cpu_data_out : STD_LOGIC_VECTOR(31 downto 0);
signal cpu_MemWrite_out : bit;
signal cpu_address_out : unsigned(31 downto 0);
signal cpu_MemRead_out : bit;
signal cpu_Ready_in : bit;
signal cpu_data_in : STD_LOGIC_VECTOR(31 downto 0);
signal cpu_DataFetch : bit;
signal cache_ad_out : unsigned(31 downto 0);
signal cache_MemRd_out : bit;
signal cache_Ready_in : bit;
signal cache_data_in : STD_LOGIC_VECTOR(31 downto 0);
signal cache_burst_out : bit;

begin

cpu: component mips_toplevel
 port map(
 ready => cpu_Ready_in,
 clk => clk ,
 reset => reset,
 MemRead => cpu_MemRead_out,
 MemWrite => cpu_MemWrite_out,
 DataFetch => cpu_DataFetch,
 address => cpu_address_out,
 data_in => cpu_data_in,
 data_out => cpu_data_out
);

mem: component mips_mem
 port map (
 address => cache_ad_out,
 clk => clk,
 data_in => cpu_data_out,
 data_out => cache_data_in,
 burst => cache_burst_out,
 ready => cache_Ready_in ,
 MemWrite => cpu_MemWrite_out,
 MemRead => cache_MemRd_out);

cac: component cache_mem
 port map(
 DataFetch => cpu_DataFetch,
 MemRd_in => cpu_MemRead_out,

 64

 Ready_in => cache_Ready_in,
 Ready_out => cpu_Ready_in,
 clk => clk,
 ad_in => cpu_address_out,
 data_in =>cache_data_in,
 burst => cache_burst_out,
 MemRd_out => cache_MemRd_out,
 data_out => cpu_data_in,
 ad_out => cache_ad_out
);

end mipswithcache;

 65

 66

 67

 68

 69

 70

 71

6. CONCLUSION

The designed 32-bit Processor is simulated with Main Memory and Cache Memory
included. The instruction area in the Main Memory is loaded with the program code
to be executed. Data area in the Main Memory is filled with following nine constants:
FF, 01, 03, 07, 1F, 1FF, 7FFF, 3FFFF and 01. Sequence of Instructions executed is
Load Word (lw) to load consecutive words in the data memory to Register number 8
in Register file.

Design is initialized with Reset input set to ‘1’. At 100 ns, Reset input is changed to
‘0’ and simulation is executed till 10 microseconds.

When the microprocessor and the memory are configured in the design and applied
all the inputs, the Microprocessor starts working by fetching the instructions stored in
the Memory and executing each instruction. The result is analyzed by monitoring the
output and the corresponding current state of the finite state control. In a lw
instruction ST4 of FSM correspond to the register write of result.

First the simulation is done with Processor and Main Memory connected together in
the design. After noting the resulted timing, during the next simulation Cache
Memory also is included in the design. Access time delay of 200ns and burst access
time delay of 50ns is set as the Memory variable during compilation. The below given
table illustrates the timing comparison of both the simulations.

Data
Fetched

from
Memory

Time at which the fetched
data is written to

microprocessor register
when Data Cache memory

excluded

Time at which the fetched
data is written to

microprocessor register
when Data Cache memory

included
FF 1150 ns 950 ns
01 2450 ns 2050 ns
03 3750 ns 3150 ns
07 5050 ns 4250 ns
1F 6350 ns 5350 ns
1FF 7650 ns 6450 ns

Thus it is concluded that the simulation is functioning as desired and there
is an improvement in the data access response when Data Cache is included
in the design.

 72

7. SCOPE FOR FURTHER IMPROVEMENT

In the present design a basic model of Cache Memory is developed for data
memory area only. The model developed can be further modified to handle
Cache misses. Moreover for Instruction Memory also Cache Memory can be
developed. Data path can be modified to handle jump instructions as well.
Once that is done, some sort of benchmarking program can be written and
executed in a loop to evaluate the overall Cache performance.

 73

8. REFERENCES

1. Hennessy. J, and D. Patterson. “Computer Organization and Design: The
hardware/software interface”, Morgan Kaufmann, 1998.

2. Bhaskar. J, “A VHDL Primer”, Pearson Education Asia, 1999.

3. Robert K Dueck, “Digital design with CPLD application and VHDL”, Thomson
Delmar Learning,2001.

4. Douglas Perry, “VHDL Programming by Example”, Tata McGraw Hill,2000.

5. Peter. J. Ashenden, “Designers guide to VHDL”, Morgan Kaufmann,2002.

6. Charles. H. Roth Jr. , “Digital Systems Design using VHDL” , Thomson
Learning , 2004

7. Home page of MIPS Technologies, Inc, www.mips.com

 74

	
	
	
	MANOJ K N
	UNDER THE GUIDANCE OF
	AND
	MRS. S. INDU
	CERTIFICATE
	Department of
	Electronics & Communication Engineering
	Delhi College of Engineering

	3.5 MIPS instruction format
	
	R-type
	
	
	I-type
	
	
	
	
	
	
	
	J TYPE

	ALUOp
	Function Field
	Desired ALU action
	Fig 3.3 The Combined control unit
	4. MEMORY

	library IEEE;
	use IEEE.STD_LOGIC_1164.all;
	use IEEE.numeric_bit.all;
	--
	entity cache_mem is
	 port(
	 DataFetch : in bit;
	 MemRd_in : in bit;
	 Ready_in : in bit;
	 Ready_out : out bit;
	 clk : in std_logic;
	 ad_in : in unsigned(31 downto 0);
	 data_in : in STD_LOGIC_VECTOR(31 downto 0);
	 burst : out bit;
	 MemRd_out : out bit;
	 data_out : out STD_LOGIC_VECTOR(31 downto 0);
	 ad_out : out unsigned(31 downto 0)
);
	end cache_mem;
	
	--
	
	architecture cache_mem of cache_mem is
	begin
	process is
	 type cache_array is array (natural range <>) of STD_LOGIC_VECTOR (31 downto 0);
	 variable cache_data : cache_array (0 to 9):= (others => X"0000_0000");
	 type address_array is array (natural range <>) of unsigned (31 downto 0);
	 variable cache_address : address_array (0 to 9):= (others => X"0000_0000");
	
	 variable cache_valid_data : natural :=0;
	 variable cache_index : natural;
	 variable cache_access : boolean;
	
	 procedure cache_load is
	 variable address : unsigned (31 downto 0);
	
	 begin
	 MemRd_out <= MemRd_in;
	 ad_out <= ad_in;
	 address := ad_in;
	 burst <= '1';
	 Ready_out <= '0';
	 for i in 1 to 9 loop
	 wait until rising_edge(clk) and Ready_in = '1';
	 cache_data(i) := data_in;
	 cache_address(i) := address;
	 address := address + 4;
	 ad_out <= address;
	 end loop;
	 cache_valid_data := 1;
	 burst <= '0';
	 data_out <= cache_data(1);
	 wait until rising_edge(clk);
	 Ready_out <= '1';
	 wait until rising_edge(clk);
	 Ready_out <= '0';
	
	 end procedure cache_load;
	
	
	begin
	 Ready_out <= '0';
	 loop
	 wait until rising_edge(clk) and MemRd_in ='1';
	 cache_access := DataFetch = '1' and MemRd_in = '1';
	 if cache_access then
	 if cache_valid_data = 0 then
	 cache_load;
	 else
	 for i in 0 to 9 loop
	 if cache_address(i) = ad_in then
	 cache_index := i;
	 end if;
	 end loop;
	 data_out <= cache_data(cache_index);
	 wait until rising_edge(clk);
	 Ready_out <= '1';
	 wait until rising_edge(clk);
	 Ready_out <= '0';
	 end if;
	 else
	 ad_out <= ad_in;
	 MemRd_out <= MemRd_in;
	 Ready_out <= Ready_in;
	 data_out <= data_in;
	 burst <= '0';
	 end if;
	 end loop;
	
	end process;
	
	
	
	end cache_mem;

	library IEEE;
	use IEEE.STD_LOGIC_1164.all;
	use IEEE.numeric_bit.ALL;
	--
	entity mipswithcache is
	 port(
	 clk : in STD_LOGIC;
	 reset : in bit;
	 result : OUT STD_LOGIC_VECTOR(31 downto 0)
);
	
	end mipswithcache;

	architecture mipswithcache of mipswithcache is
	
	component mips_toplevel is
	 port(
	 ready : in bit;
	 clk : in STD_LOGIC;
	 reset : in bit;
	 MemRead : out bit;
	 MemWrite : out bit;
	 DataFetch : out bit;
	 address : out unsigned (31 downto 0);
	 data_in : in STD_LOGIC_VECTOR(31 downto 0);
	 data_out : out STD_LOGIC_VECTOR(31 downto 0)
);
	end component mips_toplevel;
	
	component mips_mem is
	
	 port (address : in unsigned (31 downto 0);
	 clk : in std_logic;
	 data_in : in std_logic_vector (31 downto 0);
	 data_out : out std_logic_vector (31 downto 0);
	 burst : in bit;
	 ready : out bit;
	 MemWrite : in bit;
	 MemRead : in bit);
	end component mips_mem;
	
	component cache_mem is
	 port(
	 DataFetch : in bit;
	 MemRd_in : in bit;
	 Ready_in : in bit;
	 Ready_out : out bit;
	 clk : in std_logic;
	 ad_in : in unsigned(31 downto 0);
	 data_in : in STD_LOGIC_VECTOR(31 downto 0);
	 burst : out bit;
	 MemRd_out : out bit;
	 data_out : out STD_LOGIC_VECTOR(31 downto 0);
	 ad_out : out unsigned(31 downto 0)
);
	end component cache_mem;
	
	signal cpu_data_out : STD_LOGIC_VECTOR(31 downto 0);
	signal cpu_MemWrite_out : bit;
	signal cpu_address_out : unsigned(31 downto 0);
	signal cpu_MemRead_out : bit;
	signal cpu_Ready_in : bit;
	signal cpu_data_in : STD_LOGIC_VECTOR(31 downto 0);
	signal cpu_DataFetch : bit;
	signal cache_ad_out : unsigned(31 downto 0);
	signal cache_MemRd_out : bit;
	signal cache_Ready_in : bit;
	signal cache_data_in : STD_LOGIC_VECTOR(31 downto 0);
	signal cache_burst_out : bit;
	
	
	begin
	
	cpu: component mips_toplevel
	 port map(
	 ready => cpu_Ready_in,
	 clk => clk ,
	 reset => reset,
	 MemRead => cpu_MemRead_out,
	 MemWrite => cpu_MemWrite_out,
	 DataFetch => cpu_DataFetch,
	 address => cpu_address_out,
	 data_in => cpu_data_in,
	 data_out => cpu_data_out
);
	
	
	mem: component mips_mem
	 port map (
	 address => cache_ad_out,
	 clk => clk,
	 data_in => cpu_data_out,
	 data_out => cache_data_in,
	 burst => cache_burst_out,
	 ready => cache_Ready_in ,
	 MemWrite => cpu_MemWrite_out,
	 MemRead => cache_MemRd_out);
	
	
	cac: component cache_mem
	 port map(
	 DataFetch => cpu_DataFetch,
	 MemRd_in => cpu_MemRead_out,
	 Ready_in => cache_Ready_in,
	 Ready_out => cpu_Ready_in,
	 clk => clk,
	 ad_in => cpu_address_out,
	 data_in =>cache_data_in,
	 burst => cache_burst_out,
	 MemRd_out => cache_MemRd_out,
	 data_out => cpu_data_in,
	 ad_out => cache_ad_out
);
	
	end mipswithcache;
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 6. CONCLUSION
	
	The designed 32-bit Processor is simulated with Main Memory and Cache Memory included. The instruction area in the Main Memory is loaded with the program code to be executed. Data area in the Main Memory is filled with following nine constants:
	
	
	Thus it is concluded that the simulation is functioning as desired and there is an improvement in the data access response when Data Cache is included in the design.
	7. SCOPE FOR FURTHER IMPROVEMENT

	 8. REFERENCES

