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ABSTRACT
Kalman filter estimates the state of system form noisy sensor information. It is used to estimate the state of a linear system at various instances on the basis of the previous estimates and observations. In this thesis the subsequent position and velocity of a moving vehicle have been estimated using extended kalman filter.
The dynamics of a moving vehicle are non linear and hence kalman filter directly cannot be used. Therefore, to get the response of the system an extended kalman filter has been employed. In extended kalman filter the system the non-linearity of the system had been removed using the Taylor’s series expansion and then applying the kalman filter. But if the non-linearity is too high then the extended kalman filter might fail even. It begins with an initial guess which is known as the a priori estimate. In the vehicle tracking problem it does not matter what the value of a priori estimate would be and hence a guess is made. Using this a priori value and employing kalman filter the vehicle tracking had been performed. The value of the estimate also depends upon the current measurement.

The kalman filter has been used after linearization and for simulation MATLAB software has been used. The true position, measured position and the estimated position; the error between the true position and the measured position, and the error between the true position and the kalman filter’s estimated position have been computed. Also the velocity estimate has been determined.
CHAPTER 1
INTRODUCTION
1. Introduction

 Filtering is desirable in many situations in engineering and embedded systems.  For example, in radio communication signals which are corrupted with noise. A good filtering algorithm can remove the noise from electromagnetic signals while retaining the useful information.   Another   example   is   power   supply   voltages. Uninterruptible power supplies are devices that filter line voltages in order to smooth out undesirable fluctuations that might otherwise shorten the lifespan of electrical devices such as computers and printers.                                     


The Kalman filter is a tool that can estimate the variables of a wide range of processes. It is simply an optimal recursive data processing algorithm. In mathematical terms, I would say that a Kalman filter estimates the states of a linear system. The Kalman filter not only works well in practice, but it is theoretically attractive because it can be shown that of all possible filters, it is the one that minimizes the variance of the estimation error. Kalman filters are often implemented in embedded control systems because in order to control a process, we first need an accurate estimate of the process variables. The Kalman filter has long been regarded as the optimal solution to many tracking and data prediction tasks. Its use in the analysis of visual motion has been documented frequently.

This thesis is based on the estimation of a vehicle’s position and velocity when it is moving in a nominal given direction and at a nominal speed using extended kalman filter. The equations of Kalman filter are valid only for linear systems. When the system dynamics and observation models are linear, the various required estimates and minimum mean squared error estimate (MMSE) can be calculated using the Kalman filter. However in most of the practical situations, and in this case (i.e. the vehicle tracking) the system is non-linear and hence simply Kalman filter cannot be used for the estimation. Hence the need arises for the use of Extended Kalman Filter (EKF) which modifies the Kalman filter equations to make them valid for slightly non-linear systems. In this work polar coordinates, range and bearing of the vehicle that describe the non-linear state model had been estimated.
The Kalman filter was developed by Rudolph Kalman,   although Peter Swerling developed a very similar algorithm in 1958. The filter is named after Kalman because he published his results in a more prestigious journal and his work was more general and complete. Sometimes the filter is referred to as the Kalman-Bucy filter because of Richard Bucy’s early work on the topic, conducted jointly with Kalman. The filter was developed in papers by Swerling (1958), Kalman (1960), and Kalman and Bucy (1961).
The  roots  of  the  algorithm  can  be traced  all  the  way  back  to  the  18-year- old Karl Gauss’s method of least squares in  1795.  Like  many  new  technologies, the Kalman filter was developed to solve a  specific  problem,  in  this  case,  space- craft  navigation  for  the  Apollo  space program. Since then, the Kalman filter has found applications in hundreds of diverse areas, including all forms of navigation (aerospace, land, and marine), nuclear power plant instrumentation, demographic   modeling,   manufacturing,   the   detection   of   underground radioactivity, and fuzzy logic and neural network training. In control theory, the Kalman filter is most commonly referred to as linear quadratic estimation (LQE).
The Kalman filter is a recursive estimator. This means that only the estimated state from the previous time step and the current measurement are needed to compute the estimate for the current state. In contrast to batch estimation techniques, no history of observations and/or estimates is required. It is unusual in being purely a time domain filter; most filters (for example, a low-pass filter) are formulated in the frequency domain and then transformed back to the time domain for implementation. In what follows, the notation represents the estimate of at time n given observations up to, and including time m.

The state of the filter is represented by two variables:

· The estimate of the state at time k given observations up to and including time k; 

· The error covariance matrix (a measure of the estimated accuracy of the state estimate). 

The Kalman filter has two distinct phases: Predict and Update. The predict phase uses the state estimate from the previous timestep to produce an estimate of the state at the current timestep. In the update phase, measurement information at the current timestep is used to refine this prediction to arrive at a new, (hopefully) more accurate state estimate, again for the current timestep.

In estimation theory, the extended Kalman filter (EKF) is the nonlinear version of the Kalman filter which linearizes about the current mean and covariance. The EKF is often considered the de facto standard in the theory of nonlinear state estimation and also navigation systems and GPS
CHAPTER 2
ESTIMATION THEORY BASICS

2. ESTIMATION THEORY BASICS

Estimation theory is a branch of statistics and signal processing that deals with estimating the values of parameters based on measured/empirical data. The parameters describe the physical scenario or object that answers a question posed by the estimator.

For example, it is desired to estimate the proportion of a population of voters who will vote for a particular candidate. That proportion is the unobservable parameter; the estimate is based on a small random sample of voters.

Or, for example, in radar the goal is to estimate the location of objects (airplanes, boats, etc.) by analyzing the received echo and a possible question to be posed is "where are the airplanes?" To answer where the airplanes are, it is necessary to estimate the distance the airplanes are at from the radar station, which can provide an absolute location if the absolute location of the radar station is known.

In estimation theory, it is assumed that the desired information is embedded into a noisy signal. Noise adds uncertainty and if there was no uncertainty then there would be no need for estimation.
2.1 Estimation Process

The entire purpose of estimation theory is to arrive at an estimator, and preferably an implementable one that could actually be used. The estimator takes the measured data as input and produces an estimate of the parameters.
It is also preferable to derive an estimator that exhibits optimality. An optimal estimator would indicate that all available information in the measured data has been extracted, for if there was unused information in the data then the estimator would not be optimal.

These are the general steps to arrive at an estimator:

· In order to arrive at a desired estimator for estimating a single or multiple parameters, it is first necessary to determine a model for the system. This model should incorporate the process being modeled as well as points of uncertainty and noise. The model describes the physical scenario in which the parameters apply. 

· After deciding upon a model, it is helpful to find the limitations placed upon an estimator. This limitation, for example, can be found through the Cramér-Rao bound. 

· Next, an estimator needs to be developed or applied if an already known estimator is valid for the model. The estimator needs to be tested against the limitations to determine if it is an optimal estimator (if so, then no other estimator will perform better). 

· Finally, experiments or simulations can be run using the estimator to test its performance. 

After arriving at an estimator, real data might show that the model used to derive the estimator is incorrect, which may require repeating these steps to find a new estimator. A non-implementable or infeasible estimator may need to be scrapped and the process starts anew.

In summary, the estimator estimates the parameters of a physical model based on measured data.

2.2 Statistical Properties of an Estimation Process
2.2a MEAN
For a real-valued random variable X, the mean is the expectation of X. Note that not every probability distribution has a defined mean (or variance); see the Cauchy distribution for an example.
For a data set, the mean is the sum of the observations divided by the number of observations. The mean is often quoted along with the standard deviation: the mean describes the central location of the data, and the standard deviation describes the spread

Examples of means

Arithmetic mean:
The arithmetic mean is the "standard" average, often simply called the "mean".
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The mean may often be confused with the median or mode. The mean is the arithmetic average of a set of values, or distribution; however, for skewed distributions, the mean is not necessarily the same as the middle value (median), or the most likely (mode). For example, mean income is skewed upwards by a small number of people with very large incomes, so that the majority have an income lower than the mean. By contrast, the median income is the level at which half the population is below and half is above. The mode income is the most likely income, and favors the larger number of people with lower incomes. The median or mode is often more intuitive measures of such data. That said, many skewed distributions are best described by their mean - such as the Exponential and Poisson distributions.

For example, the arithmetic mean of 34, 27, 45, 55, 22, 34 (six values) is (34+27+45+55+22+34)/6 = 217/6 ≈ 36.167.
Geometric mean:
The geometric mean is an average that is useful for sets of numbers that are interpreted according to their product and not their sum (as is the case with the arithmetic mean). For example rates of growth.
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For example, the geometric mean of 34, 27, 45, 55, 22, 34 (six values) is (34×27×45×55×22×34)1/6 = 1,699,493,4001/6 ≈ 34.545.

 Harmonic mean:
The harmonic mean is an average which is useful for sets of numbers which are defined in relation to some unit, for example speed (distance per unit of time).
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For example, the harmonic mean of the numbers 34, 27, 45, 55, 22, and 34 is
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Generalized means
 Power mean:
The generalized mean, also known as the power mean or Hölder mean, is an abstraction of the quadratic, arithmetic, geometric and harmonic means. It is defined by
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By choosing the appropriate value for the parameter m we get

· [image: image6.png]


- maximum, 

· m = 2 - quadratic mean, 

· m = 1 - arithmetic mean, 

· [image: image7.png]m — ()



- geometric mean, 

· m = − 1 - harmonic mean, 

· [image: image8.png]


- minimum. 

f-mean:
This can be generalized further as the generalized f-mean
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and again a suitable choice of an invertible f will give

· f(x) = x - arithmetic mean, 

· [image: image10.png]


- harmonic mean, 

· f(x) = xm - power mean, 

· f(x) = lnx - geometric mean. 
Weighted arithmetic mean
The weighted arithmetic mean is used, if one wants to combine average values from samples of the same population with different sample sizes:
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The weights wi represent the bounds of the partial sample. In other applications they represent a measure for the reliability of the influence upon the mean by respective values.

Truncated mean
Sometimes a set of numbers (the data) might be contaminated by inaccurate outliers, i.e. values which are much too low or much too high. In this case one can use a truncated mean. It involves discarding given parts of the data at the top or the bottom end, typically an equal amount at each end, and then taking the arithmetic mean of the remaining data. The number of values removed is indicated as a percentage of total number of values.

Interquartile mean
The interquartile mean is a specific example of a truncated mean. It is simply the arithmetic mean after removing the lowest and the highest quarter of values.
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assuming the values have been ordered.

 Mean of a function
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f(x) over the interval (a,b) is defined by
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(See also mean value theorem.) In several variables, the mean over a relatively compact domain U in a Euclidean space is defined by
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This generalizes the arithmetic mean. On the other hand, it is also possible to generalize the geometric mean to functions by defining the geometric mean of f to be
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More generally, in measure theory and probability theory either sort of mean plays an important role. In this context, Jensen's inequality places sharp estimates on the relationship between these two different notions of the mean of a function.
2.2b Minimum mean square error (MMSE)
In statistics, minimum mean square error (or MMSE) describes the statistical estimator with the least possible mean squared error. MMSE estimators are commonly described as optimal.
Let [image: image16.png]


be a point estimator of the parameter θ:
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In traditional The mean square error can be written as the sum of the variance and the square of the bias of the estimator:

[image: image18.png]MSE(#) = E(6 — E(6))* + (8 — E(9))?
Var(8) + (Bias(6,6))?




So the mean square error of [image: image19.png]


equals the estimator variance plus the squared bias.

Suppose there are two estimators [image: image20.png]


and [image: image21.png]


of the parameter θ. Set [image: image22.png]


and [image: image23.png]


equal to the mean square errors of those two estimators. Then the relative efficiency of [image: image24.png]


and [image: image25.png]


can be defined as:
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Operational Considerations
Unfortunately, the correct distribution from which to estimate the mean-squared error of the estimator is a point of contention between Bayesian and frequentist schools of probability theory. Orthodox statistics employs a transformation of variables to get the probability distribution of the estimator from the sampling distribution, giving the estimator's probability independent of the actual data set obtained. This distribution correctly describes the variation of the estimator over all possible data sets.
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Bayesian statistics instead holds that the correct distribution to use is that which reprents the probability an observer would give to the variable after observing the actual data set.
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Where I represents some information the observer has about the nature of the variable θ. This distribution correctly describes the observer's state of knowledge about the parameter to be estimated after taking the observed data set into consideration.
 2.2c Standard deviation
In probability and statistics, the standard deviation of a probability distribution, random variable, or population or multiset of values is a measure of the spread of its values. It is usually denoted with the letter σ (lower case sigma). It is defined as the square root of the variance. In other words, the standard deviation is the root mean square (RMS) deviation of values from their arithmetic mean.

For example, in the population {4, 8}, the mean is 6 and the standard deviation is 2. In this case 100% of the values in the population are at one standard deviation of the mean.

The standard deviation is the most common measure of statistical dispersion, measuring how widely spread the values in a data set are. If the data points are close to the mean, then the standard deviation is small. As well, if many data points are far from the mean, then the standard deviation is large. If all the data values are equal, then the standard deviation is zero.
Standard deviation of a random variable
The standard deviation of a random variable X is defined as:
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where E(X) is the expected value of X.

Not all random variables have a standard deviation, since these expected values need not exist. For example, the standard deviation of a random variable which follows a Cauchy distribution is undefined.

If the random variable X takes on the values x1,...,xN (which are real numbers) with equal probability, then its standard deviation can be computed as follows. First, the mean of X, [image: image31.png]


, is defined as a summation:
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where N is the number of samples taken. Next, the standard deviation simplifies to:
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In other words, the standard deviation of a discrete uniform random variable X can be calculated as follows:

1. For each value xi calculate the difference [image: image34.png]


between xi and the average value [image: image35.png]


. 

2. Calculate the squares of these differences. 

3. Find the average of the squared differences. This quantity is the variance σ2. 

4. Take the square root of the variance. 
 Estimating population standard deviation from sample standard deviation
In the real world, finding the standard deviation of an entire population is unrealistic except in certain cases, such as standardized testing, where every member of a population is sampled. In most cases, the standard deviation is estimated by examining a random sample taken from the population. The most common measure used is the sample standard deviation, which is defined by
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where [image: image37.png]


is the sample and [image: image38.png]


is the mean of the sample.

The reason for this definition is that s2 is an unbiased estimator for the variance σ2 of the underlying population, if that variance exists and the sample values are drawn independently with replacement. However, s is not an unbiased estimator for the standard deviation σ; it tends to underestimate the population standard deviation. Although an unbiased estimator for σ is known when the random variable is normally distributed, the formula is complicated and amounts to a minor correction. Moreover, unbiasedness, in this sense of the word, is not always desirable; see bias of an estimator. Another estimator sometimes used is the similar expression

[image: image39.png]



This form has a uniformly smaller mean squared error than does the unbiased estimator, and is the maximum-likelihood estimate when the population is normally distributed.

Relationship between standard deviation and mean
The mean and the standard deviation of a set of data are usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point. The precise statement is the following: suppose x1, ..., xn are real numbers and define the function:
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Using calculus, it is possible to show that σ(r) has a unique minimum at the mean:
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The coefficient of variation of a sample is the ratio of the standard deviation to the mean. It is a dimensionless number that can be used to compare the amount of variance between populations with different means.

Chebyshev's inequality proves that in any data set, nearly all of the values will be nearer to the mean value, where the meaning of "close to" is specified by the standard deviation.
2.2d Variance
The variance of a random variable (or somewhat more precisely, of a probability distribution) is a measure of its statistical dispersion, indicating how its possible values are spread around the expected value. Where the expected value shows the location of the distribution, the variance indicates the scale of the values. A more understandable measure is the square root of the variance, called the standard deviation. As its name implies it gives in a standard form an indication of the possible deviations from the mean.

The variance of a real-valued random variable is its second central moment, and it also happens to be its second cumulant.

Definition

If [image: image42.png]


is the expected value (mean) of the random variable X, then the variance is
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If the random variable is discrete with probability mass function [image: image44.png]


, this is the same as
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It is the expected value of the square of the deviation of X from its own mean. It can be expressed as "The average of the square of the distance of each data point from the mean". It is thus the mean squared deviation. The variance of random variable X is typically designated as [image: image46.png]


, [image: image47.png]


, or simply σ2.

The above definition can be used for both discrete and continuous random variables. Of all the points about which squared deviations could have been calculated, it is fairly easy to prove that using the mean produces the minimum value for the sum (and average) of squared deviations.

Many distributions, such as the Cauchy distribution, do not have a variance because the relevant integral diverges. In particular, if a distribution does not have an expected value, it does not have a variance either. The converse is not true: there are distributions for which the expected value exists, but the variance does not.
2.2e Correlation
Correlation also called correlation coefficient  indicates the strength and direction of a linear relationship between two random variables. In general statistical usage, correlation or co-relation refers to the departure of two variables from independence, although correlation does not imply causation. In this broad sense there are several coefficients, measuring the degree of correlation, adapted to the nature of data.

A number of different coefficients are used for different situations. The best known is the Pearson product-moment correlation coefficient, which is obtained by dividing the covariance of the two variables by the product of their standard deviations.

Mathematical properties
The correlation coefficient ρX, Y between two random variables X and Y with expected values μX and μY and standard deviations σX and σY is defined as:
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where E is the expected value operator and cov means covariance. Since μX = E(X), σX2 = E(X2) − E2(X) and likewise for Y, we may also write
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The correlation is defined only if both of the standard deviations are finite and both of them are nonzero. It is a corollary of the Cauchy-Schwarz inequality that the correlation cannot exceed 1 in absolute value.

The correlation is 1 in the case of an increasing linear relationship, −1 in the case of a decreasing linear relationship, and some value in between in all other cases, indicating the degree of linear dependence between the variables. The closer the coefficient is to either −1 or 1, the stronger the correlation between the variables.
because the correlation coefficient detects only linear dependencies between two variables. Here is an example: Suppose the random variable X is uniformly distributed on the interval from −1 to 1, and Y = X2. Then Y is completely determined by X, so that X and Y are dependent, but their correlation is zero; they are uncorrelated. However, in the special case when X and Y are jointly normal, independence is equivalent to uncorrelatedness.

A correlation between two variables is diluted in the presence of measurement error around estimates of one or both variables, in which case disattenuation provides a more accurate coefficient .

The sample correlation
If we have a series of n  measurements of X  and Y  written as xi  and yi  where i = 1, 2, ..., n, then the Pearson product-moment correlation coefficient can be used to estimate the correlation of X  and Y . The Pearson coefficient is also known as the "sample correlation coefficient". It is especially important if X  and Y  are both normally distributed. The Pearson correlation coefficient is then the best estimate of the correlation of X  and Y . The Pearson correlation coefficient is written:
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where [image: image51.png]


and [image: image52.png]


are the sample means of X  and Y , sx  and sy  are the sample standard deviations of X  and Y  and the sum is from i = 1 to n. As with the population correlation, we may rewrite this as
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Again, as is true with the population correlation, the absolute value of the sample correlation must be less than or equal to 1. Though the above formula conveniently suggests a single-pass algorithm for calculating sample correlations, it is notorious for its numerical instability (see below for something more accurate).

The square of the sample correlation coefficient, which is also known as the coefficient of determination, is the fraction of the variance in yi  that is accounted for by a linear fit of xi  to yi . This is written
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where sy|x2  is the square of the error of a linear regression of xi  on yi  by the equation y = a + bx:
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and sy2  is just the variance of y:
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 Since the sample correlation coefficient is symmetric in xi  and yi , we will get the same value for a fit of xi  to yi :
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This equation also gives an intuitive idea of the correlation coefficient for higher dimensions. Just as the above described sample correlation coefficient is the fraction of variance accounted for by the fit of a 1-dimensional linear submanifold to a set of 2-dimensional vectors (xi , yi ), so we can define a correlation coefficient for a fit of an m-dimensional linear submanifold to a set of n-dimensional vectors. For example, if we fit a plane z = a + bx + cy  to a set of data (xi , yi , zi ) then the correlation coefficient of z  to x  and y  is
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2.3 Noise
In common use the word noise means unwanted sound or noise pollution. In electronics noise can refer to the electronic signal corresponding to acoustic noise (in an audio system) or the electronic signal corresponding to the (visual) noise commonly seen as 'snow' on a degraded television or video image. In signal processing or computing it can be considered data without meaning; that is, data that is not being used to transmit a signal, but is simply produced as an unwanted by-product of other activities. In Information Theory, however, noise is still considered to be information. In a broader sense, film grain or even advertisements in web pages can be considered noise.
Noise can block, distort, or change the meaning of a message in both human and electronic communication.

In many of these areas, the special case of thermal noise arises, which sets a fundamental lower limit to what can be measured or signaled and is related to basic physical processes at the molecular level described by well known simple formulae.

Acoustic noise
When speaking of noise in relation to sound, what is commonly meant is meaningless sound of greater than usual volume. Thus, a loud activity may be referred to as noisy. However, conversations of other people may be called noise for people not involved in any of them, and noise can be any unwanted sound such as the noise of aircraft, neighbours playing loud music, or road sounds spoiling the quiet of the countryside.

For film sound theorists and practitioners at the advent of talkies c.1928/1929, noise was non-speech sound or natural sound and for many of them noise (especially asynchronous use with image) was desired over the evils of dialogue synchronized to moving image. The director and critic René Clair writing in 1929 makes a clear distinction between film dialogue and film noise and very clearly suggests that noise can have meaning and be interpreted: "...it is possible that an interpretation of noises may have more of a future in it. Sound cartoons, using "real" noises, seem to point to interesting possibilities" ('The Art of Sound' (1929)). Alberto Cavalcanti uses noise as a synonym for natural sound ('Sound in Films' (1939)) and as late as 1960, Siegfried Kracauer was referring to noise as non-speech sound ('Dialogue and Sound' (1960)).

Audio noise
In audio, recording, and broadcast systems audio noise refers to the residual low level sound (usually hiss and hum) that is heard in quiet periods of programme.

In audio engineering it can also refer to the unwanted residual electronic noise signal that gives rise to acoustic noise heard as 'hiss'. This signal noise is commonly measured using A-weighting or ITU-R 468 weighting
Noise is often generated deliberately and used as a test signal. The two most common types of such noise are:

· white noise, which has a uniform spectral power density at all frequencies 

· pink noise which has a power spectral density that falls at 3dB/octave with rising frequency. The pink noise is often more useful in audio testing because it contains constant energy per octave (and hence per commonly used 1/3rd octave), rather than a preponderance of energy at high frequencies. In other words it contains energy that is distributed geometrically rather than linearly. 
There are other less common kind of noise:

· black noise, a term with numerous conflicting definitions, but commonly refers to silence with occasional spikes. 

· blue noise, contains more energy as the frequency increases. 

· brown noise, mimics the signal noise produced by brownian motion. 

· gray noise, similar to white noise, but has been filtered to make sound level appear constant at all frequency to the human ear. 

· green noise, an unofficial term which can mean the mid-frequencies of white noise, or the 'background noise of the world'. 

· orange noise, an unofficial term describing noise which has been stripped of harmonious frequencies. 

· purple noise, contains more energy as the frequencies increases. 

· red noise, an oceanograhic term which describes ambient underwater noise from distant sources. Also another name for brown noise. 

Electronic noise
Electronic noise exists in all circuits and devices as a result of thermal noise, also referred to as Johnson Noise. Semiconductor devices can also contribute flicker noise and generation-recombination noise. In any electronic circuit, there exist random variations in current or voltage caused by the random movement of the electrons carrying the current as they are jolted around by thermal energy. The lower the temperature the lower is this thermal noise. This same phenomenon limits the minimum signal level that any radio receiver can usefully respond to, because there will always be a small but significant amount of thermal noise arising in its input circuits. This is why radio telescopes, which search for very low levels of signal from stars, use front-end low-noise amplifier circuits, usually mounted on the aerial dish, cooled in liquid nitrogen it gives a reduced response to low frequency sounds, and does not take account of the increased annoyance value of bass boom to man-made electronics, including the receiver itself. Transmitter power must be increased to overcome radio noise over long distances.

Video noise
In video and television, noise refers to the random dot pattern that is superimposed on the picture as a result of electronic noise, the 'snow' that is seen with poor (analog) television reception or on VHS tapes. Interference and static are other forms of noise, in the sense that they are unwanted, though not random, which can affect radio and television signals.
2.3a White noise
White noise is a random signal (or process) with a flat power spectral density. In other words, the signal's power spectral density has equal power in any band, at any centre frequency, having a given bandwidth. White noise is considered analogous to white light which contains all frequencies.
An infinite-bandwidth white noise signal is purely a theoretical construction. By having power at all frequencies, the total power of such a signal is infinite. In practice, a signal can be "white" with a flat spectrum over a defined frequency band.
Statistical properties of White noise
The term white noise is also commonly applied to a noise signal in the spatial domain which has an autocorrelation which can be represented by a delta function over the relevant space dimensions. The signal is then "white" in the spatial frequency domain (this is equally true for signals in the angular frequency domain, e.g. the distribution of a signal across all angles in the night sky). The image to the right displays a finite length, discrete time realization of a white noise process generated from a computer.

Being uncorrelated in time does not, however, restrict the values a signal can take. Any distribution of values is possible (although it must have zero DC component). For example, a binary signal which can only take on the values 1 or 0 will be white if the sequence of zeros and ones is statistically uncorrelated. Noise having a continuous distribution, such as a normal distribution, can of course be white.

It is often incorrectly assumed that Gaussian noise (i.e. noise with a Gaussian amplitude distribution — see normal distribution) is necessarily white noise. However, neither property implies the other. Gaussianity refers to the way signal values are distributed, while the term 'white' refers to the shape of the flat power spectral density.





We can therefore find Gaussian white noise, but also Poisson, Cauchy, etc. white noises. Thus, the two words "Gaussian" and "white" are often both specified in mathematical models of systems. Gaussian white noise is a good approximation of many real-world situations and generates mathematically tractable models. These models are used so frequently that the term additive white Gaussian noise has a standard abbreviation: AWGN. Gaussian white noise has the useful statistical property that its values are independent (see Statistical independence).

White noise is the generalized mean-square derivative of the Wiener process or Brownian motion.
Mathematical definition

White random vector
A random vector [image: image60.png]


is a white random vector if and only if its mean vector and autocorrelation matrix are the following:

[image: image61.png]
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I. e., it is a zero mean random vector, and its autocorrelation matrix is a multiple of the identity matrix. When the autocorrelation matrix is a multiple of the identity, we say that it has spherical correlation.

White random process (white noise)
A continuous time random process w(t) where [image: image63.png]


is a white noise process if and only if its mean function and autocorrelation function satisfy the following:

[image: image64.png]
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. 

I. e., it is a zero mean process for all time and has infinite power at zero time shift since its autocorrelation function is the Dirac delta function.

The above autocorrelation function implies the following power spectral density.

[image: image66.png]



since the Fourier transform of the delta function and likewise the is equal to 1. Since this power spectral density is the same at all frequencies, we call it white as an analogy to the frequency spectrum of white light
Random vector transformations

Two theoretical applications using a white random vector are the simulation and whitening of another arbitrary random vector. To simulate an arbitrary random vector, we transform a white random vector with a carefully chosen matrix. We choose the transformation matrix so that the mean and covariance matrix of the transformed white random vector matches the mean and covariance matrix of the arbitrary random vector that we are simulating. To whiten an arbitrary random vector, we transform it by a different carefully chosen matrix so that the output random vector is a white random vector.

These two ideas are crucial in applications such as channel estimation and channel equalization in communications and audio. These concepts are also used in data compression.
Simulating a random vector
Suppose that a random vector [image: image67.png]


has covariance matrix Kxx. Since this matrix is Hermitian symmetric and positive semidefinite, by the spectral theorem from linear algebra, we can diagonalize or factor the matrix in the following way.

[image: image68.png]K., = EAET




where E is the orthogonal matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues.

We can simulate the 1st and 2nd moment properties of this random vector [image: image69.png]


with mean [image: image70.png]


and covariance matrix Kxx via the following transformation of a white vector [image: image71.png]


:
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where
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Thus, the output of this transformation has expectation

[image: image74.png]



and covariance matrix
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Whitening a random vector
The method for whitening a vector [image: image76.png]


with mean [image: image77.png]


and covariance matrix Kxx is to perform the following calculation:

[image: image78.png]



Thus, the output of this transformation has expectation
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and covariance matrix
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By diagonalizing Kxx, we get the following:

[image: image83.png]



Thus, with the above transformation, we can whiten the random vector to have zero mean and the identity covariance matrix.
Random signal transformations
We cannot extend the same two concepts of simulating and whitening to the case of continuous time random signals or processes. For simulating, we create a filter into which we feed a white noise signal. We choose the filter so that the output signal simulates the 1st and 2nd moments of any arbitrary random process. For whitening, we feed any arbitrary random signal into a specially chosen filter so that the output of the filter is a white noise signal.

Simulating a continuous-time random signal
White noise fed into a linear, time-invariant filter to simulate the 1st and 2nd moments of an arbitrary random process.

We can simulate any wide-sense stationary, continuous-time random process [image: image84.png]z(t):teR



with constant mean μ and covariance function
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and power spectral density
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We can simulate this signal using frequency domain techniques.

Because Kx(τ) is Hermitian symmetric and positive semi-definite, it follows that Sx(ω) is real and can be factored as
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if and only if Sx(ω) satisfies the Paley-Wiener criterion.
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If Sx(ω) is a rational function, we can then factor it into pole-zero form as
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Choosing a minimum phase H(ω) so that its poles and zeros lie inside the left half s-plane, we can then simulate x(t) with H(ω) as the transfer function of the filter.

We can simulate x(t) by constructing the following linear, time-invariant filter
[image: image90.png]it)=F " {Hw)}+wt)+p




where w(t) is a continuous-time, white-noise signal with the following 1st and 2nd moment properties:
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Thus, the resultant signal [image: image93.png]


has the same 2nd moment properties as the desired signal x(t).

 Whitening a continuous-time random signal
An arbitrary random process x(t) fed into a linear, time-invariant filter that whitens x(t) to create white noise at the output.

Suppose we have a wide-sense stationary, continuous-time random process [image: image94.png]z(t):teR



defined with the same mean μ, covariance function Kx(τ), and power spectral density Sx(ω) as above.

We can whiten this signal using frequency domain techniques. We factor the power spectral density Sx(ω) as described above.

Choosing the minimum phase H(ω) so that its poles and zeros lie inside the left half s-plane, we can then whiten x(t) with the following inverse filter

[image: image95.png]



We choose the minimum phase filter so that the resulting inverse filter is stable. Additionally, we must be sure that H(ω) is strictly positive for all [image: image96.png]


so that Hinv(ω) does not have any singularities.

The final form of the whitening procedure is as follows:

[image: image97.png]



so that w(t) is a white noise random process with zero mean and constant, unit power spectral density
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Note that this power spectral density corresponds to a delta function for the covariance function of w(t).




CHAPTER 3
THE DISCRETE KALMAN FILTER

3. The Discrete Kalman Filter

This is the ﬁlter in its original formulation (Kalman 1960) where the measurements occur and the state is estimated at discrete points in time.
3.1   The Process to be Estimated
 The Kalman ﬁlter addresses the general problem of trying to estimate the state x  n  of

 a discrete-time controlled process that is governed by the linear stochastic           difference equation
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with a measurement z  m  that is
zk



=  H xk + vk .
 (2)

The random variables uk and vk  represent the process and measurement noise  (respectively). They are assumed to be independent (of each other), white, and 
with normal probability distributions

[image: image100.wmf]R)

,

p(v) ~ N(0

       

 N(0,Q) ,

p(w)

       

~

                           (3), (4)                          
In practice, the process noise covariance Q and the measurement noise covariance R 

matrices might change with each time step or measurement, however here we assume 

that  they are constant.

The  n  n matrix  A in the difference equation (1) relates the state at
the previous time step k – 1  to the state at the current step k , in the absence of either a driving function or process noise. In practice A might change with each time step, but
here we assume it is constant. The n  l  matrix B relates the optional control input u  
to the state x. The m  n matrix H in the measurement equation (2) relates the

state to  the  measurement  zk .  In  practice  H might  change  with  each  time  step  or measurement , but here we assume it is constant.
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The purpose of a Kalman filter is to optimally estimate the values of variables describing the state of a system from a multidimensional signal contaminated by noise. 
3.2   The Computational Origins of the Filter

[image: image130.png]K.(r)=46(7)



We deﬁne  xˆ -   n

(note the “super minus”) to be our a priori state estimate at step k
n
given knowledge of the process prior to step k, and  xˆ k  

to be our a posteriori state
estimate at step k given measurement  zk . We can then deﬁne a priori and a posteriori
estimate errors as
-
-
ek  xk – xˆ k , and
ek  xk – xˆ k .

The a priori estimate error covariance is then

and the a posteriori estimate error covariance is

                                                      Pk  =

E  ek ek  .
(6)
In deriving the equations for the Kalman ﬁlter, we begin with the goal of ﬁnding an
equation that computes an a posteriori state estimate  xˆ
-

as a linear combination of an a
priori estimate  xˆ k

and a weighted difference between an actual measurement  z
-

and a
measurement prediction  H xˆ k

as shown below in equation (7). Some justiﬁcation for
equation (4.7) is given in “The Probabilistic Origins of the Filter” found below.
-
-
xˆ k  =
-

xˆ k + K  zk – H xˆ k 

(7)
The difference  zk – H xˆ k 

in equation (4.7) is called the measurement innovation, or the
-
residual. The residual reﬂects the discrepancy between the predicted measurement  H xˆ k
and the actual measurement  zk . A residual of zero means that the two are in complete
agreement.
The  n  m

matrix K in equation (7) is chosen to be the gain or blending factor that
minimizes the a posteriori error covariance equation (6). This minimization can be
accomplished by ﬁrst substituting equation (7) into the above deﬁnition for  ek , substituting that into equation (6), performing the indicated expectations, taking the
derivative of the trace of the result with respect to K, setting that result equal to zero, and then solving for K. One form of the resulting K that minimizes equation (6) is given by
-
-
–
K k  =

Pk H T  HPk H T  + R 
- H
Pk
T


(8)
=  -----------------------------
HPk H T  + R
Looking at equation (8) we see that as the measurement error covariance R approaches zero, the gain K weights the residual more heavily. Specifically,

                                                       lim  K k
                                                        Rk  0



= H –1 .
 On the other hand, as the a priori estimate error covariance P-
K weights the residual less heavily. Speciﬁcally,


approaches zero, the gain

lim  K k
P-   0


=  0 .
Another way of thinking about the weighting by K is that as the measurement error
covariance  R

approaches zero, the actual measurement  z
-

is “trusted” more and more,
while the predicted measurement H xˆ
-

is trusted less and less. On the other hand, as the a
priori estimate error covariance Pk

approaches zero the actual measurement zk
-

is trusted

less and less, while the predicted measurement H xˆ k  is trusted more and more.

3.3   The Probabilistic Origins of the Filter
-
The justiﬁcation for equation (7) is rooted in the probability of the a priori estimate  xˆ k
conditioned on all prior measurements zk

(Bayes’ rule). For now let it sufﬁce to point out
that the Kalman ﬁlter maintains the ﬁrst two moments of the state distribution,
E  xk   =
E   xk – xˆ k  xk – xˆ k T   =


xˆ k
Pk .

The a posteriori state estimate equation (7) reﬂects the mean (the ﬁrst moment) of the
state distribution— it is normally distributed if the conditions of equation (3) and equation (4) are met. The a posteriori estimate error covariance equation (6) reﬂects
the variance of the state distribution (the second non-central moment). In other words,

     p xk  zk 
N  E  xk  E   xk – xˆ k  xk – xˆ k T   N  xˆ k Pk 

.
3.4   The Discrete Kalman Filter Algorithm
We will begin this section with a broad overview, covering the “high-level” operation of one form of the discrete Kalman ﬁlter. After presenting this high-level view, we will narrow the focus to the speciﬁc equations and their use in this version of the ﬁlter.

The Kalman ﬁlter estimates a process by using a form of feedback control: the ﬁlter estimates the process state at some time and then obtains feedback in the form of (noisy) measurements. As such, the equations for the Kalman ﬁlter fall into two groups: time
update equations and measurement update equations. The time update equations are
responsible for projecting forward (in time) the current state and error covariance

estimates to obtain the a priori estimates for the next time step. The measurement update
equations are responsible for the feedback—i.e. for incorporating a new measurement into the a priori estimate to obtain an improved a posteriori estimate.

The time update equations can also be thought of as predictor equations, while the     measurement update equations can be thought of as corrector equations. Indeed the ﬁnal
estimation algorithm resembles that of a predictor-corrector algorithm for solving numerical problems as shown below in Figure 1.

                          
                                                 Time Update
Measurement Update
(“Predict”)                    (“Correct”)

                               Figure 1: The ongoing discrete Kalman ﬁlter cycle. The
time update projects the current state estimate ahead in
time. The  measurement  update  adjusts  the  projected estimate by an actual measurement at that time.
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The Kalman filter is a recursive, linear filter. At each cycle, the state estimate is updated by combining new measurements with the predicted state estimate from previous measurements. 

The speciﬁc equations for the time and measurement updates are presented below in
table 1 and table 2.

Table 1: Discrete Kalman ﬁlter time update equations.

xˆ -   =
-
k  =

A xˆ k – 1 + Buk
APk – 1 AT  + Q

                      (9)

                       (10)

Again notice how the time update equations in table 1 project the state and covariance
estimates forward from time step k – 1


to step k . A

and B are from equation (1), while

Q  is from equation (3). Initial conditions for the ﬁlter are discussed in the earlier
references.



Table 2: Discrete Kalman ﬁlter measurement update equations.

-
-
–1
K k  =

Pk H T  HPk H T  + R 

(11)

-
-
xˆ k  =

xˆ k + K k  zk – H xˆ k 

(12)
Pk  =


 I – K  H P-

                             (13)

The ﬁrst task during the measurement update is to compute the Kalman gain, K k . Notice
that the equation given here as equation (11) is the same as equation (8). The next step
is to actually measure the process to obtain zk , and then to generate an a posteriori state estimate by incorporating the measurement as in equation (12). Again equation (12) is

simply equation (7) repeated here for completeness. The ﬁnal step is to obtain an a posteriori error covariance estimate via equation (13).

After each time and measurement update pair, the process is repeated with the previous a posteriori estimates used to project or predict the new a priori estimates. This recursive

nature is one of the very appealing features of the Kalman ﬁlter—it makes practical implementations much more feasible. The Kalman ﬁlter recursively conditions the current estimate on al lof the past measurements. Figure 2 below offers a complete picture of the operation of the ﬁlter, combining the high-level diagram of Figure 1 with the equations from table 1 and table 2.


Time Update (“Predict”)

Measurement Update (“Correct”)
(1) Compute the Kalman gain

xˆ -   =


A xˆ k – 1 + Buk

K k  =

Pk H T  HPk H T  + R 
(2) Update estimate with measurement zk
-
-
(2) Project the error covariance ahead

xˆ k  =

xˆ k + K k  zk – H xˆ k 
-
k
APk – 1

AT  + Q


(3) Update the error covariance

-
Pk  =

 I – K k H Pk
Initial estimates for  xˆ k – 1 and Pk – 1
Figure 2: A complete picture of the operation of the Kalman ﬁlter, combining the high-level diagram of Figure 1 with the equations from table 1 and table 2.

CHAPTER 4

THE EXTENDED KALMAN FILTER
4. The Extended Kalman Filter (EKF)
   4.1  The Process to be Estimated
      As described above in Section 2.1, the Kalman ﬁlter addresses the general problem 

         trying to estimate the state  x of a discrete-time controlled process that is governed
by a linear stochastic difference equation. But what happens if the process to be estimated and (or) the measurement relationship to the process is non-linear? Some of the most interesting and successful applications of Kalman ﬁltering have been such situations. A
Kalman ﬁlter that linearizes about the current mean and covariance is referred to as an
Extended Kalman ﬁlter or EKF.

In something akin to a Taylor series, we can linearize the estimation around the current
estimate using the partial derivatives of the process and measurement functions to compute estimates even in the face of non-linear relationships. To do so, we must begin by modifying some of the material presented in Section 2. Let us assume that our process
again has a state vector  x  n , but that the process is now governed by the non-linear
stochastic difference equation

xk  =

f  xk – 1 uk wk – 1  ,
(14)
with a measurement z  m  that is
zk



=  h xk vk  ,
(15)

where the random variables  wk       

and and  vk

agaiagain represent the process and measurement
noise as in equation (3) and equation (4). In this case the non-linear function f  in the
       difference equation (14) relates the state at the previous time step k – 1 to the state at 

the current time step k . It includes as parameters any driving function uk and the
       zero-mean process noise wk. The non-linear function  h in the measurement equation
       equation (15) relates the state xk to the measurement zk .
In practice of course one does not know the individual values of the noise wk

and vk  at
each time step. However, one can approximate the state and measurement vector without
them as

x˜ k  =



f  xˆ k – 1 uk 0 



(16)

and


z˜ k


=  h x˜ k 0  ,
(17)

     where xˆ k  is some a posteriori estimate of the state (from a previous time step k).
     4.2   The Computational Origins of the Filter
To estimate a process with non-linear difference and measurement relationships, we begin

by writing new governing equations that linearize an estimate about equation (16) and equation (17),

xk  x˜ k + A xk – 1 – xˆ k – 1  + W wk – 1 ,

(18)

zk  z˜ k + H  xk – x˜ k  + V vk .

       where,

(19)

•

•



xk
x˜ k


and zk
and z˜ k


are the actual state and measurement vectors,

are the approximate state and measurement vectors from

equation (16) and equation (17),

•
xˆ k

is an a posteriori estimate of the state at step k,
•
the random variables wk

and vk

represent the process and measurement noise
as in equation (3) and equation (4).

•
A is the Jacobian matrix of partial derivatives of f

with respect to x, that is
 f  i 

A i j 

=   x


 j 


 xˆ k – 1 uk 0  ,
•
W is the Jacobian matrix of partial derivatives of f  with respect to w,

 f  i 

W  i j 

=  w


 j 


 xˆ k – 1 uk 0  ,
•
H is the Jacobian matrix of partial derivatives of h


with respect to x,

h i 

H  i j 

=   x


 j 


 x˜ k 0  ,
•
V is the Jacobian matrix of partial derivatives of h


with respect to v,

h i 

V  i j 

=  v


 j  x˜ k 0  .
Now we deﬁne a new notation for the prediction error,
e˜
k


 xk – x˜ k ,

(20)

and the measurement residual,


e˜
k



 zk – z˜ k .
(21)

Remember that in practice one does not have access to  xk

in equation (20), it is the
actual state vector, i.e. the quantity one is trying to estimate. On the other hand, one does
have access to  zk

in equation (21), it is the actual measurement that one is using to
estimate  xk . Using equation (20) and equation (21) we can write governing equations
for an error process as
e˜
k



 A xk – 1 – xˆ k – 1  + k ,                                        (22)

e˜
k

 H e˜
k

+ k ,                                                  (23)
where  k

and  k

represent new independent random variables having zero mean and
covariance matrices WQW T

and VRV T , with Q  and R  as in (3) and (4) respectively.

Notice that the equations equation (22) and equation (23) are linear, and that they
closely  resemble  the  difference  and  measurement  equations  equation (1)  and
equation (2) from the discrete Kalman ﬁlter. This motivates us to use the actual
measurement residual e˜
k

in equation (21) and a second (hypothetical) Kalman ﬁlter to

estimate the prediction error e˜
k

given by equation (22). This estimate, call it eˆ k , could
then be used along with equation (20) to obtain the a posteriori state estimates for the
original non-linear process as

xˆ k  =



x˜ k + eˆ k .                                                    (24)

The random variables of equation (22) and equation (23) have approximately the
following probability distributions :

T
p e˜ x  
N  0 E  e˜ x  e˜ x   

k
k
k
p k 
N  0 W Qk W T 

p k 
N  0 V Rk V T 

Given these approximations and letting the predicted value of eˆ k be zero, the Kalman  

ﬁlter equation used to estimate eˆ k

is
eˆ k


=  K k e˜ z


.                                                       (25)

By  substituting  equation  (25)  back  into  equation  (24)  and  making  use  of

equation (21) we see that we do not actually need the second (hypothetical) Kalman ﬁlter:

xˆ k  =



x˜ k + K k e˜ z



          (26)
=  x˜ k + K k  zk – z˜ k 
Equation equation (26) can now be used for the measurement update in the extended
Kalman ﬁlter, with  x˜ k

and z˜ k

coming from equation (16) and equation (17), and the
Kalman gain  K k

coming from equation (11) with the appropriate substitution for the
measurement error covariance.
  The complete set of EKF equations is shown below in table 3 and table 4.4. Note that we
-
have substituted  xˆ k

for  x˜ k

to remain consistent with the earlier “super minus” a priori
notation, and that we now attach the subscript  k

to the Jacobians  A ,  W ,  H , and  V , to
reinforce the notion that they are different at (and therefore must be recomputed at) each time step.

Table 3: EKF time update equations.
xˆ -   =
-

f  xˆ k – 1 uk 0 
T
T

                                 (27)

Pk  =

Ak Pk – 1 Ak

+ W k Qk – 1 W k

                                 (28)
As with the basic discrete Kalman ﬁlter, the time update equations in table 3 project the
state and covariance estimates from the previous time step k – 1


to the current time step
k . Again  f

in equation (27) comes from equation (16),  Ak

and  W k

are the process
Jacobians at step k, and Qk

is the process noise covariance equation (3) at step k.
                                                   Table 4: EKF measurement update equations.

-
T
-
T

T  –1
K k  =

Pk H k  H k Pk H k

+ V k Rk V k 

(29)
-
-
xˆ k  =

xˆ k + K k  zk – h xˆ k 0  

(30)
Pk  =


 I – K  H  P-

                                (31)

CHAPTER 5
THE PROBLEM OF VEHICLE TRACKING
5. The Problem of Vehicle Tracking
For this problem , the observations or measurements are the range estimates R​​​^[n] and bearing estimates β^[n]. If the vehicle state is the position (rx,ry) in Cartesian coordinates (it is assumed to travel in the x-y plane) , then the noiseless measurements are related to the unknown parameters by

                                  R[n] = √ rx2[n] + ry2[n]

and                            β[n]=   arctan (ry[n]/rx[n])   
Due to measurement errors,however,we obtain the estimates  R​​​^[n]  and  β^[n] , which are assumed to be the true range and bearing plus measurement noise.                 

                                  R​​​^[n] = R[n] + wR[n]
     
}
----------------------(1.1)
                                 β^[n] =  β[n]  + wβ[n]                                             

Since these cannot be expressed in the linear model, our observation equation is nonlinear. In making a model for the dynamics of the vehicle we assume a constant velocity, perturbed only by wind gusts, slight speed corrections, etc., as might occur in an aircraft. We model these perturbations as noise inputs, so that the velocity components in the x and y directions at time n are:
                                   Vx[n] =  Vx[n-1]  +  Ux[n]                            

                                  
                                           }     ------------------------(1.2)                
                                   Vy[n] =   Vy[n-1] +  Uy[n]

Without the noise perturbations  Ux[n] , Uy[n]  the velocities would be constant , and hence the vehicle would be modeled as travelling in a straight line as indicated by the dashed line in figure on next page. From the equations of motion the position at time n is

                                  rx[n] =  rx[n-1]  +  Vx[n-1] * ∆

             
}   -------------------------(1.3)
                                  ry[n] =   ry[n-1]  +  Vy[n-1]* ∆
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where  ∆ is the time interval between samples. In this discretized model of the equations of motion the vehicle is modeled as moving at the velocity of the previous time instant and then changing abruptly at the next time instant , an approximation to the true velocity components  or 

                                                 s[n]   =        
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and  from equations (1.2) and (1.3) it is seen to satisfy
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     ↓
↓
↓
↓

  s[n]
A
s[n-1]
U[n]

In general terms the observation equation of (1.1) is

           x[n]  =  h(s[n])  +  w[n]


where  h is the function

                                             h(s[n]) =  
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The measurement  vector  is nonlinear in the signal parameters . To estimate the signal vector we will need to apply an Extended  Kalman Filter (EKF).  Since the state equation of (1.4) is linear, we need only determine 

                                 H[n] = 
[image: image111.wmf]]

[

/

n

s

h

¶

¶

 | s[n] = s^[n|n-1]

Because A[n] is just A as given in (1.4) . Differentiating the observation equation,we have the Jacobian
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Finally, we need to specify the covariances of the driving noise and observation noise.If we assume that the wind gusts,speed corrections,etc.,are just as likely to occur in any direction and with the same magnitude,then it seems reasonable to assign the same variances to Ux[n] and Uy[n] and to assume that they are independent.The common variance σu2 . Then we, have

                                           Q  =    
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The exact value to use for  σu2   should depend on the possible change in the velocity component from sample to sample since Ux[n]= Vx[n] - Vx[n-1] . This is just the acceleration times ∆ and should be derivable from the physics of the vehicle. In specifying the variances of the measurement noise the measurement error can be thought

specifying the variances of the measurement noise the measurement error can be thought of as the estimation error of  R​​​^[n] and β^[n] as seen from (1.1) .The estimation errors wR[n] , wβ[n] are assumed to be zero mean. Then, the variance of wR[n] ,for example, is E(wR2[n]) = E[(R^[n]-R[n])2] . Sometimes this variance is derivable but in most instances it’s not. One possibility is to assume that  E(wR2[n]) does not depend on the PDF of R[n] , so that  E(wR2[n]) = E[(R^[n]-R[n])2| R[n]]. Equivalently, R[n] can be regarded as a deteministic parameter so that the variance of wR[n] is just the classical estimator variance . As such, if R^[n] were the MLE(Maximum Likelyhood Estimator) ,then assuming long data records and/or high SNRs , we could assume that the variance attains the CRLB(Cramer-Rao Lower Bound) . Using this approach , we could then make use of the CRLB for range and bearing . For simplicity the estimation errors are assumed to be independent and the variances are assumed to be time invariant. Hence ,we have

                            C[n] = C = 
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In summary , the Extended Kalman Filter (EKF) equations for this problem are :--

    s^[n|n-1] = A s^[n-1|n-1]               ---------------------------------------------(Prediction)
   M[n|n-1] = A M[n-1|n-1] AT + Q --------(Minimum Prediction MSE Matrix)(px p)
   K[n] =  M[n|n-1] HT[n] (C+H[n] M[n|n-1] HT[n])-1---(Kalman Gain Matrix)(pxM)
   s^[n|n] =  s^[n|n-1] + K[n](x[n] – h(s^[n|n-1]))------------------------------(Correction)
  M[n|n] = (I – K[n] H[n]) M[n|n-1]----------------------(Minimum MSE Matrix)(pxp)
where   

      A  =         
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                     Q =      
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        x[n] =          
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                           h(s[n]) =  
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                       H[n]  =           
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   | s[n] = s^[n|n-1]    
                       C = 
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and  the initial conditions are  s^[-1|-1] = μ s , M[-1|-1] = Cs . For example considering the ideal straight line trajectory shown below as a dashed line. The coordinates are given by 

   rx[n] = 10 – 0.2n   and  ry[n] = -5 + 0.2n     for n= 0,1,....,100 , where ∆ = 1 has been assumed for convenience . From (1.3) this trajectory assumes Vx = -0.2 , Vy = 0.2. To accommodate a more realistic vehicle track we introduce driving or plant noise , so that the vehicle state is described by (1.4)  with a driving noise variance of  σu2 = 0.0001.  

with an initial state of         s[-1] = 
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which is identical to that of the initial state of the straight line trajectory , a realization of the vehicle position [rx[n] ry[n]]T is shown in the figure above as the solid curve . The state equation of (1.4) has been used to generate the realization. 

 
As the time increases, the true trajectory gradually deviates from the straight line. Hence, the variances of Vx[n] and Vy[n] will eventually increase to infinity causing  rx[n] and ry[n] to quickly become unbounded . We assume the measurement noise variances to be  σR2 = 0.1 and σβ2 = 0.01 , where β is measured in radians.

 
To employ an extended Kalman Filter we must specify an initial state estimate . In practice it is unlikely that we will have knowledge of the position and speed. Thus we choose an initial state that is quite far from the true one or

                             s^[-1|-1]  =   
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and so as not to “bias” the extended Kalman Filter we assume a large initial MSE or 

 M[-1|-1] = 100 I . Initially because of the poor state estimate , the error is large. This is also reflected in the MSE curves . However , after about 20 samples the extended Kalman Filter attains the track . Also the minimum MSE increase for part of the time . Here each time we receive a new data sample we are estimating a new parameter .  The increased uncertainity of the new parameter due to the influence of the driving noise input may be large enough to offset the knowledge gained by observing a new data sample , causing the minimum MSE to increase .

              In this simulation the Extended Kalman filter appeared to be quite tolerant of linearization errors due to a poor initial state estimate .

CHAPTER 6
MATLAB
6.1 Introduction

MATLAB is a numerical computing environment and programming language. Maintained by The MathWorks, MATLAB allows easy matrix manipulation, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs in other languages. Although it is numeric only, an optional toolbox uses the MuPAD symbolic engine, allowing access to computer algebra capabilities. An additional package, Simulink, adds graphical multidomain simulation and Model-Based Design for dynamic and embedded systems.

MATLAB® is a high-level technical computing language and interactive environment for algorithm development, data visualization, data analysis, and numeric computation. Using the MATLAB product, you can solve technical computing problems faster than with traditional programming languages, such as C, C++, and Fortran.

MATLAB can be used in a wide range of applications, including signal and image processing, communications, control design, test and measurement, financial modeling and analysis, and computational biology. Add-on toolboxes (collections of special-purpose MATLAB functions, available separately) extend the MATLAB environment to solve particular classes of problems in these application areas.

MATLAB provides a number of features for documenting and sharing your work. MATLAB code can be integrated with other languages and applications, and distribute your MATLAB algorithms and applications.
6.2 Key Features

· High-level language for technical computing 

· Development environment for managing code, files, and data 

· Interactive tools for iterative exploration, design, and problem solving 

· Mathematical functions for linear algebra, statistics, Fourier analysis, filtering, optimization, and numerical integration 

· 2-D and 3-D graphics functions for visualizing data 

· Tools for building custom graphical user interfaces 

· Functions for integrating MATLAB based algorithms with external applications and languages, such as C, C++, Fortran, Java, COM, and Microsoft Excel

6.3 Interactions with other languages
 6.3.1 Calling C and Fortran functions
MATLAB can call functions and subroutines written in C programming language or Fortran. A wrapper function is created allowing MATLAB data types to be passed and returned. The dynamically loadable object files created by compiling such functions are termed "MEX-files", although the file name extension depends on the operating system and processor.

6.3.2 Interactions with Java and ActiveX
Libraries written in Java or ActiveX can be directly called from MATLAB and many MATLAB libraries (for example XML or SQL support) are implemented as wrappers around Java or ActiveX libraries. Calling MATLAB from Java is more complicated, but can be done with MATLAB extension which is sold separately by MathWorks
6.4 Development Tools

MATLAB includes development tools that help you implement your algorithm efficiently. These include the following:

MATLAB Editor - Provides standard editing and debugging features, such as setting breakpoints and single stepping

M-Lint Code Checker - Analyzes your code and recommends changes to improve its performance and maintainability

MATLAB Profiler - Records the time spent executing each line of code

Directory Reports - Scan all the files in a directory and report on code efficiency, file differences, file dependencies, and code coverage

6.5 Designing Graphical User Interfaces

 The interactive tool GUIDE (Graphical User Interface Development Environment) to lay out, design, and edit user interfaces can be used. GUIDE allows to include list boxes, pull-down menus, push buttons, radio buttons, and sliders, as well as MATLAB plots and ActiveX controls. Alternatively, you can create GUIs programmatically using MATLAB functions.

CHAPTER 7
SIMULATION RESULTS
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                        Fig 3 Plot representing observed radar range versus time
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                      Fig 4 Plot representing observed radar angle or bearing versus time
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                       Fig 5 Comparison of true and estimated kalman filter performance
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                       Fig 6 Plot of Mean Square Error for Rx
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                       Fig 6 Plot of Mean Square Error for Ry

CHAPTER 8
CONCLUSION

8. CONCLUSION


The Extended Kalman Filter algorithm used in this work gives a fairly good approximation of the original track of the vehicle to be tracked.


Initially, the estimate (guess) made was quite wayward as compared to the initial position of the vehicle. But, as the error at this point of time was very high, as can be seen from the Minimum MSE graphs obtained in the output (a peak at the starting) (Fig 6 and Fig 7), it started to merge with the original track after around ten observations (the estimate became steady, after being quite unstable). The noise introduced here was assumed to white Gaussian noise with zero mean and a variance of (0.0001). Hence as the noise is random we do not get the same estimates each and every time. But, if a practical situation is considered, then it that case also we would not be knowing what all noise can get added up. 

Now, as the error was very high, the estimates started coming nearer to the true values very suddenly (and dynamically) as is the property of the Kalman filter. The Minimum MSE values got lower, somewhat exponentially (after around ten observations, in synchronization with the tracking graph). 


This implies that the Kalman filter estimates (refer fig 5) become better as the time progresses. Hence, if we take more time samples we would get more accurate results. 
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