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Chapter 1

Introduction

Science, engineering, medicine and many other areas deal with signals acquired in

the form of time series [1, 2]. The purpose of time series analysis is to quantify

certain features such as periodicities, spectra, attractor dimensions, extreme events,

singular points etc. Knowledge of these properties can be useful in efforts towards

prediction. The time series data may be modeled as stochastic processes [3], signals

mixed with noise [4], deterministic chaos [5] etc. In fact, time series analysis is a

very wide subject, and its historical development can be traced back to two main

sources, namely, engineering and mathematical statistics. As a result, the subject

is influenced with both engineering and statistical concepts and terminology, the

former being associated with “spectral” or “frequency domain” approach [6], [7]

and the later with “correlation” or “time domain”approach [8]. For the purpose

of the present work the frequency domain approach is chiefly adopted. In addition,

only direct estimates based on the discrete Fourier transform are pursued. The most

important task of Fourier analysis is to estimate the power spectrum of a stationary

time series from its autocorrelation function. This has been a classical problem,

ever since Wiener [9] showed the Fourier transform relationship between the power

spectrum and the autocorrelation function.

Though the Fourier transform has revolutionized the field of time series analysis

after the invention of the Fast Fourier Transform (FFT), there are several inher-

ent limitations of the FFT approach. The most prominent limitation is that of

frequency resolution, i.e., the inability to distinguish between two spectral peaks

1
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spaced closer than 1/N , N being the total number of samples in the time series [10].

For such closely spaced frequencies, the so-called multiple-window method has been

introduced by [11]. The excellent performance of this method for stationary signals

has led several groups to apply the method to time-varying spectrum estimation.

Closely spaced frequencies have been successfully separated by [12] and [13]. The

asymptotic theory of [14] shows that, in the limit of long series ( of duration T , say),

frequencies can be separated to O(T−1) as T → ∞. References [15], [16] discuss pos-

sible frequency separation in terms of signal-to-noise ratio (SNR) and sample length

N , using the Cramer-Rao bound.

In the case of the Indian monsoon rainfall data considered here, there is no

simple analogue of SNR, and the number of years over which accurate rainfall data

are available is N ∼ O(102), not very large. In the absence of relevant theory,

therefore, there is a need to devise new methods whose validity is supported by test

cases that mimic the real problem.

For random processes containing multiple scales wavelet based time-scale meth-

ods have become useful in recent years [17, 18, 19]. The foundation of wavelets rests

on Thomson’s key insight that to smooth the spectrum estimate, orthogonal win-

dows, concentrated in the smallest possible region in the domain of interest should

be used. These wavelets, expressed in terms of multi-resolution analysis (MRA),

then provide a useful tool for decomposing a signal into dyadic scales (i.e. on pow-

ers of two); this makes wavelets orthogonal, hence much more efficient. In particular

multi-resolution analysis can play a significant role in understanding the spatial and

temporal structure of rainfall. In the last decade wavelet based techniques have

attracted considerable attention in this area [20, 21, 22, 23, 24]

Most real world problems (e.g. meteorological variables, ECG signals, finan-

cial forecasting) exhibit non-stationary behavior. For analyzing the associated time

series, Fourier analysis is insufficient since its frequency content does not change

with time. The spectral analysis of non-stationary signals can not describe the local

transient features due to averaging over the duration of the signal. The inability of

the method to describe the evolutionary characteristics of non-stationary processes

has lead to a search for tools which allow time and frequency localization beyond

customary Fourier analysis. An FFT based method called the short term Fourier
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transform (STFT) provides time and frequency localization to establish a local spec-

trum for any time instant [25]. The key feature of the STFT is the application of

the Fourier transform to a time varying signal when the signal is viewed through

a narrow window centered at time t. The local frequency content is then obtained

at time t. The window is moved to a new time and the process is repeated. High

resolution can not be obtained in both time and frequency domains simultaneously

by such methods. The window must be chosen for locating both sharp peaks and

low frequency features, but the inverse relation between window length and the

corresponding frequency band width makes a good choice difficult.

This drawback can be alleviated if one has the flexibility to allow the resolution

in time and frequency to vary in a time-frequency plane to reach a multi-resolution

representation of the process. Accordingly, the time-frequency window would nar-

row automatically to observe the high frequency content of a signal and widen to

capture low frequency phenomena. This is possible if the analysis is viewed as a set

of filter banks consisting of band-pass filters with a constant relative band width.

The wavelet transform has turned out to be an excellent mathematical tool for pro-

viding such multi-resolution descriptions of non-stationary time series. It has been

developed [17, 26] to study a large class of phenomena such as image processing,

data compression, chaos, fractals, etc. The wavelet transform has the key property

of localization in time (or space) and in frequency (or wave number), contrary to

what happens in classical Fourier methods. In fact, the wavelet transform works as

a mathematical microscope on a specific part of a signal to extract local structures

and singularities. This makes wavelets ideal for handling non-stationary and tran-

sient signals as well as fractal-type structures.
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1.1 Description of Theory and Tools

In this section the methods used in the thesis are briefly discussed, along with the

associated mathematical expressions.

1.1.1 Auto-correlation function

An important guide to the properties of a time series is provided by a series of

quantities called sample autocorrelation coefficients [8], which measure the correla-

tion between observations separated by a specific interval in time. These coefficients

often provide insight into the probability model that might have generated the data.

For a discrete time series x(t) of length N , t = 0, 1, .., N − 1, we can find the corre-

lation between observations a time interval k apart, which is given by

rk =

∑N−k
t=0 (x(t) − x)(x(t+ k) − x)∑N−1

t=0 (x(t) − x)2
, (1.1)

where x =
∑N−1

t=0 x(t)/N = overall mean. This is called the autocorrelation coeffi-

cient at lag k. The autocorrelation is a function useful for finding repeating patterns

in a time series, such as the presence of a periodic signal which has been buried

under noise, or identifying the fundamental frequency of a signal which does not

actually contain that frequency component, but implies it with many harmonic fre-

quencies. Autocorrelations are frequently plotted as an autocorrelation function(or

acf) against lag k. For a stationary series, the autocorrelation between two points in

time, t and t+k, becomes smaller as k increases. In other words, the autocorrelation

function falls off rather quickly as k increases. However for a non-stationary series

this is usually not the case; the autocorrelation function does not become small as

k increases.

1.1.2 Power spectral density

A time series can have important characteristics which can be expressed in terms

of mathematical functions derived as transforms of the time series. Fourier analysis

of a time series is one of the oldest and most widely used techniques in the physical
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sciences. The basic idea behind it is to decompose a time series into a number of

components, each one of which can be associated with a particular frequency. To

define the Fourier transform, let x(t), t = 0, 1, .., N − 1, denote a discrete-time data

sequence of length N . Assume that x(t) has finite energy, which means that

∞∑
t=−∞

| x(t) |2<∞. (1.2)

Then the sequence x(t) possesses a discrete-time Fourier transform (DTFT) defined

as

x(ωk) =
N−1∑
t=0

x(t)e−iωkt (1.3)

where (angular) frequency ωk = 2πk/N , k = 0, 1, .., N − 1. The corresponding

inverse DTFT is then

x(t) =
1

N

N−1∑
k=0

x(ωk)e
iωkt. (1.4)

Both deterministic and stochastic processes can, in principle, be characterized by

what is called the power spectrum (or periodogram in the engineering literature)

and the power spectral density (PSD) function in the mathematical literature.

The peaks in the power spectrum can give important information that may shed

light on the physics of the phenomenon underlying the series x(t). As an example

consider daily temperature measurements. The spectrum would evidently contain

a peak at a period of one year corresponding to sun’s annual migration from the

Tropic of Cancer to Tropic of the Capricorn and back. Annual cycles are present

in many natural systems and also in the economic system. Along with the annual

component there may be several harmonics, half year, quarter year, etc. These arise

on account of the fact that the periodic phenomenon is not a pure sinusoidal. In

fact one of the first uses of the PSD function was in determining possible “hidden

periodicities”in time series by [27]. The PSD function of such a time series can be

estimated as

x̂(ωk) =
1

N

∣∣∣∣∣
N−1∑
t=0

x(t)e−iωkt

∣∣∣∣∣
2

. (1.5)
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where ωk = 2πk/N , and k = 0, 1, ..., N − 1 is the frequency index. These PSD

ordinates are symmetric around N/2, assuming N even [10], so it is enough to limit

k to N/2. The value of x̂(ωk) is a measure of the contribution to the ‘energy’ of x

by the frequency ωk. Therefore, the normalization of PSD is given by

N/2∑
k=0

2x̂(ωk)/σ
2 = 1 (1.6)

where σ2 (variance of the time series) is defined as

σ2 =
1

N − 1

N−1∑
t=0

(x(t) − x(t))2, (1.7)

where x(t) is the mean of the time series.

1.1.3 Welch periodogram method

The periodogram defined by Eq. 1.5 is an inconsistent estimator of true PSD values

[10]. Also, it suffers from large variance. Several methods, traceable to the work

of Bartlett, Deniell, Welch, Blackman-Tukey etc., have been devised to obtain good

estimates of the PSD function (for details see [7]). We explain here the powerful

technique introduced in [28].

To describe the Welch method in a mathematical form (following the explanation

in [7]), let

xj(t) = x((j − 1)K + t), (1.8)

where t = 0, 1, .., N − 1; j = 0, 1, .., S − 1 and (j − 1)K is the starting point for

the jth observation of the time series x(t). The value recommended for K in the

method is K = N/2, in which case S � 2N/M data segments (with 50% overlap

between successive segments) are obtained.

The windowed periodogram corresponding to xj(t) is computed as

x̂j(ωk) =
1

NP

∣∣∣∣∣
N−1∑
t=0

υ(t)xj(t)e
−iωkt

∣∣∣∣∣
2

, (1.9)
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where P denotes the “power ”of the temporal window υ(t):

P =
1

N

N−1∑
t=0

|υ(t)|2. (1.10)

The Welch estimate of PSD is determined by averaging the windowed periodograms

in Eq. 1.9:

x̂W (ωk) =
1

S

S−1∑
j=0

x̂j(ωk). (1.11)

By allowing overlap between the data segments and hence by getting more peri-

odograms to be averaged in (Eq.1.11), the variance of the estimated PSD is de-

creased. Also the purpose of introducing the window in the periodogram computa-

tion is for gaining control over the bias/resolution properties of the estimated PSD.

Therefore, if the data contains sinusoidal components with significantly different am-

plitudes, then it is good to use a windowed PSD which makes it possible to detect

low amplitude components.

1.1.4 Significance tests

Many real-life time series include a combination of periodic or nearly periodic signals

embedded in a noise-like background with a continuous spectrum. The first step

in any investigation of the temporal structure of such time series is to test the

significance of the peaks obtained in the spectrum. For this purpose, a discrete

finite reference time series is necessary. The classical statistical model for such a

reference is the first-order autoregressive (AR1) process

X(t) = αX(t− 1) + ε(t), (1.12)

where t = 1, ...N denotes discrete time in units of the sampling interval, X(0) may

be taken as 0, α is the lag-1 autocorrelation coefficient (0 ≤ α < 1), and ε(t) is a

Gaussian white noise process with mean zero and an appropriate variance σ2
ε . Fol-

lowing [29] the normalized power spectral density function of X(t) is

Pk =
1 − α2

1 + α2 − 2α cos(2πk/N)
. (1.13)
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Here k = 0, 1, .., N/2 is the frequency index. The shape of the spectrum Pk depends

on the value of α. When α > 0 (/ < 0), power is concentrated at lower (/ higher)

frequencies, giving what is known as a red (/ blue) spectrum, as shown in figure 1.1.

When α = 0 we obtain the white-noise spectrum with an expectation value of 1 at

all frequencies.

If a peak in the power spectrum is significantly above this reference spectrum,

then the hypothesis that the peak is a result of statistical fluctuation can be sub-

jected to the χ2 test with a specified confidence level. Here the number of degrees of

freedom is taken as 2, because if x(t) is a normally distributed random variable, then

both the real and imaginary parts of its Fourier spectrum are normally distributed

[8]. Since the square of a normally distributed variable is chi-square distributed

with one degree of freedom, the complex power spectrum is chi-square distributed

with two degrees of freedom, denoted by χ2
2. To determine (for example) the 95%

confidence level (significant at 5%), one multiplies the reference spectrum of Eq.

1.13 by the 95th percentile value for the χ2 distribution with two degrees of freedom

[29], and checks whether the peak in question exceeds the 95th percentile.
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Figure 1.1: (a) Reference spectrum Pk for (a) α = 0.6 and (b) α = −0.6.
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1.1.5 Wavelet analysis

In recent years, the wavelet transform has become an important tool for analysis

in areas as diverse as differential equations, image processing and statistics. In this

thesis its application in the field of time series [30] is explored. Wavelet analysis,

as a relatively new technique, is an important addition to standard signal analysis

methods as mentioned recently in the works of [31, 32, 33].

The wavelet transform uses a two-parameter family of basis functions and pre-

serves temporal information along with an indication of dominant frequencies. Wave-

lets can be either continuous or discrete. The first theoretical results in wavelets had

been concerned with continuous wavelet decompositions of functions and go back

to the early 1980’s [34] [35]. In the continuous case, calculating wavelet coefficients

at every possible scale is a fair amount of work, and moreover generates consider-

able redundancy. However it is often easier to recognize patterns or structures in

data using a continuous transform, as shown in [21]. But if the goal is to compress

information it is preferable to choose wavelet time-scales based on powers of two

(i.e adopt dyadic scaling). This makes wavelets orthogonal, hence much more ef-

ficient. They are then known as discrete wavelet transforms (DWT) [36]. These

wavelets, expressed in terms of multi-resolution analysis (MRA) [37], then provide

a useful tool for approximating such signals as speech, turbulence etc. which con-

tain transient or localized phenomena. Just as the fast Fourier transform made the

Fourier transform a practical tool for spectral analysis, multi-resolution analysis has

made the discrete wavelet transform a viable tool for computational time-frequency

analysis.

The continuous wavelet transform (CWT) of a signal x(t) is given by

W (b, a) =
1√|a|

∫ ∞

−∞
x(t)Ψ

(t− b)

a
dt, (1.14)

where b is a shift parameter (b ∈ R) and a is scale parameter (a ∈ R+); the function

Ψ ∈ L2(R) satisfies the “admissibility condition ”

∫ ∞

−∞

|Ψ(ω)2|
ω

dω <∞. (1.15)
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To find the periodicities in a time series CWT has been extensively used by many

workers [38, 39, 40]. Reference [41] have presented a wavelet analysis of sunspot num-

bers where the principle of detecting periodicities in the signal is discussed. From the

peak positions of the wavelet transforms of the sunspot numbers the singular points

in the sunspot activity are located. From the time interval between the successive

singular points the period of sunspot variation on the given scale is then determined.

In fact continuous wavelet analysis has become a common tool for analysing varia-

tions of power localized in time within a time series. By decomposing a time series

at various scales one is able to determine both the dominant periodicities and their

variation in time.

In the discrete case, a and b are restricted to dyadic dilation and translation

only, that is, a = 2j and b = k where j, k ∈ Z:

Ψj,k(t) = 21/2Ψ(2jt− k). (1.16)

The index j specifies the scale (the level of dilation), and k the location (shift).

The wavelet basis is not unique. A specific function, called a mother wavelet,

generates a set of functions called daughter wavelets that can form a basis. For any

specially chosen mother wavelet Ψ(t), the corresponding daughter wavelets Ψj,k(t)

form an orthogonal basis in a certain function space so that a function or time series

x(t) in that space can be uniquely decomposed as

x(t) =
∑

j

∑
k

dj,kΨj,k(t). (1.17)

The coefficient dj,k is found from

dj,k =

∫ ∞

−∞
x(t)Ψj,k dt. (1.18)

The discrete wavelet transform provides a mechanism to represent data or time

series in terms of coefficients that are associated with particular scales and has been

found to be a fairly effective instrument for signal analysis.
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1.1.6 Multi-resolution wavelet analysis

The MRA concept was initiated in [37, 26]. In the case of discrete wavelets a

time series with sample size N can be decomposed at J levels or scales 2j, j =

1, 2, ..., J=log2 N , if the sampling interval is taken as one.

The starting point for such a decomposition (and for the construction of the

wavelet bases) is the so-called scaling function. This function should preferably

have compact support. Its integer translates φ(t− k), k ∈ Z (integer), span a space

V0. A finer space Vj is spanned by the integer translates of the scaled function

φ(2jt − k). Scaling by 2j provides the basis functions for the space Vj, and such

nesting of the spaces yields a scaling function

φ(t) =
∑
k∈Z

skφ(2jt− k) (1.19)

with appropriate coefficients sk, k ∈ Z. The mother wavelet ψ is obtained by build-

ing a linear combination of the scaling functions. In order to satisfy orthogonality

the coefficients in the linear combination should be properly selected, i.e.

〈φ(.− k), ψ(.− l))〉 = 0, l, k ∈ Z (1.20)

where angular brackets denote the inner product, defined as
∑

k,l φ(t − k)ψ(t− l).

The scaling equation (1.19) and the orthogonality condition (1.20) lead to conditions

on coefficients qk which characterize a mother wavelet as a linear combination of the

scaled and dilated scaling function φ:

ψ(t) =
∑
k∈Z

qkφ(2jt− k). (1.21)

Given a fixed mother wavelet, the whole wavelet basis is obtained by scaling and

translating the function ψ. The scaled, translated and normalized version of ψ is

denoted by

ψj,k(t) = 2j/2ψ(2jt− k). (1.22)

With an orthogonal wavelet ψ the set {ψj,k|j, k ∈ Z} is an orthogonal wavelet basis.

Similarly,

φj,k(t) = 2j/2φ(2jt− k). (1.23)
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As shown in [36], if the wavelet coefficients are given by:

aJ,k = 〈x(t), φJ,k(t)〉, (1.24)

dj,k = 〈x(t), ψj,k(t)〉 (1.25)

then a multi-resolution representation of the signal x(t) can be given by:

x(t) =
∑

k

aJ,kφJ,k(t) +
∑

j

∑
k

dj,kψj,k(t) (1.26)

where j = 1, 2, ..., J such that J is the maximum scale obtained from the data

in hand. Note that when the number of observations is dyadic, the number of

coefficients of each type is given as follows:

• at the finest scale 21 there are N/2 coefficients labeled d1,k;

• at the next scale 22 there are N/22 coefficients labeled d2,k;

• at the coarsest scale 2J there are N/2J coefficients dJ,k and aJ,k.

Therefore, in practice the first step in MRA corresponds to mapping a given time

series x(t), t = 1, ..., N , to its wavelet coefficients. From these coefficients two com-

ponents are recovered, first a smoothed version (the so-called approximation), and

a second that corresponds to the deviations or the so called details of the signal.

The procedure is repeated on the approximations at each scale and hence Eq. 1.26

is obtained at the Jth level of decomposition.

Such a decomposition may be obtained for any specific choice of wavelet. Dif-

ferent families of wavelets have proven to be especially useful in different types of

application. They differ with respect to orthogonality, smoothness and other re-

lated properties such as vanishing moments or size of support. In particular, to

study the frequency resolution of a signal, the Meyer wavelet has been reported to

be more suitable [42]. Also, the discrete Meyer wavelet has many advantages (when

compared with the Haar, Daubechies2, coiflet2 and Symlet8 wavelets). The most

prominent of these advantages is that the Meyer wavelet is windowed in frequency

[36], has a smooth Fourier transform, and yields a faster decay of wavelet coefficients
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in the time domain. Therefore the discrete Meyer wavelet is preferred in the present

work. It is defined in the frequency domain [36] by:

ψ̂(ω) = (2π)−1/2eiω/2sin(
π

2
ν(

3

2π
|ω| − 1)) if 2π/3 ≤ |ω| ≤ 4π/3

= (2π)−1/2eiω/2sin(
π

2
ν(

3

4π
|ω| − 1)) if 4π/3 ≤ |ω| ≤ 8π/3

= 0 otherwise (1.27)

where ν(a) = a4(35 − 84a+ 70a2 − 20a3), a ∈ [0, 1].

Definition of MRA using vector spaces.

MRA is a general framework for constructing orthonormal bases. Developed in

[37], it has been widely accepted in wavelet research. The following explanation is

taken from [43]. Mathematically MRA essentially amounts to constructing a hier-

archy of approximations to a function in various subspaces of a linear vector space.

To begin, a vector xN , given in an N - dimensional vector space VN , can be approx-

imated by a vector xN−1 in an (N − 1)- dimensional vector space VN−1. The best

possible approximation for xN in the least squares sense is made by choosing that

vector as xN−1 for which the length of the error vector eN−1 ≡ x−xN−1 is minimum.

By the projection theorem stated in [44], the vector eN−1 representing minimum er-

ror will be orthogonal to every vector in VN−1. Also the vector eN−1 can be seen

as the amount of “detail” that is lost in going to the “approximation” xN−1 for x.

As this process continues throughout the entire sequence of subspaces by projecting

xN−1 on VN−2 to yield xN−2 etc., a sequence of orthogonal projections of X in the

subspaces VN−1, VN−2 ....V1 as xN−1, xN−2 ....x1 respectively is generated. These

vector spaces form a nested sequence of subspaces,

V1 ⊂ V2 ⊂ .....VN−1 ⊂ VN . (1.28)

Looking at the projections as approximations to the original vector x, the subspace

VN−1 contains the finest approximation to vectors in VN whereas V1 contains the

coarsest approximation. The vector space associated with eN−1 is taken as WN−1.
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The dimension of WN−1 is one. It is shown in [43] that VN−1 and WN−1 are orthog-

onal to each other. Any vector in VN can be expressed as the sum of a vector in

VN−1 and a vector in WN−1. This is written as

VN = WN−1 ⊕ VN−1. (1.29)

As this process continues, it can be written as

VN = WN−1 ⊕WN−2 ⊕ ........W1 ⊕ V1. (1.30)

Hence any vector x in VN can be fully reconstructed with details obtained at all levels

and the last approximation in V1, which happens to be the average of the signal over

time. The direct sum in Eq. 1.30 represents perfect separation in discrete orthogonal

subspaces.

1.1.7 Empirical mode decomposition

A new approach to signal analysis, called empirical mode decomposition (EMD),

has been developed in [45] for analysis of nonlinear and nonstationary time series.

Here the basis functions, called intrinsic mode functions (IMF), are extracted from

the data itself, and their instantaneous frequencies can be calculated using Hilbert

spectra. As the procedure generates mode functions with the same number of zeros

and extrema, a unique frequency can be associated with each IMF, even though the

functions may not be periodic.

The procedure to derive the intrinsic mode functions is the following [45]. The

data or time series {x(t), t = 0, ..., N − 1} is decomposed into independent intrinsic

mode functions by a so-called sifting process. The process first identifies all the local

maxima and minima of the signal separately. The local maxima are then connected

by a cubic spline to define the upper envelope. The procedure is repeated for the

local minima to produce the lower envelope. Their mean m1(t) is determined, and

the difference is

x(t) −m1(t) = h1(t). (1.31)

In the second sifting process h1(t) is treated as the data, then

h1(t) −m11(t) = h11(t). (1.32)
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We can repeat this sifting procedure k times, until h1k(t) is an IMF, that is

h1(k−1)(t) −m1k(t) = h1k(t). (1.33)

An IMF must satisfy two conditions:

i. the number of its extrema and zero crossings differ at most by one, and

ii. the mean value of the envelopes defined by the local maxima and minima is

zero.

With this definition, the dominant period of oscillation is taken as the average

interval between either zeros or extrema for each IMF.

1.2 Historical Background on Monsoon Rainfall

The problem of predicting seasonal monsoon rainfall, and indeed of assessing the

degree of predictability in the monsoon, continues to be of great fundamental and

practical importance [46]. Detection of significant periodicities in the available rain-

fall data can be of great value in prediction and has attracted much attention for

nearly a century. Reference [47] as well as [48] used mainly classical correlation and

power spectral analysis techniques to identify significant periodicities in Indian rain-

fall distribution. Many recent studies in understanding or prediction of the seasonal

rainfall behavior over India are mainly focused on the country as one unit, i.e. they

consider all-India statistics. For example [49], using discrete wavelets, has analysed

All India Summer Monsoon Rainfall (AISMR) for the period 1871-1998 and its link

with the Southern Oscillation (SO). Given the meteorological heterogeneity of In-

dia such all-India statistics often give misleading pessimistic about the presence of

coherent signals in the Indian monsoon system (see e.g. [24]). Analysis of more

homogenous rainfall time series is therefore preferred in this thesis. It is well known

that India is meteorologically heterogeneous, so the strongest results are likely to be

obtained by analysis of homogeneous regions within India, such as those identified

in [50] after an analysis of Indian rainfall over the duration 1871-1990. A detailed

analysis in [51] showed a 95% significant periodicity of 2.8 y using the algorithm of



16 Chapter 1. Introduction

[52] in the homogeneous Indian monsoon (HIM) region identified in [50]. Various

other modern methods of spectral analysis (e.g. [7]) to estimate the spectrum of a

given time series are available, but have not (to the best of our knowledge) been

used for analysis of Indian rainfall data.

An alternate approach would appear to be to use the EMD technique in [45]

described above. A comparison of results from a preliminary wavelet analysis and

an EMD analysis has shown gratifyingly similar results for major periodicities in

the rainfall time series (see Chapter 3 of thesis). However it appears that wavelet

techniques may have certain advantages in terms of their mathematical structure,

as also pointed out in [53], so a more extensive effort to explore how much further

wavelet analysis may be taken is presented in the present work.

The HIM time series has been analysed by various workers using different meth-

ods to detect periodicities. Using continuous wavelet maps [21] reported six modes

with periods of 3.0, 5.8, 11.6, 20.8, 37.0 and 80.0 y, which revealed for the first

time a rather complex temporal structure in the monsoon rainfall. Reference [55]

decomposed the same data into five empirical time series of intrinsic mode functions,

with associated periods of 2.7, 5.7, 12.0, 24.0 and 60.0 y respectively; these periods

are close to those found in [21]. However these periodicities were not tested for

the high levels of significance suggested in [54] who proposes that, for a sample of

size N , “a good rule of thumb is not to get excited by significance levels less than

1 − 1/N ”. For HIM rainfall data with N = 120, 1 − 1/N = 99.17%. The PSD of

HIM rainfall is estimated in [51] using the algorithm of [52], and revealed a total

of thirteen periodicities, respectively with periods of 2.1, 2.3, 2.5, 2.8, 3.1, 3.5, 4.0,

4.7, 5.7, 7.3, 10.0, 16.0 and 40 y. Of these only the 2.8 y period was statistically

significant at 95% confidence against white noise.

In some recent studies [22], [23] and [24] wavelet analysis is used as a new tool

to analyse possible connections between monsoon rainfall and solar processes.

These considerations serve to provide motivation for the present work.
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1.3 Motivation for the Present Work

This thesis has been inspired by the need to devise more effective search methods

for finding periodicities in tropical rainfall, especially the Indian monsoons. The

question assumes importance for two reasons. First, it has been shown in a series of

studies, beginning with [56], that the inherent predictability of rainfall is appreciably

higher in the tropics than at higher latitudes, chiefly because the tropics are ‘forced’

to a greater extent. One question that arises as a consequence is whether there are

hidden periodicities in, say, Indian monsoon rainfall time series. Traditionally the

search for periodicities in the monsoon literature has been made by classical power

spectral approaches, an extensive analysis is given in [51].

Indian monsoon rainfall is the result of highly nonlinear atmospheric processes

that operate and interact over a wide range of scales, and is also a (weakly) non-

stationary process in general. Despite this complexity suitably averaged rainfall data

reveal patterns and a certain degree of organization both spatially and temporally.

Although rainfall is highly variable at very fine scales, e.g. from storm to storm

and station to station, larger scales exhibit a hierarchical structure in time and

distinct clusters in space. One of the main challenges to hydrologists, meteorologists

and climatologists is to measure, model and predict the nature of this variability

exhibited by rainfall at different scales. Moreover rainfall data show very low auto-

correlation at short lags (e.g. −0.007 at lag 1 in HIM rainfall). For all these reasons

it becomes difficult to distinguish a periodic signal from the fluctuations that would

be inherent in the relatively small sample sizes available (of order 102 y). Now there

is an extensive literature that shows how sharp lines in the spectrum of a time series

can be identified and tested for significance (e.g. [57], [54]). However, processes like

rainfall do not possess sharp lines, but only spectral peaks of varying sharpness,

presumably because of nonlinearity, scale interaction and other factors. Hence a

major problem lies in testing for statistical significance, in particular in selecting

an appropriate reference spectrum against which the peaks found in an estimated

spectrum can be assessed. Tests for the significance of the periodic variations against

a background of white noise (flat spectrum) are well established [27], [58]. However,

it has been noted that the spectra of many geophysical time series frequently show a
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continuous decrease of spectral amplitude with increasing frequency, suggesting that

they are closer to “red noise” than to white noise [59], [60]. Reference [29] used a

first order autoregressive (AR1) process, using the lag-1 autocorrelation coefficient,

to model such red noise signatures. Accordingly the AR(1) model is often used to

provide a null hypothesis to assess whether or not the power spectral density of a

time series is consistent with a likely statistical fluctuation from the reference [29].

Though a number of heuristic or Monte Carlo methods have been devised for reliable

identification of the true signal [54], [61], there remains much scope to develop new

methodologies tailored to specific applications, and this is what is attempted in the

present work.

In the last decade wavelet based techniques have attracted considerable attention

in this area because they can be used for non-stationary processes like rainfall. In

particular multi-resolution analysis (MRA) can play a significant role in understand-

ing the spatial and temporal structure of rainfall. For this purpose we make use of

the multi-resolution properties of discrete wavelets, including their ability to remove

interference, for revealing closely spaced spectral peaks. A new procedure, which we

first verify on two test signals, is proposed. This is then applied to the time series

of homogeneous Indian monsoon (HIM) rainfall annual data. We show that, com-

pared to empirical mode decomposition, discrete wavelet analysis is more effective

in identifying closely spaced frequencies if used in combination with classical power

spectral analysis of wavelet-based partially reconstructed time series. An effective

criterion based on better localization of specific frequency components and accurate

estimation of their amplitudes is used to select an appropriate wavelet. It is shown

here that the discrete Meyer wavelet has the best frequency properties among the

wavelet families considered (Haar, Daubechies, Coiflet and Symlet). The statistical

significance of the periodicities thus obtained from the present MRA + PSD tech-

nique are assessed using both classical methods and new ones proposed here. Also,

a quantitative definition of spectral homogeneity is proposed and subsequently used

to identify spectrally homogeneous regions in India. The significance levels of the

periodicities are then assessed using also multivariate data analysis.

The discrete wavelet transform (DWT) is extensively used here as a tool of

analysis; and our goal is to bridge the gap between theory and practice by



1.4. Synopsis of the Thesis 19

• emphasizing what the DWT actually means in practical terms;

• showing how the DWT can be used to create multi-resolution decomposition

of a time series;

• discussing how stochastic models can be used to assess the statistical properties

of quantities computed from the DWT;

• presenting substantive examples of wavelet analysis of time series representa-

tive of those encountered in geophysical science, in particular of Indian mon-

soon rainfall.

As periodicities in a time series have been proposed by various workers using

continuous wavelets, here we focus on developing wavelet methods in discrete time

via standard filtering and matrix transformation ideas.

1.4 Synopsis of the Thesis

The present thesis is arranged into eight Chapters, the contents of which are briefly

described below.

Science, engineering, medicine and many other areas deal with signals acquired

in the form of time series for the purpose of analysis, for such features as periodici-

ties, spectra, attractor dimensions, extreme events such as singular points etc. The

time series data may be modeled as stochastic processes, signals mixed with noise,

deterministic chaos etc. The first Chapter presents an introduction to time series

analysis. Primarily, classical methods of Fourier spectral analysis are introduced

and a brief review of wavelet analysis is given. Wavelet analysis [17] as a relatively

new technique is an important addition to standard signal analysis methods as men-

tioned recently in the work of [33]. The Fourier transform decomposes a given signal

into constituent components. Looking at the Fourier spectrum dominant frequencies

can be identified; however at any arbitrary frequency temporal localization of any

kind cannot be made. Thus, it is not possible to detect the occurrence of any special

event, or identify ”epochs” during which the signal may have exhibited distinctly
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different characteristics, as it might if the signal is non-stationary. This Chapter de-

scribes some of the vital differences between the two methods of Fourier and wavelet

analysis and all the essential theory and tools used in the thesis. The long history of

efforts to seek evidence for periodicities in Indian monsoon rainfall is reviewed and

the present status is given.

A detailed description of the rainfall data analysed is presented in Chapter 2.

The data selected for study are Indian monsoon rainfall over the six different homo-

geneous rainfall regions identified in [50], including in particular the homogeneous

Indian monsoon (HIM) region. However, over the 120 y period (1871-1990) for

which reliable Indian rainfall statistics are available, the analysis is performed first

chiefly on the HIM annual time series and then repeated for the other homogeneous

regions. We also look at the annual rainfall time series from each of the 14 mete-

orological sub-divisions constituting the HIM region in detail. It must incidentally

be stressed (as noted in [23, 24]) that the often-used all-India summer monsoon

rainfall (AISMR) is not the best rainfall index for analyses like the present, as the

geographical area it covers is not meteorologically homogeneous, and so physically

coherent signals will tend to get diluted due to heterogeneity.

In the recent past HIM rainfall time series has been analysed for periodicities

using the power spectral density (PSD) function, empirical mode decomposition

(EMD) and continuous wavelet transforms (CWT). Chapter 3 compares and demon-

strates the potential of these methods using two specially devised test signals. These

signals are intended to simulate the rainfall data, with time taken in years (y) and

amplitude in mm, keeping in view the application we shall make in Chapter 4. How-

ever the analysis is carried out with normalized time series with zero mean and unit

standard deviation for both the test signals and rainfall data, as our objective is

to study the temporal structure of the time series and not the magnitude of the

rainfall.

The most prominent limitation of Fourier analysis on discrete-time data is that

of frequency resolution, i.e., the inability to distinguish between two spectral peaks

spaced closer than 2/N, N being the total number of samples in the time series

[10]. A wavelet based hybrid technique, where the advantages of wavelet methods

in handling nonlinear non-stationary time series are combined with those of spectral
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analysis, is proposed here to resolve such closely spaced frequencies. The discrete

Meyer, Daubechies and other wavelets are used, and it is found that the discrete

Meyer wavelet provides the best results in separating closely-spaced frequencies with-

out yielding spurious peaks. A discussion of these wavelets and their performance

in the present application is given. The Chapter concludes with the result that the

direct PSD on the test signals merges closely spaced frequencies whereas the PSD

on partially reconstructed time series obtained from wavelet coefficients are able to

distinguish between these frequencies. This is because during MRA decomposition

detail coefficients are obtained by setting low frequency components to zero. This

helps in the elimination of sinusoidal interference in the highest frequency band. The

detail time series is then subjected to classical Fourier spectral analysis, which is

successful in separating closely spaced frequencies provided the associated spectral

peaks are sufficiently narrow.

The proposed method is then applied on the HIM rainfall time series annual data

in Chapter 4. The use of MRA as a tool for analyzing non-stationarity in the time

series is briefly examined. This is required because our method demands combined

use of wavelet and Fourier spectral analysis, and the latter is valid only for stationary

time series. The method described here helps to isolate the stationary component

of the time series, i.e. to de-trend it using long-scale wavelets. Using this approach

it is found that the rainfall data is non-stationary only over long periods (of order

60 y). It is further shown that, with the technique proposed, there are in fact some

closely spaced periodicities in rainfall that were missed by earlier techniques, which

yield only some weighted average values of nearby periods.

Reliable identification of the oscillatory components contained in a short, noisy

time series requires effective criteria for assessing statistical significance. Further-

more searching for evidence of predictability in an observational time series pro-

vides a starting point for many geophysical investigations since predictability may

be very limited in any nonlinear system, whether it is stochastic or deterministic;

any trend may vary over time, as may the phase and amplitude of a physical os-

cillation. Nonetheless, even limited predictability may be highly informative and

useful, making analysis techniques, which allow the detection of intermittent trends

or oscillations, valuable. Towards this goal, discriminating between signal and noise
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is a crucial step.

In Chapter 5, the spectrum of HIM rainfall time series is estimated using the

Welch technique [7] and the significance of the peaks detected is tested against

classical reference spectrum introduced in [29] and a more recent technique proposed

in [62]. If a particular feature of the data spectrum lies well above this reference

spectrum, it is often considered to be statistically “significant”. By these methods

two significant periods, respectively at 2.3 y (at 99%) and 2.8 y (95%) are found to be

significant. However other significant periods in HIM rainfall are expected, including

around 11 y, as Indian rainfall has a strong solar connection [23]. We present here

a new procedure for checking the significance levels of partially reconstructed time

series obtained in Chapter 4 at different frequency bands. The auto-correlation

coefficient of HIM rainfall series at lag 1 is -0.007, i.e. close to zero. This implies that

in the classical technique of devising a reference spectrum based on autocorrelation,

the periodicities in HIM rainfall are tested against a nearly flat spectrum (i.e. white

noise). However we present strong evidence for the presence of a spectral dip in

HIM rainfall around a frequency of 0.25 y−1, and construct a testing procedure

that takes this into account. Thus, using MRA we have shown that at the first

level of decomposition for high frequencies the r reference spectrum is blue, whereas

for low frequencies it is red. Hence the statistical significance of these periodicities

must be tested against appropriately colored noise, matching the observed spectrum

of rainfall. We conclude the Chapter with the result that the estimated PSD of

HIM rainfall time series against the classical reference spectrum shows only one

periodicity of 2.3 y above 99% confidence level, whereas using the present method

of MRA+PSD against appropriately colored reference spectra, ten periodicities are

significant above the 99.9% confidence level, with respective periods of 2.8, 3.3, 5.7,

7.5, 8.6, 10.0, 13.3, 24.0, 30.3 and 60.6 y.

One persistent question that arises in the quest for identifying periodicities is the

heterogeneity of the Indian monsoon. In spite of many studies of the problem, and

the considerable evidence of this heterogeneity, many analyses still continue to rely

on all-India indices. Even the homogeneous regions identified by different workers

may contain heterogeneities not considered in the criteria laid down for determining

the degree of homogeneity.
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The present study starts with the observation that an annual time series for

rainfall, such as those presented in [50] for the various homogenous regions within

India identified by them, is not just a single sequence of numbers giving one value for

each year. The reason is that such regional time series are obtained by taking area-

weighted averages over several meteorological sub-divisions, each of which is itself

an average over a large number of individual rain-gauges. Now the sub-divisional

time series possess substantial cross-correlations with each other, and hence are not

independent. Thus, treating them as independent realizations from one homoge-

neous population is not justifiable, but considering HIM rainfall as just one isolated

realization in itself would be too conservative. The main purpose of this chapter is to

develop a method based on multivariate analysis that provides a rational procedure

for taking these factors into account.

This line of thinking leads us to propose a quantitative definition of spectral

homogeneity. This is based on evaluating the mean square deviations of each nor-

malized sub-divisional rainfall from normalized HIM rainfall against the null hy-

pothesis that the rainfall deviations do not differ from those of white noise. When

the hypothesis is rejected at a confidence level of 99.5% by the F-test, we consider

the deviations to be small enough to permit identification of spectral homogeneity.

In particular, as an illustrative demonstration of the proposed method, certain sub-

divisions in the HIM region showing significantly low spectral variability are grouped

into a “Spectrally Homogeneous Indian Monsoon”(SHIM) sub-region. This is pro-

posed as a good candidate for further analysis, as likely to provide the strongest

evidence for any periodicity that may be present in any part of India. The main

conclusion of this chapter is that the HIM rainfall time series over the time period

1871-1990 shows one 99% significant period of 2.3 y and 95% significant period

of 2.8 y, against the white noise reference spectrum. However, by introducing the

spectrally homogeneous sub-region SHIM, we have shown that there is a 99.5% sig-

nificant period of 2.3 y, along with four other significant peaks above 95% confidence

at 2.1, 7.5, 13.3 and 60.6 y and a 2.8 y period at > 94.8%..

A new test based on multivariate analysis to find the significance levels of com-

mon periodicities among sub-divisions constituting SHIM rainfall is then proposed.

The motivation here is one of the key messages of multivariate analysis, namely
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that correlated variables must be analysed jointly. Confidence ellipses, also called

prediction interval ellipses [82], are used as an exploratory method to investigate

the correlation between the four sub-divisions constituting the newly defined SHIM

sub-region. The proposed method indicates the presence of seven significant period-

icities in SHIM rainfall, five at confidence levels exceeding 95% (respectively 2.1 y at

97.8%, 2.3 y at 95.7%, 2.8 at 98.4%, 7.5 at 99.5%, 24.0 at 99.4%), and 10.9 at 90.5%

and 60.6 at 93.2% confidence level. The main conclusion of this chapter is that a

common period may be present in all the sub-divisions constituting a region but the

significance of their commonalty cannot be established using the classical methods.

However it is found that the proposed method of confidence ellipse is a more in-

formative and powerful tool for testing confidence levels of common periodicities in

correlated time series. Also we found that the classical test of checking confidence

level of a spectral peak is inadequate when the amplitude of longer periods is low.

The proposed confidence ellipse technique however shows high confidence levels even

for relatively low amplitudes when the cross-correlation is high. Hence the present

method is less amplitude-sensitive than other available methods.

In Chapter 7, the analysis performed so far on the HIM rainfall time series is

repeated for other homogeneous regions. Earlier classifications of India into homo-

geneous regions based on rainfall do not take into account spectral characteristics.

Using spectral homogeneity as a criterion, we here classify the country into ten

spectrally homogenous regions (SHRs). These new regions cut across those defined

earlier by other workers. For example, SHR7 has six sub-divisions from the HIM

region and one from the PENSI region. SHR7 may be of particular interest as all

the constituent sub-divisions show a spectral dip around the frequency of 0.25−1,

and most of the spectral peaks in the different sub-divisions nearly coincide with

each other. The significance levels of periodicities detected in these regions are as-

sessed. In SHR7 there is reported to be one periodicity above 95% by the direct

PSD whereas the present MRA+PSD technique reveals seven periodicities above

99% confidence level, with respective periods of 3.3, 5.7, 8.6, 13.3, 10.9, 24.0 and

30.3 y.

Chapter eight outlines a possible explanation for the results that we obtain and

discusses new vistas for further and future investigations.
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The Data Analysed

2.1 Details of Rainfall Data

The present analysis involves the time series of Indian monsoon rainfall annual data

for the period 1871-1990 spanning 120 years. The rainfall indices have been obtained

from [64] and are also available at the Indian Institute of Tropical Meteorology web

site: www.tropmet.res.in. The details about how these data were procured and pre-

processed are as follows. A network of 306 rain-gauge stations across India, almost

uniformly distributed, each providing one representative station per district having

a reliable record since 1871, formed the basis for the creation of the data set [66],

[65]. Figure 2.1 shows the rain gauge network considered. In view of the limitations

of areal representativeness of rain gauges in hilly areas, four meteorological sub-

divisions parallel to the Himalayan mountain range, numbered 2, 12, 15 and 16 in

figure 2.1, were excluded from the study. Also excluded from Parthasarathy’s net-

work of rain gauges are two sub-divisions representing island territories far from the

mainland, Andaman & Nicobar (sub-division No.1) and Lakshwadeep (sub-division

No.35). The area covered by the data set measures 2.88 x 106 km2, amounting to

about 88% of the total area (3.292 x 106 km2) of the country.

25
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Figure 2.1: Map of India showing the meteorological sub-divisions defined by the India

Meteorological Department (IMD). Sub-divisions 1, 2, 12, 15, 16 and 35 are not considered

in the rainfall data set analysed here.
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2.1.1 Homogeneous regions in India

Apart from the 29 meteorological sub-divisional monsoon rainfall series [50] have

also prepared rainfall series for 5 special regions over the country considered ho-

mogeneous on the basis of similarity in rainfall characteristics and association of

subdivisional monsoon rainfall with regional/global circulation parameters during

1871-1990. These five homogeneous regions (shown in figure 2.2) are: (i) North West

India (NWI); (ii) West Central India (WCI); (iii) Central Northeast India (CNEI);

(iv) North East India (NEI) and (v) Peninsular India (PENSI). Apart from these

five homogeneous regions, one more broad region called the homogeneous Indian

monsoon (HIM) region has also been identified and the monsoon rainfall time series

for this region was also prepared. The map of HIM region is given in figure 2.3. It is

to be noted that NWI together with WCI form the HIM region. The particulars of

the six homogeneous regions in terms of the sub-divisions considered in the prepa-

ration of rainfall time series, as well as some other pertinent statistical details based

on 1871-1990 data, are given in table 2.1.

Table 2.1: Details of homogeneous monsoon regions of India.

Region Sub-divisions Area, India Mean % of

considered % rainfall (mm) Annual

Northwest India 13,14,17,18,21,22 (6) 22.0 545.4 89.9

West Central India 19,20,23-26,28,32 (8) 33.4 1081.1 86.3

Central Northeast India 7-11 (5) 19.9 1203.1 83.3

Northeast India 3-6 (4) 9.3 2066.2 68.7

Penisular India 27, 29-34 (6) 15.4 1156.2 57.0

Homogeneous India 13,14,17-26,28,32 (14) 55.5 868.3 87.0

Monsoon

It may be noted that although rainfall data are available for the period 1990 to

2005 also, we have limited our analysis to the period 1871-1990.
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Figure 2.2: Homogeneous monsoon regions of India.
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Figure 2.3: Homogeneous monsoon regions of India.
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2.1.2 Homogeneous Indian monsoon rainfall

The HIM rainfall annual data from 1871-1990 is shown in figure 2.4.
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Figure 2.4: HIM rainfall time series, 1871-1990.

Out of the six homogeneous regions mentioned earlier, the most extensive is

the homogeneous Indian monsoon (HIM) region. This region covers a geographical

area (northwest and central part of India, amounting to about 55% of the total

land area of the country) which, based on various criteria, may be considered to

be meteorologically homogeneous, and hence may be expected to yield a physically

coherent rainfall signal. In particular the HIM region may be considered to be by

far the most representative index of the component of Indian rainfall dominated

by the dynamics of the south west monsoon. HIM rainfall is an area-weighted

average over an ensemble of 14 rainfall time series, each of which represents one

of the 14 sub-divisions constituting the HIM region. These 14 sub-divisions are

Haryana, Punjab, West Rajasthan, East Rajasthan, West M.P., East M.P., Gujarat,

Saurashtra, Konkan, Madhya Maharashtra, Marathwada, Vidarbha, Telangana, and

North Interior Karnataka. In this thesis the main data analysed is the time series of

HIM rainfall and the 14 constituent sub-divisions over the period 1871-1990 provided

in [64]. The rainfall time series of 14 sub-divisions constituting HIM are shown in

figures 2.5 and 2.6. Table 2.2 shows the details of these sub-divisions, their areas and
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the number of rain gauges considered in calculations of the sub-divisional average.
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Figure 2.6: The rainfall time series of 7 sub-divisions constituting HIM region.
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Table 2.2: Details of 14 sub-divisions constituting HIM region in terms of the area

they covered.

S.no Sub-division Area (km2) No. of rain gauges Average area

per rain gauge (km2)

1. Telangana 114,726 9 113 x 113

2. West M.P. 232,315 29 90 x 90

3. East Rajasthan 147,128 17 93 x 93

4. Vidarbha 97,537 8 110 x 110

5. Konkan 34,095 5 83 x 83

6. East M.P. 224,296 14 127 x 127

7. West Rajasthan 195,086 9 14 x 147

8. Marathwada 64,525 5 114 x 114

9. Haryana 45,698 12 62 x 62

10. Saurashtra 109,950 7 125 x 125

11. Gujarat 86,034 11 88 x 88

12. Madhya Maharashtra 115,309 9 113 x 113

13. North Interior Karnataka 79,895 6 115 x 115

14. Punjab 50,376 10 71 x 71
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2.1.3 Correlations among sub-divisional rainfall data

The present study is based on the observation that an annual time series for rainfall,

such as those presented in [50] for various homogenous regions within India, is not

merely a sequence of independent numbers comprising one value for each year. The

reason is that such time series are obtained by taking averages over meteorological

sub-divisions (say n in number) of order 10, and rainfall time series of order 102 rain-

gauges. Now the sub-divisional time series are not independent, but instead possess

substantial cross-correlations with each other. Thus, treating them as independent

realizations from one homogeneous population is not justifiable, but considering HIM

rainfall as just one realization would be too conservative. The correlation coefficients

between HIM rainfall and the 14 sub-divisional rainfall series for the period 1871-

1990 are presented in table 2.3. The correlation coefficients are positive in all sub-

divisions and significant at 1% level with the confidence intervals shown also in table

2.3. Further, the inter-correlations among these 14 sub-division are calculated and

found to be positive for all. The inter-correlations of 29 sub-divisional monsoon

rainfall series are discussed in [65, 67]. These studies show that neighboring sub-

divisions are in general highly positively correlated. However the two sub-divisions

of Assam state are negatively correlated with the rest of the sub-divisions in NEI.
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Table 2.3: Correlation coefficients between rainfall in HIM region and that in its

constituent 14 sub-divisions.

S.no Subdivision Corr.coefficient Confidence interval

1. Punjab 0.47 [0.32, 0.60]

2. North Interior Karnataka 0.59 [0.46, 70.0]

3. East M.P. 0.59 [0.46, 0.70]

4. Haryana 0.60 [0.48, 0.71]

5. Saurashtra 0.62 [0.50, 0.72]

6. Telangana 0.67 [0.55, 0.76]

7. Marathwada 0.68 [0.57, 0.76]

8. Madhya Mahrashtra 0.70 [0.60, 0.78]

9. Konkan 0.70 [0.60, 0.78]

10. West Rajasthan 0.73 [0.63, 0.80]

11. Gujarat 0.75 [0.66, 0.82]

12. Vidarbha 0.76 [0.67, 0.83]

13. East Rajasthan 0.79 [0.63, 0.80

14. West M.P. 0.81 [0.74, 0.87]





Chapter 3

Analysis of Test Signals

1

3.1 Introduction

As mentioned in Section 1.1, closely spaced frequencies have been separated using

different techniques in the recent past and pose an important problem in time series

analysis. The main aim of this chapter is to devise a new wavelet based method for

identifying closely spaced frequencies, and validate the method by test cases that

mimic the time series of our interest, namely Indian rainfall. There are of course

other methods [14] using maximum likelihood and regression techniques that sepa-

rate closely spaced frequencies, but these assume that the time series is stationary,

whereas the method proposed here, analysing each level, does not need to assume

stationarity of the whole signal but only of the decomposition on shorter scales that

may be subjected to spectral analysis. (This procedure is satisfactory for monsoon

rainfall whose non-stationarity is slight; we shall return to this question in Chapter

4.)

A mathematical description of three powerful methods, namely power spectral

density (PSD) function, multi-resolution analysis (MRA) and empirical mode de-

composition (EMD), has already been given in Chapter 1. In the sections to follow,

1Some of the material in this chapter has appeared in Azad et al. (2007a).

37
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the performance of each of these methods is compared on specially devised test

signals. A hybrid technique using MRA, which takes advantage of both spectral

and wavelet analysis for separating closely spaced frequencies, is then proposed.

This method is shown to perform better than classical spectral analysis or EMD in

resolving closely spaced frequencies, especially if a suitable wavelet is chosen.

3.2 The Test Signals

To make a critical assessment of the methods mentioned above, two test signals,

each a sum of sinusoidal functions with prescribed frequencies fi and amplitudes ai,

are constructed using the equation

x(t) =
∑

i

aisin2πfi t , t = 1, ..., 256. (3.1)
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Figure 3.1: Time series of test signal 1.

These signals are intended to simulate the rainfall data, with time taken in

years (y) and amplitude in mm, keeping in view the application we shall make in

Chapter 4. However the analysis is carried out with normalized time series with

zero mean and unit standard deviation for both the test signals and rainfall data,

as our objective is to study the temporal structure of the time series and not the
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Level Frequency Normalized

(y−1) Amplitude

1. 0.33 0.10

2. 0.20 0.07

3. 0.09 0.18

4. 0.035 0.15

5. 0.0156 0.20

Table 3.1: Test signal 1 with given frequencies and normalized amplitudes.

magnitude of the rainfall. The sinusoids constituting test signals 1 and 2 are shown

in figures 3.1, 3.2, and their details are listed in tables 3.1, 3.2.
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Figure 3.2: Time series of test signal 2.

3.2.1 EMD on the test signals

The EMD analysis was carried out using the method of [68], and the code available

at http://perso.ens-lyon.fr/patrick.flandrin/emd.html. First EMD is performed on

test signal 1. Figure 3.3 shows 8 intrinsic mode functions (IMF) obtained as a

result of the sifting process described in Section 1.1. The corresponding periods are
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Level Frequency Normalized

(y−1) Amplitude

1. 0.33 0.18

2. 0.20 0.19

0.17 0.17

0.16 0.19

3. 0.09 0.20

4. 0.035 0.18

0.028 0.18

5. 0.0156 0.19

Table 3.2: Test signal 2 with given frequencies and normalized amplitudes.

calculated by the method of zero crossings. Table 3.3 shows that all the periods are

captured quite accurately by this method.

However, [45] explain that in separating two very close frequencies, spline fitting

takes thousands of iterations and the extracted IMF’s are severely contaminated. As

a result, the instantaneous frequencies of the components overlap to form a single

peak located near the mean value. It is further reported in [45] that the cubic

spline fitting has both overshoot and undershoot problems. Because of this some

asymmetric wave forms can still exist no matter how many times the data are sifted.

In order to analyse such difficulties test signal 2 (table 3.2) is constructed and

investigated. This signal has three closely spaced high frequencies at 0.2, 0.17 and

0.16 y−1 and two low frequencies at 0.035 and 0.028 y−1. Results are shown in

table 3.4. IMF 2 captures a frequency 0.175 y−1, which is some weighted average

of the three frequencies 0.2, 0.17 and 0.16 y−1 present in test signal 2. At IMF

4 the frequency captured is 0.033 y−1, which again is some weighted average of

the frequencies 0.035 and 0.028 y−1. It seems plausible that the way frequencies

of each decomposition are calculated by counting zero crossings gives a weighted

average period which is unable to separate any closely spaced frequencies that the

original time series may contain. This example shows that at any time in the sifting
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process a function may exist (for example a waveform comprising two closely spaced

frequencies) that may satisfy the IMF criteria but still cannot be taken as a single

frequency component. Hence some frequency information can be missed out as the

method of counting zero crossings gives an average over closely spaced frequencies;

this is the problem of mode mixing [45].
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Figure 3.3: EMD on test signal 1, IMF1 (top) to IMF8 (bottom).
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Level Frequency Corresponding freq.

(y−1) in test signal 1

IMF1 0.32 0.33

IMF2 0.19 0.20

IMF3 0.089 0.09

IMF4 0.035 0.035

IMF5 0.0156 0.0156

Table 3.3: EMD with count of zero crossings on test signal 1.

Level Frequency Corresponding freq.

(y−1) in test signal 2

IMF1 0.30 0.33

IMF2 0.175 0.20

0.17

0.16

IMF3 0.085 0.09

IMF4 0.033 0.035

0.028

IMF5 0.0156 0.0156

Table 3.4: EMD with count of zero crossings on test signal 2.
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3.2.2 MRA on the test signals

The procedure adopted here goes with the description of MRA given in Section

1.1. The MRA technique defined there can be implemented using standard routines

in the wavelet tool box of Matlab. There are many types of mother wavelets that

can be used in practice; a total of six wavelets have been considered here: Haar;

discrete Meyer (dmey); Daubechies of order 2 (db2); Daubechies of order 10 (db10);

Coiflet of order 2 and Symlet of order 2. These wavelets are shown in figure 3.4. A

discussion of these wavelets can be found in [36]. In this subsection the performance

of the dmey wavelet is evaluated, and its superiority is explained in terms of better

localization of each specific frequency component and an accurate measurement of

its amplitude at each level of MRA decomposition.
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Figure 3.4: Examples of mother wavelets: (a) Haar; (b) Discrete Meyer wavelet; (c)

Daubechies of order 2; (d) Daubechies of order 10; (e) Coiflet 2; (f) Symlet 2 .
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In the case of discrete wavelets a time series with sample size N can be decom-

posed at J levels or the scales 2j, j = 1, ..., J = log2N , if the sampling interval is

taken as one. The procedure goes with the description of MRA given in Chapter 1,

where the orthogonal projection on lower subspaces is achieved by recursive sums

and the error terms are obtained from differences. The first step produces two sets

of coefficients: approximation coefficients XN−1 and detail coefficients eN−1. At

the end of the first step, the number of samples reduces to N/2, so to keep their

number the same as the original size the detail and approximate coefficients are

reconstructed by padding them with N/2 zeros [30]. Hence at the first level, instead

of XN−1 the reconstructed approximate coefficients X+
N−1 and the detail coefficients

e+N−1 are considered.

The test signal 1 (N = 256 samples) is decomposed at 2j, j = 1, ..., 8 scales using

the dmey wavelet. The first partially reconstructed approximate series is obtained

by losing the highest frequency, the time series of which makes the 1st detail series

as shown in figure 3.5, i.e.

XN − e+N−1 = X+
N−1. (3.2)

50 100 150 200 250
−3

−2

−1

0

1

2

3

 Time (y)

 N
or

m
al

iz
ed

  A
m

pl
itu

de
 

Test signal 1
 1st detail

Figure 3.5: Test signal 1 plotted along with its first reconstructed detail, using dmey

wavelet.

Note that e+N−1 and X+
N−1 would fully reconstruct the original signal by the pro-

jection theorem [44]. Also it is observed that the amplitude of the first reconstructed



3.2. The Test Signals 45

detail is equal to the amplitude given to the frequency 0.33 y−1 in the test signal 1

(table 3.1).

In similar manner XN−1 is decomposed into X+
N−2 and e+N−2 and so on. Thus at

the end of J levels of decomposition XN can be written as

XN = e+N−1 + e+N−2 + e+N−3 + ...e+1 +X+
1 . (3.3)

Figure 3.6 shows the reconstructed approximations and details obtained at 8

levels of decomposition using the dmey wavelet.
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Figure 3.6: Test signal 1 is plotted with its partially reconstructed approximations (left)

and details (right) from level 1 (top) to level 8 (bottom).

However, the first four partially reconstructed details and the fourth partially

reconstructed approximation are considered for the present analysis (see figure 3.7),
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as the test signal 1 can be fully reconstructed by a decomposition upto four levels

with an error of only 10−4. Also it is shown in the next subsection that upto the

fourth level of decomposition all the frequencies present in the test signal 1 are

captured (see table 3.5).
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Figure 3.7: Test signal plotted along with its four details and fourth partially recon-

structed approximation, using dmey wavelet.
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Figure 3.8: Test signal 1 plotted along with its five partially reconstructed details, using

dmey wavelet.
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If we use five details instead, figure 3.8 shows that the reconstruction has an

error of as much as 10%.

The same procedure is repeated with the db2 wavelet, and results are shown in

figure 3.9 for the first level of detail. It is clear from the figure that the partially

reconstructed detail time series at this level shows more than one frequency, whereas

the dmey wavelet could capture only one (figure 3.5).
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Figure 3.9: Test signal 1 plotted along with first reconstructed detail, using db2 wavelet.

This difference in performance between the two wavelets is analysed in the next

subsection.

3.2.3 Spectral analysis of wavelet decompositions

The main aim here is to show that classical spectral analysis applied to MRA decom-

positions captures closely spaced frequencies better than a ‘direct’ spectral analysis

of the original signal (as described in classical texts such as [7].

Once the decomposition is achieved, the frequencies are defined over a particular

range of scales at each level in MRA. This is because (in terms of the time interval

between successive points in the discrete time series, say one year), the first level

periods in MRA decomposition are in the scale range 2-4 y, the second level in the

range 4-8 y, and so on, with dyadic scaling. But in order to get specific values
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for the frequencies we revert to the spectral approach. Thus, the power spectral

density (PSD) functions of the reconstructed detail and approximate coefficients of

test signal 1 are first estimated, treating them as time series in their own right.

The Welch modified periodogram method [28] with Hanning window (described in

Section 1.1) is used for this purpose. The rationale behind the present approach will

be explained towards the end of this section.

Results obtained from MRA on test signal 1 with the dmey wavelet are shown

in table 3.5. Here level 1 shows the results of frequencies obtained from partially

reconstructed detail e+N−1 and reconstructed approximation X+
N−1. It is clear from

the table that at the first level of detail, the highest frequency (0.33 y−1) is separated

out from the rest of the frequencies, which are together captured at the first level

of approximation. This highest frequency is the detail lost in making the first

approximation of the test signal 1. Similarly the next highest frequency (0.2 y−1) is

separated out at the second level of decomposition. The results for the 8 levels are

shown in table 3.5.

It is clear from the table that it is sufficient to consider the decomposition till

the fourth level as all the relevant frequencies are individually captured; the test

signal 1 can of course be fully reconstructed with this decomposition by virtue of

Eq. 1.30.

On the other hand the db2 wavelet yields false frequencies at the first level itself,

i.e. along with the frequency 0.33 y−1 it suggests other frequencies at 0.41, 0.3

and 0.16 y−1 which are not present in test signal 1 (see table 3.6). Also, with the

db2 wavelet there is repetition of frequencies at various levels, whereas the dmey

wavelet is able to separate the highest frequency at each level without any mixing of

frequencies. This confirms the characteristic of the dmey wavelet that it is localized

in the frequency domain, as explained in [36].

The same procedure is carried out with four other wavelets: Haar, db10, coiflet2

and Symlet8. In all these cases results obtained are similar to those with db2. Hence

it is concluded that the dmey wavelet works satisfactorily on test signal 1, and this

wavelet will therefore be adopted for further analysis.

Next test signal 2 (table 3.2) is considered. Now it is not possible to resolve

frequencies spaced closer than 1/N in classical spectral analysis, and frequencies
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Level Details Approximations

Frequency (y−1) Frequency(y−1)

1. 0.33 0.20

0.09

0.035

0.0156

2. 0.20 0.09

0.035

0.0156

3. 0.09 0.035

0.0156

4. 0.035 0.0156

5. 0.026 0.016

0.016

6. 0.016 0.0083

7. 0.0083 0.0039

8. 0.0039 0.0039

Table 3.5: PSD on MRA of test signal 1, using dmey wavelet.
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Level Details Approximations

Frequency (y−1) Frequency(y−1)

1. 0.41 0.20

0.33 0.09

0.30 0.035

0.20 0.0156

0.16

2. 0.34 0.16

0.30 0.09

0.20 0.035

0.16 0.0156

0.0.09

3. 0.16 0.035

0.09 0.0156

4. 0.046 0.0156

0.035

Table 3.6: PSD on MRA of test signal 1, using db2 wavelet.
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closer than 2/N either miss out or merge into a single entity to give an average

value [10]. It is shown here that such frequencies can be distinguished using the

present MRA technique. By applying PSD directly on the test signal it is found

that the closely spaced higher frequencies 0.2, 0.17 and 0.16 y−1 are captured, but

the lower frequencies 0.035 and 0.028 y−1 merge to give an average value of 0.031

y−1. This is because the separation between these lower frequencies is 0.007 y−1,

which is less than 2/N = 0.0078 y−1, whereas in the case of the higher frequencies

PSD is able to capture both 0.17 and 0.16 y−1 as the frequency separation of 0.01 y−1

between them is higher than 2/N . Results obtained by estimating the PSD of MRA

decompositions using the dmey wavelet are shown in figure 3.10. At the second

level of MRA, PSD captures all the three high frequencies, and at the fourth level of

approximation the closely spaced lower frequencies are also captured. It is recalled

that in direct PSD the frequencies 0.035 and 0.028 y−1 could not be separated.

A plausible explanation or theoretical justification for the ability to separate

closely spaced frequencies using the approach proposed here would go as follows.

Once it is decided that the time series being handled is nonlinear and possibly non-

stationary, the wavelet technique is clearly an attractive option. However separating

closely spaced frequencies by direct inspection of a wavelet map poses difficulties. In

the first place even a pure sinusoid leads to wavelet coefficients over a band of time

scales, so separating two closely-spaced frequencies this way would not be practical.

Secondly, nonlinearity, non-stationarity, and the regime transitions that may occur

as a consequence can cloud the issue. Finally even when a time series contains a

pure sinusoid the interference (or leakage) it produces can make contributions not

only within its own band but in neighboring bands as well [69]. This problem leads

to serious difficulties in many technological applications; for example when there is

interference by the mains frequency in an electronic signal that is the object of anal-

ysis. Much work has been done in this area, for example in [69, 70]. Here a variety of

different methods for eliminating interference are reviewed and new ones suggested.

In our application the objective is to separate frequencies for reasons already stated

in the introduction. Here we fall back on the advantages of Fourier analysis, which

has greater localization power in frequency space and should therefore be able to

pick out sharp peaks when leakage is minimized.
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Figure 3.10: PSD on MRA of test signal 2 (a) PSD on its 1st reconstructed detail; (b)

PSD on its 2nd reconstructed detail; (c) PSD on its 3rd reconstructed detail; (d) PSD

on its 4th reconstructed detail; (e) PSD on its 4th reconstructed approximation. Note:

Periods(y) are marked at each peak.

What is proposed here is thus a hybrid ‘MRA+PSD’ technique where the ad-

vantages of wavelet methods in handling nonlinear non-stationary time series are

combined with those of spectral analysis by the following procedure. At first level

of MRA decomposition the original time series XN is divided into two partially re-

constructed time series e+N−1 and X+
N−1 as defined in the last section. Here e+N−1

is obtained by setting approximate coefficients of the low frequency components

to zero. This helps in the elimination of sinusoidal interference in the highest fre-

quency band. The e+N−1 is then subjected to classical Fourier spectral analysis,

which is successful in separating closely spaced frequencies provided the associated

spectral peaks are sufficiently narrow. This procedure is repeated for all levels and

successively interference is removed from higher frequency bands by setting the cor-

responding approximate coefficients to zero.
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Figure 3.11: The exact frequencies given on test signal 2 are shown by bold vertical lines,

whereas dotted lines show frequencies captured by EMD, db2 and the dmey wavelet.

Ordinates represent normalized amplitudes.

3.2.4 Conclusions

The results from the analysis of the test signals before going on to treating rainfall

data are briefly summarized here.

• When frequencies are widely separated (as in test signal 1) both EMD and

MRA work well. However, when frequencies are closely spaced, as in test

signal 2, EMD will capture only average values as it counts zero crossings,

whereas PSD on MRA (with the dmey wavelet) is able to distinguish between

closely spaced frequencies and capture them separately.

• Also, the direct PSD on test signal 2 merges closely spaced frequencies when

the separation between them is less than 2/N . However PSD on wavelet

coefficients is able to distinguish between these frequencies.
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• Comparing the performance of dmey, db2 and four other wavelets on the spe-

cially devised test signals it is found that dmey offers the best performance in

separating closely-spaced frequencies without yielding spurious peaks. Figure

3.11 shows the difference in performance of EMD, db2 and dmey wavelet. The

full vertical lines are the exact frequencies present in test signal 2; frequencies

obtained from EMD and the present MRA using db2 and dmey wavelets are

shown by dotted lines. It is clear from the figure that frequencies obtained

from the dmey wavelet closely match with the exact frequencies.

• Other methods, including those based on maximum likelihood and regression

techniques and on the Cramer-Rao bound can in principle resolve frequencies

even when they are spaced closer than 1/N , but they assume stationarity,

large samples and high signal-to-noise ratio.



Chapter 4

Identifying Closely Spaced

Periodicities

1

4.1 Introduction

The MRA+PSD method is now applied to the normalized time series of HIM annual

rainfall data over the 120 y period 1871-1990 (described in Chapter 2). The use

of MRA as a tool for analysing non-stationarity in the time series of the HIM

rainfall is examined. This is required because our method demands combined use

of wavelet and Fourier spectral analysis, and the latter is valid only for stationary

time series. The method we describe helps us to isolate the stationary component of

the time series, i.e. to de-trend it using long-scale wavelets. Using this approach it

is found that the rainfall data is non-stationary only over long periods of order 60 y.

Thus, application of spectral analysis on wavelet-based partially reconstructed time

series, as used in Chapter 3, is justified. Using the discrete Meyer wavelet function,

the normalized HIM rainfall annual data is decomposed into seven dyadic scales

corresponding to 2, 4, 8, 16, 32, 64 and 128 y. However, the first four details and the

fourth approximation are sufficient for the present analysis. As was explained for the

1Much of the material in this chapter has appeared in Azad et al. (2007a).
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test signals in Chapter 3, the HIM time series can also be almost fully reconstructed

by a decomposition upto four levels with an error of only 10−4. Also it is shown that

upto the fourth level of decomposition all the frequencies present in the rainfall are

captured. Figure 4.1 shows the normalized HIM rainfall time series with its MRA

decomposition at four levels.
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Figure 4.1: MRA of HIM rainfall data. (a) Normalized HIM time series from 1871-

1990; (b) 1st partially reconstructed detail; (c) 2nd partially reconstructed detail; (d)

3rd partially reconstructed detail; (e) 4th partially reconstructed detail; (f) 4th partially

reconstructed approximation.
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Figure 4.2 shows how MRA divides the variance of the HIM time series into

additive contributions from different levels. Note that the periods in the range 2-4

y at scale 1 and periods in the range 8-16 y at scale 3 together account for 72% of

the total variance of HIM rainfall.
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Figure 4.2: Contribution of variance at different scales for HIM region: scale 1 corresponds

to 1st partially reconstructed detail; scale 2 corresponds to partially reconstructed 2nd

detail, upto 4 details and scale 5 corresponds to 4th partially reconstructed approximation.

4.2 Non-Stationarity Tests

A random process is stationary if its statistical characteristics are invariant under

time shifts, that is, if they remain the same when t is replaced by t+�, where � is

arbitrary. A weaker type of stationarity (called second order stationarity [8]) is that

in which only the first– and second–order moments depend solely on time differences.

Here we test for second order non-stationarity associated with significant differences

in the mean value and/or variance of the time series under consideration. For non-

stationary random processes wavelet based methods [71, 72] have been shown to be

useful in recent years. However the non-stationarity present in the Indian rainfall

is not very strong as assumed in these methods. The present analysis first uses

MRA as a tool to identify the range of wavelet scales over which stationarity can be
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assumed.

Recently reference [23] using time domain analysis have shown that HIM rainfall

time series exhibits non-stationarity. By calculating the mean difference over two

distinct test periods it was shown by them that the rainfall during 1933–1964 is

higher than that during 1878–1913 with 97% confidence by z-test. As an interesting

extreme case, the Konkan sub-division (on the west coast) is illustrated in figure 4.3

(taken from reference [23]) by plotting rainfall data over 1871–1990. This time series

appears irregular and random, but one can already notice the marked difference in

average rainfall between the two test periods. The difference is significant at the

99.9% confidence level. Indeed the non-stationarity of the data is clearly visible in

the plot itself. (Incidentally similar marked differences are seen all along the west

coast).
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Figure 4.3: Time series of Konkan sub-visional rainfall, indicating test periods which

show difference in mean.

Though the rainfall time series is non-stationary, we can however show, by ap-

plying statistical tests on MRA decomposition at different levels, that it can be

expressed as a sum of stationary and non-stationary time series. That is, for short

periods (at high frequencies) rainfall data actually behaves as a stationary time
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Lag(y) Autocorrelation coefficient

1. -0.007

2. 0.180

3. 0.083

4. -0.117

5. -0.036

6. -0.0001

Table 4.1: Autocorrelation coefficients of HIM rainfall at different lags.

series, whereas for longer periods (at low frequencies) it exhibits non-stationarity.

Therefore the present analysis uses MRA as an exploratory tool to identify the range

of wavelet scales over which stationarity can be assumed.

For this purpose, the autocorrelation coefficients of HIM rainfall at various lags

are calculated using Eq. 1.1 and values are listed in table 4.1.

It is clear from the table 4.1 that the autocorrelation coefficient for HIM rainfall

is quite low at various lags, for example at lag-1 it is −0.007, i.e. very close to zero.

The implication of such a small autocorrelation is discussed in the next chapter.

Here we look at autocorrelation coefficients of partially reconstructed time series at

four levels for 119 lags, as shown in figure 4.4. It is clear from the figure that for

levels 1-3, the time series moves occasionally away from its mean, but eventually

returns to it, hence shows characteristics of stationarity. For the rest of the levels,

however, it oscillates slowly showing periodic behavior.
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Figure 4.4: Auto-correlation coefficients for l19 lag values at four levels of (a) first recon-

structed detail; (b) second reconstructed detail; (c) third reconstructed detail; (d) fourth

reconstructed detail; (e) fourth reconstructed approximation.

4.2.1 Two statistical tests

Suppose we wish to test for possible non-stationarity in the HIM rainfall time series

on a specified time scale. To do this we adopt the following procedure:

• Select two appropriate test periods with n1 and n2 samples respectively. (e.g.

from 1871-1930 and 1931-1990, for a 60 y time scale, n1 = n2 = 60).

• First, test against the null hypothesis that the mean over the two test periods

is the same. If µ1 and µ2 are the observed mean values over the two test

periods, form the z-test statistic

Z =
µ1 − µ2√

(s2
1/n1 + s2

2/n2)
. (4.1)
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where s2
1, s

2
2 are estimators of the variances over the two test periods. The

null hypothesis that µ1 − µ2 = 0 is rejected at confidence level 100(1− α)% if

|Z| > zα/2 for an equal-tails test, where |Z| is the absolute value of Z. (Values

of zα/2 are tabulated in [73], for example.)

• Next, test for variance, adopting the null hypothesis that the variance over

the two test periods is the same. This can be done by the F -test, using the

statistic

F =
s2
1

s2
2

. (4.2)

This ratio follows the F -distribution with γ1 = n1 − 1 and γ2 = n2 − 1 degrees

of freedom. The null hypothesis is rejected at confidence level 100(1 − α)% if

the computed F value is greater than the tabulated value of Fα(γ1, γ2) (e.g.

[73]).

4.2.2 Results

The two tests were performed on the two consecutive populations of 60 samples each

from the reconstructed details and approximation of MRA decomposition at four

levels; i.e. two test periods over 1871–1930 and 1931–1990 are analysed for station-

arity. Results are shown in tables 1 and 2 respectively. It is clear from the tables

that for both the tests the null hypothesis is rejected at 99.9% confidence level for

the 60 year period at the fourth approximation of MRA decomposition. At shorter

scales the hypothesis is not rejected. Hence we conclude that HIM rainfall exhibits

non-stationarity only over long periods of order 60 y. Figure 4.5 shows the stationary

component of HIM rainfall obtained from adding the partially reconstructed time

series at four levels of detail. This reconstructed stationary time series accounts for

93% of the variance of the total rainfall. We conclude that the application of spectral

analysis on the MRA decomposition, which we shall describe in the next section, is

justified upto the 16-32 y band as till this band rainfall exhibits stationarity.
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µa
1 µb

2 Z % confidence

d̂1 -0.0043 0.0024 -0.05 < 10%

d̂2 -0.0036 0.023 -0.08 < 10%

d̂3 -0.0085 0.156 -0.42 30%

d̂4 -0.006 0.008 -0.26 20%

â4 -0.107 0.09 -3.83 99.9%

Table 4.2: z-test on HIM rainfall data and its MRA decomposition at different scales

with % confidence at which null hypothesis is rejected. µa
1: Mean rainfall over test period

1871:1930; µb
1:Mean rainfall over test period 1931–1990.
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Figure 4.5: Normalized HIM rainfall time series compared with its stationary part ob-

tained from MRA.
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s2
1
a s2

2
b F % confidence

HIM 1.07 0.91 1.18 90%

d̂1 0.55 0.48 1.14 70%

d̂2 0.15 0.16 1.06 70%

d̂3 0.19 0.17 1.12 70%

d̂4 0.10 0.07 1.43 90%

â4 0.12 0.04 2.99 99.9%

Table 4.3: F -test on HIM rainfall data and its MRA decomposition at different scales

with % confidence at which null hypothesis is rejected. s2
1
a:Variance of rainfall over test

period 1871–1930; s2
2
a: Variance of rainfall over test period 1931–1990.
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4.3 Identifying Closely Spaced Periodicities

As was done for the two test signals in Chapter 3, the PSD of each of the partially

reconstructed time series of HIM rainfall obtained from the MRA decomposition is

now estimated. Results are shown in figure 4.6 and table 4.4. It is immediately clear

from the figure that PSD on MRA yields two more periods, respectively at 8.6 and

30.3 y. Their absence in the directly computed PSD (see figure 4.6) is consistent

with the criterion cited earlier, as the frequency separation between the two period

pairs (8.6 - 10.0) y and (30.3 - 60.6) y is each less than 2/N = 0.0167 y−1.
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Figure 4.6: PSD on MRA of HIM (a) PSD on its 1st reconstructed detail; (b) PSD

on its 2nd reconstructed detail; (c) PSD on its 3rd reconstructed detail; (d) PSD on its

4th reconstructed detail; (e) PSD on its 4th reconstructed approximation. Note: circled

periodicities are the new periodicities which were missed out by direct PSD. Periods(y)

are marked at each peak.

In figure 4.7, the direct PSD of normalized HIM rainfall is plotted against that of

the MRA reconstructed time series (using the spectra of four levels of details and the
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level Details Approximations

Frequency(y−1) Period(y) Amplitude Frequency(y−1) Period(y) Amplitude

1. 0.475 2.1 2.9 0.24 4.1 0.3

0.433 2.3 4.8 0.175 5.7 1.4

0.384 2.6 2.1 0.15 6.6 0.4

0.358 2.7 3.2 0.133 7.5 2.2

0.3 3.3 2.1 0.1 10.0 2.6

0.075 13.3 2.8

0.0416 24.0 1.5

0.0165 60.6 2.0

2. 0.24 4.1 0.3 0.116 8.6 2.1

0.175 5.7 1.4 0.1 10.0 2.4

0.15 6.6 0.4 0.075 13.3 2.8

0.133 7.5 0.6 0.0416 24.0 1.5

0.0165 60.0 2.0

3. 0.116 8.6 2.1 0.066 15.1 0.2

0.1 10.0 2.4 0.0416 24.0 1.5

0.075 13.3 2.9 0.0165 60.6 2.0

4. 0.066 15.1 0.2 0.033 30.3 0.3

0.0416 24.0 1.5 0.0165 60.0 2.0

5. 0.033 30.3 0.3 0.0083 119.0 1.2

0.0165 60.0 0.3

6. 0.0084 119.0 0.6 0.0084 119.0 0.07

7. 0.0084 119.0 0.8 .0084 119.0 0.02

Table 4.4: Periods(y) obtained in HIM rainfall from PSD on MRA at various levels of

details and approximations.
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fourth approximation). (Note of course that the area under both the PSD functions

is the same. Also, the peaks from the present method are sometimes higher e.g. at

13.3 and 7.5 y, and sometimes lower, e.g. at 24.0 and 10.0 y.) The striking difference

is the 8.6 y period, which was missed by direct PSD.
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Figure 4.7: The direct PSD of normalized HIM rainfall is plotted against reconstructed

PSD obtained from MRA, using Welch technique.

4.3.1 Handling border distortion

Classically, the DWT is defined for sequences with length of some power of 2, and

different ways of extending the analysis to samples of other sizes to avoid border

distortion have been proposed. These include zero-padding, smooth padding, peri-

odic extension, and symmetric boundary replication (symmetrization), as discussed

in [36]. Bearing in mind that the sample size of rainfall data is 120 y and we de-

compose it at eight levels, a total of 128 samples was needed, so different padding

schemes have been considered in this work. When decomposing this time series

using MRA we experience border distortion at various levels in terms of change in

amplitudes in the PSD’s of reconstructed time series with respect to the PSD of

HIM rainfall time series. Hence we have applied periodic extension on the first two

details, and symmetrization on the the next three decompositions.

The important question that arises at this stage concerns the statistical signifi-
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Level CWT zero crossings on EMD PSD on MRA

1. 3.0 2.7 2.1, 2.3, 2.5, 2.7, 2.8, 3.0, 3.3

2. 5.8 5.7 4.1, 5.7, 6.6, 7.5

3. 11.6 12.0 8.6, 10.0, 13.3

4. 20.8 24.0 24.0

5. 37.0 30.3

6. 80.0 60.0 60.0

Table 4.5: Periods (y) obtained by continuous wavelet transform (Narasimha and Kailas

2001), Empirical mode decomposition (Iyengar and Kanth 2004) and PSD on Multi-

resolution analysis (present technique) of HIM.

cance of the peaks so discovered. We shall return to this issue in detail in the next

chapter.

4.3.2 Comparison with different methods

As already described in Section 1.2, the HIM time series has been analysed by various

workers using different methods to detect periodicities. Using continuous wavelet

maps, reference [21] reported six modes with periods of 3.0, 5.8, 11.6, 20.8, 37.0 and

80.0 y; using EMD, reference [55] found five empirical time series of intrinsic mode

functions with associated periods of 2.7, 5.7, 12.0, 24.0 and 60.0 y respectively; in

[51] the PSD is estimated using the Blackman-Tukey [52] algorithm, and detected

thirteen periodicities, respectively with periods of 2.1, 2.3, 2.5, 2.8, 3.1, 3.5, 4.0, 4.7,

5.7, 7.3, 10.0, 16.0 and 40 y; of these only the 2.8 y period was statistically significant

at 95% confidence against white noise. Table 4.5 compares the periodicities obtained

by the different methods. From this comparison the following are observed:

• At the 1st level of MRA decomposition the present method captures the seven

very close periods of 2.1, 2.3, 2.5, 2.7, 2.8, 3.0, 3.3 y, whereas CWT shows a

period of 3.0 y and EMD of 2.7 y, which are some weighted averages of the

periods obtained from MRA.
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• At the 2nd level the present MRA analysis captures the four periods of 4.1,

5.7, 6.6 and 7.5 y, whereas the only period captured by CWT and EMD is

close to 5.7 y, which is again some weighted average of the periods obtained

from MRA.

• At the 3rd level also MRA captures the nearby periods of 8.6, 10.0 and 13.3

y, whereas CWT shows a period of 11.6 y and EMD of 12.0 y.

• At the 4th level MRA and EMD both capture a period of 24.0 y.

• At the 5th level MRA captures a period of 30.3 y whereas CWT has 37.0 y.

• At the last level a period of 60.6 y is obtained by MRA and EMD whereas

CWT shows a period of 80.0 y. But these must be treated with great caution,

as the total length of the data accommodates fewer than 2 cycles in this period

range, and both end effects and non-stationarity can be important.

4.4 Summary and Conclusions

Based on the work reported here the following conclusions can be drawn:

• Classical spectral analysis methods cannot separate frequencies spaced closer

than 1/N , where N is number of sample points in a time series. Moreover

frequencies which are closer than 2/N often get merged to yield only a weighted

average value.

• The MRA technique can be applied to non-stationary time series and can be

used as a tool to identify and separate frequencies which are closer than 2/N .

• Application of spectral analysis on reconstructed wavelet coefficient time series

is justified by the fact that rainfall is stationary except over long periods of

order 60 y.

• By analysing performance on two test signals, we explicitly demonstrate that

the EMD and CWT methods counting zero crossing intervals capture only av-

erage periods of closely spaced frequencies, whereas the present MRA method
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is able to capture many more frequencies. The same is true in the case of HIM

rainfall; PSD on MRA decomposition is able to yield periods close to each

other missed in earlier work by CWT and EMD methods, which yield only

some weighted average values of nearby periods.

• There are therefore grounds to believe that certain periodicities in rainfall have

been missed by earlier techniques.

• In case of HIM rainfall, the present technique reveals 17 periodicities at 2.1,

2.3, 2.5, 2.7, 2.8, 3.0, 3.3, 4.1, 5.7, 6.6, 7.5, 8.6, 10.0, 13.3, 24.0, 30.3, 60.0 y.

Of these the periodicities at 8.6 and 30.3 y are absent in all earlier work.

• The important question of statistical significance of these periodicities is dis-

cussed in Chapter 5.





Chapter 5

Statistical Significance Tests

1

5.1 Introduction

Many real-life time series include a combination of periodic or nearly periodic signals

embedded in a noise-like background with a continuous spectrum. The first step in

any investigation of the temporal structure of a time series is therefore to identify

any significant periodicities that may be present in the given time series. Though

various modern methods of spectral and wavelet analysis [36] have been developed

in recent years to estimate the spectrum of a time series, reference [59] explain that

the progress has been hindered by a lack of effective statistical tests to discriminate

between potential oscillations and anything but the simplest form of noise, that is,

“white ” (independent, identically distributed) noise, in which power is independent

of frequency. Here a major problem lies in testing for statistical significance, in

particular in selecting an appropriate background spectrum against which the peaks

found in an estimated spectrum can be compared. For this purpose different signal

detection methods have been developed [74, 75, 59, 76, 61, 60].

In this chapter, the spectrum of HIM rainfall annual time series, as estimated

in the previous chapter, is tested for the significance of the peaks observed in the

1Some of the material in this chapter is accepted and in press, Azad et al. (2007b).
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estimated spectrum. The test is carried out against the classical reference spectrum

proposed in [29] (explained in Section 1.1) as well as a more recent one due to [?].

The power of the MRA technique using a combination of wavelet and Fourier tools

has already been demonstrated in the previous chapter: the technique identified 17

peaks in the spectrum of HIM rainfall time series. It is our objective here to assess

the significance levels of the periodicities thus obtained against appropriate colored

background spectra at each scale.

5.2 White Noise Reference Spectrum

Reference [29] have derived a formula for calculating the experimental red noise

spectra to be used in constructing a null hypothesis for significance testing, as ex-

plained in Chapter 1 (Eq. 1.13). For HIM time series it is found that the lag-1

autocorrelation coefficient used in the Eq. 1.13 is very small (α = −0.007), so the

reference spectrum described is very close to white.
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Figure 5.1: Theoretical white noise spectrum and the one obtained from ensemble aver-

aged PSD of 10 and 1000 realizations of white noise.

In figure 5.1, the white noise spectrum obtained from Eq. 1.13 is plotted for

lag-1 auto-correlation. Also PSD function of one realization of Gaussian white noise

(generated using the algorithm of [77]) of 120 samples is estimated using the Welch
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technique described in Section 1.1. As references [61] and [22] point out, a single,

short realization of a noise process can have a spectrum that appears to differ greatly

from the theoretical one used as a classical reference spectrum. It is only the average

of such sample spectra over many realizations that will tend to the true spectrum

of the ideal noise process. To demonstrate this, figure 5.1 shows spectra obtained

from 120 samples of the white noise averaged over 10 and 1000 such realizations.

5.3 Significant Periodicities against Classical Ref-

erence Spectrum

As mentioned in the previous chapter, the HIM time series has been analysed by

various workers using different methods to detect periodicities. However neither of

these studies attempted to assess the statistical significance of their results. The

only significant periodicity reported in [51], using the Blackman-Tukey algorithm

[52] for Fourier spectral analysis, is 2.8 y at 95% confidence level against a reference

white noise spectrum.
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However it was suggested in [11] that periodicities should be tested for high

levels of significance i.e., for a sample of size N , he proposes that “a good rule of

thumb is not to get excited by significance levels less than 1 − 1/N ”. For HIM

rainfall data with N = 120, 1 − 1/N = 99.17%. We estimate the PSD function of

HIM rainfall time series using the Welch technique, described in Section 1.1. The

significance test is illustrated in figure 5.2 using the nearly white reference spectrum

for α = −0.007 obtained from Eq. 1.13 (the area under the PSD function and

the reference spectrum is of course the same). It is seen that the test yields two

significant periods, 2.3 y at 99% and 2.8 y at 95% confidence level.

S.no Sub-division Auto Correlation

Lag-1 Lag-2 Lag-3

HIM -0.007 0.18 0.08

1. Haryana -0.02 0.14 0.06

2. Punjab -0.13 -0.10 0.28

3. West Rajasthan 0.06 -0.04 0.04

4. East Rajasthan 0.002 0.11 0.05

5. West M.P. 0.04 0.27 0.10

6. East M.P. -0.0001 0.13 0.17

7. Gujarat -0.02 -0.003 0.01

8. Saurashtra -0.07 0.004 0.09

9. Konkan 0.11 0.03 0.007

10. Madhya Maharashtra 0.18 -0.05 -0.04

11. Marathwada 0.2 -0.03 0.03

12. Vidarbha -0.06 0.23 0.07

13. Telangana 0.15 0.09 0.02

14. North Interior Karnataka 0.10 -0.04 0.13

Table 5.1: Auto-correlation coefficient at various lags for HIM and 14 sub-divisional

rainfall during 1871-1990.

The PSD function for each of the 14 sub-divisional rainfall time series constitut-
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ing HIM may be estimated by the same method. The auto-correlation coefficient for

HIM and for the 14 sub-divisional rainfall time series are calculated at three values

of lag and are given in table 5.1. For example, East M.P. shows −0.0001 value at

lag-1, whereas at lag-3 the value is 0.17. Interestingly, the autocorrelation at higher

lags is often greater than at lag-1 (West Rajasthan, Konkan, Madhya Maharashtra,

Marathwada, Telangana however behave differently: higher-lag autocorrelations are

lower. We shall return to these points later.) The significance test is performed for

each sub-division exactly as for HIM, using the values of α from table 5.1. The re-

sults are shown in figures 5.3–5.5. The periodicities obtained in the 14 sub-divisional

rainfall time series are listed in table 5.2.

S.no Sub-division 90% Significance 95% Significance

1. Haryana 2.8, 8.6, 10.9 2.8, 8.6

2. Punjab 2.8, 60.6 2.8, 60.6

3. West Rajasthan 2.3, 2.8, 3.3, 8.6, 12.0 2.8

4. East Rajasthan 2.3, 2.8, 3.3, 8.6, 13.3 2.3, 3.3, 13.3

5. West M.P. 2.1, 2.3, 2.8, 7.5, 13.3, 60.6 2.1, 2.3, 13.3, 60.6

6. East M.P. 2.1, 10.9, 60.6 2.1, 60.6

7. Gujarat 2.3, 3.3, 4.1, 4.7, 12.0 2.3, 4.7

8. Saurashtra 2.3, 2.9, 3.0 2.3, 2.9, 3.0

9. Konkan 2.3, 2.8, 3.0, 20.0 2.3, 20.0

10. Madhya Maharashtra 2.3, 2.8, 3.0, 6.0, 15.1 6.0

11. Marathwada 7.5, 24.0

12. Vidarbha 2.3, 24.0 2.3, 24.0

13. Telangana 2.1, 2.3, 2.8, 7.5, 10.0 7.5, 10.0

14. North Interior Karnataka 2.6 2.6

Table 5.2: Periodicities present in the monsoon rainfall of 14 sub-divisions at two signifi-

cance levels.
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5.4 The Spectral Dip in Some Sub-divisional Rain-

fall Data

The spectrum in figure 5.2 shows relatively high power at both lower and higher

frequencies, and suggests that there is a spectral dip in a band around the frequency

0.25 y−1. That this spectral dip is not a mere statistical fluctuation is shown by the

following argument.

First we calculate the average PSD values in the frequency band 0.19 to 0.29 y−1

(table 5.3) for each sub-division. We now use a t-test. For testing against the null

hypothesis that the mean µ = a, where a is a specified number, on the basis of a

random sample of size n, compute

t =
x− a

s/
√
n

(5.1)

where s is the sample standard deviation. For a one-sided test of the null hypothesis

µ = a against the alternative µ < a, use the rejection region as t > tα,n−1. From

table 5.1, the power over the frequency band 0.19 to 0.29 y−1 has an average value

(x) of 0.67 and standard deviation (s) of 0.31. Therefore the value of t (with a = 1),

comes to be 3.92 from Eq. 5.1. Also, the tabulated t-value for n − 1 degrees of

freedom is 3.56 [73]. Therefore the null hypothesis that the spectral dip in the
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frequency range 0.19–0.29 in the HIM spectrum is a result of statistical fluctuation

in the white noise reference spectrum of unity is rejected at a confidence level of

99.5%.

Furthermore, HIM rainfall is the weighted average of 14 time series, one from

each of the 14 meteorological sub-divisions constituting the HIM region. It is found

that seven out of the 14 sub-divisional time series also exhibit a spectral dip around

the frequency 0.25 y−1. This incidentally raises the question to what extent the HIM

region is spectrally homogeneous; this question is considered in the next chapter.

Meanwhile we conclude that the reference spectrum must take account of the spectral

S.no Sub-division Average of PSD values

1. Haryana 0.48

2. Punjab 0.56

3. West Rajasthan 1.10

4. East Rajasthan 0.96

5. West M.P. 0.50

6. East M.P. 0.65

7. Gujarat 1.45

8. Saurashtra 0.83

9. Konkan 0.51

10. Madhya Maharashtra 0.48

11. Marathwada 0.49

12. Vidarbha 0.58

13. Telangana 0.28

14. North Interior Karnataka 0.54

Table 5.3: Average PSD value in the frequency band 0.19–0.29 y1, for each sub-division.

dip and hence there is a need for devising a more appropriate background spectrum.
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5.5 Monte Carlo Reference Spectra

One method proposed in [62] for devising an appropriate reference spectrum breaks

the given time series into a number of blocks of the same length, and then randomly

scrambles their order. This preserves short-term correlations but causes the timing

of major events to be randomly re-arranged with respect to one another.
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Figure 5.7: Reference spectrum obtained from the scrambling of HIM rainfall time series.

(a) bin size 8 y; (b) bin size 6 y; (c) bin size 5 y; (d) bin size 4 y.

We scramble the time series of HIM rainfall by choosing 15, 20, 24 and 30 blocks
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of size 8 y, 6 y, 5 y and 4 y bin respectively. For each block size the reference

spectrum is obtained by averaging the PSD’s over 10,000 Monte Carlo simulations

of the scrambled rainfall data. Results are shown in figure 5.7, where the HIM

spectrum is plotted against different reference spectra. It may be noted that in

each of the reference spectra a sharp ‘spike’ at a frequency 1/bin size cycles/y is

present. For example (see figure 5.7), for a bin size of 6 y, symmetric sharp dips can

be observed at 0.16 and 0.34 = (0.50 – 0.16) y−1 in the reference spectrum. These

can be attributed to a small enhancement at that frequency due to the choice of the

6 y dividing width.

However, all four spectra in figure 5.7 show a broad dip around 0.25 y −1 (figure

5.7 (b) least of all). It is observed from the figure that the reference spectrum

obtained from the bin size 4 y seems appropriate as it takes the shape of the HIM

spectrum.
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Figure 5.8: HIM spectrum obtained from Welch technique and reference spectrum (dashed

line) obtained from scrambling of HIM data at different confidence levels. Periods (y) are

marked at each peak.

Using this reference spectrum for further analysis, the PSD of HIM and the

significance levels of the peaks are shown in figure 5.8 by curved lines. Based on this

background, we find that the 2.3 and 2.8 y period are statistically significant above

a confidence level of 95%.
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5.5.1 Spectral analysis on MRA

We present below a new procedure for checking the significance levels of the par-

tially reconstructed time series obtained in Section 3 based on wavelet coefficients at

different frequency bands. The procedure automatically takes account of the general

nature of the rainfall spectrum, including in particular the dip at around 0.25 y−1.

The procedure is as follows. The PSD of each of the partially reconstructed time

series obtained from MRA at four levels is estimated. From figure 5.9, it is clear

that PSD at each scale is a part of the HIM spectrum (Fig. 5.2) in that particular

band. Reference spectra using Eq. 1.13 are formulated for the value of the lag-1

autocorrelation coefficient at each scale. It is found that, unlike for the total HIM

rainfall, the reference spectra at different scales are colored. For example, at the first

level of decomposition the autocorrelation coefficient of the partially reconstructed

time series is α = −0.69, hence blue; for the second level α = 0.40, hence red. The

results are shown in figure 5.9. This method shows 10 periodicities above the 99%

confidence level (Figure 5.9): 2.8, 3.3, 5.7, 7.5, 8.6, 10.0, 13.3, 24.0, 30.3, 60.6 y,

using in each case the appropriate colored reference spectrum. It is to be noted that

the periodicity at 2.3 y is no longer highly significant, as it appeared to be in figure

5.2, but 2.8 and even 3.3 y are significant at 99.9% confidence level.

Therefore it appears that the advantage of using PSD on MRA decomposition

instead of applying it directly to the time series is twofold:

• First, as found in Chapter 4, the PSD on reconstructed time series based on

wavelet coefficients is able to distinguish between certain closely spaced periods

at different scales which are missed by the direct PSD on the time series. Two

such significant periodicities, namely 8.6 and 30.3 y, are present in figure 5.9

at 99.9% confidence level but are absent in the direct PSD.

• Also, using MRA decomposition and partial reconstructions, periodicities may

be tested against the appropriate colored reference spectra in each scale band.

For example at the first level of decomposition for high frequencies the refer-

ence spectrum is blue whereas for low frequencies it is red. This procedure

reveals many periodicities that are significant at high confidence levels. (For a
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related but alternative formulation of spectrally matched noise time series and

its use in wavelet cross-spectral analysis, see Bhattacharyya and Narasimha

2007.)
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Figure 5.9: Significance test on MRA of HIM rainfall (a) PSD on its 1st reconstructed

detail; (b) PSD on its 2nd reconstructed detail; (c) PSD on its 3rd reconstructed detail;
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5.6 Conclusions

• The auto-correlation coefficient of HIM rainfall series at lag 1 is −0.007 which

is close to zero. This implies that, in the standard procedure currently used,

the periodicities in HIM rainfall are tested against a reference spectrum that

is nearly flat (i.e. white noise). However we have presented strong evidence

for the presence of a spectral dip in HIM rainfall around a frequency of 0.25

y−1, and construct a testing procedure that takes this into account. Thus,
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using MRA we have shown that at the first level of decomposition for high

frequencies the reference spectrum is blue, whereas for low frequencies it is red.

Hence the statistical significance of these periodicities must be tested against

appropriately colored noise, matching the observed spectrum of rainfall.

• The classical significance test on the PSD of HIM rainfall time series shows

only one periodicity of 2.3 y above 99% confidence level, whereas the CWT

and EMD methods of [21] and [55] suggest respectively 3.0, 5.8, 11.6, 20.8,

37.0, 80.0 y and 2.7, 5.7, 12.0, 24.0, 60.0 y periods. Here ten periodicities are

significant above 99.9% confidence level using the present method of analysing

PSD of reconstructed time series based on MRA. These periods are 2.8, 3.3,

5.7, 7.5, 8.6, 10.0, 13.3, 24.0, 30.3, 60.6 y. The significant peaks account for

64% of the variance of the total rainfall. However the 60.6 y periodicity is

close to the boundary of stationarity, and should be interpreted with caution.

• Table 5.4 compares the periodicities reported in HIM rainfall using different

methods.
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Table 5.4: Periods (y) obtained from different methods.

Level PSD CWT EMD PSD + PSD + PSD +

Kumar Narasimha & Iyengar & MRA Monte AR(1)

(1997) Kailas (2001) Kanth (2004) Fig. 5.9 Carlo, Fig. 5.8 Fig. 5.2

1. 2.1(80%)

2.3(95%) 2.3(95%) 2.3(99%)

2.8(95%) 2.7 2.8(99.9%) 2.8(95%) 2.8(95%)

3.0 3.3(99.9%)

2. 4.1 (80%)

5.8 5.7 5.7(99.9%)

7.5(99.9%)

3. 8.6(99.9%)

11.6 12.0 10.0(99.9%)

13.3(99%)

4. 20.8 24.0 24(99.9%)

5. 37.0 30.3(99.9%)

6. 80.0 60.0 60.6(99.9%)



Chapter 6

Spectral Homogeneity

1

6.1 Introduction

The main aim of this thesis is to search for significant periodicities in Indian monsoon

rainfall annual data over the 120 y period 1871 to 1990. One persistent question

that arises in the quest for identifying periodicities is the heterogeneity of the Indian

monsoon. In spite of many studies of the problem, and the considerable evidence

of this heterogeneity, many analyses still continue to rely on all-India indices. Even

the homogeneous regions identified by different workers may contain heterogeneities

not considered in the criteria laid down for determining the degree of homogeneity.

For example, we saw in Chapter 5 that only 7 out of the 14 sub-divisions in the

HIM region exhibit a characteristic spectral dip at 0.25 y−1. Using heterogeneous

data will mask inherent periodicities in the phenomenon. Towards that end we here

propose a quantitative definition of spectral homogeneity, and use this concept to

identify a spectrally homogeneous (SHIM) sub-region within the HIM region.

The new methodology proposed here is based on the observation that homoge-

neous zone rainfall time series are derived by an averaging process over numerous

1Some of the material in this chapter is to be communicated, Azad and Narasimha

(2008).

87
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other time series of the same length, involving O(10) sub-divisional time series and

O(102) rain gauge records. The sub-divisional rainfall time series cannot be treated

as independent of each other because of significant cross-correlations among them.

The methodology proposed here is based on multivariate data analysis that takes

into account these cross-correlations among the sub-divisions constituting the SHIM

sub-region.

6.2 Testing for Homogeneity

Homogeneity is a term often used to describe the common patterns in a given system.

The basic hypothesis (which needs to be tested) is that the data is coming from one

and the same process. In mathematical terms : the data are realizations from one

and the same probability distribution function. Statistical procedures are available

to check the homogeneity in a data set. Many attempts have been made to classify

India into different groups which can be considered as homogeneous with respect to

the variation of rainfall [78, 79]. The techniques most commonly used for grouping

stations or grid points to define homogeneous regions are cluster analysis, principal

component analysis, and correlation analysis.

The India Meteorological Department (IMD) divides the country into 29 mete-

orological sub-divisions. Reference [50] group 14 sub-divisions (151 rain gauge sta-

tions) into a HIM region. The (seasonal) monsoon rainfall of these 14 sub-divisions

is more than 80% of the annual amount. The series are highly interrelated and their

relationships with regional/global circulation parameters are also similar.

Though much work has been done to study the temporal and spatial variability

of the Indian monsoon [80, 78], spectral methods have played no direct role in iden-

tifying homogeneous regions in India. This chapter is an attempt to quantify the

spectral homogeneity within the HIM region. As we have seen, HIM rainfall repre-

sents an area-weighted average over an ensemble of the 14 sub-divisions Haryana,

Punjab, West Rajasthan, East Rajasthan, West M.P., East M.P., Gujarat, Saurash-

tra, Konkan, Madhya Maharashtra, Marathwada, Vidarbha, Telangana, and North

Interior Karnataka. Among the 29 sub-divisions into which India is divided, those

comprising the HIM region have been selected using the following criteria in [50]:
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• contiguity of area,

• contribution of monsoon seasonal rainfall to the annual amount,

• inter-correlations of sub-divisional and All-India monsoon rainfall and

• relationships between sub-divisional monsoon rainfall and regional /global cir-

culation parameters.

6.3 Notation and Methodology for Analysis of Spa-

tial Homogeneity

The motivation for this section is to explore whether the variation among sub-

divisional rainfall time series significantly differs from what may be expected in

different realizations of a white noise process. The confidence level with which

deviations of a sub-region from white noise can be identified provides a parameter

relevant to the exercise. The F test explained in subsection 4.2.1 is used for this

purpose.

The normalized time series of each of the 14 sub-divisional rainfall data is defined

as r
(m)
i in sub-division m and year i (i = 1, ..., 120, m = 1, ..., 14), and the normalized

HIM rainfall as r
(HIM)
i . The mean square deviation of sub-divisional from HIM

rainfall is

s2
r(m) =

1

119

∑
i

(r
(m)
i − r

(HIM)
i )2 (6.1)

Similarly, 14 realizations of white noise (120 samples each) are generated using

an algorithm of [77], and their normalized time series is denoted by n
(m)
i (i =

1, ..., 120, m = 1, ..., 14). The ensemble average of these realizations is then defined

as

〈ni〉 =
∑
m

n
(m)
i /14. (6.2)

The mean square deviation of each white noise realization from its ensemble average

is taken as

s2
n(m) =

1

119

∑
i

(n
(m)
i − 〈ni〉)2, (6.3)
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and the ensemble average of these deviations is

〈s2
n(m)〉 =

1

14

∑
m

1

119

∑
i

(n
(m)
i − 〈ni〉)2. (6.4)

Results and conclusions

The mean square deviation of each sub-divisional rainfall from HIM rainfall is cal-

culated using Eq. 6.1. Similarly an ensemble average of white noise deviations is

then calculated using Eq. 6.4 and an average value from 1000 such ensembles is

calculated as 1.457, which is denoted as s2
noise and can be taken as a population

statistic.

To check the null hypothesis that the two variances are the same, the F -test is

formulated by considering the ratio of mean square deviation of each sub-divisional

rainfall with that of the calculated average value for white noise, F = s2
noise/s

2
r(m).

Results are given in table 6.1. It is clear from the table that the mean square

deviation of each sub-divisional rainfall is significantly lower than that for white

noise. We see that in 13 sub-divisions (Punjab is the exception) this difference

lies in the confidence level range [97.5, 99.9%), hence the 13 sub-divisions form a

spatially homogeneous group very largely supporting the definition of [50].

6.3.1 Notation and methodology for analysing spectral ho-

mogeneity

We now introduce the notion of spectral homogeneity among a set ofM sub-divisions

constituting a region. The PSD function, defined as r̂(m)(ωk), m = 1, ...,M, k =

1, ..., K (frequency index), for the normalized sub-divisional rainfall time series

rm
i , i = 1, ..., N for sub-division m, is first estimated using the Welch technique.

The mean square deviation of the sub-divisional PSD from the PSD of regional

rainfall is defined as

s2
r̂(m)) =

1

K − 1

∑
ωk

(r̂(m)(ωk) − r̂(ωk))
2 (6.5)
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S.no Sub-division s2
r(m) F = s2

noise/s
2
r(m) Rejection

m = 1, ..., 14 probability(%)

1. West M.P. 0.37 3.93 > 99.9

2. East Rajasthan 0.41 3.55 > 99.9

3. Vidarbha 0.47 3.11 > 99.9

4. Gujarat 0.49 2.97 > 99.9

5. West Rajasthan 0.54 2.69 > 99.9

6. Konkan 0.59 2.46 > 99.9

7. Madhya Mahrashtra 0.59 2.46 > 99.9

8. Marathwada 0.63 2.31 > 99.9

9. Telangana 0.66 2.20 [99, 99.5)

10. Saurashtra 0.75 1.94 [99, 99.5)

11. Haryana 0.79 1.84 [99, 99.5)

11. East M.P. 0.81 1.79 [97.5, 99)

13. North Interior Karnataka 0.81 1.79 [97.5, 99)

14. Punjab 1.09 1.37 [75.0, 90.0)

Table 6.1: F-test for the spatial deviations of each sub-divisional rainfall with the calcu-

lated value from white noise s2
noise = 1.457.

where r̂(ωk) is the PSD function of the ensemble average rainfall over the region

〈ri〉(t) =
∑
m

r
(m)
i (t)/M. (6.6)

Similarly, the PSD of M realizations of white noise, each with N =120 samples as

rainfall, is estimated and the mean square deviation of the PSD of each white noise

realization from the PSD of the ensemble-average (i.e. white) is then taken as

s2
n̂(m) =

1

K − 1

∑
ωk

(n̂(m)(ωk) − n̂(ωk))
2. (6.7)
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6.4 Spectrally Homogeneous Indian Monsoon Rain-

fall as Example

Before presenting a classification of India into spectrally homogeneous regions, it

might be instructive to analyse HIM data and examine the homogeneity among the

spectra of the 14 sub-divisions.

To do this, the spectral mean square deviation of each sub-divisional rainfall from

HIM rainfall is calculated using Eq. 6.5. Similarly an ensemble of 14 white noise

deviations (of sample size 120) is then calculated using Eq. 6.8. The average over

1000 such ensembles is found to be 1.82, which is s2
noise and is taken as a population

statistic.

We now calculate the F ratio from spectral mean square deviation of each sub-

divisional rainfall with that of the averaged value for white noise, F = s2
noise/s

2
x̂(r(m))

,

m = 1, ..., 14. Results are given in table 6.2. From the table we group those sub-

divisions where spectral mean square deviations for rainfall are significantly lower

than that of s2
noise. It is found that the 4 sub-divisions Telangana, West M.P., East

Rajasthan and Vidarbha form a group with a rejection probability > 99.5% . We

shall call this group as the spectrally homogeneous Indian monsoon (SHIM) sub-

region. Figure 6.1 shows the SHIM sub-region which represents a contiguous area

embedded in the HIM region. We can therefore assert, with very high confidence

(> 99.5%), that the four sub-divisions mentioned constitute a strongly spectrally

homogeneous sub-region.
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Figure 6.1: Spectrally homogeneous Indian monsoon (SHIM) sub-region within the HIM

region.
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S.no Sub-division s2
x̂(r(m))

F = s2
noise/s

2
x̂(r(m))

Rejection

probability(%)

1. Telangana 0.715 3.09 > 99.9

2. West M.P. 0.735 3.01 > 99.9

3. East Rajasthan 0.771 2.87 [99.5, 99.9)

4. Vidarbha 0.860 2.57 [99.5, 99.9)

5. Konkan 0.947 2.33 [97.5, 99.0)

6. East M.P. 1.07 2.05 [95.0, 97.5)

7. West Rajasthan 1.08 2.04 [95.0, 97.5)

8. Marathwada 1.148 1.92 [95.0, 97.5)

9. Haryana 1.160 1.190 [90.0, 95.0)

10. Saurashtra 1.168 1.89 [90.0, 95.0)

11. Gujarat 1.176 1.88 [90.0, 95.0)

12. Madhya Mahrashtra 1.231 1.79 < 90.0

13. North Interior Karnataka 1.293 1.71 < 90.0

14. Punjab 1.381 1.60 < 90.0

Table 6.2: F -test formulated from the spectral deviations of sub-divisional rainfall.
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6.4.1 Discussion and conclusions

• Standard tests treat homogeneous zone rainfall (HZR) time series as a set

of 120 points, whereas they are actually based on an averaging process over

numerous other time series (sub-divisions, stations : O(10) to O(102)).

• It is not possible to assert that sub-division / station time series are drawn from

a single population/universe, but they do possess certain structural similarities

among themselves.

• From sub-divisional data, with very high confidence (> 99.5%), one can assert:

(a) strong spectral homogeneity among four sub-divisions of the set of 14

constituting the HIM region, and (b) distinction from the behavior of white

noise.

• It is possible to identify a “Spectrally Homogeneous Indian Monsoon (SHIM)”sub-

region within the HIM region defined in [50].

• It appears reasonable to consider SHIM sub-divisional data as quasi-realizations

from a spectrally homogeneous ensemble.

6.5 Periodicities Re-visited in SHIM Sub-region

The time series of SHIM rainfall is now prepared by averaging over the time series of

the 4 sub-divisions constituting it. The autocorrelation coefficients of SHIM rainfall

at various lags is calculated using Eq. 1.1, and the values are listed in table 6.3. As

seen in Chapter 4 the autocorrelation coefficient for HIM rainfall was quite low at

various lags, for example at lag-1 it was −0.007, therefore the reference spectrum

of Eq. 1.13 was close to white. Here for SHIM rainfall it is 0.017 at lag-1, still low;

hence the reference spectrum (Eq. 1.13) for SHIM rainfall is also close to white.

As was done for the HIM rainfall time series in Chapter 5, the PSD of SHIM

time series is also estimated. Figure 6.2 shows the result of the significance test

against the classical reference spectrum (Eq. 1.13).
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Lag(y) Autocorrelation coefficient

1. 0.017

2. 0.212

3. 0.050

4. -0.090

5. -0.025

6. -0.065

Table 6.3: Autocorrelation coefficients of SHIM rainfall at different lags.

Figure 6.2: Significant periodicities in SHIM rainfall. Periods (y) are marked on each

peak.

From figure 6.2 we observe that compared to the HIM spectrum (figure 5.2), the

SHIM spectrum shows higher amplitudes at lower frequencies. For example four

periods of 2.1, 7.5, 13.3 and 60.6 y are above the 95% confidence line in SHIM,

whereas 7.5 y is at 90% and the 13.3 y at 94% in HIM. Also the 2.3 y period in

SHIM rainfall (figure 6.2) is at 99.5% confidence whereas it is 99% in the case of

HIM rainfall (figure 5.2).

Figure 6.3 shows the estimated PSD of rainfall in each of the 4 sub-divisions
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constituting the SHIM sub-region.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

N
o

rm
a

li
z
e

d
 P

S
D

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

Frequency (y−1)

Telengana
PSD

West M.P.  PSD

East Rajasthan PSD Vidarbha PSD

Figure 6.3: Estimated PSD of 4 sub-divisions constituting SHIM.

In Chapter 5 it was shown that 7 out of the 14 sub-divisions constituting the

HIM region show a spectral dip around a frequency of 0.25 y−1. However here in the

SHIM sub-region we find all 4 sub-divisions showing a spectral dip, three of them

around the frequency 0.25 y−1 (Fig. 6.3), and the fourth (East Rajasthan) showing

it over the slightly lower frequency band 0.13 to 0.26 y−1. Hence we conclude that

spectral homogeneity in the SHIM sub-region is supported in several ways. The

HIM region covers 55.4% of the total area of country, and the SHIM sub-region 37%

of the HIM region, i.e. 20.5% of the whole country.
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We now apply the MRA+PSD approach on SHIM rainfall. That is, as was done

for HIM rainfall in Chapter 5, the PSD of each of the partially reconstructed time

series obtained from MRA of SHIM rainfall at four levels is estimated. The results

are shown in figure 6.4. There are 11 significant periodicities in the SHIM rainfall

above 99% confidence level, namely 2.3, 2.8, 3.3, 5.7, 7.5, 8.6, 10.0, 13.3, 24.0, 30.3

and 60.6. y.
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Figure 6.4: Significance test on MRA of SHIM rainfall (a) PSD on its 1st reconstructed

detail; (b) PSD on its 2nd reconstructed detail; (c) PSD on its 3rd reconstructed detail;

(d) PSD on its 4th reconstructed detail; (e) PSD on its 4th reconstructed approximation.

Note: circled periodicities are the new periodicities which were missed out by direct PSD.

Significant periods(y) are marked at each peak.

Also as was done for HIM rainfall in Chapter 5, in figure 6.5, the direct PSD

of normalized SHIM rainfall is plotted against that of the MRA reconstructed time

series (using the spectra of four levels of details and the fourth approximation).

(Note of course that the area under both the PSD functions is the same.) The
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striking difference is the 8.6 y period, which is missed by the direct PSD.
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Figure 6.5: The direct PSD of normalized SHIM rainfall is plotted against reconstructed

PSD obtained from MRA, using Welch technique.

The same method of MRA+PSD is applied on the 4 sub-divisions that consti-

tute the SHIM sub-region. Results are shown in figures 6.6 –6.9. The significant

periodicities above 99% confidence level are listed in table 6.4. In Telangana sub-

divisional rainfall MRA+PSD yields 7 significant peaks above 99% confidence level:

2.8, 5.7, 7.5, 8.6, 10.0, 24.0 and 30.3 y. In West M.P. sub-divisional rainfall there are

9 significant peaks above 99% confidence level: 2.8, 3.5, 5.5, 7.5, 8.6, 13.3, 17.2, 30.3

and 60.6 y. In East Rajasthan sub-divisional rainfall there are 7 significant peaks

above the 99% confidence level: 3.3, 4.0, 4.7, 7.5, 8.6, 13.3 and 17.2. In Vidarbha

sub-divisional rainfall there are 6 significant peaks above the 99% confidence level:

4.5, 5.4, 8.6, 10.9, 24.0 and 60.6 y. Also, the direct PSD of the 4 sub-divisional

rainfall are plotted in figures 6.10–6.13 against that of the MRA reconstructed time

series (using the spectra of four levels of details and the fourth approximation). It is

seen from the figures that the 8.6 y period is captured from the MRA+PSD method

but is missed by the direct PSD.
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S.no Sub-division Periodicities

1. Telangana 2.8, 5.7, 7.5, 8.6, 10.0, 24.0, 30.3

2. West M.P. 2.8, 3.5, 5.5, 7.5, 8.6, 13.3, 17.2, 30.3, 60.6

3. East Rajasthan 3.3, 4.0, 4.7, 7.5, 8.6, 13.3, 17.2

4. Vidarbha 4.5, 5.4, 8.6, 10.9, 24.0, 60.6

5. SHIM 2.3, 2.8, 3.3, 5.7, 7.5

8.6, 10.0, 13.3, 24.0, 30.3, 60.6

Table 6.4: Significant periodicities (above 99% confidence line) in the 4 sub-divisional

rainfall time series constituting the SHIM sub-region, using MRA+PSD technique
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Figure 6.6: Significance test on MRA of Telangana sub-divisional rainfall (a) PSD on

its 1st reconstructed detail; (b) PSD on its 2nd reconstructed detail; (c) PSD on its

3rd reconstructed detail; (d) PSD on its 4th reconstructed detail; (e) PSD on its 4th

reconstructed approximation. Note: circled periodicities are the new periodicities which

were missed out by direct PSD. Significant periods(y) are marked at each peak.
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Figure 6.7: Significance test on MRA of West M.P. sub-divisional rainfall (a) PSD on

its 1st reconstructed detail; (b) PSD on its 2nd reconstructed detail; (c) PSD on its

3rd reconstructed detail; (d) PSD on its 4th reconstructed detail; (e) PSD on its 4th

reconstructed approximation. Note: circled periodicities are the new periodicities which

were missed out by direct PSD. Significant periods(y) are marked at each peak.
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Figure 6.8: Significance test on MRA of East Rajasthan sub-divisional rainfall (a) PSD

on its 1st reconstructed detail; (b) PSD on its 2nd reconstructed detail; (c) PSD on its

3rd reconstructed detail; (d) PSD on its 4th reconstructed detail; (e) PSD on its 4th

reconstructed approximation. Note: circled periodicities are the new periodicities which

were missed out by direct PSD. Significant periods(y) are marked at each peak.
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Figure 6.9: Significance test on MRA of Vidarbha sub-divisional rainfall (a) PSD on

its 1st reconstructed detail; (b) PSD on its 2nd reconstructed detail; (c) PSD on its

3rd reconstructed detail; (d) PSD on its 4th reconstructed detail; (e) PSD on its 4th

reconstructed approximation. Significant periods(y) are marked at each peak.
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Figure 6.10: The direct PSD of normalized Telangana rainfall is plotted against recon-

structed PSD obtained from MRA, using Welch technique.
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Figure 6.11: The direct PSD of normalized West M.P. rainfall is plotted against recon-

structed PSD obtained from MRA, using Welch technique.
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Figure 6.12: The direct PSD of normalized East Rajasthan rainfall is plotted against

reconstructed PSD obtained from MRA, using Welch technique.

0   0.1 0.2 0.3 0.4 0.5 
0

1

2

3

4

5

6

Frequency (y−1)

No
rm

al
ize

d 
PS

D 
(y

)

Direct PSD
Reconstructed PSD

2.1

2.3

8.6

10.9

24.0

13.3

60.6

Figure 6.13: The direct PSD of normalized Vidarbha rainfall is plotted against recon-

structed PSD obtained from MRA, using Welch technique.

In the next section, we consider the question of common periodicities among the

SHIM sub-divisions.
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6.6 Multi-variate analysis

It has already been remarked in the introduction that power spectral density anal-

ysis for rainfall demands a new approach, as most rainfall time series subjected

to such analysis are averages of some kind over a large number of rain-gauge sta-

tions. When spectra are evaluated for sub-divisions whose rainfall exhibits signifi-

cant cross-correlations one question that arises is whether the different sub-divisions

have common periodicities, and if so the associated confidence levels. This needs

multivariate analysis [81], which is based on the idea that correlated variables must

be analysed jointly. When analysing pairs of time series, one also needs to know

whether a cross-correlation is statistically significant.

6.6.1 Significance tests and confidence ellipse approach

Confidence ellipses, also called prediction interval ellipses, are an exploratory method

of investigating the relationship between two variables by bivariate analysis. They

are often used for hypothesis testing and for detecting outliers [82]. A confidence

ellipse is analogous to the confidence interval of a univariate distribution, and is

defined as the smallest possible (sub-)area in 2-dimensional space in which the com-

mon value of the variables analysed should be found with a certain probability (e.g.

95%).

The main aim here is to devise a new method to test the significance levels

of common periodicities (if any) among sub-divisional rainfall time series using the

confidence ellipse technique. Before doing this we validate the method by test cases

that mimic the time series of our interest, namely Indian rainfall. It is to be noted

that the Hotelling T 2 statistic [83] used here to find the significance levels of a

common periodicity is more commonly used for problems related to the study of

means [84], and is a multivariate generalization of the univariate Student’s t-test.

To assess the significance of a common period p that may be present in the

two time series, say xi and yi, i = 1, ..., N , we propose the following procedure.

• We test the null hypothesis H0: there is no common period between the two

given time series.
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• Normalize xi, yi with zero mean and unit standard deviation.

• Generate sine and cosine time series of size N = 120 and period p :

ai = sin(2πi/p), bi = cos(2πi/p), i = 1, ...,N . (6.8)

• Normalize ai, bi with zero mean and unit standard deviation.

• Calculate

X1 =
∑

i

aixi

N
; Y1 =

∑
i

aiyi

N
(6.9)

X2 =
∑

i

bixi

N
; Y2 =

∑
i

biyi

N
(6.10)

• Compute the Hotelling T 2 [83]

T 2 = N [X1 X2 Y1 Y2] Σ−1[X1 X2 Y1 Y2]
T (6.11)

where the covariance matrix with four degrees of freedom is

Σ =




1.0 0.0 r 0.0

0.0 1.0 0.0 r

r 0.0 1.0 0.0

0.0 r 0.0 1.0


 (6.12)

where r =
∑

i(xiyi)/N is the correlation between the two time series xi and

yi.

• At (1 − α)% confidence level, the Hotelling test consists of accepting the hy-

pothesis H0 if, and only if,

T 2 ≤ χ2(γ, 1 − α) (6.13)

where χ2(γ, 1 − α) is the chi-square distribution with γ degrees of freedom.
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• The related (1−α)% confidence region is the set of points that simultaneously

satisfy

[X1 X2 Y1 Y2] Σ−1[X1 X2 Y1 Y2]
T ≤ χ2(γ, 1 − α) (6.14)

which is the interior of a 4-dimensional ellipsoid with γ = 4 degrees of freedom.

• To construct ellipses at various confidence levels, a subroutine is written in

Matlab, which uses the chi-square cumulative distribution function with γ

degrees of freedom to obtain all values of (X1, Y1) or (X2, Y2) that lie on the

confidence ellipse for the given confidence level.

• The commonality of periods in the two time series can then be seen in terms

of the points within the elliptic region of given confidence level.

Next we construct the test cases. For this purpose, two cross-correlated

time series of Gaussian white noise (each of 120 samples, the same as in rainfall time

series), with a specified correlation coefficient, are generated using the algorithm of

[77]. Two realizations of such white noise, with a cross correlation of 0.32, are

normalized and shown in figure 6.14. Their PSD’s are estimated using the Welch

technique [7] and are shown in figure 6.15.
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Figure 6.14: Two cross-correlated realizations of white noise (correlation coefficient is

0.32), each of sample 120.
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Figure 6.15: Estimated PSD’s of two cross-correlated realizations of white noise.

Now a sine wave of period 10 y is imposed on each noise signal, but with

an amplitude 0.4 in one case and 0.8 in the other. The two signals so obtained

are then renormalized with zero mean and unit standard deviation. The estimated

PSD’s of these new time series are shown in figure 6.16. It is clear from the figure

that the two realizations of white noise now have a common period of 10 y.
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Figure 6.16: Estimated PSD’s of two cross-correlated realizations of white noise with a

sine wave of period 10 y imposed on them.

To check the significance level of the common period 10 y, we first compute
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(X1, Y1) and (X2, Y2) from Eqs 6.10 and 6.11 respectively. The value of the T 2 statis-

tic is then calculated as 29.62 using Eq. 6.12, which is greater than χ2(0.9999, 4) =

23.5. Hence we reject the null hypothesis and the common periodicity 10 y is 99.99%

significant. Figure 6.17 shows the ellipses in the X1Y1 plane for various confidence

levels. The point indicated by a star (*) shows the position of the variable (X1, Y1),

which corresponds to null hypothesis rejection with > 99.99% confidence level for

common period 10 y.

Figure 6.17: Ellipses at various confidence levels representing common period (10 y)

between the two cross-correlated white noise realizations. The point indicated by a star (*)

shows the position of the variable (X1, Y1), which corresponds to null hypothesis rejection

with 99.99% confidence level for the period.

If the cross-correlations are not high, or if the amplitudes of the imposed sine

waves are low (e.g. 0.04, 0.08), then the confidence levels for common periodicity

are not generally high for all realizations of cross-correlated white noise.
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6.6.2 Ellipse construction in rainfall

To show how the confidence ellipse methodology can be used to find the significance

levels of common periodicities among sub-divisions constituting SHIM sub-region,

we consider as example the normalized time series of Telangana and West M.P., two

SHIM sub-divisions. Their computed correlation coefficient is 0.35, the error band

being [0.18, 0.50] at 99.99% confidence level. The common periodicities among the

two sub-divisional rainfall time series are 2.1, 2.3, 2.8, and 7.5 y (see table 5.2).

To check the significance of any common period, say p = 7.5 y, we first

compute (X1, Y1) and (X2, Y2) from Eqs. 6.10 and 6.11 respectively. The T 2 statistic

value is then calculated as 14.9 using Eq. 6.12, where

Σ =




1.0 0.0 0.35 0.0

0.0 1.0 0.0 0.35

0.35 0.0 1.0 0.0

0.0 0.35 0.0 1.0


 . (6.15)

The null hypothesis that there is no common period between the two time series

is rejected because the calculated value of T 2 is greater than the tabulated value

of χ2(0.995, 4), which is 14.0. Figure 6.18 shows the ellipses for various confidence

levels. The point indicated by a star (*) shows the position of the rainfall variable

(X1, Y1), which corresponds to null hypothesis rejection with 99.5% confidence level

for the period 7.5 y.

Similarly the null hypothesis is rejected with confidence level 94.2% and

80% for periods 2.3 and 2.8 y respectively. Using the same procedure, the null

hypothesis rejection probabilities for all periods in sub-divisional rainfall in SHIM

sub-region are displayed in table 5. We note seven significant periodicities, five at

confidence levels exceeding 95% (respectively 2.1 y at 97.8%, 2.3 y at 95.7%, 2.8 at

98.4%, 7.5 at 99.5%, 24.0 at 99.4%), and 10.9 at 90.5 % and 60.6 at 93.2% confidence

level.
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Figure 6.18: Ellipses at various confidence levels representing common period (7.5 y)

between Telangana and West M.P. rainfall. The point indicated by a star (*) shows the

position of the rainfall variable (X1, Y1), which corresponds to null hypothesis rejection

with 99.5% confidence level for the period.
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Table 6.5: Significance levels (quoted in brackets) for common periodicities in the rainfall

time series among four sub-divisions constituting the SHIM sub-region, using confidence

ellipses. Periods with maximum confidence levels are in bold.

Sub-division pair Telangana West M.P. East Rajasthan

Vidarbha 2.1 (32.8%) 2.3 (95.7%) 2.8 (90.0%)

2.3 (73.1%) 2.8 (75.6%) 7.5 (92.5 %)

7.5 (96%) 7.5 (92.9%) 13.3 (66.8%)

10.9 (90.5%) 24.0 (99.4%)

24.0 (99.1%) 60.6 (93.2%)

East Rajasthan 2.3 (52.3%) 2.1 (97.8%)

2.8 (98.4%) 2.8 (82.2%)

7.5 (99.5%) 7.5(90.5%)

13.3 (75.1%)

West M.P 2.3 (80%)

2.8(96%)

7.5 (99.5%)
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6.7 Conclusions

• The homogeneous regions identified by Parthasarthy et al. (1993) are based

on observations which take into account the spatial characteristics of sub-

divisional monsoon rainfall but ignoring possible spectral similarities or dis-

similarities among these sub-divisions.

• Tested against the classical reference spectrum of Eq. 1.13, HIM rainfall time

series over the time period 1871-1990 shows one 99% significant period of 2.3 y

and a 95% significant period at 2.8 y. However, by introducing the spectrally

homogeneous sub-region SHIM, we have shown that there is a 99.5% significant

period of 2.3 y, along with four other significant peaks above 95% confidence

at 2.1, 7.5, 13.3 and 60.6 y and a 2.8 y period at > 94.8%..

• Using confidence ellipse technique a new method to detect significant common

periodicities in the cross-correlated sub-divisional rainfall is proposed. We

report here seven significant periodicities in SHIM rainfall, five at confidence

levels exceeding 95% (respectively 2.1 y at 97.8%, 2.3 y at 95.7%, 2.8 at 98.4%,

7.5 at 99.5%, 24.0 at 99.4%), and 10.9 at 90.5 % and 60.6 at 93.2% confidence

level.

• It is to be noted that a common period may be present in all the sub-divisions

constituting a region but the significance of their commonalty can not be

established using the classical method (as described by Eq.1.13). However it is

found that the proposed method of confidence ellipse is a more informative and

powerful tool for testing confidence levels of common periodicities in correlated

time series.

• We found that the classical test of checking confidence level of a spectral peak

is inadequate when the amplitude of longer periods is low. The proposed confi-

dence ellipse technique however shows high confidence levels even for relatively

low amplitudes when the cross-correlation is high. Hence the present method

is less amplitude-sensitive than other available methods.



Chapter 7

Spectrally Homogeneous Monsoon

Regions

1

7.1 Introduction

As mentioned in Chapter 2, the five homogeneous regions identified by Parthasarathy

et al. (1993) are: North East India(NEI), Central North East India (CNEI), Penin-

sular India (PENSI), West Central India (WCI) and North West India (NWI).

NEI CNEI PENSI WCI NWI

Lag-1 0.09 -0.04 -0.01 0.04 -0.04

Lag-2 -0.04 -0.05 -0.19 0.20 0.04

Lag-3 0.11 0.06 0.02 0.07 0.09

Lag-4 0.12 0.02 -0.08 -0.09 -0.08

Table 7.1: Auto-correlation coefficient at three lags for homogeneous regions during the

time period 1871-1990.

1Some of the material in this chapter is to be communicated, Azad and Narasimha

(2008).
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The time series for these homogeneous regions (obtained from Parthasarathy et

al. 1995) are displayed in figure 7.1. Also given are their auto-correlation coefficient

values in table 7.1.
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Figure 7.1: Time series of 5 homogeneous regions.
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7.2 MRA of Homogeneous Regions

The MRA decomposition of NEI, CNEI, PENSI, WCI and NWI rainfall at four

details plus the fourth approximation are obtained by following the MRA procedure

adopted for the HIM rainfall in Chapter 4. The partially reconstructed time series

from 1871-1990 are shown in figures 7.2 to 7.6.
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Figure 7.2: MRA of NEI rainfall data. (a) Normalized NEI time series from 1871-1990;

(b) 1st reconstructed detail; (c) 2nd reconstructed detail; (d) 3rd reconstructed detail; (e)

4th reconstructed detail; (f) 4th reconstructed approximation.



118 Chapter 7. Spectrally Homogeneous Monsoon Regions

−5

0

5

Time (y)

−5

0

5

−2

0

2

−1

0

1

−1

0

1

1860 1880 1900 1920 1940 1960 1980 2000
−1

0

1

N
o

rm
a

li
z
e

d
 R

a
in

fa
ll

(a)

σ 2 = 1

σ 2 = 0.54

σ 2 = 0.23

σ 2 = 0.073

σ 2 = 0.05

σ 2 = 0.09

(b)

(c)

(d)

(e)

(f)

Time (y)

Figure 7.3: MRA of CNEI rainfall data. (a) Normalized CNEI time series from 1871-1990;

(b) 1st reconstructed detail; (c) 2nd reconstructed detail; (d) 3rd reconstructed detail; (e)

4th reconstructed detail; (f) 4th reconstructed approximation.



7.2. MRA of Homogeneous Regions 119

−5

0

5

 

−5

0

5

−2

0

2

−1

0

1

−1

0

1

N
o

rm
a

li
z
e

d
 R

a
in

fa
ll
l

1860 1880 1900 1920 1940 1960 1980 2000
−0.5

0

0.5

Time (y)

(a)

(b)

(c)

(d)

(e)

(f)

σ2 = 1

σ2 = 0.55

σ2 = 0.30

σ2 = 0.05

σ2 = 0.03

σ2 = 0.06

Figure 7.4: MRA of PENSI rainfall data. (a) Normalized PENSI time series from 1871-

1990; (b) 1st reconstructed detail; (c) 2nd reconstructed detail; (d) 3rd reconstructed

detail; (e) 4th reconstructed detail; (f) 4th reconstructed approximation.



120 Chapter 7. Spectrally Homogeneous Monsoon Regions

−5

0

5

−5

0

5

−1

0

1

−1

0

1

−1

0

1

N
o

rm
a

li
z
e

d
 R

a
in

fa
ll

1860 1880 1900 1920 1940 1960 1980 2000
−1

0

1

Time (y)

σ2 = 1

σ2 = 0.47

σ2 = 0.17

σ2 = 0.17

σ2 = 0.08

σ2 = 0.13

(a)

(b)

(c)

(d)

(e)

(f)
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Figure 7.6: MRA of NWI rainfall data. (a) Normalized NWI time series from 1871-1990;

(b) 1st reconstructed detail; (c) 2nd reconstructed detail; (d) 3rd reconstructed detail; (e)

4th reconstructed detail; (f) 4th reconstructed approximation.

The contribution of variance at different scales for all the homogeneous regions

is shown in figure 7.7. It is seen that 50% of the variance in all the regions is from

the band 2-4 y.
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Figure 7.7: Contribution of variance at different scales for homogeneous regions: scale 1

corresponds to 1st partially reconstructed detail; scale 2 corresponds to partially recon-

structed 2nd detail, upto 4 details and scale 5 corresponds to 4th partially reconstructed

approximation.

7.3 Spectral Analysis of Homogenous Regions

As was done for the HIM rainfall time series in Chapter 5, the PSD functions for

all the homogeneous regions are estimated and the results of significance tests are

shown in figure 7.8. It is clear from the figure that using the classical significance

test (Eq. 1.13), only one period at 7.5 y in the PENSI region is seen to stand above

the 99% confidence level. Above the 95% confidence level, CNEI shows a period of

2.8 y, PENSI 2.8 and 7.5 y, WCI 2.1, 2.3, 7.5, 60.6 y and NWI shows 2.3, 2.8 and

3.3 y.
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Figure 7.8: The estimated PSD’s for 5 homogeneous regions and the reference spectrum

(dotted line) with different confidence levels. Significant periods(y) are marked at respec-

tive peaks.

7.4 Spectral Analysis on MRA of Homogeneous

Regions

In this section spectral analysis on MRA decomposition of all the homogeneous

regions is performed and the results are reported. The objective is to find the

closely spaced frequencies with a combination of wavelet and spectral analysis as

was done for HIM rainfall in Chapter 4.
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7.4.1 Results on NEI rainfall
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Figure 7.9: Significance test on MRA of NEI rainfall (a) 1st reconstructed detail; (b)

2nd reconstructed detail; (c) 3rd reconstructed detail; (d) 4th reconstructed detail; (e)

4th reconstructed approximation. Note: Significant periods(y) are marked at respective

peaks. Reference spectrum is represented by dotted lines with different confidence levels

marked.

The PSD of each of the partially reconstructed time series obtained from MRA of

NEI rainfall at four levels is estimated. Results are shown in figure 7.9, MRA here

does not capture any closely spaced frequencies that are missed by the direct PSD

(Fig. 7.8). However PSD on MRA captures 5 periods above 99% confidence level

whereas there are no significant peaks in the direct PSD above 95% confidence level.

These significant periods are: 6.0, 8.6, 12.0, 20.0 and 60.6 y. Also periods obtained

from the EMD technique and the PSD on MRA are compared in table 7.2. As

was explained for HIM rainfall in Chapter 4, periods obtained from EMD and zero

crossing of NEI rainfall are some averages of the ones obtained from PSD on MRA.
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Level zero crossings on EMD PSD on MRA

1. 3.08 2.1, 2.3, 2.5, 2.8, 3.0, 3.6

2. 6.0 4.5, 5.4, 6.0, 7.2

3. 10.9 8.6, 12.0

4. 30.0 20.0

5. 40.0 60.6

Table 7.2: Periods (y) obtained by, Empirical mode decomposition and PSD on Multires-

olution analysis of NEI rainfall.

Level zero crossings on EMD PSD on MRA

1. 3.08 2.1, 2.3, 2.8, 3.3, 4.0

2. 6.32 4.1, 5.5, 6.6

3. 10.9 8.6, 10.9

4. 24.0 24.0

5. 60.0 30.3, 60.6

Table 7.3: Periods (y) obtained by, Empirical mode decomposition and PSD on Multi-

resolution analysis of CNEI rainfall.

7.4.2 Results on CNEI rainfall

The PSD of each of the partially reconstructed time series obtained from MRA of

CNEI rainfall at four levels is estimated. Results are shown in figure 7.10. It is seen

that the PSD on MRA separate two closely spaced periods 30.3 and 60.6 y. The

absence of the 30.3 y period in the directly computed PSD (Fig. 7.8) is consistent

with the criterion cited in Chapter 3, i.e. the frequency separation between the two

periods (30.3 - 60.6) y is too low, being less than 2/N = 0.0167 y−1. Also, the direct

PSD shows two significant peaks, 2.8 and 3.3 y, above 95% confidence level whereas

PSD on MRA captures 8 significant periods above 99% confidence level. These

periods are 2.8, 3.3, 5.5, 6.6, 8.6, 10.9, 24.0, 30.3 y. The periodicities obtained from
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the EMD technique and the PSD on MRA are compared in table 7.3.
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Figure 7.10: Significance test on MRA of CNEI rainfall (a) 1st reconstructed detail; (b)
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peaks. Reference spectrum is represented by dotted lines with different confidence levels

marked.

7.4.3 Results on PENSI rainfall

The PSD of each of the partially reconstructed time series obtained from MRA of

PENSI rainfall at four levels is estimated. Results are shown in figure 7.11. It is

seen from the figure that an average of the two periods at 13.3 and 17.2 y is present

as 15.1 y in the direct PSD (Fig. 7.8). Also, the direct PSD shows two significant

peaks at 3.3 and 7.5 y above 95% and one at 7.5 y above 99% confidence level. The

significant periods captured by PSD on MRA above 99% confidence line are: 3.3,

4.5, 7.5, 13.3, 17.2 and 40.0 y. Also periods obtained from the EMD technique and

the PSD on MRA are compared in table 7.4.
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7.4.4 Results on WCI rainfall

The PSD of each of the partially reconstructed time series obtained from MRA of

PENSI rainfall at four levels is estimated. Results are shown in figure 7.12.
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Level zero crossings on EMD PSD on MRA

1. 2.72 2.1, 2.3, 2.8, 3.3, 4.0

2. 6.0 4.1, 5.5, 6.6

3. 10.0 8.6, 10.9

4. 20.0 24.0

5. 60.0 30.3, 60.6

Table 7.4: Periods (y) obtained by, Empirical mode decomposition and PSD on Multi-

resolution analysis of PENSI rainfall.
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Figure 7.12: Significance test on PSD of MRA of WCI rainfall (a) 1st reconstructed

detail; (b) 2nd reconstructed detail; (c) 3rd reconstructed detail; (d) 4th reconstructed

detail; (e) 4th reconstructed approximation. Note: Significant periods(y) are marked

at respective peaks. Reference spectrum is represented by horizontal dotted lines with

different confidence levels marked.

It is seen from the figure that PSD on MRA yields two more periods, respectively
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Level zero crossings on EMD PSD on MRA

1. 2.61 2.1, 2.3, 2.8, 3.3, 4.0

2. 5.71 4.1, 5.5, 6.6

3. 12.0 8.6, 10.9

4. 24.0 24.0

5. 60.0 30.3, 60.6

Table 7.5: Periods (y) obtained by, Empirical mode decomposition and PSD on Multi-

resolution analysis of WCI rainfall.

at 8.6 and 30.3 y. Their absence in the directly computed PSD (Fig. 7.8) is again

because the frequency separation between the two period pairs (8.6 - 10.0) y and

(30.3 - 60.6) y is each less than 2/N = 0.0167 y−1. Also, there are 4 significant

periods in the direct PSD of WCI (Fig. 6.2) above 95% confidence level, namely

2.1, 2.3, 7.5 and 60.6 y, whereas PSD on MRA yields 10 significant peaks above

99% confidence level: 2.8, 3.0, 5.7, 7.5, 8.6, 10.8, 13.3, 24.0, 30.3, 60.6. Also periods

obtained from the EMD technique and the PSD on MRA are compared in table 7.5.

7.4.5 Results on NWI rainfall

The PSD of each of the partially reconstructed time series obtained from MRA of

CNEI rainfall at four levels is estimated. Results are shown in figure 7.13. It is seen

from the figure that PSD on MRA yields two more periods, respectively at 12.1 and

30.3 y which are absent in the direct PSD (Fig. 7.8). Also, the direct PSD of WCI

shows 3 significant periods (Fig. 6.2) above 95% confidence level, at 2.3, 2.8 and

3.3 y, whereas PSD on MRA yields 10 significant peaks above 99% confidence level:

2.8, 3.3, 4.1, 4.7, 8.6, 12.1, 24.0 and 30.3. Also periods obtained from the EMD

technique and the PSD on MRA are compared in table 7.6.
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Level zero crossings on EMD PSD on MRA

1. 2.79 2.1, 2.3, 2.8, 3.3, 4.0

2. 5.45 4.1, 5.5, 6.6

3. 13.3 8.6, 10.9

4. 20.0 24.0

5. 60.0 30.3, 60.6

Table 7.6: Periods (y) obtained by, Empirical mode decomposition and PSD on Multi-

resolution analysis of NWI rainfall.

0 0.1 0.2 0.3 0.4
0

5

10

15

20

25

0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4
0

10

20

30

40

50

0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

N
or

m
al

iz
ed

 P
S

D
 (

y)

0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

Frequency (y−1)

95%

99%

2.8
3.3

4.1

8.6

4.7

12.1

24.0

30.3

(a) (b) (c)

(d) (e)

2 − 4 y band 4 − 8 y band 8 − 16 y band

16 − 32 y band 32 − 64 y band

Figure 7.13: Significance test on MRA of NWI rainfall (a) PSD on its 1st reconstructed

detail; (b) PSD on its 2nd reconstructed detail; (c) PSD on its 3rd reconstructed detail; (d)

PSD on its 4th reconstructed detail; (e) PSD on its 4th reconstructed approximation. Note:

Significant periods(y) are marked at respective peaks. Reference spectrum is represented

by dotted lines with different confidence levels marked.
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7.5 Spectrally Homogeneous Monsoon Regions

As SHIM was identified as an example to our proposed method of spectral homogen-

ity in Chapter 6, we identify in this section ten Spectrally Homogeneous Regions

(SHR’s) in India, as listed in table 7.7 and also shown in figure 7.14. We have

found that there are sub-divisions like Orissa, Kerala and Tamilnadu which are not

spectrally homogeneous with any other sub-division.

Figure 7.14: Newly defined ten Spectrally Homogeneous Monsoon Regions in India.
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Region Sub-division

SHR1 North Assam (3), South Assam (4),

Sub-Himalayan W. Bengal (5), Bihar Plains (9)

SHR2 Gangetic W. Bengal (6), Bihar Plateau (8)

SHR3 Orissa (7)

SHR4 East U.P. (10), West U.P (11)

East M.P (20)

SHR5 West M.P (19)

SHR6 Haryana (13), Punjab (14)

West Rajasthan (17), East Rajasthan (18)

Gujarat (21), Saurashtra (22)

SHR7 Konkan (23), Madhya Maharashtra (24)

Marathwada (25), Vidarbha (26)

Telangana (28), Coastal Karnataka (31)

North Interior Karnataka (32)

SHR8 Coastal Andhra Pradesh (27), Rayalaseema (29)

South Interior Karnataka (33)

SHR9 Kerala (34)

SHR10 Tamilnadu (30)

Table 7.7: Ten newly defined Spectrally Homogeneous Monsoon Regions (SHR) identified

in India. Sub-divisions numbers according to Fig. 7.14 are given in brackets.
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The time series for these spectrally homogeneous regions are displayed in figures

7.15 and 7.16.
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Figure 7.15: Time series of spectrally homogeneous regions.
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Figure 7.16: Time series of spectrally homogeneous regions.

The values of F -test where sub-divisions departing from white noise > 99.5%

are grouped into spectrally homogeneous regions are given in tables 7.8–7.13.
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S.no Sub-division Variance F Rejection probability(%)

1. South Assam 0.51 3.88 > 99.9

2. North Assam 0.45 3.24 > 99.9

3. Sub-Himalayan W.Bengal 0.53 2.75 > 99.9

4. Bihar Plains 0.58 2.51 > 99.9

Table 7.8: F -test for the SHR1 (s2
noise=1.47).

S.no Sub-division Variance F Rejection probability(%)

1. Bihar Plateau 0.23 4.29 > 99.9

2. Gangetic W. Bengal 0.29 3.45 > 99.9

Table 7.9: F -test for the SHR2 (s2
noise=0.99).

S.no Sub-division Variance F Rejection probability(%)

1. West U.P. 0.33 3.99 > 99.9

2. East U.P. 0.46 2.83 > 99.9

3. East M.P. 0.66 2.00 [99.5, 99.9)

Table 7.10: F -test for the SHR4 (s2
noise=1.32).

S.no Sub-division Variance F Rejection probability(%)

1. W. Rajasthan 0.509 3.18 > 99.9

2. Saurashtra 0.524 3.09 > 99.9

3. Punjab 0.577 2.80 > 99.9

4. Gujarat 0.627 2.58 > 99.9

5. Haryana 0.700 2.31 > 99.9

6. E. Rajasthan 0.762 2.12 [99.5, 99.9)

Table 7.11: F -test for the spectral deviations of SHR6 (s2
noise=1.62).
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S.no Sub-division Variance F Rejection probability(%)

1. Marathwada 0.283 5.86 > 99.9

2. Konkan 0.341 4.86 > 99.9

3. Telangana 0.411 4.03 > 99.9

4. Madhya Maharashtra 0.449 3.69 > 99.9

5. North Interior Karnataka 0.553 3.00 > 99.9

6. Costal Karnataka 0.627 2.64 > 99.9

7. Vidarbha .690 2.40 > 99.9

Table 7.12: F -test for the spectral deviations of SHR7 (s2
noise=1.66).

S.no Subdivision Variance F Rejection probability(%)

1. Rayalaseema 0.378 3.48 > 99.9

2. South Karnataka 0.424 3.10 > 99.9

3. Coastal Andhra Pradesh 0.446 2.95 > 99.9

Table 7.13: F -test for the SHR8 (s2
noise=1.32).
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To demonstrate spectral similarity, the estimated PSD functions of the sub-

divisions constituting SHR’s (listed in table 7.7) are shown in figures 7.17–7.22

respectively.
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Figure 7.17: Sub-divisional rainfall spectra in SHR1.
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Figure 7.18: Sub-divisional rainfall spectra in SHR2.
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Figure 7.19: Sub-divisional rainfall spectra in SHR4.
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Figure 7.20: Sub-divisional rainfall spectra in SHR6.
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Figure 7.21: Sub-divisional rainfall spectra in SHR7.
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Figure 7.22: Sub-divisional rainfall spectra in SHR8.

In particular SHR7 is considered, the significant periodicities in these sub-

divisions above 90% confidence level are listed in table 7.14. It is found that peaks

in any frequency band for the sub-divisions constituting SHR7 (Fig. 7.21) are in

near-coincidence with those from other sub-divisions which is clearly different from

the seven white noise realizations, each of sample size same as rainfall (Fig.7.23).
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The similarity in the sub-divisional spectra in SHR7, including the presence of the

spectral dip, is visibly evident in figure 7.21, wherase the varaition in mean rainfall

in these sub-divisions is dipcted in figure 7.24. The seven sub-divisions constituting

SHR7 come from what are often thought to be different regions, as they span the

country from Konkan and Coastal Karnataka, to the ‘rain-shadow’ areas of North

Interior Karnataka and Madhya Maharashtra (see Fig. 7.14). Figures 7.21 and 7.23

between them show the power of the concept of spectral homogeneity, and suggest

that similar dynamical forcing operate in the region, even though the magnitude of

rainfall varies by a factor exceeding four.

Figure 7.23: White noise spectra of seven realizations, each of sample 120.

To assess the difference between SHR7 and white noise spectra, we define

the null hypothesis that the number of singletons (=unrepeated peaks) above 90%

significance level in the seven sub-divisional rainfall time series in SHR7 are same

as in seven realizations of white noise. On average we found that there are 22.15

unrepeated peaks or singletons in white noise above 90% significance level, with a

standard deviation of 3.86. From table 7.14 we see that there are 10 singletons in

SHR7 spectra. Using the z test [73] with 6 degrees of freedom, the null hypothesis

is rejected at a confidence level of 99.99%.
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Sub-division Periodicities

Konkan 2.31 3.0 20.0

M. Maharashtra 2.31 2.66 3.0 5.71 14.99

5.99

Marathwada 2.31 7.51

Vidarbha 2.31 10.91 23.98 59.88

Telangana 2.14 2.31 2.79 7.51 10.0

Coastal Karnataka 14.99

North I. Karnataka 2.26 2.60 59.88

2.66

Table 7.14: 90% Significant periodicities(y) in seven sub-divisional rainfall constituting

SHR7, obtained from the direct PSD estimated using Welch technique and classical refer-

ence spectrum (Eq. 1.13). Singletons are in bold.

Figure 7.24: Mean rainfall of seven sub-divisional rainfall constituting SHR7: 1=Coastal

Karnataka; 2=Konkan; 3= Madhya Maharashtra; 4= North Interior Karnataka;

5=Marathwada; 6= Telangana; 7=Vidarbha.



142 Chapter 7. Spectrally Homogeneous Monsoon Regions

7.5.1 Periodicities in SHR’s

The PSD function for each of the ten spectrally homogeneous rainfall time series is

estimated by the Wlech technique. The auto-correlation coefficient for these time

series are calculated at three values of lag and are given in table 7.15.

S.no Sub-division Auto Correlation

Lag-1 Lag-2 Lag-3

1. SHR1 0.0358 -0.1399 0.0431

2. SHR2 -0.1371 -0.1206 0.1573

3. SHR3 -0.0238 0.0148 0.2628

4. SHR4 -0.0284 0.0621 0.0866

5. SHR5 0.0417 0.2683 0.1024

6. SHR6 -0.0534 0.0208 0.1109

7. SHR7 0.1127 0.0490 -0.0021

8. SHR8 -0.0511 -0.2089 0.0428

9. SHR9 0.1096 -0.1337 0.1045

10. SHR10 0.0253 -0.0312 -0.0112

Table 7.15: Auto-correlation coefficient at various lags for SHR’s during 1871-1990.

The significance levels of periodicities obtained in ten SHR’s are assessed using

the method of direct PSD, MRA+PSD and confidence ellipses. Results are quoted

in table 7.16.
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Region PSD MRA+PSD Multivariate analysis

(above 95%) (above 99.9%)

SHR1 2.3, 6.0 3.6 & 4.5 (99%), 6.0, 8.6 2.7(98.3%), 3.3(99.1%)

10.9, 20.0, 30.3 6.0(97.3%)

SHR2 3.3 3.3, 4.0, 10.0 None

30.3, 60.6

SHR3 2.8, 3.3, 3.6 2.8 (99%), 3.3, 3.7 None

60.0 4.1 & 6.2 (99%), 8.6, 13.3 (99%)

24.0, 60.6

SHR4 2.1, 10.9 2.8 & 6.6 (99%), 7.5 & 60.6 (99%) 10.9(94.5%)

5.5, 8.7, 10.9, 24.0, 30.3

SHR5 2.1(99%), 2.3, 13.3 2.8 & 5.5 (99%), 3.5, 7.5 3.5 (95%)

60.6 8.6, 13.3, 30.3 (99%), 60.6

SHR6 2.3, 2.8, 3.3 2.8(99%), 3.3, 4.0, 5.0 2.8(99.94%), 60.0(95%)

8.6, 10.0, 12.2 17.2(97.2%)

17.8, 30.3

SHR7 2.3 3.3, 13.3, 60.6 (99%) 2.8(97.4%), 7.5(98.6%)

5.7, 10.9, 8.6 10.9 (91%), 6.0(99.3%)

24.0, 30.3 24.0(99.2%)

SHR8 7.5 3.3, 6.7 (99%) 4.6, 7.5, 13.3 7.5(99.85%)

24.0, 30.3

SHR9 3.4 3.4, 4.4, 6.0 (99%), 9.2 None

17.2

SHR10 2.3, 3.7, 10.9 3.4, 4.6 & 5.7(99%) None

10.9, 20.0, 40.0

Table 7.16: Significant periodicities(y) obtained from different methods in ten newly

defined Spectrally Homogeneous Regions (SHR) in India.
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7.6 Conclusions

• The analysis carried out on the HIM region is repeated for the other five

homogeneous regions identified in [50].

• Using the proposed technique of MRA+PSD periodicities are determined in

each of these regions.

• The statistical significance of these periodicities is then assessed against an

appropriately colored reference spectra defined in Chapter 5.

• It is found that using the direct PSD, the homogeneous region NEI does not

capture any period above 95% confidence level whereas MRA+PSD shows five

periods of 6.0, 8.6, 12.0, 24.0 and 60.6 y above 99% confidence level.

• As was found in the HIM region in Chapter 5, it is also seen here that

MRA+PSD in the homogeneous regions CNEI, WCI and NWI captures two

additional periodicities at 8.6 and 30.3 y at a confidence level exceeding 99%.

Each of these period is missed by the direct PSD but is very close to others

found by it.

• The period of 10 y is 99% significant in the CNEI, PENSI, WCI and the HIM

regions using appropriately colored reference spectra. Direct PSD is unable to

capture the 10 y period against the white reference spectra of Eq. 1.13.

• There are some common periodicities (above 99% confidence level) among the

homogeneous regions. For example the 2.8 y period is seen in the CNEI, WCI,

NWI and HIM regions. Similarly 7.5 y is present in the PENSI, WCI, NWI and

HIM regions, 13.3 is common in the PENSI, WCI and HIM regions, 24.0 y is

common in the NEI, CNEI, WCI, NWI and HIM regions (i.e all homogeneous

regions except PENSI), 60.6 y is common in the NEI, PENSI and HIM regions.

• Using the definition of spectral homogeneity proposed in Chapter 6, ten Spec-

trally Homogeneous Regions (SHR) are identified in India.
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• Table 7.16 compares the periodicities obtained in these regions using the

method of PSD, MRA+PSD and confidence ellipses.

• It is seen that SHR7 may be of particular interest as all the constituent sub-

divisions here show a spectral dip around the frequency of 0.25 y−1, and most

of the spectral peaks in the different sub-divisions nearly coincide with each

other (as is clearly seen in figure 7.21).

• In SHR7 there is one periodicity above 95% by the direct PSD whereas the

present MRA+PSD technique reveals seven periodicities above 99% confidence

level, with respective periods of 3.3, 13.3, 5.7, 10.9, 8.6, 24.0 and 30.3 y.

• Using the method of confidence ellipses we report five significnat common peri-

odicities among the sub-divisions of the SHR7 region: 2.8(97.4%), 6.0(99.3%),

7.5(98.6%, 10.9 (91%) and 24.0(99.2%) condidence level.





Chapter 8

Conclusions, Explanations and

Vistas Ahead

8.1 Conclusions

The main aim of this thesis has been to search for significant periodicities in the

rainfall received by appropriately defined homogeneous regions of India. The main

data analysed is the annual time series of homogeneous Indian monsoon rainfall and

its 14 constituent sub-divisions over the period 1871-1990 as provided in [64]. Other

regions are also studied, to provide a broad view of spectral characteristics of Indian

rainfall. Following are the major conclusions from the thesis:

Using multi-resolution analysis (MRA), HIM rainfall annual data of 120 y is de-

composed at 7 scales corresponding to periods of 2, 4, 8, 16, 32, 64, 128 y. A hybrid

technique is proposed where the advantages of wavelet methods in handling nonlin-

ear non-stationary time series are combined with the frequency localization property

of Fourier spectral analysis by the following procedure. At the first level of MRA

decomposition the original time series is divided into two partially reconstructed

time series. The detail partially reconstructed is obtained by setting approximate

coefficients of the low frequency components to zero. This helps in the elimination

of sinusoidal interference in the highest frequency band. This time series is then sub-

jected to classical Fourier spectral analysis, which is successful in separating closely

147
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spaced frequencies provided the associated spectral peaks are sufficiently narrow.

This procedure is repeated for all levels and successively interference is removed

from higher frequency bands by setting the corresponding approximate coefficients

to zero.

A theoretical justification for the ability to separate closely spaced frequencies

using the approach proposed here is as follows. Once it is decided that the time

series being handled is nonlinear and possibly non-stationary, the wavelet technique

is clearly an attractive option. However separating closely spaced frequencies by

direct inspection of a wavelet map poses difficulties. In the first place even a pure

sinusoid leads to wavelet coefficients over a band of time scales, so separating two

closely-spaced frequencies this way would not be practical. Secondly, nonlinearity,

non-stationarity, and the regime transitions that may occur as a consequence can

cloud the issue. Finally even when a time series contains a pure sinusoid the in-

terference (or leakage) it produces can make contributions not only within its own

band but in neighboring bands as well. This problem leads to serious difficulties

in many technological applications; for example when there is interference by the

mains frequency in an electronic signal that is the object of analysis. Here we fall

back on the advantages of Fourier analysis, which may be able to pick out sharp

peaks when leakage is minimized.

To summarize, our finding are as follows.

• The Welch technique with Hanning window is a powerful tool for estimating

the PSD function of a time series.

• The MRA+PSD technique proposed here is found to be a powerful tool to

identify and separate frequencies which are closer than 2/N where N is number

of sample points in a time series.

• An effective criterion based on better localization of specific frequency compo-

nents and accurate estimation of their amplitudes is used to select an appropri-

ate wavelet. Comparing the performance of discrete Meyer (dmey), daubechies

(db2) and four other wavelets on test signals, it is shown that the discrete

Meyer wavelet offers the best performance in separating closely-spaced fre-

quencies without yielding spurious peaks.
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• By analysing the performance of the proposed method on specially devised test

signals, it is explicitly demonstrated that when frequencies are closely spaced,

as in test signal 2, the method of empirical mode decomposition (EMD) will

capture only average values as it counts zero crossings, whereas PSD on MRA

with the discrete Meyer wavelet is able to distinguish between closely spaced

frequencies and capture them separately.

• The same is true in the case of HIM rainfall data; PSD on MRA decomposition

is able to yield periods close to each other missed in earlier work by continuous

wavelet transform (CWT) and EMD methods, which yield only some weighted

average values of nearby periods.

• There are therefore grounds to believe that certain periodicities in rainfall have

been missed by earlier techniques.

• The present analysis incidentally uses MRA as a tool also to identify the range

of wavelet scales over which stationarity can be assumed.

• The F and z statistical tests are performed on two consecutive populations

using the reconstructed details and approximation of MRA decomposition at

four levels, of 60 samples each from the two test periods over 1871–1930 and

1931–1990. The data are analysed for stationarity.

• It is shown that the HIM rainfall data exhibits non-stationarity only over long

periods of order 60 y. The stationary component of HIM rainfall is obtained

from adding the partially reconstructed time series at four levels of detail.

This reconstructed stationary time series accounts for 93% of the variance of

the total HIM rainfall.

• Application of spectral analysis on partially reconstructed wavelet coefficient

time series is justified by the fact that rainfall is stationary except over long

periods of order 60 y.

• In case of HIM rainfall, the present MRA+PSD technique reveals 17 period-

icities at 2.1, 2.3, 2.5, 2.7, 2.8, 3.0, 3.3, 4.1, 5.7, 6.6, 7.5, 8.6, 10.0, 13.3, 24.0,
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30.3, 60.0 y. Of these the periodicities at 8.6 and 30.3 y are not present in any

previous work.

• The important question of statistical significance of these periodicities is dis-

cussed and spectral peaks are tested against appropriately colored noise.

• The auto-correlation coefficient of HIM rainfall series at lag 1 is α = −0.007,

i.e. close to zero. This implies that in the classical technique of devising a

reference spectrum based on α, the periodicities in HIM rainfall are tested

against a nearly flat spectrum (i.e. white noise). However we present strong

evidence for the presence of a spectral dip in HIM rainfall around a frequency of

0.25 y−1, and construct a testing procedure that takes this into account. Thus,

using MRA we have shown that at the first level of decomposition for high

frequencies the reference spectrum is blue, whereas for low frequencies it is red.

Hence the statistical significance of these periodicities must be tested against

appropriately colored noise, matching the observed spectrum of rainfall.

• The estimated PSD of HIM rainfall time series against classical reference spec-

tra of Eq. 1.13 shows only one periodicity of 2.3 y above 99% confidence level.

• Using the present method of MRA+PSD against appropriately colored refer-

ence spectra, ten periodicities are significant above the 99.9% confidence level,

with respective periods of 2.8, 3.3, 5.7, 7.5, 8.6, 10.0, 13.3, 24.0, 30.3 and 60.6

y.

• The significant peaks account for 64% of the variance of the total HIM rainfall.

However the 60.6 y periodicity is close to the boundary of stationarity, and

should be interpreted with caution.

• One persistent question that arises in the quest for identifying periodicities in

Indian rainfall is the meteorological heterogeneity in the data. In spite of many

studies of the problem, and the considerable evidence of this heterogeneity,

many analyses still continue to rely on all-India indices. Even the homoge-

neous regions identified by different workers may contain heterogeneities not

considered in the criteria laid down for determining the degree of homogeneity.
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For example, we show in Chapter 5 that only seven out of the 14 sub-divisions

in the HIM region exhibit a characteristic spectral dip at 0.25 y−1. Using het-

erogeneous data will mask inherent periodicities in the phenomenon. Towards

that end we here propose a quantitative definition of spectral homogeneity,

and use this concept to identify a spectrally homogeneous (SHIM) sub-region

within the HIM region. The new methodology proposed here is founded on

the observation that homogeneous zone rainfall time series are derived by an

averaging process over numerous other time series of the same length involving

O(10) sub-divisional time series and O(102) rain gauge records, and so cannot

be treated as comprising just a set of isolated individual measurements, one

for each year.

• It is found that the four sub-divisions of Telangana, West Madhya Pradesh,

East Rajasthan and Vidarbha form a spectrally homogeneous sub-region within

the HIM region defined in [50].

• Tested against the classical reference spectrum of Eq. 1.13, HIM rainfall time

series over the time period 1871-1990 shows one 99% significant period of 2.3 y

and a 95% significant period at 2.8 y. However, by introducing the spectrally

homogeneous sub-region SHIM, we have shown that there is a 99.5% significant

period of 2.3 y, along with four other significant peaks above 95% confidence

at 2.1, 7.5, 13.3 and 60.6 y and a 2.8 y period at > 94.8%..

• Using MRA+PSD, eleven significant periodicities in the SHIM rainfall above

99% confidence level are found, namely 2.3, 2.8, 3.3, 5.7, 7.5, 8.6, 10.0, 13.3,

24.0, 30.3 and 60.6. y.

• Using confidence ellipse technique a new method to detect significant common

periodicities in the cross-correlated sub-divisional rainfall is proposed. We

report here seven significant periodicities in SHIM rainfall, five at confidence

levels exceeding 95% (respectively 2.1 y at 97.8%, 2.3 y at 95.7%, 2.8 at 98.4%,

7.5 at 99.5%, 24.0 at 99.4%), and 10.9 at 90.5 % and 60.6 at 93.2% confidence

level.
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• We found that the classical test of checking confidence level of a spectral peak

is inadequate when the amplitude of longer periods is low. The proposed confi-

dence ellipse technique however shows high confidence levels even for relatively

low amplitudes when the cross-correlation is high. Hence the present method

is less amplitude-sensitive than other available methods.

• It is concluded that a common period may be present in all the sub-divisions

constituting a region but the significance of their commonalty can not be

established using the classical method (as described by Eq.1.13). However it is

found that the proposed method of confidence ellipse is a more informative and

powerful tool for testing confidence levels of common periodicities in correlated

time series.

• Earlier methods of classification of India into homogeneous regions based on

rainfall do not take into account spectral characteristics. Using spectral ho-

mogeneity as a criterion, we here classify the country into ten spectrally ho-

mogenous regions. These new regions cut across those defined earlier by other

workers. For example, the Spectrally Homogeneous Region7 has (only) six

sub-divisions from the HIM region and one from the PENSI region.

• SHR7 may be of particular interest as all the constituent sub-divisions show a

spectral dip around the frequency of 0.25 y−1, and most of the spectral peaks

in the different sub-divisions nearly coincide with each other.

• The significance levels of periodicities detected in these regions are assessed.

In SHR7 there is reported to be one periodicity above 95% by the direct PSD

whereas the present MRA+PSD technique reveals seven periodicities above

99.9% confidence level, with respective periods of 3.3, 13.3, 5.7, 10.9, 8.6, 24.0

and 30.3 y.

• In summary, it is found that the wavelet-based methods developed in this

thesis suggest the presence of far more significant periodicities than traditional

methods of spectral analysis do. The application of the present results to

prediction is now receiving attention.
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8.2 Explanations

• All-India (India taken as one unit) summer monsoon rainfall data has been

considered for various studies to understand the spatial and temporal varia-

tions of rainfall within country. However in this thesis we have preferred to

analyze various homogeneous zone monsoon rainfall time series. In particular

we have devoted considerable attention to the Homogeneous Indian Monsoon

(HIM) region, as it is a good rainfall index for an analysis like the present. The

reason is that the geographical area it covers is meteorologically homogeneous,

and so physically coherent signals tend to show strong periodicities that may

not be present in mixed zones.

• The auto-correlation coefficient for HIM rainfall at lag 1 is −0.007, so the ref-

erence spectra according to Eq. 1.13 is very close to white. However the HIM

spectrum shows relatively high power at both higher and lower frequencies.

Therefore, appropriate colored noise spectra obtained from MRA decomposi-

tion at different scales appear to be necessary.

• We have concluded that the standard tests used for significance tests can be

misleading. This is because

– The classical reference spectrum (Eq. 1.13) capture only the largest am-

plitude peak as highly significant; when the amplitude of longer periods

is low such tests are unable to assess their significance satisfactorily.

– Most climatic and geophysical time series tend to have spectra that are

not even approximately white, hence the reference spectra used often

need to be appropriately colored.

8.3 Vistas Ahead

• New methods need to be devised to assess the significance levels of periodicities

in a time series.
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• Wavelet based prediction techniques have been extensively used recently in

time series analysis. For rainfall data, application of the proposed MRA tech-

nique as a tool for prediction is the subject of future work.

• It is a long-debated question whether, and if so by what means, we can dis-

tinguish between observed irregular signals that are deterministically chaotic

or stochastic. Using wavelets to achieve this goal can be the subject of future

work.

• The present work showing several periodicities in regional monsoon rainfall

needs to be exploited for rainfall prediction.
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