
   
 

 1

   

“VERIFICATION OF CONFIGURABLE IOB 
 

ACCORDING TO JEDEC STANDARDS” 
 

A dissertation submitted towards the partial fulfillment of the 

requirement for the Award of the Degree of 

Master of Engineering 
in 

Electronics & Communication 
 
 

Submitted by 

Sanjib Deka 
University Roll No: 3313 

College Roll No: 08/E&C/03 
 

Under the guidance of 

Dr. Asok Bhattacharyya 
 
 
 
 
 
 
 
 
 
 

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING 
DELHI COLLEGE OF ENGINEERING 

UNIVERSITY OF DELHI 
2003-2005 



   
 

 2

 
                       

CERTIFICATE 
  

 
This is to certify that the project entitled “Verification of Configurable IOB According to 
JEDEC Standards”, which is being submitted by Mr. Sanjib Deka, is a bonafide record of 
student’s own work carried by him under my guidance and supervision in partial fulfillment 
of requirement for the award of the Degree of   Master of Engineering in Electronic & 
Communication, Electronic & Communication Engineering Department, Delhi College 
of Engineering, University of Delhi. The matter embodied in this project has not been 
submitted for the award of any other degree. 
 

 

  

 

 

 

Dr. Asok Bhattacharyya                                                    

Project Guide                                                         
Professor & Head of Department                               
Department of Electronics & Communication Engineering                                
Delhi College of Engineering                                    
Delhi - 110042 



   
 

 3

ACKNOWLEDGEMENT 
 
 

It is my pleasure to acknowledge and express my deep sense of gratitude towards my 
guide, Dr. Asok Bhattacharyya, project guide & HOD (Electronic & Communication Dept, 
DCE), who supervised the work reported in this thesis report. I sincerely thank him for 
providing me with opportunity to pursue my internship in ST Microelectronics, Noida & 
being a constant source of inspiration.  

I would like to thank Mr.Hiten Advani, Sectional manager, FPGA dept, for giving me 
opportunity to work in STMicroelectronics and for his help during the course of this project. 
  I thank Mr. Puneet Suri and Ms Veena Krishnan, my Project Guide, in 
STMicroelectronics for providing me with their knowledgeable suggestions and valuable 
support. Also I thank members of the team Mr. Janit Kumar, Mr. Satinder Singh Malhi, Mr. 
Arun Mishra, Mr. Prashant Narang, Ms. Shobhna Tiwari, Mr. Varinder Kumar and Mr. 
Vikrant Singh for their continuous guidance and support for the project. I am greatly thankful 
to Mr. Rahul Bharti from HR for his help during training. 

I also like to thank everyone who has helped me either directly or indirectly in the 
successful completion of this work. 
 
  

 
 
 
 
 
 

 
 

    Sanjib Deka      
College Roll No. 08/EC/2K3 

University Roll No. 3103 



   
 

 4

 
“VERIFICATION OF CONFIGURABLE IOB 

 
ACCORDING TO JEDEC STANDARDS” 

 
 
 

BY 
 

Sanjib Deka 
College Roll no: 08/EC/2K3 

University Roll no: 3103 
 
 
 
 

Abstract:  
In this thesis Input Output block of FPGA is verified according to JEDEC 
standards. IOB’s used in FPGA’s are made configurable to support different 
applications. These IOB comply with electrical standard described by the 
JEDEC documents. In this thesis the postlay netlist of configurable IOB of 
FPGA is verified according to JEDEC standard. And the rise to rise delay, fall 
to fall delay and output duty cycle are also measured. Maximum frequency of 
operation of IOB was also verified. The simulations were carried out on EDA 
tools Eldo and Hspice. Measurements were done on the output waveforms. A 
relationship between rise delay, fall delay, input & output duty cycle was 
observed. An expression was derived which explains the behaviour observed, & 
this expression lets us calculate the maximum frequency when output is limited 
by duty cycle. The theoretical values found by the relation were confirmed with 
simulation results.      



   
 

 5

       
 

Table Of Contents 
 

 
 
 

1. Introduction ..................................................................... 1 
 
1.1 Introduction……………………………………………………………………….……  2 
1.2 FPGA.………………………………………………………………………………….  3 
1.3 Input Output Block(IOB)………………………………………………………….…...  3 
1.4 JEDEC standards…………………..………………………………………..…………  4 
1.5 Verification………………………..…………………………………………….……..  4 

1.5.1 Schematic-Based Simulation…………………………………………………..  4   
1.5.2 Functional Simulation…………………………………………………………   4 
1.5.3 Timing Simulation………………………………………………………..........  4 

1.6 Goals of the Project…………………………………………………………………....  5 
1.7 Organisation of Thesis…………………………………………………………...........  .5 
 

 
2. Literature Review ............................................................ 6 
 
2.1 Introduction………………………………………………………….…………………..7  
2.2 FPGA……………………………………………………………………………………7 
2.3 Basic Blocks of FPGA………………………………………………………….……….7 
 2.3.1 Logic blocks……………………………………………………………….…….7
 2.3.2 Interconnection resources……………………………………………...……......8 
2.4 Programming technologies…………………………………………………...…………8 
 2.4.1 Static RAM Programming Technology…………………………………...…….9 
 2.4.2 Anti-fuse programming technology……………………………………..…......10 
 2.4.3 EPROM and EEPROM programming technology…………………………….12 
2.5 Comparison of programmable technology………………………………….……….....13 
2.6 Applications of FPGAs……………………………………………………….………..13 
2.7 Design Flow Overview…………………………………………………………..….....13 
         2.7.1Design Entry and Synthesis…….………………………………………………14 
         2.7.2 Design Verification…………..…………………………………………...........16 
         2.7.2.1. Simulation………………………………………………..…………….17 
         2.7.2.2. Static Timing Analysis…………………………………………………18 
         2.7.2.3. In-Circuit Verification………………………………………………. ..18 
2.8 Input output block……………………………………………………………………...19 
         2.8.1 Basic of I/O………………………………...………………………………......19 
         2.8.1.1 What is an I/O?.................................................................................…...19 
         2.8.1.2 I/O Logic Functions………………………………………………….....20 
         2.8.1.3 Specific functions of IO………………………………………………...21 



   
 

 6

           2.8.2 Requirements of IO……………………………………………..…………….22 
           2.8.3 Electrical Interface Characteristics of IOB………………….……………......23 
          2.8.3.1 Input and output voltage level………………………………………. ...23 
          2.8.3.3 Input and output current level………………………………………….23 
          2.8.3.4 Rise, fall time and Propagation delay……………………………….....24 
          2.8.3.5 Slew rate…………………………………………………………….…25 
           2.8.4 Basic blocks of IOB………………………………………………………......25 
          2.8.4.1 Input Stage of IOB…………………………………………………......27 
          2.8.4.2 Output stage of IOB…………………………………………………....28 
2.9 ESD Protection in I/O………………………………………………………….............29 
 2.9.1 What is ESD?......................................................................................................29 
 2.9.2 Effects of ESD………………………………………………………………....31 
 2.9.3 ESD standard models………………………………………………………......31 
                     Human Body Model (HBD)…....………………………………………….…31 
                     Machine Model (MM)……………………………………………….............32 
                     Charged Device Model (CDM)……..…………………………………….....33 
            2.9.4 What to protect in silicon?........................................................................... ...33 
            2.9.5 High Speed ESD Protection………………………………………………. ...33 
                     2.9.5.1 Protection strategy…….…………………………….……………. ...34 
                     2.9.5.2 ESD Protection Devices……………………………………………...34 
2.10 Latch up……………………………………………………………………………....37 
 2.10.1 Latch-up Model…………………………………………………………….....37 
 2.10.2 Latch-up Phenomenon…………………………………………………….. ...38 
 2.10.3 Preventing Latch-up………………………………………………………......39 
                     2.10.3.1 Causes of latch-up……………………………………………….. ...39 
                     2.10.3.2 Latch-up prevention……………………………….……………......39 
                     2.10.3.3 I/O Latch-up protection………………………………………… …40 
2.11 Jedec Standards.............................................................................................................41 
            2.11.1 Jedec Activities……..……………………………………………................42 
            2.11.2 Standards Supported by IOB……………………………………………….42 
2.12 Summary………………………………………………………………………….......42 
 
3. Procedure for Verification of IOB ................................ 43 
 
3.1 Introduction …………………………………………………………………………....44 
3.2 Verification ……………………………………………………………………………44 
3.3 Verification plan for IOB………………………………………………………..……..44 
3.4 Simulation Information………………………………………………………….……..44 
3.5 .cir file…………………………………………………………………………….……45 
 3.5.1 Description of .cir file………………………………………………………….48 
 3.5.2 Parameters Measured…………………………………………………………..49 
 3.5.3 Maximum frequency…………………………………………………………...49 
3.5 Method used to tabulate result…………………………………………………….. ….49 
3.6 Summary……………………………………………………………………………….49 
 

 



   
 

 7

 
4. Results ........................................................................... 50 
 
4.1Introduction……………………………………………………………………………..51   
4.2 Standards supported by IOB…………………………………………………...............51 
4.3 Specification of the Standard…………………………………………………………..51 
          4.3.1 Single Ended Standards………………………………………………….……51 
            LVCMOS12………………………………………………..............................51 
            LVCMOS15…………………………………………………………..………52 
            LVCMOS18………………………………………………………..…………52 
            LVCMOS25……………………………………………………..………........53 
            LVTTL………………………………………………………..………………54 
          4.3.2 Pseudo-differential Standards…………………………………………………54 
            HSTL 1.5…………………………………………………………………......54 
            HSTL 1.8…………………………………………………………………......56 
            SSTL 1.8………………………………………………………………...........57 
            SSTL 2.5………………………………………………………………...........58 
            SSTL 3.3……………………………………………………………...............59 
           GTL…………………………………………………………………………...60 
            GTLP………………………………………………………………………….60 
           4.3.3 Fully Differential Standards…………………………………………………..61 
4.5 Summary……………………………………………………………………………….61 

 
5. Conclusion..................................................................... 62 

 
Reference........................................................................... 65 
Appendix............................................................................ 67 
   A. Eldo Sytax Reference…………………………………………………………………68 
   B. Hspice Simulation & Syntax Reference………………………………………………82 
   C. Hsim Simulator Features & Syntax Summary……………………………………. ..105 
   D. Expression For Determining Maximum Frequency……………………………… ..130 

 
  
 

 

 



   
 

 8

 

Chapter 1 
Introduction 



   
 

 9

1.1 Introduction 
Very Large Scale Integration (VLSI) technology has opened the door implementation 

of powerful digital circuits at low cost. It has become possible to build chips with more than 
a million transistors, as exemplified by state-of-the-art microprocessors. Such chips are 
realized using the full custom approach, where all parts of a VLSI circuit are carefully 
tailored to meet a set of specific requirements. Semi-custom approaches such as Standard 
Cells and Mask-Programmed Gate Arrays (MPGAs) have provided an easier way of 
designing and manufacturing Application-Specific Integrated Circuits (ASICs). 
           Each of these techniques, however, requires extensive manufacturing effort, taking 
several months from beginning to end. This results in a high cost for each unit unless large 
volumes are produced, because the overhead to begin production of chips ranges from 
$20,000 to $200,000. 

In the electronics industry it is vital to reach the market with new products in the 
shortest possible time and so reduced development and production time is essential. 
Furthermore, it is important that the financial risk incurred in the development of a new 
product be limited so that more new ideas can be prototyped. Field-Programmable gate 
Arrays (FPGAs) have emerged as the ultimate solution to these time-to-market and risk 
problems because they provide instant manufacturing and very low-cost prototypes. An 
FPGA can be manufactured in minutes, and prototype costs are of the order of $100. A field-
programmable device is a device in which the final logic structure can be directly configured 
by the end user, without the use of an integrated circuit fabrication facility. 
 
Here's the general workflow when working with FPGAs:  

• You use a computer to describe the "logic function" that you want. You might draw a 
schematic, or create a text file describing the function, doesn't matter.  

• You compile the "logic function" on your computer, using a software provided by the 
FPGA vendor. That creates a binary file that can be downloaded into the FPGA.  

• You connect a cable from your computer to the FPGA, and download the binary file 
to the FPGA.  

• That's it! Your FPGA behaves according to your "logic function".  

Keep in mind that  
• You can download FPGAs as many time as you want - no limit - with different 

functionalities every time if you want. If you make a mistake in your design, just fix 
your "logic function", re-compile and re-download it. No PCB, solder or component 
to change.  

• The designs can run much faster than if you were to design a board with discrete 
components, since everything runs within the FPGA, on its silicon die.  

• FPGAs loose their functionality when the power goes away (like RAM in a computer 
that looses its content). You have to re-download them when power goes back up to 
restore the functionality. 



   
 

 10

1.2 FPGA 
FPGAs (Field Programmable Gate Arrays) are arrays of logic blocks which can be 

linked together to form complex logic implementations. A bit more flexible and complex 
than CPLDs and PALs, FPGAs can be separated into two categories; Fine Grained and 
Coarse grained. Fine grained being made up of a sea of gates or transistors or small macro 
cells, while coarse grained being made up of bigger macro cells which are often made up of 
flip flops and Look up Tables (LUTs) which make up the combinatorial logic functions. 
Inside the macro cell are often switches or multiplexers which allow for differing uses of the 
macro cell. The individual macro cells are connected together with a combination of switch 
matrixes and metal line matrixes which can be implemented with pass transistors, 
fuses/antifuses or multiplexers. 
A typical FPGA consists of a two-dimensional array of logic blocks that can be connected by 
general interconnection resources. These arrays of logic block and interconnection resources 
are surrounded by Input output blocks. 
  
1.3 Input Output Block (IOB) 
Any integrated circuit when looked inside package body can be broadly seen as two parts, i.e. 
core and IOB. Core is the silicon part where input signal provided by the IOB are processed 
and given back to IOB as output. IOB is the cell that allows interface between the logic 
inside the chip and external system components. In other words IOB protects the silicon from 
factors that may either damage the chip or hinder with chips functionality and performance. 
I/O Logic Functions 
 An I/O can have three basic logic functions: 
A). Input: The I/O receives and adapts the signal to the core. Since core and I/O work at 
different voltage levels. Signal has to be level shifted to core voltage level. This function can 
be selected from control bits. 
 
B). Output: The IO amplifies and adapts the signal from the core to the outside load. Since 
core voltage is less than IO voltage IOB amplifies the signal and supply it to the load. 
   
C). Bidirectional: IO can both work as input or output path. As shown in figure 3.5 this block 
has both input and output path. These blocks are selected from control signal from the core. 
In figure EN signal shown is active low. When EN is high block acts as input path, therefore 
ZI follows IO. And when EN is low this block acts as output path. 
 
Specific functions of IO 
A). Pull-up and pull-down:  The optional pull-up and pull-down resistors are intended to 
establish High and Low levels, respectively, at unused I/Os.  
 
B). Hysteresis: This feature is included, make core more immune to noise. There are two 
level of voltage known as trim points.  
                                        
C). Analog IO’s: These IO’s are designed to carry analog signal e.g. oscillators, ADC. They 
have different current and voltage requirements thus have different design. 
 



   
 

 11

D). Power Supply IO’s: These IO’s are designed to carry supply for core and IO. They have 
inbuilt ESD protection circuitry. 
 
E). Latch –up: The IO structure is more susceptible to latch-up. So the layout are made 
keeping this mind  
 
1.4 JEDEC standards 

JEDEC is the leading developer of standards for the solid-state industry. Almost 2400 
participants, appointed by some 270 companies work together in 50 JEDEC committees meet 
the needs of every segment of the industry, manufacturers and consumers alike. The 
publications and standards that they generate are accepted throughout the world 

JEDEC committees hold frequent meetings throughout the year in domestic and 
international venues. All standardization work takes place at these meetings and companies 
must be a member to participate. Surveys are also often taken to find out what companies are 
doing in important areas that often leads to ballots.  
 In this thesis the IOB which will be verified follow JEDEC standard. 
 
1.5 Verification 
 
1.5.1 Schematic-Based Simulation  

Design simulation involves testing of design using software models. It is most 
effective when testing the functionality of the design and its performance under worst-case 
conditions. We can easily probe internal nodes to check your circuit’s behaviour, and then 
use these results to make changes in your schematic.  

Simulation is performed using third-party tools that are linked to the Xilinx Development 
System. The software models provided for the simulation tools are designed to perform 
detailed characterization of your design. We can perform functional or timing simulation, as 
described follows: 

 
1.5.2 Functional Simulation  

Functional simulation determines if the logic in the design is correct before it is 
implemented in a device. Functional simulation can take place at the earliest stages of the 
design flow. Because timing information for the implemented design is not available at this 
stage, the simulator tests the logic in the design using unit delays.   

It is usually faster and easier to correct design errors if you perform functional simulation 
early in the design flow. 
 
1.5.3 Timing Simulation  

Timing simulation verifies that the design runs at the desired speed for the device under 
worst-case conditions. This process is performed after your design is mapped, placed, and 
routed for FPGAs. At this time, all design delays are known. Timing simulation is valuable 
because it can verify timing relationships and determine the critical paths for the design 
under worst-case conditions. It can also determine whether or not the design contains set-up 
or hold violations. 
 



   
 

 12

1.6 Goals of the Project 
This project was done in STMicroelectronics pvt ltd, circuit made by the design team 

needs to be verified before tape-out. The circuit was designed according to the JEDEC 
standards, therefore it needs to be verified that it is behaving according to the JEDEC 
standard 
 The goals of the project this is to verify that the circuit designed by the design team, 
behaves electrically according to standard. The following are the things to be verified 

 It follows electrical standards as specified by the JEDEC standard. 
 Verify working of the circuit under the maximum frequency. 
 Check whether the output waveform have distortion or not. 
 Give feedback to the design team. 
 Suggest changes if there is some problem in the circuit. 

The following is the list of parameters measured for verification purpose. 
 Input on time. 
 Input off time. 
 Input time period. 
 Output on time. 
 Output off time. 
 Output time period. 
 Rise to rise delay. 
 Fall to fall delay. 
 Output voltage low level (VOL). 
 Output voltage high level (VOH). 
 Peak to peak value of output. 
 Output Duty cycle. 

 
1.7 Organisation of Thesis 

Report title is ‘Verification of configurable IOB’. Configurable IOBs are one of the 
basic blocks of FPGA. These blocks give electrical isolation to the core. 

Chapter 2 gives the literature review of the topics which are directly or indirectly 
related to this project. The function of this chapter is to give reader all the introductory 
information needed to understand the project. First we discuss about FPGAs, FPGA 
architecture, building blocks, programming technologies and Applications of FPGA. Then a 
block of FPGA known as IOB is taken up. This block is explained extensively. Basic blocks 
of IOB, their importance and protection circuits are discussed. Issues like latch-up, EMC and 
ESD and method to prevent IOB from these issues are examined. In this project IOB were 
verified against a standard known as JEDEC standards. Information on JEDEC is provided in 
the end of the chapter.  

Chapter 3 discusses about verification procedure followed. Details of parameter that 
were measured and cir file are given in this chapter. 

Chapter 4 tells how verification was done on the postlay netlist of IOB.  
Chapter 5 discusses result and conclusion of the project. 

In Appendix syntax of simulators used are added for reference. 



   
 

 13

 

 

 

Chapter 2 
Literature Review 

 

 

 



   
 

 14

2.1 Introduction 
 This chapter covers the literature background needed to understand the project. In this 
chapter FPGA, its architecture, & IOB are discussed. And issues like ESD, Latch-up are also 
discussed. Reader can skip these issues if the like, this will not hinder in flow of the thesis. 
 
2.2 Field Programmable Gate Array  
 A programmable logic device is a device whose logic characteristics can be changed 
and manipulated or stored through programming. The most common simple device which 
falls into this category is the PAL (Programmable Array Logic). The internals of simple 
PALs consist simply of an array of AND gates and an array of OR gates. The AND array is 
programmable while the OR array is relatively fixed. A switch matrix selects which of the 
PALs inputs will be connected to the AND inputs which are then connect to the fixed OR 
matrix. The outputs can often times be rerouted to the input matrixes.  

FPGAs (Field Programmable Gate Arrays) are arrays of logic blocks which can be 
linked together to form complex logic implementations. A bit more flexible and complex 
than CPLDs and PALs, FPGAs can be separated into two categories; Fine Grained and 
Coarse grained. Fine grained being made up of a sea of gates or transistors or small macro 
cells, while coarse grained being made up of bigger macro cells which are often made up of 
flip flops and Look up Tables (LUTs) which make up the combinatorial logic functions. 
Inside the macro cell are often switches or multiplexers which allow for differing uses of the 
macro cell. The individual macro cells are connected together with a combination of switch 
matrixes and metal line matrixes which can be implemented with pass transistors, 
fuses/antifuses or multiplexers. 
 
2.3 Basic Blocks of FPGA 
 A typical FPGA consists of a two-dimensional array of logic blocks that can be 
connected by general interconnection resources. The interconnection resources comprise of 
segments of wire, where the segments may be of various lengths. Programmable switches 
present in interconnect serve to connect the logic blocks to the wire segments, or one wire 
segment to another. Logic circuits are implemented in the FPGA by partitioning the logic 
into individual logic blocks and then interconnecting the blocks as required via the switches. 
 To facilitate the implementation of a wide variety of circuits, it is important that the 
FPGA be as versatile as possible. This means that the design of the logic block, coupled with 
that with of the interconnection resources, should facilitate the implementation of a large 
number of digital logic circuits. 
 
2.3.1 Logic blocks 
 Logic block can be designed in many different ways. Some FPGA logic blocks are as 
simple as 2-input NAND gates, other blocks have more complex structure, such as 
multiplexer or look-up tables. In some FPGA’s, a logic block correspond to an entire PAL 
like structure. Most logic block also contains some type of flip-flop, to aid in the 
implementation of sequential circuits. 
 
 



   
 

 15

 
Fig 2.1 Block diagram of FPGA 

 
2.3.2 Interconnection resources 
 The structure and content of interconnect in a FPGA is called its routing architecture. 
The routing architecture consists of both wire segments and programmable switches. The 
programmable switches can be constructed in many ways, including: pass transistor 
controlled by static RAM cells, anti fuses, EPROM transistors and EEPROM transistors. 
 
2.4 Programming technologies 
 The term ‘switch’ generally used in FPGA’s refers to the entity that allows 
programmable connections between wire segments. A more precise term for such an entity is 
programming element. This programming element can be implemented using different 
programming technologies. In this section programming technologies will be briefly 
explained. 
 Programmable technologies that are currently in use in commercial products are: 
static RAM cells, anti-fuses, EPROM transistors, and EEPROM transistors. The 
programming connections are used to implement the programmable connection among the 
FPGAs logic blocks.  



   
 

 16

The elements should have following properties: 
 The programming element should consume as little chip area as possible. 
 The programming element should have a low ON resistance and a very high OFF 

resistance. 
 The programming element should contribute low parasitic capacitance to the 

wiring resources to which it is attached. 
 It should be possible to reliably fabricate a large number of programming 

elements on a single chip. 
 
2.4.1 Static RAM Programming Technology 
 The static RAM programming technology is used in FPGA’s produced by several 
companies: Algotronix, Concurrent logic, Plessey Semiconductors, and Xilinx. In these 
FPGA’s, programmable connection are made using pass-transistors, transmission gates, or 
multiplexer that are all controlled by SRAM cells.  
 In case of pass-transistor approaches in figure 2.2a and 2.2b RAM cell controls 
whether RAM cell controls whether the pass gate is on or off. When off, the pass gate present 
a very high resistance between the two wires to which it is attached. When pass gate is turned 
on, it forms a relatively low resistance connection between the wires. For multiplexer 
approach in figure 2.2c, the RAM cells control which of the multiplexer’s input should be 
connected to its output. This option would typically be used to optionally connect one of 
several wires to a single input of a logic block.  

RAM cell

Routing wire Routing wire

RAM Cell

Routing wireRouting wire

RAM Cell

Routing wireRouting wire

 
 
 
              (a)       (b)  

RAM Cell

Routing wire

RAM Cell

MUX

To logic cell 
input

RAM Cell

Routing wire

RAM Cell

MUX

To logic cell 
input  

   (c) 
Fig 2.2 Static RAM programming technology 

  



   
 

 17

In an FPGA that uses SRAM programming technology, the logic blocks may be 
interconnected using a combination of pass-gates and multiplexers. Since the static RAM is 
volatile, these FPGAs must be configured each time the power is applied to the chip. 

This requires external permanent memory to provide programming bits such as 
PROM, EPROM, EEPROM or magnetic disk. 
 A major disadvantage of SRAM programming technology is its large area. It takes at 
least five transistors to implement each SRAM cell, plus at least one transistor to serve as a 
programmable switch. However, SRAM programming technology two major advantages: 
fast re-programmability and that it require only standard integrated circuit process 
technology. 
 
2.4.2 Anti-fuse programming technology 
 Anti-fuse programming technology is used in FPGAs by Actel Corp., Quicklogic, and 
Crosspoint Solutions. While the anti-fuse used in each of these FPGAs differs in 
construction, their function is the same. A anti-fuse normally resides in a high-impedance 
state but can be ‘fused’ into a low-impedance state when programmed by a high voltage. 
 The Actel anti-fuse, called PLICE, can be described as a square structure that consists 
of three layers: the bottom layer is composed of positively-doped silicon (n+ diffusion), the 
middle layer is a dielectric (oxygen-nitrogen-oxygen insulator), and the top layer is made of 
poly-silicon. This construction is illustrated in figure 2.3. 

 n+ diffusionOxide

dielectric

Poly-Si

n+ diffusionOxide

dielectric

Poly-Si

 
 
Fig 2.3 Cross section of PLICE Anti-fuse programming technology 
 
 The PLICE anti-fuse is programmed by placing a relatively high voltage (18V) across 
the anti-fuse terminals and driving a current of about 5mA through the device. This 
procedure generates enough heat I the dielectric to cause it to melt and form a conductive 
link between the poly-Si and the n+ diffusion. Special high voltage transistors are fabricated 
within the FPGA to accommodate the necessary large voltages and currents. 
 Both the bottom layer and the top layer of the anti-fuse are connected to metal wires, 
so that, when programmed, the anti-fuse forms a low resistance connection (from 300 to 500 
ohms) between the two metal wires. This arrangement is depicted in figure 2.4. The PLICE 
anti-fuse is manufactured by adding three specialized mask to a normal CMOS process. 

The anti-fuse used by Quicklogic is called Vialink. It is similar to the PLICE anti-fuse 
in that it consists of three layers. However, a Vialink anti fuse uses one level of metal for its 
bottom layer, an alloy of amorphous silicon fir its middle layer, and a second level of metal 
for the top layer. 

 



   
 

 18

Metal 2 wire

Anti-fuse

Metal 1 wire
Poly-Si

n+ diffusion Metal 2 wire

Anti-fuse

Metal 1 wire
Poly-Si

n+ diffusion

 
Fig 2.4 Structure of PLICE anti-fuse programming technology 

 
 This structure is illustrated I figure 2.5. When in un-programmed state, the anti-fuse 
presents over a giga ohm of resistance, but when programmed it forms a low resistance path 
of about 80 ohms between the two metal wires. The anti-fuse is manufactured using three 
extra masks above a normal CMOS process. Here, a normal via is created for the anti-fuse, 
but the via si filled with the amorphous silicon alloy instead of metal. 

Oxide

Metal 1

Metal 2

Amorphous silicon

Oxide

Metal 1

Metal 2

Amorphous silicon

 
Fig 2.5 Vialink anti-fuse programming technology 

 
 The Vialink anti-fuse is programmed by placing about 10 volts across its terminals. 
When sufficient current is supplied, this results in a change of state in the amorphous silicon 
and creates a conductive link between the bottom and the top layers of metal. 
 The chip area required by an anti-fuse (either PLICE or Vialink) is very small 
compared to the other programming technologies. However, this is somewhat offset by the 
large space required for the high-voltage transistors that are needed to handle the high 
programming voltages and currents. A disadvantage of anti-fuses is that their manufacture 
requires modifications to the basic CMOS process. 



   
 

 19

 
2.4.3 EPROM and EEPROM programming technology 
 EPROM programming technology is used in the FPGAs manufactured by Altera 
Corp. and Plus logic. This technology is the same as that used in EPROM memories. 
Unlike a simple MOS transistor, an EPROM transistor consists of two gates, a floating gate 
and a select gate. The floating gate, positioned between the select gate and the transistor 
channel, is so named because it is not electrically connected to any circuitry. In its normal 
(unprogrammed) state, no charge exists on the floating gate and the transistor can be turned 
ON in the normal fashion using the select gate. 

However when the transistor is programmed by causing a large current to flow 
between the source and drain, a charge has the effect of permanently turning the transistor 
OFF. I this way, the EPROM transistor can function as a programmable element. An 
EPROM transistor can be re-programmed by first removing the trapped charge from the 
floating gate. Exposing the gate to ultraviolet light excites the trapped electron to the point 
where they can pass through the gate oxide into the substrate. 
 EPROM transistors are used in FPGAs in a different manner than are static RAM 
cells or anti-fuses. That is, rather than serving to programmably connect two wires, EPROM 
transistors are used as “pull down” devices for logic block inputs. This arrangement is shown 
in fig 2.5. One wire is called the word line, and is connected to the select gate of the EPROM 
transistor. As long as the transistor has not been programmed into OFF state, the word line 
can cause the “bit line”, which is connected to a logic block input to be pulled to logic zero. 
Since a pull-up resistor is present on the bit line, this scheme allows the EPROM transistors 
to not only implement connections but also to realize wired-AND logic functions.  

gnd

EPROM transistor

Bit line

Word line

Select gate

Floating gate

Pull-up
resistor

 
Fig 2.6 EPROM programming technology 

 
A disadvantage of this approach is that the resistor consumes static power. One 

advantage of EPROM transistors is that they are re-programmable but do not require external 
voltage. 

The EEPROM approach (used in AMD FPGAs) is similar to the EPROM technology 
except that EEPROM transistors can be re-programmed in-circuit. The disadvantage of using 



   
 

 20

EEPROM transistors is that they consume about twice chip area as EPROM transistor and 
they require multiple voltage sources (for re-programming) which might not otherwise be 
required. 
 
2.5 Comparison of programmable technology 
 
Programming 
Technology 

Volatile Re-Prog. Chip Area R (ohm) C(ff) Extra 
FAB 
Steps 

Static RAM 
Cells 

yes In-circuit large 1 – 2 K 10–20 ff 0 

PLICE  
Anti-fuse 

No No Small anti-
fuse, large 
prog. trans 

300-500 3 – 5 ff 3 

Via-Link 
Anti-fuse 

No No Small anti-
fuse, large 
prog. trans. 

50-80 1.3 ff 3 

EPROM No Out of 
circuit 

Small 2 – 4 K 10–20 ff 3 

EEPROM No In-circuit 2x EPROM 2 – 4 K 10–20 ff >5 
Table 2.1 characteristic of programming technologies 

 
2.6 Applications of FPGAs 
        FPGAs can be used in almost all of the applications that currently use Mask-
Programmable Gate Arrays, PLDs and small scale integration (SSI) logic chips. Below we 
present a few categories of such designs. 
- Application-Specific Integrated Circuits (ASICs) 
- Implementation of Random Logic 
- Replacement of SSI Chips for Random Logic 
- Prototyping  
- FPGA-Based Compute Engines 
- On-Site Re-configuration of Hardware 
 
2.7 Design Flow Overview  

The standard design flow consists of the following steps:   
 

 Design Entry and Synthesis 
In this step of the design flow, you create your design using a Xilinx-supported 

schematic editor, a Hardware Description Language (HDL) for text-based entry, or both. If 
you use an HDL for text-based entry, you must synthesize the HDL file into an EDIF or XNF 
file or, if you are using the Xilinx Synthesis Technology (XST) GUI, into an NGC file.  
 

 Design Implementation  
By implementing to a specific Xilinx architecture, you convert the logical design file 

format, such as EDIF, that you created in the design entry or synthesis stage into a physical 
file format. The physical information is contained in the Native Circuit Description (NCD) 



   
 

 21

file for FPGAs and the VM6 file for CPLDs. Then you create a bitstream file from these files 
and optionally program a PROM or EPROM for subsequent programming of your Xilinx 
device.  
 

 Design Verification  
Using a gate-level simulator or cable, you ensure that your design meets your timing 

requirements and functions properly.  
 

 
Fig 2.7 Design flow 

 
The full design flow is an iterative process of entering, implementing, and verifying 

your design until it is correct and complete. The Xilinx Development System allows quick 
design iterations through the design flow cycle. Because Xilinx devices permit unlimited 
reprogramming, we do not need to discard devices when debugging the design in circuit. 
                                    
2.7.1 Design Entry and Synthesis  

You can enter a design with a schematic editor or a text-based tool. Design entry 
begins with a design concept, expressed as a drawing or functional description. From the 
original design, a netlist is created, then synthesized and translated into a Native Generic 
Object (NGO) file. This file is fed into a program called NGDBuild, which produces a 
logical Native Generic Database (NGD) file. 
 



   
 

 22

 Xilinx Development System Hierarchical Design  
Design hierarchy is important in both schematic and HDL entry for the following 

reasons:  
 Helps to conceptualize your design.   
 Adds structure to the design. 
 Promotes easier design debugging.  
 Makes it easier to combine different design entry methods (schematic, HDL, or state 

editor) for different parts of your design   
 Makes it easier to design incrementally, which consists of designing, implementing, 

and verifying individual parts of a design in stages Design Flow.  
 Reduces optimization time. 
 Facilitates concurrent design, which is the process of dividing a design among a 

number of people who develop different parts of the design in parallel, such as in 
Modular Design. 

 
 Schematic Entry Overview  

Schematic tools provide a graphic interface for design entry. One can use these tools 
to connect symbols representing the logic components in your design. We can build our own 
design with individual gates, or can combine gates to create functional blocks. 
 
 Library Elements 

Primitives and macros are the building blocks of component libraries. Xilinx libraries 
provide primitives as well as common high-level macro functions. Primitives are basic circuit 
elements, such as AND and OR gates. Each primitive has a unique library name, symbol, and 
description. 
 
 HDL Entry and Synthesis  

A typical Hardware Description Language (HDL) supports a mixed level description 
in which gate and netlist constructs are used with functional descriptions. This mixed-level 
capability enables us to describe system architectures at a high level of abstraction, then 
incrementally refine a design s detailed gate-level implementation. 
HDL descriptions offer the following advantages:  

 We can verify design functionality early in the design process. A design written as an 
HDL description can be simulated immediately. Design simulation at this high level, 
at the gate level before implementation, allows us to evaluate architectural and design 
decisions.  

 An HDL description is more easily read and understood than a netlist or schematic 
description. HDL descriptions provide technology-independent documentation of a 
design and its functionality. Because the initial HDL design description is technology 
independent, we can use it again to generate the design in a different technology, 
without having to translate it from the original technology.  

 Large designs are easier to handle with HDL tools than schematic tools. 
 

After creating our HDL design, we must synthesize it. During synthesis, behavioural 
information in the HDL file is translated into a structural netlist, and the design is optimized 
for a Xilinx device. Xilinx supports HDL synthesis tools for several third-party synthesis 



   
 

 23

vendor partners. In addition, Xilinx offers its own synthesis tool, Xilinx Synthesis Technology 
(XST). 
 
 Functional Simulation  

After we enter the design, we can simulate it. Functional simulation tests the logic in 
the design to determine if it works properly. 
 
 Constraints  

 If we want to want to constrain your design within certain timing or placement 
parameters, we can specify mapping, block placement, and timing specifications. One can 
also enter constraints by hand or use the Constraints Editor, Floor planner, or FPGA Editor. 
We can also use the Timing Analyzer Graphical User Interface (GUI). 
                                            
2.7.2 Design Verification  

Design verification is the process of testing the functionality and performance of your 
design. You can verify Xilinx designs in the following ways:  

 Simulation (functional and timing) 
 Static timing analysis  
 In-circuit verification 

Design verification procedures should occur throughout your design process, as 
shown in the following figures. 

 
Fig 2.8 Design verification 

 



   
 

 24

2.7.2.1. Simulation  
We can run functional or timing simulation to verify our design. A back-annotation 

process must occur prior to timing simulation. 
 
Back-Annotation: Before timing simulation can occur, the physical design information must 
be translated and distributed back to the logical design. For FPGAs, this back-annotation 
process is done with a program called NGDAnno. These programs create a database for the 
netlist writers, which translate the back-annotated information into a netlist format that can 
be used for timing simulation. The following figures show the back-annotation flows. 
 
NGDAnno: NGDAnno is a command line program that distributes information about delays, 
setup and hold times, clock to out, and pulse widths found in the physical NCD design file 
back to the logical NGD file. NGDAnno reads an NCD file as input. The NCD file can be a 
mapped-only design or a partial or fully placed and routed design.  

An NGM file, created by MAP, is an optional source of input. NGDAnno merges 
mapping information from the NGM file with placement, routing, and timing information 
from the NCD file. NGDAnno outputs a Native Generic Annotated (NGA) file, which is a 
back-annotated NGD file. This file is input to the appropriate netlist writer, which converts 
the binary Xilinx database format back to an ASCII netlist. 
 

 
 Fig 2.9 Simulation block diagram  
 



   
 

 25

Netlist Writers: Netlist writers (NGD2EDIF, NGD2VER, or NGD2VHDL) take the output of 
NGDAnno and create a simulation netlist in the specified format. An NGD or NGA file is 
input to each of the netlist writers. The NGD file is a logical design file containing primitive 
components, while the NGA file is a back-annotated logical design file. NGD2VER 
translates an NGD or NGA file into a Verilog netlist (V) file. If the input is an NGA file, 
NGD2VER also generates an SDF (Standard Delay Format) file. The resulting V and SDF 
files have the same root name as the NGD or NGA file unless you specify otherwise. 
 
Schematic-Based Simulation: Design simulation involves testing of design using software 
models. It is most effective when testing the functionality of the design and its performance 
under worst-case conditions. We can easily probe internal nodes to check your circuit’s 
behaviour, and then use these results to make changes in your schematic.  

Simulation is performed using third-party tools that are linked to the Xilinx Development 
System. The software models provided for the simulation tools are designed to perform 
detailed characterization of your design. We can perform functional or timing simulation, as 
described follows: 

 
Functional Simulation: Functional simulation determines if the logic in the design is correct 
before it is implemented in a device. Functional simulation can take place at the earliest 
stages of the design flow. Because timing information for the implemented design is not 
available at this stage, the simulator tests the logic in the design using unit delays.   

It is usually faster and easier to correct design errors if you perform functional simulation 
early in the design flow. 
 
Timing Simulation: Timing simulation verifies that the design runs at the desired speed for 
the device under worst-case conditions. This process is performed after your design is 
mapped, placed, and routed for FPGAs. At this time, all design delays are known.  

Timing simulation is valuable because it can verify timing relationships and determine 
the critical paths for the design under worst-case conditions. It can also determine whether or 
not the design contains set-up or hold violations. 
 
2.7.2.2. Static Timing Analysis  

Static timing analysis is best for quick timing checks of a design after it is placed and 
routed. It also allows you to determine path delays in your design. Following are the two 
major goals of static timing analysis: 
 
Timing verification: This is the process of verifying that the design meets your timing 
constraints.  
Reporting: This is the process of enumerating input constraint violations and placing them 
into an accessible file. We can analyze partially or completely placed and routed designs. The 
timing information depends on the placement and routing of the input design. 
 
 2.7.2.3. In-Circuit Verification  

As a final test, we can verify how the design performs in the target application. In-circuit 
verification tests the circuit under typical operating conditions. Because we can program our 
Xilinx devices repeatedly, we can easily load different iterations of the design into the device 



   
 

 26

and test it in-circuit. To verify our design in-circuit, we should download the design bitstream 
into a device with the Parallel Cable III. 
 
Design Rule Checker: Before generating the final bitstream, it is important to use the DRC 
option in BitGen to evaluate the NCD file for problems that could prevent the design from 
functioning properly. 
 
2.8 Input Output Block (IOB) 
 Any integrated circuit when looked inside package body can be broadly seen as two 
parts, i.e. core and IOB. Core is the silicon part where input signal provided by the IOB are 
processed and given back to IOB as output. IOB is the cell that allows interface between the 
logic inside the chip and external system components. In other words IOB protects the silicon 
from factors that may either damage the chip or hinder with chips functionality and 
performance. In this chapter IOB’s are discussed in detail.   

 
Fig 2.10 Cross section view of an IC at package level and at silicon level 
 
2.8.1 Basic of I/O 
2.8.1.1 What is an I/O? 
 IOB is the cell that allows interface between the logic inside the chip and external 
system components. As shown in figure this cell has two paths for signal.  

 
Fig 2.11 Basic block diagram of I/O 



   
 

 27

One path is for input whereas the other is for output. There are some additional bits known as 
control bits, which are used by core to configure IOB. IOB and core have different power 
supply. Core voltage is dependent upon technology being used. I/O voltage complies with IO 
standard, which in turn is selected according to interface voltage level of external system to 
which the chip is interfaced. 
 
2.8.1.2 I/O Logic Functions 
 An I/O can have three basic logic functions: 
 
A). Input: The I/O receives and adapts the signal to the core. Since core and I/O work at 
different voltage levels. Signal has to be level shifted to core voltage level. This function can 
be selected from control bits. 

 
Fig 2.12 Block representation of Input path 

 
B). Output: The IO amplifies and adapts the signal from the core to the outside load. Since 
core voltage is less than IO voltage IOB amplifies the signal and supply it to the load. 
 

          
 

Fig 2.13 Block representation of output path 
 
C). Bidirectional: IO can both work as input or output path. As shown in figure 3.5 this block 
has both input and output path. These blocks are selected from control signal from the core. 
In figure EN signal shown is active low. When EN is high block acts as input path, therefore 
ZI follows IO. And when EN is low this block acts as output path. 



   
 

 28

 
Fig 2.14 Block representation of bidirectional block 

2.8.1.2 Specific functions of IO. 
 
A). Pull-up and pull-down:  The optional pull-up and pull-down resistors are intended to 
establish High and Low levels, respectively, at unused I/Os. The pull-up resistor optionally 
connects each IOB pad to VCCO. A pull-down resistor optionally connects each pad to 
GND. These resistors are placed in a design using the PULLUP and PULLDOWN symbols 
in a schematic, respectively. They can also be instantiated as components, set as constraints 
or passed as attributes in HDL code.  
If there is no signal on the bus, a resistive load pulls up or pulls-down the bus. In case of pull-
up when there is no signal present at input, ‘A’ gets pulled up to Vdde so output becomes 
high. Same is the case with pull-down load; it pulls down the signal to ground if there is no 
signal present. 

 
Fig 2.15 Block diagram representing pull-up and pull-down 

 
B). Hysteresis: This feature is included, make core more immune to noise. There are two 
level of voltage known as trim points. Let us assume output voltage is low at the moment, 
slowly if we increase the input voltage. Without hysteresis, the output would have gone high 
as input would have crossed the standard trim point. But with hysteresis, output goes high 
when input crosses 0 to 1 trim point. Now if some noise interferes with input signal and input 



   
 

 29

voltage fluctuates as long as input voltage does not go below 1 to 0 trim point output will 
remain high. This phenomenon is graphed in figure 3.8. The loop formed is known as 
hysteresis loop. 

 
Fig 2.16 Block representation of hysteresis block 

 
Fig 2.17 Hysteresis loop 

C). Analog IO’s: These IO’s are designed to carry analog signal e.g. oscillators, ADC. They 
have different current and voltage requirements thus have different design. 
 
D). Power Supply IO’s: These IO’s are designed to carry supply for core and IO. They have 
inbuilt ESD protection circuitry. 
 
2.8.2 Requirements of IO 

All IC or programmable ASIC/FPGA contain some type of input/output cell (I/O 
cell). These I/O cells handle driving logic signals off-chip, receiving and conditioning 
external inputs, as well as handling such things as electrostatic protection.  
The following are different types of I/O requirements. 

• DC output. Driving a resistive load at DC or low frequency (less than 1 MHz). 
Example loads are light-emitting diodes (LEDs), relays, small motors, and such. Can 
we supply an output signal with enough voltage, current, power, or energy?  

• AC output. Driving a capacitive load with a high-speed (greater than 1 MHz) logic 
signals off-chip. Example loads are other logic chips, a data or address bus, ribbon 
cable. Can we supply a valid signal fast enough?  

• DC input. Example sources are a switch, sensor, or another logic chip. Can we 
correctly interpret the digital value of the input?  

• AC input. Example sources are high-speed logic signals (higher than 1 MHz) from 
another chip. Can we correctly interpret the input quickly enough?  



   
 

 30

• Clock input. Examples are system clocks or signals on a synchronous bus. Can we 
transfer the timing information from the input to the appropriate places on the chip 
correctly and quickly enough?  

• Power input. We need to supply power to the I/O cells and the logic in the core, 
without introducing voltage drops or noise. We may also need a separate power 
supply to program the chip.  

2.8.3 Electrical Interface Characteristics of IOB. 
 The following parameters characterizes electrical interface of IOB: 
 
2.8.3.1 Input and output voltage level. 
 VIL: It is the value of voltage which is taken as logic ‘0’ at the input. 
 VIH: It is the value of voltage which is taken as logic ‘1’ at the input. 
 VOL: It is the value of voltage which is taken as logic ‘0’ at the output. 
 VOH: It is the value of voltage which is taken as logic ‘1’ at the output. 
 

 
Fig 2.18 Graphical representation of voltage levels 

 
2.8.3.2 Input and output current level. 
IIL: It is the value of injected current on logic state ‘0’ to reach VIL value. 
IIH: It is the value of injected current on logic state ‘1’ to reach VIH value. 
IOL: It is the value of injected current on logic state ‘0’ to reach VOL value. 
IOH: It is the value of injected current on logic state ‘1’ to reach VOH value.  
Iil, Iih, Iol and Ioh are not specification criteria in standard CMOS I/O. 
These parameters represent the buffer drive capability used to reach Vil, Vih, Vol and Voh 
criteria. 



   
 

 31

 
Fig 2.19 Current level 

 
2.8.3.3 Rise, fall time and Propagation delay. 
 
Rising Time (TR): Output switching time from the 10% to the 90% of the IO supply. 
Falling Time (TF): Output switching time from the 90% to the 10% of the IO supply. 
Rising Propagation Time (TPR): Delay time between the Input, calculated at the 50% of the 
core supply value, and the Output calculated at the 50% of the IO supply value. 
Falling Propagation Time (TPF): Delay time between the Output, calculated at the 50% of 
the core supply value, and the Output, calculated at the 50% of the IO supply value. 
 

 
Fig 2.20 Waveform depicting rise, fall time and propagation delay 

 
Ideally TPR should be equal to TPF and TR to TF. If they are not equal then output 
waveform distorts. For example if TPR< TPF, then duty cycle of output tend to increase with 
input frequency. And if TPR>TPF, then duty cycle of output decrease with increase in input 
frequency. A relationship depicting above mentioned phenomenon has been derived and 
included in the appendix. 
 



   
 

 32

2.8.3.4 Slew rate. 
IMAX: Peak current on the IO supply 
SRON: Switch on slew rate during capacitance charge, measured between 25% and 50% of 
the positive supply current peak. Positive 
SROFF: Switch off slew rate during capacitance charge, measured between the 75% and 
50% of the positive supply current peak. Negative 
SFON: Switch on slew rate during capacitance charge, measured between 25% and 50% of 
the negative ground current peak. Negative 
SFOFF: Switch off slew rate during capacitance charge, measured between 75% and 50% of 
the negative ground current peak. Positive 
 

 
Fig 2.21 Definition of slew rate 

 
2.8.4 Basic blocks of IOB 
 The Input/Output Block (IOB) provides a programmable, bidirectional interface 
between an I/O pin and the FPGA’s internal logic. A simplified diagram of the IOB’s internal 
structure appears in Figure 3.11. There are three main signal paths within the IOB: the output 
path, input path, and 3-state path and an ESD protection circuitry. Each path has its own pair 
of storage elements that can act as either registers or latches. The three main signal paths are 
as follows: 
 

 The input path carries data from the pad, which is bonded to a package pin, through an 
optional programmable delay element directly to the I line. The IOB outputs lead to the 
FPGA’s internal logic. The delay element can be set to ensure a hold time of zero.  

 
 The output path, starting with the O1 and O2 lines, carries data from the FPGA’s internal 

logic through a multiplexer and then a three-state driver to the IOB pad. In addition to 
this direct path, the multiplexer provides the option to insert a pair of storage elements.  

 
 Tri-state: The 3-state path determines when the output driver is high impedance. The T1 

and T2 lines carry data from the FPGA’s internal logic through a multiplexer to the 
output driver. In addition to this direct path, the multiplexer provides the option to insert 
a pair of storage elements. 

 



   
 

 33

 Keeper Circuit: Each I/O has an optional keeper circuit that retains the last logic level on 
a line after all drivers have been turned off. This is useful to keep bus lines from floating 
when all connected drivers are in a high-impedance state. This function is placed in a 
design using the KEEPER symbol. Pull-up and pull-down resistors override the keeper 
circuit. 

 
 ESD Protection: Clamp diodes protect all device pads against damage from Electro-Static 

Discharge (ESD) as well as excessive voltage transients. Each I/O has two clamp diodes: 
One diode extends P-to-N from the pad to VCCO and a second diode extends N-to-P 
from the pad to GND. During operation, these diodes are normally biased in the off state. 
These clamp diodes are always connected to the pad, regardless of the signal standard 
selected. The presence of diodes limits the ability of I/Os to tolerate high signal voltages. 

 

 
Fig 2.22 Simplified diagram of Xilinx Spartan FPGA IOB 



   
 

 34

 
 Digitally Controlled Impedance (DCI): When the round-trip delay of an output signal — 

i.e., from output to input and back again — exceeds rise and fall times, it is common 
practice to add termination resistors to the line carrying the signal. These resistors 
effectively match the impedance of a device’s I/O to the characteristic impedance of the 
transmission line, thereby preventing reflections that adversely affect signal integrity. 
However, with the high I/O counts supported by modern devices, adding resistors 
requires significantly more components and board area. Furthermore, for some packages 
— e.g., ball grid arrays — it may not always be possible to place resistors close to pins. 
DCI answers these concerns by providing two kinds of on-chip terminations: Parallel 
terminations make use of an integrated resistor network. Series terminations result from 
controlling the impedance of output drivers. DCI actively adjusts both parallel and series 
terminations to accurately match the characteristic impedance of the transmission line. 
This adjustment process compensates for differences in I/O impedance that can result 
from normal variation in the ambient temperature, the supply voltage and the 
manufacturing process. When the output driver turns off, the series termination, by 
definition, approaches very high impedance; in contrast, parallel termination resistors 
remain at the targeted values. DCI is available only for certain I/O standards 

 
2.8.4.1 Input Stage of IOB 
 The input stage of IOB is of different configuration. They are of three basic types of 
input stage namely: 
A). Single ended: Signal w.r.t. ground is taken, level shifted and amplified and fed to next 
block. E.g. LVCMOS, LVTTL are single ended standards. 
 
B). Pseudo-differential: In this type of stage signal is compared with respect to reference 
voltage (Vref). VIL and VIH are defined with respect to Vref voltage. E.g. for SSTL18,   
VIL=Vref – 0.25 & 
VIH=Vref + 0.25. 
 
C). Differential I/O: There is two signal lines carrying data. As shown in figure one signal is 
Vpad while other is inverted value of Vpad. Differential amplifier is used to amplify two 
input signals. In differential standards, electrical interface is defined by common mode 
voltage (VICM) and differential voltage (VID) specification.  
 

 
Fig 2.23 Three type of input stages. 
 



   
 

 35

2.8.4.2 Output stage of IOB 
 First and foremost, an output pad must have sufficient drive capability to achieve 
adequate rise and fall times into a given capacitive load. If the pad drives non-CMOS loads, 
then they should comply with different DC characteristic. 

 
Fig 2.24 an output block 

 
Basically output block contains: 
Decoding logic: It is needed to configure output pad in different mode. It may be used to set 
output pad to a specific standard. 
Level Shifter: It converts the signal from core voltage level to the IO voltage level. 
Output Stage: It can also be referred as driver stage. It drives the load it should comply to 
rise, fall time and current requirement of the load. Output stage can be of different types. 

                                                          
  (a)     (b) 



   
 

 36

   
  (c)     (d)      

Fig 2.25 Typical output stages 
 
2.9 ESD Protection in I/O 
 An integrated circuit (IC) connected to external ports is susceptible to damaging 
electrostatic discharge (ESD) pulses from the operating environment and peripherals. The 
same ever-shrinking IC process technology that enables such high-port interconnects data 
rates can also suffer from higher ESD susceptibility because of its smaller fabrication 
geometry. Additional external protection devices can violate stringent signalling 
requirements, leaving design engineers with the need to balance performance and reliability. 
 
2.9.1 What is ESD? 
 An ESD event is the transfer of energy between two bodies at different electrostatic 
potentials, either through contact or via an ionized ambient discharge (a spark). This transfer 
has been modelled in various standard circuit models for testing the compliance of device 
targets. 
 Static electricity is defined as an electrical charge caused by an imbalance of 
electrons on the surface of a material. This imbalance of electrons produces an electric field 
that can be measured and that can influence other objects at a distance. Electrostatic 
discharge is defined as the transfer of charge between bodies at different electrical potentials.  

Creating electrostatic charge by contact and separation of materials is known as 
"triboelectric charging." It involves the transfer of electrons between materials. The atoms of 
a material with no static charge have an equal number of positive (+) protons in their nucleus 
and negative (-) electrons orbiting the nucleus.  

In Figure 3.13, Material "A" consists of atoms with equal numbers of protons and 
electrons. Material B also consists of atoms with equal (though perhaps different) numbers of 
protons and electrons. Both materials are electrically neutral. 



   
 

 37

 
Fig 2.26 The Triboelectric Charge, Materials Make Intimate Contact 

 
When the two materials are placed in contact and then separated, negatively charged 

electrons are transferred from the surface of one material to the surface of the other material. 
Which material loses electrons and which gains electrons will depend on the nature of the 
two materials. The material that loses electrons becomes positively charged, while the 
material that gains electrons is  
negatively charged. This is shown in Figure3.14.  

 
Fig 2.27 The Triboelectric Charge - Separation 

 



   
 

 38

The position inside the table points out charge 
polarity and amplitude. 

 The first material takes positive charge and 
the other a negative one. 

 Two materials far away from each other 
generate a stronger charge than the one 
generated when they are close. 

 
 
 
 
 
 
 
 
2.9.2 Effects of ESD 

 Electrostatic discharge can change the electrical characteristics of a semiconductor 
device, degrading or destroying it.  

 Electrostatic discharge also may upset the normal operation of an electronic system, 
causing equipment malfunction or failure.   

 In clean rooms charged surfaces can attract and hold contaminants, making removal 
from the environment difficult. When attracted to the surface of a silicon wafer or a 
device's electrical circuitry, these particulates can cause random wafer defects and 
reduce product yields.  

 Induces latch-up in device. It triggers the regenerative action of current amplification 
in parasitic transistor. 

 
2.9.3 ESD standard models 

Within the semiconductors world, there are three principle sources of electrostatic 
discharges. Three standards were developed to model these events. 

 Human Body Model (HBD). 
 Machine Model (MM). 
 Charged Device Model (CDM). 

 
Human Body Model (HBD) 

 Represents the discharge of a standing people through a pointing finger. 
 Ability to reproduce the field failures caused by human handling. 
 Oldest model often considered as the ESD model. 
 Discharge occurs in very short duration (100ns), current ranging from 1A to 4A. 

 
Fig 2.28 Human Body Model 



   
 

 39

 
International standards distinguish different classes depending on the last stress level passed.  

 
Table 2.2 Class level of HBD Model 

 
Machine Model (MM) 

 Represents the discharge of improper grounding equipment through the IC when it is 
picked up for placement in the socket. 

 Ability to reproduce the field failures caused by machine handling 
 Parasitic elements easily detected. 
 Shorter duration, higher current than HBM. 

 

 
Fig 2.29 Equivalent circuit of MM 

International standards distinguish different classes depending on 
the last stress level passed. 

 
Table 2.3 Classes for Machine Model 



   
 

 40

Charged Device Model (CDM) 
 Represents the discharge of a charged device to ground through a single pin device. 
 Ability to reproduce the real world ESD events. 
 Parasitic components and environmental conditions play a very important role. 
 Very short duration (10ns, very high current (10A and more). 

 

 
Fig 2.30 Equivalent of CDM 

 
A classification is given to determine if devices are sensitive or not to ESD 
and to help for defining a specification. 

 
Table 2.4 Class level for Capacitor Device Model 

 
2.9.4 What to protect in silicon? 

 All the pins (inputs, outputs, powers) of a circuit are directly connected to the real 
world as a result they might be destroyed by a discharge. 

 Some part of the circuit are more sensitive than others: 
 CMOS inputs: avoid gate oxide failure. 
 Gate outputs: Avoid the drain/substrate junction breakdown of the MOS. 
 Bipolar circuits: Avoid base-emitter junction breakdown. 

 
2.9.5 High Speed ESD Protection 

As IC manufacturers have achieved higher frequencies of input/output (I/O) 
interconnects, they have continued to decrease the minimum dimensions of the transistors, 
interconnections, and the silicon dioxide (SiO2) insulation layers in their devices. This 
decrease results in smaller structures for higher-speed devices that are more susceptible to 



   
 

 41

breakdown damage at lower energy levels. SiO2 layers are more likely to rupture, and metal 
traces are more likely to open or bridge during an ESD event.  
 
2.9.5.1 Protection strategy 

 Protect the circuit without impacting its functionality. 
 Protection devices are placed in parallel. They act like a switch: open during normal 

operation and closed during ESD event. 
 

 
Fig 2.31 Basic ESD protection circuitry 

 
2.9.5.2 ESD Protection Devices. 
 Basic protection strategy is to put the protective device in parallel to core as shown in 
figure 3.26 
 

 
Figure 2.32. ESD protection devices attempt to divert a 
potentially damaging charge away from sensitive circuitry 
and protect the system from permanent damage.  

 A variety of technologies are used in devices for ESD protection. These are discussed 
below. 
 
 
 



   
 

 42

Zener Diodes 
One traditional device, the zener diode, is generally poorly suited for very high-speed 

I/O interfaces because the lowest capacitance of existing devices is about 30 pF (shown as a 
parasitic capacitor in Figure 3.27). This capacitance is too high to pass high-frequency 
signals without significant distortion. This distortion results in unreliable detection of the 
signals and increased high-frequency roll-off. Zener diodes could be made with lower 
capacitances, but this would result in ESD voltages insufficient to meet the 6–8-kV 
protection levels necessary. 
 
TVS Diodes 

 There are some TVS devices on the market that add a regular diode in series with the 
zener diode to effectively lower the net capacitance. To handle positive- and negative-
polarity ESD pulses, a second zener and series diode pair (in the opposite polarity) must be 
placed in parallel with the first pair of diodes. Unfortunately, the resulting capacitance of 5–6 
pF is still not low enough to avoid distortion of high-speed I/O signals.  

 

 
Figure 2.33. A parasitic capacitor here is too high to pass 
high-frequency signals without significant distortion.  

 
MOVs 

 MOVs can achieve slightly lower capacitances than TVS devices, but currently the 
lowest-capacitance MOV device available has a capacitance of 3 pF, which can still exceed 
the allowable load on high-speed interconnects.  
 
Dual-Rail Clamp Diodes 

 Zener diode capacitances are high because their structures must be sufficiently robust 
to tolerate reverse breakdown phenomena. To eliminate the need for the zener's breakdown, 
regular diodes can be used to clamp the ESD pulses to the power or ground rail. Using this 
solution, the current flow is always in the diode's forward direction, as shown in Figure 3.28. 
This setup allows the use of smaller, and therefore lower, capacitance diodes. Positive ESD 



   
 

 43

pulses are clamped to the positive supply rail, and negative ESD pulses are clamped to 
ground. (The system-bypass capacitors and power supply are responsible for shunting this 
extra energy on the positive rail back to ground. This can sometimes be aided by also adding 
a local zener diode, which does not affect the signal load.). 

However, this capacitance is relatively high, and an examination of the data sheets 
reveals that they were not designed for high-current ESD pulses. These diodes have no 
specifications that guarantee their use with the high current and voltages of ESD pulses or 
with repetitive high-current ESD pulses. Some will degrade and eventually fail at high ESD 
voltage and currents.  

 

 
Figure 2.34 Regular diodes can be used to clamp the ESD 
pulses to the power or ground rail so the current flow is 
always in the diode's forward direction.  

 
Polymer Devices 

The polymer devices symbolized in Figure 3.28 have resistances that are voltage 
dependent. With a low voltage (e.g., 5 V), the impedance is in the Giga ohm realm. When a 
high voltage is applied across the polymer device, the resistance drops to a very low value, so 
that tens of amperes can be shunted to ground. What makes these polymers attractive for 
high-frequency applications is their sub-pico farad capacitance (0.05–1.0 pF). This low 
capacitance, however, comes with some not-so-attractive side effects. Unlike zener diodes 
that break down at the same voltage that they clamp to, a polymer device does not break 
down until it reaches a voltage that is much higher than the final clamping voltage. A typical 
polymeric ESD device does not break down until as much as 1000 V is reached. Then it 
snaps back to a clamping voltage of up to 150 V. After the charge is dissipated, the polymer 
returns to its high-impedance state.  



   
 

 44

Consequently, polymer devices can be used only in applications in which the ICs that 
are supposed to be protected must have their own built-in ESD protection that can tolerate 
the breakdown or trigger voltage of the polymer device (trigger voltages vary from 300 to 
1000 V; clamping voltages vary from 60 to 150 V). These devices can be difficult to 
accurately characterize in manufacturing, so their data sheets often contain only typical 
specifications without guaranteed minimums and maximums.  
 
Metal Oxide Silicon (MOS) Devices 

 A new technology uses a dual-rail clamp configuration as shown in Figure 3.28. The 
process technology to make the diodes, however, is fundamentally different. PicoGuard 
technology is derived from a MOS process that is optimized for minimum capacitance. 
Traditional diode structures are derived from simple bipolar technologies and tend to have 
higher capacitance levels. The new technology is the first to combine low capacitance with 
low-voltage clamping levels and high ESD tolerance.  

These diodes provide ESD protection beyond IEC 61000-4-2 (±8-kV-and-above 
contact) with a capacitance of <1.3 pF maximum (~1.0 pF typical). They have a low insertion 
loss (virtually zero up to 3 GHz) and a clamping voltage below 15 V (VCC +10 V, ground –10 
V) with no higher trigger voltages. Other specifications include a sub-nanosecond response 
time, durability of more than 1000 ESD pulses, and a leakage current of 1.0 µA.                                              
 
2.10 Latch up 
 Latch-up is a mechanism establishing a low resistance path between VDD and VSS. 
Very high current flows through the circuit, device doesn’t work properly or it is destroyed. 
Latch-up activation causes must be characterized in order to determine some rules to prevent 
it. 
 Latch-up is a failure mechanism of CMOS integrated circuits characterized by 
excessive current drain coupled with functional failure, parametric failure and/or device 
destruction. It may be a temporary condition that terminates upon removal of the exciting 
stimulus, a catastrophic condition that requires the shutdown of the system to clear or a fatal 
condition that requires replacement of damaged parts. Regardless of the severity of the 
condition, latch-up is an undesirable but controllable phenomenon. In many cases, latch-up is 
avoidable. 
 
2.10.1 Latch-up Model 
 The cause of the latch-up exists in all junction-isolated or bulk CMOS processes: 
parasitic PNPN paths. Figure 3.29, a basic N-substrate CMOS cross section, shows the 
parasitic NPN and PNP bipolar transistors which most frequently participate in latch-up. The 
P+ sources and drains of the P channel MOS devices act as the emitters (and sometimes 
collectors) of lateral PNP devices; the N-substrate is the base of this device and collector of a 
vertical NPN device. The P-well acts as the collector of the PNP and the base of the NPN. 
Finally, the N+ sources and drains of the N-channel MOS devices serve as the emitter of the 
NPN. The substrate is normally connected to VCC, the most positive circuit voltage, via an 
N+ diffusion tap while the P-well is terminated at GND, the most negative circuit voltage, 
through a P+ diffusion. These power supply connections involve bulk or spreading resistance 
to all points of the substrate and P-well. 



   
 

 45

.  
Fig 2.35 Basic CMOS inverter cross-section with Latch-up circuit model 

 
2.10.2 Latch-up Phenomenon 
 Normally, only a small leakage current flows between the substrate and P-well 
causing only a minute bias to be built up across the bulk due to the resistivity of the material. 
In this case the depletion layer formed around the reverse biased PN junction between P-well 
and the substrate supports the majority of the VCC-GND voltage drop. As long as the MOS 
source and drain junctions remain reverse biased, CMOS is well behaved.  

In the presence of intense ionizing radiation, thermal or over-voltage stress, however, 
current can be injected into the PNP emitter-base junction, forward-biasing it and causing 
current to flow through the substrate and into the P-well. At this point, the NPN device turns 
on, increasing the base drive to the PNP. The circuit next enters a regenerative phase and 
begins to draw significant current from the external network thus causing most of the 
undesirable consequences of latch-up. Once established, a latch-up site, through the fields 
generated by the currents being conducted, may trigger similar action in both elements of the 
IC. 

 
Fig 2.36 Circuit formed during latch-up 
 

 
 

Rwell

Iramp

DC 
5V 

Vne 

Rsubstrate 

Iramp

DC 
5V 

Vne 



   
 

 46

2.10.3 Preventing Latch-up 
 In the loop of positive current feedback formed by the parasitic PNP and NPN 
transistors of the latch-up structures, regenerative switching may result if sufficient loop gain 
is available. One must remember, though, that three conditions are necessary for latch-up to 
occur.  
1. Both parasitic bipolars must be biased into the active state. 
2. The product of the parasitic bipolar transistor current gains (Bnpn•Bpnp) must be 
sufficient to allow regeneration, i.e., greater than or equal to one; 
3. The terminal network must be capable of supplying a current greater than the holding 
current required by the PNPN path. In processes utilizing epitaxial silicon, this current is 
usually in excess of 1A. 

If any of these conditions is not met both during the initiation and in the steady state, 
then the latch-up condition is either non-sustaining or cannot be initiated. If the current to the 
latched structure is not limited, permanent damage may result. 

 
2.10.3.1 Causes of latch-up 

 Capacitive effect during the switching. 
 Current injection on the output. 
 Over-voltages on VDD or Input/Output. 
 Avalanche of the Nwell/Substrate junction. 
 Punch through between Nwell and N+. 

 
2.10.3.2 Latch-up prevention 

Basically by reducing the resistor values and reducing the gain of the parasitic transistors 
are the basis for eliminating latch up. Latch-up may be eliminated in two basic ways: 

 Latch-up resistant CMOS processes. 
 Layout Techniques. 

 
Some ways to eliminate latch-up are listed below 

 Reduce the current gain 
– NPN emitter and collector separated 
– Reduction of the minor carriers ’life time’ 
– Reduction of the emitter efficiency 

 Reduce Rnwell and Rpwell 
– Low resistive substrate (HCMOS8D) = latch-up free 
– Epi layer on substrate highly doped 
– Retrograde implants 

 Remove the npnp structure 
– Deep trench isolation 
– SOI 
– Architecture with 3 wells 

 



   
 

 47

2.10.3.3 I/O Latch-up protection 
 Most likely place for latch-up to occur is in I/O structures where large currents flow, 
large parasitic may be present and abnormal circuit voltage may be encountered. 
In these structures two options can be taken. The first is to use proven I/O structures designed 
by the experts who understand the process at detailed level. Second, rules may be applied to 
the design of these structures that minimize the possibility of latch-up. Typical rules (n-well 
process) include: 
 

 Physically separate the n- and p- driver transistors (i.e. with the bonding pad). 
 Include p+ guard rings connected to Vss around n-transistors. These guard ring acts 

as a dummy collectors and spoil the gain of the parasitic transistors by collecting 
minority carriers and preventing them from being injected into the respective bases 
(shown in fig 3.31).  

 

 
Fig 2.37 Use of dummy collector 

 
 Include n+ guard rings connected to Vdd around p-transistors (figure 3.32). 
 Source diffusion regions of the n-transistors should be placed so that they lie along 

equipotential lines when current flows between Vss and the p-wells: i.e. source 
fingers should be perpendicular to the dominant direction of current flow rather than 
parallel to it. This reduces the possibility of latch-up through the n-transistor source, 
due to an effect called ‘field aiding’.  

 
Fig 2.38 use of dummy collector 

 

p+

n-well 

n+ p+

Vs

P+ collects hole current 
Thereby shielding n+  
Source/drain 

Hole 

n+ n+ p+ 

Vdd 

Electron 
current N-

well 



   
 

 48

 Shorting n-transistors source regions to the substrate and the p-transistor regions to 
the n-well with metallization along their entire lengths will aid in preventing either of 
the diode from becoming forward biased, and hence reduces the contribution to latch-
up from these components. 

 The n-well should be hard wired (via n+) to power so that any injected charge is 
diverted to Vdd via a low resistance path. The n-well has a relatively high sheet-
resistance and is susceptible to charge injection. 

 The spacing between the n-well n+ and the p-transistor source contact should be kept 
to a minimum. This allows minority carriers near the parasitic npn-transistor emitter-
base junction to be collected, and reduces Rwell. The rules for 1u process suggest one 
contact for every 10u-50u. 

 The separation between the substrate p+ and the n-transistor source contact should be 
minimized. This result in reduced minority carrier concentration near the npn-emitter 
–base junction. 

 
2.11 Jedec Standards 

JEDEC is the leading developer of standards for the solid-state industry. Almost 2400 
participants, appointed by some 270 companies work together in 50 JEDEC committees meet 
the needs of every segment of the industry, manufacturers and consumers alike. The 
publications and standards that they generate are accepted throughout the world. 

The JEDEC Solid State Technology Association (Once known as the Joint Electron 
Device Engineering Council), is the semiconductor engineering standardization body of the 
Electronic Industries Alliance (EIA), a trade association that represents all areas of the 
electronics industry.  

JEDEC was originally created in 1960 as a joint activity between EIA an NEMA, to 
cover the standardization of discrete semiconductor devices and later expanded in 1970 to 
include integrated circuits. JEDEC does its work through its 48 committees/ subcommittees 
that are overseen by the JEDEC Board of Directors. Presently there are about 300 member 
companies in JEDEC including both manufacturers and users of semiconductor components 
and others allied to the field 

 
2.11.1 Jedec Activities 
 JEDEC committees hold frequent meetings throughout the year in domestic and 
international venues. All standardization work takes place at these meetings and companies 
must be a member to participate. Surveys are also often taken to find out what companies are 
doing in important areas that often leads to ballots.  

JEDEC members ballot proposals and vote via the JEDEC voting machine prior to 
meetings. Voting is then reported at the meetings and modifications to the proposals are 
made in response to comments that are made during balloting.  
After a ballot passes and comments are resolved and incorporated, the proposal goes to the 
JEDEC Board of Directors for final approval before publishing. After BoD approval, JEDEC 
publishes the standard or publication. Since 1998 JEDEC has provided its Standards and 
Publications on the JEDEC website at no charge. 
 



   
 

 49

2.11.2 Standards supported by IOB 
 IOB refers to the IOB of FPGA which are configurable. They follow a set of 
standards for communicating from peripheral devices. These standards are classified in three 
classes. 

 Single ended 
 Pseudo-differential 
 Fully-differential 

 
2.12 Summary 
 As the review has been covered of literature, next we discuss the procedure followed 
to verify the IOB. The details & syntax of the simulators used are provided in appendix.     
 
 
 



   
 

 50

 

 

 

Chapter 3 
Procedure followed for  

Verification of IOB 

 
 



   
 

 51

3.1 Introduction 
 Even if a design is working perfectly under certain conditions e.g. voltage value, 
room temperature, etc, but that design may not behave properly if there is some variation in 
these conditions. To check whether a design will work circuit is verified by simulation by 
varying these conditions such as temperature, voltage, process variation parameter. 
    
3.2 Verification 

IOB verification is done according to the JEDEC standards. Specifications of the 
standard are given in previous chapter. Simulation is done for four cases i.e. best case, typical 
case 1, typical case 2 and worst case. Input path netlist taken is a post lay netlist. Thus 
according to these cases stimulus is given and parameters are measured on waveform. 

  
3.3 Verification plan for IOB 
 

1. We check the circuit for minimum input swing. Input voltage given to the block has 
Vil taken as Vil max and Vih taken as Vih min of the standard. 

2.  Fin is the input frequency at which the simulation is fired. For measurement of basic 
parameters, simulation is done at frequency at which circuit responds properly. E.g. 
for LVCMOS standards simulation is done at 50MHz. 

3. Transient analysis is done for at least 5-6 cycles.  
4. Measurement is done on the 4th cycle of the waveform. 
5. First cycle of the waveform may not look ideal in waveform viewer. That cycle 

should be ignored. It could be because of convergence of the simulator. 
6. Waveform should be checked for ringing. 
7. Waveform should be consistent with respect to the input waveform.  

 
3.4 Simulation Information 
 

1. Simulation has been carried out for four cases, which are best, typical1, typical2 and 
worst case. 

 
2. Process variation parameter range -2 to 2, 

Temperature is varied over range -40 to 100, 
Core voltage ranges from 0.9 to 1.1. 

           IO Voltage ranges from 1.7 to 1.9.  
 

3. Details of the four cases are tabulated below: 
 

 Best Cases Typical 1 Typical 2 Worst 
Sigma 2 0 0 -2 
Temperature (C) -40 0 25 100 
Vdd (V) Maximum Typical Typical Minimum 
 

4. Value of Vdd1, VIL, and VIH has been taken according to the standard being 
verified. 

 



   
 

 52

5. Slew rate for all the standards have bee taken 1V/ns. 
 

6. Results have been tabulated in four tables for each standard. 
a. Table1 shows the value of vdd1, VIL, VIH and Vref for that IO standard.  
b. Table 2 shows the values measured on the waveform during the simulation. 
c. Table 3 tabulates value of maximum frequency. We will call frequency Fcutoff. 

After this frequency circuit does not respond to input faithfully. 
d. Table 4 shows the frequency w.r.t. duty cycle. 
 

7. There are three different maximum frequencies referred in the document. 
a. FIL: Frequency Input Limited. FIL denotes maximum frequency input generator 

can provide for a given slew rate. This is limitation from input generator i.e. not a 
limitation of the circuit. 

b. Fcutoff: This the frequency up to which the circuit responds to the input properly. 
As we increase frequency beyond Fcutoff, circuit starts missing some input cycles 
and does not give consistent output duty cycle. As we go on further increasing the 
input frequency circuit does not respond to any input. 

c. Fduty: This is the frequency limited by the output duty cycle. 
 

8. For calculating Fduty a relation has been used. Derivation of this relation is provided 
in appendix. 

 
9. Simulation for Table 1 has been carried out in HSPICE simulator whereas for Table 

2, Table3 and Table 4 have been done on ELDO simulator. 
 
10. For standards supported by input buffer Table 3 have not be tabulated. Due to 

difference in the rise delay and fall delay Fduty for 100% output duty cycle is reached 
well before Fcutoff. At Fduty for 100% there is consistent ‘1’ at output. Therefore in 
simulation Fcutoff could not be found out. 

 
11. Transient analysis of 4-6 cycles has been done. Measurement has been done on 4th 

cycle. 
 
3.5 .cir file 
 
* INPUT PATH VERIFICATION* 
* STANDARD NAME PSEUDO-DIFFERENTIAL* 
******************************************** 
* OPTION COMMANDS* 
 
.OPTION POST 
 
******************************************** 
* INCLUDE FILES * 
* library files from fab are included here* 
.include 'netlist_file' 
.lib '/skew.file' stats 
.inc ‘fixed_corner' 
.inc 'hspice.param' 



   
 

 53

.inc 'HSPICE/models/pfet1.inc' 

.inc 'HSPICE/models/nfet1.inc' 

.inc ' HSPICE/models/nfet2.inc' 

.inc 'HSPICE/models/pfet2.inc' 
 
***************************************** 
*GLOBAL SIGNAL DECLARATION * 
 
VGLOBALA GLOBALA GND CORE  
VGLOBALB GLOBALB GND 0  
VGLOBALC GLOBALC GND 0  
VTEST_DATA TEST_DATA GND 0 
VSELB_MXA SELB_MXA GND CORE 
VEQ14 EQ14 GND 0 
 
****************************************** 
* BLOCK SELECTION * 
 
* BS2  BS1    BS0 BLOCK SELECTED * 
*  0 0    0   INPUT BUFFER 
*  0     1     0   DIFF_AMP1 
*  1     1     0   DIFF_AMP2 
*  1     0     0   DIFF_AMP_SIGNAL_STD     
 
VBS2 BS2 GND 0 
VBS1 BS1 GND CORE 
VBS0 BS0 GND 0  
 
****************************************** 
* CHARACTERISATION * 
 
*.ALTER BEST CASE  
*.PARAM SIGMA=+2 
*.TEMP= -40 
*.PARAM CORE=1.1 
*.PARAM VIO=1.9 
*.PARAM REFVOL=1.1 
 
*.ALTER TYPICAL CASE1  
.PARAM SIGMA=0  
.TEMP= 0 
.PARAM CORE=1.0 
.PARAM VIO=1.8 
.PARAM REFVOL=0.9 
 
*.ALTER TYPICAL CASE2 
*.PARAM SIGMA=0 
*.TEMP= 25 
*.PARAM CORE=1.0 
*.PARAM VIO=1.8 
*.PARAM REFVOL=0.9 
 
* .ALTER WORST CASE * 
*.PARAM SIGMA=-2 
*.TEMP= 100 
*.PARAM CORE=0.9 



   
 

 54

*.PARAM VIO=1.7 
*.PARAM REFVOL=0.8 
 
**************************************** 
* PARAMETER DEFINITION * 
 
.PARAM PW='(PER-RISE-FALL)/2'       $ defining pulse width to be exactly half of pulse duration 
.PARAM PER = 20n $f50      $ input frequency 50Mhz 
.PARAM R=1N    $ slew rate 1v/ns 
.PARAM VILMAX='REFVOL-0.1' $ setting VIL and VIH level   
.PARAM VIHMIN='REFVOL+0.1'  
.PARAM RISE='(VIHMIN-VILMAX)*R' $ calculating rise time from slew rate.  
.PARAM FALL='(VIHMIN-VILMAX)*R' 
 
**************************************** 
* SUPPLY VOLTAGE * 
 
Vvdd vdd GND CORE $parameter defined for core voltage 
Vvdd1 vdd1 GND VIO $parameter defined for vdd1 
Vref ref GND REFVOL 
 
******************************************* 
* INPUT PAD 
 
VIOPAD2 IOPAD2 GND 0 
******************************************* 
* INPUT STIMULUS * 
 
VIOPAD1 IOPAD1 GND PULSE(VILMAX VIHMIN 0n RISE FALL PW PER) 
 
******************************************* 
* SIMULATION COMMANDS * 
 
.TRAN 0.1N 50N   
.PROBE TRAN V(DATA_TO_CORE) V(IOPAD1) V(VDD) V(VDD1) V(IOPAD2)  
 
.MEAS TRAN P2P PP V(DATA_TO_CORE)  
 
.MEAS TRAN tpLH TRIG V(IOPAD1) VAL='VILMAX+(VIHMIN-VILMAX)/2' RISE=4 TARG 
+V(DATA_TO_CORE) VAL='P2P/2' RISE=4 
 
.MEAS TRAN tpHL TRIG V(IOPAD1) VAL='VILMAX+(VIHMIN-VILMAX)/2' FALL=4 TARG 
+V(DATA_TO_CORE) VAL='P2P/2' FALL=4  
 
.MEAS TRAN TON_OUT TRIG V(DATA_TO_CORE) VAL='P2P/2' RISE=3 TARG +V(DATA_TO_CORE) 
VAL='P2P/2' FALL=3 
 
.MEAS TRAN TOFF_OUT TRIG V(DATA_TO_CORE) VAL='P2P/2' FALL=3 TARG 
+V(DATA_TO_CORE) VAL='P2P/2' RISE=4 
 
.MEAS TRAN TPER_OUT TRIG V(DATA_TO_CORE) VAL='P2P/2' RISE=3 TARG 
+V(DATA_TO_CORE) VAL='P2P/2' RISE=4 
 
.MEAS TRAN DUTY_OUT PARAM='100*TON_OUT/(TON_OUT+TOFF_OUT)' 
 



   
 

 55

.MEAS TRAN TPER_IN TRIG V(IOPAD1) VAL='VILMAX+(VIHMIN-VILMAX)/2' RISE=3 TARG 
+V(IOPAD1) VAL='VILMAX+(VIHMIN-VILMAX)/2' RISE=4 
 
.MEAS TRAN DUTY_IN PARAM='100*TON_IN/(TON_IN+TOFF_IN)' 
 
.MEAS TRAN VIL MIN V(IOPAD1)  
 
.MEAS TRAN VIH MAX V(IOPAD1) 
 
.MEAS TRAN TON_IN TRIG V(IOPAD1) VAL='VILMAX+(VIHMIN-VILMAX)/2' RISE=3 TARG 
+V(IOPAD1) VAL='VILMAX+(VIHMIN-VILMAX)/2' FALL=3 
 
.MEAS TRAN TOFF_IN TRIG V(IOPAD1) VAL='VILMAX+(VIHMIN-VILMAX)/2' FALL=3 TARG 
+V(IOPAD1) VAL='VILMAX+(VIHMIN-VILMAX)/2' RISE=4 
 
.END 
 
3.5.1 Description of .cir file 
 The following points give the description of .cir file. 

 Library of MOS model are attached in the .cir file. These file contain model 
definition, parameter definition and their values for MOS transistors used. These 
files are given from the FAB. 

 All control signals are set according to the information given in the design 
document. The pin having no connection should be connected to ground or supply 
depending if that signal is active high or active low. 

  Block selection bits are set. As different blocks support separate standards they 
need to be selected to verify a standard. 

 Supply voltages are given to node specified. 
 Parameters are defined. These include pulse width, slew rate, VIL, etc. 
 Input stimulus is a pulse of 50% duty cycle. This represents digital data bits of 

logic ‘1’ and ‘0’ alternately. 
 Measure commands to measure various parameters.  
 Voltage value, temperature and sigma value are listed for each case. These are 

simulation are carried out using .alter statements. 
 
3.5.2 Parameters Measured 
 The following is the list of parameters measured. 

 Input on time. 
 Input off time. 
 Input time period. 
 Output on time. 
 Output off time. 
 Output time period. 
 Rise to rise delay. 
 Fall to fall delay. 
 Output voltage low level (VOL). 
 Output voltage high level (VOH). 
 Peak to peak value of output. 
 Output Duty cycle. 



   
 

 56

 
3.4.3 Maximum frequency 
There are three different maximum frequencies referred in the document. 

a. FIL: Frequency Input Limited. FIL denotes maximum frequency input generator 
can provide for a given slew rate. This is limitation from input generator i.e. not a 
limitation of the circuit. 

b. Fcutoff: This the frequency up to which the circuit responds to the input properly. 
As we increase frequency beyond Fcutoff, circuit starts missing some input cycles 
and does not give consistent output duty cycle. As we go further circuit does not 
respond to any input. 

c. Fduty: This is the frequency limited by the output duty cycle. This limit is 
generally depends upon how much deviation in duty cycle successor circuit can 
tolerate. Generally it is around 70-75%.  

 
3.5 Methodology followed  
 First simulation is carried out at frequency at which we are sure the circuit responds 
to input signal properly. For example for single ended standards Fin was taken 50Mhz. this is 
carried out for four cases.  
 Then using values of rise to rise delay and fall to fall delay Fduty is found using the 
relation. Simulation is fired at Fduty and simulation measured duty cycle value is noted and 
compared with theoretical value. For cases when difference between the delays is very less 
then the value of Fduty is large. If at Fduty the circuit does not respond, then Fcutoff is found 
by trial and error method. These frequencies are tabulated, they are marked to differentiate 
between Fduty, Fcutoff & FIL. 
 
3.6 Summary 
 This chapter describes how verification of IOB was done. The strategy used is 
discussed here. The next chapter discusses the results of the simulation on these circuits.   



   
 

 57

 

 

 

Chapter 4 
Results 

 



   
 

 58

4.1 Introduction 
 The parameters measured were tabulated and submitted to the company. As this 
project was done in STMicrelectronics, the numerical results have not been produced in this 
chapter because they are confidential in nature. Electrical specifications standard JEDEC 
standards are tabulated in this chapter. 
  
4.2 Standards supported by IOB 
 IOB refers to the IOB of FPGA which are configurable. They follow a set of 
standards for communicating from peripheral devices. These standards are classified in three 
classes. 

 Single ended 
 Pseudo-differential 
 Fully-differential 

 
The following table lists the name of the standards. 
 

Single Ended Pseudo-Differential Fully-Differential 
LVCMOS 12 HSTL15 BLVDS25 
LVCMOS 15 HSTL18 LVDSEXT25 
LVCMOS 18 SSTL18 ULVDS25 
LVCMOS 25 SSTL25 LDT25 
LVCMOS 33 GTL LVDS25 
LVTTL GTL+  

 Table 4.1 Standards supported by IOB 
 
4.3 Specification of the Standard. 
  
4.3.1 Single Ended Standards 

 
A. LVCMOS12 

 

Parameter 

 
Test Condition 

 
  Min 

 
Typ 

 
Max 

VCCO 
 1.1 1.2 1.3 

VREF  NA NA NA 
VTT  NA NA NA 
VIH (dc)  0.65*VCCO - VCCO + 0.3 
VIL (dc)  -0.3 - 0.35 * VCCO 
VOH  IOH = -100 µA VCCO-0.1 - - 
VOH  IOH = -2 mA 0.75 * VCCO - - 
VOL IOL = 100µA - - 0.1 
VOL IOL = 2mA - - 0.25 * VCCO 



   
 

 59

 
B. LVCMOS15 

 

Parameter 

 
Test Condition 

 
  Min 

 
Typ 

 
Max 

VCCO 
 1.4 1.5 1.6 

VREF  NA NA NA 
VTT  NA NA NA 
VIH (dc)  0.65*VCCO - VCCO + 0.3 
VIL (dc)  -0.3 - 0.35 * VCCO 
VOH  IOH = -100 µA 1.2 - - 
VOH  IOH = -2 mA 

(VIH=0.91V, 
VIL=0.49V) 

0.75 * VCCO 
(VCCO=1.4) 

- - 

VOL IOL = 100µA - - 0.2 
VOL IOL = 2mA 

(VIH=0.91V, 
VIL=0.49V) 

- - 0.25 * VCCO 
(VCCO =1.4) 

 
C. LVCMOS18 

 

Parameter 

 
Test Condition 

 
  Min 

 
Typ 

 
Max 

VCCO 
 1.65 1.8 1.95 

VREF  NA NA NA 
VTT  NA NA NA 
VIH (dc)  0.65*VCCO - VCCO + 0.3 
VIL (dc)  -0.3 - 0.35 * VCCO 
VOH  IOH = -100 µA VCCO-0.2 - - 
VOH  IOH = -2 mA VCCO-0.45 - - 
VOL IOL = 100µA - - 0.2 
VOL IOL = 2mA - - 0.45 
 



   
 

 60

 
D. LVCMOS25 

 

Parameter 

 
Test Condition 

 
  Min 

 
Typ 

 
Max 

VCCO 
 2.3 2.5 2.7 

VREF  NA NA NA 
VTT  NA NA NA 
VIH (dc)  1.7 - VCCO+0.3 
VIL (dc)  -0.3 - 0.7 
VOH  IOH = -1mA 

(VIH=1.7V, 
VCCO=2.3V) 

2   

VOH  IOH = -8 mA 
(VIH=1.7V, 
VCCO=2.3V) 

1.8   

VOL IOL = 1mA 
(VIL=0.7V, 
VCCO=2.3V) 

  0.4 

VOL IOL = 8mA 
(VIL=0.7V, 
VCCO=2.3V) 

  0.6 

 



   
 

 61

 
E. LVTTL 

 
 
4.3.2 Pseudo-differential Standards 
 

A. HSTL 1.5 
This Standard supports three classes HSTL15 class I, HSTL15 class II and HSTL15 class III. 
 
HSTL15 Class I  

 

Parameter 

 
Min 

 
Typ 

 
Max 

 
Unit 

VCCO 
1.4 1.5 1.6 V 

VTT 
    

Vref 
0.68 0.75 0.9 V 

VIH (dc) Vref+0.1 - VCCO+0.3 V 
VIL (dc) -0.3 - Vref-0.1 V 
VIH (ac) Vref+0.2 - - V 
VIL (ac) - - Vref-0.2 V 
VOH(dc) VCC-0.4 - - V 
VOL(dc) - - 0.4 V 
VOH(ac) VCCO-0.5 - - V 
VOL(ac) - - 0.5 V 

 

Parameter 

 
Test Condition 

 
Min 

 
Typ 

 
Max 

VCCO 
 3.0 3.3 3.6 

VREF  NA NA NA 
VTT  NA NA NA 
VIH (dc) VOUT ≥VOH (min) or 

VOUT≤ VOL (max) 
2 - VCCO+0.3

VIL (dc) VOUT ≥VOH (min) or 
VOUT≤ VOL (max) 

-0.3 - 0.8 

VOH  IOH = -2mA 
(VCCO=3.0V) 

2.4   

VOL IOL = 2mA 
(VCCO=3.0V) 

  0.4 



   
 

 62

Driver output slew 
rate 

    

* The values of VOL & VOH are to be measured in the proper load condition as specified in 
the JEDEC standard 
 



   
 

 63

HSTL15 Class II 

 

Parameter 

 
Min 

 
Typ 

 
Max 

 
Unit 

VCCO 
1.4 1.5 1.6 V 

VTT 
   V 

Vref 
0.68 0.75 0.9 V 

VIH (dc) Vref+0.1 - VCCO+0.3 V 
VIL (dc) -0.3 - Vref-0.1 V 
VIH (ac) Vref+0.2 - - V 
VIL (ac) - - Vref-0.2 V 
VOH(ac) VCCO-0.5 - - V 
VOL(ac) - - 0.5 V 
VOH(dc) VCC-0.4 - - V 
VOL(dc) - - 0.4 V 
Driver output slew 
rate 

    

* The values of VOL & VOH are to be measured in the proper load condition as specified in 
the JEDEC standard 
 
 
 
HSTL15 Class III 

 

Parameter 

 
Min 

 
Typ 

 
Max 

 
Unit 

VCCO 
1.4 1.5 1.6 V 

VTT 
    

VREF* 0.68 0.75 0.9 V 
VIH (dc) Vref+0.1 - VCCO+0.3 V 
VIL (dc) -0.3 - Vref-0.1 V 
VIH (ac) Vref+0.2 - - V 
VIL (ac) - - Vref-0.2 V 
VOH (dc) VCCO-0.4 - - V 
VOL (dc) - - 0.4 V 
VOH (ac) - - -  
VOL (ac)   0.5 V 
Driver output slew 
rate 

    



   
 

 64

* The values of VOL & VOH are to be measured in the proper load condition as specified in 
the JEDEC standard 
 



   
 

 65

B. HSTL 1.8 
This Standard supports three classes HSTL class I, HSTL class II and HSTL class III 

HSTL18 class I 

 

Parameter 

 
Min 

 
Typ 

 
Max 

 
Unit 

VCCO 
1.7 1.8 1.9 V 

VREF 0.8 0.9 1.1  
VTT - VCCO*0.5 -  V 
VIH (dc) VREF + 0.1 - - V 
VIL (dc) - - VREF – 0.1 V 
VIH (ac) - - - V 
VIL (ac) - - - V 
VOH (dc) VCCO-0.4 

(IOH ≥ 8mA) 
  V 

VOL (dc) 0.4  
(IOL ≥ 8mA) 

  V 

VOH (ac) VCCO-0.5    
VOL (ac) 0.5   V 
* The values of VOL & VOH are to be measured in the proper load condition as specified in 
the JEDEC standard 

HSTL 18 class II 

Parameter 
Min Typ Max Units 

VCCO 
1.7 1.8 1.9 V 

VREF - 0.9 - V 
VTT - VCCO*0.5 -  V 
VIH (dc) VREF + 0.1 - - V 
VIL (dc) - - VREF – 0.1 V 
VIH (ac) - - - - 
VIL (ac) - - - - 
VOH (dc) VCCO-0.4 

(IOH ≥ 16mA) 
  V 

VOL (dc) 0.4  
(IOL ≥ 8mA) 

  V 

VOH (ac) VCCO-0.5    
VOL (ac) 0.5   V 
* The values of VOL & VOH are to be measured in the proper load condition as specified in 
the JEDEC standard 

 



   
 

 66

HSTL 18 class III 

Parameter 
Min Typ Max Units 

VCCO 
1.7 1.8 1.9 V 

VREF - 1.1 - V 
VTT - VCCO - V 
VIH (dc) VREF + 0.1 - - V 
VIL (dc) - - VREF – 0.1 V 
VIH (ac) - - - - 
VIL (ac) - - - - 
VOH (dc) VCCO-0.4 

(IOH ≥ 8mA) 
  V 

VOL (dc) 0.4  
(IOL ≥ 24mA) 

  V 

VOH (ac) NA    
VOL (ac) 0.5   V 
* The values of VOL & VOH are to be measured in the proper load condition as specified in 
the JEDEC standard 
 

C. SSTL 1.8 

SSTL 18 class I 

Parameter 
Min Typ Max Units 

VCCO 
1.7 1.8 1.9 V 

VREF 0.833 0.9 0.969 V 
VTT VREF – 0.04 VREF VREF+0.04 V 
VIH (dc) VREF + 0.125 - VCCO + 0.3 V 
VIL (dc) -0.3 - VREF – 0.125 V 
VIH (ac) VREF + 0.25 - - V 
VIL (ac) - - VREF – 0.25 V 
VSWING (Max) - 1.0 - V 
SLEW - 1.0 - V/ns 
VOH (ac)  VTT + 0.603 - - V 
VOL (ac) - - VTT - 0.603 V 
IOH (dc) -13.4 - - mA 
IOL (dc) 13.4 - - mA 
* The values of VOL & VOH are to be measured in the proper load condition as specified in 
the JEDEC standard 
 



   
 

 67

D. SSTL 2.5 
This standard supports two classes SSTL 25 class I and SSTL25 class II 

SSTL 25 class I 

Parameter 
Min Typ Max Units 

VCCO 
2.3 2.5 2.7 V 

VREF 1.13 1.25 1.38 V 
VTT VREF – 0.04 VREF VREF+0.04 V 
VIH (dc) VREF + 0.15 - VCCO +0.3 V 
VIL (dc) -0.3 - VREF – 0.15 V 
VIH (ac) VREF + 0.31 - - V 
VIL (ac) - - VREF – 0.31 V 
VSWING (Max)  1.5  V 
SLEW  1.0  V/ns 
VOH (ac)  VTT + 0.608 - - V 
VOL (ac) - - VTT - 0.608 V 
IOH (dc) -8.1 - - mA 
IOL (dc) 8.1 - - mA 
* The values of VOL & VOH are to be measured in the proper load condition as specified in 
the JEDEC standard 

SSTL 25 class II 

Parameter 
Min Typ Max Units 

VCCO 
2.3 2.5 2.7 V 

VREF 1.13 1.25 1.38 V 
VTT VREF – 0.04 VREF VREF+0.04 V 
VIH (dc) VREF + 0.15 - VCCO +0.3 V 
VIL (dc) -0.3 - VREF – 0.15 V 
VIH (ac) VREF + 0.31 - - V 
VIL (ac) - - VREF – 0.31 V 
VSWING (Max)  1.5  V 
SLEW  1.0  V/ns 
VOH (ac)  VTT + 0.81 - - V 
VOL (ac) - - VTT - 0.81 V 
IOH (dc) -16.2 - - mA 
IOL (dc) 16.2 - - mA 
* The values of VOL & VOH are to be measured in the proper load condition as specified in 
the JEDEC standard 
 



   
 

 68

E. SSTL 3.3 
This standard supports two classes SSTL 33 class I and SSTL 33 class II 
 
SSTL33 class I 

Parameter 
Min Typ Max Units 

VCCO 
3.0 3.3 3.6 V 

VREF 1.3 1.5 1.7 V 
VTT VREF – 0.05 VREF VREF+0.05 V 
VIH (dc) VREF + 0.2 - VCCO + 0.3 V 
VIL (dc) -0.3 - VREF – 0.2 V 
VIH (ac) VREF + 0.4 - - V 
VIL (ac) - - VREF – 0.4 V 
VREF (for ac test 
conditions) 

 0.45 * VCCO  V 

VSWING (Max) - 2.0 - V 
SLEW - 1.0 - V/ns 
VOH (ac)  VTT + 0.6 - - V 
VOL (ac) - - VTT - 0.6 V 
IOH (dc) -8 - - mA 
IOL (dc) 8 - - mA 

Vref is calculated using the range of VCCO or termination vol. as specified in the JEDEC 
standard 

SSTL33 class II 

Parameter 
Min Typ Max Units 

VCCO 
3.0 3.3 3.6 V 

VREF 1.3 1.5 1.7 V 
VTT VREF – 0.05 VREF VREF+0.05 V 
VIH (dc) VREF + 0.2 - VCCO + 0.3 V 
VIL (dc) -0.3 - VREF – 0.2 V 
VIH (ac) VREF + 0.4 - - V 
VIL (ac) - - VREF – 0.4 V 
VREF (for ac test 
conditions) 

 0.45 * VCCO  V 

VSWING (Max) - 2.0 - V 
SLEW - 1.0 - V/ns 
VOH (ac)  VTT + 0.8 - - V 
VOL (ac) - - VTT - 0.8 V 
IOH (dc) -16 - - mA 
IOL (dc) 16 - - mA 

Vref is calculated using the range of VCCO or termination vol. as specified in the JEDEC 
standard 



   
 

 69

F. GTL (Gunning Transceiver Logic) 

 

Parameter 

 
Min 

 
Typ 

 
Max 

 
unit 

VCCO 
- - - V 

VTT 
1.14 1.2 1.26 V 

VREF* 0.74 0.8 0.86 V 
VIH (dc) Vref+0.05 0.83  V 
VIL (dc)  0.77 Vref –0.05 V 
VIH (ac) - - -  
VIL (ac) - - -  
VOH - - -  
VOL  0.2 0.4 V 
IOH -  
IOL 40 mA 

Vref is calculated using the range of VCCO or termination vol. as specified in the JEDEC 
standard 

 
G. GTLP  

 

Parameter 

 
Min 

 
Typ 

 
Max 

 
Unit 

VCCO 
- - - V 

VTT 
1.4 1.5 1.6 V 

VREF* 0.9 1 1.1 V 
VIH (dc) Vref+0.1   V 
VIL (dc)   Vref –0.1 V 
VIH (ac) - - -  
VIL (ac) - - -  
VOH - - -  
VOL - - 0.6 V 
IOH -  
IOL 36 mA 

Vref is calculated using the range of VCCO or termination vol. as specified in the JEDEC 
standard 



   
 

 70

4.4.3 Fully Differential Standards 
 

Requirements for the differential standards (Input path) 
 

VCCO (V) VID (mV) VICM(V) S.No. Standard 
Min.   Typ.    Max. Min.    Typ.   Max. Min.    Typ.    Max.  

1 
BLVDS_25 

2.38 2.5 2.63   - 350    -  - 1.25  - 

2 LVDSEXT_25 2.38 2.5 2.63 100 540 1000 0.3 1.20 2.20 
3 ULVDS_25 2.38 2.5 2.63 100 200    - 0.44 0.60 0.78 
4.1 LDT_25 (dc) 2.38 2.5 2.63 200 600 1000 0.44 0.60 0.78 
4.2 LDT_25 (ac) 2.38 2.5 2.63 300 600 900 0.38 0.60 0.84 
5 LVDS_25 2.38 2.5 2.63 100 350 600 0.3 1.25 2.20 
 
4.5 Summary 
 Actual results have not been shown in this chapter as they confidential in nature. The 
electrical specification of JEDEC standards which were followed for verification is listed in 
tabular format. 



   
 

 71

 

 

 

Chapter 5 
Conclusion 

 



   
 

 72

  In this thesis Input Output block of FPGA is verified according to JEDEC standards. 
IOB’s used in FPGA’s are made configurable to support different applications. In this thesis 
the postlay netlist of configurable IOB of FPGA is verified according to JEDEC standard. 
And the rise to rise delay, fall to fall delay and output duty cycle were measured. It is seen 
that the IOB comply with electrical standard described by the JEDEC documents. Maximum 
frequency of operation of IOB was also verified and values tabulated. The simulations were 
carried out on EDA tools Eldo and Hspice. Measurements were done on the output 
waveforms. A relationship between rise delay, fall delay, input & output duty cycle was 
observed. An expression was derived which explains the behaviour observed, & this 
expression lets us calculate the maximum frequency when output is limited by duty cycle. 
The theoretical values found by the relation were confirmed with simulation results.   

 
There are three different maximum frequencies observed in the result. 

d. FIL: Frequency Input Limited. FIL denotes maximum frequency input generator 
can provide for a given slew rate. This is limitation from input generator i.e. not a 
limitation of the circuit. 

e. Fcutoff: This the frequency up to which the circuit responds to the input properly. 
As we increase frequency beyond Fcutoff, circuit starts missing some input cycles 
and does not give consistent output duty cycle. As we go on further increasing the 
input frequency circuit does not respond to any input. 

f. Fduty: This is the frequency limited by the output duty cycle. This value depends 
upon the rise & fall time delay and maximum duty cycle tolerable according to 
the circuit specifications. 

 
   The following observations were made: 

 IOB’s were seen to be following the JEDEC standards. 
 Rise time delay and fall time delay should be equal ideally, but in some cases 

difference between these delays were seen. This difference limits the operating 
frequency in terms of output duty cycle. 

 The value of Fduty was found theoretically by keeping the output duty cycle 70%.   
 Difference in delay is seen more in single ended IOB. 
 While the pseudo-differential IOB exhibits moderate difference in delay less than 

single ended IOB 
 Difference in delay is not prominent in differential standard. This factor does not 

affect the maximum frequency of operation. 
 The formula by which the theoretical limit of duty cycle limited operating frequency 

assumes that the rise & fall time delay remains constant with increasing frequency. 
     

 
 



   
 

 73

 

 

References 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 



   
 

 74

 
Books/Manuals 
 

1. N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, 2nd edition, 

Addison-Wesley. 

2. J. Rose, Brown, Francis, Vranesic, Field Programmable Gate Arrays, Kluwer 

Academic Publishers. 

3. J. Rose, E. Gamal, Architecture of Field Programmable Gate Arrays, Proceedings of 

IEEE, Vol-81, No-7, July 1993. 

4. Wesley Morris, Latch-up in CMOS, 41st Annual International Reliability Symposium, 

Dallas, Texas 2003. 

5. Understanding Latch-Up in Advanced CMOS Logic, Application note, Fairchild 

semiconductor. 

6. Guy Rabbat, Hardware & Software Concepts in VLSI  

7. C. Kittel, Introduction to Solid State Physics, Wiley & sons, 

8. R.S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits, Second 

edition,Wiley & Sons 

9. S. Wang, "Fundamentals of Semiconductor Theory and Device Physics": Prentice 

Hall 

10. Eldo user manual, Mentor Graphics 

11. Hspice Command Reference, Synopsys. 

12. Hspice simulation commands, Synopsys. 

13. HsimPlus User Manual, Nassda Corporation. 

14. Hspice tutorial, Stanford University Website. 

15.  Spartan Datasheet, Xilinx website. 



   
 

 75

 
URLs 

1. www.fpga4fun.com 

2. www.esda.com, ESD Association 

3. www.xilinx.com, Device datashheet 

4. www.fairchildsemi.com/an/AN/AN-600.pdf, Understanding Latch-Up in Advanced 

CMOS Logic 

5. cnx.rice.edu/content/m1031/latest.htm, Electrostatic Discharge and Latch-Up 

6. assets.zarlink.com/AN/msan107.pdf, Understanding and Eliminating Latch-Up in 

CMOS Applications 

7. www.analog.com/UploadedFiles/Application_Notes/ AN-707_0.pdf, ESD and Latch-

Up Considerations Application Note (AN-707) 

8. focus.ti.com/general/docs/lit/getliterature.tsp?literatureNumber=slya014a&fileType=

pdf  "Latch-Up, ESD, And Other Phenomena" 

9. www.esdjournal.com, ESD Journal - The ESD & Electrostatics Magazine 

10. www.minicircuits.com/appnote/an40005.pdf The Prevention and Control of 

Electrostatic Discharge  

11. www.semiconfareast.com/esd.htm 

12. www.informit.com/articles/article.asp? Electrostatic Discharge Precautions 

13. resource.intel.com/telecom/support/install/config/esd/esd.pdf  

14. www.sascosemi.com/download/leadfree/jesd97_en.pdf JEDEC standards and 

publications 

15. www.edacafe.com/books/ASIC/ASICs.php EDACafe ASICs-the Book 

16. www-ee.eng.hawaii.edu/~msmith/ ASICs/HTML/Book2/CH06/CH06.7.htm 6.7 

Xilinx I/O Block  

17. www.ieee-explore.com 

 
 



   
 

 76

 
 
 

Appendix 
 
 

 
 
 
 

 



   
 

 77

A. ELDO SYTAX REFERENCE 
 
ELDO Simulator Commands and syntax 
 

 
 
 
 
Eldo input & output files 
 
<file>.cir 
The main Eldo control file, containing circuit NETLIST, stimulus and simulation control 
commands. 
<file>.chi 
output log file containing ASCII data, including results and error messages. 
<file>.cou 
binary file containing Eldo analog simulation results data 
 
Syntax for firing Eldo 
 
eldo [-b] [-l log_file_name] [-o output_file_name] [-outpath output_dir_name] [-i] [-
couf] cir_file_name [-noascii] [-noconf] [-spiout] 
 
-b Runs the simulation in the background. 
-l Log file name for a background simulation. 
-o Output .chi file name. 



   
 

 78

-outpath Directory in which all output files are created. 
-i Input .cir file name. 
-couf Forces Eldo to create .cou files containing FLOAT rather than DOUBLE values, which 
results in saving 50% of the disk space. 
 
Format of .cir file 
First Line 
The first line is format free and reserved for the circuit title. This line is mandatory and 
serves as the heading on graphical results output. 
 
Continuation Lines 
The length of one line is limited to 256 characters. A line may be continued by using the + 
character at the beginning of the new line. 
 
Comments 
This is comment ‘!’ on same line 
* Comment on new line 
#Com 
block 
of 
comment 
#endcom 
 
Scale Factors 
F 1e-15 
P 1e-12 
N 1e-09 
U 1e-06 
M 1e-03 
K 1e+03 
MEG 1e+06 
G 1e+09 
T 1e+12 
dB for decibels 
 
Arithmetic Functions & Operators 
SQRT(VAL)   LOG(VAL)   LOG10(VAL)  DB(VAL)  
EXP(VAL)  COS(VAL)  SIN(VAL)  TAN(VAL) 
ACOS(VAL)  ASIN(VAL)  ATAN(VAL)  COSH(VAL)  
SINH(VAL)   TANH(VAL)  SIGN(VAL)   ABS(VAL)  
TRUNC(VAL) DMIN(VAL1, VAL2)  DMAX(VAL1, VAL2) 
DERIV(VAL) 
 
 
Resistor 
Rxx N1 N2 VAL 



   
 

 79

Rxx NP NN VALUE={EXPR} 
xx : resistor name 
N1, N2 : names of the resistor nodes 
VAL value of resistor in OHM at nominal temperature 
Example 
r1 n3 n4 3.3k 
r1 1 2 value={2k*v(3, 4)*i(v5)} 
 
Capacitor 
Cxx NP NN VAL [IC=VAL] 
Cxx NP NN VALUE={EXPR} 
IC=VAL: sets the initial guess for voltage across cap 
UIC must be used in .TRAN statement Components 
Example 
c1 n3 n4 0.5pf 
c1 1 2 value={2n*v(3, 4)*i(v5)} 
 
Inductors 
Lxx NP NN VAL [IC=VAL] 
Lxx NP NN VALUE={EXPR} 
Example 
l1 n13 n8 5u 
l1 1 2 value={2u*v(3, 4)*i(v5)} 
 
Coupled Inductors 
Kxx lyy lzz KVAL 
 
Junction Diodes 
Dxx NP NN MNAME 
Example 
*DIODE model definition 
.model dio d level=3 
... 
*main circuit 
d1 2 10 dio 
 
BJT 
Qxx NC NB NE [NS] MNAME 
Example   *BJT model definition 

.model qmod npn bf=160 rb=100 cjs=2p 
+ tf=0.3n tr=6n cje=3p cjc=2p vaf=100 
... 
*main circuit 
q23 10 24 13 qmod 

 
JFET- Junction Field Effect Transistor 



   
 

 80

Jxx ND NG NS MNAME 
Example 
*JFET model definition 
.model je20 njf vto=-3.2 beta=0.98m 
+ lambda=2.5m cgs=5p cgd=1.3p is=7p 
... 
*main circuit 
j1 3 2 0 je20 
 
MOSFET 
Mxx ND NG NS NB MNAME][M=VAL] W=VAL L=VAL 
M= device multiplier(for devices in parallel) 
Example 
M1 1 2 3 3 PMOS m=1 W=1u L=0.18u 
 
Subcircuit Instance 
Xxx NN {NN} NAME 
Example 
*SUBCKT definition 
.subckt inv 1 2 
r1 1 3 2k 
r2 3 4 4k 
r3 4 2 3k 
.ends inv 
... 
*subcircuit instance 
x1 1 48 inv 
 
Types of sources 
Independent Sources 
Independent Voltage Source V 
Independent Current Source I 
Independent sources can be assigned a time-dependent value for transient analysis. 
The time zero values of time dependent sources are used for DC analysis. 
 
Time Dependent Sources 
Exponential function ‘exp’ 
Pattern function ‘pattern’ 
Pulse function ‘pulse’ 
Piece wise linear function ‘pwl’ 
Sine function ‘sin’ 
 
Linear dependent sources 
Linear Voltage Controlled Voltage 
Linear Current Controlled Current F 
Linear Voltage Controlled Current G 



   
 

 81

Linear Current Controlled Voltage H 
E, F, G and H are constants representing voltage gain, current gain, transconductance and 
trans-resistance respectively. 
 
Non-Linear Dependent Sources 
Non-linear Voltage Controlled Voltage 
Non-linear Current Controlled Current Source 
Non-linear Voltage Controlled Current 
Non-linear Current Controlled Voltage 
 
Syntax of Sources 
 
Independent Voltage Source 
Vxx NP NN [DC] DCVAL] [TIME_DEPENDENT_FUNCTION] 
vplus n12 n13 24 
v7 n4 n9 ac 1.2 pwl (0 3 5n 0 10n 0) 
 
Independent Current Source 
Ixx NP NN [DC] [TIME_DEPENDENT_FUNCTION] 
i23 n2 n3 1.0e-4 
 
Exponential Source 
Exp(v1 v2 [td1 [tau1[d2[tau2]]]]) 
V1=initial value 
V2=target value of pulse 
Td1=rise delay time 
Tau1=rise time constant 
Td2=fall delay time 
Tau2=fall time constant 
 
Independent Voltage Source 
Vxx NP NN [DC] DCVAL] [TIME_DEPENDENT_FUNCTION] 
vplus n12 n13 24 
v7 n4 n9 ac 1.2 pwl (0 3 5n 0 10n 0) 
 
Independent Current Source 
Ixx NP NN [DC] [TIME_DEPENDENT_FUNCTION] 
i23 n2 n3 1.0e-4 
 
Exponential Source 
Exp(v1 v2 [td1 [tau1[d2[tau2]]]]) 
V1=initial value 
V2=target value of pulse 
Td1=rise delay time 
Tau1=rise time constant 
Td2=fall delay time 



   
 

 82

Tau2=fall time constant 
 
Pattern 
Pattern vhi vlo delay trise tfall tbit bits [r] 
VHI= voltage representing logic 1 
Vlo=voltage representing logic 0 
Delay=delay before pattern series start 
Trise=rise time between pattern values 
Tfall=fall time between pattern voltage representing logic 
Tbit=time spent at 1 or 0 
Bits=string of 1 and 0 representing pattern bit 
R = periodic 
 
Pulse function 
Pulse (v0 v1 [td[tr[tf[pw[per]]]]]) 
V0: initial value of DC voltage or current 
V1: pulse magnitude in volts or amperes 
TD: delay time 
TR: rise time(default value is TPRINT) 
TF: fall time 
PW : pulse width (default TSTOP) 
PER: pulse period 
 
Piece-wise linear 
Pwl (t1 v1 t2 v2 t3 v3 tn vn [r]) 
Tn=time at vi is supplied 
Vn=value of source at time ti 
R: repetitive 
 
Sine source 
Sin (v0 va [fr[td[theta]]]) 
V0 : offset voltage 
VA: amplitude of sine 
FR : frequency in hz 
TD: delay time in sec 
THETA: damping factor in 1/sec 
Vin 1 0 sin (0 10 1meg 1u 50e4) 
Sin (v0 va [fr[td[theta]]]) 
V0 : offset voltage 
VA: amplitude of sine 
FR : frequency in hz 
TD: delay time in sec 
THETA: damping factor in 1/sec 
Vin 1 0 sin (0 10 1meg 1u 50e4) 
vsin n2 n3 sin (0 110 50 0 0) 
vsin n4 n9 sin(0 50 50 .05 9) 



   
 

 83

 
Sub-circuit definition 
Subckt name nn {nn} 
<Circuit components> 
.Ends [name] 
 
SIMULATION COMMANDS 
DC Analysis 
OP ANALYSIS 
TF FUNCTION 
AC ANALYSIS 
TRANSIENT ANALYSIS 
PLOT and PRINT 
 
DC Analysis (.DC) 
Single analysis of the circuit’s quiescent state or operating point 
.DC CNAM [L|W] START STOP INCR 
Variation of an element size or value, a parameter or a temperature CNAM: name of 
component on which geometrical or value variations are performed 
r7 3 4 100k 
.dc r7 10k 100k 10k 
.DC PARAM P_NAME START STOP INCR 
PARAM:keyword indicating that a temperature is to be varied P_NAME:name of globally 
declared parameter to be varied START, STOP: start and stop value of component CNAM, 
voltage, temp or current 
r1 1 2 p1 
.param p1=1k 
.dc param p1 1k 10k 1k 
.DC TEMP START STOP INCR 
TEMP:keyword indicating that the temperature is to be varied. Voltage or current sweep of 
the specified source 
.DC SNAM START STOP INCR [SNAM2 START2 STOP2 INCR2] 
SNAM:Name of voltage or current source which performs the DC sweep INCR:increment of 
component, voltage, temperature or current sweep. 
 
OP Analysis 
.OP 
This command forces eldo to determine the operating point of circuit with inductors short 
circuited and removed capacitors The operating point is saved in the .chi file which contains 
information such as power dissipation, node voltages and source currents 
.OP [T1 {TN}] 
T1, TN Simulation times at which operating point information will be recorded. 
.OP TIME=VAL [STEP=VAL] [TEMP=VAL] 
TIME=VAL Simulation time for which .OP results are written. 
STEP=VAL Step value for which .OP results are written. This is the case for when the. STEP 
command is used. 



   
 

 84

TEMP=VAL Current temperature for which .OP results are written. 
 
.OP DC=VAL [DC2=VAL] [STEP=VAL] [TEMP=VAL] 
DC=VAL DC sweep value for which .OP results are written. 
DC2=VAL Second DC value for which .OP results are written in cases where a double 
DCSWEEP analysis is performed. 
 
.TF OV IN 
IN: Input voltage source name. Must be an independent source 
OV: Requests the output voltage of a specific node or current through a voltage source. The 
syntax is as follows: 
Example 
vin 1 0 5 
.tf v(3) vin 
 
.AC DEC|OCT ND FSTART FSTOP [UIC] 
DEC Keyword to select logarithmic variation. 
OCT Keyword to select octave variation. 
ND Number of points per decade or octave. 
FSTART Start frequency in Hertz. 
FSTOP Stop frequency in Hertz. 
 
.AC LIN NP FSTART FSTOP [UIC] 
LIN: Keyword to select linear variation. 
NP: Number of points over the range from FSTART to FSTOP. 
UIC: If UIC is specified, no DC analysis is performed before the AC analysis. Instead the 
circuit may be initialized using .RESTART or .USE. 
 
.TRAN Analysis 
Transient output variables are calculated as a function of time over a user specified time 
interval. The initial conditions are automatically determined by a DC analysis (unless the 
UIC parameter is specified) with all sources that are not time dependent being set to their DC 
values. 
.TRAN TPRINT TSTOP [TSTART [HMAX]] [UIC] 
TPRINT Printing or plotting increment for the printer output (in seconds). There is no 
relation between the internal time-step which Eldo computes for the simulation and the 
TPRINT value. 
TSTOP The transient analysis duration in seconds. 
TSTART No outputs are stored from 0 to TSTART seconds. 
HMAX Sets the maximal internal time-step. When HMAX is specified both in the .OPTION 
command and in the .TRAN command, the HMAX in .OPTION is considered by Eldo.  
UIC Keyword which indicates that do not solve for the quiescent operating point before 
beginning the transient analysis. 
 
PLOTTING OF SIMULATION RESULTS 
 



   
 

 85

.PLOT DC|AC|TRAN OVN [(LOW, HIGH)] {OVN [(LOW, HIGH)]} 
[UNIT=NAME] 
DC Specifies that the plots are required for a DC analysis. 
AC Specifies that the plots are required for an AC analysis. 
TRAN Specifies that the plots are required for a transient analysis. 
OVN Requests plotting of the voltage at a specified nodes or current through selected circuit 
components. The maximum number of plots allowed in one .PLOT command is eight. 
LOW, HIGH The optional plot limits LOW and HIGH may be specified for each of the 
output variables. All output variables of the same kind (voltage for instance) to the left of a 
pair of plot limits 
(LOW, HIGH) will be plotted using the same lower and upper bounds. If plot limits are not 
specified, Eldo uses default values 
 
.PROBE 
.PROBE [ [AC|DC|TRAN] [V|I|S] [PRINT] 
.PROBE [ [AC|DC|TRAN] [list_of_plot_specifications] ] 
DC Specifies that the prints are required for a DC analysis. 
AC Specifies that the prints are required for an AC analysis. 
TRAN Specifies that the prints are required for a transient analysis. 
V Causes all node voltages to be saved— this is the default option. 
I Causes all currents to be saved (node voltages are not saved). 
When the circuit has more than 50 nodes use LIMPROBE parameter  
.option limprobe=100. 
r1 n3 n40 1k 
c1 n49 n61 5p 
.probe 
.PROBE TRAN V(x1.*) 
 
Library Calls 
.LIB <FILENAME> 
insert model definitions into an input NETLIST from a library file. 
EX: NETLIST file 
M2 D G S 0 NE0 L=0.8U W=5.4U 
.LIB mos.lib 
File mos.lib 
.MODEL NE0 NMOS 
+LEVEL=3 UO=592 VTO=0.8 CJ=5.23e-4 
+CJSW=1.83e-10 CGSO=270.6e-12 
.MODEL NE NMOS 
 
.LIB <file_name> [LIBTYPE] 
LIBTYPE: specifies the library variant to be used 
for ex: worst, best, typical 
within library file_name you must have sections defined by 
.lib <libtype> 
… 



   
 

 86

.endl 
 
Ex: 
Library mos.lib 
.lib best 
.model MN NMOS level=3 vt0=.5 
.endl best 
.lib typ 
.model MN NMOS level=3 vt0=.75 
.endl typ 
CIRCUIT NETLIST 
.lib mos.lib typ 
m1 vdd g 0 0 MN L=2U W=5U 
vdd vdd 0 5 
vg g 0 0.8 
 
.ADDLIB N <dir_name> 
search a directory for files with file extensions .mod and .ckt (or.sub) and include in the 
circuit description (.cir) file the models which are not there in .cir file  
N: An integer between 1 to 6, allocating priority to the directory search command. 
EX: mn1 a b c d mna w=3u l=1u 
.addlib 2 /user1/examples 
.addlib 1 /user1/models 
 
.INCLUDE <file_name> 
used to insert the contents of the file in cir file. 
EX: 
.include models 
 
Save Simulation Run 
• .SAVE [FNAME] DC|END|TIME=VAL1 [REPEAT] [ALT|SEQ] 
[TEMP=VAL2] [STEP=VAL3] 
Writes information at specific times during simulation to a file 
FNAME. If no filename is given, results are saved in <circuit_name>.iic. 
DC :DC part of the simulation should be saved in FNAME. 
END: Keyword indicating that the simulation results should be saved after transient analysis 
has been completed in FNAME. 
TIME: The value of this keyword is the discrete instant in time after the start of simulation 
that the simulation results should be saved in FNAME. 
VAL1 :Time, in seconds, at which the simulation results should be saved to FNAME. 
FNAME: Filename and extension into which simulation information is written. 
REPEAT Keyword, used in conjunction with the TIME, ALT and SEQ options. When 
selected, Eldo saves the status of the simulation at every time interval VAL1 to FNAME in 
accordance with the ALT and 
SEQ parameters described below. 



   
 

 87

ALT Used in conjunction with repeat to create the files FNAME.a, FNAME.b, FNAME.a,... 
in an alternating order, thus overwriting the previous file of the same extension and resulting 
in only two files FNAME.a and FNAME.b being created. 
SEQ Used in conjunction with repeat to create the files FNAME.1, FNAME.2, FNAME.3, ... 
FNAME.N, in a sequential manner, thus creating N files depending on the values of TIME 
and REPEAT. 
TEMP Keyword indicating that data should be saved to FNAME depending on temperature. 
VAL2 Temperature, in degrees, at which the circuit data should be saved to FNAME. 
r1 1 2 p2 
... 
.step param p2 1k 5k 1k 
.save status.ccf step=4k 
Causes status of current simulation to be saved in status.ccf file 
when parameter p2 reaches 4kW. 
 
.RESTART FNAME [FILE=COUF] 
This command restarts a simulation run with information previously saved using the .SAVE 
command. 
FNAME Filename containing simulation information which should be used to restart a 
simulation run. 
COUF Name of file containing the previous .cou file. When this is provided, Eldo 
concatenates the old and the new binary data files. 
 
.USE FILE_NAME [NODESET|IC|GUESS] 
FILE_NAME saved using the .SAVE <file_name> DC command 
inserts these as .NODESET, .GUESS or .IC values 
EX: 
.use test1.exa nodeset 
Specifies that DC values found in the file <test1>.exa should be read and used as .NODESET 
values. 
.use circuit1.iic ic 
Specifies that DC values found in the file <circuit1>.iic should be read and used as .IC 
values. 
 



   
 

 88

Eldo provides three different commands for using start conditions 
.GUESS  .NODESET  .IC 
 
.GUESS V(NN)=VAL {V(NN)=VAL} 
Initial DC Analysis Conditions. Helps to calculate the DC operating point by setting voltage 
values at selected nodes for the first iteration of a DC operating point calculation. This 
command differs from the .NODESET command node voltages are only fixed for the first 
iteration of a DC operating point calculation, whereas when using .NODESET the node 
voltages are fixed for the duration of the first DC operating point calculation. 
It is useful when the approximate whereabouts of the DC operating point is known,  enabling 
the simulator to converge more quickly. 
Ex 
.guess v(n4)=6v v(n5)=2v v(n6)=-5v 
 
.NODESET V(NN)=VAL {V(NN)=VAL} 
EX 
.nodeset v(n4)=6v v(n5)=2v v(n6)=-5v 
 
.IC V(NN)=VAL {V(NN)=VAL} 
It is used to fix node voltages for the duration of a DC analysis. If the UIC parameter is also 
present (in the .TRAN command) no DC analysis is performed and the voltages are 
initialized as defined in the .IC command. 
 
Parameters 
.PARAM PAR=VAL|PAR={EXPR} 
.PARAM PAR=”NAME” 
It is used to assign values to parameter variables used in model and device instantiation 
statements. 
Ex 
r1 1 2 rval 
c1 1 2 cval 
l1 1 2 lval 
.param rval=2k cval=3p lval=2u 
.model mod1 nmos level=3 vto=vtodef 
*main circuit 
m1 1 2 3 4 mod1 w=wdef l=ldef 
.param vtodef=1 wdef=20u ldef=3u 
r1 1 2 p2 
.param p1=1k p3={2*p1} 
.param p2={sqrt(p1)+3*p3} 
Ex 
r1 1 2 p2 
.param p1=1k p3={2*p1} 
.param p2={sqrt(p1)+3*p3} 
 



   
 

 89

Miscellaneous Commands 
 
.ALTER 
[ELEMENT] 
[subckt] 
[command] 
[Comment] 
.END 
used to run eldo with modified NETLIST 
following commands, .print, .plot, .conso, .extract, .global, .include, 
.op, .option. are always added. 
 
.CONNECT N1 N2 
N1, N2 Names of the nodes to be connected. 
Example 
.connect n7 n5 
 
.CONSO VN {VN} 
The .CONSO command computes and displays the average current flowing through the 
specified voltage source(s) during the simulation period. 
Ex 
vdd 100 101 5v 
... 
.conso vdd 
.tran 1ns 100ns 
 
.DEFWAVE W_NAME=WAVE_EXPR 
It is used to define a new waveform by relating previously defined waveforms and nodes. 
.defwave pow=i(v1)*v(v1) 
... 
v1 in out ... 
However, the following is allowed: 
v1 in out ... 
... 
.defwave pow=i(v1)*v(v1) 
 
.EXTRACT [AC|DC|DCSWEEP|TRAN] [LABEL=NAME] 
.EXTRACT [AC|DC|DCSWEEP|TRAN] [LABEL=" string "] 
DCSWEEP DCSWEEP extraction. 
DCAC Extraction after the DC analysis performed prior to an AC analysis. 
DCTRAN Extraction after the DC analysis performed prior to a TRAN analysis. 
TRAN Extraction during TRAN analysis. 
AC Extraction during AC analysis. 
 



   
 

 90

.GLOBAL NN {NN} 
Declare global node(s), making them known throughout a circuit without having to declare 
them in each subcircuit. 
Ex: 
.global vdd vss 



   
 

 91

B. HSPICE SIMULATION & SYNTAX REFERENCE 
 
HSPICE Basics 

An input netlist file must be created to begin the design entry and simulation process. 
Once you have created the file ( filename.hsp/cir), enter  
Hspice filename.hsp/cir>filename.lis 
to begin the analyses specified in the input file. HSPICE stores the simulation results 
requested in an output listing file and, if .option post is specified, a graph data file. When 
post is specified, the complete circuit solution (either steady state, time, or frequency 
domain) is stored. The results for any node voltage or branch current can then be viewed or 
plotted using Avanwaves. If you are converting a SPICE-3 input file to HSPICE format, it is 
only necessary that you add the line .option post somewhere in your file and put .end at the 
end (make sure you hit <cr> after the .end statement to form a complete line).  

HSPICE also has specific file naming conventions to indicate the function of each 
file. All of the files associated with a particular design reside in one directory and are named 
by catenating the design name and a particular suffix (see Table 1). Both HSPICE and 
Avanwaves extract the design name from the input file and use it to form the output files. 

 
TableB.1 Filename suffixes. (Note: # is either a sweep number or a hardcopy file    

   number.) 



   
 

 92

HSPICE Input Netlist File 
Input netlist and library input files can be generated using any standard UNIX editor 

(vi, emacs, etc.). The order of the statements is arbitrary, except that continuation lines (those 
beginning with a plus (+) sign) must immediately follow the statement being continued, and 
the last .ALTER submodule must appear next to the end of the file before the .END 
statement. Comments may be added any place in the file. The input file name and equation 
length can be up to 256 characters. A summary of formatting rules is listed below: HSPICE 
uses a free-format input. Fields in a statement are separated by one or more blanks, tabs, a 
comma, an equal sign, or a left or right parenthesis. Upper and lower case is ignored except 
as filenames on UNIX systems. Statement length is limited to 256 characters. A statement 
may be continued by entering a plus (+) sign as the first non-numeric, nonblank character in 
the subsequent statement. ALL statements, including QUOTED strings such as paths and 
algebraics can be continued with a backslash (\) or a double backslash (\ \) at the end of the 
line to be continued. The single backslash preserves white space and the double squeezes out 
any white space between the continued lines. The double backslash guarantees pathnames are 
joined without interruption. Note: input lines can be 256 characters long, so folding and 
continuing a line is only necessary to improve readability. 

 
HSPICE Input File Structure 

The basic structure of an input netlist file consists of one main program and one or 
more optional submodules. The submodule (preceded by the .ALTER statement) can be used 
to easily alter and re-simulate an input netlist file with different options, netlist, analysis 
statements, and test vectors. Several high level call statements can be used to restructure the 
input netlist file modules. These are the 
.INCLUDE, .LIB and .DELLIB statements. Using these statements, netlists, model 
parameters, test vectors, analysis, and option macros can be called into a file from either 
library files or other files. The input netlist file can also call an external data file. The 
external data file contains parameterized data for element sources and models. The basic 
elements of an input netlist file are: 



   
 

 93

 
Table B.2 Basic elements of HSPICE netlist 
 
Output Listing File 

The results of each circuit simulation are saved in an output listing file with the same 
filename as the input but appended with a ’.lis’ suffix instead of ’.hsp’. For example, the 
input file rcnet.hsp/cir would have an output listing file named rcnet.lis. The output listing 
file contains the simulation results specified by the .PLOT, .PRINT, and analysis statements 
in the input netlist files. If the input netlist file contains more than one simulation run (by use 
of the .ALTER, .INCLUDE, .DATA, or analysis statements), the output listing file also 
contains the results for each simulation run. 
 
Graph Data File 

Graph data files contain high resolution simulation results which can be viewed using 
a waveform viewer like Avanwaves. When .OPTION POST is included in the input netlist 
file, HSPICE produces a graph data file. By default it contains all the simulation's node 
voltages, branch currents, and internal state variables. One graph data file is created for each 
analysis specified in the input netlist file. Each file will be named by appending a suffix 
"XX#" to the design name, where "XX" denotes an analysis ("TR" – transient, "SW" – DC 
sweep, and "AC" – AC) and # is the simulation number for the given analysis. For example, 
rcnet.ac0 and rcnet.ac1 are generated if an input netlist file specifies an AC analysis for two 
different temperatures. 
 
Scale Factor Notation and Units 

Any letters that are not scale factors and immediately follow an entry number are 
ignored, with the exception of O or I. If an O or I follows a number, a fatal error results. The 
letters O and I are not allowed in alphanumeric numbers because they are easily confused 
with the numbers 0 and 1. The same unscaled number is represented by 10, 10amps, 10V, 



   
 

 94

10Volts, and 10Hz. The same scale factor is represented by M, MA, MSEC, and MMHOS. 
The same number is represented by 1000, 1000.0, 1000Hz, le3, 1.0e3, 1KHz.  
Note: Scale factors are not accumulative as with other simulators (for example, 1KK does not 
equal 1MEG). 

 
Fig B.3 Scale Factors 

 
 
Algebraic Expressions 
Any parameter defined in the netlist can be replaced by an algebraic expression with single 
quoted strings. These expressions can then be used as output variables in the .PLOT, .PRINT, 
and .GRAPH statements. The algebraic expressions greatly expand the user's options in 
creating an input netlist file. Important features of algebraic expressions are: Scaling or 
changing of element and model parameters  
 
Parameterization 
.PARAM x=5 
 
Algebra 
.PARAM x='y+3' 
 
Functions 
.PARAM rho(leff,weff)='x*leff*weff-2u' 
 



   
 

 95

Hierarchical subcircuit algebraic parameter passing. 
subckt 
inv in out wp=10u wn=5u qbar-ic=vdd 
.ic 
qbar=qbar-ic 
… 
.ends 
 
Algebra in elements 
R1 1 0 r='abs(v(1)/i(m1))+10' 
 
 
Algebra in .MEASURE statements 
.MEAS vmax MAX V( 1 ) 
.MEAS imax MAX I ( q2 ) 
.MEAS ivmax PARAM= ' vmax* imax' 
 
Algebra in output statements 
.print conductance=PAR( ' i (ml)/v( 22 ' ) 
 
In addition to simple arithmetic operations (+, -, *,/), HSPICE also accepts the following 
quoted string functions: 

 
Table B.4 HSPICE Functions 
 
The Basic Components 
Resistors 

 
 
Inductors and Capacitors 

 



   
 

 96

Voltage and Current Sources: 
Independent DC Sources 

 
 
Independent AC Sources 

 
 
Transient Sources 
Sinusoidal 

 
 



   
 

 97

Piece-Wise Linear 

 
 
Pulse 

 
 
 



   
 

 98

Dependent Sources 

 
 
Diode 

 
 



   
 

 99

Bipolar Transistor 

 
 
MOSFET 

 
 
Defining a subcircuit 
A subcircuit is defined by a .SUBCKT control statement, followed by the circuit description 
as follows: 
.SUBCKT SUBNAME N1 N2 N3 ... 
Element statements 
. 
. 
. 
.ENDS SUBNAME 
in which SUBNAME is the subcircuit name and N1, N2, N3 are the external nodes of the 
subcircuit. The external nodes cannot be 0. The node numbers used inside the subcircuit are 
strictly local, except for node 0 which is always global. 



   
 

 100

Using a subcircuit 
The element statement for a subcircuit is similar to any other element. The format is as 
follows: 
Xname N1 N2 N3 ... SUBNAME 
in which Xname refers to the element (subcircuit) being used; N1, N2, N3 are the nodes to 
which the external nodes of the subcircuit are being connected, and SUBNAME is the name 
of the subcircuit being used. An example of an inverting opamp circuit using the subcircuit of 
the uA741 (see operational amplifiers above) is given below. The subcircuit is called x1. 
vs 1 0 dc 5 
r1 1 2 200 
rf 2 3 1k 
x1 0 2 3 opamp741 
.dc vs 0 10 1 
.plot dc v(3) 
.end 
 
SPECIFYING ANALYSIS: CONTROL STATEMENTS 
By now you should have a basic understanding of the vocabulary SPICE uses to describe 
the physical circuit. Now we turn to analysis. 
 
.OP Statement 
DESCRIPTION: 
When you include an .OP statement in an input file, HSPICE calculates the DC operating 
point of the circuit. You can also use the .OP statement to produce an operating point, during 
a transient analysis. You can include only one .OP statement in a simulation. If an analysis 
requires calculating an operating point, you do not need to specify the .OP statement; 
HSPICE calculates an operating point. If you use a .OP statement, and if you include the UIC 
keyword in a .TRAN analysis statement, then simulation omits the time = 0 operating point 
analysis, and issues a warning in the output listing. 
SYNTAX: 
.OP <format> <time> <format> <time>... <interpolation> 



   
 

 101

 
 
EXAMPLE 1: 
.OP .5NS CUR 10NS VOL 17.5NS 20NS 25NS 
This example calculates: 
• Operating point voltages and currents, for the DC solution. 
• Currents at 10 ns, for the transient analysis. 
• Voltages at 17.5 ns, 20 ns and 25 ns, for the transient analysis. 
 
EXAMPLE 2: 
.OP 
This example calculates the complete DC operating point solution. The next section shows a 
printout of the solution. 
 



   
 

 102

.DC Statement 
DESCRIPTION: 
You can use the .DC statement in DC analysis, to: 
• Sweep any parameter value. 
• Sweep any source value. 
• Sweep temperature range. 
• Perform a DC Monte Carlo (random sweep) analysis. 
• Perform a data-driven sweep. 
• Perform a DC circuit optimization, for a data-driven sweep. 
• Perform a DC circuit optimization, using start and stop. 
• Perform a DC model characterization. 
 
 
SYNTAX: 
Sweep or Parameterized Sweep: 
.DC var1 START = start1 STOP = stop1 STEP = incr1 
.DC var1 START = <param_expr1> 
+ STOP = <param_expr2> STEP = <param_expr3> 
.DC var1 start1 stop1 incr1 
+ <SWEEP var2 type np start2 stop2> 
.DC var1 start1 stop1 incr1 <var2 start2 stop2 incr2> 
Data-Driven Sweep: 
.DC var1 type np start1 stop1 <SWEEP DATA = datanm> 
.DC DATA = datanm<SWEEP var2 start2 stop2 incr2> 
.DC DATA = datanm 
Monte Carlo: 
.DC var1 type np start1 stop1 <SWEEP MONTE = val> 
.DC MONTE = val 
Optimization: 
.DC DATA = datanm OPTIMIZE = opt_par_fun 
+ RESULTS = measnames MODEL = optmod 
.DC var1 start1 stop1 SWEEP OPTIMIZE = OPTxxx 
+ RESULTS = measname MODEL = optmod 
 



   
 

 103

The format for the .DC statement depends on the application that uses it. 

 
 
EXAMPLE 1: 
.DC VIN 0.25 5.0 0.25 
This example sweeps the value of the VIN voltage source, from 0.25 volts to 5.0 volts, in 
increments of 0.25 volts. 
 
EXAMPLE 2: 
.DC VDS 0 10 0.5 VGS 0 5 1 
2-32 
Commands in HSPICE Netlists: .DC 
This example sweeps the drain-to-source voltage, from 0 to 10 V, in 0.5 V increments, at 
VGS values of 0, 1, 2, 3, 4, and 5 V. 
 



   
 

 104

EXAMPLE 3: 
.DC TEMP -55 125 10 
This example starts a DC analysis of the circuit, from -55°C to 125°C, in 10°C increments. 
 
EXAMPLE 4: 
.DC TEMP POI 5 0 30 50 100 125 
This script runs a DC analysis, at five temperatures: 0, 30, 50, 100, and 125°C. 
 
.AC Statement 
DESCRIPTION: 
You can use the .AC statement in several different formats, depending on the application, as 
shown in the examples below. You can also use the .AC statement to perform data driven 
analysis in HSPICE. If the input file includes an .AC statement, HSPICE runs AC analysis 
for the circuit, over a selected frequency range, for each parameter in the second sweep. For 
AC analysis, the data file must include at least one independent AC source element statement 
(for example, VI INPUT GND AC 1V). HSPICE checks for this condition, and reports a fatal 
error if you did not specify such AC sources. 
 
SYNTAX: 
Single/Double Sweep 
.AC type np fstart fstop 
.AC type np fstart fstop <SWEEP var <START=>start 
+ <STOP=>stop <STEP=>incr> 
.AC type np fstart fstop <SWEEP var type np start stop> 
.AC type np fstart fstop 
+ <SWEEP var START="param_expr1" 
+ STOP="param_expr2" STEP="param_expr3"> 
.AC type np fstart fstop <SWEEP var start_expr 
+ stop_expr step_expr> 
 
Sweep Using Parameters 
.AC type np fstart fstop <SWEEP DATA = datanm> 
.AC DATA = datanm 
.AC DATA = datanm <SWEEP var <START=>start 
<STOP=>stop 
+ <STEP=>incr> 
.AC DATA = datanm <SWEEP var type np start stop> 
.AC DATA = datanm <SWEEP var START="param_expr1" 
+ STOP="param_expr2" STEP="param_expr3"> 
.AC DATA = datanm <SWEEP var start_expr stop_expr 
+ step_expr> 
 



   
 

 105

 
EXAMPLE 1: 
.AC DEC 10 1K 100MEG 
This example performs a frequency sweep, by 10 points per decade, from 1 kHz to 100 MHz. 
 
EXAMPLE 2: 
.AC LIN 100 1 100HZ 
This example runs a 100-point frequency sweep from 1 Hz to 100 Hz. 
 
EXAMPLE 3: 
.AC DEC 10 1 10K SWEEP cload LIN 20 1pf 10pf 
This example performs an AC analysis, for each value of cload. This results from a linear 
sweep of cload between 1 pF and 10 pF (20 points), sweeping the frequency by 10 points per 
decade, from 1 Hz to 10 kHz. 
 



   
 

 106

.TRAN Statement 
 
DESCRIPTION: 
.TRAN starts a transient analysis, which simulates a circuit at a specific time. 

 



   
 

 107

 
 
SYNTAX: 
Single-Point Analysis 
.TRAN tincr1 tstop1 <tincr2 tstop2 ...tincrN tstopN> 
+ <START = val> <UIC> 
Double-Point Analysis 
.TRAN tincr1 tstop1 <tincr2 tstop2 ...tincrN tstopN> 
+ <START = val> <UIC> 
+ <SWEEP var type np pstart pstop> 
.TRAN tincr1 tstop1 <tincr2 tstop2 ...tincrN tstopN> 
+ <START = val> <UIC> 
+ <SWEEP var START="param_expr1" 
+ STOP="param_expr2" 
+ STEP="param_expr3"> 
.TRAN tincr1 tstop1 <tincr2 tstop2 ... tincrN tstopN> 



   
 

 108

+ <START=val> <UIC> 
+ <SWEEP var start_expr stop_expr step_expr> 
Data-Driven Sweep 
.TRAN DATA = datanm 
.TRAN tincr1 tstop1 <tincr2 tstop2 ...tincrN tstopN> 
+ <START = val> <UIC> <SWEEP DATA = datanm> 
.TRAN DATA = datanm<SWEEP var type np pstart pstop> 
.TRAN DATA=datanm <SWEEP var START="param_expr1" 
+STOP="param_expr2" STEP="param_expr3"> 
.TRAN DATA=datanm 
+ <SWEEP var start_expr stop_expr step_expr> 
 
EXAMPLE 1: 
.TRAN 1NS 100NS 
This example performs and prints the transient analysis, every 1 ns, for 100 ns. 
 
EXAMPLE 2: 
.TRAN .1NS 25NS 1NS 40NS START = 10NS 
This example performs the calculation every 0.1 ns, for the first 25 ns; and then every 1 ns, 
until 40 ns. Printing and plotting begin at 10 ns. 
 
EXAMPLE 3: 
.TRAN 10NS 1US UIC 
This example performs the calculation every 10 ns, for 1 µs. This example bypasses the 
initial DC operating point calculation. It uses the nodal voltages, specified in the .IC 
statement (or by IC parameters in element statements), to calculate the initial conditions.  
 
.IC Statement 
DESCRIPTION: 
Use the .IC statement, or the .DCVOLT statement, to set transient initial conditions in 
HSPICE How it initializes depends on whether the .TRAN analysis statement includes the 
UIC parameter. If you specify the UIC parameter in the .TRAN statement, HSPICE does not 
calculate the initial DC operating point, but 
directly enters transient analysis. Transient analysis uses the .IC initialization values as part 
of the solution, for timepoint zero (calculating the zero timepoint applies a fixed equivalent 
voltage source). The .IC statement is equivalent to specifying the IC parameter on each 
element statement, but is more convenient. You can still specify the IC parameter, but it does 
not have precedence over values set in the .IC statement. If you do not specify the UIC 
parameter in the .TRAN statement, HSPICE computes the DC operating point solution, 
before the transient analysis. The node voltages that you specify in the .IC statement are 
fixed, to determine the DC operating point. Transient analysis releases the initialized nodes, 
to calculate the second and later time points. 



   
 

 109

 
 
SYNTAX: 
.IC V(node1) = val1 V(node2) = val2 ... 
 
EXAMPLE: 
.IC V(11) = 5 V(4) = -5 V(2) = 2.2 
 
.TF Statement 
The .TF statement instructs HSPICE to calculate the following small signal characteristics: 
· the ratio of output variable to input variable (gain or transfer gain) 
· the resistance with respect to the input source 
· the resistance with respect to the output terminals 
 
.TF OUTVAR INSRC 
in which OUTVAR is the name of the output variable and INSRC is the input source. 
Example: .TF V(3,0) VIN 
The .TF statement can be used to find the Thevenin small signal equivalent 
resistance. (The Thevenin voltage is given by the node voltage at the open 
circuit terminal, as a result of the .OP statement). 
 
LOOKING AT YOUR DATA: OUTPUT STATEMENTS 
.PRINT and .PLOT 
These statements will instruct HSPICE what output to generate. If you do not specify an 
output statement, HSpice will always calculate the DC operating points. The two types of 
outputs are the .PRINTs and .PLOTs . A print is a table of data points and a plot is a low-
resolution graphical representation. The format is as follows: 
.PRINT TYPE OV1 OV2 OV3... 
.PLOT TYPE OV1 OV2 OV3... 
in which TYPE specifies the type of analysis to be printed or plotted and can be DC, TRAN 
or AC. The output variables are OV1, OV2 and can be voltage between nodes, the voltage 
between a node and ground. With currents, you can also specify the currents between nodes 
and more importantly, the currents running through a particular voltage source, which is 
useful for power consumption. In addition, you can define the type of output by simply 
putting a suffix after V or I.  



   
 

 110

The suffixes are: 
M: Magnitude 
DB: Magnitude in dB (deciBels) 
P: Phase 
R: Real part 
I: Imaginary part 
Examples: 
* Plot the DC voltage between nodes 1 and 2, the voltage at node 
* 3, and the current through the voltage source, Vmeas 
.PLOT DC V(1,2) V(3) I(Vmeas) 
* What does this ask for? 
.PRINT TRAN V(3,1) I(Vmeas) 
* How about this? 
.PLOT AC VM(3,0) VDB(4,2) VM(2,1) VP(3,1) IR(V2) 
 
Outputting to Mwaves/Awaves ( .OPTION POST) 
.PRINT and .PLOT output values to your screen (unless you pipe it into a *.lis or *.lst file). 
But to really produce the nice plots, you need to use MWaves. 
MWaves requires that you place .option post somewhere in your spice deck. 
HSPICE will then generate automatically the files that MWaves looks for when creating 
graphs and charts. If you don’t, MWaves will only be able to plot a single point at best. 
 
Searching for a Particular Value (.MEASURE) 
.MEASURE is often used in circuit optimization. With it, you can find when a certain 
event occurs as you sweep various parameters. 
You can use .MEASURE for finding: 
Rise, Fall and Time Delay 
Average, RMS, min, max, peak-to-peak and integral 
Find X when Y occurs 
Derivative and Integral Evaluations 
Equation Evaluations 
Relative Error (See Manual for Examples) 
.MEASURE is a complex command. To explain all the nuances would make this quite a long 
and dull read. Instead, we are going to post some sample .MEASURE commands that you 
might find useful.  
 
Rise and Fall 
.MEAS TRAN rise TRIG V(1) VAL=.2 RISE=1 
+ TARG V(1) VAL=.8 RISE=1 
Gives the time it takes for node 1 to go from 20% to 80% of the maximum voltage 
(assuming a max voltage of 1V) 
 
Time Delay 
.MEAS TRAN tdelay TRIG V(1) VAL=2.5 TD=10n RISE=1 
+ TARG V(2) VAL=2.5 FALL=1 



   
 

 111

This command takes a look between two points and calculates the the time delay as a signal 
pushes the voltage up at first node 1 and then node 2. The crossing does not count unless it 
lasts longer than 10 ns. It only counts the first time it rises and the first time it falls. 
 
Average (and RMS, MIN, MAX and Peak to Peak) 
.MEAS TRAN avgval AVG V(1) FROM=10ns TO=55ns 
This takes the average value of node 1 from 10ns to 55ns and outputs it as avgval in the *.lis 
or *.lst file. 
 
If you replace the keyword AVG with RMS, MIN, MAX and PP HSPICE will calculate that 
function for the time given. 
 
Find and When 
.MEAS TRAN DesiredCurr FIND I(Vmeas) WHEN V(1)=1V 
Output to DesiredCurr the current through the votlage supply Vmeas when node 1 reaches 
1V. 
 
Derivatives and Integrals 
.MEAS TRAN slewrate DERIV V(out) AT=25ns 
This calculates the derivative of V(out) at 25ns. Derivative is always calculated with respect 
to the sweeping parameter (which is time in this case) 
 
Using Equation Evaluations 
.MEAS TRAN slew DERIV v(1) WHEN v(1)=’0.9*vdd’ 
In this case, we’re calculating slew rate when v(1) is equal to 0.9*vdd. 
 
.MEAS AC delay DERIV ‘VP(output)/360.0’ AT=10kHz 
This calculates the delay which is equal to the derivative of the phase normalized by 360 
degrees. 
 
Node naming 
 
.CONNECT 
DESCRIPTION: 
The .CONNECT statement connects two nodes in your HSPICE netlist, so that simulation 
evaluates two nodes as only one node. Both nodes must be at the same level in the circuit 
design that you are simulating: you cannot connect 
nodes that belong to different subcircuits. 
 

SYNTAX: 



   
 

 112

.CONNECT node1 node2 
EXAMPLE 1: 
... 
.subckt eye_diagram node1 node2 ... 
.connect node1 node2 
... 
.ends 
 
.GLOBAL 
DESCRIPTION: 
The .GLOBAL statement globally assigns a node name, in HSPICE. This means that all 
references to a global node name, used at any level of the hierarchy in the circuit, connect to 
the same node. The most common use of a .GLOBAL statement is if your netlist file 
includes subcircuits. This statement assigns a 
common node name to subcircuit nodes. Another common use of .GLOBAL statements is to 
assign power supply connections of all subcircuits. For example, .GLOBAL VCC connects 
all subcircuits with the internal node name VCC. 
Ordinarily, in a subcircuit, the node name consists of the circuit number, concatenated to the 
node name. When you use a .GLOBAL statement, HSPICE does not concatenate the node 
name with the circuit number, and assigns only the global name. You can then exclude the 
power node name in the subcircuit or macro call. 
 
SYNTAX: 
.GLOBAL node1 node2 node3 ... 

 
 
EXAMPLE: 
This example shows global definitions for VDD and input_sig nodes. 
.GLOBAL VDD input_sig 



   
 

 113

Model Definition 
 
DESCRIPTION: 
Use the .MODEL command to include an instance (element) of a pre-defined HSPICE 
model in your input netlist.  
Commands in HSPICE Netlists: .MODEL 
For each optimization within a data file, specify a .MODEL statement. HSPICE can then 
execute more than one optimization per simulation run. The .MODEL optimization statement 
defines: 
• Convergence criteria. 
• Number of iterations. 
• Derivative methods. 
  
SYNTAX: 
.MODEL mname type <VERSION = version_number> 
+ <pname1 = val1 pname2 = val2 ...> 
.MODEL mname OPT <parameter=val ...> 
  
EXAMPLE 1: 
.MODEL MOD1 NPN BF=50 IS=1E-13 VBF=50 AREA=2 PJ=3, 
+ N=1.05 
 
Alter Blocks 
DESCRIPTION: 
You can use the .ALTER statement to rerun an HSPICE simulation, using different 
parameters and data. Use parameter (variable) values for print and plot statements, before 
you alter them. The .ALTER block cannot include .PRINT, .PLOT, .GRAPH or any other 
input/ output statements. You can include analysis statements (.DC, .AC, .TRAN, .FOUR, 
.DISTO, .PZ, and so on) in a .ALTER block in an input netlist file. However, if you change 
only the analysis type, and you do not change the circuit itself, then simulation runs faster if 
you specify all analysis types in one block, instead of using separate .ALTER blocks for each 
analysis type. The .ALTER sequence or block can contain: 
• Element statements (except source elements) 
• .DATA statements 
• .DEL LIB statements 
• .INCLUDE statements 
• .IC (initial condition) and .NODESET statements 
• .LIB statements 
• .MODEL statements 
• .OP statements 
• .OPTION statements 
• .PARAM statements 
• .TEMP statements 
• .TF statements 
• .TRAN, .DC, and .AC statements 
SYNTAX: 



   
 

 114

.ALTER <title_string> 

 
 
EXAMPLE: 
.ALTER simulation_run2 



   
 

 115

C. HSIM SIMULATOR FEATURES & SYNTAX SUMMARY 
 
HSIM 
The HSIM simulator is the core of the HSIMplus platform. HSIM performs transient 
analysis, DC analysis, AC analysis and Monte Carlo analysis supporting the following circuit 
elements: 
• MOSFET (Metal-Oxide Semiconductor Field-Effect Transistors) 
• Bipolar transistors 
• Diodes 
• Junction field-effect transistors 
• Resistors 
• Capacitors 
• Self and Mutual inductors 
• Independent voltage and current sources 
• Linear and nonlinear controlled voltage and current sources 
• Lossless and lossy transmission lines 
 
Interactive Circuit Analysis 
HSIM’s interactive circuit analysis provides a circuit debugging environment that interrupts 
simulation and performs interactive circuit diagnosis at selected points in time. HSIM 
analysis provides circuit information such as: 
• Node voltage 
• Node capacitance 
• Element current 
• Element conductance and capacitance 
• Fan-in and fan-out elements to a node 
• Element terminal nodes 
• Active element drivers to a node 
• Active loading elements to a node 
• Excessive current checks 
• DC path between two nodes 
 
Using HSIM in a Nanometer VLSI Design Flow 
A typical nanometer very large system integration (VLSI) design effort can be divided into: 
• Pre-layout design flow 
• Post-layout design flow 
These design flows are discussed in the following sections. 
Pre-Layout Design Flow 
 Pre-layout design flow is designed to create functionally correct designs for layout 
implementation. Estimated parasitics for the inter-block interconnects are often used for 
exploring the timing behavior at this early design stage. At the block level illustrated in 
Figure 2-2, Pre-Layout Design Flow, HSIM shows the use of three design types in a pre-
layout flow. A full-chip functionality and timing simulation flow is an extension from the 
block-level flow. By assembling the netlists of all the individually verified blocks and 
providing the top-level input stimuli, the fullchip can be simulated without difficulties or 
complications. 



   
 

 116

 
FIGURE C-1. Pre-Layout Design Flow 
 
HSIM provides design flows for the following three design styles: 
• Synthesizable Logic  
• Non-Synthesizable Logic  
• Analog/Memory  
 
Synthesizable Logic Synthesizable logic uses high-speed standard cells for digital design. 
Simulations can be run to explore cross-talk issues along certain critical paths. Then, the 
information from this step is used to refine layout strategies that prevent cross-talk problems. 
Block current obtained through the simulation can be used for power bus sizing. To 
maximize HSIM’s capabilities in the synthesizable logic flow, the sub-circuit library and the 
estimated interconnect parasitics must be provided. The estimated parasitics are 
placed inside the circuit netlist with the other functional elements of the design, and then 
simulated by HSIM. The sub-circuit library transforms the design from a gate-level 
representation to a transistor-level representation. The estimated parasitics inject an early 
physical dimension into a pure logical design in order to study the potential physical effects 



   
 

 117

within the design. Estimated parasitics may include any of the following: • Long 
interconnects for a timing behavior assessment, particularly for clock net analysis (jitter and 
skew). 
• Estimated cross-coupling capacitors for a cross-talk assessment 
• All possible wire capacitors for a block current assessment 
 
Non-Synthesizable Logic Non-synthesizable logic is often used for high performance 
application-specific integrated circuit (ASIC) and semi-custom designs. These types of 
designs typically utilize complex design techniques such as dynamic logic, and are subject to 
the circuit effects of noise and ground bounce. As logic simulators do not provide an accurate 
description of the behavior of these circuits, HSIM simulation is strongly recommended. 
Analog/Memory For analog/memory design styles, HSIM provides speed and accuracy to 
successfully simulate these circuit types. 
 
Post-Layout Design Flow  
The main purpose of the post-layout design flow is to optimize the design by layout 
refinements and to verify circuit performance in the presence of layout parasitics. In 
particular, to determine the influence of IR drop and coupling capacitance on design 
characteristics. An overview of the post-layout design flow is shown in Figure C-2, Post-
Layout Design Flow. 



   
 

 118

 
FIGURE C-2 Post-Layout Design Flow 

 
GDSII LAYOUT DATABASE The post-layout flow begins with a GDSII1 layout database. 
The next stage is physical layout verification to ensure there are no major flaws in the layout, 
such as: 
• DRC 
• ERC 
• LVS 
 
LAYOUT FUNCTIONAL VERIFICATION 
After physical layout verification, the basic functionality of the layout is verified. This is best 
accomplished by doing the following: 
• Extracting the active components of the design. 
• Back-annotating DPF to the pre-layout hierarchical netlist 
Once this is completed, a top-level full-chip simulation can be performed. Top-level stimuli 
from the pre-layout flow can be used to ensure that the basic functionality of the extracted 
netlist has not changed. 
 



   
 

 119

DESIGN OPTIMIZATION  
Once design functionality has been confirmed, layout parasitics can be incorporated into the 
simulator and the results of the simulation can be used to optimize the design. Optimization 
goals include: 
• Enhancing circuit speed 
• Maintaining power consumption within specification 
• Increasing the design margin 
• Improving circuit reliability and robustness 
• Decreasing sensitivity to manufacturing variability 
The circuit characteristics to address in this phase include: 
• Speed 
• Power 
• Reliability 
• Manufacturability 
 
NOTE: GDSII has no official definition. Unofficially it stands for Graphics Design Station 
Two because it was the output format from the second generation of Calma design stations. 
 
CIRCUIT EXTRACTION AND ANALYSIS 
Enhanced design margins provide greater tolerance against manufacturing fluctuations. 
Greater circuit reliability ensures a long product life in the field. To refine a layout, a detailed 
circuit must be extracted and analyzed to determine if and where the circuit needs 
improvement. 
A detailed extracted circuit netlist consists of the following: 
• Active circuit devices 
• The device’s topological connectivity 
• Interconnect parasitic for both signal and power nets 
Many extraction tools are configured to extract both active devices and interconnect parasitic 
into a single, flat netlist file. This straightforward approach eliminates any potential problems 
with issues such as name matching between netlist and DSPF/SPEF files. The one proviso is 
that HSIM must have sufficient memory available to read-in the entire flat netlist. After the 
design netlist is parsed, HSIM partitions the design, looking for hierarchy with the available 
partitioned sub-circuits. This ensures that HSIM utilizes the hierarchy in the design for 
memory efficiency even if the input netlist is flat. Since HSIM’s peak memory usage occurs 
while parsing the netlist and building the hierarchical simulation structures, if the circuit 
netlist can be parsed, simulation can usually proceed. This process works well for circuits of 
small to medium size but full advantage of the hierarchical simulation engine cannot be 
realized in the same way that it can with a hierarchical circuit of many levels, containing a 
large number of related small isomorphic instances. Most extraction tools also offer separate 
netlisting for active devices and interconnect parasitics after extraction is complete. HSIM is 
designed and implemented to take maximum advantage of this flow and data. Extracting the 
active devices to Nassda’s Device Parameter Format (DPF) and interconnect parasitic to 
DSPF/SPEF provides for efficient back-annotation into the hierarchical simulation database 
created after parsing the hierarchical pre-layout netlist. 
 
RESOLVING INTERCONNECT SEGMENTATION 



   
 

 120

Another issue is the resolution of the interconnect segmentation. When a fine interconnect 
segmentation resolution is requested, a flat extractor can create a very large number of 
extracted parasitic elements. Although HSIM uses efficient hierarchical data structures, it is 
not completely immune from the large data volume problems associated with parsing in these 
large flat netlists. The amount of extracted data must be controlled by selecting the 
appropriate segmentation resolution in the parasitic extraction process. 
NOTE: For a large parasitic database, it is recommended to enable RC reduction features in 
HSIM. 
 
This will substantially reduce the memory required to store the interconnect parasitics and 
ensures that the transient simulation proceeds with maximum efficiency. A memory circuit 
contains the same core cell that composes the majority of the layout. If extracted 
hierarchically, the netlist size can be reduced to one-fifth the size of the same netlist from a 
flat extraction. System-on-Chips (SoC) also have memory and other regular structures, 
although the storage saving might not be as great as that of memory circuits. 
If the extracted interconnect parasitics can be generated in DSPF/SPEF, then the DSPF back-
annotation capability allows a net-by-net RC reduction and instantiation. This feature 
removes the need to store all layout parasitics because each net is reduced and back-
annotated one net at a time. This approach effectively eliminates the typical bottleneck 
associated with handling large flat parasitic netlists and provides greater circuit simulation 
capacity. 
HSIM share signal net reduction technologies and the parameter settings operate identically 
in each simulator. For signal nets, HSIMplus offers hierarchical back annotation capability 
where the reduced signal net can be partitioned and distributed into the pre-layout netlist; 
preserving the benefits of hierarchical simulation as much as possible. Compared to HSIM’s 
flattening back-annotation, hierarchical back-annotation offers the following benefits for 
signal nets: 
• Small, but not insignificant, throughput improvement. 
• Large increase in memory efficiency. 
HSIMplus’s power net capabilities offer a significant enhancement over HSIM. HSIM offers 
small power net reduction technologies such as RMIN elimination. However HSIM’s 
flattening back-annotation of the globally coupled power nets defeats the hierarchical 
simulation engine and forces flat simulation. HSIMplus adds two key pieces of innovative 
technology that enable efficient full-chip post-layout simulation including all power nets:  
• Power Net reduction 
• Hierarchical power net back-annotation 
Power Net reduction has two sub-flows that are applied in sequence: 
1. Straight-forward timing-based sub-flow largely preserves the power net topology and 
applies resistor reduction based on a specified threshold, series merging, and parallel 
elimination to reduce the number of power net resistors by an order of magnitude. 
2. The second sub-flow alters the power net topology and applies user controlled heuristics of 
varying aggression levels that transform the power net structures into significantly smaller 
networks. 
 
These reduced power nets can be saved at intermediate steps in the reduction process 
facilitating quick turnaround times for repeated simulations. The final reduced power 



   
 

 121

networks are then back-annotated to the hierarchical pre-layout database using HSIMplus’s 
hierarchical back-annotation capability. Circuits that most lend themselves to a hierarchical 
simulator solution typically have, but are not exclusively limited to, small isomorphic 
instances that are greatly replicated, post-layout, with all signal and power net interconnect 
parasitics incorporated into the simulator. HSIM can precisely verify circuits of tens or even 
hundreds of millions of transistors at tape out providing the following benefits: 
• Increased confidence in achieving first time simulation success. 
• Increased probability of ramping the first design to high volume. 
• High and consistent yields. 
 
Netlist Syntax 
HSIM input netlists contain some or all of the following information: 
• Circuit topology description consisting of circuit elements and their connectivity. 
• Element models 
• Simulation control parameters 
• Stimulus input sources and output specifications 
These data can be described in either single file or multiple files. When multiple files are 
involved, an .include statement must be used to include main netlist files. Refer to .include 
syntax. 
 
Netlist Syntax Summary  
HSIM netlist syntax can be summarized in Table C-1: 
 

 



   
 

 122

 
TABLE C-1 Netlist Syntax Summary 
 
Netlist Differences Between HSIM and SPICE 
The input netlist format for HSIM is almost completely compatible with that of SPICE or 
HSPICE simulators. There are some differences which are described as follows: 
• HSIM reads input netlist and performs the circuit simulation, even when the netlist contains 
elements that are supported by SPICE but are not supported by HSIM. Elements that are not 
supported are ignored and warning messages are displayed.  
 
Simulation and Control Statements 
.alter 
The .alter statement repeats a simulation using alternative parameter values and modified 
netlist. In each simulation run, the output files, such as hsim.ic, hsim.fsdb, and so on, will 
have the suffix .a#, where # is the run number. 
Example: 
* first simulation run 
.temp 25 
...... 
.alter 
.temp 100 
.end 
The circuit temperatures for the two runs are: Run 1; 25° C and Run 2; 100° C. 
 



   
 

 123

.data  
The .data statement allows modifying parameter values in transient simulation. This 
command is for cell or block characterization and optimization. The group of parameter 
values is included in the input file. 
.data dlink 
+ param1 <param2 param3 ... paramN> 
+ val1a <val2a val3a ... valNa> 
+ val1b <val2b val3b ... valNb> 
+ ... 
.enddata 
SYNTAX DEFINITIONS • dlink dlink is also used in the .tran command 
• param Parameter names 
• val Parameter values. 
Example: 
.tran 0.1n 100n sweep data=dlink1 
.data dlink1 
+ L W CLOAD 
+ 0.18u 0.36u 10f 
+ 0.13u 0.26u 5f 
.enddata 
 
HSIM accepts the following parameter values and performs the first transient simulation: 
L=0.18u, W=0.36u, CLOAD=10f 
Afterwards, the simulation is repeated for the following: 
L=0.13u, W=0.26u, CLOAD=5f 
 
.del param  
The .del param statement removes selective parameter setting which is especially useful in 
the .alter section. 
.del param <param1> <param2> ... <subckt=<subckt_name>> 
For instance, a vector file can be removed from the simulation in the .alter on page 5-58. 
Example: 
. param HSIMVECTORFILE=vec1 
...... 
...... 
.alter 
.del param HSIMVECTORFILE 
.param HSIMVECTORFILE=vec2 
...... 
In this case, the vector file vec1 is removed in the .alter section and another file, vec2, is 
added to the simulation. If the .del param statement is not used, then both vec1 and vec2 
files are included in the simulation in the .alter. 
 
.end 
The .end statement defines the end of an HSIM run. 
.end <comments> 



   
 

 124

If .end is not specified in an input netlist, the default is end of file. An input netlist can 
contain multiple HSIM runs by having an .end at the end of each run. In each HSIM run, the 
output files, such as hsim.ic, hsim.fsdb, and so on, will have the suffix .e#, where # is the run 
number. 
 
.endl  
The .endl statement ends the library macro definition. 
.endl <lib_entry_name> 
Example: 
.lib models.lib TT 
The TT portion of models.lib is read in. 
.lib TT 
.model ck1 nmos level=49 
... ... ... 
.endl TT 
. 
 
.ends  
The .ends statement specifies the end of a subckt definition. 
.ends <subckt_name> 
Example: 
.subckt inverter in out 
M1 2 1 0 0 nmos1 w=0.36u l=0.18u 
M2 2 1 vdd vdd pmos1 w=0.36u l=0.18u 
.ends 
 
.force 
.force node_name voltage_value <subckt=subckt_name> <time=force_time> 
• node_name node_name can be a specific node name or a pattern. 
• subckt_name subckt_name is the sub-circuit name. When the node_name sub-circuit 
parameter is used, the node is inside that subcircuit. Otherwise, node_name is assumed to be 
a hierarchical name. 
• force_time force_time is the starting time that forces the specified node to stay at a 
specified constant voltage_value. Time unit is seconds. 
.force forces node_name to stay at the same voltage_value as force_time until one of the 
following occurs: 
• Simulation ends 
• When the constant node voltage status is released by either of the following: 
- .release 
- rv. 
.force does not work on voltage source or vector file input nodes. Refer to the following 
sections for additional information: 
Example: 
.force pump 6.5 time=100u 
 
.global The .global statement defines global nodes. 



   
 

 125

.global node1 <node2 ...> 
A global node can be directly referenced from any level of hierarchy. Any node name 
appearing at the top-level or any low level hierarchy is connected to the same node. 
Declaring a global node allows a direct reference to an internal sub-circuit node without 
defining the node in the sub-circuit port list. HSIM recognizes any of the following as the 
ground node: 
• 0 (zero) 
• gnd 
• gnd! 
• ground 
 
.ic  
The .ic statement defines the initial condition. 
.ic v(node1)=val2 <v(node2)=val3 ...> <subckt=sub_name> <level=val4> 
The specified node can be the node name of a single node or a pattern containing 
asterisk (*) wildcard character that represents a group of nodes matching the pattern. 
The optional setting of level is specified to control the scope of wildcard match. 

 
TABLE C-3 .IC Statement Parameters 
 
Example: 
.ic v(1)=1.8 v(4)=3.3 v(x1.x2.*)=2.2 
.include The .include statement includes another data file. 
� .include file_name 



   
 

 126

or 
.inc file_name 
Example: 
.inc netlist.net 
 
.lib  
The .lib statement includes the model library. 
.lib file_name library_name 
This is a library call statement which indicates the specified library entry in the library file 
should be read in. 
or 
.lib library_name 
This is a library definition statement that begins the library entry in the library file. The .endl 
indicates the end of the library entry. 

 
TABLE C-4 .LIB Statement Parameters 
 
Example: 
.lib models.lib TT 
The TT portion of models.lib is read in. 
.lib TT 
.model ck1 nmos level=49 
... ... ... 
.endl TT 
A library is defined. 
 
.malias  
The .malias statement provides an alias for a model name. 
.malias model_name alias_name1 <alias_name2 ...> 
The words alias_name1 is aliased to model_name. 
 
Example: 
.malias tn013 ma mb 
Both model names ma and mb are aliased to tn013. 
 



   
 

 127

.nodeset 
This statement sets the starting voltage at DC initialization. 
.nodeset v(node1)=val2 <v(node2)=val3 ...> <subckt=sub_name> <level=val4> 
The specified node can be the node name of a single node or a pattern containing a asterisk 
(*) wildcard character that represents a group of nodes matching the pattern. The optional 
setting of level controls the scope of wildcard match. Refer to .ic. 
The optional setting of subckt is for the nodes within all instances of the specified subcircuit 
name; this is equivalent to placing the .nodeset statement inside the sub-circuit definition. 
Example: 
.nodeset v(1)=1.8 v(4)=3.3 v(x1.x2.*)=2.2 
 
.op  
The .op statement dumps the operating condition at the specified time(s). 
.op <time1> <time2 ...> 
The DC operating point output is partially supported in HSIM. HSIM only creates the node 
voltages. The DC operating analysis should generate node voltages and element currents at 
the resulting DC operating point. 
 
HSIMOPCOMPRESS  
When .op statement is specified in the netlist, HSIM prints each node voltage at the specified 
time into a file. The format of the output file can be changed by setting 
HSIMOPCOMPRESS as follows: 
• HSIMOPCOMPRESS=0 Regular text format (.ic extension) (default setting) 
• HSIMOPCOMPRESS=1 .gz format 
• HSIMOPCOMPRESS=2 .Z format 
The prefix of the output file is hsim by default, but can also be specified on the command 
line by entering -o file_name. The default value of time is 0 ns. 
NOTE: Element currents can be dumped at an operating point using the HSIMDUMPOPI=1 
option. The default is 0. 
 
.option  
This command defines optional values. 
.option name1=val1 <name2=val2> . . . <nameN=valN> 
HSIM recognizes popular simulation options described in Table C-5, SPICE 
Simulation Options Recognized by HSIM. 
 



   
 

 128

 



   
 

 129

 
TABLE C-5 .OPTION Parameters 



   
 

 130

.param  
The .param statement defines parameters. 
.param name1=val1 <name2=val2 ...> 
Examples: 
1. .param a=2 b=4 
2. .param c=’b+3*a’ 
 
.release 
.release node_name <subckt=subckt_name> <time=release_time> 
• node_name node_name can be a specific node name or a pattern. 
• subckt_name subckt_name is the sub-circuit name. When the node_name sub-circuit 
parameter is used, it is the node inside that subcircuit. Otherwise, node_name is assumed to 
be a hierarchical name. 
• release_time release_time is the starting time that releases the specified node. Time unit is 
seconds. .release releases the node voltage from the value fixed by the .force command or by 
the interactive rv command. The node voltage are then determined by the regular simulation 
result.  
 
.subckt 
The .subckt statement defines a sub-circuit. 
.subckt sub_name term1 <term2 ...> <parameter1=val1> <parameter2=val2 ... > 
Example: 
.subckt inverter in out 
M1 2 1 0 0 nmos1 w=0.36u l=0.18u 
M2 2 1 vdd vdd pmos1 w=0.36u l=0.18u 
.ends 
 
Sub-circuit Instance The sub-circuit instance is defined below: 
Xaa term1 <term2 ...> sub_name <parameter1=val2> <parameter2=val3> 
Example: 
Xinv1 1 2 inverter 
 
.temp 
The .temp statement defines the temperature. 
.temp temp1 <temp2 ...> 
The temperature value is in degrees Celsius. If multiple temperatures are specified, HSIM 
will perform one simulation for each temperature with the output files (i.e. hsim.ic, 
hsim.fsdb, etc.) having a .t# suffix. The default temperature is 25 degrees Celsius. 
 
.tran  
The .tran statement defines transient analysis. Three versions of sweep syntax are supported. 
1. .tran steptime stoptime <uic> <sweep data=data_name> 
2. .tran steptime stoptime <uic> sweep var pstart pstop incr 
3. .tran steptime stoptime <uic> sweep var poi np p1 p2 ... 
Except for uic and sweep data, all optional parameters specified after stoptime are ignored. 
The .tran statement parameters are described in Table C-6. 



   
 

 131

 
TABLE C-6 .TRAN Parameters 
 
AC Small-Signal Analysis 
AC Small-Signal Analysis (AC) is a frequency domain analysis that calculates the small-
signal response of a circuit to a combination of inputs. This is accomplished by creating a 
linear solution for the circuit at its DC operating point. AC analysis has the following 
features: 
• Nonlinear devices are transformed to linear devices around their bias point value before 
running an AC analysis. Examples include: 
- Voltage-controlled sources 
- Current-controlled sources 
• AC analysis only considers gain and phase responses of a circuit because it is a linear 
analysis 
• AC analysis does not limit voltages or currents. 
During AC analysis the simulator seeks a linear solution for the circuit in the frequency 
domain at the appropriate operating point. Hence, as a first step in conducting AC analysis, 
the operating point information is determined. Each voltage or current source can have any or 
all of the following components: 
• AC component 
• DC component 
• Transient component 
The following elements are supported in AC analysis: 
• MOSFET 
• BJT 
• JFET 
• Diode 
• Resistor 



   
 

 132

• Capacitor 
• Inductor 
• Voltage and Current sources 
- Voltage-Controlled Voltage Source (VCVS) 
- Voltage-Controlled Current Source (VCCS) 
- Current-Controlled Current Source (CCCS) 
- Current-Controlled Voltage Source (CCVS) 
• Mutual inductor 
Invoking AC analysis After the operating point is determined, frequency domain analysis 
can begin. The 
following statement invokes AC analysis and specifies the required frequency range. 
 
.ac 
.ac sweep_type nf start stop 
AC analysis is conducted for the frequency range between start and stop. 
sweep_type One of the following keywords: 
dec - for decade increment 
oct - for octave increment 
lin - for linear increment 
poi - for list of points 
nf - number of frequencies for lin and poi types; or number of frequencies per decade for            
dec type, per octave for oct type. 
start Starting frequency for dec, oct, lin 
stop Final frequency for dec, oct, lin 
Example: 
.ac poi 4 1e8 5e8 8e8 1e9 
 
NOTE: POI (Points of Interest) 
AC analysis is conducted at four different frequencies: 
• 100 MHz 
• 500 MHz 
• 800 MHz 
• 1 GHz 
AC frequency analysis can be performed when sweeping some external parameter(s) or 
value(s) of an independent source. An external sweep is specified by augmenting the .ac 
statement described above with the keyword sweep followed by one of the following 
specifications. 
sweep variable_name start stop incr 
sweep variable_name sweep_type np start stop 
sweep variable_name poi np p_1 p_2 ... p_n 
sweep data=data1 
Here variable_name is one of the following: 
• Independent voltage source name 
• Independent current source name 
• Parameter name 
• Keyword: temp for temperature 



   
 

 133

 
DC Analysis 
DC Analysis is used to determine the quiescent state or operating point information of the 
circuit. Different types of DC analysis are available in the HSIM simulator as described 
below: 
• Sweep a source value 
• Sweep the values of two voltage or current sources 
• Sweep a parameter value 
• Sweep temperature value 
• Any combination of the above Voltage or current sources must be specified as a netlist  tem 
if they are included in the .dc statement. 
 
Sweep One or Two Source Value(s) 
Either of the following syntax statements can be used. 
1. .dc var start stop incr <var2 start2 stop2 incr2> 
2. .dc var start stop incr <sweep var2 type np start2 stop2> 
Sweeps the voltage or current source var. If the second source var2 is specified, then the first 
source is swept over its range for each value of the second source. 

 
TABLE C-7 Sweep One or Two Source Value Keyword Descriptions 
 
Examples: 
1. .dc i2 0 10m 0.5m 
The current source i2 is swept from 0 A to 10 mA in increment of 0.5 mA. 



   
 

 134

2. .dc vds 0 2 0.1 vgs 0 2 1 
Voltage source vds is swept from 0Vto 2V in increment of 0.1V at vds values of: 
0.0V, 1.0V, 2.0V. 
3. .dc v1 poi 4 0 0.3 0.5 1 
The voltage source v1 is swept at values of: 0.0V, 0.3V, 0.5V, 1.0V. 
4. .dc vds 1 3 0.2 sweep r1 dec 3 5k 500k 
Voltage source vds is swept from 1V to 3V in increment of 0.2V with the resistor r1 value 
being swept from 5 Kohm to 500 Kohm by 3 values per decade (dec.). 
 
Sweep Parameter Value 
.dc param_name start stop incr 
Sweeps param_name. .dc has the following parameters: 
• start Starting value 
• stop Final value 
• incr Increment value 
Example: 
.dc param3 1 5 1 
Parameter param3 is swept from 1 to 5 in increment of 1. 
Sweep Simulation 
Temperature 
.dc temp start stop incr 
Sweeps the simulation temperature. .dc temp has the following parameters: 
• start Starting temperature 
• stop Final temperature 
• incr Increment value 
Example: 
.dc temp poi 4 0 25 50 75 
HSIM is conducted at the following temperatures: 0 °C, 25 °C, 50 °C, 75 °C. 
 
General HSIM Parameters 
HSIMLIS  
HSIM will concatenate all input files into a single file using the HSIMLIS command. When 
HSIMLIS=1, HSIM will generate hsim.lis or output_file.lis when invoking HSIM with -o 
output_file option. 
 
HSIMWARNFILTER, HSIMMSGFILTER 
HSIMWARNFILTER is used to filter out unwanted Warnings and HSIMMSGFILTER 
filters out Messages. By setting HSIMWARNFILTER or HSIMMSGFILTER to a given 
string, any Warnings or Messages that contain the given string will not be displayed. The 
syntax is as follows: 
 .param HSIMWARNFILTER=”removing unused subckt” 
or 
.param HSIMMSGFILTER=”removing unused subckt” 
 
HSIMWARNSTOP  



   
 

 135

HSIMWARNSTOP is used to terminate simulation upon reaching a user-specified number of 
Warnings. When HSIMWARNSTOP=1, the maximum number of Warnings can be set by 
setting: 
.option warnlimit=# 
 
HSIMFLAT  
In simulating sub-circuit cells, the efficiency gained by saving identical sub-circuit 
computations is significant enough to compensate for the overhead. If each sub-circuit cell 
has different behavior during the simulation, then the flat simulation might have an efficiency 
edge over hierarchical simulation. Hierachical simulation still has an advantage in saving the 
storage space. To allow a trade-off choice in memory usage  and simulation speed, the 
control parameter HSIMFLAT enables selecting either a flat or a hierarchical simulation. 
When HSIMFLAT=1, HSIM does not flatten the entire circuit. Instead, it only selectively 
flattens those sub-circuits that have no sufficient sub-circuit instances, or the sub-circuit that 
has been identified to have different behavior from other sub-circuit instances. 
HSIMPREFLAT If HSIMPREFLAT=1, the circuit netlist is flattened before partitioning. 
This is equivalent to read in a flat netlist. HSIMPREFLAT is valuable in some cases of post-
layout simulation where the parasitic Resistors and Capacitors (RC)s are defined within the 
sub-circuits. 
 
HSIMDCINIT  
DC initialization is activated after the netlist processing and hierarchical database building 
phase is completed and before the beginning of a transient simulation. However, under 
certain special situation, there is no need to perform DC initialization to achieve the desired 
results. The control parameter HSIMDCINIT is used to activate the DC initialization. 
 
HSIMDCSTEP  
HSIMDCSTEP determines the smallest time step used during DC initialization. Units are 
in picosecond and default value is 1000. 
 
HSIMMULTIDC  
HSIMMULTIDC invokes multi-rate algorithm which speed up DC convergence when set to 
1. The default value is 1. 
 
HSIMENHANCEDC  
HSIMENHANCEDC invokes more conservative DC initialization algorithm and settings and 
increase the DC iteration limit to 1000 when set to 1. When set to 2, HSIM utilizes the 
voltage-dependent MOSFET capacitance model in dc initialization. 
HSIMENHANCEDC=0|1|2 
 
HSIMKEEPNODESET  
HSIM automatically identifies cross coupled nodes in circuits and applies a logic 1 nodeset 
value to one of the nodes. This avoids a meta stable condition after DC initialization. Since 
the nodeset value is kept only at the first iteration, it can be overridden. When 
HSIMKEEPNODESET is set to 1, all nodeset values will be kept  during the first 1/10 of the 
total iterations. 



   
 

 136

 
HSIMSPEED  
To facilitate the selection on speed and precision performance, the control parameter 
HSIMSPEED automatically sets these parameter values. The settings of those parameters are 
defined in Table C-8, HSIMSPEED Parameters. The value of HSIMSPEED can be any 
integer from 0 to 8. Higher HSIMSPEED speed values cause faster simulation speed at 
reduced simulation precision.  

 
 
HSIMSPEED can be selectively set in local sub-circuits such that: 
• Lower HSIMSPEED values are set for either of the following: 
- Analog sub-circuits 
- Timing critical sub-circuits 
• Higher HSIMSPEED values can be set for digital sub-circuits. 



   
 

 137

 
TABLE 6-13. HSIMSPEED Parameters 



   
 

 138

HSIMITERMODE  
HSIMITERMODE is the HSIM iteration control parameter and can be set integer from 0 to 2 
as described as follows and in Table 6-16, Iteration Control Parameter. 
HSIMITERMODE=0|1|2 
SYNTAX DEFINITIONS  
• HSIMITERMODE=0 Default. 
• HSIMITERMODE=1 Uses Nassda’s proprietary iteration scheme which balances accuracy 
and performance. 
• HSIMITERMODE=2 A spice-like Newton Raphson iteration is used. 
 
HSIMANALOG  
To achieve optimal HSIM performance in analog and mixed-signal circuit simulation, 
HSIMANALOG controls the complexity of analog simulation algorithm. The higher the 
value specified by HSIMANALOG is, the more precise and time-consuming the analog 
simulation algorithm will be. 
HSIMANALOG=-1 In simulating digital circuits where no analog circuit behavior is 
expected, set HSIMANALOG=-1. This assumes no sensitive coupling exists between 
neighboring subcircuits. 
HSIMANALOG=0, HSIMANALOG=1 
HSIMANALOG=0 or HSIMANALOG=1 settings are used to simulate full-custom circuits 
or memory circuits. Compared with HSIMANALOG=-1, these commands provide for 
increased complexity from more precise simulation in local feedback coupling between 
neighboring sub-circuits. 
HSIMANALOG=2 HSIMANALOG=2 further increases the complexity of the analog 
simulation algorithm by extending the feedback couplings to a wider scope, such as including 
voltage control oscillators (VCO)s found in most PLL circuits. HSIMANALOG=2 is 
recommended for use with analog circuits containing highly sensitive topology such as the 
following: 
HSIMANALOG=3  
HSIMANALOG=3 can further improve analog simulation precision. HSIMANALOG=3 
automatically applies HSIMSPICE=3 to those MOSFETs involved in feedback coupling. 
This setting is recommended for simulating A/D and D/A converters. 
 
 
 



   
 

 139

D. EXPRESSION FOR DETERMINING MAXIMUM FREQUENCY 
 

Convention Used: 
X= Rise delay. 
Y= Fall delay. 
TONI= ON time of input wave. 
TONO=ON time of the output wave. 
TOFFI= OFF time of the input wave. 
TOFFO= OFF time of the output wave. 
DUTY O/P = Output duty cycle. 
DUTY I/P = Input duty cycle. 
TIN = Time period of input wave. 
GREEN= Input wave. 
BLUE= Output wave. 
 
 
CASE 1: When TONI > X 
 Following waveform depicts the case. 
 

 
From the figure 
 

TONO = (TONI – X) + Y 
TOFFO = (TOFFI – Y) + X 

 

TONI 

TONO 

TOFFO 

TOFFI 

X TOFFI - Y Y

TONI - X Y

X



   
 

 140

DUTY O/P =         TONO * 100…. 
                          (TONO + TOFFO) 

 
DUTY O/P =                  {(TONI – X) + Y} * 100…                           
                      {(TONI – X) + Y}+ {(TOFFI – Y) + X} 

 
DUTY O/P =           TONI + (Y – X}  *  100….                           
                      {TONI – X + Y+ TOFFI – Y + X} 

 
DUTY O/P =     TONI + (Y – X}  * 100                           
                               (TONI + TOFFI) 

 
DUTY O/P =   TONI + (Y – X} * 100                              
                                     TIN 

 
DUTY O/P =   TONI * 100   +   (Y – X)*100)   

                                                      TIN                       TIN 
 

DUTY O/P = DUTY I/P +   ( Y – X)* 100 
                                                      TIN 
 
  



   
 

 141

CASE 2: When TONI < X 

 
 
 
From the figure 
   TONO = TONI + Y – X 
   TOFFO = TOFFI + X – Y 
 
Above two equations are the equations that we get in case 1. 
So, using case1 result, 

  
 
DUTY O/P = DUTY I/P +    ( Y – X)*100…. 

                                                        TIN 
 
Above relation can be modified to get: 
 

∆ DUTY =  (Y – X)*100 
                                               TIN 
 
Where ∆DUTY = DUTY O/P – DUTY I/P. 

TOFFO 
TOFFI 

X 

TOFFI - Y 

Y

TONI - X 

Y

X

XX 

TONO TONI 



   
 

 142

Using the result, maximum frequency may be found out 
Example 1 
For LVCMOS12 standard for input path, 
DIN = 50% 
DOUT = 60% 
Y (TPHL) = 1.200e-09 
X (TPLH) = 2.546e-09. 
 
Using the result, 

∆ DUTY = (Y – X)*100 
                                                  TIN 
 
 10 = (2.546e-09- 1.2000e-09)* 100 
   TIN 
 
 TIN = 1.346e-09*100  
          10 
 
 TIN = 13.46e-09 
 
 FIN = 74.29 MHz 
 
Simulation result 
Run at Fin = 74.29MHz 
DOUT = 59.970% 
Thus the relation has been verified from simulation. 
 
Limitation of formula 
 

1. If difference between rise delay and fall delay is very small then if we find frequency 
for a particular output duty cycle, the frequency calculated will be high. It might 
happen, at that frequency circuit does not work. 

2. The formula shows relation between delays, input frequency input and output duty 
cycle. It only shows how output duty cycle varies if there is mismatch in the rise and 
fall delay. 

 
 
 
 
 
 
 
 
 


	Electronics & Communication 
	Sanjib Deka 
	Dr. Asok Bhattacharyya 
	CERTIFICATE 
	Project Guide                                                         
	 
	 
	  
	Chapter 1 
	Introduction 
	  
	 
	 
	Chapter 2 
	Literature Review 
	  
	 
	 
	Chapter 3 
	Procedure followed for  
	Verification of IOB 
	  
	 
	 
	Chapter 4 
	Results 
	 
	Parameter
	VCCO
	 
	Parameter
	VCCO
	 
	Parameter
	VCCO
	 
	Parameter
	VCCO
	 
	Parameter
	VCCO
	 
	Parameter
	VCCO
	VTT
	Vref
	 
	Parameter
	VCCO
	VTT
	Vref
	 
	Parameter
	VCCO
	VTT
	B.  HSTL 1.8 
	HSTL18 class I 
	 
	Parameter
	VCCO
	HSTL 18 class II 

	Parameter
	VCCO
	 
	 HSTL 18 class III


	Parameter
	VCCO
	SSTL 18 class I 

	Parameter
	VCCO
	SSTL 25 class I 

	Parameter
	VCCO
	SSTL 25 class II 

	Parameter
	VCCO
	Parameter
	VCCO
	SSTL33 class II 

	Parameter
	VCCO
	 
	Parameter
	VCCO
	VTT
	 
	Parameter
	VCCO
	VTT
	Requirements for the differential standards (Input path) 
	BLVDS_25





	  
	 
	 
	Chapter 5 
	Conclusion 
	  
	 
	References 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 



