wireless image transmission using turbo codes and optimal unequal error protection

a dissertation submitted in partial fulfillment of the requirements for the award of the degree of
master of engineering

in

electronics and communication engineering

Submitted By

Kumari Kalpana

Roll No.: 18/E&C/03

University Roll No. 2854

Under the guidance of
Mr. N. S. Raghava

Lecturer, E&C

Delhi College of Engineering

[image: image22.jpg]

Department of Electronics & Communication Engineering

Delhi College of Engineering

Delhi - 110042
 Certificate

It is certified that “Kumari Kalpana” student of Master of Engineering in Electronics and Communication Engineering, Delhi College of Engineering, has submitted the Dissertation titled “Wireless Image Transmission Using Turbo Codes and Optimal Unequal Error Protection” under my guidance towards partial fulfillment of the requirements for the award of the degree of Master of Engineering (Electronics and Communication Engineering).

She has studied Wireless Image Transmission Using Turbo Codes and optimal unequal error projection. Her work is found to be satisfactory and her discipline impeccable during the course of the project. Her enthusiasm, attitude and aptitude towards project are appreciated.

I wish her success in all her endeavors.

	Prof. Asok Bhattacharya

HOD

Dept. of Electronics
& Communication
Delhi College of Engineering

Delhi – 110042
	Mr. N. S. Raghava

Lecturer

Dept. of Electronics
& Communication
Delhi College of Engineering

Delhi - 110042

ACKNOWLEDGEMENT
I wish to express my deep sense of gratitude to my guide,Mr.N.S.Raghava Lecturer in Electronics and Communication Department, Delhi College of Engineering, for his persisting encouragement, excellent guidance and fruitful discussion with valuable suggestions throughout the work.

I am grateful to Dr. Asok Bhattacharya, Head and Professor of Electronics and Communication Engineering Department, Delhi College of Engineering Who has given me an opportunity to take up this project but also encourage a lot.

Finally acknowledgements are to all those who have directly or indirectly helped me in efficient completion of this project.

 KUMARI KALPANA

 M.E.(E&C)

TABLE OF CONTENTS

CERTIFICATE---I

ACKNOWLEDGEMENT---II

TABLE OF CONTENTS---III

PREFACE--1

1 CODING THEORY--2

1.1 TURBO CODES---2

1.2 ENCODING OF TURBO CODES--3

1.2.1 SCBC---3

1.2.2 SCCC--4

1.2.3 PCBC--4

1.2.4 PCCC--5

1.3 REED - SOLOMON CODES---7

1.4 CYCLIC REDUNDANCY CHECK CODES--------------------------------------- 8

2 DIGITAL IMAGE PROCESSING--9

2.1 INTRODUCTION---9

2.2 COORDINATE CONVENTIONS---9

2.3 IMAGE TYPES--9

2.3.1 INTENSITY IMAGE---10

2.3.2 BINARY IMAGE---10

2.3.3 INDEXED IMAGE---10

2.4 INTENSITY TRANSFORMATION AND SPATIAL FILTERING-------------11

2.4.1 LINEAR SPATIAL FILTERING---12

2.4.2 NON LINEAR SPATIAL FILTERING---12

2.5 WAVELETS---12

2.6 IMAGE COMPRESSION---13

2.7 IMAGE RESTORATION---14

3 EMBEDDED IMAGE CODING USING ZEROTREES OF WAVELET

COEFFICIENT---15

3.1 INTRODUCTION---15

3.2 EMBEDDED ZEROTREE CODER--15

3.3 DISCRETE WAVELET TRANSFORM---16

3.4 ZEROTREE OF WAVELET COEFFICIENT---------------------------------------17

3.5 THE DATA STRUCTURE: ZEROTREES--18

3.6 SUCCESSIVE APPROXIMATION---19
3.7 EXAMPLE--20

4 IMAGE CODEC BASED ON SPIHT--26

 4.1 SPIHT PROGRESSIVE TRANSMISSION--------------------------------- -- -----26
 4.2 TRANSMISSION OF THE COEFFICIENT VALUES---------------- --- - ------ 26

 4.3 SET PARTITIONING SORTING ALGORITHM------------------------------ - ---27

 4.4 SPATIAL ORIENTATION TREES--- ----28

 4.5 CODING ALGORITHM-- ----29

 4.6 DECODING--- -----34

5 WIRELESS IMAGE TRANSMISSION USING TURBO CODES---------------- - -36

 5.1 ERROR RESILIENT CODING USING TURBO CODES------------------------36

 5.2 FAST CHANNEL RATE ALLOCATION--38

 5.3 SUCCESSIVE DECODING OF PRODUCT CODES------------------------------42

6 MATLAB AND IMAGE PROCESSING TOOLBOX------------------------------- - -44

 6.1 INTRODUCTION--44

 6.2 THE MATLAB SYSTEM--45

 6.3 IMAGE INPUT AND OUTPUT DISPLAY---46

 6.4 MODULAR INTERACTIVE TOOLS---48

 6.5 SPATIAL TRANSFORMATION AND REGISTRATION -----------------------49

 6.6 IMAGE ANALYSIS AND STATISTICS--50

 6.7 IMAGE ENHANCEMENT AND RESTORATION--------------------------------51

 6.8 LINEAR FILTERING AND TRANSFORM---52

 6.9 MORPHOLOGICAL OPERATIONS---53

 6.10 STREL CREATION AND MANIPULATION-------------------------------------55

 6.11 REGION-BASED, NEIGHBORHOOD, AND BLOCK PROCESSING------55

 6.12 SOFTWARE--56

 CONCLUSION---84

SCOPE OF FURTHER STUDY--85

REFERENCES---V
PREFACE

INTRODUCTION

Image transmission scheme is proposed for communication of SPIHT image stream over wireless channels. To deal effectively with burst errors, scheme employs Turbo Codes and Reed-Solomon codes. An algorithm for the optimal unequal error protection of the compressed bit stream is also proposed and applied for product code decoding.

EZW algorithm of image compression has the property that it generates a fully embedded code. The embedded code represents a sequence of binary decisions that distinguish an image from the “null” image. Using this algorithm, an encoder can terminate encoding at any point to met exactly the target rate or target distortion metric. Also, given a bit stream the decoder can cease the decoding at any point in the bit stream and produce exactly the same image that would have been encoded at the bit rate corresponding to the truncated bit stream.

SPIHT, an alternative explanation of the principles of operation of EZW coding technique for image compression. These principles are partial ordering by the magnitude with a set partitioning sorting algorithm, ordered bit plane transmission, and exploitation of self similarity across different scales of an image wavelet transform.

 1. CODING THEORY
1.1. TURBO CODES
Turbo codes are a special class of concatenated code, where an inter leaver is employed between two parallel or serial encoders.

A concatenated code consists of two codes, an inner code and outer code connected serially as shown in figure below:

[image: image1.jpg]

[image: image20.wmf](

)

(

)

(

)

(

)

01

2

.1.1.

B

B

N

dkdLBN

k

DDPDPkPND

-

=

=++-

å

[image: image21.wmf](

)

(

)

(

)

(

)

01

2

.1.1.

B

B

N

dkdLBN

k

DDPDPkPND

-

=

=++-

å

Input Data

Output data

Figure 1.1

The inner code is a binary block or convolution code and the outer code is typically a R-S code. The rate of the concatenated codes Rec = Re. rc where Re is the rate of outer R-S code and rc is the rate of inner code.

The minimum distance of a concatenated code is the product of the minimum distances of the inner and outer codes. In concatenated codes, the performance of the code has a major impact on the overall performance of the code. Hence, convolutional codes with soft decoding using the Viterbi algorithm are employed for inner codes. The invention of turbo-codes has been an unprecedented event in the field of communication. The design of these codes did not consist of optimizing some given criterion, as usual, but was the result of an experimental process where simulation is used in order to jointly adjust several parameters so as to optimize the final target, namely, the bit error rate (BER). The outstanding performance they achieve, theoretical limit (i.e., the channel capacity) then ever reported raised a wide curiosity and started an explosion in coding literature since 1993.

1.2.ENCODING OF TURBO-CODES

It can be achieved by the following methods.

1.Serially concatenated Block Code (SCBC)

2.Parallel concatenated Block Code (PCBC)

3.Serially concatenated Convolutional Code (SCCC)

 4.Parallel concatenated Convolutional Code (PCCC)

1.2.1.SERIALLY CONCATENATED BLOCK CODE (SCBC)

The scheme of two serially concatenated blocks is shown in figure below. It is composed of two cascaded CC’s, the outer (p, k) code C0 with rate R0c = k/p and the inner (n, p) code Ci with Ric = p/n linked by an interleaver of length N = mp that is an integer multiple of the length p of the outer codewords. The scheme words are as follows: the mp bits of a number m of codeword of the outer code are written into the interleaver of length N = mp, and read in different order according to permutation performed by the interleaver is then sent in blocks of length p to inner encoder.

Outer code Innercode

 Fig.1.2.1

Serially concatenated (n, k, N = mp) block code
The overall SCBC is then an (n, k) coke with rate

 Rsc = R0c X Ric = k/n

and refer to it as the (n, k, N =mp) code Cs
1.2.2 SERIALLY CONCATENATED CONVOLUTIONAL CODE (SCCC)

The structure of a serially concatenated convolutional code is shown in figure below.

 R0c=k/p Ric = p/n

 Fig.1.2.2 Serially Concatenated (n, k, N) Convolutional Code

It refers to the ease of two convolutional codes the outer code C0 with rateR0c=k/p and inner code Ci with rate Ric = p/n, joined by an interleaver of length N Bits, generating an SCCC Cs with rate Rsc = k/n. N will of p. It has been assumed, as before that the convolutional CC’s are linear, so that the SCCC is linear as well and the uniform error property applies.

1.2.3. PARALLEL CONCATENATED BLOCK CODE (PCBC)

Consider now a parallel-concatenated block (PCBC). Two linear systematic block codes C1 with parameters (n1, k) and C2 with parameters (n2, k), the constituent codes (CC) having in common the length k of the input information bits, are linked through an interleaver so that the information part of the second codeword is just a permuted version of the first one. The PCBC code word is then forwarded by adding to the input bits the parity-check bits generated by the first and second encoder. The PCBC that it denoted as Cp is then a (n1 + n2-k, k) linear code as the interleaver performs a linear operation on the input bits. Encoder structure of a PCCC is shown below in figure below.3.2.3.If w is the (Hamming) weight of the input word, and z1 and z2th weights of the parity-check bits introduced by the first and codeword of Cp will be w + z1 + z2. For a given interleaver, this generated by the second encoder will not have been permuted by the interleaver. The only viable solution, in theory, would be an exhaustive enumeration of all possible cases; in practice, this was precisely the reason for lengthy computer simulations.

To overcome this difficulty, an abstract interleaver called uniform interleaver, defined as follows is used. A uniform interleaver of length k is a probabilistic, which maps a given input word of weight w into distinct (k/w) permutations of it with equal probability 1/(k/w).

Fig.1.2.3 Encoder structure of a PCBC
 Cp- (n1 + n2 – k, k)

 Systematic code

 C1(n1, k)

 Systematic code C 2(n2, k)

1.2.4PARALLEL CONCATENATED CONVOLUTIONAL CODES

The first applications of parallel-concatenated coding schemes used Convolutional codes as constituent codes. The resulting codes have been named as turbo codes, and the main reason for their successful implementation resides in the availability of efficient algorithms for soft iterative decoding. A block diagram showing how they work is presented below in the figure 3.2.4 the behavior is similar to that of a PCBC, the main difference being the fact that now the interleaver of length N contain an integer number of input words, since the input sequences are infinite in length

 X

 X y1
 Rate 1/3 PCCC

 Rate1/3 systematic

 Convolutional encoders

 Y2

Fig1.2.4

Thus it is concluded that: “Turbo-codes” consists of an outer encoder, an interleaver permuting the outercodewords bits, and an inner encoder whose input words are the permuted outer codewords. It has been shown that the interleaver gain, defined as the factor that decreases the bit error probability as a function of the interleaver size, can be made significantly higher than for turbo codes Improving turbo codes could be possible by using longer constraint length PRR Convolutional codes as component codes, together with pseudorandom interleaving. Than a weight distribution arbitrarily close to that of random coding could be obtained by combining as many codes as needed. And hence a BER as small as desired at an information rate arbitrarily close to the channel capacity.

Decoding should be performed by a logarithm of complexity independent of the constraint length, like replication decoding, it should, moreover, be iterated so as to compensate for the use of a small number of replicas (in order to limit complexity), but decoding turbo codes already needs iteration.

Unequal error protection can be achieved with turbo codes. The overhead is also minimal. This allows turbo codes to be used in the transmission of compressed images or speech. Mobile satellite channels are another possible application due to the good performance to turbo codes over fading channels.

1.3 REED-SOLOMON (R-S) CODES

R-S codes are an important class of non-binary BCH codes. It is different from a binary coder in that an (n, k) R-S encoder operates on multiple bits rather than individual bits.The incoming data stream bits are grouped into a block of m symbols of block lengths n = 2m –1 symbols. Each block is treated as k symbols with each symbol having m bits. The encoding algorithm expands a block of k symbols to n symbols by adding (n-k) parity redundant symbols. If m is an integer power of ‘2’, the m-bit symbols are called bytes.

A ‘t’ error correcting R-S code has the following code parameters. Block length, n = 2m –1 symbols

Message bits, k symbols

Parity bits, (n-k) = 2t symbols.

Minimum distance, dmin = 2t + 1 symbols.

It may be noted, “no (n, k) code can have a minimum Hamming distance greater than (n – k +1)”. An (n, k) linear block code for which the minimum Hamming distance is(n –k +1) is called as maximum distance separable code. Accordingly, every R-S code is a maximum distance separable code. Hence R-S codes are particularly useful in situations where errors tend to happen in ‘bursts’ rather than randomly.

1.4 CYCLIC REDUNDANCY CHECK CODE

It is most widely used cyclic code for error detection in conjunction with other coding schemes that provides error correction facility. It uses polynomial codes. A bit string as a polynomial in which the ith bit is ON for an x item in the polynomial is taken than a magic polynomial C (x), known as CRC polynomial is picked an transmit a bit string again a polynomial that is divisible by C (x). The CRC polynomial C (x) is a function of the information polynomial d (x), defined in terms of generator polynomial g(x).

CRC codes are capable of detecting

All error bursts of lengths (n –k) or less,

All combination of dmin –1 (or fewer) errors,

All error patterns with an odd number of errors if g (x) has an even number of non-zero coefficients and a fraction of error bursts of lengths (n – k + 1). I.e., If g (x) is selected to be primitive polynomial with degree N = n – k, then it will detect all double errors as long as the total codeword length does not exceed 2n-k –1.

2. DIGITAL IMAGE PROCESSING
2.1 INTRODUCTION
An image may be defined as a two dimensional function f (x, y), where x and y are spatialCoordinates, and the amplitude of f at any pair (x, y) are called the intensity or gray level of the image at that point. When x, y, and the amplitude values of f are all finite, discrete quantity, we call the image a digital image. Color images are formed by a combination of individual 2D images. In the RGB color system, a color image consists of 3 individual (Red, Green and Blue) component image. An image may be continuous with respect to x- and y- co-ordinates and also in amplitude. Converting such an image to digital form requires that the coordinates as well as the amplitude, be digitized. Digitizing the coordinate values is called sampling; digitizing the amplitude values is called quantization. Thus when x, y, and the amplitude values of f are all finite, discrete quantities, the image is called a digital image.

2.2 COORDINATE CONVENTIONS

The result of sampling and quantization is a matrix of real numbers. Assume that an image f (x, y) is sampled so that the resulting image has M rows and N columns. The image is said to be of size M x N. The values of the coordinates (x, y) are discrete quantities. The coordinate convention used in the toolbox to arrays is the notation (r, c) to indicate rows and columns, x range from 0 to M-1 and y from 0 to N-1, in integer increments.

2.3 IMAGE TYPES

There are four types of images:

· Intensity images

· Binary images

· Indexed images

· RGB images

2.3.1 Intensity images

An intensity image is a data matrix whose values have been scaled to represent intensities. When the elements of an intensity image are of class unit 8 or class Unit16, they have integer values in the range [0,255] and [0,65535], respectively. If the image is of class double, the values are floating-point numbers. Values of scaled, class double intensity images are in the range [0,1] by convention.

2.3.2 Binary images

 Binary image is a logical array of 0s and 1s. Thus, an array of 0s and 1s whose values are of data class, say, unit8, is not considered a binary image in MATLAB. A numeric array is converted to binary using function logical.

 B= logical (A)
2.3.3 Indexed images
An indexed image has two components: a data matrix of integers, X, and a color map matrix, map. Matrix map is an m x 3 arrays of class double containing floating-point values in the range [0,1]. The length, m, of the map is equal to the number of colors it defines. Each row of map specifies the red, green and blue components of a single color. An indexed image uses “direct mapping” of pixel intensity values to color map values. The color of each pixel is determined by using the corresponding value of integer matrix X as a pointer into map. If X is of class double, then all of its components with values less than or equal to 1 point to the first row in map, all components with value2 points to second row and so on. If X is of class unit8 or unit16, then all components with value 0 points to the first row in map, all components with value1 point to second row and so on. 2.3.4 RGB Images

An RGB color image is an M X N X 3 array of color pixels, where each color pixel is a triplet corresponding to the red, green and blue components of an RGB image at a specific spatial location. An RGB image may be viewed as a “stack” of three gray scale images that, when fed into the red, green, and blue inputs of a color monitor, produce a color image on the screen. If an RGB image is of class double, the range of values is [0,1] similarly the range of values is [0,255] or [0,65535] for RGB images of class unit8 or unit16, respectively. The number of bits used to represent the pixel values of the component image determines the bit depth of an RGB image. For example if each component image is an 8bit image the corresponding RGB image is said to be 24bits deep.

2.4 INTENSITY TRANSFORMATION AND SPATIAL FILTERING

The term partial domain refers to the image plane itself. Spatial domain processing:

Intensity (or gray level) transformation and spatial filtering. Spatial filtering is refer to as neighborhood processing, or spatial convolution.

Spatial domain technique operates directly on the pixels of an image. Spatial domain processes are denoted by the expression g (x, y)=T [f (x, y)] where f (x, y) is input image, g (x, y) is the output image and T is an operator on f, defined over a specified neighborhood about point (x, y). Spatial filtering or neighborhood processing consists of

(1) Defining a center point, (x, y);(2) performing an operation that involves only the pixel in a predefined neighborhood about that center point (3) letting the result of that operation be the “response” of the process at that point; and (4) repeating the process for every point in the image. If the computations perform on the pixel of neighborhoods are linear, the operation is called linear spatial filtering (spatial convolution);otherwise it is called nonlinear spatial filtering.

2.4.1 Linear spatial filtering

The concept of linear filtering use the Fourier transform of signal processing in the frequency domain. The term linear spatial filtering is different process from frequency domain filtering. The linear operation consists of multiplying each pixel in the neighborhood by a corresponding coefficient and summing the result to obtain the response at each point (x, y). If the neighborhood is of size m x n, mn coefficient are required. The coefficients are arranged as a matrix called a filter, mask, filter mask, kernel, template, or window.

2.4.2 Nonlinear spatial filtering

Nonlinear spatial filtering is based on neighborhood operations also and the mechanics of defining m x n neighborhoods by sliding the center point through an image. Linear spatial filtering is based on computing the sum of product but nonlinear spatial filtering is based on nonlinear operations involving the pixels of a neighborhood. For example, letting the response at each center point be equal to the maximum pixel value in its neighborhood is a nonlinear filtering operation. The concept of a mask is not as prevalent as in linear processing.

2.5 WAVELETS

When digital images are to be viewed or processed at multiple resolutions, the discrete wavelet transform (DWT) is mathematical tool of choice. In addition to being an efficient, highly intuitive framework for the representation and storage of multiresolution images, the DWT provides powerful insight into an image’s spatial and frequency attributes. Consider an image f (x, y) of size M X N whose forward, discrete transform,

T (u, v…), can be expressed in terms of the general relation

 T (u, v…) = (f (x, y) gu,v,….(x,y) where x and y are spatial variables and u, v, ….are transform domain variables. Given T (u, v…), f (x, y) can be obtained using generalized inverse discrete transform

f (x, y) = (T (u, v…)hu,v,…(x, y)

 u,v,..

The gu,v,… and hu,v,… in these equations are called forward and inverse transformation kernels, respectively. They determine the nature, computational complexity, and ultimate usefulness of the transform pair. Transform coefficients T (u, v…) can be viewed as the expansion coefficients of a series expansion of f with respect to {hu,v,…}. That is, the inverse transformation kernel defines a set of expansion functions for the series expansion of f. discrete wavelet transform refers to a class of transformation that differ not only in the transformation kernels employed, but also in the fundamental nature of those functions and in the way in which they are applied.

2.6 IMAGE COMPRESSION

Image compression addresses the problem of reducing the amount of data required to represent a digital image. Compression is achieved by the removal of one or more of three basic data redundancies: (1) coding redundancy, which is present when less than optimal (i.e., the smallest length) code words are used; (2) interpixel redundancy, which results from correlations between the pixels of an image; and/or (3) psycho visual redundancy, which is due to data that is ignored by the human visual system (i.e., visually nonessential information). Image compression systems are composed of two distinct structural blocks: an encoder and a decoder. Image f (x, y) is fed into the encoder, which creates a set of symbols from the input data and uses them to represent the image. Let n1 and n2 denote the number of information carrying units (usually bits) in the original and encoded images, respectively, the compression that is achieved can be quantified numerically via the compression ratio

 CR = n1/n2

A compression ratio like 10(or 10:1) indicates that the original image has 10 information carrying units (e.g., bits) for every 1 unit in the compressed data set.

2.7 IMAGE RESTORATION

 The objective of restoration is to improve a given image in some predefined sense. Restoration attempts to reconstruct or recover an image that has been degraded by using a prior knowledge of the degradation phenomenon. Thus restoration techniques are oriented toward modeling the degradation and applying the inverse process in order to recover the original image.

This approach usually involves formulating a criterion of goodness that yields an optimal estimate of the desired result. By contrast, enhancement techniques basically are heuristic procedures designed to manipulate an image in order to take an advantage of the psychophysical aspects of the human visual system. Removal of image blur by applying a deblurring function is considered a restoration technique.

3 EMBEDDED IMAGE CODING USING ZEROTREES OF WAVELET

COEFFICIENT

 3.1 INTRODUCTION

 The embedded zerotree wavelet algorithm (EZW) is a simple, yet remarkably effective, image compression algorithm, having the property the bits in the bit stream are generated in order of importance, yielding a fully embedded code. The embedded code represents a sequence of binary decisions that distinguish an image from the "null" image. Using an embedded coding algorithm, an encoder can terminate the encoding at any point thereby allowing a target rate or target distortion matric to be met exactly. Also, given a bit stream and still produce exactly the same image that would have been encoded at the bit rate corresponding to the truncated bit stream. In addition to producing a fully embedded stream, EZW consistently produces compression results that are competitive with virtually all known compression algorithms on standard test images. Yet this performance is achieved with a technique that requires absolutely no training, no pre-stored tables or codebooks, and requires no prior knowledge of the image source.

The EZW algorithm is based on four key concepts

(1) A discrete wavelet transform or hierarchical subband decomposition, (2) prediction of the absence of significant information across scales by exploiting the self-similarity inherent in images,

(3) Entropy-coded successive-approximate quantization, and

(4) Universal loss less data compression, which is achieved via adaptive arithmetic coding.
3.2 EMBEDDED ZEROTREE CODER

The bits in the bit stream are generated in order of importance, yielding a fully embedded code.The embedded code represented a sequence of binary decisions that distinguish an image from the null image.The encoder can terminate the encoding at any point, allowing a target rate or distortion metric to be met exactly.The compression results are competitive with most of other compression algorithms.
Features:
(i) A discrete wavelet transforms;

(ii) Prediction of absence of significant information across scales;
(iii) Entropy-coded successive-approximate quantization;
(iv) Use of adaptive arithmetic coding

3.3 Discrete Wavelet Transform

The anomalies are well localized in time or space domain. Trends are well localized in frequency domain (periodical component), persist over a large of sample in time domain.
Wavelets provide a signal representation in which some of the coefficients represent long data lags (low frequency range) and other represent short data lags, corresponding to wide band, high frequency range. Hierarchical subband system, subband are logarithmically spaced in frequency.
First the image is divided into four subbands and critically subsampled: LL1, LH1, HL1 and HH1, by performing low pass and high pass filtering separately on horizontal and vertical directionEach coefficient represents a spatial area of 2 X 2 pixels in the original image. The low frequency represent a band (0, (/2), while the high frequency represent the band from ((/2. pi).The process is repeated starting form the subband ll1, to obtain a coarser representation of the image. At a coarser scale the coefficient represent a large spatial area of the image, but a narrower band of frequencies.
The connection between the coefficients and the pixels of the original image is liners. Arranging both of them in two vector, X and x

X=wx

Where W is matrix of the linear transformation (on its rows are the coefficients of the filters)

The filters used are not too long (e.g symmetrical 9-tap QMF) are used to obtain a so-called QMF pyramid. They have good localization properties, their symmetry allows for simple edge treatment.
Most importantly, the transformation matrix obtained for a discrete wavelet transform using these filters is close to unitary. Therefore
((X((2 = ((x((2 or (iXi2=(ixi2
3.4 ZERO TREE OF WAVELET COEFFICIENT

First observation: we deal with low bit rate coding (under 1 bits/pixel, usually 0.5 or 0.25 or even 0.125, i.e. compression of 8:1, 16:1, 32:1, 64:1)
We finally transmit only (allocate bits for) the coefficient with large magnitudes. Therefore we need to transmit also the location of those coefficients. A quite large amount of the bit budget is spent with sending the significance map (a decision whether a coefficient is zero or nonzero). The zero trees represent an efficient way of transmitting this information.
Total Cost = Cost Of Significance Map + Cost Of Nonzero Values
Denote p the probability that a cost coefficient is quantized to zero.

H=-p log2 p-(1-p) log2 (1-p)+(1-p)(1+HNZ)

HNZ is the conditional entropy of the absolute values of the quantized coefficients (conditioned on them being nonzero)

If we have the target 0.5 bits/pixel, H=0.5. the extreme case is to quantize a nonzero coefficient with 4 bit (16 possible levels) makes necessary to set the probability of zero to p=0.954 (i.e. 95.4% of all coefficient have to be set to zero, and transmit values only for 4.6% coefficients). The cost of the significance map is about 54% of the whole bit budget.
3.5 THE DATA STRUCTURE: ZERO TREES

 A wavelet coefficient Xi is insignificant with respect to a threshold T if |Xi|<T
Hypothesis: if a wavelet coefficient at a coarse scale is insignificant with respect to a given threshold t, then all wavelet coefficient of the same orientation in the same spatial location at finer scales are likely to be insignificant with respect to T.
Every coefficient at a given scale can be related to a set of coefficient at the next finer scale of similar orientation. The coefficient at the courser scale is called parent, and all coefficients corresponding to the same spatial location at the finer scales of similar orientation are called children. For a given parent, the set of coefficient at all finer scales of similar orientation corresponding to the same location are called descendants.
The scanning of the coefficients is performed in such way that no child node is scanned before its parent. For a N-scale transform, the scan beings at the lowest frequency subband, denoted LLN, and scans subbands HLN, LHN, HHN, at which point it moves to the scale N1.
3.6 SUCCESSIVE APPROXIMATION

Zero trees are very efficient to encode the significance map of wavelet coefficient. Using them produces a shorter code than the first order entropy or a run-length coding of the significance map.
By using successive approximation (or successive-refinement) we will encode many significance maps, by using always zerotrees.
The second reason for using successive approximation is to develop an embedded code analogous with the binary representation of a real number. Successive-approximation quantization (SAQ) applies a sequence of thresholds T0,T1, T2,.....TN-1 to determine significance, where thresholds are chosen such that TN+1=T n/2. The initial threshold is chosen such that T0 < max Xj <2T0.
During encoding two separate list of wavelet coefficient are maintained.The dominant list contains the coordinate of those coefficients that have not been found yet to be significant (in the same relative order as the original scan).The subordinate list contains the magnitudes of the coefficient that have been found to be significant. For each threshold the list is scanned once.Given a threshold T (with respect to which we determine whether or not a coefficient is significant or not) we have the following definition.A coefficient is said to be an element of a zero tree if
itself and all of its descendants are insignificant with respect to T.A coefficient is said to be the root of a zero tree if it is an element in a zero tree and it is not a descendant of a previously found zero tree roots for the threshold T.A coefficient is a isolated zero, if it is not a zero tree root, but it is insignificant, w.r.t. T.A coefficient is positive significant if it is larger than T.A coefficient is negative significant if it is smaller than T.Therefore we use 4 symbols: zero tree root (zr), isolated zero (iz), positive significant (ps) or negative significant (ns).The finer scale of coefficient is encoded only using tow symbols (they have no descendants).
During a dominant pass the coefficient with coordinates in the dominant list are compared with the threshold Ti, and if they are significant, we also encode their sigh. The significance map is encoded using the zero tree method. When a coefficient is found significant, it is removed form the dominant list and its magnitude is appended to the subordinate list, meanwhile it magnitude in the wavelet transform array is set to zero so the significant coefficient does not prevent the occurrence of a zero tree on future dominant passes.
A subordinate pass in which all coefficients in the subordinate list are scanned and one more bit of precision refines the available magnitude follows a dominant pass. The Process continues to alternate between dominant passes and subordinate passes.
In the decoding process each decoded symbol, both during the dominant and the subordinate pass, refines and reduces the uncertainty interval in which the true value of the coefficient may occur.
. EXAMPLE

In this section, a simple example will be used to high​light the order of operations used in the EZW algorithm. Only the string of symbols will be shown. Consider the simple 3-scale wavelet trans​form of an 8 x 8 image. Since the larger coefficient magnitude is 63, we can choose our initial threshold to be anywhere in (31.5, 63]. Let T0 = 32. Table I shows the processing on the first dominant pass. The following comments refer to Ta​ble I:

 The coefficient has magnitude 63, which is greater than the threshold 32, and is positive so a positive symbol is generated. After decoding this symbol, the decoder knows the coefficient in the interval [32, 64) whose center is 48.

Even though the coefficient 31 is insignificant with respect to the threshold 32, it has a significant descendant two generations down in subband LH 1 with magnitude 47. Thus, the symbol for an isolated zero is generated.

The magnitude 23 is less than 32 and all descen​dants, which include (3, -12, -14, 8) in sub-band HH2 and all coefficients in subband HH I are insignificant. A zero-tree symbol is generated, and no symbol will be generated for any coefficient in subbands HH2 and HH1 during the current dominant pass.

The magnitude 10 is less than 32 and all descen​dants (-12, 7, 6, 1) also have magnitudes less than 32. Thus a zero tree symbol is generated. Notice that this tree has a violation of the “decaying spectrum” hypothesis since a coefficient (-12) in subband HLl has a magnitude greater than its parent (10). Nevertheless, the entire tree has magnitude less than the threshold 32. so it is still a zerotree.

The magnitude 14 is insignificant with respect to 32. Its children are (-1, 47, -3, 2). Since its child with mag​nitude 47 is significant, an isolated zero symbol is gen​erated. Note that no symbols were generated from subband HH2 which would ordinarily proceed subband HL1 in the scan. Also note that since subband HLl has no descen​dants, the entropy coding can resume using a 3-symbol alphabet where the IZ and ZTR symbol are merged into the Z (zero) symbol.

	63
	-34
	49
	10
	7
	13
	-12
	7

	-31
	23
	14
	-13
	3
	4
	6
	-1

	15
	14
	3
	-12
	5
	-7
	3
	9

	-9
	-7
	-14
	8
	4
	-2
	3
	2

	-5
	9
	-1
	47
	4
	6
	-2
	2

	3
	0
	-3
	2
	3
	-2
	0
	4

	2
	-3
	6
	-4
	3
	6
	3
	6

	5
	11
	5
	6
	0
	3
	-4
	4

 Fig Example of 3-scale wavelet transform of an 8 x 8 image

.The magnitude 47 is significant with respect to 32. Note that for the future dominant passes, this position will be replaced with the value 0, So that for the next dominant pass at threshold 16, the parent of this coefficient, which has magnitude 14, can be coded using a zero tree root symbol.During the first dominant pass, which used a threshold of 32, four significant coefficients were identified. These coefficients will refined during the first subordinate pass. Prior to the first subordinate pass, the uncertainty interval for the magnitudes of all of the significant coef​ficients is the interval [32, 64). The first subordinate pass will refine these magnitudes and identify them as being either in interval 132, 48), which will be encoded with the symbol “0,” or in the interval [48, 64), which will be encoded with the symbol “1.~’ Thus, the decision bound​ary is the magnitude 48. It is no coincidence that these symbols are exact

TABLE I PROCESSING OF FIRST DOMINANT PASS AT THRESHOLD T = 32. SYMBOL ARE POS FOR POSITIVE SIGNIFICANT, NEG FOR NEGATIVE SIGNIFICANT, IZ FOR ISOLATED ZERO, ZTR FOR

ZEROTREE ROOT, AND Z FOR A ZERO WHEN THERE ARE NO CHILDREN. THE RECONSTRUCTION MAGNITUDES ARE TAKEN AS THE CENTER OF THE UNCERTAINTY INTERVAL

	Comment
	Subband
	Coefficient
Value
	Symbol
	Reconstruction
Value

	(1)
	LL3
	63
	POS
	48

	
	HL3
	.34
	NEG
	-48

	(2)
	LH3
	-31
	1Z
	0

	(3)
	HH3
	23
	ZTR
	0

	
	HL2
	49
	POS
	

	(4)
	HL2
	10
	ZTR
	0

	
	HL2
	14
	ZTR
	0

	
	HL2
	-13
	ZTR
	0

	
	LH1
	15
	ZTR
	0

	(5)
	LH2
	14
	IZ
	0

	
	LH2
	-9
	ZTR
	0

	
	LH2
	-7
	ZTR
	0

	(6)
	HLl
	7
	Z
	0

	
	HLl
	13
	Z
	0

	
	HLI
	3
	Z
	0

	
	HL1
	4
	Z
	0

	
	LHl
	-1
	Z
	0

	(7)
	LHl
	47
	POS
	48

	
	LH1
	-3
	Z
	0

	
	LHl
	-2
	Z
	0

The first bit to the right of the MSBD in the binary representation

of the magnitudes. The order of operations in the first subordinate pass in illustrated in the table II

TABLEII Processing of the subordinate pass. magnitudes are partitioned into the uncertainity intervals (32,48) and (48,64) with symbols “0” and “1” respectively

	Coefficient Magnitude
	Symbols
	Reconstruction Magnitude

	63
	1
	56

	34
	0
	40

	49
	1
	56

	47
	0
	40

The first entry has magnitude 63 and is placed in the upper interval whose center is 56. The next entry has magnitude 34, which places in the lower interval. The third entry 49 is in the upper interval, and the fourth entry 47 is in the lower interval. Note that in the case of 47, using the center of the uncertainty interval as the recon​struction value, when the reconstruction value is changed from 48 to 40, the reconstruction error actually increases from 1 to 7. Nevertheless, the uncertainty interval for this coefficient decreases from width 32 to width 16. At the conclusion of the processing of the entries on the subor​dinate list corresponding to the uncertainty interval [32, 64), these magnitudes are reordered for future subordinate passes in the order (63, 49, 34, 47). Note that 49 is moved ahead of 34 because from the decoder’s point of view, the reconstruction values 56 and 40 are distinguishable. How​ever, the magnitude 34 remains ahead of magnitude 47 because as far as the decoder can tell, both have magni​tude 40, and the initial order, which is based first on im​portance by scale, has 34 prior to 47.

The process continues on to the second dominant pass at the new threshold of 16. During this pass, only those coefficients not yet found to be significant are scanned. Additionally, those coefficients previously found to be significant are treated as zero for the purpose of determin​ing if a zero tree exists. Thus, the second dominant pass consists of encoding the coefficient -31 in subband LH3 as negative significant, the coefficient 23 in subband HH3 as positive significant, the three coefficients in subband HL2 that have not been previously found to be significant (10, 14, -13) are each encoded as zero tree roots, as are all four coefficients in subband LH2 and all four coeffi​cients in subband HH2. The second dominant pass ter​minates at this point since all other coefficients are pre​dictably insignificant.

The subordinate list now contains, in order, the mag​nitudes (63, 49, 34, 47, 31, 23) which, prior to this sub​ordinate pass, represent the three uncertainty intervals [48, 64), [32, 48) and [16, 31), each having equal width 16. The processing will refine each magnitude by creating two new uncertainty intervals for each of the three current un​certainty intervals. At the end of the second subordinate pass, the order of the magnitudes is (63, 49, 47, 34, 31, 23), since at this point, the decoder could have identified 34 and 47 as being in different intervals. Using the center of the uncertainty interval as the reconstruction value, the decoder lists the magnitudes as (60, 52, 44, 36, 28, 20).

The processing continues alternating between dominant and subordinate passes and can stop at any time.

4 Image Codec Based on SPIHT
4.1 SPIHT Progressive image transmission.

The original image is the set of pixels pi,j where (i,j) is the pixel coordinate. Denoting p the original image and c the coefficients.

C = ((p)

Obtained with a unitary hierarchical subband transformation ((.)[15]. The array c has the same dimensions as the array p, and ci,j is transform coefficient of coordinates (i,j) (Note: the coefficient ci,j has a significant very different of that of pi,j). After receiving an approximate description of the coefficient,
[image: image2.wmf]c

ˆ

, the decoder can obtain the reconstructed image as
[image: image3.wmf](

)

c

p

ˆ

ˆ

1

-

W

=

. This distortion of the reconstruction is given by
[image: image4.wmf](

)

å

å

-

=

-

=

-

=

i

j

ij

ij

c

c

n

c

c

N

p

p

n

DMSE

2

2

2

ˆ

1

||

ˆ

||

1

||

ˆ

||

1

If the transform coefficient cij is transmitted exactly, the MSE decreases by
[image: image5.wmf]2

,

j

i

c

/N. This shows that the coefficients with the larger magnitudes should be sent first. Also the information in the value of ci,j can also be ranked according to its binary representation, the most significant bits should be transmitted first, using the bit – plane method.

4.2 Transmission of the Coefficient values

Assume the coefficients are ordered according to the number of bits necessary for the binary representation of their magnitude (see Fig. 1). The bits in the lowest rows are the least significant bits.

 BIT ROW

	
	Sign
	S
	S
	S
	S
	S
	S
	S
	S
	S
	S
	S
	S
	S
	S
	S

	Msb
	5
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	
	4
	
	
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	
	3
	
	
	
	
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0

	
	2
	
	
	
	
	
	
	
	
	1
	1
	1
	1
	1
	1
	1

	
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Lsb
	0
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Fig.1. Binary representation of the magnitude-ordered coefficients

 Assume that, besides the ordering information, the decoder receives the number (n corresponding to the number of coefficients such that 2n < |ci,j| < 2n+1. In the example of Fig. 1 (5 = 2, (4 = 2, (3 = 4, … the bits of the coefficients should be sent as indicated by the arrows in figure. Because the coefficients are in decreasing order of magnitude, the leading “0” bits and the first “1”of any column do not need to be transmitted. The progressive transmission can be implemented by Algorithm 1

1) output n = [log2 (max (i,j){|ci,j|})] to the decoder;

2) output (n, followed by the pixel coordinates ((k) and sign of each of the (n coefficients such that 2n (|c((k)| < 2n+1 (sorting pass);

3) output the nth most significant bit off all the coefficients with |ci,j| (2n+1 (i.e., those that had their coordinates transmitted in previous sorting passes, in the same order used to send the coordinates (refinement pass);

4) decrement n by one and go to step 2.

Normally, good quality images can be recovered after a relatively small fraction of the pixel coordinates are transmitted. A large fraction of bit budget is used in the sorting pass; there the sophisticated coding is necessary.

4.3 Set partitioning sorting algorithm

The ordering data is not explicitly transmitted. The encoder and decoder use the same sorting algorithm, and the results of comparisons in the branching of the encoder is trimester to the decoder, who can duplicate encoder execution path. We do not sort all coefficients. We need only to select coefficients such that 2n < |ci,j|< 2n+1, with n decremented after each pass. Given n, a coefficient is significant if 2n < |Ci,j|, otherwise it is insignificant. The sorting algorithm divides the set of pixels into portioning subsets Tm and performs the magnitude test

[image: image6.wmf](

)

{

}

??

2

|

|

max

,

,

n

j

i

T

j

i

C

m

³

Î

The subset is insignificant if the answer is “no” (all coefficients in Tm are insignificant). If the answer is “yes”, the subset is significant, and a certain rule is used to partition Tm into new subsets, which will be in their turn tested for significance. The rule is chosen such that the number of magnitude comparisons (bits to be transmitted) is minimized.

4.4 Spatial Orientation Trees

The spatial orientation tree is presented in Figure. 2 in the form of a hierarchical pyramid. Each node of the tree corresponds to a pixel and is identified by the pixel coordinate. Its direct descendants are called off sprints, corresponds to the pixel of the same spatial orientation in the next finer level of the pyramid. Each node has either no off spring (the leaves) or four off springs, which always form a group of adjacent pixels. In figure 2 the arrows are oriented from the parent to the off springs.
[image: image7.png]b

 Fig.2 Examples of parent-offspring dependencies in the spatial-orientation trees

The pixels in the highest level of the pyramid are the tree roots and are also grouped in 2 x 2 adjacent pixels and in each group of four, one of them (the star) does not have nay offsprings.

The following sets of coordinates are needed in the explanation:

O(i,j) : Set of coordinates of all offsprings of node (i,j).

D (i,j): Set of coordinates of all descendants of node (i,j).

H: Set of coordinates of all spatial orientation tree roots (nodes in the highest pyramid level).

L(i,j) = D(i,j) – O(i,j)

The set are easily found eg. Except at highest and lowest pyramid levels

 O(I,j) = {2i,2k),(2i,2k+1), (2i+1, 2j), (2i+1,2j+1)}.

The rules for splitting the set (eg. When found significant): The initial partition is formed with the sets (i,j) and D (i,j) for all (i,j) (H. If d (i,j) is significant, then it is partitioned into L(I,j) plus the four single element sets with (k,l) (O(I,j). If L(I,j) is significant, then it is partitioned into the four sets D (k,l) with (k,l) (O(i,j).

4.5 The Coding Algorithm

The significance information is stored in three ordered lists:

LIS – List of insignificant sets

LIP: list of insignificant pixels

LSP : list of significant pixels

During the sorting pass the pixels in the LIP – which were insignificant in the previous pass are tested, and those that became significant are moved to the LSP. The sets are sequentially evaluated following the LIS order, and when a set is found significant it is removed from eth list and partitioned. The new sets with more than one element are added back to LIS, while the one element sets are added to the end of LIP or LSP according to their being significant.

The algorithm is presented in Algorithm II being essentially the same as Algorithm I, but using set partitioning approach in sorting pass.

The significance function is defined as follows:

[image: image8.wmf](

)

(

)

{

}

î

í

ì

³

Î

=

Otherwise

C

T

j

i

if

T

S

n

j

i

m

m

n

0

2

|

|

,

max

1

,

Algorithm II

1) Initialization: output n = [log2 (max(i,j){|ci,j|})];

 Set the LSP as an empty list, and add the coordinates (i, j) (H to the LIP, and only those with descendants also to the LIS, as type A entries.

2) Sorting pass:

 2.1) for each entry(i,j) in the LIP do:

 2.1.1) output Sn(i, j) = 1 then move (i, j) to the LSP and output the sign of ci,j;

 2.2) for each entry (i, j) in the LIS do:

 2.2.1) if the entry is of type A then

· Output Sn (D (i, j));

· if Sn (D (i, j)) = 1 then

 (for each (k, l) (O (i, j) do:

· output Sn(k, l):

· if Sn(k, l) = 1 then add (k, l) to the LSP and output the sign of ck.l;

· if Sn(k, l) = 0 then add (k, l) to the end of the LIP;

 (if L (i, j) ≠ 0 then move (i, j) to the end of the LIS, as an entry of type B, and go to step 2.2.2); otherwise, remove entry (i,j) from the LIS;

 2.2.2) if the entry is of type B then

· output Sn(L (i, j));

· if Sn(L (i, j)) = 1 then

 (add each (k, l) (O (i, j) to the end of the LIS as an entry of type A;

 (remove (i, j) from the LIS.

3) Refinement pass: for each entry (i,j) in the LSP, except those included in the last sorting pass (i.e., with same n), output the nth most significant of |ci,j|;

4) Quantization-step update: decrement n by 1 and go to step 2.

The decoding algorithm is identical, except all occurrence of the “output” function must be replaced by the “input” function. An additional task of the decoder is to update the reconstructed image. The decoder will use the information that 2n<Ci,j| < 2n+1 and the sign of Ci,j = +1.5x2n. During the refinement pass, the decoder adds or subtracts 2n-1 to
[image: image9.wmf]j

i

c

,

ˆ

.

Arithmetic coding is not strictly necessary, the bit stream is very efficient. If used, arithmetic coding may improve several percents the compression ration. The mapping of bits to symbols for the arithmetic coding tries to make use of similar features of the 2x2 blocks of pixels.

Example

	26
	6
	13
	10

	-7
	7
	6
	4

	4
	-4
	4
	-3

	2
	-2
	-2
	0

We go through three passes at the encoder and generate the transmitted bit stream, then decode the bitstream.

First Pass The value of n is 4. The three lists at the encoder are:

LIP: {(0,0) (26; (0,1) (6; (1,0) (- 7; (1,1) (7}

LIS: {(0,1) D; (1,0) D; (1,1) D;}

LSP: ((
We examine the contents of LIP. The coefficient at location (0,0) is greater than 16, therefore it is significant and we transmit a 1, then a 0 to indicate the coefficient is positive and move the coordinate (0,0) as the first entry in LSP. The next three coefficients the lists LIP are all insignificant (in absolute value below the threshold 16). We transmit a 0 for each coefficient and leave them in LIP. The next step we examine the contents of LIS. Looking at the descendants of the coefficient at location (0,1) (13,10,6 and 4), we see that none of them are significant at this value of the threshold, so we transmit a 0. Looking at the descendants of (1,0) and (1,1) we see that none is significant at this value of the threshold, therefore we transmit a 0 for each set. In the refinement pass we do not do anything, since there are no elements form previous pass in LSP. We transmitted 8 bits at the end of this pass.

10000000

And the three lists are now

LIP:{(0,1) (6; (1,0) (- 7; (1,1) (7}

LIS: {(0,1) D; (1,0) D;(1,1(D;}

LSP: {(0,0) (26}

Second Pass

We decrement n to 3, the threshold is now 23 = 8. We examine the contents of LIP. Each is insignificant at this threshold, so we transmit three zeros. We next examine the contents of LIS. The descendants of the coefficient at location (0,1) are 13,10,6,4 the first two being significant. The set D (0,1) is significant. We transmit a 1 for this and examine the offsprings of the coefficient at location of the coefficient at location (0,1). The first off spring is significant positive; we transmit a 1 followed by a 0. The same happens with the second off spring, sow e send another 1 followed by 0. We also move the coordinates of these two coefficients to LSP. The next two off springs are both insignificant; therefore we transmit a 0 for each and move them to LIP. As £(0,1) = {}, we remove (0,1) D from LIS. Looking at the other elements form LIS, both of these are insignificant, therefore we send at 0 for each.

In the refinement pass we examine the content of LSP from the previous pass. There is only one element, with value 26. the third most significant bit of 26 is 1, so we transmit a 1 (2610 = 110102 has the bits : b4 = 1, b3 = 1, b2 = 0, b1 = 1, b0 = 0).

In this second pass we transmitted 13 bits:

0001101000001

and the three lists are now

LIP: {(0,1) (6; (1,0) (- 7; (1,1) (7; (1,2) (6; (1,3) (4}

LIS:{(1,0)D; (1,1)D;}

LSP: {(0,0) (26; (0,2) (13; (0,3) (10}

Third pass

We decrement n to 2, the threshold is now 22 = 4. The bits sent during this pass are

1011101010110110011000010

 and the list of the end of the pass are:

LIP:{(3,0) (2; (3,1) (-2; (2,3) (- 3; (3,2) (-2; (3,3) (0}

LIS: {}

LSP: {(0,0) (26; (0,2) (13; (0,3) (10; (0,1) (6; (1,0) (-7; (1,1) (7; (1,2) (6; (1,3) (4; (2,0) (4; (2,1) (- 4; (2,2) (4;}

4.6 Decoding

The decoder initializes every list as the encoder:

LIP:{(0,0); (0,1); (1,0); (1,1)}

LIS: {(0,1)D; (1,0)D; (1,1)D;}

LSP: {}

Decoding, first pass after receiving the bit string 10000000 the decoder can change the lists to

LIP:{(0,1); (1,1); (1,1)}

LIS: {(0,1)D; (1,0)D; (1,1)D;}

LSP: {(0,0)}

The reconstruction of the image at this point is

	24
	0
	0
	0

	0
	0
	0
	0

	0
	0
	0
	0

	0
	0
	0
	0

Decoding, Second pass after receiving the bit string 0001101000001 the decoder can change the lists to

LIP:{(0,1); (1,0); (1,1); (1,2); (1,3)}

LIS: {(0,1)D; (1,1)D;}

LSP: {(0,0); (0,2); (0,3)}

The reconstruction of the image at this point is

	28
	0
	12
	12

	0
	0
	0
	0

	0
	0
	0
	0

	0
	0
	0
	0

Decoding, third pass after receiving the bit string 1011101010110110011000010 the decoder can change the lists to

LIP:{(3,0); (3,1); (2,3); (3,2); (3,3)}

LIS: {}

LSP: {(0,0); (0,2); (0,3);(0,1)(1,0);(1,1);(1,2);(1,3);(2,0);(2,1);(2,2)}

The reconstruction of the image at this point is

	26
	6
	14
	10

	-6
	6
	6
	6

	6
	-6
	6
	0

	0
	0
	0
	0

5 WIRELESS IMAGE TRANSMISSION USING TURBO CODES

5.1 ERROR-RESILIENT CODING USING TURBO CODES

In this a product code based on turbo codes and RS codes are described. A product code generates parity bits for data arrays in both horizontal and vertical directions.

In wireless image transmission applications [2],[3], used product code, the row code consists of a cyclic redundancy code (CRC) combined with a systematic turbo code[4] and the column code in an erasure-correction punctured systematic R-S code[5]. RS codes are effective when errors occur in bursts and their location in the transmitted symbol sequence is known. RS codes are MDS codes[6] and are a subset of BCH codes[5]. RS codes are denoted by a pair (N, v), where v is the number of the information symbols and N is the length of the resulting code word. The error correction capability of RS codes is N-v when the positions of the erasures are known; otherwise, it is reduced to roughly half [(N-v)/2], since [(N-v)/2] erased symbols can be recovered and decoded[5].

[image: image10.jpg]CRC Parityl | Parity2 1

\rrangement of data in a turbo-coded packet. Unlike RCPC/CRC-
inio bits can be directly decoded if they are not corrupted.

The product code used for protection of source symbols is depicted in Fig2. A different amount of protection, provided by RS codes, is allocated to each portion of the stream. A header is placed at the beginning of the stream in order to declare the RS protection levels of the blocks that follow. The header is essentially a small block with three columns, and is protected using the same RS code that is used for the protection of the first block. The overhead has information about the number of RS symbols used for the protection of each block. All rows of the arrays are protected using systematic turbo codes of the same code rate. The resulting turbo coded row will be hereafter termed “packet”. The CRC code is used because it is highly efficient for error detection during the decoding of a packet. Such errors occur quite often in wireless transmission due to deep fades, concatenated turbo/CRC codes are preferable for transmission over slow fading channels compare to the commonly used RCPC/CRC combination because of the better overall performance of turbo codes, especially when large packets are used. On the other hand, the use of many short packets would demand a significant increase in the transmitted overhead, i.e., the CRC bytes.

During the turbo decoding of a received packet, the CRC indicates if the packet is corrupted. On the occurrence of a corrupted packet, the turbo codes are used to recover the corrupted information, if however the packet is found not to contain errors, due to systematic form of the turbo codes, the source information can be directly extracted without the need for channel decoding. Specifically, after turbo coding of a packet, the coded information has the form shown in Fig.1. Which shows the arrangement of data in a turbo coded packet.

Unlike RCPC/CRC coded streams, information bits can be directly decoded if they are not corrupted[5][6]. The CRC check indicates the corruption of the information bits with high reliability (99.99%). Therefore, if, during decoding, the CRC indicates no corruption of the information bit-stream, then the information bits can be directly decoded using the source decoder without the need to perform turbo decoding while in case of RCPC/CRC coding requires decoding of convolutional codes even for uncorrupted streams.

5.2 FAST CHANNEL RATE ALLOCATION

The amount of protection allocated to data varies in the vertical direction (columns) of a data sub-array, which is termed as “block” in Fig.2.

[image: image11.jpg]I
T T |
: Info Info Info 1 » CRC ——> Turbo Coder
| : e |
Packet 2 || Info | Info Info — CRC > Turbo Coder
T |
Gk SRy iiEe e T e [
Packet 3 FEC FEC FEC : FEC | FEC FEC 13 14 | 15 ” Info Info ‘ Info : # CRC | Turbo Coder
L |
5 ; ‘ } I ; !
Packet 4 FEC FEC FEC | | FEC | FEC FEC || FEC FEC FEC || Info Info Info = CRC —— Turbo Coder
| | | | | |
N = B0 T T]]
n T T 1
Packet 5 FEC FEC FEC ||' FEC | FEC FEC “ FEC FEC FEC : ‘g Info Info Info F——® CRC —— Turbo Coder
S 1] -1 S § N— BRSNS W H
;

FEC FEC FEC

1 T
Packet N-1 FEC FEC FEC FEC FEC FEC r—», CRC +—— Turbo Coder
o ; e [
Packet N FEC | FEC FEC FEC FEC FEC H—# CRC ‘4» Turbo Coder
& L L Ik L
Header Block 1 Block2 Block N

Fig. 2. Product code based on turbo codes and RS codes.

Block 1 Block 2 Block 3 Block 4

Reed Solomon Symbols

: Decodable Information
: Symbols

d 2l

Undccodable Information
Symbols

—><—> Erased Packet -

Correctly Received
Packet

KX
9
Px

9a

!

 The proposed algorithm takes into account the importance of each block and allocates more channel symbols (RS symbols) to blocks carrying important information and fewer to other blocks.

The rate allocation algorithm determines the number of source symbols in each column of the block. Since a systematic RS codeword consists of information symbols and parity symbols, the remaining positions in each column of the block are filled with parity RS symbols generated after the RS encoding of the source symbols. A dynamic programming, in which optimization procedure is facilitated by the constant number of columns in each block due to which many paths in the trellis merge yielding a much simpler structure and thus, reducing dramatically the computational cost of the dynamic programming. In this way, every block includes the same number of source + channel bytes namely Rs+c. the idea of keeping the size of the channel packets constant and varying the amount of protection according to the importance of the source information was originally proposed [8] and was subsequently used [3],[7],[9] and [10].

Another important issue in the design of an efficient transmission scheme is that shown in Fig2. In general, the use of larger blocks would result in the reduction of the complexity of the allocation process. Since the appropriate protection would have to be determined for fewer blocks. On the other hand, blocks have to be small enough so that they contain, as much as possible, source information of equal importance. Consequently, we would like to form blocks in which, after subtracting the bytes reserved for RS protection, the remaining bytes are filled using information taken from the same source layer.

The decoding of the present scheme consists of a row-wise decoding of turbo codes (in case the CRC check indicates a packet is corrupted) and then column-wise decoding of RS codes. In order to perform efficient allocation of RS symbols we assume that the probabilities P(n) that exactly n rows, out of the N rows in the product code array, are erased due to transmission errors and turbo decoding failure are known in advance. Since RS codes are used, the probability that the kth block is lost is equal to the probability that the number of lost rows in the kth block is greater than the number of RS symbols in each column of the block is given by:

[image: image12.wmf](

)

(

)

å

+

=

=

N

k

Q

i

L

i

P

P

1

 (1)

 Where Q (K) denotes the number of RS symbols in each column of the kth block.

We shall assume that the total rate budget is RB=NB.RS+C, where NB is the total number of blocks to be transmitted. In this way the computed allocation policy is optimal for the specific target rate [11].

In order to facilitate the allocation of protection to the source stream, we initially assume that whenever a block is plagued by uncorrectable errors, all subsequent blocks are rendered useless and do not further lower the distortion. Suppose that n packets are lost then, the expected distortion is trivially seen to equal:

 D = D0. P (n > Q (1)) + D1. P (n> Q (2) n(Q (1))

 +D2. P (n> Q (3). n(Q (2)) +………DK. P (n>Q (K+1). n(Q (K))

 +…………DNB. P (n(Q (NB))…………………………………………(2)

Where Dk is the resulting distortion after the successful transmission of the first k blocks. The last term in the summation expresses the distortion when all blocks are decodable at the receiver side. Since the rate distortion function for practical embedded coders (such as the SPIHT coder) is convex, we further assume that the RS protection allocated to the source bit stream is descending, i.e., for two arbitrary blocks k and k’, k < k’, the kth block is always protected using at least as powerful source as the codes used for the protection of k’th block. Due to descending RS protection level across blocks, the probability that all blocks are decodable is equal to the probability that the last (least protected) block is correctly decoded.

[image: image13.wmf](

)

(

)

(

)

1

,

-

£

>

k

Q

n

k

n

P

=
[image: image14.wmf](

)

(

)

(

)

1

-

£

<

k

Q

n

k

Q

P

[image: image15.wmf](

)

(

)

(

)

å

-

+

=

=

1

1

k

Q

k

Q

i

i

p

[image: image16.wmf](

)

(

)

(

)

(

)

å

å

+

-

=

+

=

=

-

=

N

k

Q

i

N

k

Q

i

i

p

i

p

1

1

1

=
[image: image17.wmf](

)

(

)

1(3)

LL

PkPk

--

we defined Pd as

[image: image18.wmf](

)

(

)

(

)

(

)

if k1

(4)

1,otherwise

L

d

LL

Pk

Pk

PkPk

=

ì

ï

=

í

--

ï

î

Thus Pd(k) is the probability difference between the event of losing the kth block and the vent of losing the (k-1)th block. Thus (2) can be equivalently expressed as:

 (5)

Whenever two or more paths merge in one trellis node i.e., they represent the same cumulative total rate and the same cumulative channel rate, the paths with the greatest distortion are discarded and only the path having the minimum distortion is retained.

5.3 SUCCESSIVE DECODING OF PRODUCT CODES

The product code scheme presented, first attempts to correct transmission errors using turbo decoding. Whenever this is not possible, the CRC syndrome [5] indicates a packet erasure. However, if across packets, there is an appropriate number of redundant (RS) symbols, some erased blocks are corrected during the subsequent RS decoding stage.

A successive decoding mechanism is invoked in cases where product decoding fails to correct all errors.

The mechanism redecodes turbo-coded packets that were initially undecodable using source information that was in the meantime restored by the intermediate RS decoding process. This technique is applicable only when some information is restored by RS decoding stage, i.e., only when the number of initially undecodable packets is smaller than the number of redundant (RS) symbols in at least one of the transmitted blocks.

As in Fig1. The first segment of an turbo-coded packet contains source information and the other two are channel segment. An erased packet can be recovered using successive decoding if the source segment is partially recovered by means of information corrected during RS decoding. The injection of recovered information in a formerly undecodable packet may render the entire packet decodable using turbo decoding. The above technique is successively applied on erased packets and is terminated as soon as the turbo decoder is unable to recover any new source information in two successive iterations.

The result of the successive decoding of product codes is shown in the Fig3. As is illustrated in Fig.6. after one iteration of the above technique, one packet initially indicated as erased in Fig.3 can be recovered. This permits the successful decoding of the entire third block and the partial recovery of the fourth block.

[image: image19.jpg]Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4

¥

v

LEEK
L

T
]
i
]
i
1
]
i
+
1
:
]
i
1
T
1
1

R Decodable N e Decodable q
Information Symbols ——8 C“"‘f;ﬂgk}zf ceived Tnformation Symbols _.CDne‘c)Lalgk}:?c ey
Reed Solomon Reed Solomon
Symbols =< Erased Packet Symbols <> Erased Packet
Undecodable Undecodable
BN Information Symbols N\ /g R%c;t;{g{ed Information Symbols —\/—p» R;ﬁgsd
(a) ®)

Fig. 6. Decodable bitstream after the application of successive decoding of product codes for the case shown in Fig. 3. (a) The fifth packet is recovered. (b) The
third packet is recovered.

The decoded portion of the fourth block depends on the position of the first erased packet. For example if the third packet is recovered, the decodable bit stream is depicted in Fig6b. In any other case the decoded bit stream is shown in Fig6a.

Despite the recovery of the entire fifth packet in Fig6a, its right most information segment is still undecodable since it depends on the source segment above it, which is corrupted. Above technique for decoding of product codes is applicable only in the case of UEP, as some initially uncorrectable packets may be partly recovered by the subsequent RS decoding and, thus, benefit from the reapplication of turbo decoding.

6 MATLAB AND IMAGE PROCESSING TOOLBOX

6.1.INTRODUCTION

MATLAB is a high-performance language for technical computing. It integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation. Typical uses include Math and computation Algorithm development Data acquisition Modeling, simulation, and prototyping Data analysis, exploration, and visualization Scientific and engineering graphics Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that does not require dimensioning. This allows you to solve many technical computing problems, especially those with matrix and vector formulations, in a fraction of the time it would take to write a program in a scalar noninteractive language such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was originally written to provide easy access to matrix software developed by the LINPACK and EISPACK projects. Today, MATLAB engines incorporate the LAPACK and BLAS libraries, embedding the state of the art in software for matrix computation.

MATLAB has evolved over a period of years with input from many users. In university environments, it is the standard instructional tool for introductory and advanced courses in mathematics, engineering, and science. In industry, MATLAB is the tool of choice for high-productivity research, development, and analysis.

MATLAB features a family of add-on application-specific solutions called toolboxes. Very important to most users of MATLAB, toolboxes allow you to learn and apply specialized technology. Toolboxes are comprehensive collections of MATLAB functions (M-files) that extend the MATLAB environment to solve particular classes of problems. Areas in which toolboxes are available include signal processing, control systems, neural networks, fuzzy logic, wavelets, simulation, and many others.

6.2.THE MATLAB SYSTEM

The MATLAB system consists of five main parts:

Development Environment. This is the set of tools and facilities that help you use MATLAB functions and files. Many of these tools are graphical user interfaces. It includes the MATLAB desktop and Command Window, a command history, an editor and debugger, and browsers for viewing help, the workspace, files, and the search path.

The MATLAB Mathematical Function Library. This is a vast collection of computational algorithms ranging from elementary functions, like sum, sine, cosine, and complex arithmetic, to more sophisticated functions like matrix inverse, matrix eigenvalues, Bessel functions, and fast Fourier transforms.

The MATLAB Language. This is a high-level matrix/array language with control flow statements, functions, data structures, input/output, and object-oriented programming features. It allows both "programming in the small" to rapidly create quickly and dirty throwaway programs, and "programming in the large" to create large and complex application programs.

Graphics. MATLAB has extensive facilities for displaying vectors and matrices as graphs, as well as annotating and printing these graphs. It includes high-level functions for two-dimensional and three-dimensional data visualization, image processing, animation, and presentation graphics. It also includes low-level functions that allow you to fully customize the appearance of graphics as well as to build complete graphical user interfaces on your MATLAB applications.

The MATLAB Application Program Interface (API). This is a library that allows you to write C and Fortran programs that interact with MATLAB. It includes facilities for calling routines from MATLAB (dynamic linking), calling MATLAB as a computational engine, and for reading and writing MAT-files.

6.3. Image Input, Output, and Display

 Image Display

Image File I/O

Image Types and Type Conversions

6.3.1 Image Display

colorbar Display color bar (MATLAB function)

image Create and display image object (MATLAB function)

imagesc Scale data and display as image (MATLAB function)

immovie Make movie from multiframe indexed image

imshow Display image in a MATLAB figure window

imtool Display image in the Image Viewer

montage Display multiple image frames as rectangular montage

subimage Display multiple images in single figure

warp Display image as texture-mapped surface

6.3.2 Image File I/O

dicoomanon Anonymize a DICOM file

dicomdict Specify which DICOM data dictionary to use

dicominfo Read metadata from a DICOM message

dicomread Read a image

dicomuid Generate DICOM unique identifier

dicomwrite Write a DICOM image

dicom-dict.txt Text file containing DICOM data dictionary

imfinfo Return information about image file (MATLAB function)

imread Read image file (MATLAB function)

imwrite Write image file (MATLAB function)

6.3.3 Image Types and Type Conversions

dither Convert image using dithering

double Convert data to double precision (MATLAB function)

gray2ind Convert intensity image to indexed image

grayslic Create indexed image from intensity image by thresholding

graythresh Compute global image threshold using Otsu's method

im2bw Convert image to binary image by thresholding

im2double Convert image array to double precision

im2int16 Convert image array to 16-bit signed integer

im2java Convert image to instance of Java image object

 (MATLAB function)

im2java2d Convert image to instance of Java buffered image

 object

im2single Convert image array to single precision

im2uint16 Convert image array to 16-bit unsigned integers

im2uint8 Convert image array to 8-bit unsigned integers

ind2gray Convert indexed image to intensity image

ind2rgb Convert indexed image to RGB image

int16 Convert data to signed 16-bit integers (MATLAB function)

label2rgb Convert a label matrix to an RGB image

mat2gray Convert matrix to intensity image

rgb2gray Convert RGB image or colormap to grayscale

rgb2ind Convert RGB image to indexed image

uint16 Convert data to unsigned 16-bit integers (MATLAB function)

uint8 Convert data to unsigned 8-bit integers (MATLAB function)

6.4 Modular Interactive Tools

Modular Tool Creation Functions

Navigational tools

 Utility Functions

6.4.1 Modular Tool Creation Functions

imageinfo Image Information tool

imcontrast Adjust Contrast tool

imdisplayrange Display range tool

impixelinfo Pixel Information tool

impixelinfoval Pixel Information tool, without text label

impixelregion Pixel Region tool

impixelregionpanel Pixel Region scroll panel

6.4.2 Navigational tools

immagbox Image Information tool

imoverview Adjust Contrast tool

imoverviewpanel Display range tool

imscrollpanel Pixel Information tool

6.4.3 Utility Functions

axes2pix Convert axes coordinate to pixel coordinate

getimage Get image data from axes

getimagemodel Retrieve imagemodel objects from image handles

imattributes Return information about image attributes

imgca Get handle to current image axes

imgcf Get handle to current image figure

imgetfile Image Open File dialog box

imhandles get all image handles

impositionrect Create position rectangle

iptaddcallback Add function handle to callback

listiptcheckhandle Check validity of handle

iptgetapi Get Application Programmer Interface from a

 handle

ipticondir Directories containing IPT and MATLAB

iconsiptremovecallback Delete function handle from callback list

iptwindowalign Align figure windows

truesize Adjust display size of image

6.5.Spatial Transformation and Registration

· Spatial Transformations

· Image Registration

6.5.1 Spatial Transformations

checkerboard Create checkerboard

imagefindbounds Find output bounds for spatial transformation

fliptform Flip the input and output roles of a TFORM structure

imcrop Crop image

imresize Resize image

imrotate rotate image

imtransform Apply 2-D spatial transformation to image

makeresampler Create resampling structure

maketform Create geometric transformation structure

tformarray Geometric transformation of a multidimensional array

tformfwd Apply forward geometric transformation

tforminv Apply inverse geometric transformation

6.5.2 Image Registration

cp2tform Infer geometric transformation from control point pairs

cpcorr Tune control point locations using cross-correlation

cpselect Control point selection tool

cpstruct2pairs Convert CPSTRUCT to valid pairs of control points

normxcorr2 Normalized two-dimensional cross-correlation

6.6.Image Analysis and Statistics

· Image Analysis

· Pixel Values and Statistics

6.6.1 Image Analysis

bwboundaries Trace region boundaries in binary image

bwtraceboundary Trace object in binary image

edge Find edges in intensity image

hough Hough transforms

houghlines Extract line segments based on the Hough transforms

houghpeaks Identify peaks in the Hough transform

otdecomp Perform quadtree decomposition

otgetblk Get block values in quadtree decomposition

otsetblk Set block values in quadtree decomposition

6.6.2 Texture Analysis

entropy Entropy of an intensity image

entropyfilt Local entropy of an intensity image

graycomatrix Gray-level co-occurrence matrix

graycoprops Properties of a gray-level co-occurrence matrix

rangefilt Local range of an image

stdfilt Local standard deviation of an image

6.6.3 Pixel Values and Statistics

corr2 Compute 2-D correlation coefficient

imcontour Create contour plot of image data

imhist Display histogram of image data

impixel Determine pixel color values

improfile Compute pixel-value cross-sections along line segments

mean2 Compute mean of matrix elements

pixval Display information about image pixels

regionprops Measure properties of image regions

std2 Compute standard deviation of matrix elements

6.6.4 Image Arithmetic

imabsdiff Compute absolute difference of two

imagesimadd add two images, or add constant to image

imcomplement Complement image

imdivide Divide two images, or divide image by constant

imlincomb Compute linear combination of image

simmultiply multiply two images, or multiply image by constant

imsubtract subtract two images, or subtract constant from image

6.7.Image Enhancement and Restoration

· Image Enhancement

· Image Restoration (Deblurring)

6.7.1 Image Enhancement

adapthisteq Perform adaptive histogram equalization CLAHE

decorrstretch Apply a decorrelation stretch to a multichannel image

histeq Enhance contrast using histogram equalization

imadjust Adjust image intensity values or colormap

imnoise Add noise to an image

intlut Compute new array values based on lookup table (LUT)

medfilt2 Perform 2-D median filtering

ordfilt2 Perform 2-D order-statistic filtering

stretchlim Return a pair of intensities that can be used to

increase the contrast of an image

 wiener2 Perform 2-D adaptive noise-removal filtering

6.7.2.Image Restoration (Deblurring)

deconvblind Restore image using blind deconvolution

deconvlucy Restore image using accelerated Richardson-Lucy

 algorithm

deconvreg Restore image using regularized filtered

convwnr Restore image using Wiener filter

edgetaper Taper the discontinuities along the image edge

otf2psf Convert optical transfer function to point spread function

psf2otf Convert point spread function to optical transfer function

6.8.Linear Filtering and Transforms

· Linear Filtering

· Linear2-D Filter Design

· Image Transforms

6.8.1 Linear Filtering

conv2Perform 2-D convolution (MATLAB function)

convmtx2 Compute 2-D convolution matrix

convn Perform N-D convolution (MATLAB function)

filter2 Perform 2-D filtering (MATLAB function)

fspecial Create predefined filters

imfilter Multidimensional image filteringLinear 2-D Filter Design

freqspace Determine 2-D frequency response special (MATLAB

 function)

freqz2 Compute 2-D frequency response

fsamp2 Design 2-D FIR filter using frequency sampling

ftrans2 Design 2-D FIR filter using frequency transformation

fwind1 Design 2-D FIR filter using 1-D window method

fwind2 Design 2-D FIR filter using 2-D window method

6.8.2 Image Transform

dct2 Compute 2-D discrete cosine transform

dctmtx Compute discrete cosine transform matrix

fan2para Convert fan-beam projection data to parallel-beam

fanbeam Compute fan-beam transform

fft2 Compute 2-D fast Fourier transform (MATLAB function)

fftn Compute N-D fast Fourier transform (MATLAB function)

fftshift Reverse quadrants of output of FFT (MATLAB function)

idct2 Compute 2-D inverse discrete cosine transform

ifft2 Compute 2-D inverse fast Fourier transform (MATLAB function)

ifftn Compute N-D inverse fast Fourier transform (MATLAB function)

ifanbeam Compute inverse fan-beam transform

iradon Compute inverse Radon transform

para2fan Convert parallel-beam projections to fan-beam

Phantom Generate a head phantom image

radon Compute Radon transform

6.9 Morphological Operations

· Intensity and Binary Images

· Binary Image

· Structuring Element (STREL) Creation and Manipulation
6.9.1 Intensity and Binary Images

conndef Default connectivity array

imbothat Perform bottom-hat filtering

imclearborder Suppress light structures connected to image border

imclose Close image

imdilate Dilate image

imerode Erode image

imextendedmax Find extended-maxima transform

imextendedmin Find extended-minima transform

imfill Fill image regions

 imhmax Calculate H-maxima transform

imhmin Calculate H-minima transform

imimposemin Impose minima

imopen Open image

imreconstruct Perform morphological reconstruction

 imregionalmax Find regional maxima of image

imregionalmin Find regional minima of image

imtophat Perform tophat filtering

watershed Find image watershed regions
6.9.2 Binary Images
applylut Perform neighborhood operations using lookup tables

bwarea Area of objects in binary image

bwareaopen Binary area open; remove small objects

bwdist Distance transforms

bweuler Euler number of binary image

bwhitmiss Binary hit-and-miss operation

 bwlabel Label connected components in 2-D binary image

bwlabeln Label connected components in N-D binary image

bwmorph Perform morphological operations on binary image

bwpack Pack binary image

bwperim Find perimeter of objects in binary image

bwselect Select objects in binary image

bwulterode Ultimate erosion

bwunpack Unpack a packed binary image

imregionalmin Regional minima of image

imtophat Perform tophat filtering

makelut Construct lookup table for use with applylut

6.10.Structuring Element (STREL) Creation and Manipulation

getheight Get the height of a structuring element

getneighbors Get structuring element neighbor locations and heights

getnhood Get structuring element neighborhood

getsequence Extract sequence of decomposed structuring elements

isflat Return true for flat structuring element

treflect Reflect structuring element

strel Create morphological structuring

translate Translate structuring element

6.11.Region-Based, Neighborhood, and Block Processing

· Region-Based Processing

· Neighborhood and Block Processing

6.11.1 Region-Based Processing

poly2mask Convert region-of-interest polygon to mask

roicolor Select region of interest, based on color

roifill Smoothly interpolate within arbitrary region

roifilt2 Filter a region of interest

roipoly Select polygonal region of interest

6.11.2 Neighborhood and Block Processing

bestblk Choose block size for block processing

blkproc Implement distinct block processing for image

col2im Rearrange matrix columns into blocks

colfilt Perform neighborhood operations using columnwise functions

im2col Rearrange image blocks into columnsnlfilter Perform general sliding-neighborhood operations

6.12 SOFTWARE: MATLAB PROGRAMMING

 MATLAB PROGRAMMING I

function zerotree = checkancestors1(j,R,zerotree)

global N;

i = floor((j+3)/4);

while i>1,

 if R(N(i,1),N(i,2))==1;

 zerotree=1;

 break;

 end;

 i = floor((i+3)/4);

 end

 function zerotree = checkancestors1(j,R,zerotree)

global N;

i = floor((j+3)/4);

while i>1,

 if R(N(i,1),N(i,2))==1;

 zerotree=1;

 break;

 end;

 i = floor((i+3)/4);

 end

X=[63 -34 49 10 7 13 -12 7;

 -31 23 14 -13 3 4 6 -1;

 15 14 3 -12 5 -7 3 9;

 -9 -7 -14 8 4 -2 3 2;

 -5 9 -1 47 4 6 -2 2;

 3 0 -3 2 3 -2 0 4;

 2 -3 6 -4 3 6 3 6;

 5 11 5 6 0 3 -4 4];

X0=X;

Y0=max(X);

 Y1=max(Y0);

 for i=0:12;

if 2^i<Y1 & 2^i>0.5*Y1;

threshold=2^i;

 break;

 end;

 end;

 sublist=[];

 [xx,yy]=size(X);

 global N

 A=mapping(xx);

[m,n]=size(A);

k=1; N=[];

 for k=1:m*n;

 flag=0;

 for i=1:m;

 if flag==1;

 break;

 end

 for j=1:n;

if A(i,j)==k;

 N=[N;i,j];

 flag=1;

break;

 end

 end

 end

 end

 order=1;

while threshold ~= 0.5,

 threshold

 %Dominant Pass

 [D,X,sublist] = dominantpass(X,threshold,sublist);

 DD{order}=D

 %Subordinate pass

 threshold=threshold/2;

 if threshold ==0.5,

 break;

 end

 S = subordinatepass(sublist,threshold);

 SS{order}=S

 order=order+1;

end

% EZW decoder

 global N;

 [m,n]=size(N);

 XX=zeros(8);

 initialthreshold=32;

threshold=initialthreshold;

 sublist=[];

 for k=1:6;

 RR=zeros(8);

 [a,b]=size(DD{k});

 % dominant pass

 i=1; j=1;

 while i<=m;

if j>b;

 break;

 end

 if RR(N(i,1),N(i,2))==1;

 i=i+1;

 else

 if DD{k}(j)=='p';

 XX(N(i,1),N(i,2))=threshold;

 RR(N(i,1),N(i,2))=1;

 sublist=[sublist;N(i,1),N(i,2)];

 end

 if DD{k}(j)=='n';

 XX(N(i,1),N(i,2))=-threshold;

 RR(N(i,1),N(i,2))=1;

 sublist=[sublist;N(i,1),N(i,2)];

 end

 if DD{k}(j)=='z';

 RR(N(i,1),N(i,2))=1;

 End

 if DD{k}(j)=='t';

 RR(N(i,1),N(i,2))=1;

 RR=checkchildren(i,RR);

 end

 i=i+1;j=j+1;

 end

end

 % subordinate pass

 [xx,yy]=size(sublist);

 threshold=threshold/2;

 for i=1:xx;

 if k==6 |threshold==0.5;

 break;

 end

 if SS{k}(i)==1;

 if XX(sublist(i,1),sublist(i,2))>0;

 XX(sublist(i,1),sublist(i,2))=XX(sublist(i,1),sublist(i,2))+ threshold;

else

 XX(sublist(i,1),sublist(i,2))= XX(sublist(i,1),sublist(i,2))-threshold;

 end

 end

 end

 threshold

 k

 XX

end

initialiamge=X0

reconstructuredimage=XX

difference=XX-X0

 MATLAB PROGRAMMING II

MAIN PROGRAM

clear

close all

clc

c=[26 6 13 10;

 -7 7 6 4;

 4 -4 4 -3;

 2 -2 -2 0]

pause

[n,m]=size(c);

LIP=[];

coLIP=[];

for i=1:1:2

 for j=1:1:2

 LIP=[LIP c(i,j)];

 coLIP=[coLIP;[i,j]];

 end

end

for pass=1:1:4;

 BIT1=[];LSP1=[];LIP1=[];

 set=n;

 b=2^(n-pass+1);

 s=[];B=[];

 LIS=[];S3=[];

 disp('Pass')

 disp(pass)

 if(pass==1)

 aa=0;

 else

 for mm=1:1:length(LSP)

 aa(mm)=refinement(n,pass,LSP(mm));

 end

 end

 for set=1:1:n

 if(set==1)

 I=0;J=0;k=[1,1];

 S(pass,set)=signiSET(I,J,b,c);

 elseif(set==2)

 I=0;J=2;k=[1,2];

 S(pass,set)=signiSET(I,J,b,c);

 elseif(set==3)

 I=2;J=0;k=[2,1];

 S(pass,set)=signiSET(I,J,b,c);

 else

 I=2;J=2;k=[2,2];

 S(pass,set)=signiSET(I,J,b,c);

 end

 if(S(pass,set)==1)

 [S1 LSP coLSP LIP coLIP]=signiBITS(I,J,b,c);

 S2=[S(pass,set) S1];

 LSP1=[LSP1 LSP];

 LIP1=[LIP1 LIP];

 else

 disp('set')

 disp(set)

 disp('is not significant')

 S3=[S3 S(pass,set)]

 LIS=[LIS;k];

 end

 if(pass==1)

 BIT=[S2 S3];

 else

 for nn1=1:1:length(LIP1)

 if((abs(LIP)-b)<0)

 ss(nn1)=1;

 else

 ss(nn1)=0;

 end

 end

 BIT=[ss S2 S1];

 end

 end

 if(pass==1)

 BIT1=BIT

 else

 BIT1=[BIT S3 aa]

 end

 LIS

 LSP1

 LIP1

 pause

endfunction [s LSP coLSP LIP coLIP]=signiBITS(I,J,b,c)

s=[];

ii=0;

LSP=[];LIP=[];

coLSP=[];coLIP=[];

for i=I+1:1:I+2

 for j=J+1:1:J+2

 ii=ii+1;

 if(abs(c(i,j))>=b)

 LSP=[LSP c(i,j)];

 coLSP=[coLSP [i,j]];

 b1(ii)=sign(c(i,j));

 else

 LIP=[LIP c(i,j)];

 coLIP=[coLIP c(i,j)];

 b1(ii)=1;

 end

 end

end

for ii=1:1:length(b1)

 if(b1(ii)==1)

 s=[s 0];

 else

 s=[s 1];

 end

end

function s=signiSET(I,J,b,c)

s1=[];

for i=I+1:1:I+2

 for j=J+1:1:J+2

 A(i,j)=c(i,j);

 if(A(i,j)>=b)

 s1=[s1 1];

 else

 s1=[s1 0];

 end

 end

end

if(max(s1)==1)

 s=1;

else

 s=0;

end

function aa=refinement(n,pass,LSP)

bi=dec2bin(LSP);

sym(bi);

aa1=bi(n-pass+2);

aa1=str2mat(aa1);

aa=aa1-48
MATLAB PROGRAMMING III

function func_SPIHT_Main

% Matlab implementation of SPIHT (without Arithmatic coding stage)

% Main function

% input: Orig_I : the original image.

% rate : bits per pixel

% output: img_spiht

%----------- Input ----------------

Orig_I = func_ReadRaw('lena512.raw', 512*512, 512, 512);

figure

image (Orig_I);

rate = 0.1;

%----------- Pre-processing ----------------

OrigSize = size (Orig_I, 1);

max_bits = floor (rate * OrigSize^2);

OutSize = OrigSize;

image_spiht = zeros (size (Orig_I));

% "image " is the input of codec

[nRow, nColumn] = size (Orig_I);

%----------- Wavelet Decomposition ----------------

n = size (Orig_I, 1);

n_log = log2 (n);

level = n_log;

% Wavelet decomposition level can be defined by users manually.

type = 'bior4.4';

[Lo_D, Hi_D, Lo_R, Hi_R] = wfilters (type);

[I_W, S] = func_DWT (Orig_I, level, Lo_D, Hi_D);

figure

image (I_W)

%----------- Coding ----------------

img_enc = func_SPIHT_Enc (I_W, max_bits, nRow*nColumn, level);

figure
image (img_enc)
%----------- Decoding ----------------

img_dec = func_SPIHT_Dec (img_enc);

figure

image (img_dec)

%----------- Wavelet Reconstruction ----------------

img_spiht = func_InvDWT(img_dec, S, Lo_R, Hi_R, level);

figure

image (img_spiht)

%----------- PSNR analysis ----------------

Q = 255; psnr=10*log10 (Q*Q. /mse1)

mse1=sum (sum ((img_spiht-Orig_I). ^2)/nRow/nColumn);

function out = func_MySPIHT_Enc(m, max_bits, block_size, level)

% Matlab implementation of SPIHT (without Arithmatic coding stage)

% Encoder

% input: m : input image in wavelet domain

% max_bits : maximum bits can be used

% block_size : image size

% level : wavelet decomposition level

% output: out : bit stream

%----------- Initialization -----------------

bitctr = 0;

out = 2*ones(1,max_bits - 14);

n_max = floor(log2(abs(max(max(m)'))));

Bits_Header = 0;

Bits_LSP = 0;

Bits_LIP = 0;

Bits_LIS = 0;

%----------- output bit stream header ----------------

% image size, number of bit plane, wavelet decomposition level should be

% written as bit stream header.

out(1,[1 2 3]) = [size(m,1) n_max level]; bitctr = bitctr + 24;

index = 4;

Bits_Header = Bits_Header + 24;

%----------- Initialize LIP, LSP, LIS ----------------

temp = [];

bandsize = 2.^(log2(size(m, 1)) - level + 1);

temp1 = 1 : bandsize;

for i = 1 : bandsize

 temp = [temp; temp1];

end

LIP(:, 1) = temp(:);

temp = temp';

LIP(:, 2) = temp(:);

LIS(:, 1) = LIP(:, 1);

LIS(:, 2) = LIP(:, 2);

LIS(:, 3) = zeros(length(LIP(:, 1)), 1);

pstart = 1;

pend = bandsize / 2;

for i = 1 : bandsize / 2

 LIS(pstart : pend, :) = [];

 pdel = pend - pstart + 1;

 pstart = pstart + bandsize - pdel;

 pend = pend + bandsize - pdel;

end

LSP = [];

n = n_max;

%----------- coding ----------------

while(bitctr < max_bits)

% Sorting Pass

 LIPtemp = LIP; temp = 0;

 for i = 1:size(LIPtemp,1)

 temp = temp+1;

 if (bitctr + 1) >= max_bits

 if (bitctr < max_bits)

 out(length(out))=[];

 end

 return

 end

 if abs(m(LIPtemp(i,1),LIPtemp(i,2))) >= 2^n % 1: positive; 0: negative

 out(index) = 1; bitctr = bitctr + 1;

 index = index +1; Bits_LIP = Bits_LIP + 1;

 sgn = m(LIPtemp(i,1),LIPtemp(i,2))>=0;

 out(index) = sgn; bitctr = bitctr + 1;

 index = index +1; Bits_LIP = Bits_LIP + 1;

 LSP = [LSP; LIPtemp(i,:)];

 LIP(temp,:) = []; temp = temp - 1;

 else

 out(index) = 0; bitctr = bitctr + 1;

 index = index +1;

 Bits_LIP = Bits_LIP + 1;

 end

 end

 LIStemp = LIS; temp = 0; i = 1;

 while (i <= size(LIStemp,1))

 temp = temp + 1;

 if LIStemp(i,3) == 0

 if bitctr >= max_bits

 return

 end

 max_=func_MyDescendant(LIStemp(i,1),LIStemp(i,2),LIStemp(i,3),m);

 if max_d >= 2^n

 out(index) = 1; bitctr = bitctr + 1;

 index = index +1; Bits_LIS = Bits_LIS + 1;

 x = LIStemp(i,1); y = LIStemp(i,2);

 if (bitctr + 1) >= max_bits

 if (bitctr < max_bits)

 out(length(out))=[];

 end

 return

 end

 if abs(m(2*x-1,2*y-1)) >= 2^n

 LSP = [LSP; 2*x-1 2*y-1];

 out(index) = 1; bitctr = bitctr + 1;

 index = index +1; Bits_LIS = Bits_LIS + 1;

 sgn = m(2*x-1,2*y-1)>=0;

 out(index) = sgn; bitctr = bitctr + 1;

 index = index +1; Bits_LIS = Bits_LIS + 1;

 else

 out(index) = 0; bitctr = bitctr + 1;

 index = index +1; Bits_LIS = Bits_LIS + 1;

 LIP = [LIP; 2*x-1 2*y-1];

 end

 if (bitctr + 1) >= max_bits

 if (bitctr < max_bits)

 out(length(out))=[];

 end

 return

 end

 if abs(m(2*x-1,2*y)) >= 2^n

 LSP = [LSP; 2*x-1 2*y];

 out(index) = 1; bitctr = bitctr + 1;

 index = index +1; Bits_LIS = Bits_LIS + 1;

 sgn = m(2*x-1,2*y)>=0;

 out(index) = sgn; bitctr = bitctr + 1;

 index = index +1; Bits_LIS = Bits_LIS + 1;

 else

 out(index) = 0; bitctr = bitctr + 1;

 index = index +1; Bits_LIS = Bits_LIS + 1;

 LIP = [LIP; 2*x-1 2*y];

 end

 if (bitctr + 1) >= max_bits

 if (bitctr < max_bits)

 out(length(out))=[];

 end

 return

 end

 if abs(m(2*x,2*y-1)) >= 2^n

 LSP = [LSP; 2*x 2*y-1];

 out(index) = 1; bitctr = bitctr + 1;

 index = index +1; Bits_LIS = Bits_LIS + 1;

 sgn = m(2*x,2*y-1)>=0;

 out(index) = sgn; bitctr = bitctr + 1;

 index = index +1; Bits_LIS = Bits_LIS + 1;

 else

 out(index) = 0; bitctr = bitctr + 1;

 index = index +1; Bits_LIS = Bits_LIS + 1;

 LIP = [LIP; 2*x 2*y-1];

 end

 if (bitctr + 1) >= max_bits

 if (bitctr < max_bits)

 out(length(out))=[];

 end

 return

 end

 if abs(m(2*x,2*y)) >= 2^n

 LSP = [LSP; 2*x 2*y];

 out(index) = 1; bitctr = bitctr + 1;

 index = index +1; Bits_LIS = Bits_LIS + 1;

 sgn = m(2*x,2*y)>=0;

 out(index) = sgn; bitctr = bitctr + 1;

 index = index +1; Bits_LIS = Bits_LIS + 1;

 else

 out(index) = 0; bitctr = bitctr + 1;

 index = index +1; Bits_LIS = Bits_LIS + 1;

 LIP = [LIP; 2*x 2*y];

 end

 if ((2*(2*x)-1) < size(m) & (2*(2*y)-1) < size(m))

 LIS = [LIS; LIStemp(i,1) LIStemp(i,2) 1];

 LIStemp = [LIStemp; LIStemp(i,1) LIStemp(i,2) 1];

 end

 LIS(temp,:) = []; temp = temp-1;

 else

 out(index) = 0; bitctr = bitctr + 1;

 index = index +1; Bits_LIS = Bits_LIS + 1;

 end

 else

 if bitctr >= max_bits

 return

 end

 max_d=func_MyDescendant(LIStemp(i, 1),LIStemp(i,2),LIStemp(i, 3), m);

 if max_d >= 2^n

 out(index) = 1; bitctr = bitctr + 1;

 index = index +1;

 x = LIStemp(i,1); y = LIStemp(i,2);

 LIS = [LIS; 2*x-1 2*y-1 0; 2*x-1 2*y 0; 2*x 2*y-1 0; 2*x 2*y 0];

 LIStemp=[LIStemp; 2*x-1 2*y-1 0; 2*x-1 2*y 0; 2*x 2*y-1 0; 2*x 2*y0];

 LIS(temp,:) = []; temp = temp - 1;

 else

 out(index) = 0; bitctr = bitctr + 1;

 index = index +1; Bits_LIS = Bits_LIS + 1;

 end

 end

 i = i+1;

 end

 % Refinement Pass

 temp = 1;

 value = floor(abs(2^(n_max-n+1)*m(LSP(temp,1),LSP(temp,2))));

 while (value >= 2^(n_max+2) & (temp <= size(LSP,1)))

 if bitctr >= max_bits

 return

 end

 s = bitget(value,n_max+2);

 out(index) = s; bitctr = bitctr + 1;

 index = index +1; Bits_LSP = Bits_LSP + 1;

 temp = temp + 1;

 if temp <= size(LSP,1)

 value = floor(abs(2^(n_max-n+1)*m(LSP(temp,1),LSP(temp,2))));

 end

 end

 n = n - 1;

end

function m = func_SPIHT_Dec(in)

% Matlab implementation of SPIHT (without Arithmatic coding stage)

% Decoder

% input: in : bit stream

% output: m : reconstructed image in wavelet domain

%----------- Initialization -----------------

% image size, number of bit plane, wavelet decomposition level should be

% written as bit stream header.

m = zeros(in(1,1));

n_max = in(1,2);

level = in(1,3);

ctr = 4;

 %----------- Initialize LIP, LSP, LIS ----------------

temp = [];

bandsize = 2.^(log2(in(1,1)) - level + 1);

temp1 = 1 : bandsize;

for i = 1 : bandsize

 temp = [temp; temp1];

end

LIP(:, 1) = temp(:);

temp = temp';

LIP(:, 2) = temp(:);

LIS(:, 1) = LIP(:, 1);

LIS(:, 2) = LIP(:, 2);

LIS(:, 3) = zeros(length(LIP(:, 1)), 1);

pstart = 1;

pend = bandsize / 2;

for i = 1 : bandsize / 2

 LIS(pstart : pend, :) = [];

 pdel = pend - pstart + 1;

 pstart = pstart + bandsize - pdel;

 pend = pend + bandsize - pdel;

end

LSP = [];

%----------- coding ----------------

n = n_max;

while (ctr <= size(in,2))

 %Sorting Pass

 LIPtemp = LIP; temp = 0;

 for i = 1:size(LIPtemp,1)

 temp = temp+1;

 if ctr > size(in,2)

 return

 end

 if in(1,ctr) == 1

 ctr = ctr + 1;

 if in(1,ctr) > 0

 m(LIPtemp(i,1),LIPtemp(i,2)) = 2^n + 2^(n-1);

 else

 m(LIPtemp(i,1),LIPtemp(i,2)) = -2^n - 2^(n-1);

 end

 LSP = [LSP; LIPtemp(i,:)];

 LIP(temp,:) = []; temp = temp - 1;

 end

 ctr = ctr + 1;

 end

 LIStemp = LIS; temp = 0; i = 1;

 while (i <= size(LIStemp,1))

 temp = temp + 1;

 if ctr > size(in,2)

 return

 end

 if LIStemp(i,3) == 0

 if in(1,ctr) == 1

 ctr = ctr + 1;

 x = LIStemp(i,1); y = LIStemp(i,2);

 if ctr > size(in,2)

 return

 end

 if in(1,ctr) == 1

 LSP = [LSP; 2*x-1 2*y-1];

 ctr = ctr + 1;

 if in(1,ctr) == 1

 m(2*x-1,2*y-1) = 2^n + 2^(n-1);

 else

 m(2*x-1,2*y-1) = -2^n - 2^(n-1);

 end

 ctr = ctr + 1;

 else

 LIP = [LIP; 2*x-1 2*y-1];

 ctr = ctr + 1;

 end

 if ctr > size(in,2)

 return

 end

 if in(1,ctr) == 1

 ctr = ctr + 1;

 LSP = [LSP; 2*x-1 2*y];

 if in(1,ctr) == 1;

 m(2*x-1,2*y) = 2^n + 2^(n-1);

 else

 m(2*x-1,2*y) = -2^n - 2^(n-1);

 end

 ctr = ctr + 1;

 else

 LIP = [LIP; 2*x-1 2*y];

 ctr = ctr + 1;

 end

 if ctr > size(in,2)

 return

 end

 if in(1,ctr) == 1

 ctr = ctr + 1;

 LSP = [LSP; 2*x 2*y-1];

 if in(1,ctr) == 1

 m(2*x,2*y-1) = 2^n + 2^(n-1);

 else

 m(2*x,2*y-1) = -2^n - 2^(n-1);

 end

 ctr = ctr + 1;

 else

 LIP = [LIP; 2*x 2*y-1];

 ctr = ctr + 1;

 end

 if ctr > size(in,2)

 return

 end

 if in(1,ctr) == 1

 ctr = ctr + 1;

 LSP = [LSP; 2*x 2*y];

 if in(1,ctr) == 1

 m(2*x,2*y) = 2^n + 2^(n-1);

 else

 m(2*x,2*y) = -2^n - 2^(n-1);

 end

 ctr = ctr + 1;

 else

 LIP = [LIP; 2*x 2*y];

 ctr = ctr + 1;

 end

 if ((2*(2*x)-1) < size(m) & (2*(2*y)-1) < size(m))

 LIS = [LIS; LIStemp(i,1) LIStemp(i,2) 1];

 LIStemp = [LIStemp; LIStemp(i,1) LIStemp(i,2) 1];

 end

 LIS(temp,:) = []; temp = temp-1;

 else

 ctr = ctr + 1;

 end

 else

 if in(1,ctr) == 1

 x = LIStemp(i,1); y = LIStemp(i,2);

 LIS = [LIS; 2*x-1 2*y-1 0; 2*x-1 2*y 0; 2*x 2*y-1 0; 2*x 2*y 0];

 LIStemp = [LIStemp; 2*x-1 2*y-1 0; 2*x-1 2*y 0; 2*x 2*y-1 0; 2*x 2*y 0];

 LIS(temp,:) = []; temp = temp - 1;

 end

 ctr = ctr + 1;

 end

 i = i+1;

 end

 % Refinement Pass

 temp = 1;

 value = m(LSP(temp,1), LSP(temp,2));

 while (abs(value) >= 2^(n+1) & (temp <= size(LSP,1)))

 if ctr > size(in,2)

 return

 end

 value=value+((-1)^(in(1,ctr)+1))*(2^(n-1))*sign(m(LSP(temp,1),LSP(temp,2)));

 m(LSP(temp,1),LSP(temp,2)) = value;

 ctr = ctr + 1;

 temp = temp + 1;

 if temp <= size(LSP,1)

 value = m(LSP(temp,1),LSP(temp,2));

 end

 end

 n = n-1;

end

 7.CONCLUSION
A novel image transmission scheme was proposed for the communication of compressed SPIHT image streams over wireless channels. The scheme employs product codes consisting of turbo codes and erasure- correction codes in order to deal effectively with burst errors.

Teurbo codes and its different kind of encoding have been studied in this project. Cyclic coding and its application for error detection is studied.

Matlab programming for image processing is studied and used for prog-

ramming of SPIHT technique and EZW technique of image compression.

An algorithm that operates through set partitioning in hierarchical trees (SPIHT) and accomplishes completely embedded coding has been presented.

A new technique (EZW) for image coding has been presented that produces a fully embedded bit stream. The compression performance of this algorithm is competitive with virtually all technique.

8.SCOPE OF FURTHER STUDY

Image multiresolution representation for lossless and lossy compression can be further worked out.

Robust wavelet zerotree image compression with fixed length packetization couled be continued futher for work out.

As the lossy compression restricted by the speed of the communication link and real time requirement,further study and workout could be considered on these restriction.

As the masking effects are not well described quantitatively for nontrivial signals in lossy compression,further workout could be continued regarding this.

SPIHT technique of image compression using arithmetic coding can be worked out next.

 REFERENCES

[1] A. Said and W. A. pearlman, "A new and efficient image codec based on set partitioning in hierarchical tress." IEEE Trans. Cirucits Syst. Video Techno. Vol. 6 pp. 243-250, Jun 1996.

[2] G. Serwood and K. Zeger, “Error protection for progressive image transmission over memoryless and fading. Channels.” IEEE Trans. Commun. Vol.46.no.12, pp.1555-1559, Dec.1998.

[3] D.G.Sachs. A. Raghavan, and K. Ramchandran, “Wireless image transmission using multiple-description based concatenated codes,” presented at the Data Compression Conf., 2000.

[4] C.Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error correcting coding and decoding: turbo codes (1),” in Proc. IEEE. Int.Conf. Communication, vol.2, Geneva, Switzerland, May 1993, pp.23-26.

[5]S.Lin and D.J.Costello, Error Control Coding: Fundamentals and Applications. Englewood Cliffs, NJ: Prentice –Hall, 1983.

[6] S.B.Wicker, Error Control Systems for Digital Communication and Storage, Englewood Cliffs, NJ: Prentice-Hall, 1995.

[7] R.Puri and K. Ramchandran, “Multiple Description Source Coding using Forward Error Correcting Codes,” in Proc. Asilomar Conf. Signals Syst. Comp. Vol.1, Pacific Grove, CA, 1999,pp.342-346.

[8] A. Albanese, J. Bloemer, J. Edmonds, M.Luby, and M. Sudan, “Priority Encoding Transmission,” IEEE Trans.Inf. Theory, vol.42, no.11, pp.1737-1744, Nov. 1996

[9] B.A.Banister, B.Belzer, and T.R.Fisher, “Robust Image Transmission using JPEG2000 and Turbo codes,” IEEE Signal Process. Lett., vol.9,no4,pp 117-119,Apr.2002.

[10] G.Davis and J. Danskin, “Joint Source and channel coding for image transmission over lossy packet networks,” in Proc. SPIE, Apr. 1996,pp.376-387.

[11] V.Chande and N.Farvardin, “Progressive transmission of images over memoryless noisy channels,” IEEE J. Sel. Areas Commun.Vol.18.no.6.pp.850-860, Jun.2000.

[12] Digital Image Processing Using MATLAB by: Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, LPE, Pearson Education, 2006.

[13] Digital Communication By: M.Kulkarni, Umesh Publication.

[14] J.M.Shaprio, “Embedded image coding using zerotrees of wavelets coefficients,” IEEE Trans. Signal Processing, vol.41, pp. 3445-3462,Dec.1993.

[15] E.H.Adelson, E.Simoncelli, and R.Hingorani, “Orthogonal pyramid transforms for coding,” in Proc.SPIE, vol.845, Visual Commun. And Image Proc.II, Cambridge, MA, Oct.1987, pp. 50-58.

� EMBED Equation.DSMT4 ���

PAGE
2

_1215770994.unknown

_1215791447.unknown

_1215791804.unknown

_1295364339.unknown

_1295364465.unknown

_1295180994

_1294649484.unknown

_1215791717.unknown

_1215791755.unknown

_1215791660.unknown

_1215772669.unknown

_1215772750.unknown

_1215771529.unknown

_1215770873.unknown

_1215770957.unknown

_1215770813.unknown

