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Abstract 
 

Image processing systems can encode raw images with different degrees of 

precision, achieving varying levels of compression. Different encoders with 

different compression ratios can be built and used for different applications. 

The need to dynamically adjust the compression ratio of the encoder arises 

in many applications. One example involves the real-time transmission of 

encoded data over a packet switched network. To suitably adapt the encoder 

to varying compression requirements, adaptive adjustments of the 

compression parameters are required. This involves reconfiguring the 

encoder in an efficient manner. Our approach exploits the reconfigurable 

nature of Field Programmable Gate Arrays (FPGA), to adapt the encoder to 

the varying requirements in real time. A Wavelet transform based image 

compression scheme is implemented for encoding gray-scale frames of 512 

by 512 pixels on FPGAs. By varying the zero thresholds, the encoder can 

achieve varying compression levels. The complete design of the encoder on 

FPGA is presented. Implementation details of the individual blocks are 

discussed in great detail. Finally, results from testing are reported and 

discussed. 
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1.1     Adaptive Image Compression 

 

With the use of more and more digital still and moving images, huge amount of 

disk space is required for storage and manipulation purpose. For example, a 

standard 35-mm photograph digitized at 12µm per pixel requires about 18Mbytes 

of storage and one second of NTSC-quality color video requires 23 Mbytes of 

storage. That is why image compression is very important in order to reduce 

storage need. Digital images can be compressed by eliminating redundant 

information present in the image, such as spatial redundancy, spectral redundancy 

and temporal redundancy. The removal of spatial and spectral redundancy is often 

Accomplished by transform coding, which uses some reversible linear transform to 

decorrelate the image data. JPEG is the most commonly used image compression 

standard in today’s world. Joint Photographic Experts Group (JPEG) is an ISO 

standard committee with a mission on “Coding and compression of still images”. 

It’s jointly supported by ISO and ITU-T. But researchers have found that JPEG has 

many limitations. In order to overcome all those limitations and to add on new 

improved features, ISO and ITU-T has come up with new image compression 

standard, which is JPEG2000. The JPEG2000 is intended to provide a new image 

coding/decoding system using state of the art compression techniques, based on the 

use of wavelet technology. This thesis focuses on the adaptive image compression 

based on discrete wavelet transform. 

Image processing systems can encode raw images with different degrees of 

Precision, achieving varying levels of compression. Encoding can be achieved with 

different encoders with varying compression ratios. The need to dynamically adjust 

the compression ratio of the encoder arises in many situations.One example 
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involves the real-time transmission of encoded data over a packet switched 

network. On detecting network congestion, the encoder can cut down the precision 

and gain more compression, rather than waiting for some packets to be dropped. 

To suitably adapt the encoder to the varying compression requirements, adaptive 

adjustments of the compression parameters are required. This involves 

reconfiguring the encoder in some sense.  

               This thesis work presents the hardware design of a Forward Discrete 

Wavelet Transform (FDWT) processor using VHDL. The design utilises the 

lossless features of FDWT. This is a reversible algorithm, which means there is no 

loss of information while compressing and transmitting the image information. 

This work presents the hardware architecture of the processor as well as the design 

of its constituent components in VHDL. The architecture does not comprise any 

hardware multiplier unit and therefore suitable for development of high-

performance image processors. 

 

 

1.2     Dissertation Layout 

 

The remainder of this document is organized as follows. Chapter one explains 

related work in this field. Chapter two describes Wavelet transform based image 

compression schemes. Next, chapter three explains the design and implementation 

of the encoder. Then, chapter four summarizes the results obtained.Finally, in 

chapter five conclusions and further scope of work has been discussed. 
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1.3      Other Implementations 

 

There are many other implementations using ASICs and custom ICs. There have 

also been many software based image compression kits like [GEOFF], which 

utilizes wavelet based compression techniques.There have been other efforts to 

implement Wavelet transform based image Compression systems on FPGA. In one 

implementation [BRIAN], the discrete wavelet transform coefficients are 

computed for 256x256 grayscale frames. This implementation also supports a 

multiplierless quantizer and a run length encoder. The frame rates quoted are 20 

frames/second on Xilinx 4008 FPGAs with on-board embedded memory.  
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Chapter 2 
Wavelet Transform 

 
 

 

 

 

 

 

 

 

 

 

 

 



 
2.1 Wavelets 

 
The following introduction on wavelets is based on the paper by mathematician 

Gilbert Strang [STRANG]. A wavelet is a localized function in time (or space in 

the case of images) with mean zero. A wavelet basis is derived from the wavelet 

(small wave) by its own dilations and translations. 

 
Let the original wavelet start at t = 0 and end at t = N. The shifted wavelet w0,k, 

starts at t = k and ends at t = k + N. The rescaled wavelet wj,0 starts at t = 0 and ends 

at t = N/  At a given resolution j, the basis functions are wj,k(t), and the time steps at 

that level are  At the next finer resolution, j+1,the time steps are . 

Frequencies shift upward by an octave, when time is rescaled by 2. Functionally, 

DiscreteWavelet Transform (DWT) is very much similar to the Discrete Fourier 

Transform, in that the transformation function is orthogonal. A signal passed twice 

through the orthogonal function is unchanged. As the input signal is a set of 

samples, both transforms are convolutions. While the basis function of the Fourier 

transform is a sinusoid, the wavelet basis is a set waves obtained by the dilations 

and translations of the mother wavelet. 

 

2.1.1 A simple example - the Haar wavelet 

 

One of the first wavelet was that of Haar. The Haar scaling function is shown 

below. 
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Applying the Haar wavelet on a sequence of values computes its sums and 

differences. For example, a sequence of values a, b would be replaced by                

s = (a + b)/2 and d = (b - a). The   values of a and b can be reconstructed as  

a = s - d=2 and b = s + d=2.  

The input signal with 2n samples is replaced with 2n-1 averages (s0(i)) and 2n-1 

differences (d0(i)). The averages can be thought of as a coarser representation of the 

signal and the differences as the information needed to go back to the original 

resolution. The averages and differences are now computed on the coarser signal 

(s0(i)) of length 2n-1. This gives (s1(i)) and (d1(i)) of length 2n-2 each. This operation 

can be performed n times, till we run out of samples. The inverse operation starts 

by computing sn-2(j) from sn-1(j) and dn-1(j). 

 

2.1.2 Lifting scheme 

 

The above computation of the Haar wavelet needs intermediate storage to store the 

average and difference. The average computed, cannot be written back in place of 

a, till the difference has been computed. Lifting scheme on the other hand allows 

for an in place computation. In the first step, we compute only the difference           

d = (b-a) and store it in place of b. Next, the average value is computed in terms of 

a and the newly computed difference, b, as s = a + b=2. The inverse can be 

computed by reversing the order and flipping the signs. This is a simple instance of 

lifting. Split Predict Update 
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Figure 2.1: Lifting Scheme 

A more general lifting scheme consists of three steps - split, predict and up-date, 

figure 2.1. The splitting stage splits the signal into two disjoint sets of samples. In 

the above example, it consists of even numbered samples and odd numbered 

samples. Each group contains half as many samples as the original signal. If the 

signal has a local correlation the consecutive samples will be highly correlated. In 

other words, given one set it should be able to predict the other. In the diagram, the 

even samples are used to predict the odd samples. Then the detail is the difference 

between the odd sample and its prediction.In the Haar case the prediction is simple, 

every even value is used to predict the next odd value. The order of the predictor in 

the Haar case is 1 and it eliminates zeroth order correlation. The reverse operation 

is done as undo-update, undo-predict and merge. 

 

2.1.3 Wavelets that map Integer to Integer 

 

We return to the Haar transform. Because of the division by 2 in the average 

computation, it is not an integer transform. A simple alternative is to calculate the 

sum instead of the average. Another solution known as the S (sequential) transform 

is to round off the average value to an integer value. The sum and difference of two 

integers are both even or both odd. So, the last bits of the difference and average 

should be identical. Hence the last bit from average can be omitted, with out 
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loosing information. In the general case, though rounding may add a non-linearity 

to the transform, it has been shown to be invertible, [CALDERBANK]. 

 

2.1.4 Compact support, Vanishing moments, and Smoothness 

 

Wavelets are localized functions and zero outside a bounded interval. This 

compact support corresponds to an FIR implementation. Another way to 

characterize wavelets by the number of coefficients and the level of iteration. If the 

frequency response of the corresponding filter has p zeroes at π, the approximation 

order is p. In other words, a wavelet basis with p vanishing moments can give a pth 

order approximation for any signal. The smoothness of the transfer functions is 

measured by the number of its derivatives. 

 

2.1.5 Orthogonal and Bi-orthogonal Wavelets 

 

The wavelet basis forms an orthogonal basis if the basis vectors are orthogonal to 

its own dialations and translations. A less stringent condition is that the vectors be 

bi-orthogonal. The DWT and inverse DWT can be implemented by filter banks. 

This includes an analysis filter and a synthesis filter. When the analysis and 

synthesis filters are transposes as well as inverses of each other, the whole filter 

bank is orthogonal. When they are inverses, but not necessarily transposes, the 

filter bank is bi-orthogonal. 

 

 

 

 



2.1.6 (2, 2) Bi-orthogonal Cohen Daubechies Feauveau Wavelet 

 

The main intent of wavelet transform is to decompose a signal f, in terms of its 

basis vectors. 

f = ∑ai Wi 
 
To have an efficient representation of signal f using only a few coefficients ai, the 

basis functions should match the features of the signal we want to represent. The 

(2, 2) Cohen Daubechies Feauveau Wavelet [COHEN] is widely used for image 

compression because of its good compression characteristics. The original filters 

have 5+3 = 8 filter coefficients, whereas an implementation with the lifting scheme 

has only 2+2 = 4 filter coefficients. The forward and reverse filters are shown in 

table 2.1. Fractional numbers are converted to integers at each stage. Though such 

an operation adds non-linearity to the transform, the transform is fully invertible as 

long as the rounding is deterministic. Forward transform 

 
Table 2.1: (2, 2) CDF wavelet with lifting scheme 

 

2.1.7 Boundary treatment 

 

Real world signals are limited to a finite interval. However filter bank algorithms 

assume infinite lengths. The computation of s and d coefficients refer to k signal 
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samples before and after the current sample, depending on the filter length k. 

Different methods of extending the signal at the boundaries has been suggested. 

One scheme that is widely used is the symmetric extension. It extends the finite 

signal by mirroring it around its boundaries. 

 

2.1.8 Advantages of Wavelets 

 

Real time signals are both time-limited (or space limited in the case of images) and 

band-limited. Time-limited signals can be efficiently represented by a basis of 

block functions (Dirac delta functions for infinitesimal small blocks). But block 

functions are not band-limited. Band limited signals on the other hand can be 

efficiently represented by a Fourier basis. But sines and cosines are not time-

limited. Wavelets are localized in both time (space) and frequency (scale) domains. 

Hence it is easy to capture local features in a signal. Another advantage of a 

wavelet basis is that it supports multi resolution. Consider the windowed Fourier 

transform. The effect of the window is to localize the signal being analyzed. 

Because a single window is used for all frequencies, the resolution of the analysis 

is same at all frequencies. To capture signal discontinuities (and spikes), one needs 

shorter windows, or shorter basis functions. At the same time, to analyze low 

frequency signal components, one needs longer basis functions. With wavelet 

based decomposition, the window sizes vary. Thus it allows analyzing the signal at 

different resolution levels. 
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Chapter 3 
Design and Implementation 
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3.1 Hardware platform 

 

Xilinx 4000 series FPGAs [XC4000] are available and can be used for the 

implementation. These are look-up table based FPGAs. Each basic block called a 

CLB (Configurable Logic Block) consists of two 4 input look-up tables and one 3 

input look-up table (figure A.1). Each CLB also has 2 flip flops. There are 

multiplexers within a CLB to achieve internal connectivity among the flip flops 

and look-up tables. The CLBs are arranged as a matrix. In addition to CLBs, these 

FPGAs have horizontal and vertical interconnects and switches (routing resources) 

to achieve connectivity between different ports of different CLBs. The look-up 

tables can be programmed with truth tables of 4 input or 3 input logic functions. 

The routing resources can be programmed to achieve the required connectivity 

between the CLBs.The hardware platform which can be used [WILDFORCE] is a 

PCI plug-in board with five Xilinx 4085 FPGAs, also referred to as PEs 

(Processing Elements). The board is stacked with five 1MB SRAM chips. Each of 

the five SRAM chips is directly connected to one of the five PEs. The embedded 

memory is accessible for read/write from both the host computer as well as from 

the corresponding PE. Each of the 1MB memory chip is organized as 262144 

words of 32 bits each. 

 

 

 

 

 

 



 

 
 

Figure 3.1: Configurable Logic Block (CLB) in XC4000 series FPGA 

 

3.2 Design parameters and constraints 

 

3.2.1 Memory read/write 

 

The input image to the encoder is raw gray scale frames of 512 by 512 pixels. Each 

pixel is represented by 256 gray scale levels (8 bits). Input frames are loaded to the 

embedded memory by the host computer and results are read back, once the PE has 

processed it. The PE also uses the embedded memory as intermediate storage to 

hold results between different stages of processing. 

The memory has a read latency of 2 cycles while memory writes are completed in 

the same cycle. Memory reads can be pipelined so that the effect of this latency is 

minimized. However, a clock cycle is wasted when there is a read to write turn 

around. The design concerns are to minimize memory read/write turn arounds and 
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to allow longer spells of read or write cycles instead. Attempts have also been 

made to minimize memory operations. 

 

3.2.2 Real time performance 

 

While the conventional television standards require 30 frames/second, many 

Multimedia applications like video conferencing run at much lower frame rates. In 

general, a good system clock ensures a good throughput. Other contributing factors 

to throughput include the time taken by the operating system driver routines to 

read/write from the embedded memory. 

 

3.2.3 Design partitioning 

 

The whole computation is partitioned into two stages. The first stage computes 

discrete wavelet transform coefficients of the input image frame and writes it back 

to the embedded memory. The second stage operates on this result to complete the 

rest of the processing. The second stage does dynamic quantization, zero 

thresholding, run length encoding for zeroes, and entropy encoding on the 

coefficients. The two stages are implemented on two separate FPGAs. 

 

3.3 Stage 1: DiscreteWavelet Transform 

 

Discrete Wavelet transform is implemented by filter banks. The filter used is the 

(2,2) Cohen-Debuchies-Feaveu wavelet filter. Though much longer filters are 

common for audio data, relatively short filters are used for video. 
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3.3.0.1 (2, 2) wavelet 

 

A modified form of the Bi-orthogonal (2,2) Cohen-Debuchies-Feaveu wavelet 

filter is used. The analysis filter equations are shown below. 

 

High pass coefficients: g(k) = 2x(2k + 1) - x(2k) - x(2k + 2) 

Low pass coefficients: f(k) = x(2k) + (g(k-1) + g(k)=8 

 

The boundary conditions are handled by symmetric extension of the coefficients as 

shown below: 

 
x[2], x[1], [ x[0], x[1],….,x[n- 1], x[n] ], x[n- 1], x[n- 2] 

 

The synthesis filter equations are shown below. 

 

Even samples: x(2k) = f(k) - (g(k-1) + g(k+1)=8 

Odd samples: x(2k + 1) = (g(k) + f(k) + f(k+1))=2 

 

3.3.0.2 DWT in X and Y directions 

 

Each pixel in the input frame is represented by 16 bits, accounting for 2 pixels per 

memory word. Thus, each memory read brings in two consecutive pixels of a row. 

Each clock cycle generates one value each of f and g coefficients. These have to be 

written back in place. The f coefficients are used again in the next stage of wave-

letting. Two consecutive values of f are written back in one memory location 

(figure 3.2). This saves on memory reads of the f coefficients in the next stage. In 

the next stage, where only the fs are processed, only alternate memory words are 



read from. Thus, the f and g coefficients are written back in an interleaved fashion. 

Another way to write back the coefficients is to put all the low frequency 

coefficients (f) ahead of the high frequency coefficients (g). This scheme of 

ordering the coefficients is called Mallot ordering. It allows progressive image 

transmission/reconstruction. The bulk of the ’average’ information is ahead, 

followed by the minor ’difference’ information. However, this ordering scheme 

requires temporary storage to hold the computed coefficients until the they can be 

written back. In our design, we use the in-place ordering scheme described above 

which is optimized for memory read/write operation. Once the three stages of 

wave-letting are done, we resort back to Mallot ordering. 

 
Figure 3.2: Coefficient ordering along X direction 

Once the filter has been applied along all rows in a stage, the same filter is applied 

along the columns. With the afore mentioned interleaved ordering scheme, 

alternate columns are all fs or all gs. Unlike the row traversal, the two values 

obtained in a memory read on a column traversal, are not consecutive values of the 

same column. Rather, they are corresponding values from two different vertically 

parallel streams (figure 3.3). 
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Figure 3.3: Coefficient ordering along Y direction 

 

These differences along the row and column computations are accounted by having 

two separate data flow blocks along the two directions. The data flow block in X 

direction (ForwardWaveletX) accepts two successive values of the same row and 

outputs either two consecutive fs or two consecutive gs, in alternate fashion. The 

data flow block in Y direction (ForwardWaveletY) accepts one value each from 

two parallel streams and outputs either the fs for the two streams or the gs in an 

alternate manner, (figure 3.4). These blocks also need information on when a 

row/column starts/ends to handle the boundary conditions. They also have a 

pipeline latency of 3 cycles.  

 
Figure 3.4: Fast Wavelet transform data flow blocks 
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3.3.0.3 3 stages of wave-letting 

 

The 512 by 512 pixel input image frame is processed with three stages of 

waveletting. In the first stage, 512 pixels of each row are used to compute 256 high 

pass coefficients (g) and 256 low pass coefficients (f), figure 3.5. The coefficients 

are written back in place of the original row. 

 
Figure 3.5: High pass and Low pass coefficients at stage 1, X direction 

 

Once all the 512 rows are processed, the filters are applied in the Y direction.This 

completes the first stage of wave-letting. While conventional Mallot ordering 

scheme aggregates coefficients into the 4 quadrants, our ordering scheme 

interleaves the coefficients in the memory. The second stage of wave-letting only 

processes the low frequency coefficients from the first stage. This corresponds to 

the upper left hand quadrant in the Mallot scheme. Thus, second stage operates on 

row and columns of length 256, while the third stage operates on rows and 

columns of length 128. The aggregation of coefficients along the 3 stages under 

Mallot ordering is shown in figure 3.6. The memory map with the interleaved 

ordering is shown in figure 3.7. 
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Figure 3.6: Mallot ordering along the 3 stages of wave-letting 

 

3.3.0.4 Over all architecture of Stage 1 

 

Stage one starts with a raw frame and does three stages of wave-letting. The over 

all architecture is shown in figure 3.8. Memory addressing is done with a pair of 

address registers - read and write address registers. The difference between write 

and read registers is the latency of the pipelined data-flow blocks. 

The maximum and minimum coefficient values for each block (each quadrant in 

the multi stage wave-letting) are maintained on the FPGA. These values are written 

back to a known location in the lower half (lower 0.5MB) of the embedded 

memory. 
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Figure 3.7: Interleaved ordering along the 3 stages of wave-letting 

 The second stage uses these values for the dynamic quantization of the 

coefficients. Row/Column Address registers, Memory access state machine and 

other control logic  

 
Figure 3.8: Stage 1 architecture 
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3.4 Stage 2 

Stage 2 does the rest of the processing on the wavelet coefficients computed 

in the first stage. The coefficients, are quantized, zero-thresholded, zeroes run 

length encoded, and entropy encoded to get the final compressed image. 

 

3.4.1 Dynamic quantization 

 

The coefficients from different sub-bands (different quadrants with the Mallot 

ordering scheme) are quantized separately. The dynamic range of the coefficients 

for each sub-band (computed in first stage) is divided into 16 quantization levels. 

The coefficients are quantized into one of the 16 possible levels. The maximum 

and minimum value of the coefficients for each sub-band is also needed while 

decoding the image. 

 
 Figure 3.9: Dynamic Quantizer 

The dynamic quantizer is implemented as a binary search tree look up in hardware 

(figure 3.9). A table look up based quantization scheme is not feasible since the 

range is dynamic - different for each sub-band, and different for each frame. The 

incoming stream of coefficients in the range [min:max] is translated to         

[0,max-min] by adding (or subtracting) the minimum. The shifted incoming value 
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is then compared with half the dynamic range (r/2) to determine whether it lies in 

the lower eight or upper eight quantization levels. The result forms the first bit 

(most significant bit) of the quantizer output. Depending on the outcome, the value 

is then compared with r/ 2 + r/ 4 or r / 2 – r / 4. This forms the second bit of the 

quantized output. The next two comparisons provide the remaining bits. The 

quantizer is a pipelined design, with 4 stages. 

 

3.4.2 Zero thresholding and RLE on zeroes 

 

Regions with abrupt changes will have larger wavelet coefficients while regions of 

little or no change would have smaller coefficients. Coefficients of small 

magnitude can be neglected without considerable distortion to the image. The error 

introduced is proportional to the magnitude of the coefficient being neglected. 

Coefficients are truncated to zero, based on a threshold. Different thresholds are 

used for different sub-bands, resulting in different resolution in different sub-

bands. Further, different sets of thresholds are used to achieve different levels of 

compression. Three different set of thresholds are used for each sub-band to get 

three different variants of the encoder with different compression levels. The 

corresponding levels for the three configurations of the encoder are shown in the 

appendix. After the zero thresholding a large number of coefficients are truncated 

to zero. Long sequences of zeroes can be effectively compressed by run length 

encoding, which replaces each individual occurrence of a zero in a continuous spell 

with a count indicating the length of the spell. To decode a run length encoded 

stream, this count has to be distinguishable from other characters of the input data 

set. The other valid characters are the 4 bit output from the quantizer. Sixteen 

numbers 0 to 15 are reserved for the quantizer output values, while numbers 16 to 



255 (240 numbers) are free. Thus, any continuous spell of zeroes ranging from 1 

(represented by the number 16) to 240 (represented by the number 255) can be 

replaced by the corresponding count. Longer spells have to be broken down to fall 

within this range. Table 3.1 shows the bit range allocation. The run length encoder, 

might not have an output on every cycle. The succeeding block has to be signalled 

as to when to read the RLE count, and when to wait for a spell to finish. Whenever 

RLE detects a zero, it asserts ’RLErunning,’and starts counting the sequence of 

continuous zeroes. The current sum of zeroes is always available on ’RLEout.’ 

When the continuous spell of zeroes end, ’RLErunning’ is deasserted, and 

’RLEspellEnd’ is asserted for one cycle to allow the next block to read off the RLE 

count. 

 

  
Table 3.1: Bit range allocation for RLE 

 

The RLE counter is also reset to 15.In this set-up, there is look ahead problem. 

Before RLE can signal the end of a spell, it needs to see the next value is the 

stream. But, RLE is used in conjunction with the dynamic quantizer, (RLE and 

quantizer are connected in parallel) which is a 4 staged pipeline.RLE might face an 

arbitrarily long sequence of zeroes. RLE can count only upto a maximum of 240 

zeroes. Thus, when RLE has seen 240 continuous zeroes and still more zeroes are 

arriving, ’RLEspellEnd’ would be asserted for one Input Zero threshold. 
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 Figure 3.10: 

Run Length Encoder for continuous zeroes 

Clock cycle and the internal counter are reset to 15. Here, ’RLErunning’ would be 

high through out the spell. The logic followed by the succeeding block is as 

follows. If ’RLErunning’ is asserted then wait till ’RLEspellEnd’ is asserted and 

read the ’RLEout’. Else, read the output of the dynamic quantizer. 

 

3.4.3 Entropy encoding 

 

Entropy encoding involves assigning a smaller length encoding for more 

frequently used characters in the data set and a larger length encoding for 

infrequently used characters in the data set. This involves variable length encoding 

of the input data. To efficiently retrieve the original data, an encoded word should 

not be a proper prefix of any other encoded word. Huffman trees are an efficient 

way of coming up with a variable length encoding for a set of characters, given the 

relative frequencies. Further, for a Huffman tree based encoding, decoding can be 

done in linear time (linear in the length of the encoded word).Various other 

schemes of encoding using different levels of context sensitive information exits. 

This might incur a costlier decoding function. 
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3.4.3.1 Encoding scheme 

 

In our implementation, we use an encoding scheme which is not a Huffman tree 

based code. The bit allocation is shown in figure 3.11. Eight bit inputs are variable 

length encoded between 3 to 18 bits. The complete encoding table is shown in the 

appendix. The encoding is implemented by two look-up tables on the FPGA. 

Given an eight bit input, the first look-up table (LUT), provides information about 

the size of encoding. The second LUT gives the actual encoding. Only the relevant 

bits from the second LUT should be used. The rest of the bits in the output are 

don’t care and are either chosen as logic 0 or 1 during logic optimization. The 

VHDL description of the encoder can be found in the appendix, huffman.vhd. 

 

 
Figure 3.11: Entropy encoding, bit allocation 
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Figure 3.12: Entropy encoder 

 

3.4.3.2 Bit packing 

 

The output of the entropy encoder varies from 3 to 18 bits. The bits need to be 

Packed into 32 bit words before being written back to the embedded memory. 

This is achieved by the shifter discussed below.  

 

3.4.3.3 Shifter 

 

The shifter consists of 5 register stages, each 32 bits wide. The input data can be 

shifted (rotated) by 16 or latched without shifting, to stage 1. The data can be 

shifted by 8 or passed on straight from stage 1 to stage 2. Similarly data can be 

shifted by 4, 2, and 1 when moving between the remaining stages. Data is shifted 

from stage to stage, and is accumulated at the last stage. When the last stage has 32 

bits of data, a memory write is initiated and the last stage is flushed. 
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Figure 3.13: Binary Shifter for bit packing 

The data is shifted to the right place over the 5 stages in order to complete a word 

at the last stage. The key decision is whether to shift or not at each stage. A 5 bit 

counter is maintained to store the length of the data currently held. For example, let 

the lengths of the words arriving at stage 1 be a1, a2, a3, etc. The counter will have 

values 0, a1, a1 + a2, etc. in the corresponding clock cycles. The counter is allowed 

to overflow once it reaches 31. Thus, the counter value indicates where the next 

word should start by the time it reaches the last stage. Different bits of the counter 

(delayed appropriately) are used to decide whether to shift or not at each stage. Part 

of the last stage needs double buffering. To determine the size of the double buffer 

needed, consider the worst case. The last stage already has 31 bits and the next data 

coming from stage 4 is of maximum size (18 bits). Only 1 out of the 18 bits can be 

added to the last stage and a memory write initiated. The rest of the 17 bits need to 
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be buffered for this cycle, and brought out in the next cycle. Thus, 17 out of the 32 

bits in the last stage are double buffered. Thus, whenever an overflow is detected, 

the double buffer is loaded with the excess bits and taken out during the next cycle. 

The detailed hardware implementation may be found in the appendix in the file 

shifter.vhd. 

 

3.4.4 Output file format 

 

At the end of the second stage, the upper memory (upper 0.5MB) contains the 

Packed bit stream. The total count of the bit stream approximated to the nearest 

WORD is written to memory location 0. To reconstruct the data from the bit 

stream, the following information is needed. 

• The actual bit stream. On Huffman decoding, the actual 8 bit codes are            

retrieved. These codes are either the quantizer output, or the RLE count.          

On expanding the RLE count to the corresponding number of zeroes, we           

get the actual quantized stream. 

• The four quadrants of the final stage of wave-letting can be located at            

the first four 128*128 byte blocks. The three quadrants of the next stage            

can be located at at next three blocks sized at 256*256 bytes each. Each 

quadrant (sub-band) is quantized separately. The dynamic range of each of 

the quadrant should be known to reconstruct the original stream. 

The output file written has all the information needed to reconstruct the image. The 

format of the output file generated is shown in figure 3.14. 



 
Figure 3.14: Out file format 

 

3.4.5 Stage 2, Overall architecture 

 

The top level data flow diagram of the second stage is shown in figure 3.15. 

Wavelet coefficients from memory are read from the lower half of the embedded 

memory. The block (sub-band) minimum and maximum is also read from the 

memory. The packed bit stream output is written to the upper memory, and the bit 

stream length is written to memory location 0. The control software reads the 

embedded memory and generates the compressed image file. 
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Figure 3.15: Stage 2, data flow diagram 

The control flow is show in figure 3.16. Before reading the wavelet coefficients, 

the maximum and minimum of coefficients in each sub-band are read from the 

lower memory. The coefficients are then read and processed for each sub-band, 

starting with the lowest frequency band. As shown in the state diagram, a memory 

read is fired in stage Read 001. Memory read has a latency of 2 clock cycles. The 

results of the read are finally available in state Read 100. Memory writes are 

completed in the same cycle. The two intermediate states, Read 010 and Write can 

be used to write back the output, if output is available. Each memory read brings in 

two wavelet coefficients. Consider the worst case, where the two coefficients get 

expanded to 18 bits each. There are two memory write cycles before the next read. 

When ever a memory write is performed, the memory address register is 

incremented. The read address generators read each sub-band from the interleaved 

memory pattern. The address ranges for each sub-band with the interleaved 

ordering scheme is shown in appendix. The output is written as a continuous 

stream, 
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Figure 3.16: Stage 2, control flow diagram 

Starting with the lowest sub-band. Thus the output is effectively in Mallot ordering 

and can be progressively transmitted/decoded. 
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                    (a) lena.pgm              (b) barbara.pgm              (c) goldhill.pgm 

 

Figure 4.1: Original Images 

 

 

 

 
                   (a) lena.pgm               (b) barbara.pgm              (c) goldhill.pgm 

 

Figure 4.2: Configuration 1, Minimum compression 
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                   (a) lena.pgm               (b) barbara.pgm              (c) goldhill.pgm 

 

Figure 4.3: Configuration 2, Medium compression 

 

 

 

 
                    (a) lena.pgm              (b) barbara.pgm              (c) goldhill.pgm 

 

Figure 4.4: Configuration 3, Maximum compression 
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5.1 Conclusions 

 

We have designed a Wavelet transform based image encoder on re-programmable 

hardware - FPGA. The encoder has multiple configurations which support different 

compression levels. The effective frame rate achieved ranges between 10 and 12. 

The major conclusions are as follows: 

 Wavelet based image compression is ideal for adaptive compression since it 

is inherently a multi-resolution scheme. Variable levels of compression can 

be easily achieved. The number of wave-letting stages can be varied, 

resulting in different number of sub bands. The zero thresholds for 

truncating coefficients of small magnitude can be varied. Different filter 

banks with different characteristics can be used. For example, audio data has 

much longer correlation and hence longer filter are used for audio, compared 

to video. Filters tuned to the nature of the data achieve much higher 

compression. 

 Efficient fast algorithm (pyramidal computing scheme) for the computation 

of discrete wavelet coefficients makes a wavelet transform based encoder 

computationally efficient. 

 Computationally intensive problems often require a hardware intensive 

solution. Unlike a microprocessor with a single MAC unit, a hardware 

implementation achieves greater parallelism, and hence higher throughput. 

 Reconfigurable hardware is best suited for rapid prototyping applications 

where the lead time for implementation can be critical. It is an ideal 

development environment, since bugs can be fixed and multiple design 
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iterations can be done, with out incurring any non recurring engineering 

costs. 

 Reconfigurable hardware is also suited for applications with rapidly 

changing requirements. In effect, the same piece of silicon can be reused. 

 With respect to limitations, achieving good timing/area performance on 

these FPGAs is much harder, when compared to an ASIC or a custom IC 

implementation. There are two reasons for this. The first pertains to the fixed 

size look-up tables. This leads to under utilization of the device. The second 

reason is that the pre-fabricated routing resources run out fast with higher 

device utilization. 

 

5.2 Future work 

 

The lessons learned from this experience will help us enhance similar 

implementations in the future. Few of the improvements that we now foresee are 

listed below: 

 Build a corresponding decoder on the FPGA and demonstrate the 

adaptability of the encoder-decoder pair. The encoder would need to signal 

the decoder on which codec is being used. 

 Data movement from host to embedded memory and back to host takes a 

significant amount of the processing time. Data movement could have been 

minimized. By implementing both the stages of the encoder on a single 

FPGA, one read/write memory cycle could have been avoided. On the other 

side, when these FPGAs are utilized more than about 40%, the timing 

performance drops sharply. This is because it runs out of routing resources; 
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consequently many long and circuitous routes result. Hence the over all 

system clock drops. This tradeoff can be better optimized. 

 An alternate architecture would be to use the two PEs for the two stages (to 

get good timing), but use the local bus on the board to transfer data from 

PE1 to PE2. 

 A suggestion with respect to embedded memory architecture is to have two 

embedded memory chips attached to each PE, so that is can work as a 

double buffer. Here, the host can refill the next frame on one of the memory 

chips, while the PE is still working with the other chip. 

 The metrics on which encoder can be graded include the compression ratio, 

throughput, Processing noise, and implementation costs. Further, the 

adaptively of the encoder to support different compression levels at different 

noise levels can also measured. 

 The encoder runs in two stages. A raw frame of 512 by 512 pixels can 

loaded to the embedded memory. After stage 1 finishes its processing on this 

memory, the memory image can used as input for the second stage. The two 

hardware configurations, corresponding to the two stages, can be run at a 

system clock of 25MHz. The two hardware configurations are loaded onto 

two different FPGAs on the same board. 

 The embedded memory can load and unloaded by the host computer using 

the operating system driver routines. The memory access times can be 

measured. List given below quantifies the time taken by the DMA based 

read/write APIs provided by the board vendor. The operating system running 

on the host computer is Linux, kernel version 2.2.5.  

 

 



 
Read from host  
0.5 MB 

4.244 ms 
 

Write from host  
0.5 MB 

4.017 ms 
 

Read from host 
1.0 MB 

8.398 ms 
 

Write from host 
1.0 MB 

7.981 ms 
 

 

Table 5.1: Embedded memory access times from host computer 

 

 Different hardware configurations with different compression levels would 

build and tested. The characteristics of the three configurations over three 

different frames are displayed in tables (5.4, 5.5, and 5.6). A software 

decoder can be used to recontruct the encoded image in order to compare 

with the original.  

 Noise figures from a software encoder can also quoted. The PSNR and 

RMSE metrics can compute as per the equation given below. Percentage 

compression is the ratio of compressed image size to the original image size 

(512x512 bytes). Bits per pixel (bpp) are the ratio of image size in bits to 

number of pixels.  

 

 
Table 4.3: PSNR and RMSE equations 
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Table 5.4: Compression levels and noise measurements for ’lena’ 

 

 
 

Table 5.5: Compression levels and noise measurements for ’barbara’ 

 

 
 

Table 5.6: Compression levels and noise neasurements for ’goldhill’ 
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Appendix A 

Design parameters 
A.1 Zero threshold levels for different codecs 

 
subband Config.  1 Config.  2 Config.  3 
0 0 0 0 
1 39 78 156 
2 27 54 108 
3 104 208 416 
4 79 158 316 
5 50 100 200 
6 191 382 764 
 

Table A.1: Zero threshold levels for different configurations 
 
A.2 Throughput comparison with a software encoder 

The software encoder distributed as part of the ACS bench mark suite was used to 

obtain time stamps. The encoder was run on a Linux based computer with Pentium 

2 processor, running at 333MHz, and having a main memory of 256MB.Time 

stamps were inserted at points which demarcate the 2 stages. As for the FPGA 

implementation, timing measurements do not include secondary storage media 

latencies. 

stage       time 

1 181.046 ms 

2 132.331 ms 

 

Table A.2: Throughput measured from the software encoder 



 

A.3 Design flow 

 

Timing  VHDL VHDL constraints design description 

VHDL  
synthesis tools 

FPGA specific 
RLT netlist 
(XNF netlist)

Xilinx tools 
- Place and Route 

       -     Bit generation 
- Static timing analysis

simulation tools 

Bitstream for 
configuring the 

FPGA
 

 
Figure A.1: Design flow 
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Appendix B 

Source code listings 

B.1 Stage 1 - VHDL source code 
B.1.1 waveletX.vhd 
-- 
-- Stage1 - Forward Wavelet (in X direction) 
-- 
-- Input  : A 512x512 pixel image, streamed row wise, two pixels at a time,  
--  ’p2’ and ’p3’; two previous samples are held in ’p0’ and ’p1’. 
-- 
-- Output : ’f’ and ’g’ are two weighted difference functions, The output is  
--  256 values of ’f’ and 256 values of ’g’. Note that ’f’ and ’g’ at 
--  the boundary are slightly different, due to which we need two  
--  additional signals to signal row begining and ending. 
-- 
-- Note that output is send back as ’f0’, ’f1’, ’g0’, ’g1’ ... instead of  
--’f0’, ’g0’, ’f1’, ’g1’ ... This is because of the order it is written back  
--into memory in the higher level module. 
-- 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use ieee.std_logic_signed.all; 
 
entity ForwardWaveletX is 
 
port(  
FwavClk   : in std_logic; 
FwavEnbl  : in std_logic; 
FwavStart : in std_logic; 
FwavEnd   : in std_logic; 
Fwav_p3   : in std_logic_vector (15 downto 0); 
Fwav_p2   : in std_logic_vector (15 downto 0); 
Fwav_f    : out std_logic_vector (15 downto 0); 
Fwav_g    : out std_logic_vector (15 downto 0)); 
 
end ForwardWaveletX; 
 
architecture structural of ForwardWaveletX is  
 
constant prop_delay : time := 5 ns; 
subtype std16 is std_logic_vector (15 downto 0); 
signal p0, p1, g_out, g_prev1, g_prev2 : std16; 
signal f_tmp1, f_tmp2, f_out, f_prev   : std16; 
signal ForG, FwavStart1, FwavEnd1      : std_logic; 
 
   begin 
 
run : process(FwavClk) 
 
   begin 
 
if(rising_edge(FwavClk)) then 
     if(FwavEnbl = ’1’) then 
             p0 <= Fwav_p2 after prop_delay; 
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             p1 <= Fwav_p3 after prop_delay; 
                  if(ForG=’1’) then 
                           Fwav_f <= f_prev after prop_delay; 
                           Fwav_g <= f_out after prop_delay; 
                  else 
                           Fwav_f <= g_prev2 after prop_delay; 
                           Fwav_g <= g_prev1 after prop_delay; 
                  end if; 
                                   if(FwavStart=’1’) then 
                                      ForG <= ’0’ after prop_delay; 
                                   else 
                                      ForG <= not(ForG) after prop_delay; 
                                   end if; 

g_prev2 <= g_prev1 after prop_delay; 
g_prev1 <= g_out after prop_delay; 
f_prev <= f_out after prop_delay; 
FwavEnd1 <= FwavEnd after prop_delay; 
FwavStart1 <= FwavStart after prop_delay; 

      end if; 
end if; 
 
end process; 
 
computeg : process(Fwav_p3, p1, p0, FwavEnd1) 
 
begin 
 
if(FwavEnd1=’1’) then 
 g_out <= (p0(15) & p0(13 downto 0) & ’0’) - (p1(15) & p1(13 downto 0) & ’0’); 
else 
g_out <= (p0(15) & p0(13 downto 0) & ’0’)- (p1 + Fwav_p3); 
end if; 
 
end process; 
 
computef : process(FwavStart1, g_out, g_prev1,f_tmp1, f_tmp2, p1) 
 
begin 
 
 
if(FwavStart1=’1’) then 
          f_tmp1 <= g_out + g_out; 
else 
          f_tmp1 <= g_prev1 + g_out; 
end if; 
 
f_tmp2 <= (f_tmp1(15) & f_tmp1(15) & f_tmp1(15) & f_tmp1(15 downto 3)); 
f_out <= p1 + f_tmp2; 
 
end process; 
 
end structural; 
 

B.1.2 waveletY.vhd 
-- 
-- Stage1 - Forward Wavelet (in Y direction) 
-- 
-- Input  : A 512x512 pixel image, streamed row wise, two pixels at a time,  
--  ’p2’ and ’p3’; two previous samples are held in ’p0’ and ’p1’. 
-- 
-- Output : ’f’ and ’g’ are two weighted difference functions,The output is  
--          256 values of ’f’ and 256 values of ’g’.Note that ’f’ and ’g’ at  
--  the boundary are slightly different, due to which we need two  
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--  additional signals to signal row begining and ending. 
-- 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use ieee.std_logic_signed.all; 
 
entity ForwardWaveletY is 
 
port(  
FwavClk   : in std_logic; 
FwavEnbl  : in std_logic; 
FwavStart : in std_logic; 
FwavEnd   : in std_logic; 
Fwav_a4   : in std_logic_vector (15 downto 0); 
Fwav_b4   : in std_logic_vector (15 downto 0); 
Fwav_a    : out std_logic_vector (15 downto 0); 
Fwav_b    : out std_logic_vector (15 downto 0); 
Fwav_Max  : out std_logic); 
 
end ForwardWaveletY; 
 
architecture structural of ForwardWaveletY is 
 
constant prop_delay : time := 5 ns; 
subtype std1 is std_logic; 
subtype std16 is std_logic_vector (15 downto 0); 
signal a2, a3 : std16;                          -- 2 previous values of a4 
signal b2, b3 : std16;                          -- 2 previous values of b4 
signal a_g, b_g, a_gd : std16;                  -- g outputs of 2 streams, 
signal b_gd, a_gdd, b_gdd: std16;               -- latched, double latched ... 
signal a_f1, a_f2, a_f3, a_f3d : std16;   -- f, partial outputs 
signal b_f1, b_f2, b_f3, b_f3d : std16;   -- f, partial outputs 
signal FwavStart1, FwavStart2 : std1;   -- delayed FwavStart’s 
signal FwavEnd1, FwavEnd2 : std1;    -- and FwavEnd’s 
signal ForG : std1;   -- keep track of whether f or  
  --g is going out           
begin 
 
run : process(FwavClk) 
 
begin 
 
if(rising_edge(FwavClk)) then 

if(FwavEnbl = ’1’) then 
a2 <= a3 after prop_delay; 
a3 <= Fwav_a4 after prop_delay; 
b2 <= b3 after prop_delay; 
b3 <= Fwav_b4 after prop_delay; 
FwavStart2<= FwavStart1 after prop_delay; 
FwavStart1<= FwavStart after prop_delay; 
FwavEnd1 <= FwavEnd after prop_delay; 
FwavEnd2 <= FwavEnd1 after prop_delay; 
a_gdd <= a_gd after prop_delay; 
b_gdd <= b_gd after prop_delay; 
a_gd <= a_g after prop_delay; 
b_gd <= b_g after prop_delay; 
a_f3d <= a_f3 after prop_delay; 
b_f3d <= b_f3 after prop_delay; 

if(FwavStart=’1’) then 
ForG <= ’0’ after prop_delay; 

else 
ForG <= not(ForG) after prop_delay; 

end if; 



  vii 
                                    
            

end if; 
end if; 
 
end process; 
 
computeg : process(a2, a3, Fwav_a4,b2, b3, Fwav_b4,FwavEnd1) 
 
begin 
 
if(FwavEnd1=’1’) then 
a_g <= (a3(15) & a3(13 downto 0) & ’0’)-(a2(15) & a2(13 downto 0) & ’0’); 
b_g <= (b3(15) & b3(13 downto 0) & ’0’)-(b2(15) & b2(13 downto 0) & ’0’); 
else 
a_g <= (a3(15) & a3(13 downto 0) & ’0’)-a2 -Fwav_a4; 
b_g <= (b3(15) & b3(13 downto 0) & ’0’)-b2 -Fwav_b4; 
end if; 
 
end process; 
 
computef:process(FwavStart2, a2, b2,a_g,b_g, a_gdd, b_gdd,a_f1,b_f1,a_f2,b_f2) 
 
begin 
 
if(FwavStart2=’1’) then 

a_f1 <= a_g + -- current g 
a_g; -- current g 
b_f1 <= b_g + -- current g 
b_g; -- current g 

else 
a_f1 <= a_gdd + -- prev g 
a_g; -- current g 
b_f1 <= b_gdd + -- prev g 
b_g; -- current g 

end if; 
 
-- divide by 8 and drop fractional part, 
-- because of two’s compliment representation, if number is 
-- negative and there is a non zero fractional value, we need to 
-- add 1 after dropping the fractional part. 
-- if((a_f1(15) = ’1’) and 
-- ((a_f1(2)=’1’) or (a_f1(1)=’1’) or (a_f1(0)=’1’))) then 
-- a_f2 <= (a_f1(15) & a_f1(15) & a_f1(15) & a_f1(15 downto 3)) + 1; 
-- else 
 

a_f2 <= (a_f1(15) & a_f1(15) & a_f1(15) & a_f1(15 downto 3)); 
 

-- end if; 
-- if((b_f1(15) = ’1’) and 
-- ((b_f1(2)=’1’) or (b_f1(1)=’1’) or (b_f1(0)=’1’))) then 
-- b_f2 <= (b_f1(15) & b_f1(15) & b_f1(15) & b_f1(15 downto 3)) + 1; 
-- else 
 

b_f2 <= (b_f1(15) & b_f1(15) & b_f1(15) & b_f1(15 downto 3)); 
 

--end if; 
a_f3 <= a_f2 + a2; 
b_f3 <= b_f2 + b2; 
 

end process; 
 
out_mux : process(ForG, a_f3d, a_gdd, b_f3d, b_gdd) 
 
begin 
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if(ForG = ’0’) then 
Fwav_a <= a_f3d; 
Fwav_b <= b_f3d; 

if(a_f3d > b_f3d) then 
Fwav_Max <= ’0’; 

else 
Fwav_Max <= ’1’; 

end if; 
else 

Fwav_a <= a_gdd; 
Fwav_b <= b_gdd; 

if(a_gdd > b_gdd) then 
Fwav_Max <= ’0’; 

else 
Fwav_Max <= ’1’; 

end if; 
end if; 
 
end process; 
end structural; 
 
 
 
 

B.1.3 top_level_for_stage1.vhd  
-- 
-- Description: 
-- 
-- This file along with "waveletX.vhd" & "waveletY.vhd" implements DWT  
-- (discrete wavelet transform)/multi resolution encoding of the input image. 
-- 
-- The input image is 512x512 pixels, with each memory WORD holding 2 pixels  
-- (12 bits each) the input is a 512x256 memory array (0.5 MB). 
-- 
-- Stage 1: Process each row (512 pixels), extract 256 ’f’s and 256 ’g’s from 
-- each row, write it back in place: 
-- [pppppppp...pppp] => [fgfgfgfg...fgfg] 
-- 
-- Instead, it is actually written back as: 
-- [pppppppp...pppp] => [ffggffgg...ffgg]. 
-- 
-- Then same operation along Y direction. 
-- 
-- Stage 2: Only ’f’s from first stage are input to second stage. Thus we have 
-- rows of length 256. 
-- (see why f/g outputs from stage1 was written back jumbled? need only 256  
-- memory READS, else it would have taken 512 memory READS). 
-- 
-- Stage 3: The third stage follows similarly, processing only the ’f’s from  
-- second stage. Each stage has to be done in both X and Y directions. 
-- 
-- It is smooth sailing in X direction with two pixels of a row arriving on 
-- each memory READ and two values being written back in each memory WRITE. 
-- 
-- In Y direction, we have to perform two memory READs to get two consecutive 
-- values of a stream (column). By then we also get two consecutive values  
-- from the next (vertically parallel) stream.Hence, two different 
-- ForwardWavelet blocks (ForwardWaveletX and ForwardWaveletY) are used for 
-- the X and Y directions. 
-- 
-- ForwardWaveletX: accepts two successive values of the same row and outputs 
-- either two consecutive f’s or two consecutive g’s (alternately). 
-- 
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-- ForwardWaveletY: accepts one pixel each from two columns and outputs either 
-- one f each of the two columns or one g each of the two columns  
-- (alternately). 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use IEEE.std_logic_signed.all; 
 
 
architecture Memory_Access of PE1_Logic_Core is 
 
 
 
 
component ForwardWaveletX is 
port(  
FwavClk   : in std_logic; 
FwavEnbl  : in std_logic; 
FwavStart : in std_logic; 
FwavEnd   : in std_logic; 
Fwav_p3   : in std_logic_vector (15 downto 0); 
Fwav_p2   : in std_logic_vector (15 downto 0); 
Fwav_f    : out std_logic_vector(15 downto 0); 
Fwav_g    : out std_logic_vector(15 downto 0)); 
end component; 
 
component ForwardWaveletY is 
port (  
FwavClk    : in std_logic; 
FwavEnbl   : in std_logic; 
FwavStart  : in std_logic; 
FwavEnd    : in std_logic; 
Fwav_a4    : in std_logic_vector (15 downto 0); 
Fwav_b4    : in std_logic_vector (15 downto 0); 
Fwav_a     : out std_logic_vector (15 downto 0); 
Fwav_b     : out std_logic_vector (15 downto 0); 
Fwav_Max   : out std_logic); 
end component; 
 
type MemoryStates is(  
MemWaitforBus, 
MemRead001,  -- READ fired in this cycle, results later 
MemRead010,  -- READ fired last cycle, still waiting for results 
MemRead100,  -- READ result arrives 
MemWrite,   -- normal coefficients 
MemWriteMinMax1,  -- coefficient min/max block1 (done at end of each stage) 
MemWriteMinMax2,  -- coefficient min/max block2 
MemWriteMinMax3,  -- coefficient min/max block3 
MemWriteMinMax4,  -- coefficient min/max block4 
MemInterrupt, 
MemDone);   -- Black hole state! 
 
signal Mem_PState : MemoryStates;    -- Present state 
signal Mem_NState : MemoryStates;    -- Next state 
signal Enbl : std_logic; 
signal nPass : std_logic_vector(1 downto 0); -- 00, 01, 10 
signal ENDofROWx : std_logic;    -- Row BEGIN and END signals 
signal STARTofROWx : std_logic; 
signal ENDofROWy : std_logic;    -- Col BEGIN and END signals 
signal STARTofROWy : std_logic; 
signal ROWorCOL : std_logic;     -- 0=>row, 1=>col. 
signal ROWorCOL1 : std_logic;    -- delayed versions of 
signal ROWorCOL2 : std_logic;    -- ROWorCOL 
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signal ROWorCOL3 : std_logic; 
signal cntrROW : std_logic_vector(8 downto 0);  -- ROW, COL address 
signal cntrCOL : std_logic_vector(7 downto 0);  -- registers for READ 
signal cntrROW_old1 : std_logic_vector(8 downto 0); 
signal cntrCOL_old1 : std_logic_vector(7 downto 0); 
signal cntrROW_old2 : std_logic_vector(8 downto 0); 
signal cntrCOL_old2 : std_logic_vector(7 downto 0); 
signal cntrROW_old3 : std_logic_vector(8 downto 0);  -- ROW, COL address 
signal cntrCOL_old3 : std_logic_vector(7 downto 0);  -- registers for WRITE. 
signal ROW_limit : std_logic_vector(8 downto 0);     -- 511, 510, 508 
signal COL_limit : std_logic_vector(7 downto 0);     -- 255, 254, 252 
signal ROW_skip : std_logic_vector(8 downto 0);      -- 1, 2, 4 
signal COL_skip : std_logic_vector(7 downto 0);      -- 1, 2, 4 
signal userInputU : std_logic_vector(15 downto 0);   -- Input, from mem READ 
signal userInputL : std_logic_vector(15 downto 0); 
signal userOutputUx : std_logic_vector(15 downto 0); -- Output from 
signal userOutputLx : std_logic_vector(15 downto 0); -- ForwardWaveletX 
signal userOutputUy : std_logic_vector(15 downto 0); -- Output from 
signal userOutputLy : std_logic_vector(15 downto 0); -- ForwardWaveletY 
signal normalCoeffU : std_logic_vector(15 downto 0); -- 
signal normalCoeffL : std_logic_vector(15 downto 0); -- 
signal Fwav_MaxY : std_logic; 
signal block1min : std_logic_vector(15 downto 0); -- Collect coefficient 
signal block1max : std_logic_vector(15 downto 0); -- MIN/MAX at each stage of 
signal block2min : std_logic_vector(15 downto 0); -- Waveletting, to be used 
signal block2max : std_logic_vector(15 downto 0); -- the next stage  
                                                  -- quantizer 
signal block3min : std_logic_vector(15 downto 0); 
signal block3max : std_logic_vector(15 downto 0); -- This saves an additional 
signal block4min : std_logic_vector(15 downto 0); -- pass over the data. 
signal block4max : std_logic_vector(15 downto 0); 
 
begin 
 
 
wlet_x : ForwardWaveletX 
port map (  
PE_Pclk,   -- here is the forward Wavelet 
Enbl,   -- transform block for X direction 
STARTofROWx, 
ENDofROWx, 
userInputU, 
userInputL, 
userOutputUx, 
userOutputLx); 
 
 
wlet_y : ForwardWaveletY 
port map (  
PE_Pclk,   -- here is the forward Wavelet 
Enbl,   -- transform block for Y direction 
STARTofROWy, 
ENDofROWy, 
userInputU, 
userInputL, 
userOutputUy, 
userOutputLy, 
Fwav_MaxY); 
 
 
 
memdata_mux : process (ROWorCOL3, Mem_PState,userOutputUx, userOutputLx, 
userOutputUy, userOutputLy,normalCoeffU, normalCoeffL,block1max, block1min) 
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begin 
 
 
if(ROWorCOL3=’0’) then 

normalCoeffU <= userOutputUx; 
normalCoeffL <= userOutputLx; 

else 
normalCoeffU <= userOutputUy; 
normalCoeffL <= userOutputLy; 

end if; 
if(Mem_PState=MemWrite) then 

PE_MemData_OutReg(31 downto 16)<= normalCoeffU; 
PE_MemData_OutReg(15 downto 0) <= normalCoeffL; 

else 
PE_MemData_OutReg(31 downto 16)<= block1max; 
PE_MemData_OutReg(15 downto 0) <= block1min; 

end if; 
 
end process memdata_mux; 
 
 
st_update : process (PE_Pclk, PE_Reset) 
 
variable xtest, ytest: std_logic; 
 
begin 
 
if (PE_Reset = ’1’) then 

Mem_PState <= MemWaitforBus; -- Initialize current state 
cntrROW <= "000000000"; -- Initialize ROW and COL 
cntrCOL <= "00000000"; -- address registers. 
cntrROW_old1 <= "000000000"; 
cntrCOL_old1 <= "00000000"; 
cntrROW_old2 <= "000000000"; 
cntrCOL_old2 <= "00000000"; 
cntrROW_old3 <= "000000000"; 
cntrCOL_old3 <= "00000000"; 
ROWorCOL <= ’0’; -- Initialize ROW / COL 
ROWorCOL1 <= ’0’; -- direction indicator 
ROWorCOL2 <= ’0’; -- to ROW 
ROWorCOL3 <= ’0’; 
userInputU <= (others => ’0’); 
userInputL <= (others => ’0’); 
block1max <= (others => ’0’); 
block1min <= (others => ’0’); 
block2max <= (others => ’0’); 
block2min <= (others => ’0’); 
block3max <= (others => ’0’); 
block3min <= (others => ’0’); 
block4max <= (others => ’0’); 
block4min <= (others => ’0’); 
nPass <= "00"; 
ROW_skip <= "000000001"; -- 1, 2, 4 
COL_skip <= "00000001"; -- 1, 2, 4 

-- Pass 1 covers: 
-- ROWS [0,1,2,3, ..., 511] and COLS [0,1,2,3, ..., 255] 
-- 
-- Pass 2 covers: 
-- ROWS [0,2,4,6, ..., 510] and COLS [0,2,4,6, ..., 254] 
-- 
-- Pass 3 covers: 
-- ROWS [0,4,8,12,..., 508] and COLS [0,4,8,12,..., 252] 

ROW_limit <= "111111111"; -- Initialize to 511 
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COL_limit <= "11111111"; -- Initialize to 255 
elsif (rising_edge(PE_Pclk)) then 

Mem_PState <= Mem_NState; 
-- Switch between X,Y directions 

if (Mem_PState = MemWrite) then 
if((cntrROW = ROW_limit) and (cntrCOL = COL_limit)) then  

ROWorCOL <= not(ROWorCOL); -- (ROWorCOL=0) => X, 
   -- (ROWorCOL=1) => Y. 

if(ROWorCOL = ’1’) then 
ROW_skip <= (ROW_skip(7 downto 0) & ’0’); 
COL_skip <= (COL_skip(6 downto 0) & ’0’); 
ROW_limit <= (ROW_limit(7 downto 0) & ’0’); 
COL_limit <= (COL_limit(6 downto 0) & ’0’); 
nPass <= UNSIGNED(nPass) + 1; 

end if; 
 end if; 

ROWorCOL1 <= ROWorCOL; -- update delayed 
ROWorCOL2 <= ROWorCOL1; -- versions of 
ROWorCOL3 <= ROWorCOL2; -- ROWorCOL 

if(ROWorCOL = ’0’) then 
cntrCOL <= UNSIGNED(cntrCOL) + UNSIGNED(COL_skip); 
if (cntrCOL = COL_limit) then 

cntrROW <= UNSIGNED(cntrROW) + UNSIGNED(ROW_skip); 
end if; 

else 
cntrROW <= UNSIGNED(cntrROW) + UNSIGNED(ROW_skip); 

                  if (cntrROW = ROW_limit) then 
cntrCOL <= UNSIGNED(cntrCOL) + UNSIGNED(COL_skip); 

end if; 
end if; 

cntrROW_old1 <= cntrROW; -- 2 sets of address 
cntrCOL_old1 <= cntrCOL; -- regsisters, one for 

-- memory READ and another 
cntrROW_old2 <= cntrROW_old1; -- for memory WRITE. 
cntrCOL_old2 <= cntrCOL_old1; -- 

-- WRITE lags the READ 
cntrROW_old3 <= cntrROW_old2; -- by the latency of 
cntrCOL_old3 <= cntrCOL_old2; -- ForwardWavelet. 

end if; 
if (Mem_PState = MemRead100) then 

userInputU <= PE_MemData_InReg(31 downto 16); 
userInputL <= PE_MemData_InReg(15 downto 0); 

end if; 
if ((Mem_PState= MemWriteMinMax1) or 

(Mem_PState = MemWriteMinMax2) or 
(Mem_PState = MemWriteMinMax3) or 
     (Mem_PState = MemWriteMinMax4)) then 

block1max <= block2max; 
block1min <= block2min; 
block2max <= block3max; 
block2min <= block3min; 
block3max <= block4max; 
block3min <= block4min; 
block4max <= (others => ’0’); 
block4min <= (others => ’0’); 

elsif (Mem_PState = MemWrite) then 
if (nPass = "00") then 

xtest := cntrROW_old3(0); 
ytest := cntrCOL_old3(0); 

elsif (nPass = "01") then 
   xtest := cntrROW_old3(1); 

ytest := cntrCOL_old3(1); 
else 

xtest := cntrROW_old3(2); 
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ytest := cntrCOL_old3(2); 
end if; 

if ((xtest = ’0’) and (ytest = ’0’) and (ROWorCOL3=’1’)) then 
if(Fwav_MaxY=’0’) then 

if(SIGNED(block1max) < SIGNED(normalCoeffU)) then 
block1max <= normalCoeffU; 

end if; 
if(SIGNED(block1min) > SIGNED(normalCoeffL)) then 

block1min <= normalCoeffL; 
end if; 

else 
if(SIGNED(block1max) < SIGNED(normalCoeffL)) then 

block1max <= normalCoeffL; 
end if; 
if(SIGNED(block1min) > SIGNED(normalCoeffU)) then 

block1min <= normalCoeffU; 
end if; 

end if; 
 end if; 
 
if ((xtest = ’0’) and (ytest = ’1’) and (ROWorCOL3=’1’)) then 

if(Fwav_MaxY=’0’) then 
if(SIGNED(block2max) < SIGNED(normalCoeffU)) then 

block2max <= normalCoeffU; 
end if; 
if(SIGNED(block2min) > SIGNED(normalCoeffL)) then 

block2min <= normalCoeffL; 
end if; 

else 
if(SIGNED(block2max) < SIGNED(normalCoeffL)) then 

block2max <= normalCoeffL; 
end if; 
if(SIGNED(block2min) > SIGNED(normalCoeffU)) then 

block2min <= normalCoeffU; 
end if; 

end if; 
end if; 
 
if ((xtest = ’1’) and (ytest = ’0’) and (ROWorCOL3=’1’)) then 

if(Fwav_MaxY=’0’) then 
if(SIGNED(block3max) < SIGNED(normalCoeffU)) then 

block3max <= normalCoeffU; 
end if; 
if(SIGNED(block3min) > SIGNED(normalCoeffL)) then 

block3min <= normalCoeffL; 
end if; 

else 
if(SIGNED(block3max) < SIGNED(normalCoeffL)) then 

block3max <= normalCoeffL; 
end if; 
if(SIGNED(block3min) > SIGNED(normalCoeffU)) then 

block3min <= normalCoeffU; 
end if; 

end if; 
end if; 
 
if ((xtest = ’1’) and (ytest = ’1’) and (ROWorCOL3=’1’)) then 

if(Fwav_MaxY=’0’) then 
if(SIGNED(block4max) < SIGNED(normalCoeffU)) then 

block4max <= normalCoeffU; 
end if; 
if(SIGNED(block4min) > SIGNED(normalCoeffL)) then 

block4min <= normalCoeffL; 
end if; 
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else 
if(SIGNED(block4max) < SIGNED(normalCoeffL)) then 

block4max <= normalCoeffL; 
end if; 
if(SIGNED(block4min) > SIGNED(normalCoeffU)) then 

block4min <= normalCoeffU; 
end if; 

end if; 
end if; 

end if; 
end if; 
 

end process st_update; 
 
start_end : process(ROWorCOL,cntrCOL, cntrROW,ROW_limit, COL_limit) 
 
begin 
 
STARTofROWx <= ’0’; 
ENDofROWx <= ’0’; 
STARTofROWy <= ’0’; 
ENDofROWy <= ’0’; 
if(ROWorCOL = ’0’) then -- if X direction 

if (cntrCOL = "00000000") then -- STARTofROW 
STARTofROWx <= ’1’; 

end if; 
if (cntrCOL = COL_limit) then -- ENDofROW 

ENDofROWx <= ’1’; 
end if; 

else -- else if Y direction 
if (cntrROW = "000000000") then -- STARTofROW 

STARTofROWy <= ’1’; 
end if; 
if (cntrROW = ROW_limit) then -- ENDofROW 

ENDofROWy <= ’1’; 
end if; 

end if; 
end process; 
 
PE_MemAddr_OutReg(21 downto 18) <= (others => ’0’); 
 
mem_state: process(Mem_PState, nPass,PE_MemBusGrant_n,ROWorCOL2, ROWorCOL3, 

cntrROW, cntrCOL,cntrROW_old3, cntrCOL_old3,PE_InterruptAck_n) 
 

begin 
 
PE_InterruptReq_n <= ’1’; -- Default, do not interrupt host 
PE_MemWriteSel_n <= ’1’; -- read/write, default read 
PE_MemStrobe_n <= ’1’; -- No strobe, later 
PE_MemBusReq_n <= ’0’; -- Always request bus 
Enbl <= ’0’; 
PE_MemAddr_OutReg(17 downto 0) <= (others => ’X’); 
 
case Mem_PState is 
 
when MemWaitforBus => -- Wait for bus, when bus is 
 
if(PE_MemBusGrant_n = ’0’) then -- available, fire READ in 

Mem_NState <= MemRead001; -- in next clock. Firing READ 
else -- in same clock kills the 

Mem_NState <= MemWaitforBus;-- timing performance... 
end if; 
 
when MemRead001 => -- Fire READ, results of 
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PE_MemStrobe_n <= ’0’; -- this will come later... 
Mem_NState <= MemRead010; 
PE_MemAddr_OutReg(17) <= ’0’; 
PE_MemAddr_OutReg(16 downto 8) <= cntrROW; -- Use cntrROW and 
PE_MemAddr_OutReg( 7 downto 0) <= cntrCOL; -- cntrCOL for READ 
 
when MemRead010 => -- Still waiting for 
 
Mem_NState <= MemRead100; -- READ results... 
 
when MemRead100 => -- Got READ results here 
 
Mem_NState <= MemWrite; 
 
when MemWrite => 
 
Enbl <= ’1’; 
PE_MemWriteSel_n <= ’0’; -- for writing 
PE_MemStrobe_n <= ’0’; 
PE_MemAddr_OutReg(17) <= ’0’; 
PE_MemAddr_OutReg(16 downto 8) <= cntrROW_old3; --Use cntrROW_old3 
PE_MemAddr_OutReg( 7 downto 0) <= cntrCOL_old3; --cntrCOL_old3 for 

--WRITE 
if((ROWorCOL3 = ’1’) and (ROWorCOL2 = ’0’)) then-- If COL->ROW switch 
        -- Write max/min statistics 

Mem_NState <= MemWriteMinMax1; 
else 

Mem_NState <= MemRead001; 
end if; 
-- After each stage of wave-letting, we get 4 blocks, 
-- the MAX and MIN values of coefficients in each block are 
-- computed for use in next stage, (dynamic quantization). 
-- At the end of each stage, we write back 4 WORDs for 
-- each of the 4 blocks (each word contains MAX and MIN, 15 bits each), 
-- into an upper portion of memory (unused). 
-- The addressing scheme is as follows: 
-- 0XXXXXXXXXXXXX XX XX // normal data/coefficients 
-- 10000000000000 00 00 // 4 blocks from stage1 
-- 10000000000000 00 01 
-- 10000000000000 00 10 
-- 10000000000000 00 11 
-- 
-- 10000000000000 01 00 // 4 blocks from stage2 
-- 10000000000000 01 01 
-- 10000000000000 01 10 
-- 10000000000000 01 11 
-- 
-- 10000000000000 10 00 // 4 blocks from stage3 
-- 10000000000000 10 01 
-- 10000000000000 10 10 
-- 10000000000000 10 11 
] 
when MemWriteMinMax1 => 
 
PE_MemWriteSel_n <= ’0’; -- for writing 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= MemWriteMinMax2; 
PE_MemAddr_OutReg(17 downto 4) <= "10000000000000"; 
PE_MemAddr_OutReg(3 downto 2) <= nPass; 
PE_MemAddr_OutReg(1 downto 0) <= "00"; 
 
when MemWriteMinMax2 => 
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PE_MemWriteSel_n <= ’0’; -- for writing 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= MemWriteMinMax3; 
PE_MemAddr_OutReg(17 downto 4) <= "10000000000000"; 
PE_MemAddr_OutReg(3 downto 2) <= nPass; 
PE_MemAddr_OutReg(1 downto 0) <= "01"; 
 
when MemWriteMinMax3 => 
 
PE_MemWriteSel_n <= ’0’; -- for writing 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= MemWriteMinMax4; 
PE_MemAddr_OutReg(17 downto 4) <= "10000000000000"; 
PE_MemAddr_OutReg(3 downto 2) <= nPass; 
PE_MemAddr_OutReg(1 downto 0) <= "10"; 
 
when MemWriteMinMax4 => 
 
PE_MemWriteSel_n <= ’0’; -- for writing 
PE_MemStrobe_n <= ’0’; 
PE_MemAddr_OutReg(17 downto 4) <= "10000000000000"; 
PE_MemAddr_OutReg(3 downto 2) <= nPass; 
PE_MemAddr_OutReg(1 downto 0) <= "11"; 
if((cntrROW_old3 = "000000000") and -- Wind up after 

(cntrCOL_old3 = "00000000") and -- 3 passes. 
(nPass = "11")) then 

Mem_NState <= MemInterrupt; 
else 

Mem_NState <= MemRead001; 
end if; 
 
when MemInterrupt => 

PE_MemBusReq_n <= ’1’; -- Give up bus 
PE_InterruptReq_n <= ’0’; -- Interrupt host 

if(PE_InterruptAck_n = ’0’) then 
Mem_NState <= MemDone; 

else 
Mem_NState <= MemInterrupt; 

end if; 
 
when MemDone => 

PE_MemBusReq_n <= ’1’; -- Give up bus, host program 
Mem_NState <= MemDone; -- to READ memory now... 
 

end case; 
 
end process mem_state; 
 
end Memory_Access; 
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B.2 Stage 2 - VHDL source code 
 
B.2.1 quantizer.vhd 
-- 
-- WAVELET TRANSFORM IMPLEMENTATION 
-- Stage2 - Dynamic Quantizer 
-- 
-- Design : Given a stream of numbers, the stream is quantized into 16 
-- levels (4 bits). The 16 quantization levels are: 
-- 
-- [ min -> min + 1*(max-min+8)/16 ] => "0000" 
-- [ min + 2*(max-min+8)/16 -> min + 3*(max-min+8)/16 ] => "0001" 
-- [ min + 3*(max-min+8)/16 -> min + 4*(max-min+8)/16 ] => "0010" 
-- .... 
-- [ min + 14*(max-min+8)/16 -> min + 15*(max-min+8)/16 ] => "1110" 
-- [ min + 15*(max-min+8)/16 -> max ] => "1111" 
-- 
-- ’min’ and ’max’ are not know prior and depends on the 
-- input stream making it a dynamic quantizer. 
-- 
-- Input  : A stream of 15 bit numbers on ’QUANTin’ 
-- Output : The quantized (4 bit) values on ’QUANTout’. 
-- 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use ieee.std_logic_signed.all; 
 
entity QUANT is 
port(  
QUANTclk : in std_logic; 
QUANTen  : in std_logic; 
QUANTmax : in  std_logic_vector (15 downto 0); 
QUANTmin : in  std_logic_vector (15 downto 0); 
QUANTin  : in  std_logic_vector (15 downto 0); 
QUANTout : out std_logic_vector (3 downto 0)); 
end QUANT; 
 
architecture structural of QUANT is 
 
subtype std4 is std_logic_vector  ( 3 downto 0); 
subtype std16 is std_logic_vector (15 downto 0); 
subtype std20 is std_logic_vector (19 downto 0); 
signal r      : std16; 
signal r_by_2 : std20; 
signal r_by_4 : std20; 
signal r_by_8 : std20; 
signal r_by_16: std20; 
signal in1    : std16; 
signal in2    : std16; 
signal in3    : std16; 
signal in4    : std16; 
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signal cmp1   : std20; 
signal cmp2   : std20; 
signal cmp3   : std20; 
signal cmp4   : std20; 
signal level1 : std4; 
signal level2 : std4; 
signal level3 : std4; 
signal level4 : std4; 
 
begin 
 
r <= (QUANTmax - QUANTmin); 
 
run : process(QUANTclk) 
 
begin 
 
if(rising_edge(QUANTclk)) then 

if(QUANTen = ’1’) then 
-- The nice thing here is that at the edges of subbands 
-- when the range changes, the subranges also changes 
-- in sync with the data. 

r_by_2 <= (r(15) & r & "000"); 
r_by_4 <= (r_by_2(19) & r_by_2(19 downto 1)); 
r_by_8 <= (r_by_4(19) & r_by_4(19 downto 1)); 
r_by_16 <= (r_by_8(19) & r_by_8(19 downto 1)); 
in4 <= in3; 
in3 <= in2; 
in2 <= in1; 
in1 <= (QUANTin - QUANTmin); -- DC shifting. 

if(SIGNED(in1) > SIGNED(r_by_2(19 downto 4))) then 
level1 <= "1000"; 
cmp1 <= (r_by_2 + r_by_4); 

else 
level1 <= "0000"; 
cmp1 <= (r_by_2 - r_by_4); 

end if; 
if(SIGNED(in2 & ’0’) > SIGNED(cmp1(19 downto 3))) then 

level2 <= (level1 or "0100"); 
cmp2 <= (cmp1 + r_by_8); 

else 
level2 <= level1; 
cmp2 <= (cmp1 - r_by_8); 

end if; 
if(SIGNED(in3 & "0000") > SIGNED(cmp2(19 downto 0))) then 

level3 <= (level2 or "0010"); 
cmp3 <= (cmp2 + r_by_16); 

else 
level3 <= level2; 
cmp3 <= (cmp2 - r_by_16); 

end if; 
cmp4 <= cmp3; 

if(SIGNED(in4 & "0000") > SIGNED(cmp3(19 downto 0))) then 
level4 <= (level3 or "0001"); 

else 
level4 <= level3; 

end if; 
end if; -- end if(QUANTen=’1’) 

end if; -- rising_edge(clk) 
 
end process run; 
QUANTout <= level4; 
 
end structural; 
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B.2.2 rle.vhd 
-- 
-- Stage3 - Run Length Encoder (for ZEROS only) 
-- 
-- Input  : A stream of 15 bit numbers on ’RLEin’, the zero threshold value  
--          on ’RLEzeroth’, an enable signal on ’RLEen’. 
-- 
-- Output : Output stream of 8 bit numbers on ’RLEout’, 
--          other control outputs on ’RLErunning’ and ’RLEspellEnd’. 
-- 
-- Design : The input stream is compared with zero threshold to decide if it  
-- should be truncate to zero.Any continuous sequence of ZEROes are run length 
-- encoded, and the sum is output on ’RLEout’. 
-- 
-- The RLE works like this: 
-- 
-- Whenever we detect a ZERO, we would assert ’RLErunning’,and start counting 
-- the sequence of continuous ZEROes.The current sum of ZEROes is always 
-- available on ’RLEout’.When ever the continuous spell of ZEROes end,we unset 
-- ’RLErunning’ and assert ’RLEspellEnd’ for one cycle( to allow the higher 
-- block to read off the RLE count )and we also reset our internal counter. 
-- 
-- Yeah, there is look ahead problem? Before we signal the end of a spell, we 
-- need to see the next value is the stream.Luckily, RLE is used in  
-- conjunction with a quantizer,(RLE and quantizer are connected in parallel) 
-- which is a 4 staged pipeline. 
-- 
-- We may face an arbitrarily long sequence of ZEROes. From the 
-- design specs we are allowed to count only upto 240 ZEROes: 
-- 
-- output of quantizer: 00000000 (16 quantization levels) 
-- ... 
-- 00001111 
-- 
-- output of RLE: 00010000 (256-16 = 240) 
-- ... 
-- 11111111 
-- 
-- Thus, when we have seen 240 continuous ZEROes and still going 
-- strong, ’RLEspellEnd’ would be asserted for one clock cycle, 
-- and we would reset our internal counter to 00010000. 
-- Ofcourse ’RLErunning’ would be high through out the spell. 
-- 
-- We know that the preceeding stage may not have an output on every clock,  
-- (due to memory READ/WRITE scheduling)so please let us know on which all 
-- clocks we need to run,by asserting ’RLEen’. 
-- 
-- The higher block using RLE works (should work) like this: 
-- 
-- if(RLErunning = 1) 
-- { 
-- wait till (RLEspellEnd = 1) 
-- collect ’RLEout’. 
-- } 
-- else // (RLErunning = 0) 
-- { 
-- collect the output of the quantizer. 
-- } 
-- 
-- The enable signal for the next stage is as follows: 
-- 
-- if((RLEspellEnd = 1) or // output from RLE 
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-- (RLErunning = 0)) // output from QUANT 
-- NextStageEnable = 1; 
-- else 
-- NextStageEnable = 0; 
-- end 
-- 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
use ieee.std_logic_signed.all; 
 
entity RLE is 
port( 
RLEclk     : in std_logic; 
RLEreset   : in std_logic; 
RLEen      : in std_logic; 
RLEflush   : in std_logic; 
RLEin      : in std_logic_vector (15 downto 0); 
RLEzeroth  : in std_logic_vector (15 downto 0); 
RLEout     : out std_logic_vector ( 7 downto 0); 
RLErunning : out std_logic; 
RLEspellEnd: out std_logic); 
end RLE; 
 
architecture structural of RLE is 
 
signal z1    : std_logic; 
signal z2    : std_logic; 
signal z3    : std_logic; 
signal z4    : std_logic; 
signal z5    : std_logic; 
signal s240  : std_logic; 
signal count : std_logic_vector ( 7 downto 0) := "00010000"; 
 
begin 
 
run : process(RLEreset, RLEclk) 
 
begin 
 
if(RLEreset = ’1’) then 

count <= "00001111"; 
z1 <= ’0’; 
z2 <= ’0’; 
z3 <= ’0’; 
z4 <= ’0’; 
z5 <= ’0’; 

elsif(rising_edge(RLEclk)) then 
if(RLEen = ’1’) then 

if((SIGNED(RLEin) < SIGNED(RLEzeroth)) and 
(SIGNED(RLEin) > SIGNED(-RLEzeroth)) and 
(RLEflush = ’0’)) then 
z1 <= ’1’; 

else 
z1 <= ’0’; 

end if; 
z2 <= z1; 
z3 <= z2; 
z4 <= z3; 
z5 <= z4; 
s240 <= ’0’; -- default assignment 
if(z4 = ’0’) then -- ZERO spell broken 

count <= "00001111"; 
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else 
if(count = "11111110") then 

s240 <= ’1’; 
end if; 
if(count = "11111111") then 

count <= "00010000"; 
else 

count <= UNSIGNED(count) + 1; 
end if; 

end if; 
end if; -- (RLEen = ’1’) 
end if; -- rising_edge(RLEclk) 
 
end process run; 
 
RLEout <= count; 
RLErunning <= z5; 
RLEspellEnd <= (z5 and not(z4)) or s240; 
 
end structural; 
 

B.2.3 huffman.vhd 
-- 
-- Stage4 - Huffman Encoder 
-- 
-- Input : A stream of 8 bit characters on ’in_stream’. 
-- 
-- Output : Huffman tree encoded coefficients, and length. 
-- 
-- Design : Huffman table implementation, takes about 165 CLBs. 
-- 8 bit input values are variable length (3-18) encoded. 
-- 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
 
entity HUFF is 
port(  
HUFFclk : in std_logic; 
HUFFin : in std_logic_vector (7 downto 0); 
HUFFlout : out std_logic_vector (4 downto 0); 
HUFFdout : out std_logic_vector (17 downto 0)); 
end HUFF; 
 
architecture structural of HUFF is 
 
signal tmp : std_logic_vector(7 downto 0); 
 
begin 
 
run : process (HUFFclk) 
 
begin 
 
if(rising_edge(HUFFclk)) then 
tmp <= HUFFin; 
 
case tmp is 
 
when "00000000" => HUFFdout<="111010010XXXXXXXXX"; HUFFlout<="01001"; 
when "00000001" => HUFFdout<="0110011XXXXXXXXXXX"; HUFFlout<="00111"; 
when "00000010" => HUFFdout<="111000XXXXXXXXXXXX"; HUFFlout<="00110"; 
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when "00000011" => HUFFdout<="01101XXXXXXXXXXXXX"; HUFFlout<="00101"; 
when "00000100" => HUFFdout<="0000XXXXXXXXXXXXXX"; HUFFlout<="00100"; 
when "00000101" => HUFFdout<="1101XXXXXXXXXXXXXX"; HUFFlout<="00100"; 
when "00000110" => HUFFdout<="100XXXXXXXXXXXXXXX"; HUFFlout<="00011"; 
when "00000111" => HUFFdout<="1111XXXXXXXXXXXXXX"; HUFFlout<="00100"; 
when "00001000" => HUFFdout<="010XXXXXXXXXXXXXXX"; HUFFlout<="00011"; 
when "00001001" => HUFFdout<="001XXXXXXXXXXXXXXX"; HUFFlout<="00011"; 
when "00001010" => HUFFdout<="0111XXXXXXXXXXXXXX"; HUFFlout<="00100"; 
when "00001011" => HUFFdout<="10101XXXXXXXXXXXXX"; HUFFlout<="00101"; 
when "00001100" => HUFFdout<="111011XXXXXXXXXXXX"; HUFFlout<="00110"; 
when "00001101" => HUFFdout<="101001XXXXXXXXXXXX"; HUFFlout<="00110"; 
when "00001110" => HUFFdout<="0001110XXXXXXXXXXX"; HUFFlout<="00111"; 
when "00001111" => HUFFdout<="10110111XXXXXXXXXX"; HUFFlout<="01000"; 
when "00010000" => HUFFdout<="1100XXXXXXXXXXXXXX"; HUFFlout<="00100"; 
when "00010001" => HUFFdout<="10111XXXXXXXXXXXXX"; HUFFlout<="00101"; 
when "00010010" => HUFFdout<="00010XXXXXXXXXXXXX"; HUFFlout<="00101"; 
when "00010011" => HUFFdout<="101100XXXXXXXXXXXX"; HUFFlout<="00110"; 
when "00010100" => HUFFdout<="000110XXXXXXXXXXXX"; HUFFlout<="00110"; 
when "00010101" => HUFFdout<="1110011XXXXXXXXXXX"; HUFFlout<="00111"; 
when "00010110" => HUFFdout<="1010000XXXXXXXXXXX"; HUFFlout<="00111"; 
when "00010111" => HUFFdout<="0110000XXXXXXXXXXX"; HUFFlout<="00111"; 
when "00011000" => HUFFdout<="11101011XXXXXXXXXX"; HUFFlout<="01000"; 
when "00011001" => HUFFdout<="10110100XXXXXXXXXX"; HUFFlout<="01000"; 
when "00011010" => HUFFdout<="01100011XXXXXXXXXX"; HUFFlout<="01000"; 
when "00011011" => HUFFdout<="00011111XXXXXXXXXX"; HUFFlout<="01000"; 
when "00011100" => HUFFdout<="111001011XXXXXXXXX"; HUFFlout<="01001"; 
when "00011101" => HUFFdout<="111010011XXXXXXXXX"; HUFFlout<="01001"; 
when "00011110" => HUFFdout<="101101101XXXXXXXXX"; HUFFlout<="01001"; 
when "00011111" => HUFFdout<="111001001XXXXXXXXX"; HUFFlout<="01001"; 
when "00100000" => HUFFdout<="101000111XXXXXXXXX"; HUFFlout<="01001"; 
when "00100001" => HUFFdout<="011001011XXXXXXXXX"; HUFFlout<="01001"; 
when "00100010" => HUFFdout<="011000101XXXXXXXXX"; HUFFlout<="01001"; 
when "00100011" => HUFFdout<="1110101011XXXXXXXX"; HUFFlout<="01010"; 
when "00100100" => HUFFdout<="000111101XXXXXXXXX"; HUFFlout<="01001"; 
when "00100101" => HUFFdout<="1110101001XXXXXXXX"; HUFFlout<="01010"; 
when "00100110" => HUFFdout<="1011010100XXXXXXXX"; HUFFlout<="01010"; 
when "00100111" => HUFFdout<="1011011000XXXXXXXX"; HUFFlout<="01010"; 
when "00101000" => HUFFdout<="1110010100XXXXXXXX"; HUFFlout<="01010"; 
when "00101001" => HUFFdout<="1011010111XXXXXXXX"; HUFFlout<="01010"; 
when "00101010" => HUFFdout<="1011010110XXXXXXXX"; HUFFlout<="01010"; 
when "00101011" => HUFFdout<="1110100000XXXXXXXX"; HUFFlout<="01010"; 
when "00101100" => HUFFdout<="1010001100XXXXXXXX"; HUFFlout<="01010"; 
when "00101101" => HUFFdout<="1010001101XXXXXXXX"; HUFFlout<="01010"; 
when "00101110" => HUFFdout<="1010001010XXXXXXXX"; HUFFlout<="01010"; 
when "00101111" => HUFFdout<="11101000100XXXXXXX"; HUFFlout<="01011"; 
when "00110000" => HUFFdout<="0110010100XXXXXXXX"; HUFFlout<="01010"; 
when "00110001" => HUFFdout<="11100100001XXXXXXX"; HUFFlout<="01011"; 
when "00110010" => HUFFdout<="11100101010XXXXXXX"; HUFFlout<="01011"; 
when "00110011" => HUFFdout<="0110001001XXXXXXXX"; HUFFlout<="01010"; 
when "00110100" => HUFFdout<="0110010001XXXXXXXX"; HUFFlout<="01010"; 
when "00110101" => HUFFdout<="10110101010XXXXXXX"; HUFFlout<="01011"; 
when "00110110" => HUFFdout<="11101000010XXXXXXX"; HUFFlout<="01011"; 
when "00110111" => HUFFdout<="11100100000XXXXXXX"; HUFFlout<="01011"; 
when "00111000" => HUFFdout<="01100101011XXXXXXX"; HUFFlout<="01011"; 
when "00111001" => HUFFdout<="01100101010XXXXXXX"; HUFFlout<="01011"; 
when "00111010" => HUFFdout<="10100010001XXXXXXX"; HUFFlout<="01011"; 
when "00111011" => HUFFdout<="111001000101XXXXXX"; HUFFlout<="01100"; 
when "00111100" => HUFFdout<="101101100101XXXXXX"; HUFFlout<="01100"; 
when "00111101" => HUFFdout<="111010001110XXXXXX"; HUFFlout<="01100"; 
when "00111110" => HUFFdout<="111010101011XXXXXX"; HUFFlout<="01100"; 
when "00111111" => HUFFdout<="10100010110XXXXXXX"; HUFFlout<="01011"; 
when "01000000" => HUFFdout<="01100010001XXXXXXX"; HUFFlout<="01011"; 
when "01000001" => HUFFdout<="111010100000XXXXXX"; HUFFlout<="01100"; 
when "01000010" => HUFFdout<="01100100111XXXXXXX"; HUFFlout<="01011"; 
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when "01000011" => HUFFdout<="111001010110XXXXXX"; HUFFlout<="01100"; 
when "01000100" => HUFFdout<="011001000000XXXXXX"; HUFFlout<="01100"; 
when "01000101" => HUFFdout<="111001010111XXXXXX"; HUFFlout<="01100"; 
when "01000110" => HUFFdout<="111010000111XXXXXX"; HUFFlout<="01100"; 
when "01000111" => HUFFdout<="01100100100XXXXXXX"; HUFFlout<="01011"; 
when "01001000" => HUFFdout<="1011011001000XXXXX"; HUFFlout<="01101"; 
when "01001001" => HUFFdout<="011001001011XXXXXX"; HUFFlout<="01100"; 
when "01001010" => HUFFdout<="101101010110XXXXXX"; HUFFlout<="01100"; 
when "01001011" => HUFFdout<="111010001101XXXXXX"; HUFFlout<="01100"; 
when "01001100" => HUFFdout<="101000100001XXXXXX"; HUFFlout<="01100"; 
when "01001101" => HUFFdout<="1110100011110XXXXX"; HUFFlout<="01101"; 
when "01001110" => HUFFdout<="111010001100XXXXXX"; HUFFlout<="01100"; 
when "01001111" => HUFFdout<="1110100001100XXXXX"; HUFFlout<="01101"; 
when "01010000" => HUFFdout<="1110101000101XXXXX"; HUFFlout<="01101"; 
when "01010001" => HUFFdout<="0110010011001XXXXX"; HUFFlout<="01101"; 
when "01010010" => HUFFdout<="01100100101001XXXX"; HUFFlout<="01110"; 
when "01010011" => HUFFdout<="0110010011010XXXXX"; HUFFlout<="01101"; 
when "01010100" => HUFFdout<="1110100010111XXXXX"; HUFFlout<="01101"; 
when "01010101" => HUFFdout<="11101000111110XXXX"; HUFFlout<="01110"; 
when "01010110" => HUFFdout<="1110010001100XXXXX"; HUFFlout<="01101"; 
when "01010111" => HUFFdout<="1110101000111XXXXX"; HUFFlout<="01101"; 
when "01011000" => HUFFdout<="1011011001101XXXXX"; HUFFlout<="01101"; 
when "01011001" => HUFFdout<="1011011001110XXXXX"; HUFFlout<="01101"; 
when "01011010" => HUFFdout<="11101010100100XXXX"; HUFFlout<="01110"; 
when "01011011" => HUFFdout<="1011011001111XXXXX"; HUFFlout<="01101"; 
when "01011100" => HUFFdout<="1010001001111XXXXX"; HUFFlout<="01101"; 
when "01011101" => HUFFdout<="0110010010101XXXXX"; HUFFlout<="01101"; 
when "01011110" => HUFFdout<="1110100010100XXXXX"; HUFFlout<="01101"; 
when "01011111" => HUFFdout<="0110001000011XXXXX"; HUFFlout<="01101"; 
when "01100000" => HUFFdout<="1010001011100XXXXX"; HUFFlout<="01101"; 
when "01100001" => HUFFdout<="1110100001101XXXXX"; HUFFlout<="01101"; 
when "01100010" => HUFFdout<="1110101010000XXXXX"; HUFFlout<="01101"; 
when "01100011" => HUFFdout<="1110010001101XXXXX"; HUFFlout<="01101"; 
when "01100100" => HUFFdout<="11100100011100XXXX"; HUFFlout<="01110"; 
when "01100101" => HUFFdout<="1011010101111XXXXX"; HUFFlout<="01101"; 
when "01100110" => HUFFdout<="11100100010000XXXX"; HUFFlout<="01110"; 
when "01100111" => HUFFdout<="1010001011101XXXXX"; HUFFlout<="01101"; 
when "01101000" => HUFFdout<="1010001001000XXXXX"; HUFFlout<="01101"; 
when "01101001" => HUFFdout<="11101010100110XXXX"; HUFFlout<="01110"; 
when "01101010" => HUFFdout<="111010101001011XXX"; HUFFlout<="01111"; 
when "01101011" => HUFFdout<="1110100010101XXXXX"; HUFFlout<="01101"; 
when "01101100" => HUFFdout<="1110101010001XXXXX"; HUFFlout<="01101"; 
when "01101101" => HUFFdout<="10110110010011XXXX"; HUFFlout<="01110"; 
when "01101110" => HUFFdout<="1010001001101XXXXX"; HUFFlout<="01101"; 
when "01101111" => HUFFdout<="11101010101001XXXX"; HUFFlout<="01110"; 
when "01110000" => HUFFdout<="1010001001010XXXXX"; HUFFlout<="01101"; 
when "01110001" => HUFFdout<="11101010100111XXXX"; HUFFlout<="01110"; 
when "01110010" => HUFFdout<="0110001000001XXXXX"; HUFFlout<="01101"; 
when "01110011" => HUFFdout<="10100010000011XXXX"; HUFFlout<="01110"; 
when "01110100" => HUFFdout<="11101010001000XXXX"; HUFFlout<="01110"; 
when "01110101" => HUFFdout<="11100100010001XXXX"; HUFFlout<="01110"; 
when "01110110" => HUFFdout<="11101010101000XXXX"; HUFFlout<="01110"; 
when "01110111" => HUFFdout<="1010001001011XXXXX"; HUFFlout<="01101"; 
when "01111000" => HUFFdout<="0110001000000XXXXX"; HUFFlout<="01101"; 
when "01111001" => HUFFdout<="1110101000110XXXXX"; HUFFlout<="01101"; 
when "01111010" => HUFFdout<="0110010011000XXXXX"; HUFFlout<="01101"; 
when "01111011" => HUFFdout<="11101010001001XXXX"; HUFFlout<="01110"; 
when "01111100" => HUFFdout<="1011010101110XXXXX"; HUFFlout<="01101"; 
when "01111101" => HUFFdout<="0110010011011XXXXX"; HUFFlout<="01101"; 
when "01111110" => HUFFdout<="1010001001100XXXXX"; HUFFlout<="01101"; 
when "01111111" => HUFFdout<="1110010001001XXXXX"; HUFFlout<="01101"; 
when "10000000" => HUFFdout<="01100100001010XXXX"; HUFFlout<="01110"; 
when "10000001" => HUFFdout<="1011011001100XXXXX"; HUFFlout<="01101"; 
when "10000010" => HUFFdout<="101000100111010XXX"; HUFFlout<="01111"; 
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when "10000011" => HUFFdout<="11101010101010XXXX"; HUFFlout<="01110"; 
when "10000100" => HUFFdout<="111010001111110XXX"; HUFFlout<="01111"; 
when "10000101" => HUFFdout<="11100100011101XXXX"; HUFFlout<="01110"; 
when "10000110" => HUFFdout<="01100100001011XXXX"; HUFFlout<="01110"; 
when "10000111" => HUFFdout<="1010001001001XXXXX"; HUFFlout<="01101"; 
when "10001000" => HUFFdout<="11101000101100XXXX"; HUFFlout<="01110"; 
when "10001001" => HUFFdout<="1110101010010100XX"; HUFFlout<="10000"; 
when "10001010" => HUFFdout<="11101010101011XXXX"; HUFFlout<="01110"; 
when "10001011" => HUFFdout<="11101000101101XXXX"; HUFFlout<="01110"; 
when "10001100" => HUFFdout<="1010001000000XXXXX"; HUFFlout<="01101"; 
when "10001101" => HUFFdout<="111010100001XXXXXX"; HUFFlout<="01100"; 
when "10001110" => HUFFdout<="101000101111XXXXXX"; HUFFlout<="01100"; 
when "10001111" => HUFFdout<="0110001000010XXXXX"; HUFFlout<="01101"; 
when "10010000" => HUFFdout<="101101100100101XXX"; HUFFlout<="01111"; 
when "10010001" => HUFFdout<="011001000010000XXX"; HUFFlout<="01111"; 
when "10010010" => HUFFdout<="11101010100101011X"; HUFFlout<="10001"; 
when "10010011" => HUFFdout<="011001000011011000"; HUFFlout<="10010"; 
when "10010100" => HUFFdout<="011001000011011001"; HUFFlout<="10010"; 
when "10010101" => HUFFdout<="011001000010001010"; HUFFlout<="10010"; 
when "10010110" => HUFFdout<="10100010000010111X"; HUFFlout<="10001"; 
when "10010111" => HUFFdout<="11100100011110010X"; HUFFlout<="10001"; 
when "10011000" => HUFFdout<="011001001010000XXX"; HUFFlout<="01111"; 
when "10011001" => HUFFdout<="11100100011110011X"; HUFFlout<="10001"; 
when "10011010" => HUFFdout<="011001000010001000"; HUFFlout<="10010"; 
when "10011011" => HUFFdout<="1010001001110110XX"; HUFFlout<="10000"; 
when "10011100" => HUFFdout<="11100100011110100X"; HUFFlout<="10001"; 
when "10011101" => HUFFdout<="11100100011110101X"; HUFFlout<="10001"; 
when "10011110" => HUFFdout<="0110010000110100XX"; HUFFlout<="10000"; 
when "10011111" => HUFFdout<="0110010010100010XX"; HUFFlout<="10000"; 
when "10100000" => HUFFdout<="011001000010001001"; HUFFlout<="10010"; 
when "10100001" => HUFFdout<="011001000011001100"; HUFFlout<="10010"; 
when "10100010" => HUFFdout<="1010001001110111XX"; HUFFlout<="10000"; 
when "10100011" => HUFFdout<="011001000011001101"; HUFFlout<="10010"; 
when "10100100" => HUFFdout<="0110010010100011XX"; HUFFlout<="10000"; 
when "10100101" => HUFFdout<="011001000011011010"; HUFFlout<="10010"; 
when "10100110" => HUFFdout<="011001000011011011"; HUFFlout<="10010"; 
when "10100111" => HUFFdout<="011001000011010100"; HUFFlout<="10010"; 
when "10101000" => HUFFdout<="1110010001111110XX"; HUFFlout<="10000"; 
when "10101001" => HUFFdout<="0110010000011000XX"; HUFFlout<="10000"; 
when "10101010" => HUFFdout<="0110010000011001XX"; HUFFlout<="10000"; 
when "10101011" => HUFFdout<="011001000011010101"; HUFFlout<="10010"; 
when "10101100" => HUFFdout<="011001000011000XXX"; HUFFlout<="01111"; 
when "10101101" => HUFFdout<="0110010000011010XX"; HUFFlout<="10000"; 
when "10101110" => HUFFdout<="011001000001010100"; HUFFlout<="10010"; 
when "10101111" => HUFFdout<="101000100000100XXX"; HUFFlout<="01111"; 
when "10110000" => HUFFdout<="0110010000011011XX"; HUFFlout<="10000"; 
when "10110001" => HUFFdout<="011001000001010101"; HUFFlout<="10010"; 
when "10110010" => HUFFdout<="0110010000110010XX"; HUFFlout<="10000"; 
when "10110011" => HUFFdout<="1010001001110011XX"; HUFFlout<="10000"; 
when "10110100" => HUFFdout<="011001000001010110"; HUFFlout<="10010"; 
when "10110101" => HUFFdout<="011001000001010111"; HUFFlout<="10010"; 
when "10110110" => HUFFdout<="011001000011010110"; HUFFlout<="10010"; 
when "10110111" => HUFFdout<="011001000011010111"; HUFFlout<="10010"; 
when "10111000" => HUFFdout<="0110010000100011XX"; HUFFlout<="10000"; 
when "10111001" => HUFFdout<="011001000011001110"; HUFFlout<="10010"; 
when "10111010" => HUFFdout<="1011011001001000XX"; HUFFlout<="10000"; 
when "10111011" => HUFFdout<="011001000011011110"; HUFFlout<="10010"; 
when "10111100" => HUFFdout<="011001000011011111"; HUFFlout<="10010"; 
when "10111101" => HUFFdout<="011001000011101110"; HUFFlout<="10010"; 
when "10111110" => HUFFdout<="0110010000111010XX"; HUFFlout<="10000"; 
when "10111111" => HUFFdout<="011001000011101111"; HUFFlout<="10010"; 
when "11000000" => HUFFdout<="011001000011101100"; HUFFlout<="10010"; 
when "11000001" => HUFFdout<="011001000011101101"; HUFFlout<="10010"; 
when "11000010" => HUFFdout<="011001000001001110"; HUFFlout<="10010"; 
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when "11000011" => HUFFdout<="011001000001001111"; HUFFlout<="10010"; 
when "11000100" => HUFFdout<="011001000001001000"; HUFFlout<="10010"; 
when "11000101" => HUFFdout<="011001000001001001"; HUFFlout<="10010"; 
when "11000110" => HUFFdout<="011001000001001100"; HUFFlout<="10010"; 
when "11000111" => HUFFdout<="011001000001001101"; HUFFlout<="10010"; 
when "11001000" => HUFFdout<="0110010000011100XX"; HUFFlout<="10000"; 
when "11001001" => HUFFdout<="0110010000011101XX"; HUFFlout<="10000"; 
when "11001010" => HUFFdout<="011001000010011010"; HUFFlout<="10010"; 
when "11001011" => HUFFdout<="011001000010011011"; HUFFlout<="10010"; 
when "11001100" => HUFFdout<="11100100011110110X"; HUFFlout<="10001"; 
when "11001101" => HUFFdout<="011001000010011000"; HUFFlout<="10010"; 
when "11001110" => HUFFdout<="011001000001011100"; HUFFlout<="10010"; 
when "11001111" => HUFFdout<="011001000001011101"; HUFFlout<="10010"; 
when "11010000" => HUFFdout<="011001000001001010"; HUFFlout<="10010"; 
when "11010001" => HUFFdout<="11100100011110111X"; HUFFlout<="10001"; 
when "11010010" => HUFFdout<="111001000111110XXX"; HUFFlout<="01111"; 
when "11010011" => HUFFdout<="011001000001001011"; HUFFlout<="10010"; 
when "11010100" => HUFFdout<="011001000010010100"; HUFFlout<="10010"; 
when "11010101" => HUFFdout<="011001000001111XXX"; HUFFlout<="01111"; 
when "11010110" => HUFFdout<="011001000001000XXX"; HUFFlout<="01111"; 
when "11010111" => HUFFdout<="011001000010010101"; HUFFlout<="10010"; 
when "11011000" => HUFFdout<="11100100011111110X"; HUFFlout<="10001"; 
when "11011001" => HUFFdout<="0110010000111101XX"; HUFFlout<="10000"; 
when "11011010" => HUFFdout<="0110010000010100XX"; HUFFlout<="10000"; 
when "11011011" => HUFFdout<="101000100111000XXX"; HUFFlout<="01111"; 
when "11011100" => HUFFdout<="0110010000111110XX"; HUFFlout<="10000"; 
when "11011101" => HUFFdout<="1011011001001001XX"; HUFFlout<="10000"; 
when "11011110" => HUFFdout<="101000100000101000"; HUFFlout<="10010"; 
when "11011111" => HUFFdout<="101000100000101001"; HUFFlout<="10010"; 
when "11100000" => HUFFdout<="0110010000111111XX"; HUFFlout<="10000"; 
when "11100001" => HUFFdout<="11100100011111111X"; HUFFlout<="10001"; 
when "11100010" => HUFFdout<="101000100000101010"; HUFFlout<="10010"; 
when "11100011" => HUFFdout<="101000100000101011"; HUFFlout<="10010"; 
when "11100100" => HUFFdout<="111010001111111XXX"; HUFFlout<="01111"; 
when "11100101" => HUFFdout<="011001000010010110"; HUFFlout<="10010"; 
when "11100110" => HUFFdout<="0110010000010110XX"; HUFFlout<="10000"; 
when "11100111" => HUFFdout<="0110010000100111XX"; HUFFlout<="10000"; 
when "11101000" => HUFFdout<="011001000010010111"; HUFFlout<="10010"; 
when "11101001" => HUFFdout<="011001000011100110"; HUFFlout<="10010"; 
when "11101010" => HUFFdout<="011001000011100111"; HUFFlout<="10010"; 
when "11101011" => HUFFdout<="011001000011100100"; HUFFlout<="10010"; 
when "11101100" => HUFFdout<="0110010000100100XX"; HUFFlout<="10000"; 
when "11101101" => HUFFdout<="011001000011100101"; HUFFlout<="10010"; 
when "11101110" => HUFFdout<="011001000010011001"; HUFFlout<="10010"; 
when "11101111" => HUFFdout<="0110010000111000XX"; HUFFlout<="10000"; 
when "11110000" => HUFFdout<="011001000011110010"; HUFFlout<="10010"; 
when "11110001" => HUFFdout<="1110010001111000XX"; HUFFlout<="10000"; 
when "11110010" => HUFFdout<="011001000011110011"; HUFFlout<="10010"; 
when "11110011" => HUFFdout<="101000100000101100"; HUFFlout<="10010"; 
when "11110100" => HUFFdout<="101000100000101101"; HUFFlout<="10010"; 
when "11110101" => HUFFdout<="011001000011110000"; HUFFlout<="10010"; 
when "11110110" => HUFFdout<="011001000011001111"; HUFFlout<="10010"; 
when "11110111" => HUFFdout<="011001000011110001"; HUFFlout<="10010"; 
when "11111000" => HUFFdout<="011001000001011110"; HUFFlout<="10010"; 
when "11111001" => HUFFdout<="1010001001110010XX"; HUFFlout<="10000"; 
when "11111010" => HUFFdout<="011001000001011111"; HUFFlout<="10010"; 
when "11111011" => HUFFdout<="011001000011011100"; HUFFlout<="10010"; 
when "11111100" => HUFFdout<="11101010100101010X"; HUFFlout<="10001"; 
when "11111101" => HUFFdout<="011001000011011101"; HUFFlout<="10010"; 
when "11111110" => HUFFdout<="011001000010001011"; HUFFlout<="10010"; 
when "11111111" => HUFFdout<="000111100XXXXXXXXX"; HUFFlout<="01001"; 
when others => HUFFdout <="XXXXXXXXXXXXXXXXXX"; HUFFlout <="XXXXX"; 
end case; 
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end if; 
 
end process; 
 
end structural; 
 

 
 
B.2.4 shifter.vhd 
-- 
-- Stage4 - Bit packer in Huffman Encoder 
-- 
-- Input : A stream of variable length data (length varies between 3 and 18) 
-- 
-- Output : A stream of 32 bit WORDS (packed data), to be written to memory. 
-- 
-- Design : The aim is to pack the variable length data (3->18 bits) into 
-- 32 bit WORDS. This is done by a 5 ( =ln2(32) ) stage shifter. 
-- When ever we have a full load of 32 bits, we do a MEM_WRITE. 
-- 
-- In stage 1, (SFTRdatin -> stage1),we either shift (actually rotate) by 16  
-- or pass the data straight.In the next 4 stages we shift by 8, 4, 2, 1  
-- respectively or pass on straight. 
-- 
-- The idea is to shift the incoming variable length data into the 
-- correct position over the 5 stages of the shifter. 
-- 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
 
entity SFTR is 
port( 
SFTRclk   : in std_logic; 
SFTRen    : in std_logic; 
SFTRdatin : in std_logic_vector (17 downto 0); 
SFTRlenIn : in std_logic_vector ( 4 downto 0); 
SFTRout   : out std_logic_vector (31 downto 0); 
SFTRoutEn : out std_logic ); 
end SFTR; 
 
architecture structural of SFTR is 
 
-- A custom comparator!, this comes as part of the double buffering for the  
-- last stage.We have 17 registers in which we are going to latch new values. 
-- We do not want to latch new values to any registers above the value in c32. 
-- For e.g., with c32=5,we only want to load up the first 5 registers,the rest 
-- of the 12 registers are ZEROed.The return value of this function is a mask, 
-- which is ANDed with the inputs to the registers. Thus with c32=5,the output 
-- would look like "11111000000000000".Phew, was it all worth it? 
-- A simpler way to code this up would be something like: 
-- 
-- for i in 16 downto 0 loop 
-- ret(i) := (c32 > (16 - i)); 
-- end loop; 
function comparator17(c32: std_logic_vector(4 downto 0)) 
return std_logic_vector is 
variable ret : std_logic_vector(16 downto 0); 
begin 
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ret(16) := c32(4) or c32(3) or c32(2) or c32(1) or c32(0); 
ret(15) := c32(4) or c32(3) or c32(2) or c32(1); 
ret(14) := c32(4) or c32(3) or c32(2) or (c32(1) and c32(0)); 
ret(13) := c32(4) or c32(3) or c32(2); 
ret(12) := c32(4) or c32(3) or (c32(2) and (c32(1) or c32(0))); 
ret(11) := c32(4) or c32(3) or (c32(2) and c32(1)); 
ret(10) := c32(4) or c32(3) or (c32(2) and c32(1) and c32(0)); 
ret( 9) := c32(4) or c32(3); 
ret( 8) := c32(4) or (c32(3) and (c32(2) or c32(1) or c32(0))); 
ret( 7) := c32(4) or (c32(3) and c32(2)) or (c32(3) and c32(1)); 
ret( 6) := c32(4) or (c32(3) and c32(2)) or (c32(3) and c32(1) and c32(0)); 
ret( 5) := c32(4) or (c32(3) and c32(2)); 
ret( 4) := c32(4) or (c32(3) and c32(2) and (c32(1) or c32(0))); 
ret( 3) := c32(4) or (c32(3) and c32(2) and c32(1)); 
ret( 2) := c32(4) or (c32(3) and c32(2) and c32(1) and c32(0)); 
ret( 1) := c32(4); 
ret( 0) := (c32(4) and c32(3)) or (c32(4) and (c32(2) or c32(1) or c32(0))); 
return ret; 
end function comparator17; 
constant prop_delay : time := 5 ns; 
subtype std32 is std_logic_vector (31 downto 0); 
signal tmp : std_logic_vector(5 downto 0):="000000"; 
signal stage0_len : std_logic_vector(4 downto 0):="00000"; 
signal stage1_len : std_logic_vector(4 downto 0):="00000"; 
signal stage2_len : std_logic_vector(4 downto 0):="00000"; 
signal stage3_len : std_logic_vector(4 downto 0):="00000"; 
signal stage4_len : std_logic_vector(4 downto 0):="00000"; 
signal timeout : std_logic_vector(1 downto 0):="00"; 
signal write_ready1 : std_logic := ’0’; 
signal write_ready2 : std_logic := ’0’; 
signal write_ready3 : std_logic := ’0’; 
signal write_ready4 : std_logic := ’0’; 
signal write_ready5 : std_logic := ’0’; 
-- 5 register stages, last one is partly double buffered ... 
signal stage1 : std32 :="00000000000000000000000000000000"; 
signal stage2 : std32 :="00000000000000000000000000000000"; 
signal stage3 : std32 :="00000000000000000000000000000000"; 
signal stage4 : std32 :="00000000000000000000000000000000"; 
signal stage5 : std32 :="00000000000000000000000000000000"; 
signal stage5_d: std_logic_vector(31 downto 15):="00000000000000000"; 
 
begin 
 
-- Catch the overflow!, we have 5 bits in ’SFTRlenIn’, keep adding to 
-- ’stage0_len’. When it overflows, we know we crossed 32 bits, 
-- we are ready for a MEM_WRITE. 
 
tmp <= (’0’ & stage0_len) + (’0’ & SFTRlenIn); 
 
-- A soft rest for SFTRoutEn 
-- SFTRoutEn lasts only for 2 cycles. 
SFTRoutEn <= write_ready5 and (timeout(1) or timeout(0)); 
 
run : process(SFTRclk) 
 
variable stage5_tmp : std_logic_vector (31 downto 0); 
variable mask : std_logic_vector (31 downto 15); 
variable load_db : std_logic; 
 
begin 
 
if(rising_edge(SFTRclk)) then 

if(SFTRen = ’1’) then 
timeout <= "11" after prop_delay; 
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write_ready1 <= tmp(5) after prop_delay; 
write_ready2 <= write_ready1 after prop_delay; 
write_ready3 <= write_ready2 after prop_delay; 
write_ready4 <= write_ready3 after prop_delay; 
write_ready5 <= write_ready4 after prop_delay; 
stage0_len <= tmp(4 downto 0) after prop_delay; 
stage1_len <= stage0_len after prop_delay; 
stage2_len <= stage1_len after prop_delay; 
stage3_len <= stage2_len after prop_delay; 
stage4_len <= stage3_len after prop_delay; 

-- Stage 1 (SFTRdatin -> stage1), shift by 16 or pass thru 
   if(stage0_len(4) = ’1’) then 

stage1(31 downto 30) <= SFTRdatin(1 downto 0) after prop_delay; 
stage1(29 downto 16) <= (others => ’0’) after prop_delay; 

            stage1(15 downto 0) <= SFTRdatin(17 downto 2) after prop_delay; 
else 

            stage1(31 downto 14) <= SFTRdatin after prop_delay; 
stage1(13 downto 0) <= (others => ’0’) after prop_delay; 

end if; 
-- Stage 2 (stage1 -> stage2), shift by 8 or pass thru 

if(stage1_len(3) = ’1’) then 
stage2(31 downto 24) <= stage1(7 downto 0) after prop_delay; 
stage2(23 downto 0) <= stage1(31 downto 8) after prop_delay; 

else 
stage2 <= stage1 after prop_delay; 

end if; 
-- Stage 3 (stage2 -> stage3), shift by 4 or pass thru 

if(stage2_len(2) = ’1’) then 
stage3(31 downto 28) <= stage2(3 downto 0) after prop_delay; 
stage3(27 downto 0) <= stage2(31 downto 4) after prop_delay; 

else 
stage3 <= stage2 after prop_delay; 

end if; 
-- Stage 4 (stage3 -> stage4), shift by 2 or pass thru 

if(stage3_len(1) = ’1’) then 
stage4(31 downto 30) <= stage3(1 downto 0) after prop_delay; 
stage4(29 downto 0) <= stage3(31 downto 2) after prop_delay; 

else 
stage4 <= stage3 after prop_delay; 

end if; 
-- Stage 5 (stage4 -> stage5), shift by 1 or pass thru 

if(stage4_len(0) = ’1’) then 
stage5_tmp(31) := stage4(0); 
stage5_tmp(30 downto 0):= stage4(31 downto 1); 

else 
stage5_tmp := stage4; 

end if; 
-- How do we detect a scenario like the one in cycle #8? 
-- ((current_offset > "00000") AND 
-- (prev_offset < "11111") AND 
-- (current_offset < prev_offset)) // i.e, it overflowed 
if( ((stage3_len(4) or stage3_len(3) or stage3_len(2) or  
       stage3_len(1) or stage3_len(0)) = ’1’) and 
        ((stage2_len(4) and stage2_len(3) and stage2_len(2) and 
           stage2_len(1) and stage2_len(0)) = ’0’) and 
             (write_ready4 = ’1’) ) then 

load_db := ’1’; 
else 

load_db := ’0’; 
end if; 

mask := comparator17(stage3_len); 
-- If(load_db) 
-- { 
-- double_buffer <= overflow_of_stage5_tmp 
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-- stage5 <= stage5 + (stage5_tmp - overflow_of_stage5_tmp) 
-- } 
-- else 
-- { 
-- double_buffer <= 0 
-- if(MEM_WRITE) 
-- stage5 <= stage5_tmp 
-- else 
-- stage5 <= stage5 + stage5_tmp + double_buffer 
-- } 
if(load_db = ’1’) then 

stage5_d <= (mask and stage5_tmp(31 downto 15)) after prop_delay; 
stage5 <= ((stage5(31 downto 15) or 
(not(mask) and stage5_tmp(31 downto 15))) & 
(stage5(14 downto 0) or stage5_tmp(14 downto 0))) after prop_delay; 

else 
stage5_d <= (others => ’0’) after prop_delay; 

if(write_ready5 = ’1’) then 
stage5 <= ((stage5_tmp(31 downto 15) or stage5_d(31 downto 15)) & 
(stage5_tmp(14 downto 0))) after prop_delay; 

else 
stage5 <= ((stage5_tmp(31 downto 15) or 
stage5(31 downto 15) or 
stage5_d(31 downto 15)) & 
(stage5(14 downto 0) or 
stage5_tmp(14 downto 0))) after prop_delay; 

  end if; 
end if; 
 else -- (SFTRen=0) 

timeout(1) <= timeout(0) after prop_delay; 
timeout(0) <= ’0’ after prop_delay; 

 end if; -- SFTRen 
end if; -- rising_edge(SFTRclk) 
 
end process run; 
 
--SFTRout <= stage5; 

SFTRout( 7 downto 0) <= (stage5(24) & stage5(25) & stage5(26) &            
stage5(27) & stage5(28) & stage5(29) & stage5(30) & stage5(31)); 
SFTRout(15 downto 8) <= (stage5(16) & stage5(17) & stage5(18) & 
stage5(19) & stage5(20) & stage5(21) & stage5(22) & stage5(23)); 
SFTRout(23 downto 16) <= (stage5( 8) & stage5( 9) & stage5(10) & 
stage5(11) & stage5(12) & stage5(13) & stage5(14) & stage5(15)); 
SFTRout(31 downto 24) <= (stage5(0) & stage5(1) & stage5(2) & 
stage5(3) & stage5(4) & stage5(5) & stage5(6) & stage5(7)); 
 

end structural; 
 
configuration SFTR_default of SFTR is 
 
for structural 
 
end for; 
 
end SFTR_default; 
 

B.2.5 top_level_for_stage2.vhd 
-- 
-- Description: 
-- 
-- Reads coefficients from lower memory (lower 0.5MB), 
-- Reads coeff min/max for each blocks from upper memory (upper 0.5MB), 
-- Does dynamic quantizing for each block, 
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-- Does zero thresholding for each block, and RLEs ZEROs, 
-- Entropy encodes based on a static Huffman tree, 
-- Packs the bit into 32 bit words and 
-- Writes it back to upper memory. 
-- Writes total number of bytes written in upper memory at location 0. 
-- 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use IEEE.std_logic_unsigned.all; 
 
architecture Memory_Access of PE1_Logic_Core is 
 
subtype std16 is std_logic_vector (15 downto 0); 
 
component QUANT is 
port ( 
QUANTclk  : in std_logic; 
QUANTen   : in std_logic; 
QUANTmax  : in std_logic_vector (15 downto 0); 
QUANTmin  : in std_logic_vector (15 downto 0); 
QUANTin   : in std_logic_vector (15 downto 0); 
QUANTout  : out std_logic_vector ( 3 downto 0)); 
end component; 
 
component RLE is 
port (  
RLEclk     : in std_logic; 
RLEreset   : in std_logic; 
RLEen      : in std_logic; 
RLEflush   : in std_logic; 
RLEin      : in std_logic_vector (15 downto 0); 
RLEzeroth  : in std_logic_vector (15 downto 0); 
RLEout     : out std_logic_vector ( 7 downto 0); 
RLErunning : out std_logic; 
RLEspellEnd: out std_logic); 
end component; 
 
component HUFF is 
port (  
HUFFclk  : in std_logic; 
HUFFin   : in std_logic_vector (7 downto 0); 
HUFFlout : out std_logic_vector (4 downto 0); 
HUFFdout : out std_logic_vector (17 downto 0)); 
end component; 
 
component SFTR is 
port (  
SFTRclk   : in std_logic; 
SFTRen    : in std_logic; 
SFTRdatin : in std_logic_vector (17 downto 0); 
SFTRlenIn : in std_logic_vector ( 4 downto 0); 
SFTRout   : out std_logic_vector (31 downto 0); 
SFTRoutEn : out std_logic); 
end component; 
 
-- We have the problem of (input rate != output rate) 
-- Each memory read brings in 2 coefficients from memory. 
-- when processed each of these coefficients could expand 
-- upto 18 bits, needing 2 memory writes before next read. 
-- 
-- ReadBlockData_001: fire READ 
-- ReadBlockData_010: optional WRITE 
-- ReadBlockData_100: 32 bit READ arrives, use up upper 16 bits from READ 
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-- WriteData : optional WRITE, use up lower 16 bits from READ 
 
type MemoryStates is( 
WaitforBus, 
ReadBlock1MinMax_001, 
ReadBlock1MinMax_011, 
ReadBlock1MinMax_111, -- got block1 min/max 
ReadBlock2MinMax_111, -- got block2 min/max 
ReadBlock3MinMax_111, -- got block3 min/max 
ReadBlock4MinMax_111, -- got block4 min/max 
ReadBlock5MinMax_111, -- got block5 min/max 
ReadBlock6MinMax_110, -- got block6 min/max 
ReadBlock7MinMax_100, -- got block7 min/max 
ReadBlockData_001, 
ReadBlockData_010, 
ReadBlockData_100, 
WriteData, 
WriteDataCount, 
WriteBlock12, 
WriteBlock34, 
WriteBlock56, 
WriteBlock7, 
MemInterrupt, 
MemDone 
); 
 
signal Mem_PState : MemoryStates; -- Present state 
signal Mem_NState : MemoryStates; -- Next state 
-- For reading coefficient data from memory, 
-- we have to read blocks 1, 2, 3, 4, 5, 6, 7. 
-- these blocks are interleaved. 
signal ReadCntrROW : std_logic_vector(8 downto 0); -- ROW, COL address 
signal ReadCntrCOL : std_logic_vector(7 downto 0); -- registers for READ 
signal eReadCntrROW : std_logic_vector(8 downto 0); -- effective 
signal eReadCntrCOL : std_logic_vector(7 downto 0); -- 
signal ROW_limit : std_logic_vector(8 downto 0); 
signal COL_limit : std_logic_vector(7 downto 0); 
signal ROW_skip : std_logic_vector(8 downto 0); 
signal COL_skip : std_logic_vector(7 downto 0); 
signal ladj : std_logic_vector(6 downto 0); -- latency adjust 
-- For writing back the output of this stage, 
-- we dump it to the upper memory and increment the 
-- write pointer when ever we write. 
signal WriteCntr : std_logic_vector(16 downto 0); 
signal RLE_Count1 : std_logic_vector(15 downto 0); 
signal RLE_Count2 : std_logic_vector(15 downto 0); 
signal RLE_Count3 : std_logic_vector(15 downto 0); 
signal RLE_Count4 : std_logic_vector(15 downto 0); 
signal RLE_Count5 : std_logic_vector(15 downto 0); 
signal RLE_Count6 : std_logic_vector(15 downto 0); 
signal RLE_Count7 : std_logic_vector(15 downto 0); 
-- Coefficient data fits in the lower 0.5MB, the upper 0.5 MB is 
-- used for storing block min/max. Before we start using the 
-- upper memory, we have to retrieve these... 
signal Block1Min : std16; 
signal Block1Max : std16; 
signal Block2Min : std16; 
signal Block2Max : std16; 
signal Block3Min : std16; 
signal Block3Max : std16; 
signal Block4Min : std16; 
signal Block4Max : std16; 
signal Block5Min : std16; 
signal Block5Max : std16; 



  xxxii 
                                    
            

signal Block6Min : std16; 
signal Block6Max : std16; 
signal Block7Min : std16; 
signal Block7Max : std16; 
-- Different blocks are zero thresholded at different levels. 
-- These are design constants. To vary the compression ratio, 
-- need to adjust these. 
-- This is for minimum compression (good quality image) 
-- constant Block1Th : std16 := "0000000000000000"; -- 0 x 0 
-- constant Block2Th : std16 := "0000000000000000"; -- 27 x 0 
-- constant Block3Th : std16 := "0000000000000000"; -- 39 x 0 
-- constant Block4Th : std16 := "0000000000000000"; -- 104 x 0 
-- constant Block6Th : std16 := "0000000000000000"; -- 50 x 0 
-- constant Block5Th : std16 := "0000000000000000"; -- 79 x 0 
-- constant Block7Th : std16 := "0000000000000000"; -- 191 x 0 
-- This is for moderate compression 
-- constant Block1Th : std16 := "0000000000000000"; -- 0 x 1 
-- constant Block2Th : std16 := "0000000000011011"; -- 27 x 1 
-- constant Block3Th : std16 := "0000000000100111"; -- 39 x 1 
-- constant Block4Th : std16 := "0000000001101000"; -- 104 x 1 
-- constant Block5Th : std16 := "0000000000110010"; -- 50 x 1 
-- constant Block6Th : std16 := "0000000001001111"; -- 79 x 1 
-- constant Block7Th : std16 := "0000000010111111"; -- 191 x 1 
-- This is maximum compression 
constant Block1Th : std16 := "0000000000000000"; -- 0 x 2 
constant Block3Th : std16 := "0000000000110110"; -- 27 x 2 
constant Block2Th : std16 := "0000000001001110"; -- 39 x 2 
constant Block4Th : std16 := "0000000011010000"; -- 104 x 2 
constant Block6Th : std16 := "0000000001100100"; -- 50 x 2 
constant Block5Th : std16 := "0000000010011110"; -- 79 x 2 
constant Block7Th : std16 := "0000000101111110"; -- 191 x 2 
signal QUANTen : std_logic; 
signal QUANTmax : std_logic_vector(15 downto 0); 
signal QUANTmin : std_logic_vector(15 downto 0); 
signal QUANTin : std_logic_vector(15 downto 0); 
signal QUANTin2 : std_logic_vector(15 downto 0); 
signal QUANTout : std_logic_vector( 3 downto 0); 
signal QUANTout2 : std_logic_vector( 3 downto 0); 
signal RLEflush : std_logic; 
signal RLEen : std_logic; 
signal RLEin : std_logic_vector(15 downto 0); 
signal RLEzeroth : std_logic_vector(15 downto 0); 
signal RLEout : std_logic_vector( 7 downto 0); 
signal RLErunning : std_logic; 
signal RLEspellEnd : std_logic; 
signal RLErunning1 : std_logic; 
signal RLEspellEnd1 : std_logic; 
signal RLErunning2 : std_logic; 
signal RLEspellEnd2 : std_logic; 
signal HUFFin : std_logic_vector( 7 downto 0); 
signal HUFFlout : std_logic_vector( 4 downto 0); 
signal HUFFdout : std_logic_vector(17 downto 0); 
signal SFTRen : std_logic; 
signal SFTRdatin : std_logic_vector(17 downto 0); 
signal SFTRlenIn : std_logic_vector( 4 downto 0); 
signal SFTRout : std_logic_vector(31 downto 0); 
signal SFTRoutEn : std_logic; 
signal readComplete : std_logic; 
signal nStages : std_logic_vector(2 downto 0); --counts which quadrant we are 
in 
signal nStages1 : std_logic_vector(2 downto 0); -- delayed by one clock 
signal nStages_1 : std_logic_vector(2 downto 0); -- delayed by 4 cycles 
signal nStages_2 : std_logic_vector(2 downto 0); -- delayed by 8 cycles 
signal nStages_3 : std_logic_vector(2 downto 0); -- delayed by 12 cycles 
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begin 
 
quantizer : QUANT -- Dynamic quantizer 
port map (  
PE_Pclk, 
QUANTen, 
QUANTmax, 
QUANTmin, 
QUANTin, 
QUANTout); 
 
rle : RLE 
port map (  
PE_Pclk, -- Run length encoder 
PE_Reset, 
RLEen, 
RLEflush, 
RLEin, 
RLEzeroth, 
RLEout, 
RLErunning, 
RLEspellEnd); 
 
huffman : HUFF 
port map (  
PE_Pclk, -- Huffman encoder 
HUFFin, 
HUFFlout, 
HUFFdout); 
 
bitpacker : SFTR 
port map (  
PE_Pclk, -- Bit packer 
SFTRen, 
SFTRdatin, 
SFTRlenIn, 
SFTRout, 
SFTRoutEn); 
 
quantizer_in : process(Mem_PState, PE_MemData_InReg, QUANTin2) 
 
begin 
 
if (Mem_PState = ReadBlockData_100) then 

QUANTin <= PE_MemData_InReg(31 downto 16); 
else 

QUANTin <= QUANTin2; 
end if; 
 
end process quantizer_in; 
 
RLEin <= QUANTin; 
RLEen <= QUANTen; 
 
with RLErunning select HUFFin <= -- Input to huffman: 
RLEout when ’1’, -- from RLE, when RLE 
("0000" & QUANTout) when others; -- from QUANT, else 
SFTRdatin <= HUFFdout; 
SFTRlenIn <= HUFFlout; 
 
with nStages1 select QUANTmax <= 
Block1Max when "000", 
Block2Max when "001", 
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Block3Max when "010", 
Block4Max when "011", 
Block5Max when "101", 
Block6Max when "110", 
Block7Max when "111", 
(others => ’X’) when others; 
with nStages1 select QUANTmin <= 
Block1Min when "000", 
Block2Min when "001", 
Block3Min when "010", 
Block4Min when "011", 
Block5Min when "101", 
Block6Min when "110", 
Block7Min when "111", 
(others => ’X’) when others; 
with nStages1 select RLEzeroth <= 
Block1Th when "000", 
Block2Th when "001", 
Block3Th when "010", 
Block4Th when "011", 
Block5Th when "101", 
Block6Th when "110", 
Block7Th when "111", 
(others => ’0’) when others; 
 
st_update : process (PE_Pclk, PE_Reset) 
 
begin 
 
if (PE_Reset = ’1’) then 

Mem_PState <= WaitforBus; 
readComplete <= ’0’; 
nStages <= "000"; 
nStages1 <= "000"; 
nStages_1 <= "100"; 
nStages_2 <= "100"; 
nStages_3 <= "100"; 
QUANTin2 <= (others => ’0’); 
QUANTout2 <= (others => ’0’); 
ReadCntrROW <= "000000000"; 
ReadCntrCOL <= "00000000"; 
eReadCntrROW <= "000000000"; 
eReadCntrCOL <= "00000000"; 
ladj <= (others => ’0’); 
RLErunning1 <= ’0’; 
RLEspellEnd1 <= ’0’; 
RLErunning2 <= ’0’; 
RLEspellEnd2 <= ’0’; 
ROW_limit <= "111111000"; -- 504 [0, 8, 16, ..., 504] = 64 cells 
COL_limit <= "11111000"; -- 248 [0, 8, 16, ..., 248] = 32 cells 
ROW_skip <= "000001000"; -- 8 
COL_skip <= "00001000"; -- 8 
WriteCntr <= "00000000000000000"; 
RLE_Count1 <= "0000000000000000"; 
RLE_Count2 <= "0000000000000000"; 
RLE_Count3 <= "0000000000000000"; 
RLE_Count4 <= "0000000000000000"; 
RLE_Count5 <= "0000000000000000"; 
RLE_Count6 <= "0000000000000000"; 
RLE_Count7 <= "0000000000000000"; 
Block1Min <= (others => ’0’); 
Block1Max <= (others => ’0’); 
Block2Min <= (others => ’0’); 
Block2Max <= (others => ’0’); 
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Block3Min <= (others => ’0’); 
Block3Max <= (others => ’0’); 
Block4Min <= (others => ’0’); 
Block4Max <= (others => ’0’); 
Block5Min <= (others => ’0’); 
Block5Max <= (others => ’0’); 
Block6Min <= (others => ’0’); 
Block6Max <= (others => ’0’); 
Block7Min <= (others => ’0’); 
Block7Max <= (others => ’0’); 

elsif (rising_edge(PE_Pclk)) then 
Mem_PState <= Mem_NState; 
nStages1 <= nStages; 
RLErunning1 <= RLErunning; 
RLEspellEnd1 <= RLEspellEnd; 
RLErunning2 <= RLErunning1; 
RLEspellEnd2 <= RLEspellEnd1; 

if (Mem_PState = ReadBlock1MinMax_111) then 
Block1Max <= PE_MemData_InReg(31 downto 16); 
Block1Min <= PE_MemData_InReg(15 downto 0); 

end if; 
if (Mem_PState = ReadBlock2MinMax_111) then 

Block2Max <= PE_MemData_InReg(31 downto 16); 
Block2Min <= PE_MemData_InReg(15 downto 0); 

end if; 
if (Mem_PState = ReadBlock3MinMax_111) then 

Block3Max <= PE_MemData_InReg(31 downto 16); 
Block3Min <= PE_MemData_InReg(15 downto 0); 

end if; 
if (Mem_PState = ReadBlock4MinMax_111) then 

Block4Max <= PE_MemData_InReg(31 downto 16); 
Block4Min <= PE_MemData_InReg(15 downto 0); 

end if; 
if (Mem_PState = ReadBlock5MinMax_111) then 

Block5Max <= PE_MemData_InReg(31 downto 16); 
Block5Min <= PE_MemData_InReg(15 downto 0); 

end if; 
if (Mem_PState = ReadBlock6MinMax_110) then 

Block6Max <= PE_MemData_InReg(31 downto 16); 
Block6Min <= PE_MemData_InReg(15 downto 0); 

end if; 
if (Mem_PState = ReadBlock7MinMax_100) then 

Block7Max <= PE_MemData_InReg(31 downto 16); 
Block7Min <= PE_MemData_InReg(15 downto 0); 

end if; 
-- Quantizer works on 16 bit data, in each 
-- memory read we get two 16 bit data, so store 
-- one for next cycle. 
if (Mem_PState = ReadBlockData_100) then 

QUANTin2 <= PE_MemData_InReg(15 downto 0); 
QUANTout2 <= QUANTout; -- DEBUG 

end if; 
if (Mem_PState = ReadBlockData_001) then 

ladj(6) <= not(readComplete); 
ladj(5) <= ladj(6); 
ladj(4) <= ladj(5); 
ladj(3) <= ladj(4); 
ladj(2) <= ladj(3); 
ladj(1) <= ladj(2); 
ladj(0) <= ladj(1); 

end if; 
if (((Mem_PState = WriteData) or (Mem_PState = ReadBlockData_010)) and 

(SFTRoutEn = ’1’)) then 
WriteCntr <= WriteCntr + 1; 
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end if; 
if (((Mem_PState = WriteData) or (Mem_PState = ReadBlockData_010)) and 

((RLErunning = ’0’) or (RLEspellEnd = ’1’))) then 
if(nStages_3="000") then 

RLE_Count1 <= RLE_Count1 + 1; 
end if; 
if(nStages_3="001") then 

RLE_Count2 <= RLE_Count2 + 1; 
end if; 
if(nStages_3="010") then 

RLE_Count3 <= RLE_Count3 + 1; 
end if; 
if(nStages_3="011") then 

RLE_Count4 <= RLE_Count4 + 1; 
end if; 
if(nStages_3="101") then 

RLE_Count5 <= RLE_Count5 + 1; 
end if; 
if(nStages_3="110") then 

RLE_Count6 <= RLE_Count6 + 1; 
end if; 
if(nStages_3="111") then 

RLE_Count7 <= RLE_Count7 + 1; 
end if; 

end if; 
 
-- ROW/COL address registers for reading. 
-- 
-- Block 0: ROW start: 00000 0000 COL start: 0000 0000 
-- inc : 00000 1000 inc : 0000 1000 
-- end : 11111 1000 end : 1111 1000 
-- Block 1: ROW start: 00000 0100 COL start: 0000 0000 
-- inc : 00000 1000 inc : 0000 1000 
-- end : 11111 1100 end : 1111 1000 
-- Block 2: ROW start: 00000 0000 COL start: 0000 0100 
-- inc : 00000 1000 inc : 0000 1000 
-- end : 11111 1000 end : 1111 1100 
-- Block 3: ROW start: 00000 0100 COL start: 0000 0100 
-- inc : 00000 1000 inc : 0000 1000 
-- end : 11111 1100 end : 1111 1100 
-- Block 4: ROW start: 00000 0010 COL start: 0000 0000 
-- inc : 00000 0100 inc : 0000 0100 
-- end : 11111 1110 end : 1111 1100 
-- Block 5: ROW start: 00000 0000 COL start: 0000 0010 
-- inc : 00000 0100 inc : 0000 0100 
-- end : 11111 1100 end : 1111 1110 
-- Block 6: ROW start: 00000 0010 COL start: 0000 0010 
-- inc : 00000 0100 inc : 0000 0100 
-- end : 11111 1110 end : 1111 1110 
-- 
-- ReadCntrCOL and ReadCntrROW are our main 
-- ROW and COL address registers. We also maintain 
-- a pair of effective address regs, as in some cases 
-- the effective addresses would be normal address +inc/2 
-- 
if(nStages(1) = ’1’) then 

eReadCntrCOL <= ReadCntrCOL + (’0’ & COL_skip(7 downto 1)); 
else 

eReadCntrCOL <= ReadCntrCOL; 
end if; 
if(nStages(0) = ’1’) then 

eReadCntrROW <= ReadCntrROW + (’0’ & ROW_skip(8 downto 1)); 
else 

eReadCntrROW <= ReadCntrROW; 
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end if; 
if (Mem_PState = ReadBlockData_100) then 

nStages_1 <= nStages; 
nStages_2 <= nStages_1; 
nStages_3 <= nStages_2; 
ReadCntrCOL <= ReadCntrCOL + COL_skip; 

    if (ReadCntrCOL = COL_limit) then 
ReadCntrROW <= ReadCntrROW + ROW_skip; 

end if; 
if((ReadCntrROW = ROW_limit) and -- End of current 

(ReadCntrCOL = COL_limit)) then -- block 
-- Update nStages as :(000 001 010 011) (101 110 111) 
-- Whenever nStages(0)=1, eRowAddr = RowAddr + RowInc/2 
-- Whenever nStages(1)=1, eColAddr = ColAddr + ColInc/2 

if (nStages = "011") then 
nStages <= "101"; 

elsif (nStages = "111") then 
nStages <= "100"; 

else 
nStages <= nStages + 1; 

end if; 
if (nStages(1 downto 0) = "11") then 

ROW_skip <= (’0’ & ROW_skip(8 downto 1)); 
COL_skip <= (’0’ & COL_skip(7 downto 1)); 
ROW_limit <= (’1’ & ROW_limit(8 downto 1)); 
COL_limit <= (’1’ & COL_limit(7 downto 1)); 

end if; 
if (nStages = "111") then 

readComplete <= ’1’; 
end if; 

end if; 
   end if; 
end if; 
 
end process st_update; 
 
PE_MemAddr_OutReg(21 downto 18) <= (others => ’0’); 
 
mem_state: process(Mem_PState,ladj,PE_MemBusGrant_n,eReadCntrROW,eReadCntrCOL, 
WriteCntr,nStages, nStages1,RLE_Count1, RLE_Count2, RLE_Count3, RLE_Count4, 
RLE_Count5, RLE_Count6, RLE_Count7,RLErunning2, RLEspellEnd2,SFTRoutEn, 
SFTRout,PE_InterruptAck_n) 
 
Begin 
 
PE_InterruptReq_n <= ’1’; -- Default, do not interrupt host 
PE_MemWriteSel_n <= ’1’; -- read/write, default read 
PE_MemStrobe_n <= ’1’; -- No strobe, later 
PE_MemBusReq_n <= ’0’; -- Always request bus 
QUANTen <= ’0’; -- 
SFTRen <= ’0’; -- 
RLEflush <= ’0’; -- 
PE_MemAddr_OutReg(17 downto 0) <= (others => ’0’); 
PE_MemData_OutReg(31 downto 0) <= (others => ’0’); 
 
case Mem_PState is 
 
when WaitforBus => 
 
if(PE_MemBusGrant_n = ’0’) then 

Mem_NState <= ReadBlock1MinMax_001; 
else 

Mem_NState <= WaitforBus; 
end if; 
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when ReadBlock1MinMax_001 => 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= ReadBlock1MinMax_011; 
PE_MemAddr_OutReg(17 downto 0) <= "100000000000001000"; 
 
when ReadBlock1MinMax_011 => 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= ReadBlock1MinMax_111; 
PE_MemAddr_OutReg(17 downto 0) <= "100000000000001001"; 
 
when ReadBlock1MinMax_111 => 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= ReadBlock2MinMax_111; 
PE_MemAddr_OutReg(17 downto 0) <= "100000000000001010"; 
 
when ReadBlock2MinMax_111 => 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= ReadBlock3MinMax_111; 
PE_MemAddr_OutReg(17 downto 0) <= "100000000000001011"; 
 
when ReadBlock3MinMax_111 => 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= ReadBlock4MinMax_111; 
PE_MemAddr_OutReg(17 downto 0) <= "100000000000000101"; 
 
when ReadBlock4MinMax_111 => 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= ReadBlock5MinMax_111; 
PE_MemAddr_OutReg(17 downto 0) <= "100000000000000110"; 
 
when ReadBlock5MinMax_111 => 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= ReadBlock6MinMax_110; 
PE_MemAddr_OutReg(17 downto 0) <= "100000000000000111"; 
 
when ReadBlock6MinMax_110 => 
Mem_NState <= ReadBlock7MinMax_100; 
 
when ReadBlock7MinMax_100 => 
Mem_NState <= ReadBlockData_001; 
 
when ReadBlockData_001 => 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= ReadBlockData_010; 
PE_MemAddr_OutReg(17) <= ’0’; 
PE_MemAddr_OutReg(16 downto 8) <= eReadCntrROW; 
PE_MemAddr_OutReg( 7 downto 0) <= eReadCntrCOL; 
 
when ReadBlockData_010 => 
Mem_NState <= ReadBlockData_100; 
PE_MemWriteSel_n <= ’0’; -- for writing 
SFTRen <= ((ladj(3) or ladj(0)) and (not(RLErunning2) or RLEspellEnd2)); 
PE_MemStrobe_n <= not(SFTRoutEn); 
PE_MemData_OutReg(31 downto 0) <= SFTRout; 
PE_MemAddr_OutReg(17) <= ’1’; 
PE_MemAddr_OutReg(16 downto 0) <= WriteCntr; 
 
when ReadBlockData_100 => 
Mem_NState <= WriteData; 
QUANTen <= ’1’; 
 
when WriteData => 
PE_MemWriteSel_n <= ’0’; -- for writing 
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PE_MemStrobe_n <= not(SFTRoutEn); 
QUANTen <= ’1’; 
SFTRen <= ((ladj(3) or ladj(0)) and (not(RLErunning2) or RLEspellEnd2)); 
if(nStages /= nStages1) then 

RLEflush <= ’1’; 
end if; 

PE_MemAddr_OutReg(17) <= ’1’; 
PE_MemAddr_OutReg(16 downto 0) <= WriteCntr; 

if ((ladj(6) = ’0’) and (ladj(0) = ’0’)) then 
Mem_NState <= WriteDataCount; 

else 
Mem_NState <= ReadBlockData_001; 

end if; 
PE_MemData_OutReg(31 downto 0) <= SFTRout; 

 
when WriteDataCount => 
PE_MemWriteSel_n <= ’0’; -- for writing 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= WriteBlock12; 
PE_MemData_OutReg(31 downto 17) <= (others => ’0’); 
PE_MemData_OutReg(16 downto 0) <= WriteCntr; 
PE_MemAddr_OutReg(17 downto 0) <= "000000000000000000"; 
 
 
when WriteBlock12 => 
PE_MemWriteSel_n <= ’0’; -- for writing 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= WriteBlock34; 
PE_MemData_OutReg(31 downto 16) <= RLE_Count1; 
PE_MemData_OutReg(15 downto 0) <= RLE_Count2; 
PE_MemAddr_OutReg(17 downto 0) <= "000000000000000001"; 
 
when WriteBlock34 => 
PE_MemWriteSel_n <= ’0’; -- for writing 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= WriteBlock56; 
PE_MemData_OutReg(31 downto 16) <= RLE_Count3; 
PE_MemData_OutReg(15 downto 0) <= RLE_Count4; 
PE_MemAddr_OutReg(17 downto 0) <= "000000000000000010"; 
 
when WriteBlock56 => 
PE_MemWriteSel_n <= ’0’; -- for writing 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= WriteBlock7; 
PE_MemData_OutReg(31 downto 16) <= RLE_Count5; 
PE_MemData_OutReg(15 downto 0) <= RLE_Count6; 
PE_MemAddr_OutReg(17 downto 0) <= "000000000000000011"; 
 
when WriteBlock7 => 
PE_MemWriteSel_n <= ’0’; -- for writing 
PE_MemStrobe_n <= ’0’; 
Mem_NState <= MemInterrupt; 
PE_MemData_OutReg(31 downto 16) <= "0000000000000000"; 
PE_MemData_OutReg(15 downto 0) <= RLE_Count7; 
PE_MemAddr_OutReg(17 downto 0) <= "000000000000000100"; 
 
when MemInterrupt => 
PE_MemBusReq_n <= ’1’; -- Give up bus 
PE_InterruptReq_n <= ’0’; -- Interrupt host 
if(PE_InterruptAck_n = ’0’) then 

Mem_NState <= MemDone; 
else 

Mem_NState <= MemInterrupt; 
end if; 
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when MemDone => 
PE_MemBusReq_n <= ’1’; -- Give up bus, host program 
Mem_NState <= MemDone; -- to READ memory now... 
 
end case; 
 
end process mem_state; 
 
end Memory_Access; 
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