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ABSTRACT 
In this thesis, analysis and synthesis of various Wavelet Transform [1,7,10] techniques 
with and without lifting scheme [15] has been studied and implemented. Further the 
implementation and analysis of performance of a “Discrete Wavelet Transform based 
embedded image codec” in MATLAB has been presented. This codec performs 
compression and decompression of still gray images in an efficient manner. The image 
codec consists of two major parts .The first one is encoder, which performs compression 
by applying Wavelet Transform [1,7,10] on image followed by quantization and 
encoding. Another part is decoder, which decompresses the image, and reconstructs it by 
de-quantization, decoding and Inverse wavelet transform.  Main data loss occurs during 
quantization and encoding phase, hence for efficient quantization and encoding a SPIHT 
(Set Partitioning in Hierarchical Trees) coder [3] based on progressive transmission and 
embedded coding is implemented. The performance of the designed image codec is 
evaluated for different wavelets filters [6] at different bit rate. The coding gain of SPIHT 
coder in terms of distortion measures MSE and PSNR over different compression ratios 
i.e. bit rate is evaluated and an analysis is made. Further the effect on performance of the 
image codec is also analyzed for different wavelet filters at different levels of 
decomposition. 

Keywords: Wavelets, DWT, lifting scheme, filters, SPIHT, bit rate, 
PSNR, MSE, sub-band coding. 
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Chapter 1 

Introduction 
1.1 Background: 
Digital Signal Processing and in particular Image Processing has been studied for many 
years. However only the recent advancements in computing technology have made it 
possible to use Image Processing in day-to-day applications. The increasing use of 
images raises new challenges and user expects the images to be transmitted in a minimum 
of time and to take up as little storage as possible. These requirements call for efficient 
Image Compression algorithms. The user wants this compression and decompression 
process to be very efficient and accurate. However, the degree of compression and the 
amount of data-loss are of much concern which indicates the need for a method 
combining a high compression ratio with a low (even zero) amount of data loss. For this 
purpose Wavelets can be used. Wavelets are mathematical functions that satisfy certain 
properties and can be used to transform one function representation in to another. By 
choosing an appropriate wavelet transform for a particular problem can provide a high 
compression ratio with no data loss . Wavelet Transform[1,7,10] have Applications to 
image compression as well as a variety of other applications. 

Methods for digital image compression have been the subject of much study over the past 
decade. Advances in Wavelet Transform [1,7,10]s and quantization methods have 
produced algorithms capable of surpassing the existing image compression standards like 
the Joint Photographic Experts Group (JPEG) algorithm. For best performance in image 
compression, wavelet transforms require filters that combine a number of desirable 
properties, such as orthogonality and symmetry. Since, practical data sequences or 
images normally contain a substantial amount of redundancy in form of smoothness of 
the signal or in other words correlation between the neighboring signal values. A data 
sequence, which embeds redundancy, can be presented more compactly if the redundancy 
is removed by means of a suitable transform. An appropriate transform should match the 
statistical characteristic of the data. Applying the transform on the data results in less 
correlated transform coefficients, which can be encoded with fewer bits. A popular 
transform that has been used for years for compression of digital still images and image 
sequences, is the Discrete Cosine Transform (DCT). The DCT transform uses cosine 
functions of different frequencies for analysis and decorrelation of data. In the case of 
still images, after transforming the image from spatial domain to transform domain, the 
transform domain coefficients are quantized (a lossy step) and subsequently entropy 
encoded. Another transform that has received a great amount of attention in the last 
decade, is the Wavelet Transform. Wavelets are mathematical functions that satisfy a 
certain requirement (for instance a zero mean), and are used to represent data or other 
functions.  

In Wavelet Transform, dilations and translations of a mother wavelet are used to perform 
a spatial/frequency analysis on the input data. For spatial analysis, contracted versions of 
the mother wavelets are used. These contracted versions can be compared with high 
frequency basis functions in the Fourier based transforms. The relatively small support of 
the contracted wavelets makes them ideal for extracting local information like positioning 
discontinuities, edges and spikes in the data sequence, which makes them suitable for 
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spatial analysis. Dilated versions of the mother wavelet, on the other hand, have relatively 
large supports (the length of the dilated mother wavelet). The larger support extracts 
information about the frequency behavior of data. Varying the dilation and translation of 
the mother wavelet, therefore, produces a customizable time/frequency analysis of the 
input signal. The Wavelet Transform[1,7,10] uses overlapping functions of variable size 
for analysis. The overlapping nature of the transform alleviates the blocking artifacts, as 
each input sample contributes to several samples of the output. The variable size of the 
basis functions, in addition, leads to superior energy compaction and good perceptual 
quality of the decompressed image. The latter characteristic, besides, means a more 
graceful degradation of the decoded signal compared with the DCT, as the encoding bit 
budget decreases. The DCT based JPEG algorithm yields good results for compression 
ratios till 10:1. As the compression ratio increases, coarse quantization of the coefficients 
causes blocking effects in the decompressed image. When compression ratio reaches 
24:1, the decreased bit budget only allows the DC coefficients, which are the average of 
the pixels of an 8x8 block, to be encoded. Consequently, the input image is approximated 
by a series of 8x8 blocks of local averages, which is visually very annoying. For Wavelet 
Transform followed by Embedded Zero Tree encoding algorithm e.g. Set Partitioning in 
Hierarchical Trees (SPIHT), in contrast, much higher compressions ratios has been 
achieved, while still yielding a reconstructed image with an acceptable quality.  

1.2 Objective:  
The purpose of this thesis is to investigate and study the analysis and design of various 
Discrete Wavelet Transforms  with and without the use of lifting techniques and its 
application in the design and MATLAB implementation of an efficient embedded Image 
Codec based on SPIHT.The  codec, presented in this thesis, performs compression and 
decompression of still images in an efficient manner. The image codec consists of two 
major parts –one encoder that performs compression by applying Wavelet Transform 
[1,7,10] on image (with and without lifting scheme) followed by quantization and 
encoding, and another part is decoder, which decompresses the image and reconstruct it 
by de-quantization, Inverse. Since, main data loss occurs during quantization phase and 
encoding phase, hence for efficient quantization and encoding a SPIHT (Set Partitioning 
in Hierarchical Trees) coder for progressive transmission is studied and implemented. 
The performance of the designed image codec is evaluated and analyzed for different 
wavelets families (e.g. Haar, Daubechies, Biortogonal, Symlets) for different levels of 
decomposition at different compression ratios. Further, the performance of the image 
codec is also analyzed using lifting techniques for bi-orthogonal CDF(9,7) [9]filter.  

1.3 Organization of thesis 
The thesis is organized as follows: 

• Chapter 2 performs a study on theoretical background, briefly introducing 
the image coding terminologies, data compression,  various transform 
techniques, Sub-band coding, performance metrics etc.. 

• Chapter 3 continues with the introduction of wavelet transforms, its 
properties and advantages, Analysis and synthesis of various Discrete 
Wavelet Transform Techniques 

• Chapter 4 explains the concepts of wavelets analysis using lifting scheme  
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• Chapter 5 explains the SPIHT method for quantization and coding of 
wavelet coefficients. 

• Chapter 6 explains the Design and Implementation of Discrete Wavelet 
Transform based Embedded Image Codec in MATLAB 

• Chapter 7: Results, Performance Evaluation and Conclusion  
This chapter explains Performance evaluation and presents the results of the 
series of simulations performed on different images, different filters, different 
decomposition levels at different compression ratios (bit rate). 
• Future Work 
• References 
• Appendices 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 



 11

 
Chapter 2 

Theoretical Background 
This chapter provides theoretical background information, briefly introducing the image 
coding terminologies, data compression, various transform techniques, performance 
measurement metrics and Sub-band coding. 
 
2.1 Image coding terminologies 
 
2.1.1 Data compression (Lossy and Loss-less coding) 

Digital image data compression is the art or science of reducing the number of 
bits needed to represent a given image. The purpose of compression is to facilitate the 
storage and transmission of data. The reduced representation is typically achieved using a 
sequence of transformations of data, which are either exactly or approximately invertible. 
In image coding and data compression there are two main areas, loss-less compression 
and lossy compression. In loss-less compression redundancy in the data representation is 
targeted. The key object in loss-less coding is an efficient exact representation of the data. 
Loss-less coding is also referred to as entropy coding. 

In lossy coding one accepts that the data is distorted, that is, the data reconstructed from 
the code is not exactly the data that was coded. It is then possible to compress data even 
more than in loss less coding. The price to pay is of course that information is lost in the 
coding process. The information loss in lossy coding comes from quantization of the 
data. Quantization can be described as the process of sorting the data into different bins 
and representing each bin with a value. The value selected to represent a bin is called the 
reconstruction value. Every item in a bin has the same reconstruction value, which leads 
to information loss (unless the quntization is so fine that every item gets its own bin). 

A) Loss-less coding techniques: 
Loss-less coding guaranties that the decompressed image is absolutely identical to the 
image before compression. This is an important requirement for some application 
domains, e.g. medial imaging, where not only high quality is in demand, but unaltered 
archiving is a legal requirement. Loss-less techniques can also used for the compression 
of other data types where loss of information is not acceptable, e.g. text documents and 
program executables. Some compression methods can be made more effective by adding 
a 1D or 2D delta coding to the process of compression. These deltas make more 
effectively use of run length encoding, have (statistically) higher maxima in code tables 
(leading to better results in Huffman and general entropy coding), and build greater equal 
value areas usable for area coding. Some of these methods can easily be modified to be 
lossy. Lossy element fits perfectly into 1D/2D run length search. Also, logarithmic 
quantisation may be inserted to provide better or more effective results.  

a) Run length encoding: Run length encoding is a very simple method for compression 
of sequential data. It takes advantage of the fact that, in many data streams, consecutive 
single tokens are often identical. Run length encoding checks the stream for this fact and 
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inserts a special token each time a chain of more than two equal input tokens are found. 
This special input advises the decoder to insert the  token n times into his output stream. 

b) Huffman encoding: This algorithm, developed by D.A. Huffman, is based on the fact 
that in an input stream certain tokens occur more often than others. Based on this 
knowledge, the algorithm builds up a weighted binary tree according to their rate of 
occurrence. Each element of this tree is assigned a new code word, whereat the length of 
the code word is determined by its position in the tree. Therefore, the token, which is 
most frequent and becomes the root of the tree, is assigned the shortest code. Each less 
common element is assigned a longer code word. The least frequent element is assigned a 
code word, which may have become twice as long as the input token. The compression 
ratio achieved by Huffman encoding uncorrelated data becomes something like 1:2. On 
slightly correlated data, as on images, the compression rate may become much higher, the 
absolute maximum being defined by the size of a single input token and the size of the 
shortest possible output token. 

c) LZW entropy coding: The typical implementation of an entropy coder follows J. 
Ziv/A. Lempel’s approach. Nowadays, there is a wide range of so-called modified 
Lempel/Ziv coding. These algorithms all have a common way of working. The coder and 
the decoder both build up an equivalent dictionary of meta -symbols, each of which 
represents a whole sequence of input tokens. If a sequence is repeated after a symbol was 
found for it, then only the symbol becomes part of the coded data and the sequence of 
tokens referenced by the symbol becomes part of the decoded data later. As the 
dictionary is build up based on the data, it is not necessary to put it into the coded data, as 
it is with the tables in a Huffman coder. This method becomes very efficient even on 
virtually random data. The average compression on text and program data is about 1:2, 
the ratio on image data comes up to 1:8 on the average GIF image. Here again, a high 
level of input noise degrades the efficiency significantly. Entropy coders are a little tricky 
to implement, as there are usually a few tables, all growing while the algorithm runs.  

B) Lossy Coding Techniques: 
In most of applications we have no need in the exact restoration of stored image. This 
fact can help to make the storage more effective, and this way we get to lossy 
compression methods. 
Components of Lossy Image Coding techniques:  

• Image Modeling (Transformation) which defines such things as the 
transformation to be applied to the image  

• Parameter Quantisation whereby the data generated by the 
transformation is quantised to reduce the amount of information  

• Encoding, where a code is generated by associating appropriate code 
words to the raw data produced by the quantiser. Each of these operations 
is in some part responsible for the compression.   

Image modeling is aimed at the exploitation of statistical characteristics of the image 
(i.e. high correlation, redundancy). Some examples are transform-coding methods, in 
which the data is represented in a different domain (for example, frequency in the case of 
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the Fourier Transform [FT], the Discrete Cosine Transform [DCT], the Kahrunen-Loewe 
Transform [KLT], and so on), where a reduced number of coefficients contain most of 
the original information. In many cases this first phase does not result in any loss of 
information. Another transform that will be used in this thesis is Discrete Wavelet 
Transform. 

Quantisation is used to reduce the amount of data used to represent the information 
within the new domain. Quantisation is in most cases not a reversible operation: 
therefore, it belongs to the so called ‘lossy’ methods.  

Encoding is usually error free. It optimizes the representation of the information 
(helping, sometimes, to further reduce the bit rate), and may introduce some error 
detection codes.  

2.1.2.Transform Coding Models  
i) A General Transform Coding System 
A) Encoder 
 

Input Image 

NxN            Compressed Image 

 
 
 
B) Decoder 
 

Decompressed 
Image 

Compressed 
Image 
 
 

Figure 2.1 

A general transform coding scheme involves subdividing an NxN image into smaller nxn 
blocks and performing a unitary transform on each sub image. A unitary transform is a 
reversible linear transform whose kernel describes a set of complete, orthonormal discrete 
basic functions. The goal of the transform is to de-correlate the original signal, and this 
de-correlation generally results in the signal energy being redistributed among only a 
small set of transform coefficients. In this way, many coefficients may be discarded after 
quantisation and prior to encoding. Also, visually loss-less compression can often be 
achieved by incorporating the HVS (Human Visual System) contrast sensitivity function 
in the quantisation of the coefficients. Transform coding can be generalized into 
following stages:  

• Image Subdivision  

Construct 
   nxn sub- 
images  

 
Forward 
Transform 
DCT/FFT 

 
Quantizer 

Symbol 
(entropy) 
encoder 
 

Symbol 
Decoder 
 

Inverse  
Transform 
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   nxn sub-
images 
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• Image Transformation  
• Coefficient Quantisation  

Quantisation can be performed in several ways. Most classical approaches use ‘zonal 
coding’, consisting in the scalar quantisation of the coefficients belonging to a predefined 
area (with a fixed bit allocation), and ‘threshold coding’, consisting in the choice of the 
coefficients of each block characterized by an absolute value exceeding a predefined 
threshold. Another possibility that leads to higher compression factors is to apply a vector 
quantisation scheme to the transformed coefficients. The same type of encoding is used 
for each coding method. In most cases a classical Huffman code can be used successfully. 
The JPEG and MPEG standards are examples of standards based on transform coding 

ii) Block Diagram of a Wavelet Transform based Embedded Image Codec 
 

 
Figure 2.2(a) 

        
     Wavelet 

             Coefficients 

Encoded bit                                     
stream 

 
 

    Encoder 
 
 
 
 Decoded 
 bit-stream 

 
 
 
    Decoder 

Figure 2.2 (b) 
The primary goal of any image compression technique is to reduce the number of bits 
needed to represent the image with little perceptible distortion. Sub-band coding  [1,7,12] 
using wavelets is one of the best performing techniques among different transform based 
image compression techniques. Figure 2.2 (a) shows the block diagram of a wavelet 
based image compression system. The three blocks (DWT, quantizer and entropy coder) 
compress the image data whereas the last two blocks (entropy decoder, inverse discrete 
wavelet transform (IDWT)) reconstruct the image from the compressed data. The DWT 
performs an octave frequency sub-band decomposition of the image .In its sub-band 
representation, an image is more compactly represented since most of its energy is 
concentrated in relatively few DWT coefficients. The quantizer then performs 

Input 
image 
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Wavelet 
Transform) 
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quantization by representing the transform coefficients with a limited number of bits. 
Quantization represents lossy compression. Some image information is irretrievably lost. 
A quantizer in a DWT-based coder exploits the spatial correlation in a wavelet-based, 
hierarchical scale-space decomposition. The entropy coder follows the quantization stage 
in a wavelet based image compression system. Entropy coding is lossless; it removes the 
redundancy from the compressed bit-stream. However, the typical performance 
improvement of 0.4-0.6 dB achieved by entropy coding is accompanied by higher 
computational complexity. The channel is the stored or transmitted compressed bit 
stream. We consider the channel to be noiseless and the received DWT coefficients are 
free from errors. The synthesis stage reconstructs the image from the compressed data. 
The entropy decoder and IDWT invert the operations performed by the entropy encoder 
and DWT, respectively. Figure 2.2(b) shows the block diagram of a wavelet based image 
compression system used in this thesis. In this thesis entropy coder ( encoder and 
decoder) is not used but in place of quantizer and entropy coder an efficient and fast 
SPIHT [3] ( Set Partitioning in Hierarchical Trees) coder based on progressive 
transmission which uses zero-tree coding approach is used which perform the task of 
quantization and coding the wavelet coefficients. 
 
2.1.3 Various Transform Techniques: 
The choice of a particular transform in a given application depends on the amount of 
reconstruction error that can be tolerated and the computational resources available. 
Compression is achieved during the quantization of the transformed coefficients not 
during the transformation step. Image modeling or transformation is aimed at the 
exploitation of statistical characteristics of the image (i.e. high correlation, redundancy). 

Some transform techniques are: 

Fourier Transform (FFT, DFT, WFT) 
Discrete Cosine Transform (DCT) 
Walsh-Hadamand Transform (WHT) 
Wavelet Transform (CWT, DWT, FWT) 
For Fourier Transform and DCT basis images are fixed i.e. they are input independent 
and sinusoidal (cosines and sines) in nature. Provides frequency view i.e. provide 
frequency information and temporal information is lost in transformation process. 

WHT is non-sinusoidal in nature and easy to implement.(Frequency domain) 

Wavelet Transforms provides time-frequency view i.e. provides both frequency as well 
as temporal (localization) information. Wavelets give time-scale viewpoint and exhibits 
multiresolution characteristics.Fourier is good for periodic or stationary signals but 
Wavelet is good for transients i.e. for non-stationary data. Localization property allows 
wavelets to give efficient representation of transients. 

A) Fourier Transform 
Since the Fourier Transform is widely used in analyzing and interpreting signals and 
images, I will first have a survey on it prior to going further to the Wavelet Transform. 
The tool which converts a spatial (real space) description of an image into one in terms of 
its frequency components is called the Fourier transform. Through Fourier Transform, 
it is possible to compose a signal by superposing a series of sine and cosine functions.  
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These sine and cosine functions are known as basis functions (Figure 2.2.1)  and are 
mutually orthogonal. The transform decomposes the signal into the basis functions, 
which means that it determines the contribution of each basis function in the structure of 
the original signal. These individual contributions are called the Fourier coefficients. 
Reconstruction of the original signal from its Fourier coefficients is accomplished by 
multiplying each basis function with its corresponding coefficient and adding them up 
together, i.e. a linear superposition of the basis functions. 

Fourier Analysis and Orthogonality  
Fourier analysis is one of the most widely used tools in spectral analysis. The basis for 
this analysis is the Fourier Integral, which computes the amplitude spectral density F(ω) 
of a time-domain signal f(t).  

 
 

 
F(ω)  is actually complex, so one obtains the amplitude spectral density A(f) and phase 
spectral density φ(f) as a function of frequency. Another way of looking at the Fourier 
transform is that it answers the question: what continuous distribution of sine waves  
A (f)cos(jωt+ φ(f)) when added together on a continuous basis best represents the original 
time signal? We call these distributions the amplitude and phase spectral densities (or 
spectra). Complex exponentials are popular basis functions because in many engineering 
and science problems, the relevant signals are sinusoidal in nature. It is noticed that when 
signals are not sinusoidal in nature, a wide spectrum of the basis function is needed in 
order to represent the time signal accurately. An important property of any family of 
basis functions ψ(t) is that it is orthogonal.  
The basis functions in the Fourier Transform are ψ(t) = exp(+jωt), so the Fourier 
Transform could be more generally written as  

 

 
where * denotes complex conjugate. The test for orthogonality is done as follows  

 

 
For complex exponentials, because they are infinite in duration, one end up with k=∞, 
when m=n so it is necessary to define the orthogonality test in a different way :  
 

 

 
 

 
For complex  exponential, this becomes: 

 

 

 
 

When the constant k=1,the function is said to be orthonormal.  
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Various types of signals can be analyzed with the Fourier Transform. If f(t) is periodic, 
then the amplitude spectral density clusters at discrete frequencies that are harmonics 
(integer multiples) of the fundamental frequency. One need to invoke Dirac Delta 
functions if the Fourier Transform is used– otherwise Fourier series coefficients can be 
computed and same result can be obtained. If f (t) is deterministic and discrete, the 
discrete time Fourier Transform (DTFT) may be used to generate a periodic frequency 
response. If f(t) is assumed to be both periodic and discrete, then the discrete Fourier 
Transform (DFT), or its fast numeric equivalent the FFT may be applied to compute the 
spectrum. If f(t) is random, then in general one will have a difficult time of computing the 
Fourier Integral of the random ‘data’. Hence treat the input as data and use an FFT, but 
the result of doing so is a random spectrum. This single random spectrum can give an 
idea of the frequency response, but in many instances it can be misleading. A better 
approach is to take the average of the random spectra. This leads to the formulation of 
power spectral density, which is an average over the FFT magnitude spectrum squared.  
In certain signals, both random and deterministic, we are interested in the spectrum as a 
function of time in the signal. This suggests finding the spectrum over a limited time bin, 
moving the bin (sometimes with overlap, sometimes without), re-computing the 
spectrum, and so on. This method is known as the short-time Fourier Transform (STFT), 
or the Gabor Transform.  
 
Discrete Fourier Transform (DFT) is an estimation of the Fourier Transform, which 
uses a finite number of sample points of the original signal to estimate the Fourier 
Transform of it. The order of computation cost for the DFT is in order of O(n2 ),where n 
is the length of the signal. 

Fast Fourier Transform (FFT) is an efficient implementation of the Discrete Fourier 
Transform, which can be applied to the signal if the samples are uniformly spaced. FFT 
reduces the computation complexity to the order of  O(nlogn) by taking advantage of self 
similarity properties of the DFT. 

If the input is a non-periodic signal, the superposition of the periodic basis functions 
does not accurately represent the signal.  

One way to overcome this problem is to extend the signal at both ends to make it 
periodic. 

Another solution is to use Windowed Fourier Transform (WFT). In this method the 
signal is multiplied with a window function ( Figure 2.2.2) prior to applying the Fourier 
transform. The window function localizes the signal in time by putting the emphasis in 
the middle of the window and attenuating the signal to zero towards both ends. 

 

 
 
Figure2.2.1 A Set of Fourier basis functions 
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A window function    A windowed Signal 
Figure2.2.2 
 
 
B) Discrete Cosine Transform (DCT) 
The discrete cosine transform (DCT) helps separate the image into parts (or spectral sub-
bands) of differing importance (with respect to the image’s visual quality). The DCT is 
similar to the discrete Fourier transform: it transforms a signal or image from the spatial 
domain to the frequency domain.  
With an input image, A, the coefficients for the output “image,” B, are:  
 
 
 
 
 
The input image is N2 pixels wide by N1 pixels high; A(i,j) is the intensity of the pixel in 
row i and column j; B(k1,k2) is the DCT coefficient in row k1 and column k2 of the DCT 
matrix. All DCT multiplications are real. This lowers the number of required 
multiplications, as compared to the discrete Fourier transform. The DCT input is an 8 by 
8 array of integers. This array contains each pixel’s gray scale level; 8 bit pixels have 
levels from 0 to 255. The output array of DCT coefficients contains integers; these can 
range from -1024 to 1023. For most images, much of the signal energy lies at low 
frequencies; these appear in the upper left corner of the DCT. The lower right values 
represent higher frequencies, and are often small - small enough to be neglected with 
little visible distortion. It is computationally easier to implement and more efficient to 
regard the DCT as a set of basis functions which given a known input array size (8 x 8) 
can be pre-computed and stored. This involves simply computing values for a 
convolution mask (8 x8 window) that get applied (sum values x pixel the window overlap 
with image apply window across all rows/columns of image). The values as simply 
calculated from the DCT formula. The 64 (8 x 8) DCT basis functions are there. Most 
software implementations use fixed point arithmetic. Some fast implementations 
approximate coefficients so all multiplies are shifts and adds. 

C) DCT Vs Fourier: 

• DCT is similar to the Fast Fourier Transform (FFT), but can approximate lines 
well with fewer coefficients . 

• DCT (Discrete Cosine Transform) is actually a cut-down version of the FFT 
i.e. it is only the real part of FFT . 

• DCT Computationally simpler than FFT and much effective for Multimedia 
Compression. 
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• DCT is associated with very less MSE value in comparison to others. 
• DCT has best information packing ability. 
• DCT minimizes the block like appearance (blocking articrafts),that results 

when the boundaries between the sub-images become visible. But DFT gives 
rise to boundary discontinuities.  

D) Wavelet Transform: 

Wavelet means ‘small wave’. So wavelet analysis is about analyzing signal with short 
duration finite energy functions. They transform the signal under investigation in to 
another representation which presents the signal in more useful form. This transformation 
of the signal is called Wavelet Transform [1,7,10] i.e. Wavelet Transforms are based on 
small waves, called wavelets, of varying frequency and limited duration. Unlike the 
Fourier transform, we have a variety of wavelets that are used for signal analysis. Choice 
of a particular wavelet depends on the type of application in hand. Wavelet Transforms 
provides time-frequency view i.e. provides both frequency as well as temporal 
(localization) information and exhibits multiresolution characteristics. Fourier is good for 
periodic or stationary signals and Wavelet is good for transients. Localization property 
allows wavelets to give efficient representation of transients. In Wavelet transforms a 
signal can be converted and manipulated while keeping resolution across the entire signal 
and still based in time i.e. Wavelets have special ability to examine signals 
simultaneously in both time and frequency. Wavelets are mathematical functions that 
satisfy certain criteria, like a zero mean, and are used for analyzing and representing 
signals or other functions. A set of dilations and Translations of a chosen mother wavelet 
is used for the spatial/frequency analysis of an input signal. The Wavelet Transform uses 
overlapping functions of variable size for analysis. The overlapping nature of the 
transform alleviates the blocking artifacts, as each input sample contributes to several 
samples of the output. The variable size of the basis functions, in addition, leads to 
superior energy compaction and good perceptual quality of the decompressed image. 
Wavelets Transform is based on the concept of sub-band coding  [1,7,12].  
The current applications of wavelet include statistical signal processing, Image 
processing, climate analysis, financial time series analysis, heart monitoring, seismic 
signal de- noising, de-noising of astronomical images, audio and video compression, 
compression of medical image stacks, finger print analysis, fast solution of partial 
differential equations, computer graphics and so on. 
The detailed discussions about wavelet Analysis and Synthesis is presented in next 
chapter. 
E) Wavelets Vs Fourier and DCT: 

• Fourier and DCT transforms converts a signal from time Vs amplitude to 
frequency Vs amplitude i.e. provides only frequency information and temporal 
information is lost during transformation process. But Wavelet transforms 
provides both frequency as well as temporal ( localization ) information. 

• In Fourier and DCT basis functions are sinusoids (sine and cosine) and cosines 
respectively but in Wavelet Transform  basis functions are various wavelets. 
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• Since Wavelet Transforms are both computationally efficient and inherently local 
(i.e. there basis functions are limited in duration),subdivision of original image 
before applying transformation is not required as required in DCT and others. 

• The removal of subdivision step in Wavelet Transform eliminates the blocking 
articraft but FFT suffers from it. This property also characterizes DCT-based 
approximation, at higher compression ratios. 

• Wavelets provide unconditional basis for large signal class. Wavelet coefficients 
drops sharply hence good for compression, de-noising, detection and recognition. 

• Fourier is good for periodic or stationary signals. Wavelet is good for transients. 
Localization property allows wavelets to give efficient representation of 
transients. 

• Wavelets have local description and separation of signal characteristics. Fourier 
puts localization information in the phase in a complicated way. STFT cannot 
give localization and orthogonality. 

• Wavelets can be adjusted or adapted to application. 

• Computation of wavelet coefficients is well suited to computer. No derivatives of 
integrals needed as required in Fourier and DCT and hence turn out to be a digital 
filter bank. 

 
2.1.4 Performance measurement metrics: 

MSE (Mean Squared Error) 
If lossy compression is used it is convenient to be able to quantify the difference, or 
distortion, between the original signal (image) and the reconstructed image. A popular 
choice for measuring distortion is the Mean Squared Error, or MSE. In the MSE 
measurement the total squared difference between the original signal and the 
reconstructed one is averaged over the entire signal. It is calculated as: 
 

 

 

 Where MxN the size of image with M rows and N columns. 
OI (I, J)=coefficients of original image 
RI (I, J)=coefficients of Reconstructed Image 
 
RMSE (Root Mean Squared Error):It is another method for distortion measurement. 

 
 
 
PSNR (Signal to Noise Ratio): The PSNR relates the MSE to the maximum amplitude 
of the original signal, this makes the measurement independent of the range of the data. 
The PSNR is usually measured in decibel as: 

 
 

               MSE=(1/M*N)ΣI=0:M-1ΣJ=0:N-1 [OI (I, J)-RI (I, J)] 2 

                                 RMSE=SQRT (MSE) 

                      PSNR=10*log10 (Q*Q/MSE) [dB] 
Or,                PSNR=20*log10 (Q/RMSE)   [dB] 
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Where Q=2n-1=Maximum possible peak-to-peak amplitude for an 8-bit Gray Scale 
Image or 24-bit color RGB Image 

For Gray Image: n=8 bits/pixel, Q=255 
For RGB Image: n=24 bits/pixel, Q=224-1 
 
Bit Rate: No of bits used to represent per pixel in the image 
For Gray Image: Actual bpp (bits per pixel)=8 bits 
For RGB Image: Actual bpp (bits per pixel =24 bits/pixel 
This bit rate may be varied from some minimum value to the mentioned actual bit rate to 
achieve different compression ratios. 

Compression ratio (CR): 
 
 
 

SNR (Signal to Noise Ratio): 
SNR=10*log10[(Sum of energies of all pixels of Original   image)/(Sum of 
energies of Noise signal)] 

 
 
 
 
2.1.5 The signal energy, orthogonality and orthonormality 
In this thesis images will be viewed as special cases of two-dimensional signals where 
pixel values represent signal samples. If there is a referral to “the signal” it should be 
clear from the context that it is an image.  

The signal energy (E) is defined as: 

 
 
 
 

Orthogonality between signals is defined as- 

 
 
 
 
Orthonormality of two signals X and Y is defined  by following three conditions as 
follows: 

 

                    CR=8/Bit Rate (for Gray Image) 
                    CR=24/Bit Rate (for RGB Color Image) 

SNR=10*log10 [{ΣI=0:M-1ΣJ=0:N-1 [OI (I, J)]2 }/{ΣI=0:M-1ΣJ=0:N-1 [OI(I,J)-RI(I,J)]2  }][dB] 
 

                                      E= [ΣI=0:M-1 [X (I)]2 ]    (1-D Signal) 
E=[ΣI=0:M-1ΣJ=0:N-1 [X (I, J)]2 ] (2D Signal) 

X ⊥ Y= Σ (XiYi  )=0 (1D) 
Or in function space ,              0∫TX(t).Y(t) dt=0

Σ (X.Y)=0 and Σ (X.X)=0, Σ (Y.Y)=0    (1D) 
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2.2 Multiresolution Analysis: 
Multiresolution theory incorporates and unifies techniques from a variety of disciplines, 
including sub-band coding  [1,7,12] from signal processing, quadrature mirror filtering 
from digital speech recognition, and pyramidical image processing. It is concerned with 
the representations and analysis of signals e.g. images at more than one resolution. The 
advantage of this approach is that the features that might go undetected at one resolution 
may be easy to spot at another. A function or signal can be viewed as composed of a 
smooth background and fluctuations or details on top of it. The distinction between the 
smooth part and the details is determined by the resolution, that is, by the scale below 
which the details of a signal cannot be discerned. At a given resolution, a signal is 
approximated by ignoring all fluctuations below that scale. We can imagine progressively 
increasing the resolution; at each stage of the increase in resolution finer details are added 
to the coarser description, providing a successively better approximation to the signal. 
Eventually when the resolution goes to infinity, we recover the exact signal.  
The above intuitive description can be made more precise as follows. We label the 
resolution level by an integer . The scale associated with the level is set to, say, 
unity and that with the level is . Let us consider a function . At resolution level 
it is approximated by . At the next level of resolution , the details at that level 
denoted by are included and we have the approximation to at the new resolution 
level, . The original function is recovered when we let the resolution 
go to infinity 

 

The word multiresolution refers to the simultaneous presence of different resolutions. The 
above equation represents one way of decomposing the function into a smooth part 
plus details. Similarly, we can view the space of functions that are square integrable, 
, as composed of a sequence of subspaces and , such that the approximation of at 
resolution , , is in and the details are in . This brings us to the subject of this 
section, multiresolution analysis.  

2.2.1 Motivation for multiresolution analysis in Image processing:When we look at 
images (mathematically, images are 2-D arrays of intensity values with locally varying 
statistics that result from different combinations of abrupt features like edges and 
contrasting homogeneous regions), generally we see connected regions of similar texture 
and gray level that combine to form the objects. If the objects are small in size or low in 
contrast, they are normally examined at high resolutions; if they are large in size or high 
in contrast, a coarse view that all is required. If both small and large objects are present 
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simultaneously, it can be advantageous to study them at several resolutions. In this thesis 
,wavelet-based transformations are examined from a multiresolution point of view that 
uses sub-band coding approach. 

2.2.2 Sub-band coding approach to multiresolution analysis: This is a very good 
approach for wavelet based multiresolution analysis. This concept is used in this thesis 
for the design of an efficient image codec. 

A.1 Objective of sub-band coding 
Sub-band coding  [1,7,12] is a coding strategy that tries to isolate different characteristics 
of a signal in a way that collects the signal energy into few components. This is referred 
to as energy compaction. Energy compaction is desirable because it is easier to efficiently 
code these components than the signal itself. 

A.2 Coding scheme 
The sub-band coding  [1,7,12] scheme tries to achieve energy compaction by filtering a 
signal with filters of different characteristics. By choosing two filters that are orthogonal 
to each other and decimating the output of these filters a new two-component 
representation is achieved (Figure A2.1). In this representation, most of the signal energy 
is located in either a or d. 

 

 
Figure B2.1: Splitting of the signal x into two parts. 

 
The filters h and g are usually low-pass and high-pass filters. The two components a and 
d will then be a low-pass and a high-pass version of the signal x. Images have a typical 
low-pass character, hence we would expect a to contain most of the energy if x is an 
image. Besides trying to achieve energy compaction the filters h and g should be chosen 
so that perfect reconstruction of x from a and d is possible. How to choose h and g will 
be described later. In Figure A2.1 a two-component representation of x is achieved. It 
might be desirable to divide the signal into more components. This can be done by using 
several filters with different characteristics. A more common choice however is to 
cascade the structure in Figure A2.1.  
Major strategies for cascading the filters.  

• The hierarchical structure  
• The flat structure.  

In the hierarchical structure the output from the low-pass filter is treated as the input to 
a new filter pair as shown in Figure A2.2. In the flat structure both the low-pass and the 
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high-pass outputs are inputs to a filter pair, this structure is shown in Figure A2.3. In both 
figures the corresponding splitting of the frequency axis is also shown.  
The process of dividing the signal into components is referred as decomposition or 
transform. 

 
 
 X 

 
 

Figure A2.2: The Hierarchical Filter Structure 
 
 
 

 
 

Figure A2.3: Flat Filter Structure 
 
A.3: 2D Transform: 
To be able to use sub-band coding  [1,7,12] for images the scheme above has to 
be adapted to two-dimensional signals. The extension of the sub-band coding 
scheme to higher dimension is straightforward. Apply the filters repeatedly to 
successive dimensions. For an NxN image we first compute N one-dimensional 
transforms corresponding to transforming each row of the image as an individual 
one-dimensional signal. This result in 2 NxM sub-images, one corresponding to 
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the low-pass filtered rows and one corresponding to the high-pass filtered rows. 
Each of these sub-images are then filtered along the columns splitting the data 
into 4 MxM sub-images (low-pass row low-pass column, low-pass row high-pass 
column, high-pass row low-pass column, high-pass row high-pass column). This 
completes one stage of the decomposition of an image. The process is shown in 
Figure A3.1 
 

 
 

Figure A3.1:One stage of a 2D decomposition or Transform 
 

Detailed discussions about Sub-band coding approach for multiresolution analysis is 
presented in chapter 3. 
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Chapter 3:  
Wavelet Analysis and Synthesis  
 
This chapter deals with Wavelet Transform [1,7,8,10] for image coding.  Following a 
brief theoretical introduction about wavelet transforms and their relation to filter banks, 
an analysis is made of the influence of several wavelet transform parameters on both the 
theoretical and subjective performances of wavelet transforms in image coding schemes.  
The application of wavelets in image coding are explained. The field of wavelet theory is 
very large, here only the general idea of wavelets relevant to image coding from sub-band 
coding  [1,7,12] multiresolution approach will be discussed.  
 
3.1 Wavelet Transform 
Wavelet analysis is  a windowing technique with variable-sized regions. Wavelet analysis 
allows the use of long time intervals where we want more precise low-frequency 
information, and shorter regions where we want high-frequency information. Here's what 
this looks like in contrast with the time-based, frequency-based, and STFT views of a 
signal. 
Wavelets are mathematical functions that satisfy certain criteria, like a zero mean, and are 
used for analyzing and representing signals or other functions. The wavelets are a family 
of functions generated from a single function by translation and dilation.  A set of 
dilations and translations ψ τ,s (t) of a chosen mother wavelet ψ (t) is used for analysis of 
a signal. The general form of these wavelets is described by 
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Where s is the scaling (dilations) factor and τ is the translation (location) factor. We can 
manipulate wavelets in two ways-the first one is translation where we change the central 
position of the wavelet along the time axis. the second way is scaling where we change 
the locations or levels. Figure 3.1-left depicts translations of a prototype (mother) wavelet 
while Figure 3.1-right shows dilations of it. 

The forward wavelet transform (Analysis Part), decomposes the input signal f (t) into 
the basic functions, i.e. it calculates the contribution of each dilated and translated version 
of the mother wavelet in the original data set. These contributions are called the wavelet 
coefficients, denoted as C τ,s  i.e. wavelet transform is defined as 
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The inverse wavelet transform (Synthesis Part) conversely, uses the computed wavelet 
coefficients and superimposes them in order to calculate the original data set. 
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Discrete Wavelet Transform 
In Discrete Wavelet Transform (DWT) the scale and translate parameters are chosen 
such that the resulting wavelet set forms an orthogonal set, i.e. the inner product of 
the individual wavelets Ψm,n    is equal to zero. To this end, dilation factors are 
chosen to be powers of 2.  A common choice for τ and s is 

 
τ =2m , s=n.2 m   where n, m εZ 

 
Which reduces equation (1) to: 
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For Discrete Wavelet Transform, the set of dilation and translation of the mother 
wavelet is defined as:                            
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Here m is the scaling factor and n is the translation factor. It is obvious that the dilation 
factor is a power of 2. Forward (DWT) and inverse transforms (IDWT) are then 
calculated using the following equations: 
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For efficient de-correlation of the data, an analysis wavelet set  Ψτ,s  should be chosen 
which matches the features of the data well. This together with (bi)orthogonality of the 
wavelet set will result in a series of sparse coefficients in the transform domain, which 
obviously will reduce the amount of bits needed to encode it. 

The purpose of obtaining this description is that it provides a representation of the signal 
f(t) in terms of both space and frequency localization . In comparison, the Fourier 
transform is excellent at providing a description of the frequency content of a signal. But 
if the signal is non-stationary the frequency characteristics vary in space, that is in 
different regions the signal f(t) may exhibit very different frequency characteristics, the 
Fourier transform does not take this into account. The wavelet transform on the other 
hand produces a representation that provides information on both the frequency 
characteristics and where these characteristics are localized in space.  

The coefficients C m,n characterizes the projection of f(t) onto the base formed by . 
For different m, .  represents different frequency characteristics, n is the translation 
of the dilated mother wavelet, therefore C m,n  represent the combined space-frequency 
characteristics of the signal. The C m,n are called wavelet coefficients. 

Practical signals are limited both in time (or space in case of images) and frequency. 
Time limited signals can be represented efficiently using a set of block functions (Dirac 
delta functions for infinitesimal small blocks). But block signals are not limited in 
frequency. Band-limited signals can be represented efficiently using a Fourier basis, but 
sines and cosines are not limited in time. Wavelets are a compromise between these 
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worlds; wavelet functions can be neatly held finite in both time and frequency domains. 
Therefore they can be used to approximate data with discontinuities or spikes or detect 
the contours of objects in images . In Wavelet Transform, temporal analysis is performed 
by applying concentrated (high frequency) versions of the mother wavelet on the input 
data, while frequency analysis is done using the dilated (low frequency) versions of the 
mother wavelet. Figure 3.1-left depicts translations of a prototype wavelet while Figure 
3.1-right shows dilations of it. 

 
Figure 3.1:Translation (left) and dilations(scaling) (right) of a prototype wavelet 

 
Figure 3.2(a):Time –Frequency plane of Discrete Wavelet Transform (left) and 

Fourier Transform 
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Figure 3.2 (b) In the time domain we have full time resolution, but no frequency 
localization or separation. In the Fourier domain we have full frequency resolution but no 
time separation. In the wavelet domain we have some time localization and some 
frequency localization. 
 
3.2 Wavelets and its relation to Sub-band coding 
The main application of wavelet theory to image coding is in the design of filters for Sub-
band coding  [1,7,12] . This comes from the possibility to realize the projection in 
equation (3) as a filter operation where the filters depend on the wavelets. The 
characteristics of the filters derived from the wavelets will be the same as the 
characteristics for the wavelets used. The properties of a sub-band coding scheme can 
then be discussed in terms of wavelet theory. 

In sub-band coding  [1,7,12], an image is decomposed in to a set of band-limited 
components, called sub-bands, which can be reassembled to reconstruct the original 
image without error. Originally developed for speech and image compression, each sub-
band is generated by band pass filtering the input. The resulting sub-bands can be down 
sampled without loss of information, as the bandwidth of the resulting sub-bands is 
smaller than that of original image. Reconstruction of original signal is accomplished by 
up-sampling, filtering and summing the individual sub-bands. The principal components 
of a two-band sub-band coding  [1] and decoding system are shown in Figure 3.3(a). 

 

 y0(n)  

 

x(t) Analysis Synthesis x’(t) 

 y1(n)  

     

 

 

Figure 3.3(a)A two-band filter bank for 1D sub-band coding and decoding 
(y0(n) is approximation part of x(n) and y1(n) is detail part of x(n)) 
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Figure 3.3(b) Spectrum splitting properties of sub-band coding and decoding 

 
Figure3.3(c) Splitting the signal spectrum with an iterated filter bank. 
 

The input to the sub-band coding  [1] system figure 3.3(a) is a 1D, band limited discrete 
time signal x(n) for n=0,1,2,3,…..;The output sequence ,x’(n) ,is formed through the 
decomposition of x(n) in to y0(n) and y1(n) via analysis filters h0(n) and h1(n), and 
subsequent recombination via synthesis filters g0(n) and g1(n).Analysis filters h0(n) and 
h1(n) are half-band digital filters whose  idealized transfer characteristics H0 and H1 are 
shown in figure 3.3(b).Filter H0 is a low pass filter (LPF) whose output is approximation 
of x(n) i.e. it passes only low frequency components and H1 is a high pass filter(HPF) 
whose output is high frequency or detail part of x(n).All filtering is performed by 
convolving each filter’s input with its impulse response-its response to a unit amplitude 
impulse function, δ(n).Here our objective is to select h0(n),h1(n),g0(n),g1(n)( or alternately 
H0,H1,G0 and G1) so that input can be reconstructed perfectly i.e. so that x’(n)=x(n). 
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The Z-Transform, a generalization of the DFT, is the ideal tool for studying discrete-time, 
sampled data systems like sub-band coding  [1] system of Figure3.3(a).The Z-Transform 
of sequence x(n) for n=0,1,2,3,…. is 

∑
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∞−

−= nznxZX )()(                                                                   (6) 

Where z is a complex variable .If  ωjez = , equation (6) becomes DFT. Basic advantage 
of using Z-Transform is that it easily handles the sampling rate changes . 

Down Sampling by a factor of 2 in the time domain corresponds to the simple Z-domain 
operation: 

[ ])()(
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1)()2()( 2/12/1 −+=⇔= zXzXzXnxnx downdown                                  (7) 

Double arrow indicates that expressions on the left and right form a Z-Transform pair. 

Up Sampling by a factor of 2 is defined as: 

for   n=0,2,4,….. 
otherwise (8) 

 

If sequence x(n) is down sampled and subsequently up sampled to yield x’(n) the 
equations (7) and (8) gives: 

 (9) 

 
Where x’(n)= [ ])('1 zXZ −   is the resulting down sampled -up sampled sequence.  

The term X(-z) in equation (9) is the Z-Transform of an aliased or modulated version of 
sequence x(n) and its inverse Z-transform is: 

 (10) 

 

Hence Sub-band coding system’s output is: 
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Where, for example, output of filter h0(n) is defined by transform pair: 

h0(n)*x(n)=∑ ⇔−
k

zXzHkxknho )()()()( 0 . 

As with Fourier Transform convolution in time( or spatial) domain is equivalent to the 
multiplication in Z-domain. 

Re-arranging the terms in equation (11), we get: 
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[ ] [ ] )()()()()(
2
1)()()()()(

2
1)(' 11001100 zXzGzHzGzHzXzGzHzGzHzX −−+−++=  

(12) 

Where the second component ( by virtue of the fact that it contains the –z dependence) 
represents the aliasing that is introduced by the down-sampling up-sampling process. 

Hence for error free construction of the input, x’(n)=x(n) and X’(z)=X(z) and 
conditions for it are: 

 (13) 
 

 
Equation (13) eliminates aliasing by forcing the second term of equation (12) to zero; 
equation (14) eliminates the amplitude distortion by reducing the first term to X(z).Both 
can be incorporated in to the single matrix expression: 

[G0(z)    G1(z)]Hm(z)=[2  0] (14) 

Where Analysis Modulation Matrix ,Hm(z) is 

 
(15) 
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equations (13) to (16) reveal several important characteristics of perfect reconstruction 
filter banks. Matrix equation (16), tells us that G1(z) is a function of H0(-z).The analysis 
and synthesis  filters are cross modulated. For FIR filters the determinate of the 
modulation matrix is a pure delay i.e. det(Hm(z)=αz-(2k+1). Thus the exact form of the 
cross modulation is a function of α. The term z-(2k+1) can be considered arbitrarily since it 
is a shift that changes the overall delay of the filter. FIR filters are cross-modulated 
copies of the analysis filters. 

The filter bank needed in sub-band coding  [1] can be built in several ways. One way is to 
build many band-pass filters to split the spectrum into frequency bands. The advantage is 
that the width of every band can be chosen freely, in such a way that the spectrum of the 
signal to analyze is covered in the places where it might be interesting. The disadvantage 
is that we will have to design every filter separately and this can be a time consuming 
process. Another way is to split the signal spectrum in two (equal) parts, a low-pass and a 
high-pass part. The high-pass part contains the smallest details we are interested in and 
we could stop here. We now have two bands. However, the low-pass part still contains 
some details and therefore we can split it again. And again, until we are satisfied with the 
number of bands we have created. In this way we have created an iterated filter bank. 
Usually the number of bands is limited by for instance the amount of data or computation 
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power available. The process of splitting the spectrum is graphically displayed in 
figure3.3(c ). The advantage of this scheme is that we have to design only two filters, the 
disadvantage is that the signal spectrum coverage is fixed. Looking at figure3.3( c )  we 
see that what we are left with after the repeated spectrum splitting is a series of band-pass 
bands with doubling bandwidth and one low-pass band. (Although in theory the first split 
gave us a high-pass band and a low-pass band, in reality the high-pass band is a band-
pass band due to the limited bandwidth of the signal.) In other words, we can perform the 
same sub-band analysis by feeding the signal into a bank of band-pass filters of which 
each filter has a bandwidth twice as wide as his left neighbor (the frequency axis runs to 
the right here) and a low-pass filter. This is the same as applying a wavelet transform to 
the signal. The wavelets give us the band-pass bands with doubling bandwidth and the 
scaling function provides us with the low-pass band. From this we can conclude that a 
wavelet transform is the same thing as a sub-band coding scheme. 
The wavelets give us the band-pass bands with doubling bandwidth and the scaling 
function provides us with the low-pass band. From this we can conclude that a Wavelet 
Transform [1,7,8,10] is the same thing as a sub-band coding scheme using a constant-Q 
filter bank. . In general ,this kind of analysis is referred as a multiresolution analysis. 
Summarizing, if we implement the wavelet transform as an iterated filter bank, we do not 
have to specify the wavelets explicitly. If one wavelet can be seen as a band-pass filter 
and a scaling function is a low-pass filter, then a series of dilated wavelets together with a 
scaling function can be seen as a filter bank. 

A perfect reconstruction filter bank :decomposes a signal by filtering and sub-
sampling. It reconstructs it by inserting zeroes, filtering and summation. A (discrete) 
two-channel multirate filter bank convolves a signal a0 with a low-pass filter 
h1[n] = h[-n] and a high-pass filter g1[n] = g[-n] and then sub-samples the 
output: 

a1 [n] = a0 * h1 [2n] 
and 

d1 [n] = a0* g1 [2n] . 

A reconstructed signal a2 is obtained by filtering the zero expanded signals with a dual 
low-pass filter h2 and a dual high-pass filter g2. If z(x) denotes the signal obtained from x 
by inserting a zero between every sample, this can be written as: 

a2 [n] = z(a1) * h2 [n] + z(d1) * g2 [n] . 
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The following figure illustrates the decomposition and reconstruction process. 

 

The filter bank is said to be a perfect reconstruction filter bank when a2 = a0 . If, 
additionally, h = h2 and g = g2, the filters are called conjugate mirror filters. 

3.2.1 2D four band filter bank for sub-band image coding 
Images often display smoothness and it would therefore be desirable that the wavelets 
used in image coding are smooth, this should accomplish the desired energy compaction 
(high correlation between the image and the wavelets/filters). The wavelets should also 
be compactly supported. This is necessary to have perfect reconstruction. If the wavelets 
have infinite support the filters derived from these wavelets will have infinitely long 
impulse responses, leading to infinitely long transformed signals. Filters with a finite 
impulse response are called FIR-filters. Smooth wavelets with compact support, leading 
to FIR-filters, can be obtained by solving a special dilation equation.The solution to the 
dilation equation is the scaling function φ(t). From this scaling function smooth wavelets 
can be generated. There is a tight coupling between the wavelets and the scaling function. 
By introducing translated and dilated versions of φ(t), in the same manner as with the 

mother wavelet in equation (1), we get: 

                 (17) 

For a fixed m the φm,n constitute a basis for a vector space, Vm. Vm and Wm, the vector 
space spanned by ψm,n for a fixed m, are related to each other as: 

                              (18) 
This means that Wm is the orthogonal complement to Vm in Vm-1. Projecting a signal 

x onto Vm produces an approximation of x in terms of φm,n and the relation (18) tells 

 that the information lost when going from a finer approximation at resolution m-1 
to coarser at resolution m is exactly the projection of the resolution m-1 approximation 
onto Wm. The Wm projection is referred to as detail information. If the signal is in 
sampled form (as images are) the m-1 resolution approximation can be chosen as the 
data itself, equation (18) then describe how to divide the data into approximation and 
detail parts which can be used to reconstruct the signal perfectly. We can achieve a 
representation of x in more than two components by recursively using equation (18) on 
Vm: 

         (19) 
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This means that x can be represented as an m+1 resolution approximation and two detail 
signals. The process in equation (19) can be continued representing x as coarser and 
coarser approximations and more and more detail signals.The process of decomposing a 
signal into approximation and detail parts, corresponding to projecting x onto Vm and Wm 
in equation (18), can be realized as a filter bank followed by sub-sampling.( 
Figure3.3(a)). 

 a(m,n) 

 Columns (along n) 

 

 Rows  dV(m,n) 

 (along m)  Columns 

x(m,n) 

 dH(m,n) 

 Columns 

 

                                            Rows dDm,n) 

                                                                                              Columns 

Figure 3.4 A 2D ,four –band filter bank for sub-band Image Coding (Analysis Part) 
 
 Figure 3.4 shows 2D, four –band filter bank for sub-band Image Coding. The separable 
filters are first applied in one dimension (vertically) and then in the other (horizontally). 
Down sampling is performed in two stages-once before the second filtering operation to 
reduce the overall number of computations. The resulting filtered outputs , denoted 
a(m,n), dV(m,n), dH(m,n), dD(m,n) are called the approximation, vertical detail, horizontal 
detail and diagonal detail sub-bands of the image. This is called one level decomposition. 
One or more of these sub-bands can be split in to four smaller sub-bands, which can be 
split again and so on for further level of decompositions. This process is known as 
analysis phase. Similarly by applying inverse part( synthesis) the original image can be 
reconstructed. 
 
3.2.2 The Wavelet Packet Decomposition 
The DWT was derived as a hierarchical sub-band structure. Another way to decompose a 
signal into several levels is based on the flat filter structure This method also uses filters 
derived from wavelets. There will be no mathematical treatment of this structure. Each 
filter-pair will be viewed as only a low pass high-pass pair with certain properties. The 
goal of this new method is to achieve a better energy compaction than the DWT by using 
an adaptive filter structure as opposed to the fixed structure of the DWT. The structure 
can be any sub-set of the flat filter structure. This decomposition is referred to as the 
wavelet packet decomposition or the Wavelet Packet Transform (WPT). An example of a 
one-dimensional WP decomposition is depicted in Figure 3.5. 
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Figure 3.5 One level of decomposition realized as a filter bank followed by sub-sampling 
 
 
 
 

 
 
Figure3.6 One level of reconstruction realized as an up-sampling followed by a filter bank 
 
 
 
 HHH 

 HHL 

x HL 

 LHH 

 LHL 
 

 LL 
Figure 3.7 An example of a three level WP-decomposition 

In Figure 3.7 the label XXX of the outputs represents the different filters that have filtered 
this output and at which stage. LHL for example is a signal that has been filtered low-
pass in the first stage high-pass in the second and low-pass in the third stage. As with the 
DWT the WPT can be inversely transformed. The filter structure is the opposite of that 
used when transforming and at each stage the filter bank depicted in Figure3.6 is used.  
Both the DWT and WPT can be extended to multi-dimensional signals. 

3.3 Representation of Spatial and Frequency Hierarchies 
3.3.1Representation of Spatial Hierarchies 
There exist both spatial and frequency hierarchies between the different sub-bands in 

both the DWT and the WPT. The spatial hierarchy for two-dimensional signals (Images) 
is usually visualized as seen in Figure 3.8. 

One level as in  
Figure 3.5 

One level as in  
Figure 3.5 

One level as in  
Figure 3.5 

One level as in  
Figure 3.5 

One level as in  
Figure 3.5 
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Figure 3.8 Spatial Hierarchy for 2D Image 

 

 
Figure 3.8(b) :Example of an 128x128 image at different levels of decompositions by 2D 

DWT 
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Figure 3.8 (c) Example: 2D DWT on Test Image Barbara at levels 1 and 2 

In Figure 3.8(a) the letters correspond to the filters applied in x and y direction of the 
image (2D signal) respectively. Fig 3.8(a) shows the decomposition of image at second 
level. All rectangles correspond to a sub-image (sub-band) from the decomposition. 
There exist a spatial correlation between the different sub-bands. If the image has an edge 
in the x-direction (edge running from top to bottom), corresponding to a high frequency 
component, then this edge would be evident in the HL sub-image. The four bands in the 
upper left corner of the DWT decomposition in Figure 3.8(a) are all constructed by 
applying the high and low-pass filters to the approximation sub-image produced at the 
first stage. The x-edge would probably also be present in the approximation image. When 
filtering this approximation image the resulting band LL HL would display this edge. So 
there exist a correlation between the HL and LL HL bands. The same is of course true for 
the LH-LL LH and HH-LL HH bands, bands at different levels but with the same 
orientation. This correlation should be taken advantage of by a coding scheme for the 
DWT (similar reasoning leads to spatial correlation between sub-bands in the WPT case). 
In Figure 3.8(b) and Figure3.8(c) different levels (1,2,and3 ) of an octave-band 
decomposition is shown for a 128x128 gray scale image.  

 

3.3.2 Representation of frequency hierarchies 
Alongside the spatial hierarchy from Figure 3.8 there exists a frequency hierarchy 

among sub-bands. This hierarchy can be visualized by a tree structure. The tree 

structure is a mapping of the structure of the filter-bank used. The frequency hierarchy 

among the sub-bands from Figure 3.8 is depicted in Figure 3.9. 
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Figure 3.9(a): Frequency hierarchy for a two level 2D DWT decomposition 
 

 
Figure 3.9(b): Frequency hierarchy for a two level full 2D WPT decomposition 
 
The mapping from filter structure to frequency tree provides another description of the 
WPT. A transform corresponding to any sub-tree of the full frequency tree at level N is a 
WPT at level N. Every such sub-tree corresponds to a different wavelet basis.  An 
observation concerning the relationship between the DWT and WPT can be made from 
the frequency tree. The DWT is a special case of the WPT. 

3.4 Properties of the wavelet filters 
Since, it was explained earlier that the use of wavelet theory in image coding is in the 
area of filter design for a sub-band coding  [1] scheme. Here some desirable properties of 
the filters to be used for image coding will be discussed. Filter characteristics will also in 
some cases be translated into properties of the wavelet bases used. In the following the 
terms wavelet decomposition and transform will be used interchangeably. 
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Some required properties of the wavelet filters are as follows: 
• Filters derived from smooth wavelets are desirable. This should lead to good 

correspondence with the low-pass character of images (high energy compaction), 
the main goal of sub-band coding. 

• Second, desirable property of the transform is that it should be orthonormal. If the 
transform is orthonormal the reconstruction filters h* and g* can be chosen as 
h*=h and g*=g. An orthonormal transform (corresponding to an orthonormal 
wavelet basis) preserves the signal energy in the transform domain. This is 
especially important when a lossy coding scheme is applied to the transformed 
structure. The orthonormality guarantees that the distortion in the transform 
domain is the same as in the reconstructed domain. That is if we quantize 
transform components (sub-bands), and by that introduce distortion the distortion 
will be the same after inverse transformation of the quantized components.  

• Besides smoothness and orthonormality it is desirable that the filters derived from 
the wavelets should be short for fast computation and have linear phase. The 
phase linearity makes the cascading of filters in a sub-band coding  [1] scheme 
possible without phase compensation. The linear phase also implies symmetry of 
the wavelet and also symmetry of the filters derived. This symmetry is most 
desirable for filters used in image coding. 

• By relaxing the orthonormality requirement and using biorthogonal wavelet [9] 
bases, filters with linear phase and smoothness can be designed. Though we have 
removed the orthogonality we can still achieve perfect reconstruction by choosing 
h* and g* differently than in the orthonormal case. By using biorthogonal bases in 
the filter design the resulting transform is not orhonormal, this takes away the nice 
feature of being able to control the distortion in the reconstruction by controlling 
the distortion in the transform domain. The biorthogonal base can however be 
chosen close to orthonormal in which case distortion in the transform domain 
almost corresponds to distortion in the reconstruction. 

3.5 Advantages of using wavelets 
Wavelet Transform have several advantages. Here we list a number of these in regard to 
image compression and processing. 

1. One of the main features of Wavelet Transform, which is important for data 
compression and image processing applications, is its good de-correlating behavior. 
2. Wavelets are localized in both the space (time) and scale (frequency) domains. Hence 
they can easily detect local features in a signal. 
3. Wavelets are based on multi-resolution analysis. A wavelet decomposition allows to 
analyze a signal at different resolution levels (scales), which results in superior objective 
and subjective performance 
4. Wavelets are smooth, which can be characterized by their number of vanishing 
moments. The higher the number of vanishing moments, the better smooth signals can be 
approximated with the wavelet basis. A function f defined on the interval [a, b] has N 
vanishing moments if: 
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5. Fast and stable algorithms are available to calculate the Discrete Wavelet Transform 
and its inverse. Like FFT, the Discrete Wavelet Transform can be factored into a few 
sparse matrices using self-similarity properties. This results in an algorithm that requires 
only order of O( n) operations to transform a data series with length n. this is called Fast 
DWT of Mallat and Daubechies. 
 
 3.6   Various Wavelet families used in Image Coding:  
 
There are different types of wavelet families whose qualities vary according to several 
criteria. The main criteria are:  
 1.The support of wavelet function ,Ψ(t), and scaling function ,Φ(t) : the speed of 
convergence to 0 of this function when the time t or the frequency  goes to infinity, which 
quantifies both time and frequency localizations . 
2.The symmetry, which is useful in avoiding de-phasing in image processing. 
3. The number of vanishing moments for   wavelet function Ψ(t) or scaling function Φ(t), 
which is useful for compression purposes. 
4.The regularity, which is useful for getting nice features, like smoothness of the 
reconstructed signal or image, and for the estimated function in nonlinear regression 
analysis. 
These are associated with two properties that allow fast algorithm and space-saving 
coding:  
1.The existence of a scaling function Φ . 
2.The orthogonality or the bi-orthogonality of the resulting analysis. 
 They may also be associated with these less important properties: 
1.The existence of an explicit expression . 
2.The ease of tabulating . 
3.The familiarity with use. 
The various wavelet families : 
1. Wavelets for continuous wavelet transform ( Gaussian, Morlet, Mexican Hat) 
2. Haar wavelet  
3. Daubechies wavelets  
4. Symlets  
5. coiflets  
6. Biorthogonal spline wavelets 
7. Complex Wavelets 
 In this thesis, the various wavelets used ,for the performance evaluation of Image 
Coding, which uses Discrete Wavelet Transform are: 
Haar, Daubechies and   Biorthogonal wavelets [9].    
  
3.6.1 The Haar Wavelet Transform : 
General characteristics: The oldest and the simplest, compactly supported, biorthogonal 
and orthogonal wavelet, scaling function phi = 1 on [0 1] and 0 otherwise, wavelet 
function psi = 1 on [0 0.5], = -1 on [0.5 1] and 0 otherwise, Family  Haar, Short name   
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haar and  is the same as db1,Both DWT  and CWT possible, Support width 1, Filters 
length 2, Number of vanishing  moments for psi(wavelet function)1,it is regular and 
symmetric but  is not continuous. 
The forward transform: Each step in the forward Haar transform calculates a set of 
wavelet coefficients and a set of averages. If a data set s0, s1, ... sN-1 contains N elements, 
there will be N/2 averages and N/2 coefficient values. The averages are stored in the 
lower half of the N element array and the coefficients are stored in the upper half. The 
averages become the input for the next step in the wavelet calculation, where for iteration 
i+1, Ni+1 = Ni/2. The recursive iterations continue until a single average and a single 
coefficient are calculated. This replaces the original data set of N elements with an 
average, followed by a set of coefficients whose size is an increasing power of two (e.g., 
20, 21, 22 ... N/2 ).  
The Haar equations to calculate an average (ai) and a wavelet coefficient (ci) from an odd 
and even element in the data set are shown below:  

 

 

In wavelet terminology the Haar average is calculated by the scaling function. The 
coefficient is calculated by the wavelet function.  

The Haar inverse transform: The data input to the forward transform can be perfectly 
reconstructed using the following equations:  

 

Haar forward transform via matrix multiply : 
In the linear algebra view of the forward Haar transform, the first average is calculated by 
the inner product of the signal [s0, s1, ... sN-1] and the vector, of the same size, [0.5, 0.5, 0, 
0, ..., 0]. This is the scaling vector. The first coefficient is calculated by the inner product 
of the signal and the vector [0.5, -0.5, 0, 0, ..., 0]. This is the wavelet vector. Shifting the 
scaling and wavelet vectors by two and calculating the inner products calculate the next 
average and coefficient. In the wavelet literature scaling and wavelet values are 
sometimes represented by hi and gi respectively. In the case of the Haar transform the 
scaling and wavelet values would be:  
scaling function coefficients : h0 =  0.5 , h1 =  0.5 
wavelet function coefficients: g0 =  0.5,  g1 = -0.5 
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The scaling and wavelet values for the Haar transform are shown below in matrix form.  

 

The first step of the forward Haar transform for an eight-element signal is shown below. 
Here the forward transform matrix multiplies signal.  

 

The arrow represents a split operation that reorders the result so that the average values 
are in the first half of the vector and the coefficients are in the second half. To complete 
the forward Haar transform there are two more steps. The next step would multiple the ai 
values by a 4x4 transform matrix, generating two new averages and two new coefficients, 
which would replace the averages in the first step. The last step would multiply these new 
averages by a 2x2 matrix generating the final average and the final coefficient.  
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The Haar inverse transform: Like the forward Haar transform, a step in the inverse 
Haar transform can be described in linear algebra terms. The matrix operation to reverse 
the first step of the Haar transform for an eight element signal is shown below. 

 

In this case the arrow represents a merge operation that interleaves the averages and the 
coefficients.  

Advantages and limitations of the Haar Wavelet Transform: 
Advantages: It is conceptually simple, fast and memory efficient, since it can be 
calculated in place without a temporary array. It is exactly reversible without the edge 
effects that are a problem with other wavelet transforms.  
Limitations: The Haar transform also has limitations, which can be a problem for some 
applications. In generating each set of averages for the next level and each set of 
coefficients, the Haar transform performs an average and difference on a pair of values. 
Then the algorithm shifts over by two values and calculates another average and 
difference on the next pair. The high frequency coefficient spectrum should reflect all 
high frequency changes. The Haar window is only two elements wide. If a big change 
takes place from an even value to an odd value, the change will not be reflected in the 
high frequency coefficients.  
3.6.2 The Daubechies D4 Wavelet Transform: 
     General characteristics: Orthogonal, biorthogonal and compactly supported wavelets 
with external phase and highest number of vanishing moments for a given support width. 
Associated scaling filters are minimum-phase filters. Family Daubechies, Short name db, 
Order N (N strictly positive integer), Examples db1 or Haar, db4, db15,both  CWT and 
DWT possible, Support width 2N-1,Filters length 2N, Regularity about 0.2 N for large N, 
Symmetry far from, Number of vanishing moments for psi(wavelet function) N. 
The Daubechies wavelet transforms  is named after its inventor, the mathematician Ingrid 
Daubechies. The function displayed in Figure 3.10 is a so-called wavelet function from 
the Daubechies family of wavelet functions. The Daubechies family of wavelets are only 
one of a number of wavelet families. The wavelet function (mother wavelet) is 
orthogonal to all functions which are obtained by shifting the mother right or left by an 
integer amount and the mother wavelet is orthogonal to all functions which are obtained 
by dilating (stretching) the mother by a factor of 2j (2 to the jth power) and shifting by 
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multiples of 2j units. The orthogonality property means that the inner product of the 
mother wavelet with itself is unity, and the inner products between the mother wavelet 
and the aforementioned shifts and dilates of the mother are zero. The collection of shifted 
and dilated wavelet functions is called a wavelet basis. The grid in shift-scale space on 
which the wavelet basis functions are defined is called the dyadic grid. The 
orthonormality of the Daubechies wavelets has a very important mathematical and 
engineering consequence: any continuous function may be uniquely projected onto the 
wavelet basis functions and expressed as a linear combination of the basis functions. 
The collection of coefficients which weight the wavelet basis functions when 
representing an arbitrary continuous function are referred to as the Wavelet Transform 
of the given function. 
 

 

Figure 3.10: The Daubechies D4 Wavelet  Function 

The Daubechies D4 transform has four wavelet and scaling function coefficients. The 
scaling function coefficients are : 
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Each step of the wavelet transform applies the scaling function to the  data input. If the 
original data set has N values, the scaling function will be applied in the wavelet 
transform step to calculate N/2 smoothed values. In the ordered wavelet transform the 
smoothed values are stored in the lower half of the N element input vector.  
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The wavelet function coefficient values are:  
g0 = h3;   g1 = -h2;  g2 = h1; g3 = -h0 
Each step of the wavelet transform applies the wavelet function to the input data. If the 
original data set has N values, the wavelet function will be applied to calculate N/2 
differences (reflecting change in the data). In the ordered wavelet transform the wavelet 
values are stored in the upper half of the N element input vector. The scaling and wavelet 
functions are calculated by taking the inner product of the coefficients and four data  
values. The equations are shown below: 

 

Each iteration in the wavelet transform step calculates a scaling function value and a 
wavelet function value. The index i is incremented by two with each iteration, and new 
scaling and wavelet function values are calculated. In the case of the forward transform, 
with a finite data set (as opposed to the mathematician’s imaginary infinite data set), i 
will be incremented until it is equal to N-2. In the last iteration the inner product will be 
calculated from calculated from s[N-2], s[N-1], s[N] and s[N+1]. Since s[N] and s[N+1] 
don’t exist (they are beyond the end of the array), this presents a problem. This is shown 
in the transform matrix .  

Daubechies D4 forward transform matrix for an 8  element signal  
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Note that this problem does not exist for the Haar wavelet, since it is calculated on only 
two elements, s[i] and s[i+1]. A similar problem exists in the case of the inverse 
transform. Here the inverse transform coefficients extend beyond the beginning of the 
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data, where the first two inverse values are calculated from s[-2], s[-1], s[0] and s[1]. This 
is shown in the inverse transform matrix below.  

Daubechies D4 inverse transform matrix for an 8 element transform result : 
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Methods for handling the edge problem: 1)Treat the data set as if it is periodic. The 
beginning of the data sequence repeats following the end of the sequence (in the case of 
the forward transform) and the end of the data wraps around to the beginning (in the case 
of the inverse transform).2) Treat the data set as if it is mirrored at the ends. This means 
that the data is reflected from each end, as if a mirror were held up to each end of the data 
sequence. 3)Gram-Schmidt orthogonalization. Gram-Schmidt orthoganalization 
calculates special scaling and wavelet functions that are applied at the start and end of the 
data set.  
Zeros can also be used to fill in for the missing elements, but this can introduce 
significant error. The Daubechies D4 algorithm  treats the data as if it were periodic. In 
forward transform , for the calculation of the last two values, the start of the data wraps 
around to the end and elements a[0] and a[1] are used in the inner product.The inverse 
transform works on N data elements, where the first N/2 elements are smoothed values 
and the second N/2 elements are wavelet function values. The inner product that is 
calculated to reconstruct a signal value is calculated from two smoothed values and two 
wavelet values. Logically, the data from the end is wrapped around from the end to the 
start.  

3.6.3 Bi-orthogonal Wavelets: 

General characteristics: Compactly supported  biorthogonal spline wavelets for which 
symmetry and exact reconstruction are possible with FIR filters (in orthogonal case it is 
impossible except for Haar),Family Biorthogonal, Short name bior, Order Nr, Nd(Nr = 1 
, Nd = 1, 3, 5( r for reconstruction , d for decomposition) ), e.g.:[Nr = 2 , Nd = 2, 4, 6, 8],[ 
Nr = 3 , Nd = 1, 3, 5, 7, 9],[Nr = 4 , Nd = 4],[Nr = 5 , Nd = 5],[Nr = 6 , Nd = 8], Matlab 
examples :bior3.1, bior5.5,not Orthogonal, both  DWT  and CWT possible, Support 
width :2Nr+1 for reconstruction and 2Nd+1 for decomposition, Filters length 
max(2Nr,2Nd)+2 but essentially bior Nr.Nd. The biorthogonal filters bior 4.4 , 5.5 and 6.8 
are such that reconstruction and decomposition functions and filters are close in value.  
This family of wavelets exhibits the property of linear phase, which is needed for signal 
and image reconstruction. By using two wavelets, one for decomposition (on the left 
side) and the other for reconstruction (on the right side) instead of the same single one, 
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interesting properties are derived. A theorem by Cohen, Daubechies and Fauveau gives 
sufficient conditions for building biorthogonal wavelets [9].  

 

 
Biorthogonal cubic B-spline   Dual scaling function 
scaling function 

 
Biorthogonal spline wavelet               Dual Wavelet 
Figure 3.11: Example of Bi-orthogonal Wavelets 
 
 
3.6.4 Symlets Wavelets  
 General characteristics:  
Near symmetric, compactly supported, Orthogonal [1,9] and    biorthogonal wavelets [9] 
with least asymmetry and highest number of vanishing moments for a given support 
width. Associated scaling filters are near linear-phase filters, Family symlets, Short name: 
sym, Order N where N = 2, 3,...,Examples:sym2, sym8, Both DWT and CWT possible, 
Support width :2N-1,Filters length:2N,Regular,Symmetry near from, Number of 
vanishing moments for psi=N. 
 
Conclusions 
In this chapter a concise review of the necessary theoretical background for 
understanding the Wavelet Transform had been done. The definition of the Wavelet 
Transform, Discrete Wavelet Transform followed by its analysis and synthesis is 
explained. Next, Sub-band coding and multi-resolution analysis was introduced, concept 
of perfect reconstruction filter banks, various families of wavelet used in image coding 
were introduced and subsequently the properties and advantages of the Wavelet 
Transform has also been discussed.   
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Chapter 4   

Wavelet analysis using lifting scheme 
 
This chapter discusses about the basic lifting schemes [7,15] and its applications. 
4.1 Background 
Wavelets based on dilations and translations of a mother wavelet are referred to as first 
generation wavelets or classical wavelets. Second generation wavelets, i.e., wavelets 
which are not necessarily translations and dilations of one function, are much more 
flexible and can be used to define wavelet bases for bound intervals, irregular sample 
grids or even for solving equations or analyzing data on curves or surfaces. Second 
generation wavelets retain the powerful properties of first generation wavelets, like fast 
transform, localization and good approximation. 

Wavelet are building blocks that can quickly de-correlate data. This sentence at least 
incorporates three of the main features of wavelets. First of all, they are building blocks 
for general data sets or functions. Mathematically we say that they form a basis or, more 
general a frame. This means that each element of a general class can be written in a stable 
way as a linear combination of the wavelets. If we denote the wavelets by Ψi and the 
coefficients by γ i, we can write a general function f as 

f = i
i

i ψγ .∑  

Secondly, wavelets have the power to decorrelate. This means that the representation of 
the data in terms of the wavelet coefficients γi is somehow more compact than the 
original representation. In information-theoretic jargon, we say that the entropy in the 
wavelet representation is smaller than in the original representation. In approximation-
theoretic jargon, we want to get an accurate approximation of f by only using a small 
fraction of the wavelet coefficients. The way to get this de-correlation power is to 
construct wavelets, which already in some way resemble the data we want to represent. 
More specifically, we would like the wavelets to have the same correlation structure as 
the data. For example, most signals we encounter in daily life have both correlation in 
space and frequency. Samples which are spatially close are much more correlated then 
ones that are far apart, and frequencies often occur in bands. To analyze and represent 
such signals we need wavelets that are local in space and frequency. Typically this is 
achieved by building wavelets, which have compact support (localization in space), 
which are smooth (decay towards high frequencies), and which have vanishing moments 
(decay towards low frequencies). Finally, we want to quickly find the wavelet 
representation of the data. More precisely, we want to switch between the original 
representation of the data and its wavelet representation in a time proportional to the size 
of the data. The fast de-correlation power of wavelets is the key to applications such as 
data compression, fast data transmission, noise cancellation, signal recovering, and fast 
numerical algorithms. The purpose of this topic is to introduce the lifting scheme [7,15], 
a new tool in the construction of bi-orthogonal wavelets. The main difference with classic 
constructions is that it does not employ the Fourier transform. Until recently, the Fourier 
transform has been instrumental in wavelet constructions. The underlying reason is that 
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wavelets are traditionally defined as translates and dilates of one function, and translation 
and dilation become algebraic operations after Fourier transform. The wavelet 
construction then relies on certain polynomial factorizations. We refer to wavelets which 
are translates and dilates of one function as first generation wavelets. 

In the case of first generation wavelets, the lifting scheme [7,15] will never come up with 
wavelets which somehow could not be found by the techniques developed by Cohen, 
Daubechies, and Feauveau .  

4.2 Advantages of Lifting Scheme: 
1.It allows a faster implementation of the wavelet transform. Traditionally, the fast 
wavelet transform is calculated with a two-band sub-band transform scheme. In each step 
the signal is split into a high pass and low pass band and then sub-sampled. Recursion 
occurs on the low pass band. The lifting scheme [7,15] makes optimal use of similarities 
between the high and low pass filters to speed up the calculation. In some cases the 
number of operations can be reduced by a factor of two. 
2. The lifting scheme allows a fully in-place calculation of the wavelet transform. In other 
words, no auxiliary memory is needed and the original signal (image) can be replaced 
with its wavelet transform. 
3.In the classical case, it is not immediately clear that the inverse wavelet transform 
actually is the inverse of the forward transform. Only with the Fourier transform one can 
convince oneself of the perfect reconstruction property. With the lifting scheme, the 
inverse wavelet transform can immediately be found by undoing the operations of the 
forward transform. In practice, this comes down to simply reversing the order of the 
operations and changing each + into a - and vice versa. 
4.Since lifting does not rely on the Fourier transform, it can be used to construct wavelets 
in settings where translation and dilation, and thus the Fourier transform, cannot be used. 
Such wavelets are referred as second-generation wavelets.  
5.Lifting Scheme allows integer-to-integer transform while keeping a perfect 
reconstruction of the original data set. This is important for implementation and loss-less 
image coding. 
6.  Lifting allows adaptive wavelet transforms. This means that the analysis of a function 
can start from the coarsest level, followed by finer levels by refining in the areas of 
interest. 
4.3 Examples of second-generation wavelets: 
Wavelets on bounded domains: The construction of wavelets on domains in a 
Euclidean space is needed in applications such as image segmentation and the numerical 
solution of partial differential equations. A special case is the construction of wavelets on 
an interval, which is needed to transform finite length signals without introducing 
artifacts at the boundaries. 
Wavelets on curves and surfaces: To analyze data that live on curves or surfaces or to 
solve equations on curves or surfaces, one needs wavelets intrinsically defined on these 
manifolds, independent of parameterization. 
Weighted wavelets: Diagonalization of differential operators and weighted 
approximation require a basis adapted to weighted measures. Wavelets biorthogonal with 
respect to a weighted inner product are needed. 
Wavelets and irregular sampling: Many real life problems require basis functions and 
transforms adapted to irregularly sampled data. It is obvious that wavelets adapted to 
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these setting cannot be formed by translation and dilation. The Fourier transform can thus 
no longer be used as a construction tool. The lifting scheme provides an alternative. 
There are two ways to introduce lifting. The first one is concerned with the basis 
functions, i.e. the scaling functions, dual scaling functions, wavelets, and dual wavelets, 
and how lifting affects them.  
4.4 The basic idea behind lifting: 
Lifting scheme [7,15] is a rather new method for constructing wavelets. The main 
difference with the classical constructions is that it is does not rely on the Fourier 
transform. In this way, Lifting can be used to construct second-generation wavelets. 
Lifting scheme can in addition, efficiently implement classical wavelet transforms. 
Existing classical wavelets can be implemented with Lifting scheme [7,15] by 
factorization them into Lifting steps. 

The basic idea behind the Lifting scheme [7,15] is very simple; one try to use the 
correlation in the data to remove redundancy. At first the data is split into two sets (Split 
phase): the odd samples and the even samples. If the samples are indexed beginning with 
0 (the first sample is the 0th sample), the even set comprises all the samples with an even 
index and the odd set contains all the samples with an odd index. Because of the assumed 
smoothness of the data, it is predicted that the odd samples have a value that is closely 
related to their neighboring even samples. N even samples are used to predict the value of 
a neighboring odd value (Predict phase). With a good prediction method, the chance is 
high that the original odd sample is in the same range as its prediction. The difference 
between the odd sample and its prediction is calculated and the odd sample is replaced 
with this difference. As long as the signal is highly correlated, the newly calculated odd 
samples will be on the average smaller than the original one and can be represented with 
fewer bits. The odd half of the signal is now transformed. To transform the other half, we 
will have to apply the predict step on the even half as well. Because the even half is 
merely a sub-sampled version of the original signal, it has lost some properties that one 
might want to preserve. In case of images for instance, one would like to keep the 
intensity (mean of the samples) constant throughout different levels. The third step 
(Update phase) updates the even samples using the newly calculated odd samples such 
that the desired property is preserved. Now the circle is round and one  can move to the 
next level; these three steps are applied repeatedly on the even samples and each time 
half of the even samples are transformed, until all samples are transformed. In following 
sections these three steps are explained in more detail. 

 
Figure 4.1: Number of samples in different levels 
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Split phase: 
Assume that the scheme starts at level 0. We denote the data set as λ 0,k where k 
represents the data element and 0 signifies the iteration level 0. In the first stage, the data 
set is split into two other sets: the even samples λ –1,k and the odd samples γ -1,k. This is 
also referred to as the Lazy Wavelet transform because it does not de-correlate the data, 
but just sub-samples the signal into even and odd samples. 

 

                                                 (1) 

The negative indices are used according to the convention that the smaller the data set, 
the smaller the index. 

 
Figure4.2: The Lifting Scheme, forward transform: Split, Predict and Update phases 

Predict phase: 
This phase is also known as dual Lifting. In this step , the even set  λ -1, k  is used to 
predict the odd set γ -1,k using some prediction function P, which is independent of the 
data. The prediction can be defines as: 

Prediction=P (λ -1, k)                                              (2)  
The more correlation present in the original data, the closer the predicted value will be to 
the original odd set γ -1,k. Now, the odd set γ –1,k is replaced by the difference between 
itself and its predicted value. Hence, 

γ -1,k = λ -1, k  - P (λ -1, k) (3) 
There is possibility to use different functions for prediction of odd samples. The easiest 
choice is to predict that an odd sample is just equal to its neighboring even sample. This 
prediction method  results in to the Haar wavelet. This is an easy but not realistic choice, 
as there is no reason why the odd samples should be the equal to the even ones.  Another 
option is to predict that an odd sample γ -1,k is equal to the average of the neighboring   
even samples at its left end right side λ -1, k  , λ  0, k+1   

     γ -1,k= λ -1, k  -1/2 (λ -1, k  + λ  0, k+1 ) (4) 
In other words, we assume that the data has a piecewise linear behavior over intervals of 
length 2. If the original signal complies with this model, all wavelet coefficients  

),( ,1 kk ∀−γ will be zero. In other words, the wavelet coefficients measure to which extent 
the original fails to be linear. In terms of frequency content, the wavelet coefficients 
capture the high frequencies present in the original signal. The prediction does not 
necessarily have to be linear. One could try to find the failure to be cubic and any other 
higher order. This introduces the concept of interpolating subdivision. We use some value 
N to denote the order of the subdivision (interpolation) scheme. For instance, to find a 
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piecewise linear approximation, we use N equal to 2. To find a cubic approximation N 
should be equal to 4. N is important because it sets the smoothness of the interpolating 
function used to find the wavelet coefficients (high frequencies). This function is referred 
to as the dual wavelet. Thus the number of dual vanishing moments defines the degree of 
the polynomials that can be predicted by the dual wavelet.  

Update phase: 
This phase is also known as primal Lifting. One can convert all the samples, except N 
coarsest level coefficients λ-n, k, to their corresponding wavelet coefficients by iterating 
the predict step on the λj,k   outputs of each level for  n times,. These last N coarsest 
coefficients are N samples from the original data and form the smallest version of the 
original signal which introduces considerable aliasing. Also one  would like some global 
properties of the original data set to be maintained in the smaller versions λj,k .In the case 
of images it is desired that  the smaller images should  have the same overall brightness, 
i.e. the same average pixel value. Hence, one would like the last values to be the average 
of all the pixel values in the original image. Introducing a third stage ,called Update 
phase, can solve this problem. In update stage the coefficients λ -1, k   are lifted with the 
help of the neighboring wavelet coefficients γs, so that a certain scalar quantity Q, e.g. 
the mean, is preserved. 

Q(λ -1, k  )=Q(λ 0, k )  (5) 

By introducing a new operator, U, the preservation of this quality can be ensured. 
Operator U uses a wavelet coefficient of the current level γj,k  to update even samples 

of the same level λj,k. This preserves  moments of the lambdas. 
λ -1, k   = λ -1, k   +U(γ -1,k  ) (6) 

This is referred to as primal lifting. is also called number of real vanishing moments. 

The higher , the less aliasing effect will exist in the resulting transform. 
 
 
The lifting scheme inverse transform: 
One of the great advantages of the lifting scheme realization of a wavelet transform is 
that it decomposes the wavelet filters [6,7,11] into extremely simple elementary steps, 
and each of these steps is easily invertible. As a result, the inverse wavelet transform can 
always be obtained immediately from the forward transform. The inversion rules are 
trivial: revert the order of the operations, invert the signs in the lifting steps, and replace 
the splitting step by a merging step. Here follows a summery the steps to be taken for 
both forward and inverse transform. 

 
Figure4.3 : The lifting Scheme, inverse transform: Update, Predict and Merge stages 
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Forward transform: 

1- Split phase:  

 
2- Predict phase  

 
3. Update phase: 

 
  

Inverse transform: 
1.Update phase 

 
2. Predict phase  

 
3. Merge phase: 

 
 
4.5 Signal Extensions and boundary treatment: 
Real world signals are limited in time (space), i.e. they do not extend to infinity. Filter 
bank algorithms assume, however, that the signal is infinitely long. There are number of 
ways to deal with this problem. One could for instance extend the signal with zeros (zero 
padding). In this case the number of coefficients of the transformed signal will be 
obviously more than the original signal. Furthermore, as signals do not generally 
converge to zero towards the ends, extending the signal with zeros can lead to 
coefficients with large values, which leads to significant coding inefficiencies. Truncating 
the number of coefficients to the number of samples of the original signal, or quantization 
errors of coefficients with large values will significantly distort the reconstructed image. 
Another option is make the signal periodic, i.e. to repeat the signal at its ends (Figure 4-
4).As the values at the left and right ends of the signal are not necessarily the same, 
discontinuity will appear at signal ends and as a result, a similar problem can arise as 
mentioned with zero padding. For symmetrical wavelets, an effective strategy for 
handling boundaries is to extend the image via reflection. Such an extension preserves 
continuity at the boundaries and usually leads to much smaller wavelet coefficients than 
if discontinuities were present at the boundaries (Figure 4-4). An alternative approach is 
to modify the filter near the boundaries. In this method, not the signal, but the filter is 
modified around the boundaries to construct boundary filters that preserve filter’s 
orthogonality . The lifting scheme [11] provides a related method for handling filtering 
near the boundaries. 
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 A finite signal 

 Periodic extension 

 Symmetric extension 
Figure4.4 : Examples of signal extension 
 
4.6 Examples of Wavelet filters using Lifting Scheme: 
The filters are denoted either by their canonical names (e.g. Haar), by (N,N’) where N_ 
(respectively N’) is the number of vanishing moments of g’ (respectively g Ì ), or by (la-
ls) where la  is the length of analysis filter h’  . and ls  is the length of the synthesis filter 
h.  We start with a sequence x={xl | l ε z} and denote the result of applying the low-pass 
filter h. (respectively high-pass filter g) and down sampling as a sequence s={ sl | l ε z} 
(respectively d).The intermediate values computed during lifting is denoted with 
sequences s( i ) and d( i )  . 
 
4.6.1 Haar wavelets. In the case of (unnormalized) Haar wavelets we have that 

 
  

 
 

Using the Euclidean algorithm we can thus write the polyphase matrix as: 
 

 
 
Thus on the analysis side we have: 

 
This corresponds to the following implementation of the forward transform: 
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While the inverse transform is given by: 

 
 

 
4.6.2 Daubechies D4 Transform : 
This wavelet Lifting Scheme was developed by Wim Sweldens and others. Wavelet 
Lifting Scheme algorithms have several advantages. They are memory efficient and do 
not require a temporary array as the version of the Daubechies D4 transform above does. 
As the diagrams below show, the inverse transform is the mirror of the forward 
transform, when additions exchanged for subtractions.  
 
Forward Transform: Lifting Scheme wavelet transforms are composed of Update 
and Predict steps. In this case a normalization step has been added as well. One forward 
transform step is shown in the diagram below.  

Forward transform step of the lifting scheme version of the Daubechies D4: 

 
Figure 4.5 

The split step divides the input data into even elements which are stored in the first half 
of an N element array section ( S0 to Shalf-1) and odd elements which are stored in the 
second half of an N element array section (Shalf to SN-1). In the forward transform 
equations below the expression S[half+n] references an odd element and S[n] references 
an even element. Although the diagram above shows two normalization steps, in practice 
they are folded into a single function.  

Forward transform step equations: 
Update 1: 
for n=0 to half-1 

][3][][ nhalfsnSnS ++=  
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Predict : 

]1[
4

23
]0[

4
3][][ −

−
−−= halfSShalfshalfS  

for n=1 to half-1 

]1[
4

23
][

4
3][][ −

−
−−+=+ nSnSnhalfsnhalfS  

Update 2: 
for n=0 to half-2 
S[n]=S[n]-S[half+n+1] 
S[half-1]=S[half-1]-S[half] 
 
Normalize: 
for n=0 to half-1 

S[n]= ][
2

13
nS

−
 

S[n+half]= ][
2

13
halfnS +

+
 

 
Inverse transform step of the lifting scheme version of the Daubechies D4: One of the 
elegant features of Lifting Scheme versions of the wavelet transform is the fact that the 
inverse transform is a mirror of the forward transform, in which addition and subtraction 
operations are interchanged.  

 

 
Figure 4.6 

The merge step interleaves elements from the even and odd halves of the vector (e.g., 
even0, odd0, even1, odd1, ...). As the diagram above shows, the inverse transform 
equations have addition and subtraction operations interchanged. The inverse 

normalization step works because, 1
2

13
2

13
=

+
•

−
. 
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Inverse transform step equations: 
Update 1’: 
For n=0 to half-1 

][3][][ nhalfsnSnS +−=  
 
Predict’: 

]1[
4

23
]0[

4
3][][ −

−
++= halfSShalfshalfS  

for n=1 to half-1 

]1[
4

23
][

4
3][][ −

−
+++=+ nSnSnhalfsnhalfS  

Update 2’: 
for n=0 to half-2 
S[n]=S[n]+S[half+n+1] 
S[half-1]=S[half-1]+S[half] 
 
Normalize’: 
for n=0 to half-1 

S[n]= ][
2

13
nS

+
 

S[n+half]= ][
2

13
halfnS +

−
 

4.6.3 Cubic B-splines. The CDF(4,2) biorthogonal filter . The scaling function here is a 
cubic B-spline. This example can be obtained again by using the factoring algorithm. The 
filters are given by:  

 
and the factorization reads:  
 

 
 

4.6.4 Biorthogonal CDF 9/7 Wavelet filter: 
 Here the lifting scheme [15] and its result for popular CDF(9-7) filter pair has been 
presented. The analysis filter h’ has 9 coefficients, while the synthesis filter h has 7 
coefficients. Both high-pass filters g and g’ have 4 vanishing moments. We choose the 
filter with 7 coefficients to be the synthesis filter because it gives rises to a smoother 
scaling function than the 9 coefficients one (coefficients need to multiplied by 2 ). By 
using factoring algorithm [15] for the following analysis filters:  
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  and 
 

. 
The coefficients of the remainders are computed as: 

 
Then define: 

 
 
Now, polyphase matrix representation of CDF(9,7) wavelet filter  is:  

 
 
Note that here too many other factorizations exist; the one we chose is symmetric: every 
quotient is a multiple of (z+1). This shows how we can take advantage of the non-
uniqueness to maintain symmetry. 
The factorization leads to the following implementation (Lifting Steps):  

 
  . 

CDF 9/7 lifting scheme filter sequence coefficients 
Sequence=[ ],,,;,,,[ δγβαδγβα  
               = [-1.58613432,-0.05298011854,0.8829110762,0.4435068522; 
                   -1.58613432,-0.05298011854,0.8829110762,0.4435068522]; 
Scale Factor = ζ =1.149604398. 
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In this thesis, lifting version of CDF (9,7) is implemented and an analysis is performed 
with reference to performance. The function inputs are an image X and a number N. The 
output is the N-stage forward transform of X. For the inverse transform, negate N.  
While many wavelet packages use periodic boundary handling, this function uses 
symmetric boundary handling. As images are generally not periodic, this is more 
appropriate and has superior image compression capabilities. Images sizes below 
256x256 transform quickly, while larger images take a few seconds. 
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Chapter 5: 

SPIHT based Quantization and Coding of Wavelet Coefficients 
 
This chapter discusses the Quantization and coding of the Wavelet Transformed Image 
i.e. wavelet coefficients, which is to be sent to decoder for reconstruction. Main 
compression of Image occurs in this phase. A SPIHT [2,3] based fast coder based on 
progressive transmission and zero-tree coding method is used and implemented in 
MATLAB in this Thesis for Image compression. An overview of SPIHT coder, its 
working, algorithm, flowchart and an example is provided.  

5.1 Quantization and coding  
In the previous chapter the link between wavelet theory and sub-band coding  [1] was 
established. Wavelet theory is used to design filters in a sub-band coding scheme. The 
sub-band coding scheme should achieve energy compaction of the signal. The motivation 
for this was that it should be easier to quantize and code the signal if it was split into 
parts. One of the simplest ways to quantize the sub-bands is to use the method, which 
uses separate scalar quantizers for each sub-band which tries to minimize the resulting 
distortion by assigning bits from a budget to the sub-bands based on their variance but 
this strategy does not take into account the intra band dependencies among the sub-bands. 
The embedded zero tree wavelet algorithm (EZW) is a simple, yet remarkably effective, 
image compression algorithm, having the property that the bits in the bit stream are 
generated in order of importance, yielding a fully embedded code. The embedded code 
represents a sequence of binary decisions that distinguish an image from the “null” 
image. Using an embedded coding algorithm, an encoder can terminate the encoding at 
any point thereby allowing a target rate or target distortion metric to be met exactly. Also, 
given a bit stream, the decoder can cease decoding at any point in the bit stream and still 
produce exactly the same image that would have been encoded at the bit rate 
corresponding to the truncated bit stream. In this thesis a very fast and efficient 
algorithm, SPIHT [3], is used for the quantization and coding of wavelet coefficients, 
which is an extension or modified version of EZW [4] algorithm. SPIHT achieves good 
performance by exploiting the spatial dependencies of the DWT coefficients in different 
sub-bands i.e. it takes in to account the intra-band dependencies. The set partitioning in 
hierarchical trees (SPIHT) quantization scheme is used to generate all of the results in 
this thesis.  

5.2 SPIHT (Set partitioning in Hierarchical Trees) coder: 
 
The inter-band spatial dependencies are captured in the form of parent-child 
relationships, which is illustrated in Figure 5.1. The arrows in Figure 5.1 points from the 
parent node to its four children. With the exception of the coarsest sub-band and the 
finest sub-bands, each DWT coefficient (parent) at the i th level of decomposition is 
spatially correlated to four child coefficients at level (i-1) in the form of a 2 x 2 block of 
adjacent pixels. These four child coefficients are at the same relative location in the sub-
band decomposition structure. This relationship is utilized during SPIHT [3] 
quantization: if a parent coefficient is insignificant with respect to a particular threshold, 
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then all of its children would most likely be insignificant and similarly, significant 
coefficients in the finer sub-bands most likely correspond to a significant parent in the 
coarser sub-band. This results in significant savings: only the parent’s position 
information needs to be coded since the children’s coordinates can be inferred from the 
parent’s position information.  

Parent=(i, j) 

Children=[(2i, 2j), (2i+1,2j), (2i, 2j+1), (2i+1,2j+1)] 

 
 
Figure 5.1 Parent-child relationships for a 3-level Wavelet decomposition. 
 
SPIHT captures the current bit-plane information of all the DWT coefficients and 
organizes them into three ordered lists: 

1. List of significant pixels/coefficients (LSP). 
2. List of insignificant pixels/coefficients (LIP). 
3. List of insignificant sets of pixels/coefficients (LIS). 
 
LSP constitutes the coordinates of all coefficients that are significant. LIS contains the 
roots of insignificant sets of coefficient. They can be of two different types; the first type 
known as TYPE D has all the descendants insignificant within a given bit-plane, the 
second type known as TYPE L excludes the four children of the root node. Finally, LIP 
contains a list of all the coefficients that do not belong to either LIS or LSP and are 
insignificant. The operation of SPIHT can be grouped into three sequential steps: 
initialization, sorting pass (SP) and refinement pass (RP) & threshold update: 

1. Initialization: The initial threshold is set to 2 log2(max(|Cij|j)), where max(|Cij|) is the 
largest DWT coefficient. The algorithm starts at the coarsest band in the sub-band 
pyramid. All the coefficients in the sub-band are added to the LIP and the coefficients 
with descendants (tree roots) are added as to LIS as TYPE D. Thus, during initialization, 
every coefficient is initialized to an insignificant state. 
2. Sorting pass: At each threshold level, the LIP is coded first, followed by the entries in 
LIS. A given entry in LIP is tested and moved to LSP if found significant. The sign bit of 
the significant coefficient is also immediately coded. The LIS entries are coded 
differently. For TYPE D LIS entries, if any member in the hierarchical tree is found 
significant, the immediate children are tested and are added to either LIP or LSP. The 
parent is added to the end of LIS as a TYPE L entry or removed from the LIS if it does 
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not have any grandchildren. For TYPE L entries, if any member in the hierarchical tree is 
found significant, the immediate children are removed and added as TYPE D entries to 
the end of LIS. Processing continues till the end of LIS is reached .LSP also records the 
position of the coefficients that are found significant during the current pass. 
3. Refinement pass and threshold update: Refinement pass adds precision to the LSP 
entries obtained before the current sorting pass by outputting the most significant bit 
corresponding to the existing threshold. On completion of the refinement, the threshold is 
halved and the cycle is repeated starting from step 2. 
 
5.3 SPIHT Algorithm 
Let 
O (i, j): set of coordinates of all offspring of node (i,j); children only 
D (i, j): set of coordinates of all descendants of node (i,j); children, grandchildren, great-
grand, etc. 

H (i, j): set of all tree roots (nodes in the highest pyramid level); parents 

L (i, j): D (i, j) – O (i, j) (all descendents except the offspring); grandchildren, great 
grand, etc. 

1. Initialization: 
⎣ ⎦|)),(|(maxlog 2 jicoeffn =  

LIP=All elements in H 
LSP=Empty 
LIS= D’s of Roots 
2. Sorting pass (Significance map Encoding): 
A) Process LIP 
For each coeff (i, j) in LIP 
 Output Sn (i, j) 
 If Sn (i, j)=1 
  Output sign of coeff (i, j):0/1=-/+ 
  Move  (i, j) to LSP 
 End if 
End loop over LIP 
B) Process LIS 
For each set (i, j) in LIS 
 If (entry is of type D)  

Send Sn (D (i, j)); Where 
{ }
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If Sn (D (i, j))=1    
 For each ),(),( jiOlk ∈   

   Output Sn (k, l) 
   If Sn (k, l)=1, then add (k, l) to the LSP and output sign of coeff:0/1=-/+ 
 If Sn (k, l)=0, then add (k, l) to the end of LIP 
 End for 
 End if 
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            Else (entry is of type L) 
Send Sn (L (i, j)) 
If Sn (L (i, j))=1 
Add each ),(),( jiOlk ∈  to the end of LIS as entry of type D 
Remove (i, j) from LIS 

End if on type 
End loop over LIS 
 
C) Refinement Pass: 
Process LSP 
For each element (i, j) in LSP (except those just added above) 
 Output the nth MSB of coeff 
End loop over LSP 
Threshold Update: Decrement n by 1. 
 Go to Significance map encoding step 
 
 
5.4 Working of SPIHT 
 
SPIHT Sorting Pass: 
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SPIHT Refinement Pass: 

 
5.5 SPIHT Example: 
 

 
1. Initialization: 
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2. Iteration 1 
After First sorting Phase: 
n=4;Threshold=16 
 

 
 
 After First Refinement Phase: 

 
3. Iteration 2 
During Second Sorting Pass: 
n=3; Threshold=8 
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After second Sorting Pass: 
 

 

 
 
4.Iteration 3 
During Third Sorting Pass: 

n=2;Threshold=4 
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After Third Sorting Pass: (Final Result) 
Threshold=4 
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Chapter 6: 
Software Implementation of Wavelet transform based embedded Image Codec 
 
This chapter provides the implementation details of the Wavelet transform based 
embedded Image Codec. This software is implemented in MATLAB6p5, which 
performs the efficient and fast compression of gray images. 
 
6.1 Implementation Overview 
The block diagram of the Image codec implemented in this thesis is as follows: 
 
 
 
 
Input Image Compressed Reconstructed 
 Bit-Stream Image 
 
 
 
 

Figure 5.1 Block diagram of an Image Codec 
 
 
 
 Wavelet 
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Figure 6.2 Wavelet transform based embedded Image Codec 
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The image compression and decompression toolbox developed here consists of following 
parts: 

A) Image Encoder: This is the first part of Image Codec, which performs the image 
compression and consists of following parts: 

       A.1 Routine for reading raw square (NxN) gray images. 
A.2 Routine for performing multilevel 2D DWT (Discrete Wavelet transform) 
decomposition of image. This routine decomposes the input image at the desired 
level of decomposition and generates the wavelet coefficients cA, cH, cV, cD for 
the corresponding image. Max number of decomposition level ⎣ ⎦Nn 2log= ; 
where NxN is the size of image.  2D DWT of the image at various level of 
decomposition generates the octave band structure and the strength of the octave-
band scheme is that it is simple and it has a rather low complexity while still 
being effective. 
The wavelet coefficients generated depends upon the type of filters used in DWT. 
In the DWT the various WAVELET FILTERS [6,7,11] used for decomposition 
are Haar, Daubechies (db2, db3, db4, db5, db6, db7, db8, db9, db10), symlets and 
the bi-orthogonal 4.4filter (also referred to as the Daubechies 9/7 tap filter). These 
filters are applied in successive dimensions as described in Chapter 3. Haar, 
Daubechies and symlets are derived from an orthogonal wavelet basis. The bi-
orthogonal 4.4 filter is derived from a bi-orthogonal wavelet basis [9]. The 
corresponding wavelets show symmetry and this filter is therefore a linear phase 
filter, which allows for a non-expansive symmetric extension transform to be 
constructed (Haar wavelet has also this property). This non-expansive transform 
is crucial since SPIHT is used to code the transformed structure. 

A.3 Routine for SPIHT Quantization and Encoding which performs 
qunatization and encoding of wavelet coefficients obtained in previous step A.2 
generates the encoded bit stream which is used by the SPIHT Decoder in Decoder 
of Image to reconstruct the image. SPIHT [3] algorithm used for quantization and 
coding of the wavelet coefficients is a high performance coder with the property 
of producing embedded bit-streams. It is also simple and intuitive and utilizes 
inter-band dependencies without the use of specially tuned entropy coders based 
on contexts. SPIHT [3] assumes that the decomposition structure fed to it is an 
octave-band structure as obtained in step A.2. 

 
 B) Image Decoder: This is the Second part of Image Codec, which performs the 
image decompression and consists of following parts: 

B.1 Routine for SPIHT Decoder, which decodes the received encoded bit-
stream in to its corresponding wavelet coefficients. 

B.2 Routine for 2D multilevel IDWT (Inverse Discrete Wavelet transform), 
whose inputs are wavelet coefficients obtained in step B.1, which 
reconstruct the image at the decoder end. For IDWT same filter are used 
as in DWT.  
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6.1.1 Steps involved in image compression (Encoder): 
 

 
  Input Image (NxN)                      2D DWT: Apply 1D                 Image after First level  

       DWT in each row then of DWT Decomposition 
                                                       in each column 
 

 
  

 
Image After Second level  Image After Third level  Image after nth level of 
Of Decomposition                     Of  Decomposition Decomposition 

                                                                  
 
 
 
 
 To decoder 
Steps for decompression 
 
 
 
 

Figure 6.3 
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6.2 Implementation Details: 
      All the function and routines are developed in MATLAB6P5. 
6.2.1 Wavelet Transform based Embedded Image Encoder and Decoder Functions 
a) Reading the input image: 
a.1 function Result = funRead(filename, nSize, nRow, nColumn) 
This function reads a RAW format gray scale image from disk. 
Input to function:    
        filename: input file 
        nSize : size of the output image  
        nRow: row of the output image 
        nColumn: column of the output image 
Output of function: 
          Result: output data in matrix format 
a.2 For reading the standard format (TIF,GIF,JPG,PNG ,BMP etc)input images 
Following inbuilt MATLAB functions can be used: 
[im]=imread (‘input file name’); 
Or imshow (‘input file name’), [im]=getimage; 
 
b) 2D  Multilevel  Wavelet Transform: 
To perform the 2D multilevel wavelet decomposition of the input image following 
function are designed and used: 
b.1 function [IW , S] = funDWT(I, level, Lo_D, Hi_D); 
 This function performs the  2D Wavelet decomposition and uses the function  
[c,s] = funwavedec2(x,n,varargin) 
Input to the function:    
I: input image 
level: wavelet decomposition level 
Lo_D: low-pass decomposition filter 
Hi_D: high-pass decomposition filter 
Output of the function: 
IW: decomposed image vector 
S: corresponding bookkeeping matrix 
b.2 function [c,s] = funwavedec2(x,n,varargin) 
This is multilevel 2-D wavelet decomposition function used by funDWT( ). 

[C,S] = funwavedec2(X,N,’wname’) returns the wavelet decomposition of the matrix X 
at level N, using the wavelet named in string ‘wname ‘ (Pl refer MATLAB function 
WFILTERS),Outputs are the decomposition vector C and the corresponding bookkeeping 
matrix S. N must be a strictly positive integer . 

Instead of giving the wavelet name, one can give the filters. 

For [C,S] = funwavedec2 (X, N, Lo_D, Hi_D ),Lo_D is the decomposition low-pass filter 
and Hi_D is the decomposition high-pass filter. 

The output wavelet 2-D decomposition structure [C,S] contains the wavelet 
decomposition vector C and the corresponding bookkeeping matrix S. 
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Vector C is organized as: 
C = [ A(N) | H(N) | V(N) | D(N) | ... H(N-1) | V(N-1) | D(N-1) | ...  | H(1) | V(1) | D(1) ]. 
 where A, H, V, D, are row vectors such that:  A = approximation coefficients, 
 H = horizontal. detail coefficients, V = vertical detail coefficients, D = diagonal detail 
coefficients and  each vector is the vector column-wise storage of a matrix.  
 Matrix S is such that: 
S(1,:) = size of approximation coefficients(N) 
S(i,:) = size of detail coefficients (N-i+2) for i = 2,...,N+1 and  
S(N+2,:) = size(X). 
c) SPIHT Encoding: 
function out = SPIHTEnc (m, max_bits, block_size, level) 

This function performs SPIHT quantization and Encoding; at the specified level of 
decomposition for the given rate i.e. max no of bits provided for image at a particular 
compression ratio defined by bit rate; and generates the embedded bit stream. 

Input to the function:    
m: input image in wavelet domain i.e. IW output of funDWT. 
max_bits: maximum bits can be used;  
max_bits = floor (rate * OrigSize^2) where rate is bit rate in bits per pixel 
(i.e. bpp=0.1,0.2,0.3,….1.0 )which specifies the compression ratio.  
block size: image size (NxN) 
level: wavelet decomposition level; 
level= ⎣ ⎦Nn 2log=  
Output of the function:    
out: bit stream 

d) SPIHT Decoding: 
function m = SPIHTDec (in) 
This function decodes the encoded bit stream obtained from function SPIHTEnc( ) and 
generates its corresponding wavelet coefficients i.e. reconstructs the output image in 
wavelet domain. 

Input to the function: 
in : bit stream i.e.  output of SPIHTEnc( ). 
Output of the function: 
   m : reconstructed image in wavelet domain 
 For the initialization of this function image size, number of bit plane, wavelet 
decomposition level should be written as bit stream header. 
e) Inverse Wavelet transforms: 
e.1 function imrec = InvDWT (I_W, S, Lo_R, Hi_R, level) 
This function performs the inverse wavelet decomposition and reconstructs the original 
image. 
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Input to the function:  
IW: decomposed image vector 
S: corresponding bookkeeping matrix 
Lo_D: low-pass decomposition filter 
Hi_D: high-pass decomposition filter 
level: wavelet decomposition level 
 
Output of the function:   
 imrec : reconstructed image 
e.2 To perform the multilevel 2D inverse DWT the; InvDWT( ) function uses the 
following functions: 
function x = funwaverec2(c ,s, varargin ) 
This function performs a multilevel 2-D wavelet reconstruction using either a specific 
wavelet ('wname') or specific reconstruction filters (Lo_R and Hi_R). 
For example X = funwaverec2(C, S, 'wname') reconstructs the matrix X based on the 
multi-level wavelet decomposition structure  [C, S ] . 
For example X = funwaverec2(C, S, Lo_R, Hi_R), Lo_R is the reconstruction low-pass 
filter and 
Hi_R is the reconstruction high-pass filter. 
 
e.3 The function funwaverec2( ) uses the following function: 
function a = funappcoef2(c, s ,varargin) 
This function Extract 2-D approximation coefficients and computes the approximation 
coefficients of a  two-dimensional signal. 
For example  A = funappcoef2(C, S, 'wname', N) computes the approximation 
coefficients at level N using the wavelet decomposition structure [C,S],'wname' is a string 
containing the wavelet name, Level N must be an integer such that 0 <= N <= size(S,1)-2 
and A = funappcoef2(C, S, 'wname') extracts the approximation coefficients at the last 
level size(S,1)-2. 
Instead of giving the wavelet name, one can give the filters: 
For example  A = funappcoef2(C, S, Lo_R, Hi_R) or  
A = funappcoef2(C, S, Lo_R, Hi_R, N),where  Lo_R is the reconstruction low-pass filter 
and Hi_R is the reconstruction high-pass filter. 
f) Main Function: 
function [MSE, RMSE, PSNR, SNR, imgSPIHT]=SPIHTMain (file, rate, filtertype ) 
This is the main function of the image codec, which performs the compression, and 
decompression of the input image. It is used for the evaluation of performance 
metric(PSNR,SNR,RMSE,MSE) of the designed codec at the specified bit rate i.e. bits 
per pixel. 
Input to the function: 
File: Input NxN image 
Rate: bits per pixel e.g. 0.1,0.2,0.3…1.0 
Filtertype: Wavelet filter applied for the decomposition e.g. bior4.4, haar, daub9/7, 
daub5/3 etc 
Output of the function: 
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ImgSPIHT: Output image matrix 
 
MSE: Mean Squared Error 
RMSE: Root mean squared error 
PSNR: Peak Signal to noise ratio 
SNR: Signal to noise ratio 
This program also plots the original image, image after multilevel decomposition at a 
specified level ,Output of SPIHT decoder and reconstructed image. Values obtained here 
will also be used to plot the various performance measurement graphs e.g. bpp Vs MSE, 
bpp Vs PSNR etc. 
Various wavelet filter coefficients used in this thesis for performance evaluation are 
given in Appendix ‘A’. 
Results and performance evaluation of the Wavelet Transform based Embedded Image 
Codec is discussed in next chapter 7. 
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Chapter 7:  

Results, Performance Evaluation and Conclusion  
 
This chapter discusses the results for the Wavelet transform based Embedded Image 
Codec which uses SPIHT [3] based quantization and coding. Performance of the 
designed codec is evaluated by performing series of simulations on different images for 
different wavelet filters [6]  with and without the use of lifting scheme [15] at different 
decomposition levels and at various compression ratios. Various performance 
measurement metrics are discussed in chapter 2. Low values of MSE and RMSE are 
desirable. High values of PSNR and SNR are desirable.  

7.1 Test Settings: 
• All images have been chosen so that the dimensions are powers of two. This 

gives the largest possible number of levels in the decomposition (the largest 
number of levels is the number of times the original data dimensions can be 
divided by two with integer result. 

 Max no. of decomposition levels= ⎣ ⎦N2log ;where NxN is the size of image. 
 
• As a compression measurement Bits Per Pixel (BPP) or Bit Rate is chosen. This 

compression measurement is dependant of the number of bits used to represent 
the original signal (image) samples.  
Bit Rate for gray image=BPP(bits per pixel)=8/CR; Where CR is the      
compression ratio. 

Maximum bits that can be used is defined as:  
Max bits = floor (rate * N*N) ;where rate is bit rate in bits per pixel 
(i.e. BPP=0.1,0.2,0.3,….1.0 )which specifies the compression ratio. 

 
• Various orthogonal and bi-orthogonal [9] Wavelet filters [6] are chosen for 

decomposing the image and evaluating the performance. For Example Haar, db2, 
db5, Symlets and Bior4.4. A lifting implementation of CDF(9,7) [9]wavelet filter 
is also presented. The Low pass and High pass filter values, for analysis 
(decomposition) and synthesis (reconstruction), of these filters are provided in 
chapter6. 
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7.2 Results: Without using lifting scheme for wavelet filters 
7.2.1 Results for 512x512 gray image Lena.jpg for the different wavelet filters  
A) Wavelet Filter applied ‘Haar’ 

 
Figure 7.1 BPP Vs MSE Graph, 512x512,Lena.jpg image at different level of 
decompositions, filter applied Haar 

 
Figure 7.2 BPP Vs PSNR Graph, 512x512,Lena.jpg image at different level of 
decompositions, filter applied Haar 
 



 78

 
 
 

Figure 7.3: Output of SPIHT coder for Lena image at third level of decomposition 
,filter applied Haar 
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Figure 7.4: Input and Output of SPIHT based image codec for Lena image at third 
level of decomposition, filter applied Haar 
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B) Wavelet Filter applied Daubechies ‘db5’ 
 

 
Figure 7.5 (a) BPP Vs MSE graph of Lena.jpg for Daubechies wavelet filter db5 at 
different level of decompositions. 

 
Figure 7.5 (b) BPP Vs PSNR graph of Lena.jpg for wavelet filter db5 at different level of 
decompositions. 
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B) Wavelet Filter applied ‘Biorthogonal (CDF 9/7)’, bior4.4 

 
Figure7.6: BPP Vs MSE and BPP Vs PSNR graph of Lena.jpg for wavelet filter 
BIOR4.4 at max level of decomposition, L=9 
 
C) Performance comparison of different wavelet filters for the image (512x512) 
Lena.jpg at max level of decomposition, 9 

 
Figure7.7: BPP Vs MSE graph for Lena.jpg for different filters at max level of 
decomposition,9. 
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Figure7.8: BPP Vs PSNR graph for Lena.jpg for different filters at max level of 
decomposition,9. 
7.2.2 Results for 512x512 gray raw image ‘Lena.raw’ for the different wavelet filters 

 
Figure 7.9:  BPP Vs PSNR graph for Lena.raw (512x512) for different wavelet filters 
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Figure 7.10: BPP Vs MSE graph for image Barbara.raw for different wavelet filters at 
max level of decomposition, 9. 
7.2.3 Results for 512x512 gray raw image ‘Brabara.raw’ for the different wavelet 
filters 

 
Figure 7.11  BPP Vs PSNR graph for image Barbara.raw for different wavelet filters at 
max level of decomposition, 9. 
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 Figure 7.12: BPP Vs MSE graph for gray raw image Barbara.raw for different wavelet 
filters at max level of decomposition, 9. 
 

 
Figure7.13: Output of SPIHT based image codec  at max level of decomposition,9, 
filter applied BIOR4.4 
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7.3 Results: Using lifting scheme for wavelet filters 
 
This section discusses the results and performance analysis of the designed image codec 
where lifting scheme [15] is used to derive the wavelet filters [9,15] for wavelet 
transform of the image. A, lifting version of bi-orthogonal filter CDF (9,7) (i.e.bior4.4) 
[9] is implemented and an analysis is performed. The function inputs are an image X and 
a number N. The output is the N-stage forward transform of X. While many wavelet 
packages use periodic boundary handling, this function uses symmetric boundary 
handling. As images are generally not periodic, this is more appropriate and has superior 
image compression capabilities.  
 
7.3.1 Comparison of Results for 512x512 image lena.png, using lifting scheme 

 
Figure:7.13( a)  BPP Vs PSNR graph (Comparison of lifting and non-lifting scheme 
version) 
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 Figure:7.13( b)  BPP Vs PSNR graph (Comparison of lifting and non-lifting scheme at 
various level of decompositions for 512x512 image, L –Level of decomposition for 
lifting version and nL  level of decomposition for non lifting version 
 
7.3.2 Comparison of Results for 128x128 image 6.tif, using lifting scheme 

 
Figure:7.14 (a) BPP Vs PSNR graph (Comparison of lifting and non-lifting scheme at 
various level of decompositions for 128x128 image) 
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Figure:7.14 (b) BPP Vs PSNR graph (Comparison of lifting and non-lifting scheme 
at various level of decompositions for 128x128 image) 
 
7.4 Performance analysis: 
Simulation Results for the performance evaluation of  “DWT based embedded image 
codec” for different wavelet filters at different level of decompositions using lifting 
and non-lifting techniques are included in Appendix-B. 
 
7.4.1 For Non-lifting version implementation of wavelet filters 
• Effect of total number of wavelet decompositions: 
Figure 7.1 is a graph between BPP (bits per pixel) and MSE, whereas Figure 7.2 is a 
graph between BPP and PSNR at different level of decompositions of image using 
Haar Wavelet. Figure 7.5 is a graph between BPP (bits per pixel) Vs MSE, and BPP 
Vs PSNR at different level of decompositions of image using Daubechies Wavelet 
(db5) for the image lena.jpg . 
In all these graphs, at level 3 of decomposition the value of PSNR increases with the 
increase of BPP value. Change in the value of PSNR at levels 5,7 and 9 are nearly 
same. There is significant difference of PSNR values at level 3 and levels5, 
7,9.Hence it can be concluded that a good performance can be achieved at level 5 
without decomposing the image at further levels thereby computational complexity 
can be reduced and system resources can be utilized efficiently. 
• Effect of bit rate (compression ratio) on MSE and PSNR values for 
theSPIHT based Coder: As it can be seen from the various graphs that PSNR 
increases with bit rate but a good compression of 80% can be achieved at a bit rate of 
0.1 with acceptable PSNR value. For the lena.jpg image the PSNR values for 
different wavelet filters [6] at 80% compression ratio are: 75.0566 dB for Haar 
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wavelet, 76.9106 dB for db5, 77.4527 dB for bior4.4 wavelet filter which are far 
better. For the lena.raw image the PSNR values for different wavelet filters [6] at 
80% compression ratio are : 26.929 dB for Haar wavelet, 28.077 dB for db2, 28.769 
dB for symlet5, 29.32 dB for bi-orthogonal wavelet bior4.4.For the barabra.raw 
image the PSNR values for different wavelet filters [6] at 80% compression ratio are: 
22.672 dB for Haar wavelet, 23.344 dB for db2 wavelet, 23.748 dB for db5, 23.686 
dB for sym5 and 23.786 dB for bior4.4.The PSNR values obtained for Lena and 
Barbara raw gray images are far better as found in literatures that uses another 
quantization and coding method. Hence, with the help of SPIHT based coder better 
result can be obtained. 
• Effect of various wavelet filters on the performance: Figure 7.9,7.11 provides 
the comparative performance of various wavelet filters [6] Haar, db2, symlets5, 
bior4.4.The performance order achieved is Haar<db2<db5<symlets5<bior4.4 i.e. 
again bi-orthogonal wavelet filters CDF(9,7) [9] are more better but symlet family of 
wavelets [6] are not more behind. As, it can be seen from the various graphs and 
values listed that Bi-orthogonal filter bior4.4 is far better than the other wavelet filters 
though good results can also be achieved with the help of Daubechies family of 
wavelets, Symlet and Haar wavelets. These good performances are achieved at the 
cost of extra computations. Among all of the wavelet filters Haar is very simple from 
implementation point of view but it does not provide good results. Hence for those 
applications where performance is critical and data loss is not acceptable Bior4.4 i.e. 
CDF(9,7) [9]should be used. 

7.4.2 Analysis for Lifting version implementation of bi-orthogonal wavelet filter 
CDF (9,7) 

• Effect of lifting on performance (PSNR) of the codec:The section 7.3 presents 
the results and performance analysis of the designed image codec where lifting 
scheme [15] is used to derive the wavelet filters for wavelet transform of the image. 
A, lifting version of bi-orthogonal filter CDF (9,7) (i.e.bior4.4) is implemented and an 
analysis is performed. From graphs of figure 7.13 and 7.14, it can be concluded that 
the performance of the coder can be further increased by using lifting scheme for the 
implementation of the wavelet transforms for the images of larger size(512 x512 
,1024x1024 ). Though there is a very little improvement on performance for the 
images of little sizes e.g. 128x128.Hence lifting scheme improves the performance of 
the codec for images of larger size. 
• Effect of lifting on speed and computational complexity: It has been observed 
through series of simulations on different size of images that images size below 
256x256 transform quickly, while larger images take a few seconds. The lifting 
scheme [15] makes optimal use of similarities between the high and low pass filters to 
speed up the calculation. In some cases the number of operations can be reduced by a 
factor of two. 
• The lifting scheme [15] allows a fully in-place calculation of the wavelet 
transform. In other words, no auxiliary memory is needed and the original signal 
(image) can be replaced with its wavelet transform. 
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Conclusion: 

Hence at last it can be concluded that the performance of the SPIHT based embedded 
image codec for the compression and decompression of images are very good and 
efficient for biorthogonal family of filters that uses lifting scheme specially for 
bior4.4 i.e. CDF(9,7) which allows perfect reconstruction of image. 
 SPIHT quantization and encoding technique achieves good performance by 
exploiting the spatial dependencies of the DWT coefficients in different sub-bands 
i.e. it takes in to account the intra-band dependencies. Further for the better 
performance and reducing the computational complexity of the coder the desired 
number of decomposition levels i.e. wavelet transform levels is found to be 
approximately abs(N/2)+2 for an image of size NxN (i.e.for 512x512 image the 
desired level of decomposition is 6).Lifting scheme  implementation of the 
biorthogonal wavelet filter CDF(9,7)  improves the performance of the codec for 
images of larger size as well as speed up the calculation. In some cases the number of 
operations can be reduced by a factor of two. Further the lifting scheme allows a fully 
in-place calculation of the wavelet transform. In other words, no auxiliary memory is 
needed and the original signal (image) can be replaced with its wavelet transform. 
This codec can be used for those applications where performance is critical and data 
loss is not acceptable to greater extent. 
 

Future Work:  
The Discrete Wavelet Transform based Embedded Image codec, which uses SPIHT 
based quantization and coding, developed in this thesis can be used for those applications 
where performance is critical and data loss is not acceptable to greater extent. This coder 
works for square 2D Gray images. 
The performance of this SPIHT based codec can be more increased by including the 
arithmetic coding phase after SPIHT [2,3] encoding. 
Since this codec performs compression and decompression of only gray 2D images, it can 
be further extended to perform compression and decompression of color RGB images. 
This can be done by separately transforming the each R,G and B channels and then 
applying SPIHT quantization and coding to wavelet coefficients of each R,G and B 
channels. 
Concept of SPIHT quantization and coding can also be extended and applied for the 
compression and decompression of 3D image stacks e.g. medical images. 
The Wavelet based applications can also be developed by using re-configurable 
computing (Hardware) approach and can be implemented using FPGAs for very complex 
problems to achieve best results. 
At last, I would like to say that Wavelet Theory and applications is a very vast field and it 
is a rich area of active research in the field of Digital Signal Processing, Statistical signal 
processing, Image processing and multimedia technology.   
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Appendix-A 

Various wavelet filters (without lifting scheme) used in this thesis for 2D DWT: 
Where the four output filters for a specific wavelet filter are: 
        LO_D, the decomposition low-pass filter 
        HI_D, the decomposition high-pass filter 
        LO_R, the reconstruction low-pass filter 

              HI_R, the reconstruction high-pass filter 
Wavele
t Filter 

LO_D HI_D LO_R HI_R 

Haar [0.7071,0.7071] [-.7071,0.7071] [0.7071,0.7071] [0.7071,-.7071] 
db1 [0.7071,0.7071] [0.7071,0.7071] [0.7071,0.7071] [0.7071,-.7071] 
db2 [-

.1294,0.2241,0.8365, 
0.4830] 

[-.4830,0.8365,  
-0.2241,-.1294] 

[0.4830,0.8365, 
0.2241,-0.1294] 

[-0.1294,-0.2241, 
0.8365,-0.4830] 

db3 [0.0352,-0.0854,-
.1350, 
0.4599, 
0.8069,0.3327] 

[-0.3327,0.8069, 
 -0.4599,-0.1350, 
0.0854,0.0352] 

[0.3327,0.8069, 
0.4599,-0.1350,  
-0.0854,0.0352] 

[0.0352,0.0854, 
 -0.1350,-0.4599, 
0.8069 , -0.3327] 

db4 [-0.010597,0.032883, 
  0.030841,-0.18703, 
-0.027984,0.63088, 
 0.71485,0.23038] 

[-0.23038,0.71485, 
 -0.63088,-
0.027984, 
  0.18703,0.030841, 
 -0.032883,-
0.010597] 

[0.23038,0.714
85,0.63088,-
0.027984,-
0.18703,0.0308
41,0.032883,-
0.010597] 

[-0.010597,-
0.032883,0.03084
1,0.18703,-
0.027984,-
0.63088,0.71485,-
0.23038] 

Bior4.4 [0,0.037828,-
0.023849,-0.11062, 
0.3774,0.8527,0.377
4 
,-0.11062, 
-0.023849,0.037828] 

[0,-
0.064539,0.040689, 
0.41809,-0.78849 
,0.41809,0.040689, 
-0.064539,0] 

[0,-0.064539, 
-0.040689, 
0.41809,0.7884
9, 
0.41809, 
-0.040689, 
-0.064539,0,0] 

0,-0.037828,-
0.023849,0.11062
, 
0.3774,-
0.8527,0.3774, 
0.11062,-
0.023849,-
0.037828 

 
Wavelet filters [6]  listed here in table are only examples. Other orthogonal filters used 
for analysis and synthesis include: db5, db6, db7, db8, db9, db10, db45 and symlets. 
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Appendix –B  
Simulation Results for the performance evaluation of  “DWT based embedded 
image codec” for different wavelet filters at different level of decompositions using 
lifting and non-lifting techniques 
 
B.1. Results for different wavelet filters using Non-lifting technique for ‘lena.png’, 
512x512 image 
B.1.1 Wavelet Filter Applied =Haar 
No of decomposition levels, L=3 L5: 

 
 
 
 
 
 
 
 
 
 
 
 

 
 No 0f decomposition levels ,L=7             L9(max level of decomposition): 

BPP MSE PSNR[dB] 
0.1 0.0020 75.0566 
0.2 0.0012 77.4465 
0.3 7.6863e-004 79.2736 
0.4 5.7974e-004 80.4985 
0.5 4.4171e-004 81.6794 
0.6 3.5280e-004 82.6555 
0.7 2.8588e-004 83.5690 
0.8 2.4239e-004 84.2857 
0.9 2.0617e-004 84.9884 
1.0 1.7844e-004 85.6159 

 
 
 
 
 
 
 
 
 
 

BPP MSE PSNR[dB] 
0.1   0.0025 74.1655 
0.2 0.0013 76.9896 
0.3 8.6220e-004 78.7747 
0.4 6.1246e-004 80.2601 
0.5 4.7017e-004 81.4082 
0.6 3.7683e-004 82.3694 
0.7 3.0144e-004 83.3388 
0.8 2.5159e-004 84.1238 
0.9 2.1631e-004 84.7801 
1.0 1.8449e-004 85.4712 

BPP MSE PSNR[dB] 
0.1 0.0794 59.1342 
0.2 0.0234 64.4300 
0.3 0.0083 68.9572 
0.4 0.0041 71.9723 
0.5 0.0025 74.1361 
0.6 0.0016 76.2047 
0.7 0.0012 77.4087 
0.8 8.0858e-004 79.0536 
0.9 6.0736e-004 80.2963 
1.0 5.0684e-004 81.0821 

BPP MSE PSNR[dB] 
0.1 0.0021 75.0128 
0.2 0.0012 77.4273 
0.3 7.7178e-004 79.2559 
0.4 5.8185e-004 80.4827 
0.5 4.4276e-004 81.6691 
0.6 3.5395e-004 82.6414 
0.7 2.8669e-004 83.5567 
0.8 2.4276e-004 84.2791 
0.9 2.0669e-004 84.9777 
1.0 1.7868e-004 85.6101 
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B .1.2 Results for 512x512 Lena.jpg for wavelet filter db5: 

No 0f decomposition levels, L =3  L=5 
BPP MSE PSNR[dB] 
0.1 0.0017 75.8492 
0.2 7.7701e-004  79.2266 
0.3 4.6198e-004 81.4845 
0.4 3.4326e-004  82.7746 
0.5 2.5483e-004 84.0683 
0.6 2.0707e-004 84.9696 
0.7 1.7477e-004 85.7062 
0.8 1.5212e-004 86.3090 
0.9 1.2903e-004 87.0240 
1.0 1.1246e-004 87.6208 

 
 

No 0f decomposition levels , L =7  L=9 
BPP MSE PSNR[dB] 
0.1 0.0013    76.9106 
0.2 6.8652e-004  79.7643 
0.3 4.2864e-004 81.8099 
0.4 3.2100e-004 83.0657 
0.5 2.3945e-004 84.3387 
0.6 1.9756e-004  85.1739 
0.7 1.6840e-004 85.8675 
0.8 1.4775e-004 86.4356 
0.9 1.2445e-004 87.1810 
1.0 1.0886e-004  87.7619 

 
 
B.1.3  Results for 512x512 Lena.jpg for wavelet filter BIOR4.4 at max level of 
decomposition, L=9: 

 
 
 
 
 
 
 
 
 
 
 

BPP MSE PSNR[dB]
0.1 0.2717 53.7906 
0.2 0.0777    59.2270 
0.3 0.0220 64.6968 
0.4 0.0075 69.3878 
0.5 0.0033 72.8852 
0.6 0.0020  75.1821 
0.7 0.0012 77.5155 
0.8 7.9048e-004  79.1519 
0.9 5.2092e-004  80.9631 
1.0 3.9010e-004 82.2190 

BPP MSE PSNR[dB]
0.1 0.0013    76.8419 
0.2 6.9083e-004 79.7371 
0.3 4.3056e-004  81.7905 
0.4 3.2179e-004 83.0551 
0.5 2.4020e-004 84.3251 
0.6 1.9797e-004 85.1648 
0.7 1.6876e-004 85.8581 
0.8 1.4799e-004  86.4284 
0.9 1.2464e-004  87.1741 
1.0 1.0903e-004 87.7553 

BPP MSE PSNR[dB]
0.1 0.0012 77.4527 
0.2 5.9789e-004 80.3646 
0.3 3.9766e-004 82.1357 
0.4 2.8513e-004 83.5803 
0.5 2.2042e-004 84.6983 
0.6 1.8459e-004 85.4687 
0.7 1.5802e-004 86.1437 
0.8 1.3676e-004 86.7712 
0.9 1.1770e-004 87.4231 
1.0 1.0444e-004 87.9423 
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B.1.4 Results for 512x512 Lena.raw for different wavelet filters at max level of 
decomposition, L=9: 

A) Wavelet Filter applied=Haar 

BPP CR=8/BPP MSE PSNR SNR RMSE 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

80 
40 
26.667 
20 
16 
13.33 
11.42 
10 
8.89 
8 

131.88  
76.331  
49.915  
37.642  
28.66  
22.829  
18.502  
15.692  
13.31  
11.578 

 

26.929  
29.304  
31.149  
32.374  
33.558  
34.546  
35.459  
36.174  
36.889  
37.494 

 

2.7932e-006 
4.8261e-006 
7.3801e-006 
9.7863e-006 
1.2854e-005 
1.6136e-005 
1.9911e-005 
2.3475e-005 
2.7676e-005 
3.1817e-005 

11.484 
8.7367 
7.065 
6.1353 
5.3535 
4.778 
4.3014 
3.9613 
3.6483 
3.4027 

 
 

B) Wavelet Filter applied=db2 

BPP CR=8/BPP MSE PSNR SNR RMSE 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

80 
40 
26.667 
20 
16 
13.33 
11.42 
10 
8.89 
8 

101.24 
54.087  
34.417 
25.703 
19.334  
15.407  
13.044  
11.13  
9.8128  
8.2723 

 

28.077 
30.8  
32.763  
34.031  
35.268  
36.254  
36.977  
37.666  
38.213  
38.955 

 

3.6387e-006 
6.8108e-006 
1.0703e-005 
1.4332e-005 
1.9053e-005 
2.391e-005 
2.8241e-005 
3.3097e-005 
3.754e-005 
4.4531e-005 

10.062 
7.3544 
5.8666 
5.0698 
4.3971 
3.9252 
3.6116 
3.3362 
3.1325 
2.8762  
 

C) Wavelet Filter applied=Symlet5 

BPP CR=8/BPP MSE PSNR SNR RMSE 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

80 
40 
26.667 
20 
16 
13.33 
11.42 
10 
8.89 
8 

86.333  
43.623  
28.106  
20.838  
15.698  
12.916  
10.994  
9.6366 
8.0956  
7.0729 
 

28.769  
31.734  
33.643  
34.942  
36.172  
37.02  
37.719  
38.292  
39.048  
39.635 
 

4.2669e-006 
8.4445e-006 
1.3107e-005 
1.7678e-005 
2.3467e-005 
2.8522e-005 
3.3506e-005 
3.8227e-005 
4.5503e-005 
5.2083e-005 
 

9.2916 
6.6048 
5.3015 
4.5649  
3.962 
3.5938 
3.3158 
3.1043 
2.8453 
2.6595 
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D) Wavelet Filter applied=Bior4.4 

BPP CR=8/BPP 
MSE PSNR SNR RMSE 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

80 
40 
26.667 
20 
16 
13.33 
11.42 
10 
8.89 
8 

76.043  
38.721  
25.691  
18.387  
14.246  
11.899  
10.19  
8.76  
7.5633  
6.7242  
 

29.32  
32.251  
34.033  
35.486  
36.594  
37.376  
38.049  
38.706  
39.344  
39.854 
 

4.8443e-006 
9.5137e-006 
1.4339e-005 
2.0035e-005 
2.5858e-005 
3.096e-005 
3.6151e-005 
4.2052e-005 
4.8706e-005 
5.4783e-005 

8.7 
6.2226 
5.0686 
4.288 
3.7744 
3.4494 
3.1922 
2.9597 
2.7501 
2.593 

 
B.1.5 Results for 512x512 Barbara.raw for different wavelet filters at max level of 
decomposition, L=9  
A) MSE and PSNR 

                     MSE(Barbara.raw)                                  PSNR Bpp
rate Haar DB2 DB5 SYM5 Haar DB2 DB5 SYM5 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

351.49
239.38
180.47
145 
112.35
87.068
71.226
58.769
47.758
39.448 

301.08
190.1 
139.14
104.51
76.556
60.512
48.905
39.228
31.738
25.477 

274.35 
163.83 
113.21 
80.773 
58.439 
44.734 
35.18 
27.855
22.136 
17.953 

278.29
166.02
116.12
83.225
60.505
46.961
36.905
29.367
23.293
19.161 

22.672 
24.34 
25.567 
26.517 
27.625 
28.732 
29.604 
30.439 
31.34 
32.171
 
 

23.344 
25.341 
26.696 
27.939 
29.291 
30.312 
31.237 
32.195 
33.115 
34.069 

23.748 
25.987 
27.592 
29.058 
30.464 
31.624 
32.668 
33.682 
34.68 
35.589 
 

23.686
25.929
27.482
28.928
30.313
31.413
32.46 
33.452
34.459
35.307 

RMSE and SNR: 
                                     SNR(Barbara.raw)                  RMSE Bpp

rate Haar DB2 DB5 SYM5 Haar DB2 DB5 SYM5 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

1.0465e-006 
1.5366e-006 
2.0382e-006 
2.5369e-006 
3.2742e-006 
4.2248e-006 
5.1645e-006 
6.2592e-006 
7.7023e-006 
9.3249e-006 

1.2217e-006 
1.935e-006 
2.6438e-006 
3.5198e-006 
4.805e-006 
6.0789e-006 
7.5216e-006 
9.3771e-006 
1.159e-005 
1.4438e-005

1.3408e-006 
2.2452e-006 
3.2493e-006 
4.5541e-006  
6.2946e-006 
8.223e-006  
1.0456e-005 
1.3206e-005 
1.6618e-005 
2.0489e-005

1.3218e-006 
2.2157e-006 
3.1677e-006 
4.4199e-006 
6.0796e-006 
7.8331e-006 
9.9674e-006 
1.2526e-005 
1.5792e-005 
1.9198e-005

18.748
15.472
13.434
12.042
10.599
9.331 
8.4396
7.6661
6.9107
6.2808 

17.352 
13.788
11.796
10.223
8.7496
7.7789
6.9932
6.2632
5.6336
5.0475 

16.563
12.8 
10.64 
8.9874
7.6445
6.6883
5.9313
5.2777
4.7049
4.2371 

16.682
12.885
10.776
9.1228
7.7785
6.8528
6.075 
5.4191
4.8263
4.3773 
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B) Results for 512x512 Barbara. raw for BIOR 4.4 filter at max level of 
decomposition, L=9  

 BPP CR=8/BPP MSE PSNR SNR RMSE 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

80 
40 
26.667 
20 
16 
13.33 
11.42 
10 
8.89 
8 

271.97 
163.83 
111.28 
76.211 
56.244 
43.662 
33.847 
26.347 
21.451 
17.599 
 

23.786 
25.987 
27.667 
29.311 
30.63 
31.73 
32.836 
33.923 
34.816 
35.676 

1.3525e-006 
2.2453e-006 
3.3057e-006 
4.8267e-006 
6.5402e-006 
8.4248e-006 
1.0868e-005 
1.3962e-005 
1.7148e-005 
2.0902e-005 
 

16.491 
12.8 
10.549 
8.7299 
7.4996 
6.6077 
5.8178 
5.133 
4.6315 
4.1951 

 
B.2 RESULTS: Using LIFTING   Technique for wavelet filter CDF(9,7),for 
‘Lena.png’ (512x512) image at various levels of decomposition 
L2:Second level of decomposition  L3: 

bpp mse psnr snr 
0.1 0.080175 59.09 0.002309 
0.2 0.023301 64.457 0.0079449 
0.3 0.0074095 69.433 0.024985 
0.4 0.0032706 72.984 0.056602 
0.5 0.0017408 75.723 0.10635 
0.6 0.0010178 78.054 0.18189 
0.7 0.0006951 79.71 0.26632 
0.8 0.0004457 81.64 0.41531 
0.9 0.0003509 82.678 0.52745 
1 0.0002554 84.058 0.72478 

L5:      L7: 
bpp mse psnr snr 
0.1 0.0010565 77.892 0.17522 
0.2 0.00053861 80.818 0.3437 
0.3 0.00036137 82.551 0.51228 
0.4 0.00026216 83.945 0.70615 
0.5 0.00020983 84.912 0.88225 
0.6 0.00017396 85.726 1.0642 
0.7 0.00015171 86.321 1.2202 
0.8 0.00012871 87.035 1.4293 
0.9 0.00011276 87.609 1.6418 
1 0.00010092 88.091 1.8343 
 

 
 
 

bpp mse psnr snr 
0.1 0.1413 56.627 0.0013093 
0.2 0.075222 59.367 0.002461 
0.3 0.075222 59.367 0.002461 
0.4 0.075222 59.367 0.002461 
0.5 0.056593 60.603 0.0032711 
0.6 0.021334 64.84 0.0086772 
0.7 0.021334 64.84 0.0086772 
0.8 0.021334 64.84 0.0086772 
0.9 0.019656 65.196 0.0094184 
1 0.0066773 69.885 0.027724 

bpp mse psnr snr 
0.1 0.0014056 76.652 0.1317 
0.2 0.0006361 80.095 0.291 
0.3 0.0003972 82.14 0.466 
0.4 0.0002863 83.562 0.64646 
0.5 0.0002191 84.723 0.8447 
0.6 0.0001829 85.507 1.0118 
0.7 0.0001567 86.178 1.1808 
0.8 0.0001353 86.816 1.3676 
0.9 0.0001166 87.462 1.5872 
1 0.0001037 87.972 1.7848 
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L8: 
bpp mse psnr snr 
0.1 0.0010429 77.948 0.17751 
0.2 0.00053626 80.837 0.34521 
0.3 0.00036039 82.563 0.51368 
0.4 0.00026151 83.956 0.70789 
0.5 0.00020945 84.92 0.88386 
0.6 0.00017377 85.731 1.0653 
0.7 0.00015159 86.324 1.2212 
0.8 0.00012854 87.04 1.4402 
0.9 0.00011261 87.615 1.6439 
1 0.00010085 88.094 1.8357 
 
B.3  Results for  non –lifting version of wavelet filter CDF(9,7) i.e. bior4.4, for the 
image ‘Lena.png’ (512x512) 
L3: 

 

 
L5:      L6: 

bpp mse psnr snr 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0012385 
0.00062381 
0.00040525 
0.00029159 
0.00022257 
0.00018648 
0.00015904 
0.00013818 
0.00011859 
0.00010494 

77.202  
80.18  
82.054  
83.483  
84.656  
85.424 
86.116  
86.726 
87.39 
87.921 

0.14947 
0.29676 
0.45682 
0.63488 
0.83176 
0.99272 
1.164 
1.3397 
1.561  
1.7641 

 
 
 
 
 

bpp mse psnr snr 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.082111 
0.02363 
0.0077318 
0.0034619 
0.0018622 
0.0011051 
0.00073514 
0.00047869 
0.0003674 
0.00026499 

58.987 
64.396 
69.248 
72.738 
75.431 
77.697 
79.467 
81.33 
82.479 
83.899 

0.0022546 
0.0078342 
0.023943 
0.053474 
0.09941 
0.16752 
0.25182 
0.38673 
0.50388 
0.69862 

bpp mse psnr snr 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0015776 
0.00069944 
0.00043358 
0.00031166 
0.00023303 
0.00019359 
0.00016333 
0.00014353 
0.00012177 
0.00010716 

76.151 
79.683  
81.76 
83.194  
84.457  
85.262  
86  
86.561  
87.275  
87.83 

0.11735 
0.26468 
0.42697 
0.59399 
0.79442 
0.95625 
1.1335  
1.2898  
1.5203  
1.7275 
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L7:      L8: 

bpp mse psnr snr 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0.0011721 
0.00059915 
0.00039799 
0.00028549 
0.0002205 
0.0001847 
0.00015805 
0.00013681 
0.00011773 
0.00010446 

77.441 
80.355 
82.132 
83.575 
84.697 
85.466 
86.143 
86.769 
87.422 
87.941 

0.15794 
0.30898 
0.46514 
0.64843 
0.83957 
1.0023  
1.1713 
1.3531  
1.5724  
1.7722 

 

bpp mse psnr snr 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.0011808 
0.00060392 
0.00039929 
0.00028632 
0.00022094 
0.00018499 
0.00015822 
0.00013709 
0.00011788 
0.00010456 

77.409  
80.321  
82.118  
83.562  
84.688  
85.459  
86.138  
86.761  
87.416 
87.937 

0.15678 
0.30654 
0.46363 
0.64656 
0.83789 
1.0007 
1.17  
1.3504  
1.5705 
1.7706 
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