
WAVELET TRANSFORM BASED
ADAPTIVE IMAGE COMPRESSION

ON FPGA
A minor project report submitted

in partial fulfilment of the requirements for the award of the degree of

Master of Engineering
In

Electronics and Communication Engineering

By

Manoj Sharma

Roll No. 8729

Department of Electronics and Communication Engineering,

Delhi College of Engineering, University of Delhi
Session 2004-2006

ACKNOWLEDGEMENT

I wish to acknowledge our sincere thanks to my guide Mrs. Rajeshwari
Pandey in Electronics and Communication Department and my co-guide
Mrs. Neeta Pandey (Asst. Professor in Bhartiya Vidya Peetha) for there
suggestions excellent guidance and timely advice which has made my
project success.
 I express my deep sense of gratitude to Dr. Asok Bhattacharyya,
H.O.D. (Department of Electronics and Communication Engineering) for
there inspirations and timely help in conducting our project. I am indebted to
the entire faculty and non teaching staff of Electronics and communication
department, who had very helpful and cooperative to me at all times.

Manoj Sharma (8729)

Department of Electronics and Communication Engineering
Delhi College of Engineering, University of Delhi

Session 2004-2006

DEPARTMENT OF ELECTRONICSANDCOMMUNICATION
DELHI COLLEGE OF ENGINEERING

UNIVERSITY OF DELHI
DELHI

CERTIFICATE

Certified that the project work entitled

WAVELET TRANSFORM BASED ADAPTIVE IMAGE
COMPRESSION ON FPGA

is bonafied work carried by

Manoj Sharma (8729)

In partial fulfilment for the award of degree of Master of Engineering in
Electronics and Communication Engineering of the University of Delhi
during the year 2004-2006.It is certified that all corrections/suggestions
indicated for internal assessment have been in corporate in the report
deposited in the Departmental library. The project report has been approved
as it satisfied the academic requirements in respect of minor project work
prescribed for the Master of Engineering Degree.

Signature of Guide Signature of HOD

Mrs Rajeshwari Pandey Dr. Asok Bhattacharyya

Abstract

Image processing systems can encode raw images with different degrees of

precision, achieving varying levels of compression. Different encoders with

different compression ratios can be built and used for different applications.

The need to dynamically adjust the compression ratio of the encoder arises

in many applications. One example involves the real-time transmission of

encoded data over a packet switched network. To suitably adapt the encoder

to varying compression requirements, adaptive adjustments of the

compression parameters are required. This involves reconfiguring the

encoder in an efficient manner. Our approach exploits the reconfigurable

nature of Field Programmable Gate Arrays (FPGA), to adapt the encoder to

the varying requirements in real time. A Wavelet transform based image

compression scheme is implemented for encoding gray-scale frames of 512

by 512 pixels on FPGAs. By varying the zero thresholds, the encoder can

achieve varying compression levels. The complete design of the encoder on

FPGA is presented. Implementation details of the individual blocks are

discussed in great detail. Finally, results from testing are reported and

discussed.

Contents
1 Introduction 1

1.1 Motivation . 1

1.1.1 Scope of Field Programmable Gate Arrays 2

1.1.2. Adaptive image compression 1

1.2 Thesis Layout . 3

1.3 Other Implementations . 3

2 Wavelet Transform4

2.1 Wavelets . 4

2.1.1 A simple example - the Haar wavelet 5

2.1.2 Lifting scheme . 6

2.1.3 Wavelets that map Integer to Integer 7

2.1.4 Compact support, Vanishing moments, and Smoothness. 5

2.1.5 Orthogonal and Bi-orthogonal Wavelets 5

2.1.6 (2,2) Bi-orthogonal Cohen Daubechies Feauveau Wavelet . 7

2.1.7 Boundary treatment . 8

2.1.8 Advantages of Wavelets . 9

3 Design and Implementation 10

3.1 Hardware platform . 10

3.2 Design parameters and constraints 11

3.2.1 Memory read/write . 11

3.2.2 Real time performance . 12

3.2.3 Design partitioning . 12

3.3 Stage 1: Discrete Wavelet Transform 12

3.3.0.1 (2, 2) wavelet . 12

3.3.0.2 DWT in X and Y directions 13

3.3.0.3 3 stages of wave-letting 15

3.3.0.4 Over all architecture of Stage 1 16

3.4 Stage 2 . 18

3.4.1 Dynamic quantization . 18

3.4.2 Zero thresholding and RLE on zeroes 20

3.4.3 Entropy encoding . 22

3.4.3.1 Encoding scheme 22

3.4.3.2 Bit packing . 23

3.4.3.3 Shifter . 24

3.4.4 Output file format . 25

3.4.5 Stage 2, Overall architecture 26

4 Results 29

4.1 Metrics for testing . 29

4.1.1 Throughput . 29

4.1.1.1 Embedded memory performance 29

4.1.1.2 Effective throughput 30

4.1.2 Compression level Vs noise 31

4.1.3 Implementation costs on the hardware 34

5 Conclusions and Future Work 37

5.1 Conclusions . 37

5.2 Future work . 38

A Design parameters 40

A.1 Zero threshold levels for different codecs 40

A.2 Throughput comparison with a software encoder 41

A.3 Design flow . 42

B Source code listings 43

B.1 Stage 1 - VHDL source code . 43

B.1.1 waveletX.vhd . 43

B.1.2 waveletY.vhd . 45

B.1.3 pe1lca.vhd (top level for stage1) 47

B.2 Stage 2 - VHDL source code . 54

B.2.1 quantizer.vhd . 54

B.2.2 rle.vhd . 56

B.2.3 huffman.vhd . 58

B.2.4 shifter.vhd . 61

B.2.5 pe1lca.vhd (top level for stage2) 65

B.3 Control software - C source code listing 75

B.3.1 pgm.h . 75

B.3.2 wlt.h . 76

B.3.3 stage1.c . 76

B.3.4 stage2.c . 78

List of Tables

2.1 (2,2) CDF wavelet with lifting scheme 8

3.1 Bit range allocation for RLE . 21

4.1 Embedded memory access times from host computer 30

4.2 Delay along a single thread . 31

4.3 PSNR and RMSE equations . 34

4.4 Compression levels and noise neasurements for ’lena’ 35

4.5 Compression levels and noise neasurements for ’barbara’ 35

4.6 Compression levels and noise neasurements for ’goldhill’ 35

4.7 Device usage and Timing statistics 36

A.1 Zero threshold levels for different configurations 40

A.2 Throughput measured from the software encoder 41

List of Figures

2.1 Lifting Scheme . 6

3.1 Configurable Logic Block (CLB) in XC4000 series FPGA 11

3.2 Coefficient ordering along X direction 14

3.3 Coefficient ordering along Y direction 14

3.4 Fast Wavelet transform data flow blocks 15

3.5 High pass and Low pass coefficients at stage 1, X direction 15

3.6 Mallot ordering along the 3 stages of wave-letting 16

3.7 Interleaved ordering along the 3 stages of wave-letting 17

3.8 Stage 1 architecture . 18

3.9 Dynamic Quantizer . 19

3.10 Run Length Encoder for continuous zeroes 21

3.11 Entropy encoding, bit allocation . 23

3.12 Entropy encoder . 23

3.13 Binary Shifter for bit packing . 24

3.14 Outfile format . 26

3.15 Stage 2, data flow diagram . 27

3.16 Stage 2, control flow diagram . 28

4.1 Original Images . 32

4.2 Configuration 1, Minimum compression 32

4.3 Configuration 2, Medium compression 33

4.4 Configuration 3, Maximum compression 33

A.1 Design flow . 42

 1

Chapter 1
Introduction

 2

1.1 Adaptive Image Compression

With the use of more and more digital still and moving images, huge amount of

disk space is required for storage and manipulation purpose. For example, a

standard 35-mm photograph digitized at 12µm per pixel requires about 18Mbytes

of storage and one second of NTSC-quality color video requires 23 Mbytes of

storage. That is why image compression is very important in order to reduce

storage need. Digital images can be compressed by eliminating redundant

information present in the image, such as spatial redundancy, spectral redundancy

and temporal redundancy. The removal of spatial and spectral redundancy is often

Accomplished by transform coding, which uses some reversible linear transform to

decorrelate the image data. JPEG is the most commonly used image compression

standard in today’s world. Joint Photographic Experts Group (JPEG) is an ISO

standard committee with a mission on “Coding and compression of still images”.

It’s jointly supported by ISO and ITU-T. But researchers have found that JPEG has

many limitations. In order to overcome all those limitations and to add on new

improved features, ISO and ITU-T has come up with new image compression

standard, which is JPEG2000. The JPEG2000 is intended to provide a new image

coding/decoding system using state of the art compression techniques, based on the

use of wavelet technology. This thesis focuses on the adaptive image compression

based on discrete wavelet transform.

Image processing systems can encode raw images with different degrees of

Precision, achieving varying levels of compression. Encoding can be achieved with

different encoders with varying compression ratios. The need to dynamically adjust

the compression ratio of the encoder arises in many situations.One example

 3

involves the real-time transmission of encoded data over a packet switched

network. On detecting network congestion, the encoder can cut down the precision

and gain more compression, rather than waiting for some packets to be dropped.

To suitably adapt the encoder to the varying compression requirements, adaptive

adjustments of the compression parameters are required. This involves

reconfiguring the encoder in some sense.

 This thesis work presents the hardware design of a Forward Discrete

Wavelet Transform (FDWT) processor using VHDL. The design utilises the

lossless features of FDWT. This is a reversible algorithm, which means there is no

loss of information while compressing and transmitting the image information.

This work presents the hardware architecture of the processor as well as the design

of its constituent components in VHDL. The architecture does not comprise any

hardware multiplier unit and therefore suitable for development of high-

performance image processors.

1.2 Dissertation Layout

The remainder of this document is organized as follows. Chapter one explains

related work in this field. Chapter two describes Wavelet transform based image

compression schemes. Next, chapter three explains the design and implementation

of the encoder. Then, chapter four summarizes the results obtained.Finally, in

chapter five conclusions and further scope of work has been discussed.

 4

1.3 Other Implementations

There are many other implementations using ASICs and custom ICs. There have

also been many software based image compression kits like [GEOFF], which

utilizes wavelet based compression techniques.There have been other efforts to

implement Wavelet transform based image Compression systems on FPGA. In one

implementation [BRIAN], the discrete wavelet transform coefficients are

computed for 256x256 grayscale frames. This implementation also supports a

multiplierless quantizer and a run length encoder. The frame rates quoted are 20

frames/second on Xilinx 4008 FPGAs with on-board embedded memory.

 5

Chapter 2
Wavelet Transform

2.1 Wavelets

The following introduction on wavelets is based on the paper by mathematician

Gilbert Strang [STRANG]. A wavelet is a localized function in time (or space in

the case of images) with mean zero. A wavelet basis is derived from the wavelet

(small wave) by its own dilations and translations.

Let the original wavelet start at t = 0 and end at t = N. The shifted wavelet w0,k,

starts at t = k and ends at t = k + N. The rescaled wavelet wj,0 starts at t = 0 and ends

at t = N/ At a given resolution j, the basis functions are wj,k(t), and the time steps at

that level are At the next finer resolution, j+1,the time steps are .

Frequencies shift upward by an octave, when time is rescaled by 2. Functionally,

DiscreteWavelet Transform (DWT) is very much similar to the Discrete Fourier

Transform, in that the transformation function is orthogonal. A signal passed twice

through the orthogonal function is unchanged. As the input signal is a set of

samples, both transforms are convolutions. While the basis function of the Fourier

transform is a sinusoid, the wavelet basis is a set waves obtained by the dilations

and translations of the mother wavelet.

2.1.1 A simple example - the Haar wavelet

One of the first wavelet was that of Haar. The Haar scaling function is shown

below.

 6

Applying the Haar wavelet on a sequence of values computes its sums and

differences. For example, a sequence of values a, b would be replaced by

s = (a + b)/2 and d = (b - a). The values of a and b can be reconstructed as

a = s - d=2 and b = s + d=2.

The input signal with 2n samples is replaced with 2n-1 averages (s0(i)) and 2n-1

differences (d0(i)). The averages can be thought of as a coarser representation of the

signal and the differences as the information needed to go back to the original

resolution. The averages and differences are now computed on the coarser signal

(s0(i)) of length 2n-1. This gives (s1(i)) and (d1(i)) of length 2n-2 each. This operation

can be performed n times, till we run out of samples. The inverse operation starts

by computing sn-2(j) from sn-1(j) and dn-1(j).

2.1.2 Lifting scheme

The above computation of the Haar wavelet needs intermediate storage to store the

average and difference. The average computed, cannot be written back in place of

a, till the difference has been computed. Lifting scheme on the other hand allows

for an in place computation. In the first step, we compute only the difference

d = (b-a) and store it in place of b. Next, the average value is computed in terms of

a and the newly computed difference, b, as s = a + b=2. The inverse can be

computed by reversing the order and flipping the signs. This is a simple instance of

lifting. Split Predict Update

 7

Figure 2.1: Lifting Scheme

A more general lifting scheme consists of three steps - split, predict and up-date,

figure 2.1. The splitting stage splits the signal into two disjoint sets of samples. In

the above example, it consists of even numbered samples and odd numbered

samples. Each group contains half as many samples as the original signal. If the

signal has a local correlation the consecutive samples will be highly correlated. In

other words, given one set it should be able to predict the other. In the diagram, the

even samples are used to predict the odd samples. Then the detail is the difference

between the odd sample and its prediction.In the Haar case the prediction is simple,

every even value is used to predict the next odd value. The order of the predictor in

the Haar case is 1 and it eliminates zeroth order correlation. The reverse operation

is done as undo-update, undo-predict and merge.

2.1.3 Wavelets that map Integer to Integer

We return to the Haar transform. Because of the division by 2 in the average

computation, it is not an integer transform. A simple alternative is to calculate the

sum instead of the average. Another solution known as the S (sequential) transform

is to round off the average value to an integer value. The sum and difference of two

integers are both even or both odd. So, the last bits of the difference and average

should be identical. Hence the last bit from average can be omitted, with out

 8

 9

loosing information. In the general case, though rounding may add a non-linearity

to the transform, it has been shown to be invertible, [CALDERBANK].

2.1.4 Compact support, Vanishing moments, and Smoothness

Wavelets are localized functions and zero outside a bounded interval. This

compact support corresponds to an FIR implementation. Another way to

characterize wavelets by the number of coefficients and the level of iteration. If the

frequency response of the corresponding filter has p zeroes at π, the approximation

order is p. In other words, a wavelet basis with p vanishing moments can give a pth

order approximation for any signal. The smoothness of the transfer functions is

measured by the number of its derivatives.

2.1.5 Orthogonal and Bi-orthogonal Wavelets

The wavelet basis forms an orthogonal basis if the basis vectors are orthogonal to

its own dialations and translations. A less stringent condition is that the vectors be

bi-orthogonal. The DWT and inverse DWT can be implemented by filter banks.

This includes an analysis filter and a synthesis filter. When the analysis and

synthesis filters are transposes as well as inverses of each other, the whole filter

bank is orthogonal. When they are inverses, but not necessarily transposes, the

filter bank is bi-orthogonal.

2.1.6 (2, 2) Bi-orthogonal Cohen Daubechies Feauveau Wavelet

The main intent of wavelet transform is to decompose a signal f, in terms of its

basis vectors.

f = ∑ai Wi

To have an efficient representation of signal f using only a few coefficients ai, the

basis functions should match the features of the signal we want to represent. The

(2, 2) Cohen Daubechies Feauveau Wavelet [COHEN] is widely used for image

compression because of its good compression characteristics. The original filters

have 5+3 = 8 filter coefficients, whereas an implementation with the lifting scheme

has only 2+2 = 4 filter coefficients. The forward and reverse filters are shown in

table 2.1. Fractional numbers are converted to integers at each stage. Though such

an operation adds non-linearity to the transform, the transform is fully invertible as

long as the rounding is deterministic. Forward transform

Table 2.1: (2, 2) CDF wavelet with lifting scheme

2.1.7 Boundary treatment

Real world signals are limited to a finite interval. However filter bank algorithms

assume infinite lengths. The computation of s and d coefficients refer to k signal
 10

 11

samples before and after the current sample, depending on the filter length k.

Different methods of extending the signal at the boundaries has been suggested.

One scheme that is widely used is the symmetric extension. It extends the finite

signal by mirroring it around its boundaries.

2.1.8 Advantages of Wavelets

Real time signals are both time-limited (or space limited in the case of images) and

band-limited. Time-limited signals can be efficiently represented by a basis of

block functions (Dirac delta functions for infinitesimal small blocks). But block

functions are not band-limited. Band limited signals on the other hand can be

efficiently represented by a Fourier basis. But sines and cosines are not time-

limited. Wavelets are localized in both time (space) and frequency (scale) domains.

Hence it is easy to capture local features in a signal. Another advantage of a

wavelet basis is that it supports multi resolution. Consider the windowed Fourier

transform. The effect of the window is to localize the signal being analyzed.

Because a single window is used for all frequencies, the resolution of the analysis

is same at all frequencies. To capture signal discontinuities (and spikes), one needs

shorter windows, or shorter basis functions. At the same time, to analyze low

frequency signal components, one needs longer basis functions. With wavelet

based decomposition, the window sizes vary. Thus it allows analyzing the signal at

different resolution levels.

 12

Chapter 3
Design and Implementation

 13

3.1 Hardware platform

Xilinx 4000 series FPGAs [XC4000] are available and can be used for the

implementation. These are look-up table based FPGAs. Each basic block called a

CLB (Configurable Logic Block) consists of two 4 input look-up tables and one 3

input look-up table (figure A.1). Each CLB also has 2 flip flops. There are

multiplexers within a CLB to achieve internal connectivity among the flip flops

and look-up tables. The CLBs are arranged as a matrix. In addition to CLBs, these

FPGAs have horizontal and vertical interconnects and switches (routing resources)

to achieve connectivity between different ports of different CLBs. The look-up

tables can be programmed with truth tables of 4 input or 3 input logic functions.

The routing resources can be programmed to achieve the required connectivity

between the CLBs.The hardware platform which can be used [WILDFORCE] is a

PCI plug-in board with five Xilinx 4085 FPGAs, also referred to as PEs

(Processing Elements). The board is stacked with five 1MB SRAM chips. Each of

the five SRAM chips is directly connected to one of the five PEs. The embedded

memory is accessible for read/write from both the host computer as well as from

the corresponding PE. Each of the 1MB memory chip is organized as 262144

words of 32 bits each.

Figure 3.1: Configurable Logic Block (CLB) in XC4000 series FPGA

3.2 Design parameters and constraints

3.2.1 Memory read/write

The input image to the encoder is raw gray scale frames of 512 by 512 pixels. Each

pixel is represented by 256 gray scale levels (8 bits). Input frames are loaded to the

embedded memory by the host computer and results are read back, once the PE has

processed it. The PE also uses the embedded memory as intermediate storage to

hold results between different stages of processing.

The memory has a read latency of 2 cycles while memory writes are completed in

the same cycle. Memory reads can be pipelined so that the effect of this latency is

minimized. However, a clock cycle is wasted when there is a read to write turn

around. The design concerns are to minimize memory read/write turn arounds and

 14

 15

to allow longer spells of read or write cycles instead. Attempts have also been

made to minimize memory operations.

3.2.2 Real time performance

While the conventional television standards require 30 frames/second, many

Multimedia applications like video conferencing run at much lower frame rates. In

general, a good system clock ensures a good throughput. Other contributing factors

to throughput include the time taken by the operating system driver routines to

read/write from the embedded memory.

3.2.3 Design partitioning

The whole computation is partitioned into two stages. The first stage computes

discrete wavelet transform coefficients of the input image frame and writes it back

to the embedded memory. The second stage operates on this result to complete the

rest of the processing. The second stage does dynamic quantization, zero

thresholding, run length encoding for zeroes, and entropy encoding on the

coefficients. The two stages are implemented on two separate FPGAs.

3.3 Stage 1: DiscreteWavelet Transform

Discrete Wavelet transform is implemented by filter banks. The filter used is the

(2,2) Cohen-Debuchies-Feaveu wavelet filter. Though much longer filters are

common for audio data, relatively short filters are used for video.

 16

3.3.0.1 (2, 2) wavelet

A modified form of the Bi-orthogonal (2,2) Cohen-Debuchies-Feaveu wavelet

filter is used. The analysis filter equations are shown below.

High pass coefficients: g(k) = 2x(2k + 1) - x(2k) - x(2k + 2)

Low pass coefficients: f(k) = x(2k) + (g(k-1) + g(k)=8

The boundary conditions are handled by symmetric extension of the coefficients as

shown below:

x[2], x[1], [x[0], x[1],….,x[n- 1], x[n]], x[n- 1], x[n- 2]

The synthesis filter equations are shown below.

Even samples: x(2k) = f(k) - (g(k-1) + g(k+1)=8

Odd samples: x(2k + 1) = (g(k) + f(k) + f(k+1))=2

3.3.0.2 DWT in X and Y directions

Each pixel in the input frame is represented by 16 bits, accounting for 2 pixels per

memory word. Thus, each memory read brings in two consecutive pixels of a row.

Each clock cycle generates one value each of f and g coefficients. These have to be

written back in place. The f coefficients are used again in the next stage of wave-

letting. Two consecutive values of f are written back in one memory location

(figure 3.2). This saves on memory reads of the f coefficients in the next stage. In

the next stage, where only the fs are processed, only alternate memory words are

read from. Thus, the f and g coefficients are written back in an interleaved fashion.

Another way to write back the coefficients is to put all the low frequency

coefficients (f) ahead of the high frequency coefficients (g). This scheme of

ordering the coefficients is called Mallot ordering. It allows progressive image

transmission/reconstruction. The bulk of the ’average’ information is ahead,

followed by the minor ’difference’ information. However, this ordering scheme

requires temporary storage to hold the computed coefficients until the they can be

written back. In our design, we use the in-place ordering scheme described above

which is optimized for memory read/write operation. Once the three stages of

wave-letting are done, we resort back to Mallot ordering.

Figure 3.2: Coefficient ordering along X direction

Once the filter has been applied along all rows in a stage, the same filter is applied

along the columns. With the afore mentioned interleaved ordering scheme,

alternate columns are all fs or all gs. Unlike the row traversal, the two values

obtained in a memory read on a column traversal, are not consecutive values of the

same column. Rather, they are corresponding values from two different vertically

parallel streams (figure 3.3).

 17

Figure 3.3: Coefficient ordering along Y direction

These differences along the row and column computations are accounted by having

two separate data flow blocks along the two directions. The data flow block in X

direction (ForwardWaveletX) accepts two successive values of the same row and

outputs either two consecutive fs or two consecutive gs, in alternate fashion. The

data flow block in Y direction (ForwardWaveletY) accepts one value each from

two parallel streams and outputs either the fs for the two streams or the gs in an

alternate manner, (figure 3.4). These blocks also need information on when a

row/column starts/ends to handle the boundary conditions. They also have a

pipeline latency of 3 cycles.

Figure 3.4: Fast Wavelet transform data flow blocks

 18

3.3.0.3 3 stages of wave-letting

The 512 by 512 pixel input image frame is processed with three stages of

waveletting. In the first stage, 512 pixels of each row are used to compute 256 high

pass coefficients (g) and 256 low pass coefficients (f), figure 3.5. The coefficients

are written back in place of the original row.

Figure 3.5: High pass and Low pass coefficients at stage 1, X direction

Once all the 512 rows are processed, the filters are applied in the Y direction.This

completes the first stage of wave-letting. While conventional Mallot ordering

scheme aggregates coefficients into the 4 quadrants, our ordering scheme

interleaves the coefficients in the memory. The second stage of wave-letting only

processes the low frequency coefficients from the first stage. This corresponds to

the upper left hand quadrant in the Mallot scheme. Thus, second stage operates on

row and columns of length 256, while the third stage operates on rows and

columns of length 128. The aggregation of coefficients along the 3 stages under

Mallot ordering is shown in figure 3.6. The memory map with the interleaved

ordering is shown in figure 3.7.

 19

Figure 3.6: Mallot ordering along the 3 stages of wave-letting

3.3.0.4 Over all architecture of Stage 1

Stage one starts with a raw frame and does three stages of wave-letting. The over

all architecture is shown in figure 3.8. Memory addressing is done with a pair of

address registers - read and write address registers. The difference between write

and read registers is the latency of the pipelined data-flow blocks.

The maximum and minimum coefficient values for each block (each quadrant in

the multi stage wave-letting) are maintained on the FPGA. These values are written

back to a known location in the lower half (lower 0.5MB) of the embedded

memory.

 20

Figure 3.7: Interleaved ordering along the 3 stages of wave-letting

 The second stage uses these values for the dynamic quantization of the

coefficients. Row/Column Address registers, Memory access state machine and

other control logic

Figure 3.8: Stage 1 architecture

 21

3.4 Stage 2

Stage 2 does the rest of the processing on the wavelet coefficients computed

in the first stage. The coefficients, are quantized, zero-thresholded, zeroes run

length encoded, and entropy encoded to get the final compressed image.

3.4.1 Dynamic quantization

The coefficients from different sub-bands (different quadrants with the Mallot

ordering scheme) are quantized separately. The dynamic range of the coefficients

for each sub-band (computed in first stage) is divided into 16 quantization levels.

The coefficients are quantized into one of the 16 possible levels. The maximum

and minimum value of the coefficients for each sub-band is also needed while

decoding the image.

 Figure 3.9: Dynamic Quantizer

The dynamic quantizer is implemented as a binary search tree look up in hardware

(figure 3.9). A table look up based quantization scheme is not feasible since the

range is dynamic - different for each sub-band, and different for each frame. The

incoming stream of coefficients in the range [min:max] is translated to

[0,max-min] by adding (or subtracting) the minimum. The shifted incoming value
 22

 23

is then compared with half the dynamic range (r/2) to determine whether it lies in

the lower eight or upper eight quantization levels. The result forms the first bit

(most significant bit) of the quantizer output. Depending on the outcome, the value

is then compared with r/ 2 + r/ 4 or r / 2 – r / 4. This forms the second bit of the

quantized output. The next two comparisons provide the remaining bits. The

quantizer is a pipelined design, with 4 stages.

3.4.2 Zero thresholding and RLE on zeroes

Regions with abrupt changes will have larger wavelet coefficients while regions of

little or no change would have smaller coefficients. Coefficients of small

magnitude can be neglected without considerable distortion to the image. The error

introduced is proportional to the magnitude of the coefficient being neglected.

Coefficients are truncated to zero, based on a threshold. Different thresholds are

used for different sub-bands, resulting in different resolution in different sub-

bands. Further, different sets of thresholds are used to achieve different levels of

compression. Three different set of thresholds are used for each sub-band to get

three different variants of the encoder with different compression levels. The

corresponding levels for the three configurations of the encoder are shown in the

appendix. After the zero thresholding a large number of coefficients are truncated

to zero. Long sequences of zeroes can be effectively compressed by run length

encoding, which replaces each individual occurrence of a zero in a continuous spell

with a count indicating the length of the spell. To decode a run length encoded

stream, this count has to be distinguishable from other characters of the input data

set. The other valid characters are the 4 bit output from the quantizer. Sixteen

numbers 0 to 15 are reserved for the quantizer output values, while numbers 16 to

255 (240 numbers) are free. Thus, any continuous spell of zeroes ranging from 1

(represented by the number 16) to 240 (represented by the number 255) can be

replaced by the corresponding count. Longer spells have to be broken down to fall

within this range. Table 3.1 shows the bit range allocation. The run length encoder,

might not have an output on every cycle. The succeeding block has to be signalled

as to when to read the RLE count, and when to wait for a spell to finish. Whenever

RLE detects a zero, it asserts ’RLErunning,’and starts counting the sequence of

continuous zeroes. The current sum of zeroes is always available on ’RLEout.’

When the continuous spell of zeroes end, ’RLErunning’ is deasserted, and

’RLEspellEnd’ is asserted for one cycle to allow the next block to read off the RLE

count.

Table 3.1: Bit range allocation for RLE

The RLE counter is also reset to 15.In this set-up, there is look ahead problem.

Before RLE can signal the end of a spell, it needs to see the next value is the

stream. But, RLE is used in conjunction with the dynamic quantizer, (RLE and

quantizer are connected in parallel) which is a 4 staged pipeline.RLE might face an

arbitrarily long sequence of zeroes. RLE can count only upto a maximum of 240

zeroes. Thus, when RLE has seen 240 continuous zeroes and still more zeroes are

arriving, ’RLEspellEnd’ would be asserted for one Input Zero threshold.

 24

 Figure 3.10:

Run Length Encoder for continuous zeroes

Clock cycle and the internal counter are reset to 15. Here, ’RLErunning’ would be

high through out the spell. The logic followed by the succeeding block is as

follows. If ’RLErunning’ is asserted then wait till ’RLEspellEnd’ is asserted and

read the ’RLEout’. Else, read the output of the dynamic quantizer.

3.4.3 Entropy encoding

Entropy encoding involves assigning a smaller length encoding for more

frequently used characters in the data set and a larger length encoding for

infrequently used characters in the data set. This involves variable length encoding

of the input data. To efficiently retrieve the original data, an encoded word should

not be a proper prefix of any other encoded word. Huffman trees are an efficient

way of coming up with a variable length encoding for a set of characters, given the

relative frequencies. Further, for a Huffman tree based encoding, decoding can be

done in linear time (linear in the length of the encoded word).Various other

schemes of encoding using different levels of context sensitive information exits.

This might incur a costlier decoding function.

 25

3.4.3.1 Encoding scheme

In our implementation, we use an encoding scheme which is not a Huffman tree

based code. The bit allocation is shown in figure 3.11. Eight bit inputs are variable

length encoded between 3 to 18 bits. The complete encoding table is shown in the

appendix. The encoding is implemented by two look-up tables on the FPGA.

Given an eight bit input, the first look-up table (LUT), provides information about

the size of encoding. The second LUT gives the actual encoding. Only the relevant

bits from the second LUT should be used. The rest of the bits in the output are

don’t care and are either chosen as logic 0 or 1 during logic optimization. The

VHDL description of the encoder can be found in the appendix, huffman.vhd.

Figure 3.11: Entropy encoding, bit allocation

 26

Figure 3.12: Entropy encoder

3.4.3.2 Bit packing

The output of the entropy encoder varies from 3 to 18 bits. The bits need to be

Packed into 32 bit words before being written back to the embedded memory.

This is achieved by the shifter discussed below.

3.4.3.3 Shifter

The shifter consists of 5 register stages, each 32 bits wide. The input data can be

shifted (rotated) by 16 or latched without shifting, to stage 1. The data can be

shifted by 8 or passed on straight from stage 1 to stage 2. Similarly data can be

shifted by 4, 2, and 1 when moving between the remaining stages. Data is shifted

from stage to stage, and is accumulated at the last stage. When the last stage has 32

bits of data, a memory write is initiated and the last stage is flushed.

 27

Figure 3.13: Binary Shifter for bit packing

The data is shifted to the right place over the 5 stages in order to complete a word

at the last stage. The key decision is whether to shift or not at each stage. A 5 bit

counter is maintained to store the length of the data currently held. For example, let

the lengths of the words arriving at stage 1 be a1, a2, a3, etc. The counter will have

values 0, a1, a1 + a2, etc. in the corresponding clock cycles. The counter is allowed

to overflow once it reaches 31. Thus, the counter value indicates where the next

word should start by the time it reaches the last stage. Different bits of the counter

(delayed appropriately) are used to decide whether to shift or not at each stage. Part

of the last stage needs double buffering. To determine the size of the double buffer

needed, consider the worst case. The last stage already has 31 bits and the next data

coming from stage 4 is of maximum size (18 bits). Only 1 out of the 18 bits can be

added to the last stage and a memory write initiated. The rest of the 17 bits need to

 28

 29

be buffered for this cycle, and brought out in the next cycle. Thus, 17 out of the 32

bits in the last stage are double buffered. Thus, whenever an overflow is detected,

the double buffer is loaded with the excess bits and taken out during the next cycle.

The detailed hardware implementation may be found in the appendix in the file

shifter.vhd.

3.4.4 Output file format

At the end of the second stage, the upper memory (upper 0.5MB) contains the

Packed bit stream. The total count of the bit stream approximated to the nearest

WORD is written to memory location 0. To reconstruct the data from the bit

stream, the following information is needed.

• The actual bit stream. On Huffman decoding, the actual 8 bit codes are

retrieved. These codes are either the quantizer output, or the RLE count.

On expanding the RLE count to the corresponding number of zeroes, we

get the actual quantized stream.

• The four quadrants of the final stage of wave-letting can be located at

the first four 128*128 byte blocks. The three quadrants of the next stage

can be located at at next three blocks sized at 256*256 bytes each. Each

quadrant (sub-band) is quantized separately. The dynamic range of each of

the quadrant should be known to reconstruct the original stream.

The output file written has all the information needed to reconstruct the image. The

format of the output file generated is shown in figure 3.14.

Figure 3.14: Out file format

3.4.5 Stage 2, Overall architecture

The top level data flow diagram of the second stage is shown in figure 3.15.

Wavelet coefficients from memory are read from the lower half of the embedded

memory. The block (sub-band) minimum and maximum is also read from the

memory. The packed bit stream output is written to the upper memory, and the bit

stream length is written to memory location 0. The control software reads the

embedded memory and generates the compressed image file.

 30

Figure 3.15: Stage 2, data flow diagram

The control flow is show in figure 3.16. Before reading the wavelet coefficients,

the maximum and minimum of coefficients in each sub-band are read from the

lower memory. The coefficients are then read and processed for each sub-band,

starting with the lowest frequency band. As shown in the state diagram, a memory

read is fired in stage Read 001. Memory read has a latency of 2 clock cycles. The

results of the read are finally available in state Read 100. Memory writes are

completed in the same cycle. The two intermediate states, Read 010 and Write can

be used to write back the output, if output is available. Each memory read brings in

two wavelet coefficients. Consider the worst case, where the two coefficients get

expanded to 18 bits each. There are two memory write cycles before the next read.

When ever a memory write is performed, the memory address register is

incremented. The read address generators read each sub-band from the interleaved

memory pattern. The address ranges for each sub-band with the interleaved

ordering scheme is shown in appendix. The output is written as a continuous

stream,
 31

Figure 3.16: Stage 2, control flow diagram

Starting with the lowest sub-band. Thus the output is effectively in Mallot ordering

and can be progressively transmitted/decoded.

 32

 33

Chapter 4
Results

 (a) lena.pgm (b) barbara.pgm (c) goldhill.pgm

Figure 4.1: Original Images

 (a) lena.pgm (b) barbara.pgm (c) goldhill.pgm

Figure 4.2: Configuration 1, Minimum compression

 34

 (a) lena.pgm (b) barbara.pgm (c) goldhill.pgm

Figure 4.3: Configuration 2, Medium compression

 (a) lena.pgm (b) barbara.pgm (c) goldhill.pgm

Figure 4.4: Configuration 3, Maximum compression

 35

 36

Chapter 5
Conclusions and Future Work

 37

5.1 Conclusions

We have designed a Wavelet transform based image encoder on re-programmable

hardware - FPGA. The encoder has multiple configurations which support different

compression levels. The effective frame rate achieved ranges between 10 and 12.

The major conclusions are as follows:

 Wavelet based image compression is ideal for adaptive compression since it

is inherently a multi-resolution scheme. Variable levels of compression can

be easily achieved. The number of wave-letting stages can be varied,

resulting in different number of sub bands. The zero thresholds for

truncating coefficients of small magnitude can be varied. Different filter

banks with different characteristics can be used. For example, audio data has

much longer correlation and hence longer filter are used for audio, compared

to video. Filters tuned to the nature of the data achieve much higher

compression.

 Efficient fast algorithm (pyramidal computing scheme) for the computation

of discrete wavelet coefficients makes a wavelet transform based encoder

computationally efficient.

 Computationally intensive problems often require a hardware intensive

solution. Unlike a microprocessor with a single MAC unit, a hardware

implementation achieves greater parallelism, and hence higher throughput.

 Reconfigurable hardware is best suited for rapid prototyping applications

where the lead time for implementation can be critical. It is an ideal

development environment, since bugs can be fixed and multiple design

 38

iterations can be done, with out incurring any non recurring engineering

costs.

 Reconfigurable hardware is also suited for applications with rapidly

changing requirements. In effect, the same piece of silicon can be reused.

 With respect to limitations, achieving good timing/area performance on

these FPGAs is much harder, when compared to an ASIC or a custom IC

implementation. There are two reasons for this. The first pertains to the fixed

size look-up tables. This leads to under utilization of the device. The second

reason is that the pre-fabricated routing resources run out fast with higher

device utilization.

5.2 Future work

The lessons learned from this experience will help us enhance similar

implementations in the future. Few of the improvements that we now foresee are

listed below:

 Build a corresponding decoder on the FPGA and demonstrate the

adaptability of the encoder-decoder pair. The encoder would need to signal

the decoder on which codec is being used.

 Data movement from host to embedded memory and back to host takes a

significant amount of the processing time. Data movement could have been

minimized. By implementing both the stages of the encoder on a single

FPGA, one read/write memory cycle could have been avoided. On the other

side, when these FPGAs are utilized more than about 40%, the timing

performance drops sharply. This is because it runs out of routing resources;

 39

consequently many long and circuitous routes result. Hence the over all

system clock drops. This tradeoff can be better optimized.

 An alternate architecture would be to use the two PEs for the two stages (to

get good timing), but use the local bus on the board to transfer data from

PE1 to PE2.

 A suggestion with respect to embedded memory architecture is to have two

embedded memory chips attached to each PE, so that is can work as a

double buffer. Here, the host can refill the next frame on one of the memory

chips, while the PE is still working with the other chip.

 The metrics on which encoder can be graded include the compression ratio,

throughput, Processing noise, and implementation costs. Further, the

adaptively of the encoder to support different compression levels at different

noise levels can also measured.

 The encoder runs in two stages. A raw frame of 512 by 512 pixels can

loaded to the embedded memory. After stage 1 finishes its processing on this

memory, the memory image can used as input for the second stage. The two

hardware configurations, corresponding to the two stages, can be run at a

system clock of 25MHz. The two hardware configurations are loaded onto

two different FPGAs on the same board.

 The embedded memory can load and unloaded by the host computer using

the operating system driver routines. The memory access times can be

measured. List given below quantifies the time taken by the DMA based

read/write APIs provided by the board vendor. The operating system running

on the host computer is Linux, kernel version 2.2.5.

Read from host
0.5 MB

4.244 ms

Write from host
0.5 MB

4.017 ms

Read from host
1.0 MB

8.398 ms

Write from host
1.0 MB

7.981 ms

Table 5.1: Embedded memory access times from host computer

 Different hardware configurations with different compression levels would

build and tested. The characteristics of the three configurations over three

different frames are displayed in tables (5.4, 5.5, and 5.6). A software

decoder can be used to recontruct the encoded image in order to compare

with the original.

 Noise figures from a software encoder can also quoted. The PSNR and

RMSE metrics can compute as per the equation given below. Percentage

compression is the ratio of compressed image size to the original image size

(512x512 bytes). Bits per pixel (bpp) are the ratio of image size in bits to

number of pixels.

Table 4.3: PSNR and RMSE equations

 40

Table 5.4: Compression levels and noise measurements for ’lena’

Table 5.5: Compression levels and noise measurements for ’barbara’

Table 5.6: Compression levels and noise neasurements for ’goldhill’

 41

 i

Appendix

 ii

Appendix A

Design parameters
A.1 Zero threshold levels for different codecs

subband Config. 1 Config. 2 Config. 3
0 0 0 0
1 39 78 156
2 27 54 108
3 104 208 416
4 79 158 316
5 50 100 200
6 191 382 764

Table A.1: Zero threshold levels for different configurations

A.2 Throughput comparison with a software encoder

The software encoder distributed as part of the ACS bench mark suite was used to

obtain time stamps. The encoder was run on a Linux based computer with Pentium

2 processor, running at 333MHz, and having a main memory of 256MB.Time

stamps were inserted at points which demarcate the 2 stages. As for the FPGA

implementation, timing measurements do not include secondary storage media

latencies.

stage time

1 181.046 ms

2 132.331 ms

Table A.2: Throughput measured from the software encoder

A.3 Design flow

Timing VHDL VHDL constraints design description

VHDL
synthesis tools

FPGA specific
RLT netlist
(XNF netlist)

Xilinx tools
- Place and Route

 - Bit generation
- Static timing analysis

simulation tools

Bitstream for
configuring the

FPGA

Figure A.1: Design flow

 iii

 iv

Appendix B

Source code listings

B.1 Stage 1 - VHDL source code
B.1.1 waveletX.vhd
--
-- Stage1 - Forward Wavelet (in X direction)
--
-- Input : A 512x512 pixel image, streamed row wise, two pixels at a time,
-- ’p2’ and ’p3’; two previous samples are held in ’p0’ and ’p1’.
--
-- Output : ’f’ and ’g’ are two weighted difference functions, The output is
-- 256 values of ’f’ and 256 values of ’g’. Note that ’f’ and ’g’ at
-- the boundary are slightly different, due to which we need two
-- additional signals to signal row begining and ending.
--
-- Note that output is send back as ’f0’, ’f1’, ’g0’, ’g1’ ... instead of
--’f0’, ’g0’, ’f1’, ’g1’ ... This is because of the order it is written back
--into memory in the higher level module.
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity ForwardWaveletX is

port(
FwavClk : in std_logic;
FwavEnbl : in std_logic;
FwavStart : in std_logic;
FwavEnd : in std_logic;
Fwav_p3 : in std_logic_vector (15 downto 0);
Fwav_p2 : in std_logic_vector (15 downto 0);
Fwav_f : out std_logic_vector (15 downto 0);
Fwav_g : out std_logic_vector (15 downto 0));

end ForwardWaveletX;

architecture structural of ForwardWaveletX is

constant prop_delay : time := 5 ns;
subtype std16 is std_logic_vector (15 downto 0);
signal p0, p1, g_out, g_prev1, g_prev2 : std16;
signal f_tmp1, f_tmp2, f_out, f_prev : std16;
signal ForG, FwavStart1, FwavEnd1 : std_logic;

 begin

run : process(FwavClk)

 begin

if(rising_edge(FwavClk)) then
 if(FwavEnbl = ’1’) then
 p0 <= Fwav_p2 after prop_delay;

 v

 p1 <= Fwav_p3 after prop_delay;
 if(ForG=’1’) then
 Fwav_f <= f_prev after prop_delay;
 Fwav_g <= f_out after prop_delay;
 else
 Fwav_f <= g_prev2 after prop_delay;
 Fwav_g <= g_prev1 after prop_delay;
 end if;
 if(FwavStart=’1’) then
 ForG <= ’0’ after prop_delay;
 else
 ForG <= not(ForG) after prop_delay;
 end if;

g_prev2 <= g_prev1 after prop_delay;
g_prev1 <= g_out after prop_delay;
f_prev <= f_out after prop_delay;
FwavEnd1 <= FwavEnd after prop_delay;
FwavStart1 <= FwavStart after prop_delay;

 end if;
end if;

end process;

computeg : process(Fwav_p3, p1, p0, FwavEnd1)

begin

if(FwavEnd1=’1’) then
 g_out <= (p0(15) & p0(13 downto 0) & ’0’) - (p1(15) & p1(13 downto 0) & ’0’);
else
g_out <= (p0(15) & p0(13 downto 0) & ’0’)- (p1 + Fwav_p3);
end if;

end process;

computef : process(FwavStart1, g_out, g_prev1,f_tmp1, f_tmp2, p1)

begin

if(FwavStart1=’1’) then
 f_tmp1 <= g_out + g_out;
else
 f_tmp1 <= g_prev1 + g_out;
end if;

f_tmp2 <= (f_tmp1(15) & f_tmp1(15) & f_tmp1(15) & f_tmp1(15 downto 3));
f_out <= p1 + f_tmp2;

end process;

end structural;

B.1.2 waveletY.vhd
--
-- Stage1 - Forward Wavelet (in Y direction)
--
-- Input : A 512x512 pixel image, streamed row wise, two pixels at a time,
-- ’p2’ and ’p3’; two previous samples are held in ’p0’ and ’p1’.
--
-- Output : ’f’ and ’g’ are two weighted difference functions,The output is
-- 256 values of ’f’ and 256 values of ’g’.Note that ’f’ and ’g’ at
-- the boundary are slightly different, due to which we need two

 vi

-- additional signals to signal row begining and ending.
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity ForwardWaveletY is

port(
FwavClk : in std_logic;
FwavEnbl : in std_logic;
FwavStart : in std_logic;
FwavEnd : in std_logic;
Fwav_a4 : in std_logic_vector (15 downto 0);
Fwav_b4 : in std_logic_vector (15 downto 0);
Fwav_a : out std_logic_vector (15 downto 0);
Fwav_b : out std_logic_vector (15 downto 0);
Fwav_Max : out std_logic);

end ForwardWaveletY;

architecture structural of ForwardWaveletY is

constant prop_delay : time := 5 ns;
subtype std1 is std_logic;
subtype std16 is std_logic_vector (15 downto 0);
signal a2, a3 : std16; -- 2 previous values of a4
signal b2, b3 : std16; -- 2 previous values of b4
signal a_g, b_g, a_gd : std16; -- g outputs of 2 streams,
signal b_gd, a_gdd, b_gdd: std16; -- latched, double latched ...
signal a_f1, a_f2, a_f3, a_f3d : std16; -- f, partial outputs
signal b_f1, b_f2, b_f3, b_f3d : std16; -- f, partial outputs
signal FwavStart1, FwavStart2 : std1; -- delayed FwavStart’s
signal FwavEnd1, FwavEnd2 : std1; -- and FwavEnd’s
signal ForG : std1; -- keep track of whether f or
 --g is going out
begin

run : process(FwavClk)

begin

if(rising_edge(FwavClk)) then

if(FwavEnbl = ’1’) then
a2 <= a3 after prop_delay;
a3 <= Fwav_a4 after prop_delay;
b2 <= b3 after prop_delay;
b3 <= Fwav_b4 after prop_delay;
FwavStart2<= FwavStart1 after prop_delay;
FwavStart1<= FwavStart after prop_delay;
FwavEnd1 <= FwavEnd after prop_delay;
FwavEnd2 <= FwavEnd1 after prop_delay;
a_gdd <= a_gd after prop_delay;
b_gdd <= b_gd after prop_delay;
a_gd <= a_g after prop_delay;
b_gd <= b_g after prop_delay;
a_f3d <= a_f3 after prop_delay;
b_f3d <= b_f3 after prop_delay;

if(FwavStart=’1’) then
ForG <= ’0’ after prop_delay;

else
ForG <= not(ForG) after prop_delay;

end if;

 vii

end if;
end if;

end process;

computeg : process(a2, a3, Fwav_a4,b2, b3, Fwav_b4,FwavEnd1)

begin

if(FwavEnd1=’1’) then
a_g <= (a3(15) & a3(13 downto 0) & ’0’)-(a2(15) & a2(13 downto 0) & ’0’);
b_g <= (b3(15) & b3(13 downto 0) & ’0’)-(b2(15) & b2(13 downto 0) & ’0’);
else
a_g <= (a3(15) & a3(13 downto 0) & ’0’)-a2 -Fwav_a4;
b_g <= (b3(15) & b3(13 downto 0) & ’0’)-b2 -Fwav_b4;
end if;

end process;

computef:process(FwavStart2, a2, b2,a_g,b_g, a_gdd, b_gdd,a_f1,b_f1,a_f2,b_f2)

begin

if(FwavStart2=’1’) then

a_f1 <= a_g + -- current g
a_g; -- current g
b_f1 <= b_g + -- current g
b_g; -- current g

else
a_f1 <= a_gdd + -- prev g
a_g; -- current g
b_f1 <= b_gdd + -- prev g
b_g; -- current g

end if;

-- divide by 8 and drop fractional part,
-- because of two’s compliment representation, if number is
-- negative and there is a non zero fractional value, we need to
-- add 1 after dropping the fractional part.
-- if((a_f1(15) = ’1’) and
-- ((a_f1(2)=’1’) or (a_f1(1)=’1’) or (a_f1(0)=’1’))) then
-- a_f2 <= (a_f1(15) & a_f1(15) & a_f1(15) & a_f1(15 downto 3)) + 1;
-- else

a_f2 <= (a_f1(15) & a_f1(15) & a_f1(15) & a_f1(15 downto 3));

-- end if;
-- if((b_f1(15) = ’1’) and
-- ((b_f1(2)=’1’) or (b_f1(1)=’1’) or (b_f1(0)=’1’))) then
-- b_f2 <= (b_f1(15) & b_f1(15) & b_f1(15) & b_f1(15 downto 3)) + 1;
-- else

b_f2 <= (b_f1(15) & b_f1(15) & b_f1(15) & b_f1(15 downto 3));

--end if;
a_f3 <= a_f2 + a2;
b_f3 <= b_f2 + b2;

end process;

out_mux : process(ForG, a_f3d, a_gdd, b_f3d, b_gdd)

begin

 viii

if(ForG = ’0’) then
Fwav_a <= a_f3d;
Fwav_b <= b_f3d;

if(a_f3d > b_f3d) then
Fwav_Max <= ’0’;

else
Fwav_Max <= ’1’;

end if;
else

Fwav_a <= a_gdd;
Fwav_b <= b_gdd;

if(a_gdd > b_gdd) then
Fwav_Max <= ’0’;

else
Fwav_Max <= ’1’;

end if;
end if;

end process;
end structural;

B.1.3 top_level_for_stage1.vhd
--
-- Description:
--
-- This file along with "waveletX.vhd" & "waveletY.vhd" implements DWT
-- (discrete wavelet transform)/multi resolution encoding of the input image.
--
-- The input image is 512x512 pixels, with each memory WORD holding 2 pixels
-- (12 bits each) the input is a 512x256 memory array (0.5 MB).
--
-- Stage 1: Process each row (512 pixels), extract 256 ’f’s and 256 ’g’s from
-- each row, write it back in place:
-- [pppppppp...pppp] => [fgfgfgfg...fgfg]
--
-- Instead, it is actually written back as:
-- [pppppppp...pppp] => [ffggffgg...ffgg].
--
-- Then same operation along Y direction.
--
-- Stage 2: Only ’f’s from first stage are input to second stage. Thus we have
-- rows of length 256.
-- (see why f/g outputs from stage1 was written back jumbled? need only 256
-- memory READS, else it would have taken 512 memory READS).
--
-- Stage 3: The third stage follows similarly, processing only the ’f’s from
-- second stage. Each stage has to be done in both X and Y directions.
--
-- It is smooth sailing in X direction with two pixels of a row arriving on
-- each memory READ and two values being written back in each memory WRITE.
--
-- In Y direction, we have to perform two memory READs to get two consecutive
-- values of a stream (column). By then we also get two consecutive values
-- from the next (vertically parallel) stream.Hence, two different
-- ForwardWavelet blocks (ForwardWaveletX and ForwardWaveletY) are used for
-- the X and Y directions.
--
-- ForwardWaveletX: accepts two successive values of the same row and outputs
-- either two consecutive f’s or two consecutive g’s (alternately).
--

 ix

-- ForwardWaveletY: accepts one pixel each from two columns and outputs either
-- one f each of the two columns or one g each of the two columns
-- (alternately).

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;

architecture Memory_Access of PE1_Logic_Core is

component ForwardWaveletX is
port(
FwavClk : in std_logic;
FwavEnbl : in std_logic;
FwavStart : in std_logic;
FwavEnd : in std_logic;
Fwav_p3 : in std_logic_vector (15 downto 0);
Fwav_p2 : in std_logic_vector (15 downto 0);
Fwav_f : out std_logic_vector(15 downto 0);
Fwav_g : out std_logic_vector(15 downto 0));
end component;

component ForwardWaveletY is
port (
FwavClk : in std_logic;
FwavEnbl : in std_logic;
FwavStart : in std_logic;
FwavEnd : in std_logic;
Fwav_a4 : in std_logic_vector (15 downto 0);
Fwav_b4 : in std_logic_vector (15 downto 0);
Fwav_a : out std_logic_vector (15 downto 0);
Fwav_b : out std_logic_vector (15 downto 0);
Fwav_Max : out std_logic);
end component;

type MemoryStates is(
MemWaitforBus,
MemRead001, -- READ fired in this cycle, results later
MemRead010, -- READ fired last cycle, still waiting for results
MemRead100, -- READ result arrives
MemWrite, -- normal coefficients
MemWriteMinMax1, -- coefficient min/max block1 (done at end of each stage)
MemWriteMinMax2, -- coefficient min/max block2
MemWriteMinMax3, -- coefficient min/max block3
MemWriteMinMax4, -- coefficient min/max block4
MemInterrupt,
MemDone); -- Black hole state!

signal Mem_PState : MemoryStates; -- Present state
signal Mem_NState : MemoryStates; -- Next state
signal Enbl : std_logic;
signal nPass : std_logic_vector(1 downto 0); -- 00, 01, 10
signal ENDofROWx : std_logic; -- Row BEGIN and END signals
signal STARTofROWx : std_logic;
signal ENDofROWy : std_logic; -- Col BEGIN and END signals
signal STARTofROWy : std_logic;
signal ROWorCOL : std_logic; -- 0=>row, 1=>col.
signal ROWorCOL1 : std_logic; -- delayed versions of
signal ROWorCOL2 : std_logic; -- ROWorCOL

 x

signal ROWorCOL3 : std_logic;
signal cntrROW : std_logic_vector(8 downto 0); -- ROW, COL address
signal cntrCOL : std_logic_vector(7 downto 0); -- registers for READ
signal cntrROW_old1 : std_logic_vector(8 downto 0);
signal cntrCOL_old1 : std_logic_vector(7 downto 0);
signal cntrROW_old2 : std_logic_vector(8 downto 0);
signal cntrCOL_old2 : std_logic_vector(7 downto 0);
signal cntrROW_old3 : std_logic_vector(8 downto 0); -- ROW, COL address
signal cntrCOL_old3 : std_logic_vector(7 downto 0); -- registers for WRITE.
signal ROW_limit : std_logic_vector(8 downto 0); -- 511, 510, 508
signal COL_limit : std_logic_vector(7 downto 0); -- 255, 254, 252
signal ROW_skip : std_logic_vector(8 downto 0); -- 1, 2, 4
signal COL_skip : std_logic_vector(7 downto 0); -- 1, 2, 4
signal userInputU : std_logic_vector(15 downto 0); -- Input, from mem READ
signal userInputL : std_logic_vector(15 downto 0);
signal userOutputUx : std_logic_vector(15 downto 0); -- Output from
signal userOutputLx : std_logic_vector(15 downto 0); -- ForwardWaveletX
signal userOutputUy : std_logic_vector(15 downto 0); -- Output from
signal userOutputLy : std_logic_vector(15 downto 0); -- ForwardWaveletY
signal normalCoeffU : std_logic_vector(15 downto 0); --
signal normalCoeffL : std_logic_vector(15 downto 0); --
signal Fwav_MaxY : std_logic;
signal block1min : std_logic_vector(15 downto 0); -- Collect coefficient
signal block1max : std_logic_vector(15 downto 0); -- MIN/MAX at each stage of
signal block2min : std_logic_vector(15 downto 0); -- Waveletting, to be used
signal block2max : std_logic_vector(15 downto 0); -- the next stage
 -- quantizer
signal block3min : std_logic_vector(15 downto 0);
signal block3max : std_logic_vector(15 downto 0); -- This saves an additional
signal block4min : std_logic_vector(15 downto 0); -- pass over the data.
signal block4max : std_logic_vector(15 downto 0);

begin

wlet_x : ForwardWaveletX
port map (
PE_Pclk, -- here is the forward Wavelet
Enbl, -- transform block for X direction
STARTofROWx,
ENDofROWx,
userInputU,
userInputL,
userOutputUx,
userOutputLx);

wlet_y : ForwardWaveletY
port map (
PE_Pclk, -- here is the forward Wavelet
Enbl, -- transform block for Y direction
STARTofROWy,
ENDofROWy,
userInputU,
userInputL,
userOutputUy,
userOutputLy,
Fwav_MaxY);

memdata_mux : process (ROWorCOL3, Mem_PState,userOutputUx, userOutputLx,
userOutputUy, userOutputLy,normalCoeffU, normalCoeffL,block1max, block1min)

 xi

begin

if(ROWorCOL3=’0’) then

normalCoeffU <= userOutputUx;
normalCoeffL <= userOutputLx;

else
normalCoeffU <= userOutputUy;
normalCoeffL <= userOutputLy;

end if;
if(Mem_PState=MemWrite) then

PE_MemData_OutReg(31 downto 16)<= normalCoeffU;
PE_MemData_OutReg(15 downto 0) <= normalCoeffL;

else
PE_MemData_OutReg(31 downto 16)<= block1max;
PE_MemData_OutReg(15 downto 0) <= block1min;

end if;

end process memdata_mux;

st_update : process (PE_Pclk, PE_Reset)

variable xtest, ytest: std_logic;

begin

if (PE_Reset = ’1’) then

Mem_PState <= MemWaitforBus; -- Initialize current state
cntrROW <= "000000000"; -- Initialize ROW and COL
cntrCOL <= "00000000"; -- address registers.
cntrROW_old1 <= "000000000";
cntrCOL_old1 <= "00000000";
cntrROW_old2 <= "000000000";
cntrCOL_old2 <= "00000000";
cntrROW_old3 <= "000000000";
cntrCOL_old3 <= "00000000";
ROWorCOL <= ’0’; -- Initialize ROW / COL
ROWorCOL1 <= ’0’; -- direction indicator
ROWorCOL2 <= ’0’; -- to ROW
ROWorCOL3 <= ’0’;
userInputU <= (others => ’0’);
userInputL <= (others => ’0’);
block1max <= (others => ’0’);
block1min <= (others => ’0’);
block2max <= (others => ’0’);
block2min <= (others => ’0’);
block3max <= (others => ’0’);
block3min <= (others => ’0’);
block4max <= (others => ’0’);
block4min <= (others => ’0’);
nPass <= "00";
ROW_skip <= "000000001"; -- 1, 2, 4
COL_skip <= "00000001"; -- 1, 2, 4

-- Pass 1 covers:
-- ROWS [0,1,2,3, ..., 511] and COLS [0,1,2,3, ..., 255]
--
-- Pass 2 covers:
-- ROWS [0,2,4,6, ..., 510] and COLS [0,2,4,6, ..., 254]
--
-- Pass 3 covers:
-- ROWS [0,4,8,12,..., 508] and COLS [0,4,8,12,..., 252]

ROW_limit <= "111111111"; -- Initialize to 511

 xii

COL_limit <= "11111111"; -- Initialize to 255
elsif (rising_edge(PE_Pclk)) then

Mem_PState <= Mem_NState;
-- Switch between X,Y directions

if (Mem_PState = MemWrite) then
if((cntrROW = ROW_limit) and (cntrCOL = COL_limit)) then

ROWorCOL <= not(ROWorCOL); -- (ROWorCOL=0) => X,
 -- (ROWorCOL=1) => Y.

if(ROWorCOL = ’1’) then
ROW_skip <= (ROW_skip(7 downto 0) & ’0’);
COL_skip <= (COL_skip(6 downto 0) & ’0’);
ROW_limit <= (ROW_limit(7 downto 0) & ’0’);
COL_limit <= (COL_limit(6 downto 0) & ’0’);
nPass <= UNSIGNED(nPass) + 1;

end if;
 end if;

ROWorCOL1 <= ROWorCOL; -- update delayed
ROWorCOL2 <= ROWorCOL1; -- versions of
ROWorCOL3 <= ROWorCOL2; -- ROWorCOL

if(ROWorCOL = ’0’) then
cntrCOL <= UNSIGNED(cntrCOL) + UNSIGNED(COL_skip);
if (cntrCOL = COL_limit) then

cntrROW <= UNSIGNED(cntrROW) + UNSIGNED(ROW_skip);
end if;

else
cntrROW <= UNSIGNED(cntrROW) + UNSIGNED(ROW_skip);

 if (cntrROW = ROW_limit) then
cntrCOL <= UNSIGNED(cntrCOL) + UNSIGNED(COL_skip);

end if;
end if;

cntrROW_old1 <= cntrROW; -- 2 sets of address
cntrCOL_old1 <= cntrCOL; -- regsisters, one for

-- memory READ and another
cntrROW_old2 <= cntrROW_old1; -- for memory WRITE.
cntrCOL_old2 <= cntrCOL_old1; --

-- WRITE lags the READ
cntrROW_old3 <= cntrROW_old2; -- by the latency of
cntrCOL_old3 <= cntrCOL_old2; -- ForwardWavelet.

end if;
if (Mem_PState = MemRead100) then

userInputU <= PE_MemData_InReg(31 downto 16);
userInputL <= PE_MemData_InReg(15 downto 0);

end if;
if ((Mem_PState= MemWriteMinMax1) or

(Mem_PState = MemWriteMinMax2) or
(Mem_PState = MemWriteMinMax3) or
 (Mem_PState = MemWriteMinMax4)) then

block1max <= block2max;
block1min <= block2min;
block2max <= block3max;
block2min <= block3min;
block3max <= block4max;
block3min <= block4min;
block4max <= (others => ’0’);
block4min <= (others => ’0’);

elsif (Mem_PState = MemWrite) then
if (nPass = "00") then

xtest := cntrROW_old3(0);
ytest := cntrCOL_old3(0);

elsif (nPass = "01") then
 xtest := cntrROW_old3(1);

ytest := cntrCOL_old3(1);
else

xtest := cntrROW_old3(2);

 xiii

ytest := cntrCOL_old3(2);
end if;

if ((xtest = ’0’) and (ytest = ’0’) and (ROWorCOL3=’1’)) then
if(Fwav_MaxY=’0’) then

if(SIGNED(block1max) < SIGNED(normalCoeffU)) then
block1max <= normalCoeffU;

end if;
if(SIGNED(block1min) > SIGNED(normalCoeffL)) then

block1min <= normalCoeffL;
end if;

else
if(SIGNED(block1max) < SIGNED(normalCoeffL)) then

block1max <= normalCoeffL;
end if;
if(SIGNED(block1min) > SIGNED(normalCoeffU)) then

block1min <= normalCoeffU;
end if;

end if;
 end if;

if ((xtest = ’0’) and (ytest = ’1’) and (ROWorCOL3=’1’)) then

if(Fwav_MaxY=’0’) then
if(SIGNED(block2max) < SIGNED(normalCoeffU)) then

block2max <= normalCoeffU;
end if;
if(SIGNED(block2min) > SIGNED(normalCoeffL)) then

block2min <= normalCoeffL;
end if;

else
if(SIGNED(block2max) < SIGNED(normalCoeffL)) then

block2max <= normalCoeffL;
end if;
if(SIGNED(block2min) > SIGNED(normalCoeffU)) then

block2min <= normalCoeffU;
end if;

end if;
end if;

if ((xtest = ’1’) and (ytest = ’0’) and (ROWorCOL3=’1’)) then

if(Fwav_MaxY=’0’) then
if(SIGNED(block3max) < SIGNED(normalCoeffU)) then

block3max <= normalCoeffU;
end if;
if(SIGNED(block3min) > SIGNED(normalCoeffL)) then

block3min <= normalCoeffL;
end if;

else
if(SIGNED(block3max) < SIGNED(normalCoeffL)) then

block3max <= normalCoeffL;
end if;
if(SIGNED(block3min) > SIGNED(normalCoeffU)) then

block3min <= normalCoeffU;
end if;

end if;
end if;

if ((xtest = ’1’) and (ytest = ’1’) and (ROWorCOL3=’1’)) then

if(Fwav_MaxY=’0’) then
if(SIGNED(block4max) < SIGNED(normalCoeffU)) then

block4max <= normalCoeffU;
end if;
if(SIGNED(block4min) > SIGNED(normalCoeffL)) then

block4min <= normalCoeffL;
end if;

 xiv

else
if(SIGNED(block4max) < SIGNED(normalCoeffL)) then

block4max <= normalCoeffL;
end if;
if(SIGNED(block4min) > SIGNED(normalCoeffU)) then

block4min <= normalCoeffU;
end if;

end if;
end if;

end if;
end if;

end process st_update;

start_end : process(ROWorCOL,cntrCOL, cntrROW,ROW_limit, COL_limit)

begin

STARTofROWx <= ’0’;
ENDofROWx <= ’0’;
STARTofROWy <= ’0’;
ENDofROWy <= ’0’;
if(ROWorCOL = ’0’) then -- if X direction

if (cntrCOL = "00000000") then -- STARTofROW
STARTofROWx <= ’1’;

end if;
if (cntrCOL = COL_limit) then -- ENDofROW

ENDofROWx <= ’1’;
end if;

else -- else if Y direction
if (cntrROW = "000000000") then -- STARTofROW

STARTofROWy <= ’1’;
end if;
if (cntrROW = ROW_limit) then -- ENDofROW

ENDofROWy <= ’1’;
end if;

end if;
end process;

PE_MemAddr_OutReg(21 downto 18) <= (others => ’0’);

mem_state: process(Mem_PState, nPass,PE_MemBusGrant_n,ROWorCOL2, ROWorCOL3,

cntrROW, cntrCOL,cntrROW_old3, cntrCOL_old3,PE_InterruptAck_n)

begin

PE_InterruptReq_n <= ’1’; -- Default, do not interrupt host
PE_MemWriteSel_n <= ’1’; -- read/write, default read
PE_MemStrobe_n <= ’1’; -- No strobe, later
PE_MemBusReq_n <= ’0’; -- Always request bus
Enbl <= ’0’;
PE_MemAddr_OutReg(17 downto 0) <= (others => ’X’);

case Mem_PState is

when MemWaitforBus => -- Wait for bus, when bus is

if(PE_MemBusGrant_n = ’0’) then -- available, fire READ in

Mem_NState <= MemRead001; -- in next clock. Firing READ
else -- in same clock kills the

Mem_NState <= MemWaitforBus;-- timing performance...
end if;

when MemRead001 => -- Fire READ, results of

 xv

PE_MemStrobe_n <= ’0’; -- this will come later...
Mem_NState <= MemRead010;
PE_MemAddr_OutReg(17) <= ’0’;
PE_MemAddr_OutReg(16 downto 8) <= cntrROW; -- Use cntrROW and
PE_MemAddr_OutReg(7 downto 0) <= cntrCOL; -- cntrCOL for READ

when MemRead010 => -- Still waiting for

Mem_NState <= MemRead100; -- READ results...

when MemRead100 => -- Got READ results here

Mem_NState <= MemWrite;

when MemWrite =>

Enbl <= ’1’;
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
PE_MemAddr_OutReg(17) <= ’0’;
PE_MemAddr_OutReg(16 downto 8) <= cntrROW_old3; --Use cntrROW_old3
PE_MemAddr_OutReg(7 downto 0) <= cntrCOL_old3; --cntrCOL_old3 for

--WRITE
if((ROWorCOL3 = ’1’) and (ROWorCOL2 = ’0’)) then-- If COL->ROW switch
 -- Write max/min statistics

Mem_NState <= MemWriteMinMax1;
else

Mem_NState <= MemRead001;
end if;
-- After each stage of wave-letting, we get 4 blocks,
-- the MAX and MIN values of coefficients in each block are
-- computed for use in next stage, (dynamic quantization).
-- At the end of each stage, we write back 4 WORDs for
-- each of the 4 blocks (each word contains MAX and MIN, 15 bits each),
-- into an upper portion of memory (unused).
-- The addressing scheme is as follows:
-- 0XXXXXXXXXXXXX XX XX // normal data/coefficients
-- 10000000000000 00 00 // 4 blocks from stage1
-- 10000000000000 00 01
-- 10000000000000 00 10
-- 10000000000000 00 11
--
-- 10000000000000 01 00 // 4 blocks from stage2
-- 10000000000000 01 01
-- 10000000000000 01 10
-- 10000000000000 01 11
--
-- 10000000000000 10 00 // 4 blocks from stage3
-- 10000000000000 10 01
-- 10000000000000 10 10
-- 10000000000000 10 11
]
when MemWriteMinMax1 =>

PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= MemWriteMinMax2;
PE_MemAddr_OutReg(17 downto 4) <= "10000000000000";
PE_MemAddr_OutReg(3 downto 2) <= nPass;
PE_MemAddr_OutReg(1 downto 0) <= "00";

when MemWriteMinMax2 =>

 xvi

PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= MemWriteMinMax3;
PE_MemAddr_OutReg(17 downto 4) <= "10000000000000";
PE_MemAddr_OutReg(3 downto 2) <= nPass;
PE_MemAddr_OutReg(1 downto 0) <= "01";

when MemWriteMinMax3 =>

PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= MemWriteMinMax4;
PE_MemAddr_OutReg(17 downto 4) <= "10000000000000";
PE_MemAddr_OutReg(3 downto 2) <= nPass;
PE_MemAddr_OutReg(1 downto 0) <= "10";

when MemWriteMinMax4 =>

PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
PE_MemAddr_OutReg(17 downto 4) <= "10000000000000";
PE_MemAddr_OutReg(3 downto 2) <= nPass;
PE_MemAddr_OutReg(1 downto 0) <= "11";
if((cntrROW_old3 = "000000000") and -- Wind up after

(cntrCOL_old3 = "00000000") and -- 3 passes.
(nPass = "11")) then

Mem_NState <= MemInterrupt;
else

Mem_NState <= MemRead001;
end if;

when MemInterrupt =>

PE_MemBusReq_n <= ’1’; -- Give up bus
PE_InterruptReq_n <= ’0’; -- Interrupt host

if(PE_InterruptAck_n = ’0’) then
Mem_NState <= MemDone;

else
Mem_NState <= MemInterrupt;

end if;

when MemDone =>

PE_MemBusReq_n <= ’1’; -- Give up bus, host program
Mem_NState <= MemDone; -- to READ memory now...

end case;

end process mem_state;

end Memory_Access;

 xvii

B.2 Stage 2 - VHDL source code

B.2.1 quantizer.vhd
--
-- WAVELET TRANSFORM IMPLEMENTATION
-- Stage2 - Dynamic Quantizer
--
-- Design : Given a stream of numbers, the stream is quantized into 16
-- levels (4 bits). The 16 quantization levels are:
--
-- [min -> min + 1*(max-min+8)/16] => "0000"
-- [min + 2*(max-min+8)/16 -> min + 3*(max-min+8)/16] => "0001"
-- [min + 3*(max-min+8)/16 -> min + 4*(max-min+8)/16] => "0010"
--
-- [min + 14*(max-min+8)/16 -> min + 15*(max-min+8)/16] => "1110"
-- [min + 15*(max-min+8)/16 -> max] => "1111"
--
-- ’min’ and ’max’ are not know prior and depends on the
-- input stream making it a dynamic quantizer.
--
-- Input : A stream of 15 bit numbers on ’QUANTin’
-- Output : The quantized (4 bit) values on ’QUANTout’.
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity QUANT is
port(
QUANTclk : in std_logic;
QUANTen : in std_logic;
QUANTmax : in std_logic_vector (15 downto 0);
QUANTmin : in std_logic_vector (15 downto 0);
QUANTin : in std_logic_vector (15 downto 0);
QUANTout : out std_logic_vector (3 downto 0));
end QUANT;

architecture structural of QUANT is

subtype std4 is std_logic_vector (3 downto 0);
subtype std16 is std_logic_vector (15 downto 0);
subtype std20 is std_logic_vector (19 downto 0);
signal r : std16;
signal r_by_2 : std20;
signal r_by_4 : std20;
signal r_by_8 : std20;
signal r_by_16: std20;
signal in1 : std16;
signal in2 : std16;
signal in3 : std16;
signal in4 : std16;

 xviii

signal cmp1 : std20;
signal cmp2 : std20;
signal cmp3 : std20;
signal cmp4 : std20;
signal level1 : std4;
signal level2 : std4;
signal level3 : std4;
signal level4 : std4;

begin

r <= (QUANTmax - QUANTmin);

run : process(QUANTclk)

begin

if(rising_edge(QUANTclk)) then

if(QUANTen = ’1’) then
-- The nice thing here is that at the edges of subbands
-- when the range changes, the subranges also changes
-- in sync with the data.

r_by_2 <= (r(15) & r & "000");
r_by_4 <= (r_by_2(19) & r_by_2(19 downto 1));
r_by_8 <= (r_by_4(19) & r_by_4(19 downto 1));
r_by_16 <= (r_by_8(19) & r_by_8(19 downto 1));
in4 <= in3;
in3 <= in2;
in2 <= in1;
in1 <= (QUANTin - QUANTmin); -- DC shifting.

if(SIGNED(in1) > SIGNED(r_by_2(19 downto 4))) then
level1 <= "1000";
cmp1 <= (r_by_2 + r_by_4);

else
level1 <= "0000";
cmp1 <= (r_by_2 - r_by_4);

end if;
if(SIGNED(in2 & ’0’) > SIGNED(cmp1(19 downto 3))) then

level2 <= (level1 or "0100");
cmp2 <= (cmp1 + r_by_8);

else
level2 <= level1;
cmp2 <= (cmp1 - r_by_8);

end if;
if(SIGNED(in3 & "0000") > SIGNED(cmp2(19 downto 0))) then

level3 <= (level2 or "0010");
cmp3 <= (cmp2 + r_by_16);

else
level3 <= level2;
cmp3 <= (cmp2 - r_by_16);

end if;
cmp4 <= cmp3;

if(SIGNED(in4 & "0000") > SIGNED(cmp3(19 downto 0))) then
level4 <= (level3 or "0001");

else
level4 <= level3;

end if;
end if; -- end if(QUANTen=’1’)

end if; -- rising_edge(clk)

end process run;
QUANTout <= level4;

end structural;

 xix

B.2.2 rle.vhd
--
-- Stage3 - Run Length Encoder (for ZEROS only)
--
-- Input : A stream of 15 bit numbers on ’RLEin’, the zero threshold value
-- on ’RLEzeroth’, an enable signal on ’RLEen’.
--
-- Output : Output stream of 8 bit numbers on ’RLEout’,
-- other control outputs on ’RLErunning’ and ’RLEspellEnd’.
--
-- Design : The input stream is compared with zero threshold to decide if it
-- should be truncate to zero.Any continuous sequence of ZEROes are run length
-- encoded, and the sum is output on ’RLEout’.
--
-- The RLE works like this:
--
-- Whenever we detect a ZERO, we would assert ’RLErunning’,and start counting
-- the sequence of continuous ZEROes.The current sum of ZEROes is always
-- available on ’RLEout’.When ever the continuous spell of ZEROes end,we unset
-- ’RLErunning’ and assert ’RLEspellEnd’ for one cycle(to allow the higher
-- block to read off the RLE count)and we also reset our internal counter.
--
-- Yeah, there is look ahead problem? Before we signal the end of a spell, we
-- need to see the next value is the stream.Luckily, RLE is used in
-- conjunction with a quantizer,(RLE and quantizer are connected in parallel)
-- which is a 4 staged pipeline.
--
-- We may face an arbitrarily long sequence of ZEROes. From the
-- design specs we are allowed to count only upto 240 ZEROes:
--
-- output of quantizer: 00000000 (16 quantization levels)
-- ...
-- 00001111
--
-- output of RLE: 00010000 (256-16 = 240)
-- ...
-- 11111111
--
-- Thus, when we have seen 240 continuous ZEROes and still going
-- strong, ’RLEspellEnd’ would be asserted for one clock cycle,
-- and we would reset our internal counter to 00010000.
-- Ofcourse ’RLErunning’ would be high through out the spell.
--
-- We know that the preceeding stage may not have an output on every clock,
-- (due to memory READ/WRITE scheduling)so please let us know on which all
-- clocks we need to run,by asserting ’RLEen’.
--
-- The higher block using RLE works (should work) like this:
--
-- if(RLErunning = 1)
-- {
-- wait till (RLEspellEnd = 1)
-- collect ’RLEout’.
-- }
-- else // (RLErunning = 0)
-- {
-- collect the output of the quantizer.
-- }
--
-- The enable signal for the next stage is as follows:
--
-- if((RLEspellEnd = 1) or // output from RLE

 xx

-- (RLErunning = 0)) // output from QUANT
-- NextStageEnable = 1;
-- else
-- NextStageEnable = 0;
-- end
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_signed.all;

entity RLE is
port(
RLEclk : in std_logic;
RLEreset : in std_logic;
RLEen : in std_logic;
RLEflush : in std_logic;
RLEin : in std_logic_vector (15 downto 0);
RLEzeroth : in std_logic_vector (15 downto 0);
RLEout : out std_logic_vector (7 downto 0);
RLErunning : out std_logic;
RLEspellEnd: out std_logic);
end RLE;

architecture structural of RLE is

signal z1 : std_logic;
signal z2 : std_logic;
signal z3 : std_logic;
signal z4 : std_logic;
signal z5 : std_logic;
signal s240 : std_logic;
signal count : std_logic_vector (7 downto 0) := "00010000";

begin

run : process(RLEreset, RLEclk)

begin

if(RLEreset = ’1’) then

count <= "00001111";
z1 <= ’0’;
z2 <= ’0’;
z3 <= ’0’;
z4 <= ’0’;
z5 <= ’0’;

elsif(rising_edge(RLEclk)) then
if(RLEen = ’1’) then

if((SIGNED(RLEin) < SIGNED(RLEzeroth)) and
(SIGNED(RLEin) > SIGNED(-RLEzeroth)) and
(RLEflush = ’0’)) then
z1 <= ’1’;

else
z1 <= ’0’;

end if;
z2 <= z1;
z3 <= z2;
z4 <= z3;
z5 <= z4;
s240 <= ’0’; -- default assignment
if(z4 = ’0’) then -- ZERO spell broken

count <= "00001111";

 xxi

else
if(count = "11111110") then

s240 <= ’1’;
end if;
if(count = "11111111") then

count <= "00010000";
else

count <= UNSIGNED(count) + 1;
end if;

end if;
end if; -- (RLEen = ’1’)
end if; -- rising_edge(RLEclk)

end process run;

RLEout <= count;
RLErunning <= z5;
RLEspellEnd <= (z5 and not(z4)) or s240;

end structural;

B.2.3 huffman.vhd
--
-- Stage4 - Huffman Encoder
--
-- Input : A stream of 8 bit characters on ’in_stream’.
--
-- Output : Huffman tree encoded coefficients, and length.
--
-- Design : Huffman table implementation, takes about 165 CLBs.
-- 8 bit input values are variable length (3-18) encoded.
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity HUFF is
port(
HUFFclk : in std_logic;
HUFFin : in std_logic_vector (7 downto 0);
HUFFlout : out std_logic_vector (4 downto 0);
HUFFdout : out std_logic_vector (17 downto 0));
end HUFF;

architecture structural of HUFF is

signal tmp : std_logic_vector(7 downto 0);

begin

run : process (HUFFclk)

begin

if(rising_edge(HUFFclk)) then
tmp <= HUFFin;

case tmp is

when "00000000" => HUFFdout<="111010010XXXXXXXXX"; HUFFlout<="01001";
when "00000001" => HUFFdout<="0110011XXXXXXXXXXX"; HUFFlout<="00111";
when "00000010" => HUFFdout<="111000XXXXXXXXXXXX"; HUFFlout<="00110";

 xxii

when "00000011" => HUFFdout<="01101XXXXXXXXXXXXX"; HUFFlout<="00101";
when "00000100" => HUFFdout<="0000XXXXXXXXXXXXXX"; HUFFlout<="00100";
when "00000101" => HUFFdout<="1101XXXXXXXXXXXXXX"; HUFFlout<="00100";
when "00000110" => HUFFdout<="100XXXXXXXXXXXXXXX"; HUFFlout<="00011";
when "00000111" => HUFFdout<="1111XXXXXXXXXXXXXX"; HUFFlout<="00100";
when "00001000" => HUFFdout<="010XXXXXXXXXXXXXXX"; HUFFlout<="00011";
when "00001001" => HUFFdout<="001XXXXXXXXXXXXXXX"; HUFFlout<="00011";
when "00001010" => HUFFdout<="0111XXXXXXXXXXXXXX"; HUFFlout<="00100";
when "00001011" => HUFFdout<="10101XXXXXXXXXXXXX"; HUFFlout<="00101";
when "00001100" => HUFFdout<="111011XXXXXXXXXXXX"; HUFFlout<="00110";
when "00001101" => HUFFdout<="101001XXXXXXXXXXXX"; HUFFlout<="00110";
when "00001110" => HUFFdout<="0001110XXXXXXXXXXX"; HUFFlout<="00111";
when "00001111" => HUFFdout<="10110111XXXXXXXXXX"; HUFFlout<="01000";
when "00010000" => HUFFdout<="1100XXXXXXXXXXXXXX"; HUFFlout<="00100";
when "00010001" => HUFFdout<="10111XXXXXXXXXXXXX"; HUFFlout<="00101";
when "00010010" => HUFFdout<="00010XXXXXXXXXXXXX"; HUFFlout<="00101";
when "00010011" => HUFFdout<="101100XXXXXXXXXXXX"; HUFFlout<="00110";
when "00010100" => HUFFdout<="000110XXXXXXXXXXXX"; HUFFlout<="00110";
when "00010101" => HUFFdout<="1110011XXXXXXXXXXX"; HUFFlout<="00111";
when "00010110" => HUFFdout<="1010000XXXXXXXXXXX"; HUFFlout<="00111";
when "00010111" => HUFFdout<="0110000XXXXXXXXXXX"; HUFFlout<="00111";
when "00011000" => HUFFdout<="11101011XXXXXXXXXX"; HUFFlout<="01000";
when "00011001" => HUFFdout<="10110100XXXXXXXXXX"; HUFFlout<="01000";
when "00011010" => HUFFdout<="01100011XXXXXXXXXX"; HUFFlout<="01000";
when "00011011" => HUFFdout<="00011111XXXXXXXXXX"; HUFFlout<="01000";
when "00011100" => HUFFdout<="111001011XXXXXXXXX"; HUFFlout<="01001";
when "00011101" => HUFFdout<="111010011XXXXXXXXX"; HUFFlout<="01001";
when "00011110" => HUFFdout<="101101101XXXXXXXXX"; HUFFlout<="01001";
when "00011111" => HUFFdout<="111001001XXXXXXXXX"; HUFFlout<="01001";
when "00100000" => HUFFdout<="101000111XXXXXXXXX"; HUFFlout<="01001";
when "00100001" => HUFFdout<="011001011XXXXXXXXX"; HUFFlout<="01001";
when "00100010" => HUFFdout<="011000101XXXXXXXXX"; HUFFlout<="01001";
when "00100011" => HUFFdout<="1110101011XXXXXXXX"; HUFFlout<="01010";
when "00100100" => HUFFdout<="000111101XXXXXXXXX"; HUFFlout<="01001";
when "00100101" => HUFFdout<="1110101001XXXXXXXX"; HUFFlout<="01010";
when "00100110" => HUFFdout<="1011010100XXXXXXXX"; HUFFlout<="01010";
when "00100111" => HUFFdout<="1011011000XXXXXXXX"; HUFFlout<="01010";
when "00101000" => HUFFdout<="1110010100XXXXXXXX"; HUFFlout<="01010";
when "00101001" => HUFFdout<="1011010111XXXXXXXX"; HUFFlout<="01010";
when "00101010" => HUFFdout<="1011010110XXXXXXXX"; HUFFlout<="01010";
when "00101011" => HUFFdout<="1110100000XXXXXXXX"; HUFFlout<="01010";
when "00101100" => HUFFdout<="1010001100XXXXXXXX"; HUFFlout<="01010";
when "00101101" => HUFFdout<="1010001101XXXXXXXX"; HUFFlout<="01010";
when "00101110" => HUFFdout<="1010001010XXXXXXXX"; HUFFlout<="01010";
when "00101111" => HUFFdout<="11101000100XXXXXXX"; HUFFlout<="01011";
when "00110000" => HUFFdout<="0110010100XXXXXXXX"; HUFFlout<="01010";
when "00110001" => HUFFdout<="11100100001XXXXXXX"; HUFFlout<="01011";
when "00110010" => HUFFdout<="11100101010XXXXXXX"; HUFFlout<="01011";
when "00110011" => HUFFdout<="0110001001XXXXXXXX"; HUFFlout<="01010";
when "00110100" => HUFFdout<="0110010001XXXXXXXX"; HUFFlout<="01010";
when "00110101" => HUFFdout<="10110101010XXXXXXX"; HUFFlout<="01011";
when "00110110" => HUFFdout<="11101000010XXXXXXX"; HUFFlout<="01011";
when "00110111" => HUFFdout<="11100100000XXXXXXX"; HUFFlout<="01011";
when "00111000" => HUFFdout<="01100101011XXXXXXX"; HUFFlout<="01011";
when "00111001" => HUFFdout<="01100101010XXXXXXX"; HUFFlout<="01011";
when "00111010" => HUFFdout<="10100010001XXXXXXX"; HUFFlout<="01011";
when "00111011" => HUFFdout<="111001000101XXXXXX"; HUFFlout<="01100";
when "00111100" => HUFFdout<="101101100101XXXXXX"; HUFFlout<="01100";
when "00111101" => HUFFdout<="111010001110XXXXXX"; HUFFlout<="01100";
when "00111110" => HUFFdout<="111010101011XXXXXX"; HUFFlout<="01100";
when "00111111" => HUFFdout<="10100010110XXXXXXX"; HUFFlout<="01011";
when "01000000" => HUFFdout<="01100010001XXXXXXX"; HUFFlout<="01011";
when "01000001" => HUFFdout<="111010100000XXXXXX"; HUFFlout<="01100";
when "01000010" => HUFFdout<="01100100111XXXXXXX"; HUFFlout<="01011";

 xxiii

when "01000011" => HUFFdout<="111001010110XXXXXX"; HUFFlout<="01100";
when "01000100" => HUFFdout<="011001000000XXXXXX"; HUFFlout<="01100";
when "01000101" => HUFFdout<="111001010111XXXXXX"; HUFFlout<="01100";
when "01000110" => HUFFdout<="111010000111XXXXXX"; HUFFlout<="01100";
when "01000111" => HUFFdout<="01100100100XXXXXXX"; HUFFlout<="01011";
when "01001000" => HUFFdout<="1011011001000XXXXX"; HUFFlout<="01101";
when "01001001" => HUFFdout<="011001001011XXXXXX"; HUFFlout<="01100";
when "01001010" => HUFFdout<="101101010110XXXXXX"; HUFFlout<="01100";
when "01001011" => HUFFdout<="111010001101XXXXXX"; HUFFlout<="01100";
when "01001100" => HUFFdout<="101000100001XXXXXX"; HUFFlout<="01100";
when "01001101" => HUFFdout<="1110100011110XXXXX"; HUFFlout<="01101";
when "01001110" => HUFFdout<="111010001100XXXXXX"; HUFFlout<="01100";
when "01001111" => HUFFdout<="1110100001100XXXXX"; HUFFlout<="01101";
when "01010000" => HUFFdout<="1110101000101XXXXX"; HUFFlout<="01101";
when "01010001" => HUFFdout<="0110010011001XXXXX"; HUFFlout<="01101";
when "01010010" => HUFFdout<="01100100101001XXXX"; HUFFlout<="01110";
when "01010011" => HUFFdout<="0110010011010XXXXX"; HUFFlout<="01101";
when "01010100" => HUFFdout<="1110100010111XXXXX"; HUFFlout<="01101";
when "01010101" => HUFFdout<="11101000111110XXXX"; HUFFlout<="01110";
when "01010110" => HUFFdout<="1110010001100XXXXX"; HUFFlout<="01101";
when "01010111" => HUFFdout<="1110101000111XXXXX"; HUFFlout<="01101";
when "01011000" => HUFFdout<="1011011001101XXXXX"; HUFFlout<="01101";
when "01011001" => HUFFdout<="1011011001110XXXXX"; HUFFlout<="01101";
when "01011010" => HUFFdout<="11101010100100XXXX"; HUFFlout<="01110";
when "01011011" => HUFFdout<="1011011001111XXXXX"; HUFFlout<="01101";
when "01011100" => HUFFdout<="1010001001111XXXXX"; HUFFlout<="01101";
when "01011101" => HUFFdout<="0110010010101XXXXX"; HUFFlout<="01101";
when "01011110" => HUFFdout<="1110100010100XXXXX"; HUFFlout<="01101";
when "01011111" => HUFFdout<="0110001000011XXXXX"; HUFFlout<="01101";
when "01100000" => HUFFdout<="1010001011100XXXXX"; HUFFlout<="01101";
when "01100001" => HUFFdout<="1110100001101XXXXX"; HUFFlout<="01101";
when "01100010" => HUFFdout<="1110101010000XXXXX"; HUFFlout<="01101";
when "01100011" => HUFFdout<="1110010001101XXXXX"; HUFFlout<="01101";
when "01100100" => HUFFdout<="11100100011100XXXX"; HUFFlout<="01110";
when "01100101" => HUFFdout<="1011010101111XXXXX"; HUFFlout<="01101";
when "01100110" => HUFFdout<="11100100010000XXXX"; HUFFlout<="01110";
when "01100111" => HUFFdout<="1010001011101XXXXX"; HUFFlout<="01101";
when "01101000" => HUFFdout<="1010001001000XXXXX"; HUFFlout<="01101";
when "01101001" => HUFFdout<="11101010100110XXXX"; HUFFlout<="01110";
when "01101010" => HUFFdout<="111010101001011XXX"; HUFFlout<="01111";
when "01101011" => HUFFdout<="1110100010101XXXXX"; HUFFlout<="01101";
when "01101100" => HUFFdout<="1110101010001XXXXX"; HUFFlout<="01101";
when "01101101" => HUFFdout<="10110110010011XXXX"; HUFFlout<="01110";
when "01101110" => HUFFdout<="1010001001101XXXXX"; HUFFlout<="01101";
when "01101111" => HUFFdout<="11101010101001XXXX"; HUFFlout<="01110";
when "01110000" => HUFFdout<="1010001001010XXXXX"; HUFFlout<="01101";
when "01110001" => HUFFdout<="11101010100111XXXX"; HUFFlout<="01110";
when "01110010" => HUFFdout<="0110001000001XXXXX"; HUFFlout<="01101";
when "01110011" => HUFFdout<="10100010000011XXXX"; HUFFlout<="01110";
when "01110100" => HUFFdout<="11101010001000XXXX"; HUFFlout<="01110";
when "01110101" => HUFFdout<="11100100010001XXXX"; HUFFlout<="01110";
when "01110110" => HUFFdout<="11101010101000XXXX"; HUFFlout<="01110";
when "01110111" => HUFFdout<="1010001001011XXXXX"; HUFFlout<="01101";
when "01111000" => HUFFdout<="0110001000000XXXXX"; HUFFlout<="01101";
when "01111001" => HUFFdout<="1110101000110XXXXX"; HUFFlout<="01101";
when "01111010" => HUFFdout<="0110010011000XXXXX"; HUFFlout<="01101";
when "01111011" => HUFFdout<="11101010001001XXXX"; HUFFlout<="01110";
when "01111100" => HUFFdout<="1011010101110XXXXX"; HUFFlout<="01101";
when "01111101" => HUFFdout<="0110010011011XXXXX"; HUFFlout<="01101";
when "01111110" => HUFFdout<="1010001001100XXXXX"; HUFFlout<="01101";
when "01111111" => HUFFdout<="1110010001001XXXXX"; HUFFlout<="01101";
when "10000000" => HUFFdout<="01100100001010XXXX"; HUFFlout<="01110";
when "10000001" => HUFFdout<="1011011001100XXXXX"; HUFFlout<="01101";
when "10000010" => HUFFdout<="101000100111010XXX"; HUFFlout<="01111";

 xxiv

when "10000011" => HUFFdout<="11101010101010XXXX"; HUFFlout<="01110";
when "10000100" => HUFFdout<="111010001111110XXX"; HUFFlout<="01111";
when "10000101" => HUFFdout<="11100100011101XXXX"; HUFFlout<="01110";
when "10000110" => HUFFdout<="01100100001011XXXX"; HUFFlout<="01110";
when "10000111" => HUFFdout<="1010001001001XXXXX"; HUFFlout<="01101";
when "10001000" => HUFFdout<="11101000101100XXXX"; HUFFlout<="01110";
when "10001001" => HUFFdout<="1110101010010100XX"; HUFFlout<="10000";
when "10001010" => HUFFdout<="11101010101011XXXX"; HUFFlout<="01110";
when "10001011" => HUFFdout<="11101000101101XXXX"; HUFFlout<="01110";
when "10001100" => HUFFdout<="1010001000000XXXXX"; HUFFlout<="01101";
when "10001101" => HUFFdout<="111010100001XXXXXX"; HUFFlout<="01100";
when "10001110" => HUFFdout<="101000101111XXXXXX"; HUFFlout<="01100";
when "10001111" => HUFFdout<="0110001000010XXXXX"; HUFFlout<="01101";
when "10010000" => HUFFdout<="101101100100101XXX"; HUFFlout<="01111";
when "10010001" => HUFFdout<="011001000010000XXX"; HUFFlout<="01111";
when "10010010" => HUFFdout<="11101010100101011X"; HUFFlout<="10001";
when "10010011" => HUFFdout<="011001000011011000"; HUFFlout<="10010";
when "10010100" => HUFFdout<="011001000011011001"; HUFFlout<="10010";
when "10010101" => HUFFdout<="011001000010001010"; HUFFlout<="10010";
when "10010110" => HUFFdout<="10100010000010111X"; HUFFlout<="10001";
when "10010111" => HUFFdout<="11100100011110010X"; HUFFlout<="10001";
when "10011000" => HUFFdout<="011001001010000XXX"; HUFFlout<="01111";
when "10011001" => HUFFdout<="11100100011110011X"; HUFFlout<="10001";
when "10011010" => HUFFdout<="011001000010001000"; HUFFlout<="10010";
when "10011011" => HUFFdout<="1010001001110110XX"; HUFFlout<="10000";
when "10011100" => HUFFdout<="11100100011110100X"; HUFFlout<="10001";
when "10011101" => HUFFdout<="11100100011110101X"; HUFFlout<="10001";
when "10011110" => HUFFdout<="0110010000110100XX"; HUFFlout<="10000";
when "10011111" => HUFFdout<="0110010010100010XX"; HUFFlout<="10000";
when "10100000" => HUFFdout<="011001000010001001"; HUFFlout<="10010";
when "10100001" => HUFFdout<="011001000011001100"; HUFFlout<="10010";
when "10100010" => HUFFdout<="1010001001110111XX"; HUFFlout<="10000";
when "10100011" => HUFFdout<="011001000011001101"; HUFFlout<="10010";
when "10100100" => HUFFdout<="0110010010100011XX"; HUFFlout<="10000";
when "10100101" => HUFFdout<="011001000011011010"; HUFFlout<="10010";
when "10100110" => HUFFdout<="011001000011011011"; HUFFlout<="10010";
when "10100111" => HUFFdout<="011001000011010100"; HUFFlout<="10010";
when "10101000" => HUFFdout<="1110010001111110XX"; HUFFlout<="10000";
when "10101001" => HUFFdout<="0110010000011000XX"; HUFFlout<="10000";
when "10101010" => HUFFdout<="0110010000011001XX"; HUFFlout<="10000";
when "10101011" => HUFFdout<="011001000011010101"; HUFFlout<="10010";
when "10101100" => HUFFdout<="011001000011000XXX"; HUFFlout<="01111";
when "10101101" => HUFFdout<="0110010000011010XX"; HUFFlout<="10000";
when "10101110" => HUFFdout<="011001000001010100"; HUFFlout<="10010";
when "10101111" => HUFFdout<="101000100000100XXX"; HUFFlout<="01111";
when "10110000" => HUFFdout<="0110010000011011XX"; HUFFlout<="10000";
when "10110001" => HUFFdout<="011001000001010101"; HUFFlout<="10010";
when "10110010" => HUFFdout<="0110010000110010XX"; HUFFlout<="10000";
when "10110011" => HUFFdout<="1010001001110011XX"; HUFFlout<="10000";
when "10110100" => HUFFdout<="011001000001010110"; HUFFlout<="10010";
when "10110101" => HUFFdout<="011001000001010111"; HUFFlout<="10010";
when "10110110" => HUFFdout<="011001000011010110"; HUFFlout<="10010";
when "10110111" => HUFFdout<="011001000011010111"; HUFFlout<="10010";
when "10111000" => HUFFdout<="0110010000100011XX"; HUFFlout<="10000";
when "10111001" => HUFFdout<="011001000011001110"; HUFFlout<="10010";
when "10111010" => HUFFdout<="1011011001001000XX"; HUFFlout<="10000";
when "10111011" => HUFFdout<="011001000011011110"; HUFFlout<="10010";
when "10111100" => HUFFdout<="011001000011011111"; HUFFlout<="10010";
when "10111101" => HUFFdout<="011001000011101110"; HUFFlout<="10010";
when "10111110" => HUFFdout<="0110010000111010XX"; HUFFlout<="10000";
when "10111111" => HUFFdout<="011001000011101111"; HUFFlout<="10010";
when "11000000" => HUFFdout<="011001000011101100"; HUFFlout<="10010";
when "11000001" => HUFFdout<="011001000011101101"; HUFFlout<="10010";
when "11000010" => HUFFdout<="011001000001001110"; HUFFlout<="10010";

 xxv

when "11000011" => HUFFdout<="011001000001001111"; HUFFlout<="10010";
when "11000100" => HUFFdout<="011001000001001000"; HUFFlout<="10010";
when "11000101" => HUFFdout<="011001000001001001"; HUFFlout<="10010";
when "11000110" => HUFFdout<="011001000001001100"; HUFFlout<="10010";
when "11000111" => HUFFdout<="011001000001001101"; HUFFlout<="10010";
when "11001000" => HUFFdout<="0110010000011100XX"; HUFFlout<="10000";
when "11001001" => HUFFdout<="0110010000011101XX"; HUFFlout<="10000";
when "11001010" => HUFFdout<="011001000010011010"; HUFFlout<="10010";
when "11001011" => HUFFdout<="011001000010011011"; HUFFlout<="10010";
when "11001100" => HUFFdout<="11100100011110110X"; HUFFlout<="10001";
when "11001101" => HUFFdout<="011001000010011000"; HUFFlout<="10010";
when "11001110" => HUFFdout<="011001000001011100"; HUFFlout<="10010";
when "11001111" => HUFFdout<="011001000001011101"; HUFFlout<="10010";
when "11010000" => HUFFdout<="011001000001001010"; HUFFlout<="10010";
when "11010001" => HUFFdout<="11100100011110111X"; HUFFlout<="10001";
when "11010010" => HUFFdout<="111001000111110XXX"; HUFFlout<="01111";
when "11010011" => HUFFdout<="011001000001001011"; HUFFlout<="10010";
when "11010100" => HUFFdout<="011001000010010100"; HUFFlout<="10010";
when "11010101" => HUFFdout<="011001000001111XXX"; HUFFlout<="01111";
when "11010110" => HUFFdout<="011001000001000XXX"; HUFFlout<="01111";
when "11010111" => HUFFdout<="011001000010010101"; HUFFlout<="10010";
when "11011000" => HUFFdout<="11100100011111110X"; HUFFlout<="10001";
when "11011001" => HUFFdout<="0110010000111101XX"; HUFFlout<="10000";
when "11011010" => HUFFdout<="0110010000010100XX"; HUFFlout<="10000";
when "11011011" => HUFFdout<="101000100111000XXX"; HUFFlout<="01111";
when "11011100" => HUFFdout<="0110010000111110XX"; HUFFlout<="10000";
when "11011101" => HUFFdout<="1011011001001001XX"; HUFFlout<="10000";
when "11011110" => HUFFdout<="101000100000101000"; HUFFlout<="10010";
when "11011111" => HUFFdout<="101000100000101001"; HUFFlout<="10010";
when "11100000" => HUFFdout<="0110010000111111XX"; HUFFlout<="10000";
when "11100001" => HUFFdout<="11100100011111111X"; HUFFlout<="10001";
when "11100010" => HUFFdout<="101000100000101010"; HUFFlout<="10010";
when "11100011" => HUFFdout<="101000100000101011"; HUFFlout<="10010";
when "11100100" => HUFFdout<="111010001111111XXX"; HUFFlout<="01111";
when "11100101" => HUFFdout<="011001000010010110"; HUFFlout<="10010";
when "11100110" => HUFFdout<="0110010000010110XX"; HUFFlout<="10000";
when "11100111" => HUFFdout<="0110010000100111XX"; HUFFlout<="10000";
when "11101000" => HUFFdout<="011001000010010111"; HUFFlout<="10010";
when "11101001" => HUFFdout<="011001000011100110"; HUFFlout<="10010";
when "11101010" => HUFFdout<="011001000011100111"; HUFFlout<="10010";
when "11101011" => HUFFdout<="011001000011100100"; HUFFlout<="10010";
when "11101100" => HUFFdout<="0110010000100100XX"; HUFFlout<="10000";
when "11101101" => HUFFdout<="011001000011100101"; HUFFlout<="10010";
when "11101110" => HUFFdout<="011001000010011001"; HUFFlout<="10010";
when "11101111" => HUFFdout<="0110010000111000XX"; HUFFlout<="10000";
when "11110000" => HUFFdout<="011001000011110010"; HUFFlout<="10010";
when "11110001" => HUFFdout<="1110010001111000XX"; HUFFlout<="10000";
when "11110010" => HUFFdout<="011001000011110011"; HUFFlout<="10010";
when "11110011" => HUFFdout<="101000100000101100"; HUFFlout<="10010";
when "11110100" => HUFFdout<="101000100000101101"; HUFFlout<="10010";
when "11110101" => HUFFdout<="011001000011110000"; HUFFlout<="10010";
when "11110110" => HUFFdout<="011001000011001111"; HUFFlout<="10010";
when "11110111" => HUFFdout<="011001000011110001"; HUFFlout<="10010";
when "11111000" => HUFFdout<="011001000001011110"; HUFFlout<="10010";
when "11111001" => HUFFdout<="1010001001110010XX"; HUFFlout<="10000";
when "11111010" => HUFFdout<="011001000001011111"; HUFFlout<="10010";
when "11111011" => HUFFdout<="011001000011011100"; HUFFlout<="10010";
when "11111100" => HUFFdout<="11101010100101010X"; HUFFlout<="10001";
when "11111101" => HUFFdout<="011001000011011101"; HUFFlout<="10010";
when "11111110" => HUFFdout<="011001000010001011"; HUFFlout<="10010";
when "11111111" => HUFFdout<="000111100XXXXXXXXX"; HUFFlout<="01001";
when others => HUFFdout <="XXXXXXXXXXXXXXXXXX"; HUFFlout <="XXXXX";
end case;

 xxvi

end if;

end process;

end structural;

B.2.4 shifter.vhd
--
-- Stage4 - Bit packer in Huffman Encoder
--
-- Input : A stream of variable length data (length varies between 3 and 18)
--
-- Output : A stream of 32 bit WORDS (packed data), to be written to memory.
--
-- Design : The aim is to pack the variable length data (3->18 bits) into
-- 32 bit WORDS. This is done by a 5 (=ln2(32)) stage shifter.
-- When ever we have a full load of 32 bits, we do a MEM_WRITE.
--
-- In stage 1, (SFTRdatin -> stage1),we either shift (actually rotate) by 16
-- or pass the data straight.In the next 4 stages we shift by 8, 4, 2, 1
-- respectively or pass on straight.
--
-- The idea is to shift the incoming variable length data into the
-- correct position over the 5 stages of the shifter.
--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity SFTR is
port(
SFTRclk : in std_logic;
SFTRen : in std_logic;
SFTRdatin : in std_logic_vector (17 downto 0);
SFTRlenIn : in std_logic_vector (4 downto 0);
SFTRout : out std_logic_vector (31 downto 0);
SFTRoutEn : out std_logic);
end SFTR;

architecture structural of SFTR is

-- A custom comparator!, this comes as part of the double buffering for the
-- last stage.We have 17 registers in which we are going to latch new values.
-- We do not want to latch new values to any registers above the value in c32.
-- For e.g., with c32=5,we only want to load up the first 5 registers,the rest
-- of the 12 registers are ZEROed.The return value of this function is a mask,
-- which is ANDed with the inputs to the registers. Thus with c32=5,the output
-- would look like "11111000000000000".Phew, was it all worth it?
-- A simpler way to code this up would be something like:
--
-- for i in 16 downto 0 loop
-- ret(i) := (c32 > (16 - i));
-- end loop;
function comparator17(c32: std_logic_vector(4 downto 0))
return std_logic_vector is
variable ret : std_logic_vector(16 downto 0);
begin

 xxvii

ret(16) := c32(4) or c32(3) or c32(2) or c32(1) or c32(0);
ret(15) := c32(4) or c32(3) or c32(2) or c32(1);
ret(14) := c32(4) or c32(3) or c32(2) or (c32(1) and c32(0));
ret(13) := c32(4) or c32(3) or c32(2);
ret(12) := c32(4) or c32(3) or (c32(2) and (c32(1) or c32(0)));
ret(11) := c32(4) or c32(3) or (c32(2) and c32(1));
ret(10) := c32(4) or c32(3) or (c32(2) and c32(1) and c32(0));
ret(9) := c32(4) or c32(3);
ret(8) := c32(4) or (c32(3) and (c32(2) or c32(1) or c32(0)));
ret(7) := c32(4) or (c32(3) and c32(2)) or (c32(3) and c32(1));
ret(6) := c32(4) or (c32(3) and c32(2)) or (c32(3) and c32(1) and c32(0));
ret(5) := c32(4) or (c32(3) and c32(2));
ret(4) := c32(4) or (c32(3) and c32(2) and (c32(1) or c32(0)));
ret(3) := c32(4) or (c32(3) and c32(2) and c32(1));
ret(2) := c32(4) or (c32(3) and c32(2) and c32(1) and c32(0));
ret(1) := c32(4);
ret(0) := (c32(4) and c32(3)) or (c32(4) and (c32(2) or c32(1) or c32(0)));
return ret;
end function comparator17;
constant prop_delay : time := 5 ns;
subtype std32 is std_logic_vector (31 downto 0);
signal tmp : std_logic_vector(5 downto 0):="000000";
signal stage0_len : std_logic_vector(4 downto 0):="00000";
signal stage1_len : std_logic_vector(4 downto 0):="00000";
signal stage2_len : std_logic_vector(4 downto 0):="00000";
signal stage3_len : std_logic_vector(4 downto 0):="00000";
signal stage4_len : std_logic_vector(4 downto 0):="00000";
signal timeout : std_logic_vector(1 downto 0):="00";
signal write_ready1 : std_logic := ’0’;
signal write_ready2 : std_logic := ’0’;
signal write_ready3 : std_logic := ’0’;
signal write_ready4 : std_logic := ’0’;
signal write_ready5 : std_logic := ’0’;
-- 5 register stages, last one is partly double buffered ...
signal stage1 : std32 :="00000000000000000000000000000000";
signal stage2 : std32 :="00000000000000000000000000000000";
signal stage3 : std32 :="00000000000000000000000000000000";
signal stage4 : std32 :="00000000000000000000000000000000";
signal stage5 : std32 :="00000000000000000000000000000000";
signal stage5_d: std_logic_vector(31 downto 15):="00000000000000000";

begin

-- Catch the overflow!, we have 5 bits in ’SFTRlenIn’, keep adding to
-- ’stage0_len’. When it overflows, we know we crossed 32 bits,
-- we are ready for a MEM_WRITE.

tmp <= (’0’ & stage0_len) + (’0’ & SFTRlenIn);

-- A soft rest for SFTRoutEn
-- SFTRoutEn lasts only for 2 cycles.
SFTRoutEn <= write_ready5 and (timeout(1) or timeout(0));

run : process(SFTRclk)

variable stage5_tmp : std_logic_vector (31 downto 0);
variable mask : std_logic_vector (31 downto 15);
variable load_db : std_logic;

begin

if(rising_edge(SFTRclk)) then

if(SFTRen = ’1’) then
timeout <= "11" after prop_delay;

 xxviii

write_ready1 <= tmp(5) after prop_delay;
write_ready2 <= write_ready1 after prop_delay;
write_ready3 <= write_ready2 after prop_delay;
write_ready4 <= write_ready3 after prop_delay;
write_ready5 <= write_ready4 after prop_delay;
stage0_len <= tmp(4 downto 0) after prop_delay;
stage1_len <= stage0_len after prop_delay;
stage2_len <= stage1_len after prop_delay;
stage3_len <= stage2_len after prop_delay;
stage4_len <= stage3_len after prop_delay;

-- Stage 1 (SFTRdatin -> stage1), shift by 16 or pass thru
 if(stage0_len(4) = ’1’) then

stage1(31 downto 30) <= SFTRdatin(1 downto 0) after prop_delay;
stage1(29 downto 16) <= (others => ’0’) after prop_delay;

 stage1(15 downto 0) <= SFTRdatin(17 downto 2) after prop_delay;
else

 stage1(31 downto 14) <= SFTRdatin after prop_delay;
stage1(13 downto 0) <= (others => ’0’) after prop_delay;

end if;
-- Stage 2 (stage1 -> stage2), shift by 8 or pass thru

if(stage1_len(3) = ’1’) then
stage2(31 downto 24) <= stage1(7 downto 0) after prop_delay;
stage2(23 downto 0) <= stage1(31 downto 8) after prop_delay;

else
stage2 <= stage1 after prop_delay;

end if;
-- Stage 3 (stage2 -> stage3), shift by 4 or pass thru

if(stage2_len(2) = ’1’) then
stage3(31 downto 28) <= stage2(3 downto 0) after prop_delay;
stage3(27 downto 0) <= stage2(31 downto 4) after prop_delay;

else
stage3 <= stage2 after prop_delay;

end if;
-- Stage 4 (stage3 -> stage4), shift by 2 or pass thru

if(stage3_len(1) = ’1’) then
stage4(31 downto 30) <= stage3(1 downto 0) after prop_delay;
stage4(29 downto 0) <= stage3(31 downto 2) after prop_delay;

else
stage4 <= stage3 after prop_delay;

end if;
-- Stage 5 (stage4 -> stage5), shift by 1 or pass thru

if(stage4_len(0) = ’1’) then
stage5_tmp(31) := stage4(0);
stage5_tmp(30 downto 0):= stage4(31 downto 1);

else
stage5_tmp := stage4;

end if;
-- How do we detect a scenario like the one in cycle #8?
-- ((current_offset > "00000") AND
-- (prev_offset < "11111") AND
-- (current_offset < prev_offset)) // i.e, it overflowed
if(((stage3_len(4) or stage3_len(3) or stage3_len(2) or
 stage3_len(1) or stage3_len(0)) = ’1’) and
 ((stage2_len(4) and stage2_len(3) and stage2_len(2) and
 stage2_len(1) and stage2_len(0)) = ’0’) and
 (write_ready4 = ’1’)) then

load_db := ’1’;
else

load_db := ’0’;
end if;

mask := comparator17(stage3_len);
-- If(load_db)
-- {
-- double_buffer <= overflow_of_stage5_tmp

 xxix

-- stage5 <= stage5 + (stage5_tmp - overflow_of_stage5_tmp)
-- }
-- else
-- {
-- double_buffer <= 0
-- if(MEM_WRITE)
-- stage5 <= stage5_tmp
-- else
-- stage5 <= stage5 + stage5_tmp + double_buffer
-- }
if(load_db = ’1’) then

stage5_d <= (mask and stage5_tmp(31 downto 15)) after prop_delay;
stage5 <= ((stage5(31 downto 15) or
(not(mask) and stage5_tmp(31 downto 15))) &
(stage5(14 downto 0) or stage5_tmp(14 downto 0))) after prop_delay;

else
stage5_d <= (others => ’0’) after prop_delay;

if(write_ready5 = ’1’) then
stage5 <= ((stage5_tmp(31 downto 15) or stage5_d(31 downto 15)) &
(stage5_tmp(14 downto 0))) after prop_delay;

else
stage5 <= ((stage5_tmp(31 downto 15) or
stage5(31 downto 15) or
stage5_d(31 downto 15)) &
(stage5(14 downto 0) or
stage5_tmp(14 downto 0))) after prop_delay;

 end if;
end if;
 else -- (SFTRen=0)

timeout(1) <= timeout(0) after prop_delay;
timeout(0) <= ’0’ after prop_delay;

 end if; -- SFTRen
end if; -- rising_edge(SFTRclk)

end process run;

--SFTRout <= stage5;

SFTRout(7 downto 0) <= (stage5(24) & stage5(25) & stage5(26) &
stage5(27) & stage5(28) & stage5(29) & stage5(30) & stage5(31));
SFTRout(15 downto 8) <= (stage5(16) & stage5(17) & stage5(18) &
stage5(19) & stage5(20) & stage5(21) & stage5(22) & stage5(23));
SFTRout(23 downto 16) <= (stage5(8) & stage5(9) & stage5(10) &
stage5(11) & stage5(12) & stage5(13) & stage5(14) & stage5(15));
SFTRout(31 downto 24) <= (stage5(0) & stage5(1) & stage5(2) &
stage5(3) & stage5(4) & stage5(5) & stage5(6) & stage5(7));

end structural;

configuration SFTR_default of SFTR is

for structural

end for;

end SFTR_default;

B.2.5 top_level_for_stage2.vhd
--
-- Description:
--
-- Reads coefficients from lower memory (lower 0.5MB),
-- Reads coeff min/max for each blocks from upper memory (upper 0.5MB),
-- Does dynamic quantizing for each block,

 xxx

-- Does zero thresholding for each block, and RLEs ZEROs,
-- Entropy encodes based on a static Huffman tree,
-- Packs the bit into 32 bit words and
-- Writes it back to upper memory.
-- Writes total number of bytes written in upper memory at location 0.
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

architecture Memory_Access of PE1_Logic_Core is

subtype std16 is std_logic_vector (15 downto 0);

component QUANT is
port (
QUANTclk : in std_logic;
QUANTen : in std_logic;
QUANTmax : in std_logic_vector (15 downto 0);
QUANTmin : in std_logic_vector (15 downto 0);
QUANTin : in std_logic_vector (15 downto 0);
QUANTout : out std_logic_vector (3 downto 0));
end component;

component RLE is
port (
RLEclk : in std_logic;
RLEreset : in std_logic;
RLEen : in std_logic;
RLEflush : in std_logic;
RLEin : in std_logic_vector (15 downto 0);
RLEzeroth : in std_logic_vector (15 downto 0);
RLEout : out std_logic_vector (7 downto 0);
RLErunning : out std_logic;
RLEspellEnd: out std_logic);
end component;

component HUFF is
port (
HUFFclk : in std_logic;
HUFFin : in std_logic_vector (7 downto 0);
HUFFlout : out std_logic_vector (4 downto 0);
HUFFdout : out std_logic_vector (17 downto 0));
end component;

component SFTR is
port (
SFTRclk : in std_logic;
SFTRen : in std_logic;
SFTRdatin : in std_logic_vector (17 downto 0);
SFTRlenIn : in std_logic_vector (4 downto 0);
SFTRout : out std_logic_vector (31 downto 0);
SFTRoutEn : out std_logic);
end component;

-- We have the problem of (input rate != output rate)
-- Each memory read brings in 2 coefficients from memory.
-- when processed each of these coefficients could expand
-- upto 18 bits, needing 2 memory writes before next read.
--
-- ReadBlockData_001: fire READ
-- ReadBlockData_010: optional WRITE
-- ReadBlockData_100: 32 bit READ arrives, use up upper 16 bits from READ

 xxxi

-- WriteData : optional WRITE, use up lower 16 bits from READ

type MemoryStates is(
WaitforBus,
ReadBlock1MinMax_001,
ReadBlock1MinMax_011,
ReadBlock1MinMax_111, -- got block1 min/max
ReadBlock2MinMax_111, -- got block2 min/max
ReadBlock3MinMax_111, -- got block3 min/max
ReadBlock4MinMax_111, -- got block4 min/max
ReadBlock5MinMax_111, -- got block5 min/max
ReadBlock6MinMax_110, -- got block6 min/max
ReadBlock7MinMax_100, -- got block7 min/max
ReadBlockData_001,
ReadBlockData_010,
ReadBlockData_100,
WriteData,
WriteDataCount,
WriteBlock12,
WriteBlock34,
WriteBlock56,
WriteBlock7,
MemInterrupt,
MemDone
);

signal Mem_PState : MemoryStates; -- Present state
signal Mem_NState : MemoryStates; -- Next state
-- For reading coefficient data from memory,
-- we have to read blocks 1, 2, 3, 4, 5, 6, 7.
-- these blocks are interleaved.
signal ReadCntrROW : std_logic_vector(8 downto 0); -- ROW, COL address
signal ReadCntrCOL : std_logic_vector(7 downto 0); -- registers for READ
signal eReadCntrROW : std_logic_vector(8 downto 0); -- effective
signal eReadCntrCOL : std_logic_vector(7 downto 0); --
signal ROW_limit : std_logic_vector(8 downto 0);
signal COL_limit : std_logic_vector(7 downto 0);
signal ROW_skip : std_logic_vector(8 downto 0);
signal COL_skip : std_logic_vector(7 downto 0);
signal ladj : std_logic_vector(6 downto 0); -- latency adjust
-- For writing back the output of this stage,
-- we dump it to the upper memory and increment the
-- write pointer when ever we write.
signal WriteCntr : std_logic_vector(16 downto 0);
signal RLE_Count1 : std_logic_vector(15 downto 0);
signal RLE_Count2 : std_logic_vector(15 downto 0);
signal RLE_Count3 : std_logic_vector(15 downto 0);
signal RLE_Count4 : std_logic_vector(15 downto 0);
signal RLE_Count5 : std_logic_vector(15 downto 0);
signal RLE_Count6 : std_logic_vector(15 downto 0);
signal RLE_Count7 : std_logic_vector(15 downto 0);
-- Coefficient data fits in the lower 0.5MB, the upper 0.5 MB is
-- used for storing block min/max. Before we start using the
-- upper memory, we have to retrieve these...
signal Block1Min : std16;
signal Block1Max : std16;
signal Block2Min : std16;
signal Block2Max : std16;
signal Block3Min : std16;
signal Block3Max : std16;
signal Block4Min : std16;
signal Block4Max : std16;
signal Block5Min : std16;
signal Block5Max : std16;

 xxxii

signal Block6Min : std16;
signal Block6Max : std16;
signal Block7Min : std16;
signal Block7Max : std16;
-- Different blocks are zero thresholded at different levels.
-- These are design constants. To vary the compression ratio,
-- need to adjust these.
-- This is for minimum compression (good quality image)
-- constant Block1Th : std16 := "0000000000000000"; -- 0 x 0
-- constant Block2Th : std16 := "0000000000000000"; -- 27 x 0
-- constant Block3Th : std16 := "0000000000000000"; -- 39 x 0
-- constant Block4Th : std16 := "0000000000000000"; -- 104 x 0
-- constant Block6Th : std16 := "0000000000000000"; -- 50 x 0
-- constant Block5Th : std16 := "0000000000000000"; -- 79 x 0
-- constant Block7Th : std16 := "0000000000000000"; -- 191 x 0
-- This is for moderate compression
-- constant Block1Th : std16 := "0000000000000000"; -- 0 x 1
-- constant Block2Th : std16 := "0000000000011011"; -- 27 x 1
-- constant Block3Th : std16 := "0000000000100111"; -- 39 x 1
-- constant Block4Th : std16 := "0000000001101000"; -- 104 x 1
-- constant Block5Th : std16 := "0000000000110010"; -- 50 x 1
-- constant Block6Th : std16 := "0000000001001111"; -- 79 x 1
-- constant Block7Th : std16 := "0000000010111111"; -- 191 x 1
-- This is maximum compression
constant Block1Th : std16 := "0000000000000000"; -- 0 x 2
constant Block3Th : std16 := "0000000000110110"; -- 27 x 2
constant Block2Th : std16 := "0000000001001110"; -- 39 x 2
constant Block4Th : std16 := "0000000011010000"; -- 104 x 2
constant Block6Th : std16 := "0000000001100100"; -- 50 x 2
constant Block5Th : std16 := "0000000010011110"; -- 79 x 2
constant Block7Th : std16 := "0000000101111110"; -- 191 x 2
signal QUANTen : std_logic;
signal QUANTmax : std_logic_vector(15 downto 0);
signal QUANTmin : std_logic_vector(15 downto 0);
signal QUANTin : std_logic_vector(15 downto 0);
signal QUANTin2 : std_logic_vector(15 downto 0);
signal QUANTout : std_logic_vector(3 downto 0);
signal QUANTout2 : std_logic_vector(3 downto 0);
signal RLEflush : std_logic;
signal RLEen : std_logic;
signal RLEin : std_logic_vector(15 downto 0);
signal RLEzeroth : std_logic_vector(15 downto 0);
signal RLEout : std_logic_vector(7 downto 0);
signal RLErunning : std_logic;
signal RLEspellEnd : std_logic;
signal RLErunning1 : std_logic;
signal RLEspellEnd1 : std_logic;
signal RLErunning2 : std_logic;
signal RLEspellEnd2 : std_logic;
signal HUFFin : std_logic_vector(7 downto 0);
signal HUFFlout : std_logic_vector(4 downto 0);
signal HUFFdout : std_logic_vector(17 downto 0);
signal SFTRen : std_logic;
signal SFTRdatin : std_logic_vector(17 downto 0);
signal SFTRlenIn : std_logic_vector(4 downto 0);
signal SFTRout : std_logic_vector(31 downto 0);
signal SFTRoutEn : std_logic;
signal readComplete : std_logic;
signal nStages : std_logic_vector(2 downto 0); --counts which quadrant we are
in
signal nStages1 : std_logic_vector(2 downto 0); -- delayed by one clock
signal nStages_1 : std_logic_vector(2 downto 0); -- delayed by 4 cycles
signal nStages_2 : std_logic_vector(2 downto 0); -- delayed by 8 cycles
signal nStages_3 : std_logic_vector(2 downto 0); -- delayed by 12 cycles

 xxxiii

begin

quantizer : QUANT -- Dynamic quantizer
port map (
PE_Pclk,
QUANTen,
QUANTmax,
QUANTmin,
QUANTin,
QUANTout);

rle : RLE
port map (
PE_Pclk, -- Run length encoder
PE_Reset,
RLEen,
RLEflush,
RLEin,
RLEzeroth,
RLEout,
RLErunning,
RLEspellEnd);

huffman : HUFF
port map (
PE_Pclk, -- Huffman encoder
HUFFin,
HUFFlout,
HUFFdout);

bitpacker : SFTR
port map (
PE_Pclk, -- Bit packer
SFTRen,
SFTRdatin,
SFTRlenIn,
SFTRout,
SFTRoutEn);

quantizer_in : process(Mem_PState, PE_MemData_InReg, QUANTin2)

begin

if (Mem_PState = ReadBlockData_100) then

QUANTin <= PE_MemData_InReg(31 downto 16);
else

QUANTin <= QUANTin2;
end if;

end process quantizer_in;

RLEin <= QUANTin;
RLEen <= QUANTen;

with RLErunning select HUFFin <= -- Input to huffman:
RLEout when ’1’, -- from RLE, when RLE
("0000" & QUANTout) when others; -- from QUANT, else
SFTRdatin <= HUFFdout;
SFTRlenIn <= HUFFlout;

with nStages1 select QUANTmax <=
Block1Max when "000",
Block2Max when "001",

 xxxiv

Block3Max when "010",
Block4Max when "011",
Block5Max when "101",
Block6Max when "110",
Block7Max when "111",
(others => ’X’) when others;
with nStages1 select QUANTmin <=
Block1Min when "000",
Block2Min when "001",
Block3Min when "010",
Block4Min when "011",
Block5Min when "101",
Block6Min when "110",
Block7Min when "111",
(others => ’X’) when others;
with nStages1 select RLEzeroth <=
Block1Th when "000",
Block2Th when "001",
Block3Th when "010",
Block4Th when "011",
Block5Th when "101",
Block6Th when "110",
Block7Th when "111",
(others => ’0’) when others;

st_update : process (PE_Pclk, PE_Reset)

begin

if (PE_Reset = ’1’) then

Mem_PState <= WaitforBus;
readComplete <= ’0’;
nStages <= "000";
nStages1 <= "000";
nStages_1 <= "100";
nStages_2 <= "100";
nStages_3 <= "100";
QUANTin2 <= (others => ’0’);
QUANTout2 <= (others => ’0’);
ReadCntrROW <= "000000000";
ReadCntrCOL <= "00000000";
eReadCntrROW <= "000000000";
eReadCntrCOL <= "00000000";
ladj <= (others => ’0’);
RLErunning1 <= ’0’;
RLEspellEnd1 <= ’0’;
RLErunning2 <= ’0’;
RLEspellEnd2 <= ’0’;
ROW_limit <= "111111000"; -- 504 [0, 8, 16, ..., 504] = 64 cells
COL_limit <= "11111000"; -- 248 [0, 8, 16, ..., 248] = 32 cells
ROW_skip <= "000001000"; -- 8
COL_skip <= "00001000"; -- 8
WriteCntr <= "00000000000000000";
RLE_Count1 <= "0000000000000000";
RLE_Count2 <= "0000000000000000";
RLE_Count3 <= "0000000000000000";
RLE_Count4 <= "0000000000000000";
RLE_Count5 <= "0000000000000000";
RLE_Count6 <= "0000000000000000";
RLE_Count7 <= "0000000000000000";
Block1Min <= (others => ’0’);
Block1Max <= (others => ’0’);
Block2Min <= (others => ’0’);
Block2Max <= (others => ’0’);

 xxxv

Block3Min <= (others => ’0’);
Block3Max <= (others => ’0’);
Block4Min <= (others => ’0’);
Block4Max <= (others => ’0’);
Block5Min <= (others => ’0’);
Block5Max <= (others => ’0’);
Block6Min <= (others => ’0’);
Block6Max <= (others => ’0’);
Block7Min <= (others => ’0’);
Block7Max <= (others => ’0’);

elsif (rising_edge(PE_Pclk)) then
Mem_PState <= Mem_NState;
nStages1 <= nStages;
RLErunning1 <= RLErunning;
RLEspellEnd1 <= RLEspellEnd;
RLErunning2 <= RLErunning1;
RLEspellEnd2 <= RLEspellEnd1;

if (Mem_PState = ReadBlock1MinMax_111) then
Block1Max <= PE_MemData_InReg(31 downto 16);
Block1Min <= PE_MemData_InReg(15 downto 0);

end if;
if (Mem_PState = ReadBlock2MinMax_111) then

Block2Max <= PE_MemData_InReg(31 downto 16);
Block2Min <= PE_MemData_InReg(15 downto 0);

end if;
if (Mem_PState = ReadBlock3MinMax_111) then

Block3Max <= PE_MemData_InReg(31 downto 16);
Block3Min <= PE_MemData_InReg(15 downto 0);

end if;
if (Mem_PState = ReadBlock4MinMax_111) then

Block4Max <= PE_MemData_InReg(31 downto 16);
Block4Min <= PE_MemData_InReg(15 downto 0);

end if;
if (Mem_PState = ReadBlock5MinMax_111) then

Block5Max <= PE_MemData_InReg(31 downto 16);
Block5Min <= PE_MemData_InReg(15 downto 0);

end if;
if (Mem_PState = ReadBlock6MinMax_110) then

Block6Max <= PE_MemData_InReg(31 downto 16);
Block6Min <= PE_MemData_InReg(15 downto 0);

end if;
if (Mem_PState = ReadBlock7MinMax_100) then

Block7Max <= PE_MemData_InReg(31 downto 16);
Block7Min <= PE_MemData_InReg(15 downto 0);

end if;
-- Quantizer works on 16 bit data, in each
-- memory read we get two 16 bit data, so store
-- one for next cycle.
if (Mem_PState = ReadBlockData_100) then

QUANTin2 <= PE_MemData_InReg(15 downto 0);
QUANTout2 <= QUANTout; -- DEBUG

end if;
if (Mem_PState = ReadBlockData_001) then

ladj(6) <= not(readComplete);
ladj(5) <= ladj(6);
ladj(4) <= ladj(5);
ladj(3) <= ladj(4);
ladj(2) <= ladj(3);
ladj(1) <= ladj(2);
ladj(0) <= ladj(1);

end if;
if (((Mem_PState = WriteData) or (Mem_PState = ReadBlockData_010)) and

(SFTRoutEn = ’1’)) then
WriteCntr <= WriteCntr + 1;

 xxxvi

end if;
if (((Mem_PState = WriteData) or (Mem_PState = ReadBlockData_010)) and

((RLErunning = ’0’) or (RLEspellEnd = ’1’))) then
if(nStages_3="000") then

RLE_Count1 <= RLE_Count1 + 1;
end if;
if(nStages_3="001") then

RLE_Count2 <= RLE_Count2 + 1;
end if;
if(nStages_3="010") then

RLE_Count3 <= RLE_Count3 + 1;
end if;
if(nStages_3="011") then

RLE_Count4 <= RLE_Count4 + 1;
end if;
if(nStages_3="101") then

RLE_Count5 <= RLE_Count5 + 1;
end if;
if(nStages_3="110") then

RLE_Count6 <= RLE_Count6 + 1;
end if;
if(nStages_3="111") then

RLE_Count7 <= RLE_Count7 + 1;
end if;

end if;

-- ROW/COL address registers for reading.
--
-- Block 0: ROW start: 00000 0000 COL start: 0000 0000
-- inc : 00000 1000 inc : 0000 1000
-- end : 11111 1000 end : 1111 1000
-- Block 1: ROW start: 00000 0100 COL start: 0000 0000
-- inc : 00000 1000 inc : 0000 1000
-- end : 11111 1100 end : 1111 1000
-- Block 2: ROW start: 00000 0000 COL start: 0000 0100
-- inc : 00000 1000 inc : 0000 1000
-- end : 11111 1000 end : 1111 1100
-- Block 3: ROW start: 00000 0100 COL start: 0000 0100
-- inc : 00000 1000 inc : 0000 1000
-- end : 11111 1100 end : 1111 1100
-- Block 4: ROW start: 00000 0010 COL start: 0000 0000
-- inc : 00000 0100 inc : 0000 0100
-- end : 11111 1110 end : 1111 1100
-- Block 5: ROW start: 00000 0000 COL start: 0000 0010
-- inc : 00000 0100 inc : 0000 0100
-- end : 11111 1100 end : 1111 1110
-- Block 6: ROW start: 00000 0010 COL start: 0000 0010
-- inc : 00000 0100 inc : 0000 0100
-- end : 11111 1110 end : 1111 1110
--
-- ReadCntrCOL and ReadCntrROW are our main
-- ROW and COL address registers. We also maintain
-- a pair of effective address regs, as in some cases
-- the effective addresses would be normal address +inc/2
--
if(nStages(1) = ’1’) then

eReadCntrCOL <= ReadCntrCOL + (’0’ & COL_skip(7 downto 1));
else

eReadCntrCOL <= ReadCntrCOL;
end if;
if(nStages(0) = ’1’) then

eReadCntrROW <= ReadCntrROW + (’0’ & ROW_skip(8 downto 1));
else

eReadCntrROW <= ReadCntrROW;

 xxxvii

end if;
if (Mem_PState = ReadBlockData_100) then

nStages_1 <= nStages;
nStages_2 <= nStages_1;
nStages_3 <= nStages_2;
ReadCntrCOL <= ReadCntrCOL + COL_skip;

 if (ReadCntrCOL = COL_limit) then
ReadCntrROW <= ReadCntrROW + ROW_skip;

end if;
if((ReadCntrROW = ROW_limit) and -- End of current

(ReadCntrCOL = COL_limit)) then -- block
-- Update nStages as :(000 001 010 011) (101 110 111)
-- Whenever nStages(0)=1, eRowAddr = RowAddr + RowInc/2
-- Whenever nStages(1)=1, eColAddr = ColAddr + ColInc/2

if (nStages = "011") then
nStages <= "101";

elsif (nStages = "111") then
nStages <= "100";

else
nStages <= nStages + 1;

end if;
if (nStages(1 downto 0) = "11") then

ROW_skip <= (’0’ & ROW_skip(8 downto 1));
COL_skip <= (’0’ & COL_skip(7 downto 1));
ROW_limit <= (’1’ & ROW_limit(8 downto 1));
COL_limit <= (’1’ & COL_limit(7 downto 1));

end if;
if (nStages = "111") then

readComplete <= ’1’;
end if;

end if;
 end if;
end if;

end process st_update;

PE_MemAddr_OutReg(21 downto 18) <= (others => ’0’);

mem_state: process(Mem_PState,ladj,PE_MemBusGrant_n,eReadCntrROW,eReadCntrCOL,
WriteCntr,nStages, nStages1,RLE_Count1, RLE_Count2, RLE_Count3, RLE_Count4,
RLE_Count5, RLE_Count6, RLE_Count7,RLErunning2, RLEspellEnd2,SFTRoutEn,
SFTRout,PE_InterruptAck_n)

Begin

PE_InterruptReq_n <= ’1’; -- Default, do not interrupt host
PE_MemWriteSel_n <= ’1’; -- read/write, default read
PE_MemStrobe_n <= ’1’; -- No strobe, later
PE_MemBusReq_n <= ’0’; -- Always request bus
QUANTen <= ’0’; --
SFTRen <= ’0’; --
RLEflush <= ’0’; --
PE_MemAddr_OutReg(17 downto 0) <= (others => ’0’);
PE_MemData_OutReg(31 downto 0) <= (others => ’0’);

case Mem_PState is

when WaitforBus =>

if(PE_MemBusGrant_n = ’0’) then

Mem_NState <= ReadBlock1MinMax_001;
else

Mem_NState <= WaitforBus;
end if;

 xxxviii

when ReadBlock1MinMax_001 =>
PE_MemStrobe_n <= ’0’;
Mem_NState <= ReadBlock1MinMax_011;
PE_MemAddr_OutReg(17 downto 0) <= "100000000000001000";

when ReadBlock1MinMax_011 =>
PE_MemStrobe_n <= ’0’;
Mem_NState <= ReadBlock1MinMax_111;
PE_MemAddr_OutReg(17 downto 0) <= "100000000000001001";

when ReadBlock1MinMax_111 =>
PE_MemStrobe_n <= ’0’;
Mem_NState <= ReadBlock2MinMax_111;
PE_MemAddr_OutReg(17 downto 0) <= "100000000000001010";

when ReadBlock2MinMax_111 =>
PE_MemStrobe_n <= ’0’;
Mem_NState <= ReadBlock3MinMax_111;
PE_MemAddr_OutReg(17 downto 0) <= "100000000000001011";

when ReadBlock3MinMax_111 =>
PE_MemStrobe_n <= ’0’;
Mem_NState <= ReadBlock4MinMax_111;
PE_MemAddr_OutReg(17 downto 0) <= "100000000000000101";

when ReadBlock4MinMax_111 =>
PE_MemStrobe_n <= ’0’;
Mem_NState <= ReadBlock5MinMax_111;
PE_MemAddr_OutReg(17 downto 0) <= "100000000000000110";

when ReadBlock5MinMax_111 =>
PE_MemStrobe_n <= ’0’;
Mem_NState <= ReadBlock6MinMax_110;
PE_MemAddr_OutReg(17 downto 0) <= "100000000000000111";

when ReadBlock6MinMax_110 =>
Mem_NState <= ReadBlock7MinMax_100;

when ReadBlock7MinMax_100 =>
Mem_NState <= ReadBlockData_001;

when ReadBlockData_001 =>
PE_MemStrobe_n <= ’0’;
Mem_NState <= ReadBlockData_010;
PE_MemAddr_OutReg(17) <= ’0’;
PE_MemAddr_OutReg(16 downto 8) <= eReadCntrROW;
PE_MemAddr_OutReg(7 downto 0) <= eReadCntrCOL;

when ReadBlockData_010 =>
Mem_NState <= ReadBlockData_100;
PE_MemWriteSel_n <= ’0’; -- for writing
SFTRen <= ((ladj(3) or ladj(0)) and (not(RLErunning2) or RLEspellEnd2));
PE_MemStrobe_n <= not(SFTRoutEn);
PE_MemData_OutReg(31 downto 0) <= SFTRout;
PE_MemAddr_OutReg(17) <= ’1’;
PE_MemAddr_OutReg(16 downto 0) <= WriteCntr;

when ReadBlockData_100 =>
Mem_NState <= WriteData;
QUANTen <= ’1’;

when WriteData =>
PE_MemWriteSel_n <= ’0’; -- for writing

 xxxix

PE_MemStrobe_n <= not(SFTRoutEn);
QUANTen <= ’1’;
SFTRen <= ((ladj(3) or ladj(0)) and (not(RLErunning2) or RLEspellEnd2));
if(nStages /= nStages1) then

RLEflush <= ’1’;
end if;

PE_MemAddr_OutReg(17) <= ’1’;
PE_MemAddr_OutReg(16 downto 0) <= WriteCntr;

if ((ladj(6) = ’0’) and (ladj(0) = ’0’)) then
Mem_NState <= WriteDataCount;

else
Mem_NState <= ReadBlockData_001;

end if;
PE_MemData_OutReg(31 downto 0) <= SFTRout;

when WriteDataCount =>
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= WriteBlock12;
PE_MemData_OutReg(31 downto 17) <= (others => ’0’);
PE_MemData_OutReg(16 downto 0) <= WriteCntr;
PE_MemAddr_OutReg(17 downto 0) <= "000000000000000000";

when WriteBlock12 =>
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= WriteBlock34;
PE_MemData_OutReg(31 downto 16) <= RLE_Count1;
PE_MemData_OutReg(15 downto 0) <= RLE_Count2;
PE_MemAddr_OutReg(17 downto 0) <= "000000000000000001";

when WriteBlock34 =>
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= WriteBlock56;
PE_MemData_OutReg(31 downto 16) <= RLE_Count3;
PE_MemData_OutReg(15 downto 0) <= RLE_Count4;
PE_MemAddr_OutReg(17 downto 0) <= "000000000000000010";

when WriteBlock56 =>
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= WriteBlock7;
PE_MemData_OutReg(31 downto 16) <= RLE_Count5;
PE_MemData_OutReg(15 downto 0) <= RLE_Count6;
PE_MemAddr_OutReg(17 downto 0) <= "000000000000000011";

when WriteBlock7 =>
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= MemInterrupt;
PE_MemData_OutReg(31 downto 16) <= "0000000000000000";
PE_MemData_OutReg(15 downto 0) <= RLE_Count7;
PE_MemAddr_OutReg(17 downto 0) <= "000000000000000100";

when MemInterrupt =>
PE_MemBusReq_n <= ’1’; -- Give up bus
PE_InterruptReq_n <= ’0’; -- Interrupt host
if(PE_InterruptAck_n = ’0’) then

Mem_NState <= MemDone;
else

Mem_NState <= MemInterrupt;
end if;

 xl

when MemDone =>
PE_MemBusReq_n <= ’1’; -- Give up bus, host program
Mem_NState <= MemDone; -- to READ memory now...

end case;

end process mem_state;

end Memory_Access;

Bibliography

[BRIAN] Brian Schoner, John Villasenor, Steve Molloy and, Rajeev Jain,
Techniques or FPGA Implementation of Video Compression Systems,
ACM/SIGBA

 xli

International Symposium on Field-Programmable Gate Arrays, 1995.
CALDERBANK] R. Calderbank and I. Daubechies and W. Sweldens and B.L.
Yeo, Losless Image Compression using Integer to Integer Wavelet Transforms,
International Conference on Image Processing (ICIP), Vol. I, 1997.

[COHEN] A. Cohen, I. Daubechies, J. Feauveau, Biorthogonal Bases of
Compactly Supported Wavelets, Communications of Pure Applied Math, vol 45,
1992.

[GEOFF] Geoff Davis, Wavelet Image Compression Construction Kit Version 0.3
(1/29/97), http://www.cs.dartmouth.edu/ gdavis/wavelet/wavelet.html.

[SHA] Sarin Mathen, Secure Hashing Implementation on FPGA, ITTC Technical
Report.

[STRANG] Gilbert Strang,Wavelets and Dialation Equations: A Brief
Introduction,SIAM Review, vol 31, no. 4, December 1989, pp. 614-627.

[WILDFORCE] Annapolis Micro Systems Inc., Wildforce Reference Mannual,
1999, revision 3.4.

[XC4000] Xilinx 4000 series FPGAs, The Programmable Logic Data Book, 1996.

