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 ABSTRACT

In this thesis, analysis and design of a protocol for the transparent process scheduling and process

migration in heterogeneous unix networks has been proposed and implemented. Further, an algo-

rithm to measure the load of any machine in distributed heterogeneous Unix network has been

devised and it is analyzed for the performance and efficiency. Because a distributed system can

be used effectively by its end users only if its software presents a single system image of this

physically distributed system to the users, So all the resources of any node should be easily and

transparently accessible from any other. A common kind of machine clusters typically used is a

set of heterogeneous Unix workstations. While solutions are available for transparent sharing of

resources such as files and printers in such a scenario, an important resource that is typically not

shared is the CPU. Hence, even though there is an idle machine is the system, a heavily loaded

machine cannot share the idle CPU transparently which signifies wastage of CPU cycles. Process

migration can reduce the loss of such CPU cycles by migrating processes from a highly loaded

machine to the idle (or lightly loaded) one. Remote execution or non-preemptive migration is a

form of process migration where the processes are placed in remote nodes during creation. In a

heterogeneous environment only non-preemptive process migration can be performed transpa-

rently.

We have proposed a transparent process scheduling and process migration protocol and a set of

conventions to achieve load sharing for a cluster of heterogeneous machines each running some

flavors of Unix. In the protocol, the single system image is also preserved by creating unique

cluster wise process ids, keeping a traditional filename space, uniform user credentials, etc. The

protocol itself do not provide all the features of process migration, but it rely on the underlying

Unix network. For example, the protocol assumes that the machines already have a more or less

uniform file system view (through NFS) and are uniformly administered for user credentials.

These are declared as conventions that all machines in the cluster must ensure. The protocol also

does not dictate the policy decisions and can work with any load sharing policy. In the current

version of the protocol, there are a few limitations. For example, the current version of the proto-

col does not have support for migration of process from one architecture of Unix to another as,

the migration time in this case is significantly high as compared to time required for the comple-

tion of process.
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CHAPTER 1                                                    Introduction

The availability of low cost powerful microprocessors and high speed computer networks

has radically changed the way computing is done today. The big, monolithic mainframes

of the earlier days have been replaced by clusters of small but powerful computers con-

nected by high speed networks. A distributed system is defined as a collection of autono-

mous computers interconnected by a communication network. The computers (or nodes)

of a distributed system communicate only through message passing because there is no

physically shared memory.

Distributed systems have many advantages to offer over sequential machines. Distributed

and parallel computations can take advantage of the multiple processors available in dis-

tributed systems for achieving high speed gains. A distributed system also provides higher

reliability as the failure of node does not bring down the entire system; making it highly

available to its users. Further, the system is scalable as extending the system for more

power would require addition of fewer components. For a sequential machine such exten-

sion would mean replacement of old components by new more powerful ones.

All these potential benefits of distributed system cannot be fully utilized by the users until

all the resources are shared transparently by all the nodes in the system. Transparent shar-

ing means that the users should be able to access all the resources physically available in

any machine in the system without worrying about their physical locations. Transparency

is important because users want to view the system as a traditional monolithic computer

system, since they are more accustomed to the single system look of traditional timeshar-

ing systems where the location of a resource is irrelevant. In addition to the look of the

system, if applications are written for accessing resources from known locations, they may

fail in case some of the accessed resources migrate to other nodes. Transparency also pre-

vents this by hiding the location information of the applications.

A number of such distributed system have been developed in the universities and research

laboratories in the recent years. Some of the prominent examples include Amoeba

[1],V[2,3], Charlotte [4], etc. most such systems work by running a copy of the same oper-
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ating system on all the participating computers and these copies cooperate to provide a

single system image of the system to its users.

The popularity of such systems, however, has not really grown. This is because of the fact

that there is a large existing user and software base for Unix [5,6,7,8]. Several distributed

systems therefore try to emulate Unix so that existing applications can be reused with little

or no modification and so that the users get a familiar working environment.

However, there is another problem that must be solved by today’s distributed system soft-

ware. This problem arises because the distributed systems of today typically comprise of

hardware and operating system software from a variety of vendors. Achieving the single

system image in the face of this heterogeneity is a major challenge. Systems such as

Amoeba etc., do not address the problem of operating system heterogeneity as they

assume that all participating machines on the network run the same operating system. A

few solutions are also available today that address this problem partially. Sun-NFS [9] and

AFS(10) are examples of distributed file systems that are commonly used now to achieve a

unified view of the file system on a network of heterogeneous workstations. Various other

resources such as printers etc., are now routinely shared on Unix systems.

1.1  Transparent CPU Sharing

An important resource that is typically not shared transparently on Unix systems is the

CPU. Several studies have shown that there is a wide disparity in the load of various

machines in a distributed system at any given time of the day. While there are some

machines that are heavily loaded, others are completely idle. What is desirable is that

these machines should share the total processing load requirement of all the users so that

the load distribution is more uniform and ultimately the users see an improvement in sys-

tem performance. While there are user level commands available in Unix systems (such as

rsh) that allow users to execute their jobs on any machine of their choice, such mecha-

nisms are clearly not transparent. In an ideal setting, a user would just fire a job and the

system would automatically select the best location (i.e., the least loaded machine) to exe-

cute the job. This is called transparent remote execution or load sharing. A stricter form of
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such load sharing is called load balancing, wherein the system strives to balance the load

on all machines at all times. While load sharing would just require the system to select the

best machine for executing a newly submitted job and transparently transfer the job to that

machine, load balancing would typically call for migrating a job to another machine, pos-

sibly during its execution.

1.2  Background

In this section we summarize a few basic terms and ideas related to load related to load

sharing.

1.2.1  Preemptive and Non-preemptive Migration

The act of transferring a process from a node to another in a distributed system is called

process migration. Migration of an already executing processes is called preemptive pro-

cess migration. This requires the executing process to be stopped during execution (hence

preemptive) and the state of the process is transferred to the target node where its execu-

tion is resumed. Initiating a process at a node different from the creator of the process is

called remote execution. It is also called non-preemptive migration because it does not

involve preemption.

It can be easily seen that non-preemptive process migration can be more easily imple-

mented than preemptive migration. This is because the latter requires the system to check-

point the state of a process already in execution and then transfer this state to the target

machine. Clearly this is a very hard problem if the two machines are architecturally differ-

ent, for in that case the checkpointing would have to be done at the source program level

and not the executable code level. Tui (11) is an example of a system that allows executing

processes to migrate to architecturally different machines. However, in this case, the pro-

cess of migration is not transparent to the application program and the application must

cooperate with the migration software in order to migrate successfully. Further, the migra-

tion process is also costlier in terms of time since the entire state (which might be quite

large) has to be transferred to the destination machine. Studies have shown that this addi-

tional overhead severally restricts the performance benefit that can be obtained by using
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preemptive task transfer as compared to non-preemptive process migration (12). Non-pre-

emptive migration does not incur this additional cost since only newly submitted jobs are

transferred to other machines and therefore there is no address space image to transfer.

Further, heterogeneity is   much more easily accommodated.

1.2.2  Load Balancing and Load Sharing

As and when user’s job will arrive, they will be allocated and scheduled on various idle-

Hosts present in the network. This involves the registration and de-registration of Idle-

Hosts and proper scheduling algorithm to be implemented to get the fairness, liveliness

and lack of starvation of job allocation to various hosts. This concept is called as Load

Balancing, as before the execution of any process, the system may decide the host where

the process can be scheduled fairly.

During the execution of various jobs it may happen that one particular host may be highly

loaded with number of processes executing on it. Therefore a proper migration mechanism

should be there to migrate the heavy task/process to a less loaded suitable idleHost, this

concept is known as load sharing as on the fly the load of the complete distributed system

be shared among the hosts. Load Sharing is an area of research where the process migra-

tion is being implemented with the help of concepts of shared memory or dynamic process

creation and process migration from one machine to another machine.

1.2.3  Policy and Mechanism Issues

There are two orthogonal issues related to load sharing- policy and mechanism. The first

one relates to the policies for migration. For example, when should a machine attempt to

transfer a process to another machine, which process should be migrated and to which

machine? The second issue relates to the actual methods of transferring processes and

ensuring that a migrated job will get roughly the same environment as it would have on the

machine where it actually originated.
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1.2.4  Heterogeneity

In a distributed system heterogeneity can exist in several forms. Nodes, for instance, can

have different architectures (architectural heterogeneity), can run different operating sys-

tem (operating system heterogeneity) or have different volumes of resources available

(configuration heterogeneity). Heterogeneity has a major impact on load sharing. It can

easily be seen that, in general, transparent preemptive process migration is not possible

between heterogeneity nodes.

1.2.5  Failure and Fault tolerance

Failures are an unavoidable part of a distributed system. In a distributed system, both

nodes and the network links connecting them can fail. Based upon the behavior of the

failed nodes, node failure can be further divided as a fail-stop or a Byzantine failure. A

fail-stop failure means that the failed node does not do anything and simply ceases to oper-

ate, whereas Byzantine failure implies that the failed node behaves in a completely arbi-

trary and unpredictable manner. Byzantine failures are complex to handle and hence most

of the distributed systems assume that node failures are fail-stop in nature.

Network partitioning is a type of network failure where the set of nodes in the system is

divided into two or more partitions; a node in a partition can communicate with only

nodes in that partition but not with any node in other partitions.

Apart from the benefits of load sharing, process migration can also be used for fault toler-

ance. For example, long running processes may be moved to a different node when a node

is about to shutdown. In several cases, such prior notifications are sent to the processes by

the operating system. Hence, if a process wants to continue execution, it can migrate to a

new node. In systems where check pointing is employed, even a process terminated during

a node failure may be restarted on another node from the check pointed state. Such fault

tolerance measures can only be employed in a system that supports preemptive process

migration. In systems supporting non-preemptive process migration care should be taken

so that the failure of a component of the system (node, link, etc.) does not affect the behav-
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ior or other components and when a process fails, all its effects should be removed from

the system as if the process has existed.

1.2.6  Scalability

Performance of the components of a distributed system may vary depending upon the

number of nodes in the system. A component is said to be scalable if its performance does

not degrade with increasing number of nodes. While designing a process migration system

care should be taken so that centralized components are not used. The centralized compo-

nents become bottleneck as the number of nodes in the system increases. These are also

the source of single point of failures, meaning the working of the system depends upon the

working of these components. When any of the centralized component does not function,

the entire system stops working. Moreover, broadcast messages for communication

between nodes should not be used. Apart from the fact that these are not supported in all

the networks, this also means increased network traffic. Moreover, if a broadcast message

is targeted for a subset of nodes in the cluster, this also imposes processing power wastage

for the rest of the nodes in the system. Hence, for scalability both the centralized compo-

nents and broadcast message should be avoided in a process migration system.

1.3  Related Work

Several systems have been implemented in the past for transparent process migration. In

this sections we shall look at some of these systems in brief. A comparative study of these

systems is presented in appendix A.

Process migration can be implemented entirely at the user level, or by making modifica-

tions to the kernel itself. Implementations of both kinds have been reported in the litera-

ture (13).

1.3.1  User Level Implementations

Purely user level implementations usually work by intercepting system calls through a

modified system call library. The modified system call library provides functions for three
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kinds of activities. Firstly, the modified system library replaces system call functions with

versions that examine the system call arguments and return values and thus attempt to

memorize the external state of the process, like files opened, in their private variables. Sec-

ondly, it provides code for checkpointing the process state before migration. For Unix pro-

cesses the state can be divided as internal state containing text. Data, stack segments,

register context etc. and external state containing open files, etc. for saving the data and

stack segments, the check pointing function typically determines the segment addresses

and sizes and writes these segments in a file. Finally, the modified library provides restart

routines that can be used to resume the execution of the checkpointed process form the

saved state.

The modification of the system library implies that application programs need to be re-

linked with this new library in order to be eligible for migration. On systems that support

dynamic library linking, this may not be necessary. In Utopia (14) a slightly different

approach is used where only a few programs, like the command shell, need to be changed

to use a high level library interface for migrating the processes that they spawn. But the

other applications need not be even re-linked.

Along with the modification system call library, a few daemons are also typically used in

user level implementations. These are used for implementing the policy activities like

detection of idle resource, load information exchange etc. some systems also use them as

servers for providing services to remote processes like file or device access.

The advantage of user level implementations is the ease of portability to different flavors

of Unix. However these systems are typically slower than ones in which migration is done

at the kernel level. Moreover, user level implementations also have certain restrictions

because of the non-accessibility of kernel data structure. For example, a Unix process can

delete an open file. If such a process migrates to a remote machine, the source system

should inform the remote system about this open file. But this cannot be done because the

file does not have a file name and hence does not exist in the file system. User level imple-

mentations like Remote Unix, Condor, Utopia etc. all have similar restrictions. For exam-

ple, Remote Unix and Condor do not allow a remotely executing process to create new

child processes and Utopia does not support process groups across machines.
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Remote Unix

Process migration under Unix started with University of Wisconsins Remote Unix (15).

Remote Unix uses idle workstations to execute computation- bound batch jobs in back

ground. Each machine has a queue of jobs which are submitted for execution in idle

machines through the ru program. Since these jobs are executed in background, the stan-

dard streams, i.e. stdin, stdout, stderr of the jobs are redirected to files. The jobs in the

queue execute in the idle machines and when finished the user submitting the job is

informed through mail. While running at a remote machine, al file related system calls of a

job are forwarded to the node where it was submitted The forwarded calls are executed by

shadow process running in the home machine. Remote Unix provides an automatic check-

poiniting and execution control mechanism so that the job can migrate from one machine

to another. When the owner of a workstation wants to regain control of his/her worksta-

tion, the jobs executing on that machine are automatically checkpointed to files in their

respective home machines. When some other machine becomes idle, execution can

resume in that idle machine. The system takes care of re-opening all the files in the appro-

priate modes, assigning the original file descriptor numbers to them, and positioning the

file offsets to appropriate places.

Being a user level implementation, Remote Unix is portable to any Unix kernel. But it also

has several limitations. It is mainly for computation intensive batch processing and does

not support remote execution of interactive processes. The migrated process cannot open

pipes, cannot send/receive signals, cannot make fork, exec, etc. system calls. Interprocess

communication is also not supported. Programs that depend on knowing their own process

id will not work correctly because the identification of an Remote Unix process changes

after each checkpoint. Moreover, heterogeneity is not supported.

Condor

Condor [16,17] system is a descendant of Remote Unix. Condor also follows the same

principle of utilizing idle machine cycles and has the same limitations as that of Remote

Unix. Condor differs from Remote Unix in only its attempts to allocate jobs to the idle

machines fairly and in some of the terminologies. Condor runs two daemons, viz. Started
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and schedd, in every machine. The schedd daemon keeps track of all the jobs that have

been submitted. Started daemon monitors information about the machine that is used to

decide if it is available to run a Condor job, such as time since last keyboard or mouse

activity, and the load on the CPU. Started also checkpoints and removes a job from the

machine when the user comes back and starts working on the machine. The mechanism

for fair allocation of these idle machines to users who have queued jobs is handled by a

centralized machine manager on the basis of priority. The priority is calculated according

to an algorithm that periodically increases the priority of those users who have been wait-

ing for resources, and reduces the priority of these users who have received resources in

the recent past. The purpose of the algorithm is to allow heavy users to consumer very

large amounts of CPU cycles, and at the same time protect the response time for less fre-

quent users. Like Remote Unix, the file system related system calls are forwarded to a

shadow process in home machine, a mechanism called the remote system call. In Condor,

a process is run on a machine with the architecture and operating system it was compiled

for. Beyond that, jobs might have requirements as to how much memory they need, or spe-

cial hardware. Owner of a job can specify the requirements and preferences of the job

when it is submitted. Condor is highly portable on different platforms and also provides

limited fault tolerance.

Although it works extremely well for its intended goals, Condor is slow and does not

support IPC, signaling, etc. the use of centralized machine manager makes Condor non-

scalable. In Condor, the processes are heavily dependent on the home node. The home

node performs all the file system related system calls even though the process is executing

remotely. This gives rise to residual dependencies. Residual dependencies create two

problems. First, the overhead involved in carrying out operations on behalf of remote pro-

cess affects the performance of the home machine. Secondly, the execution of the remote

processes becomes vulnerable to the failure of the home machine.

Global Layer Unix

Global Layer Unix, called GLUnix [18] short, is another user level implementation of pro-

cess migration system which provides the illusion of a single system image. The distinc-

tive feature of GLUnix from three user level implementations are its globally unique
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process id and signaling mechanism. Under GLUnix a process id is unique in a cluster of

connected workstations and a process can send signal to any other process in the cluster.

Utopia

Utopia [14] is a load sharing system for large clusters of nodes. Transparency in file access

is provided through a shared file name space. Utopia supports only remote execution i.e.,

non-preemptive process transfer. Load sharing policy, RESs (Remote Execution Servers)

which implement the migration mechanism, a Load Sharing Library (LSLIB) and the

Load Sharing Applications.

Every node runs a LIM and a RES. Load sharing applications are special applications

written using LSLIB. LSLIB provides primitives to the load sharing applications for com-

municating with LIM and RESs. LIM is the policy component which interacts with other

LIMs in the system for collecting load information which is used to help load sharing

applications for selecting nodes for task initiation. A load sharing application can initiate a

task at a remote node by contacting RES in that node. RES also acts as a middleman for

transferring signals and input/output date between the remote task and the load sharing

application. Scalability is taken care of by structuring the nodes in a logical hierarchy so

that the load information exchange and task placement decisions do not cause a large over-

head in the system. This is done by grouping the nodes into clusters and then arrange the

clusters in a tree like hierarchy. Within a cluster, the nodes exchange detailed load infor-

mation but a cluster only sends a condensed summary of the load situation in the cluster to

other clusters. Thus load information travels along the edges of the tree. The final decision

regarding the placement of a job is done in several stages. In the first stage only the top

level cluster to which the job will be assigned is decided. The decision is then refined to

finally decide which node in a cluster will execute the job.

There are two kinds of applications in Utopia. A few applications like shell etc., use the

high level library (LSLIB) functions for load sharing. Load sharing shell, parallel make,

etc. are examples of such applications. These programs are called direct applications

which require complete rewriting because the LSLIB functions names are different from

Unix system calls. But the indirect applications which use the facilities provided by the
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direct applications can get the load sharing facility even without re-linking. For example, a

load sharing shell can remotely execute a process to another machine. For this, the migrat-

ing program binary need not be changed. But, if such an migrated process (created from

an unmodified program) creates a child process which calls exec, this child process cannot

be migrated. This surely means loss of migration opportunity. Utopia does not support dis-

tributed process groups when the members execute in different machines.

1.3.2  Kernel Level Implementations

In contrast to the typical requirement of re-linking of existing programs in user level

implementations, kernel implementations can allow binary compatibility to the applica-

tions. Hence, existing programs will run without modifications, or even re-linking. It also

preserves the seem antics of Unix calls betters since all of the process state that is stored in

the kernel date structures is accessible. Kernel implementations are also usually more effi-

cient. However, a serious drawback is reduced portability, since it is much to write user

level programs than changing the kernel. Each different version of Unix that is to be sup-

ported needs to be changed afresh. Typical kernel implementations such as Solaris MC,

and OSF/1 AD TNC assume that all the participating machines run the same operating

system and hence do not support heterogeneity in operating system.

Although the focus of this section is on Unix process migration, we also describe two non-

Unix process migration, we also describe two non-Unix process systems here, namely V-

system and Charlotte, which define interesting inter process communication model suit-

able for migration. Both of these run identical micro-kernels in every node of the system

that provide transparent inter process communication across nodes.

V-system

The V distributed system [2,3,19] consists of a number of diskless workstations and a set

of server machines all running the V kernel. This collection of machines is called a V

domain. The kernels contain three major components, namely, the kernel server, device

server and IPC. Kernel servers provide process and memory management services to pro-

cesses, while device servers provide device access through a uniform I/O object abstrac-
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tion, abbreviated as UIO. The processes can transparently access any server in the V

domain through IPC primitives. Tuned to facilitate client/server kind of communication.

For example, it has two primitives for sending messages. Servers send back requested data

to a client with non-blocking reply primitive. However the send primitive is block until the

reply comes back from the server. Process ids are used in the IPC primitives to indicate the

communication peer. V supports preemptive process migration for using idle machine

cycles. The connection less nature of the IPC mechanism makes migration easy even for

processes that are communicating with other processes. If a process migrates while servic-

ing requests from other (client) processes, the client processes are informed that the

request cannot be satisfied since the process is migrating.

Apart from being a system for homogeneous environment, V is non scalable, because it

uses broadcast message to ensure network wide unique process ids. V uses idle machine

detection and migrates process only to idle machines.

Charlotte

Charlotte [4] provides a connection oriented IPC facility through the link abstraction.

Links are bidirectional communication channels whose end points can be moved across

the processes even crossing machine boundaries. Like V, a Charlottee process interacts

with other processes and kernel using network transparent link facility. When a process

migrates to another node, all the relevant kernel state, address space and link information

are sent to the destination machine. The link endpoints of the migrating process are

moved to the target machine using the Charlotte IPC facility. The process identification

changes when a process migrates. The links are very difficult to program. In fact a high

level language, called Lynx is created for this purpose. Charlotte uses a central file server

that makes it vulnerable to failures (single point failure) and non-scalable.

Sprite

Sprite [20,21] is a Unix like operating system that uses transparent process migration to

use idle machine cycles in a homogeneous cluster of workstations. Transparency in file

accesses in provided through a global filename space. The global file system also helps in
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process migration and limited inter process communication (single reader single writer

named pipes only). Sprites notion of transparency is relative to the home machine of the

processes. Home machine of a process is defined as the machine where the process would

have executed if it had not migrated. A home node can initiate a process to an idle

machine. When executing in a remote node, a process can make systems calls. System

calls are categorized as location dependent and location independent system calls. Loca-

tion independent calls are executed in the machine where the process is currently execut-

ing. But location dependent calls are always executed in the home machine. Process

management system calls like fork, exec, wait, etc. and device related calls are examples

of location dependent calls. The children processes inherit the home node of the parent

and also the ps command in a node shows all processes whose home machine is the node

itself. Hence a user gets the illusion that all the process are executing in his/her own work-

station.

When a user of a idle machine comes back, all the remote processes are evicted back to its

home node by the load-average daemon running in that machine. Preemptive process

migration is used for eviction. Every machine runs a load-average daemon which apart

from evicting processes also detects if the machine has become idle and informs this to a

central migration server. Machines can ask the central migration server for an idle

machine.

Sprite does well to utilize the idle CPU cycles, but also has a few problems. As in the case

of Condor, Sprite processes are also heavily dependent on the home node. In fact part of

the process state is kept in the home node and the home node also performs several opera-

tions when the process is executing remotely. This gives rise to residual dependencies.

Sprite allows limited devices of any node except that of home machine. This restricts

resource sharing. The use of a centralized migration server makes Sprite vulnerable to

failures and non-scalable. Sprite does not support heterogeneity.

MOSIX

MOSIX [22,23] is an enhancement of BSD /OS [24] for adaptive resource sharing and is

designed to run on a homogeneous cluster of Pentium based workstations, connected by
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standard LANs or fast interconnection networks. Users interact with the system through

their home nodes. Users create processes in three home node, and whenever the workload

becomes higher than a threshold, some of the processes are transparently migrated to other

less loaded nodes. A process is migrated either due to higher CPU load or higher memory

contention leading to thrashing. A part from distributing the CPU load of the system,

MOSIX also tries to reduce main memory thrashing and swapping out of pages by distrib-

uting the memory requirements among the nodes of the cluster. This is done using a mem-

ory ushering algorithm.

MOSIX uses decentralized control for both load sharing policy and mechanism and pro-

vides autonomy to every node for making process migration decisions independently. This

enables it to be scalable to a large number of nodes. For efficient kernel communication a

modified version of TCP.IP protocol is used, which reduces the overhead of initial connec-

tion setup.

Like Sprite, MOSIX also does not provide full transparency in accessing all the resources

in the system. The transparency is defined relative to the home node. Also heterogeneity is

not supported in the system.

LOCUS

LOCUS [25,26]is another Unix compatible kernel level implementation supporting load

sharing. It has a global file system which allows transparent replication of files for

improved file read performance. Unix file offset sharing is implemented through a token

based protocol. LOCUS allows processes to migrate both during fork and exec system

calls. But migration during fork is restricted between machines of same architecture only.

LOCUS has support for heterogeneity and single reader and single writer pipes. Pipes are

implemented in the shared file system. It also supports transparent device access for a lim-

ited class of devices.

LOCUS supports very limited inter process communication apart from signals. Also the

token based protocol used for file access synchronization makes it inefficient.
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OSF/ 1 AD TNC

OSF/1 AD TNC [27] is a multicomputer (NORMA) system from Open Software Founda-

tion and Locus Computing Corporation based on OSF/ 1 MK single server on Mach 3.0

[28] micro-kernel. OSF/ 1 AD TNC has large number of nodes categorized into three

types: nodes used for input/output and connectivity (1/O nodes or file server nodes), nodes

dedicated for parallel applications (compute nodes); nods for interactive use (service

nodes). The system enables the user to take full advantage of multicomputer hardware

while supporting full OSF/1 (and thus Unix) semantics. It presents a single system image

by means of a single file name space and access to all the system resources and OSF/1

facilities (file descriptor, socket, pipes, process management and even shared memory).

Mach 3.0 transparent network services and memory object facility is utilized extensively

for this purpose. Scalability is an important issue in a multicomputer with large number of

nodes. Thus the system distributes control of the file system, socket protocol stack and

process management subsystems. For accessing global resources like sockets or processes,

the system uses virtual structures. Virtual structure points to a table of functions which are

used to perform global operations on the object identified by the virtual structure. These

global functions send messages to the appropriate nodes and call local functions of that

node. The system supports process migration and automatic load balancing.

Although OSF/1 AD TNC has been able to keep the single system image and Unix seman-

tics intact, doing so it has put certain restrictions and performance drawbacks. Mach 3.0

networking facility and memory object facility across the network has its own perfor-

mance penalty. Also, operating system heterogeneity is not supported.

Solaris MC

The Solaris MC [29,30] operating system is a prototype distributed operating system that

provides a single system image for a homogeneous cluster and provides high availability

so that the cluster can node failures. Solaris MC is built as a set of extensions to the base

Solaris UNIX system and provides the same API as the Solaris OS, running unmodified

applications. Solaris MC supports remote execution only, where a process can change

node only during exec system call. The system preserves Unix semantics for files through
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a global file system called Proxy File System (PXFS). The file name space is the same for

each node in the network. Process Management is done globally using CORBA. Each

node has a node manger object which managers several virtual process objects. Every vir-

tual process object represents a local process. a node can perform operations like sending

signals, etc. by receiving a reference to the virtual process object of the target process from

the process id of the process and by invoking a method on that object. The I/O subsystem

makes it possible to access any I/O device from any node in the multi-computer without

regard to the physical attachment of device to nodes. In Solaris MC, a node can transpar-

ently access every network interface available physically attached to any node in the clus-

ter. This is done by three components of the networking subsystem: (a) demultiplexing the

incoming packets to an interface to the appropriate node, (b) multiplexing the outgoing

packets from various nodes onto a network device and (c) global management of network

name space. Network services are accessed through a service access point of SAP (For

TCP/IP, the SAPs are ports). Solaris MC keeps a database that maps SAPs to nodes. The

database is maintained by the SAP Server which ensures that also enables a system wide

process tracing mechanism through its distributed /proc file system implementation.

Solaris MC does not support heterogeneity in the system. It also is not able to provide

POSIX controlling terminal and session semantics. It provides a weaker semantics for

exec. Should the process machine after exec the file sharing semantics is not preserved.

1.4  The Scope of Our Work

This work is aimed at providing transparent resource sharing in a heterogeneous Unix net-

work. The nodes can be of different architecture and may run different flavours of Unix.

We have chosen Unix as the base operating system because of its popularity, its open

nature and the large number of existing Unix applications.

Our basic approach to handle CPU sharing and heterogeneity in operating system is to

define a standard protocol for transparent remote execution that all participating machines

must implement. The protocol should not be biased by any particular flavour of Unix, and

should not be defined in terms of abstractions that are peculiar to any Unix implementa-
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tion. As a example of a system that does not follow this principle, OSF/1 AD TNC uses

Mach ports for communication among machines. This makes the protocol unsuitable for

Unix implementations that are not Mach based. The protocol should be able to tolerate

both node and network failures. Thus is case of a partial failure, the rest of the system

should be able to work in the usual manner. Finally, the protocol should not dictate the

policies for load sharing. The policy decisions are an orthogonal matter and should be

treated separately.

The standard protocol by itself is not sufficient to handle heterogeneity. We also define a

set of conventions that each participating machine must adhere to. For example, each

machine should assign new process ids in a certain manner. The advantage of separating

the protocol and conventions from their implementation is that different systems can

implement them differently.

1.5  Organization of the Thesis

The thesis is organized as follows:

Chapter 2: Performs a discussion over various issues in unix process migration.

Chapter 3: Explains the complete architecture of the proposed protocol for the process

scheduling and process migration mechanism. This part also introduces the reader to some

of the concepts which are to be used in the system.

Chapter 4: Explains the concepts of load measurement and discusses the parameters to be

taken for the load measurement of the system, which mark it as being idleHost.This chap-

ter will elaborate the load measurement parameters, their significances, the relation

between the system parameter and system load. Finally a algorithm is discussed to mea-

sure the load of any distributed machine in heterogeneous unix network.

Chapter 5: Explains the design and implementation.This chapter describes the structure of

the different messages flowing in the Process Migration system. These messages are used

by the different modules in the system to exchange information. Some of the messages

have identical structures. Members which occur in more than one message but have the
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same meaning have been explained only once i.e the first time when they appear in the

chapter.

Chapter 7: This chapter describes the system modeling for the proposed protocol. It

designs various object models using OMTs. Finally the complete view of the system has

been shown here.

Chapter 8: Discusses the proposed future work and the conclusion over the various aspects

of the suggested protocol
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CHAPTER 2 Issues in Unix Process Migration

Providing transparent migration facility for Unix in heterogeneous environment is much

more harder than the specially designed distributed systems like Amoeba, V, Charlotte,

etc. This is because these systems were designed keeping the goals of distribution in mind.

Unix, on the other hand, was designed as a centralized operating system much before the

ideas of distributed systems came into widespread use. It is much harder therefore to adapt

it to a distributed setting.

Several issues, peculiar to Unix process migration, need to be addressed for providing sin-

gle system illusion to the users of a Unix cluster. In this chapter we briefly discus some of

these issues.

2.1  Process State

The load sharing policy selects a local process for migration and a node where it has to be

migrated. Once these are decided, the execution of the process is stopped and its state is

extracted and transferred over the network to the target machine where it is restored and

execution of the process is resumed. We now look at what comprises the state of a Unix

process.

Each Unix process has a well defined context, comprising all the information needed to

describe the process. this context has several components.

Users address space This is usually divided into several segments the program text, data,

user stack, shared memory regions, and so on.

Control information The kernel typically uses two main data structure to store control

information about a process t the u are and the proc structure.1 Each process also has its

own kernel stack and address translation map (pages tables).

Credentials The credentials of the process include the user and group ids, controlling ter-

minals etc.
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Environment variables These are the strings of the form variable = value which are inher-

ited from the parent. Most Unix systems store strings at the bottom of the user stack.

Hardware context This includes the contents of the general purpose registers and a set of

special system registers. When a context switch occurs, these registers are saved in a spe-

cial part of the u area (called the process control block, or PCB) of the current process.

Unix processes interact with the outside world through several abstractions, such as files,

devices, pipes, sockets etc. The state of these abstractions collectively represent the exter-

nal state of a process while the process context is called the internal state of the process. A

process uses unsigned integers called file descriptors to access thee objects. The table of

open file descriptions (user file descriptor table) for a process is typically stored in the u

area. The external and the internal state together constitute the state of a process that

should be sent to the destination machine.

2.2  Preemptive vs. Non-preemptive Migration

As mentioned earlier, preemptive migration is both harder to implement and more expen-

sive than non-preemptive migration. Preemptive migration has a much larger overhead

since the entire address space and the hardware context of the process needs to be check-

pointed and transferred over the network. Also in presence of heterogeneity, for example

when machines participating in migration have different architectures, the saved state

needs to be mapped to equivalent state of the target node. Although this mapping can be

done at the source level [11], no general solution exists for such mapping. Moreover doing

it at the source level would mean loss of transparency because the application has to assist

the migration of processes. For these reasons we have decided OT focus only on non-pre-

emptive migration.

In Unix, new processes are created by using the fork system call. The fork call creates a

new child process of the calling process. The child process has an (almost) identical

address space and hardware content as the parent process. thus if a newly created process

is migrated, the same difficulties as in the case of preemptive migration would be encoun-

tered. Typically, the child process soon makes an exec system call. This call is used to exe-
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cute a new program in the context of an executing process. the old address space of the

process is discarded and is replaced by a new one that is appropriate for the new program

to be executed. Hence, for load sharing Unix systems supporting only non-preemptive

process transfer, the exec call should be considered as the time when a process is consid-

ered for migration. The advantage is that the execution image of the process need not be

saved and transferred to the destination. Instead only the name of the executable file to

overlay the process memory image, open file descriptors, signal related information, etc.

are sufficient. Systems such as Solaris MC take this approach and consider a process for

migration when it makes the exec call.

2.3  Semantics Changes

Unix process management semantics are not easily amenable to extending over a distrib-

uted environment. The reason behind this is that Unix was primarily designed to run on

uniprocessor machines and design decisions were made with this assumption in mind. As

a result, certain process management features of Unix are difficult to extend over a net-

work without a very large performance penalty. For example, in Unix a child process

shares the file offset that it inherits from its parent process. But when the child process

executes in a different node from the parent node, such as sharing is difficult to achieve

without reduced efficiency of the file operations.

A distributed environment also introduces certain problems which are not present in the

case of uniprocessors. For example, the failure model of distributed system is much more

complex than for the uniprocessor case. There is no concept of partial failure in the case of

uniprocessors because node failure essentially means a complete system failure. How-

ever in a distributed system a node failure does not bring down the entire system, because

the rest of the system can work in the usual manner despite the failure. For this reason also

certain changes need to be made to Unix system call semantics. For example, in a distrib-

uted Unix environment, the parent and child processes can execute in different nodes.

When the parent process calls wait, it waits until the child process dies and an intimation

comes to the node executing the parent process from that executing the child process. But

when the node executing the child fails, such an intimation is not sent to the node running
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the parent process. When the node executing the parent process detects the failure, it

assumes that the child has died. Such a situation never arises for uniprocessor environment

because both of them execute in the same node and if the node fails, both the parent and

the child process fail.

This discussion suggests that Unix semantics require a few modifications to adapt to a dis-

tributed environment for efficiency and fault tolerance. However, most of the existing pro-

grams should be able to run unchanged even after these modifications. Hence, while

modifying the semantics, care should be taken so that the deviation from the standard

semantics is kept minimal and that the modification is made to features very rarely used so

that majority of the existing applications can run unmodified. For example, as mentioned

earlier, file offset sharing is inefficient to support in distributed setting. Howsoever, the

efficiency of the file operations improves if the semantics of fork are changed slightly, i.e.,

the parent and child do not share inherited open file offsets when they execute on different

machines. Moreover, the file offset sharing is so rarely used that majority of the applica-

tions work correctly without offset sharing.

2.4  Filename Space

If transparent load sharing is to be achieved in a network of Unix workstations, all the

machines need to have the same logical view of the file system. Typical implementations

assume the existence of some underlying distributing file system that makes this possible.

Condor, however, uses a different approach. It does not require a uniform file name space

on all machines. Instead, all file system related (and several other) system calls are for-

warded transparently to the home machine (i.e. where the process originated by a remote

system call mechanism. This option is clearly not very attractive since it is inefficient, and

makes the migrated process heavily dependent on the originating machine (residual

dependency). Thus if a machine goes down, then even the processes that originated on this

machine but had earlier migrated to other machines cannot continue execution.
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2.5  User Credentials

In Unix, each user has a unique user id. In addition, each user can belong to several groups

or users, and each group also has a unique group id. The user and groups ides together

form the credentials of a user and are used for all authentication purposes.

In the scenario of process migration, it is quite clear that for every user these ids should be

same in all the participating machines. This can be easily achieved if the machines in the

system are uniformly administered. For example, Yellow Pages (YP) or the Network

Information Service (NIS) (31) can be used to maintain same user and groups ids in all the

nodes I the system. The Condor approach of remote system calls in an alternative to this

approach.

2.6  Heterogeneity and Executable Filename

Nodes of a heterogeneous distributed system can have different architectures and may be

running different flavors of Unix. This means that for the same program, the executable

files for different machines will, in general, be different. An argument of the exec call

specifies the executable file name. If the process is migrated when it makes the exec call,

the call is completed on the destination machine. Thus the filename specified as the argu-

ment of the exec call should refer to binary of the program for the destination machine.

Since the caller of exec does not know where the process will be migrated, we require that

same filename corresponds to the appropriate binary on each machine. Among the system

we described, only LOCUS implements such a mechanism using the so called hidden

directories [25].

2.7  Process Id and Process Group Id

In Unix, each process has a unique process id. Additionally, processes may be grouped

into process groups and each such groups has a unique process group id. Now if pro-

cesses can migrate, it is desirable that processes and process groups have network wide

unique ids. Preserving uniqueness of Unix process id is fairly simple in a single machine

environments as this merely requires the operating system to check its internal tables and
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find an unused id. Extending this to a network environment adds certain problems as these

tables are now distributed among different nodes and searching through all the tables is

clearly infeasible.

In some user level implementations, the process id changes when a process migrates. This

causes loss of transparency, since other processes may have the old id for migrated process

and such a process would not be able to communicate (through signals, for example) with

the migrated process. To avoid this situation some implementations create network-wide

unique virtual process ids and virtual process group ides which are translated through a

global layer to the local process ids and process group ids (18) (27). Solaris MC creates

unique process id by partitioning the process id into two parts- node id and local process

id, where node id is the node which created the process.

Ideally, the process and process groups ides should be network-wide unique and should

not change, once assigned. Further it should be easy to find anew unused id for a newly

created process. A new process id should not clash with an existing process group id.

Also, give a process id, it should be easy to locate a process in the network. This is needed

again to communicate with the processes. Broadcast messages are not acceptable for trac-

ing a process because it creates unnecessary overhead for all other nodes in the system

except the target node. Such a solution is also non-scalable.

An important issue in distributed Unix process management is whether the unmodified

existing binaries can run in the system. The process ids also have an impact on this issue

since some programs store process ids in their local variables. These programs will not

work correctly if the new process id size is larger than the reserved space of any variable in

the existing binary which is used to store process ids. Hence, for complete binary compat-

ibility, size of the process ids must not be larger than sizes of native process ids of any

node in the load sharing system.

Process groups are needed to send signals to a set of related processes. In the uniprocessor

case, the process group id is typically kept in the process table entries. For sending a sig-

nal, the kernel would merely search the table and find out the processes in that group. But

in a distributed environment the member processes may run in any node in the system.
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Hence such a search would again be infeasible. What is required is a process group struc-

ture which will contain the member process ids and processes interested in sending a sig-

nal will simply receive this list of members from the node having the group structure. Like

the process id, the node holding the process group structure should also be easily found

from the process group id.

2.8  Signals

Unix uses signals to notify processes of asynchronous events. Signals thus are an abstrac-

tion of interrupts. A process can choose to ignore a signal, supply a handler for it, or let the

kernel take default action for the signal when the signal is received. Further, signals can be

blocked. At any instant of time, the signal mask of a process shows what signals are cur-

rently blocked. When a process calls exec, the disposition of all the signals that it was han-

dling is changed OT default, since the signal handler function may not exist in the new

program  that the process will not execute.

When a Unix process migrates during the exec call, the information about how it will han-

dle signals, which signals are currently blocked etc., needs to be sent to the target

machine.

Signal numbers need to be standardized because certain signal values represent different

signals for different operating systems. For example, SIGSTOP is 17 in 4.3 BSD, but 23 in

SVR4. Moreover, some system also use non-standard custom signals. The signal SIG-

STKFLT in Linux is an example of a non-standard signal which is sent to a process when

a stack fault occurs., the mechanism should also be flexible enough to handle such non-

standard customer signals.

2.9  Process Relationships and Wait

In Unix, processes are organized into a tree with a special process, called init, at the root.

Every process in the tree has a parent and may have child process(es). The parent child

relationship is set up when a process calls fork to create a new process. The caller of fork
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is called parent of the newly created child process. Typical Unix implementations use

pointers to process table entries to indicate the parent child relationships [5,6,7].

Maintaining the parent-child relationship of Unix process across the nodes in a network of

workstations is a challenge to the designer of a load sharing mechanism. The problem

here is that parent the child processes can run in different nodes. Hence, the normal

approach of keeping pointers to process structure does not work for keeping the process

relationship information. Moreover, failures can cause loss of relationship information,

thereby damaging the process hierarchy.

The fact that the parent and children can run in different nodes in the system, makes

implementation of the wait system call harder. The wait system call is used by a parent

process to wait for its children processes to die. The parent process can use this call to

obtain the exist status, and other information about its expired children. In (29) two meth-

ods have been proposed for cross-node wait implementation. In one method, called the

pull model, the parent request information from the child when it does a wait. If the child

process has not exited so far, a callback is established with the child so that the parent is

informed when the child dies. In the second method, called push model, the children

inform the parent about every state change (process exit or stopped while being traced by

the parent). In the pull model no message is exchanged until parent does a wait, but setting

up and tearing down the callbacks can be expensive if the parent has many children, since

many callbacks will have to be created and revoked. The second method is more efficient,

as practically child process exit is the only event of interest to the parent.

2.10  File Descriptions

There are four major abstractions supported by Unix for interaction of a process with

the outside world- files, devices, sockets and pipes. These objects are accessed by a pro-

cess by using open file descriptors. In the following subsections, we consider each of these

abstractions separately.
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2.10.1  Files

The files that were open in a process before migration should be reopened in the target

machine. Hence, state information of open files has to be passed to the target machine

including an identification filed to locate the files. The pathname of a file would be suffi-

cient to locate the file under the assumption of existence of a global shared file system. But

there are two problems associated with pathnames. First, the system does not store the file

name anywhere after opening the file and second, it is not always possible to determine

the path of a file given a file descriptor. A solution could be to save the path into some vari-

able while opening or creating a file or duplicating a file descriptor. This technique has

been followed by all the systems that support process migration at the user level. But this

does not wear away the problem entirely. There could be some files that do not have any

path in the file system. For example, a process can remove an open file. Such a file is

accessible   to the process though it does not have any name in the file system.

Another alternative to pathname for locating a regular file could be the file systems inter-

nal identification for the file. For example, in NFS, the file handle can uniquely identify a

file in a given file system. If we append this file handle with the host id and an identifi-

cation for the file system, we get a unique identification for the file.

Another problem unique to files is that in Unix a child process shares the read/write offset

for the open files that it inherits from its parent process. Now if the child process migrates

to another machine, it is not possible to maintain this sharing except at an exorbitant cost.

Fortunately, such usage pattern is very rare. The reason for not using this feature in prac-

tice is the potential race condition between the two processes sharing the offset, resulting

in unpredictable file contents. Thus the semantics of fork and exec usually need to be

watered down a bit, i.e., the parent and child do not share the file offset for inherited open

files once they execute in different machines. As mentioned, this is unlikely to cause any

existing programs to stop working since this feature is rarely used.
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2.10.2  Devices

Devices have an advantage over files that these always have names in the file system. But

the problem with devices is that they are inherently stultify. Thus, the stateless distributed

file systems, like NFS, usually do not support remote access to devices. Even if the under-

lying distributed file system does not support device access from a remote machine, it is

possible to provide remote access to devices by using device servers. OSF/1 AD TNC and

Solaris MC take this approach. The state of an open device not only includes its identifica-

tion, but also the mode in which it is opened and other parameters needed to open the

device. For example, a terminal device can be opened in three different modes (cooked,

break or raw mode).

2.10.3  Sockets

A socket is a communication endpoint. Typically socket are used for communicating with

processes on other machines on the network using TCP/IP. A socket is bound to a trans-

port address, that in the context of TCP/IP is a combination of IP address of the machine

and a port number. Since the IP address is fixed for a machine, transferring an open socket

to another machine does not make sense in the existing infrastructure.

The shadow process approach, as used in the Condor system, can be used to handle this

problem. In this approach a process, called the shadow, is kept in the originating machine

of the migrated process. this process takes care of the local socket connections, devices

and local file accesses of the migrated process. The migrated process communicates with

its shadow process for communication, I/O etc. This approach uniformly handles all kinds

of file descriptors, but is very inefficient. For example, consider a case where a process

from machine A is transferred to machine B for remote execution while the process had

been communicating with another process in machine B. Now, every message sent from

the process to its peer (also in machine B) will first go to machine A and then bounce

back. To overcome this problem what we need is a transparent transport address which is

not attached to a particular machine. Such techniques are described in (13) and (29). A

socket server and virtual socket based approach, as described in (27), can also be used for

this purpose.
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2.10.4  Pipes

Pipes are special kind of files that implement FIFO semantics for readers and writers.

They are heavily used for communication among processes on the same machine. It has

been observed that mostly single reader and single writer pipes are used in Unix systems

and the Unix shell contributes to most of the pipe usage. The implementation of pipes dif-

fers from system to system. For example, earlier Unix systems used the file system for

implementing pipes whereas BSD uses Unix domain sockets.

Pipes can be implemented in a distributed system using different approaches, viz. Using

file system, using shadow process or over distributed socket implementation. Locus (25)

and Sprite (20) implemented single reader single writer pipes in the shared file systems.

Locus uses special protocol for this restricted pipe support. But modern day distributed file

systems for Unix such as NFS (9) and AFS (10) do not support pipes. The shadow process

approach can of course deal with pipes in exactly the same manner as for all other kinds of

file descriptors. Special protocols are also used in Solaris MC and OSF/1 AD TNC to

implement and migrate distributed pipes. In OSF/1 AD TNC, pipes are implemented over

distributed Unix domain socket-pairs. A socket-pair representing a pipe is placed in the

node executing a reader process. This reader process is called primary reader. The pipes

are migrated by the system under certain conditions. For example when primary reader

migrates, the pipe is also migrated along with it. Pipes can also migrate when the primary

readers die.

2.11  Time

Unix processes can read current time stored in a machine through time or get time of day

system calls. These system calls are obviously location dependent, i.e. the output of these

calls depend upon the node on which these are executed. The system times of two different

machines in a distributed system are always different because of the physical limitations

of clock synchronization (32) in distributed systems. As a result, a process might experi-

ence that the time has flown backwards, when it migrates to a node whose clock lags

behind the clock of the node from which the process has migrated. Condor and Sprite have
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solved this problem by executing all the location dependent calls only in the home

machine of the process so that all time values that the process perceives are relative to the

clock in the home machine.

In systems supporting migration only during exec system call, the old process space (and

hence all the local variables holding time values) is overlaid by the new program during

migration. Hence, the process usually does not know the old time values seen by the pro-

cess before migration. Although there is a possibility that the time value seen by the pro-

cess before exec is saved in a known place (for instance in a file) to be read in by the new

program, such a use is very rare. This means that a process migrated during exec usually

would not see time moving backwards.

2.12  Standardization

Heterogeneity of operating system versions in a load sharing Unix environment require

standardization of certain parameters so that they can be transferred across different archi-

tecture or operating system versions and the values from different machines can be com-

pared. Parameters such as signal values, resource usage, nice value, disk quota, resource

limit, timer values, etc. are examples of values that need to be standardized. As an exam-

ple, BSD assigns a priority between 0 and 127 to each process whereas older versions of

System V use a priority range of 0 to 31. Hence, the nice value of a migrating process has

to modified to a standard scale before transferring the state to target node.

2.13   Fault Tolerance

Fault tolerance is an area where the earlier systems have not concentrated enough. Only a

few systems consider node failures and recovery. Solaris MC provides failure recovery

and defines node failure semantics for processes. It assumes that the processes that were in

a node which has been crashed are dead and does cleanup operations. But most of the

existing systems do not handle network failures. Since node failure and network failures

are both quite common, the load sharing system should be prepared to handle both these

kinds of failures.
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Several issues crop up when one considers failure recovery. For example, how does a node

detect that a failure has occurred, how does it determine the type of failure, what action

should be taken when a failure is detected, and what should be done when the fault is

finally removed from the system? When a node failure occurs, a node loses information

regarding all processes which were running on the node. These processes might have had

relationship was with process may be executing on another node and may do a wait. If the

node that was executing the child process has become inaccessible, how long should the

parent process wait to receive information about its child process? When the crashed node

comes back up, the parent process should be informed that the child has died. When a

crashed node comes back up, care has to be taken to ensure that it does not assign the same

process id to a new process as it assigned to an old process that had migrated before the

crash. Similarly, when partitions merge after recovery from a network failure, information

needs to be exchanged so that no problems arise later.
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CHAPTER 3 The Distributed Process Scheduling

and Migration Protocol

In this chapter, The proposed protocol for load sharing (DPMP) and the conventions are

described in details. The chapter starts with the design goals of the protocol. The protocol

is currently at a premature stage and it has a few restrictions. These are discussed next.

Then the conventions and the messages in the protocol are described. Load balancing

algorithm of the protocol is discussed in the next chapter.

3.1  Goals

The design of the load sharing protocol and conventions are based upon the following

objectives.

Remote Execution We wish to support only non-preemptive process migration in order to

enable transparent process migration across heterogeneous nodes and also to reduced the

overhead and complexity of the implementation of the load sharing mechanism.

Transparency The primary goal of our work is to support transparent remote execution of

processes in a cluster of heterogeneous Unix workstations. The mechanism should also

provide transparent access to every system resource (files, devices, sockets, pipes, etc.)

and try to preserve the single system look of the system as far as possible.

Heterogeneity The protocol must support architectural, operating system and configura-

tion heterogeneity in the system nodes. Processes should be able to migrate across hetero-

geneous machines.

Minimal Semantic Changes As mentioned earlier, a few changes are required in the Unix

process semantics for improved efficiency and ease of implementation. The protocol

should make minimal changes to the Unix system call semantics so that most of the exist-

ing programs can work without any modifications.



33

Scalability The protocol should scale well to a larger number of nodes. Thus, for example,

broadcast messages and centralized components should be avoided as far as possible.

Fault Tolerance The protocol should consider and suitably handle both node and network

failures. The semantics of the system calls in the face of failures should be reasonable and

well defined.

Simplicity The load sharing protocol should be simple, so that, it is easy to implement and

incorporate to any existing Unix system. We would like to use existing software and proto-

cols to the extent possible. For example, we shall assume the existence of a standard dis-

tributed file system protocol for distributed file access rather than designing ourselves.

Ideally, the protocol should be built on top of well accepted standard protocols such as

TCP/IP, NFS etc.

Independence from Load Sharing Polices The mechanisms for process migration should

not dictate the policies for load sharing. One should be able to use any load sharing policy

with the protocol.

Portability As mentioned earlier, the user level implementations are portable while the

implementations requiring kernel modifications are not. Hence, the protocol should man-

date minimal (if possible no) changes to the Unix kernel so that most of it can be imple-

mented at the user level.

3.2  Limitations

The current version of our protocol for load sharing does not migrate a process if it has a

device, socket or pipe open at the time of migration. But the process can open devices,

sockets or pipes after it has migrated to the new node. At the moment we have not

designed protocols for transparent access to remote distributed devices, sockets or pipes.

For transparent access to files, we use NFS as the underlying distributed file system. This

NFS dependency has simplified the implementation of the protocol in user level imple-

mentation, as all the jobs may be easily accessible on each node of our distributed net-

work. In the proposed protocol the victim process selection for the migration has not been
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discussed, as it is a separate issue for the research, we are targeting on latest process for

this purpose only.

Unix uses a session abstraction to represent user login sessions. A session is a collection

of processes in those process groups to a terminal device, called the controlling terminal.

A session may have a controlling terminal associated with it and all the processes in a ses-

sion can read from or write to the controlling terminal. The controlling terminal assumes

that the session is managed by a session leader process (typically the Unix shell) which

has created the session and whenever its terminal driver detects a connection failure with

the controlling terminal device, it sends a SIGHUP signal to the session leader. The leader

is supposed to know every process group in the session and kill all the processes in the ses-

sion by sending SIGHUP. In addition to help in session management, the controlling ter-

minal also has special role in job control[(6] [7)] [8]. Jobs are essentially the process

group under a session. Process groups of a session are divided into a foreground process

group and other background process groups. At any instance, the processes in the fore-

ground process group have exclusive access to the controlling terminal. They can read

from or write to the controlling terminal of the session and the terminal signals generated

by the controlling terminal are also sent to the processes in the foreground group only.

Processes in the background groups, on the other hand, are stopped by the controlling ter-

minal by sending SIGTTIN (SIGTTOU) signal, when those try to read from (write to) the

controlling terminal. The session leader can change the foreground process group of a ses-

sion by modifying the process group id parameter stored in the controlling terminal

device.

Since the protocol currently does not support remote device access, a restriction is

imposed that a process cannot access its controlling terminal when it is away from the

node holding the controlling terminal. But such a process will receive the signals sent to

processes in its session or process group. No support for remote devices also means that

the session leaders cannot migrate when these have controlling terminals associated with

them. This is because the session leader is the only process in a session which can set the

foreground process because it does not have the access to the remote controlling terminal.
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Essentially, under the current protocol only the processes with input and output redirected

to files can be migrated across machines.

In Unix, programs are typically debugged either using the ptrace system call or through

the/proc file system [6,8]. The ptrace system call can be used by a parent process to trace

the execution of its child processes. Current version of the load sharing protocol does not

allow a process to be traced by its parent through ptrace system call when they run in dif-

ferent machines. Further, standard distributed file system protocols like NFS do not allow

mounting the /proc file system of a remote machine. Hence, a process cannot trace the

execution of another remotely executing process in the current infrastructure.

The other restriction is related to the number of times a process can migrate. The protocol

assumes that a process can migrate only once in its lifetime. Although this seems a severe

restriction, in practice majority of the Unix processes call exec at most once in their life-

times. Hence, this restriction will not cause any loss of load sharing opportunity in prac-

tice. On the other hand, this restriction greatly simplifies the protocol.

The protocol assumes that, the cluster of nodes participating in load sharing is formed sta-

tistically, and each machine knows all its peers in the system. A list containing the nodes

in the cluster is kept in every machine. This list is called access list. For the time being

the protocol does not support dynamic configuration of the cluster.

The load sharing protocol also assumes that the node failures are fail-stop in nature. Byz-

antine failures are not handled by the protocol. The protocol also assumes the existence of

the connection oriented protocol like TCIP on top of which it is implemented. This

assumption of having a connection oriented protocol simplifies the detection of failures.

3.3  Conventions

Some of the issues regarding process migration presented in the last chapter have to be

resolved before describing the actual protocol for load sharing. Providing solution to these

problems gives rise to a few convention and choices for implementation.
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3.3.1  Uniform File System View

To preserve the single system look, the protocol assumes a more of less uniform view of

the file system in every node of the system as well as same user id and group id for every

user in the system. The NFS remote file system mounting facility would be used to mount

the same remote file systems at the same mount points on all machines, so that a reason-

ably uniform view of the name space can be achieved on different machines. The Network

Information Service (31) (NIS) can be used to maintain same user and group in al the

machines in the cluster.

3.3.2  Pathname and Heterogeneity

We have seen in Section 2.6 that for migration across heterogeneous machines there is a

need to access different executable files by the same pathname depending upon the node

where the pathname is parsed. To achieve this, a convention is used that defines four read

only kernel variables, $ARCH, $ARCHVER, $OS AND $OSVER corresponding to the

architecture, architecture version, operation system and its version respectively. These

variables are initialized by appropriate values corresponding to local architecture and

operating system in every node in the cluster. For example, a Dec machine running OSF/1

can have $ARCH= DECAND $OS=OSF1 and an Intel 80386 PC running linux can have

$ARCH= ï386 and $OS=Linux. While parsing a filename, all occurrences of these vari-

ables in the path should be replaced by the appropriate local values. Hence, a filename /

home/usr1/a.dec.osf1.out in the former machine described above and to /home/usr1/

a.i386. linux.out in the latter machine. This means that if a process calls exec (/home/usr1/

a.$ARCH/$OS.out), the process can be transparently remote executed to any of the above

two machines provided.

3.4  Building Blocks of the Proposed Process Migration System

(1). The Scheduler Daemon

The scheduler/server daemon. Only few scheduler daemons are needed to

run only in the NIS servers. It will be an eternal process. Referred as scheduler in many

places in this document.



37

(2). The IdleHost Daemon

One per machine. This is the implementation of execution subsystem as well

as the load measurement system, which will be discussed in next sections. This will run

in the form of a eternal process.

(3). The User Interface

This will be the common front-end given to the user, by which he can submit

his job to the system. It will be referred as initiator sometimes.

(4). The SessionManager

One per JSMT session. Runs in the server machines. Stops when the session

ends. Referred as the backend and session manager in some places in this document.

Mostly it’s name is used.

3.4.1  Functions of the daemons

• initiator

Display the GUI, collects all user inputs and prepares a schedule file.

Converses with scheduler to start the session corresponding to a schedule or to

find out a sessionManager for job monitoring.

 Talks to sessionManager for job monitoring purposes.

• sessionManager

Talks to scheduler to get a idle host for job scheduling.

Communicates with the idleHosts of the idle hosts for scheduling and monitoring of

jobs.

Registers the status of all the jobs in a status file which can be used later for restarting

an interrupted session.

• idleHost

Measures the load of the machine periodically. Registers itself with it’s scheduler

whenever the load is less.

Deregisters itself whenever the load crosses a threshold.
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Sends ‘Migrate’ request, whenever it’s load reaches to the MIG_LOAD.

Receives job scheduling requests from the sessionManagers and either accepts or

rejects them.

Schedules a new job / migrated job.

Receives job monitoring requests from sessionManagers and informs them about the

status of the job(s).

• scheduler

Receives registration/deregistration/migrate requests from all the idleHosts under it,

updates it’s idle hosts’ list and informs it’s peers in the other NIS servers.

Receives idle host request from it’s clients (i.e sessionManagers) and supplies the nec-

essary information.

Receives session start requests from the initiators, starts them and shares the session

information with it’s peers.

Writes the session info. in a file once it receives information about the completion

of the session.

Receives session location requests from the initiators, locates the session and informs

them.

Start the process migration activity.

3.5  Strategy

In this strategy we have multiple schedulers running in the system. They run in the NIS

servers of our network and will be serving the hosts in that domain. initiators started in a

particular domain will contact only the scheduler in their NIS server for anything. The

advantage in this method is that every idleHost and initiator need not know the name of

the machine on which a scheduler is running. They can find this out by querying their own

host which knows it’s NIS server. Moreover, if one of the NIS servers go down, only a part

of the network is affected. The idleHosts periodically check the load of their hosts. They

send Register/Deregister/Migrate messages to their schedulers based on the load value.

Whenever user wishes to start a scheduling session he may invoke the initiator that con-
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tacts it’s scheduler with the necessary information of the job to be processed. The sched-

uler starts a sessionManager which will take care of the session. The sessionManager

will generate idle host requests which will be added to a queue of the scheduler. The

scheduler selects requests from this queue and matches them with a appropriate host in it’s

idle host list and informs the sessionManager about this which then send the job to the

idleHost in that idle host. idleHost will schedule the job in it’s machine. The Idle Host

List and the Process Migration Mechanism are described in the next two sections.

3.6  The Idle Host List

The idle host list (ihlist henceforth) is the data structure in which a scheduler i.e sched-

uler stores information about all the idle hosts in it’s NIS domain. Each host will have a

weight associated with it. Initially, when a host registers itself, this weight will be having a

value which will indicate that the host is idle (0 maybe). The weight changes as the host

gets jobs for scheduling. The ihlist will be sorted based on this weight. As the responsibil-

ity of deregistration is with the client machines, this sorting will prevent the same host

from being selected repeatedly for job scheduling and will distribute the jobs fairly. This

sorting ensures that when a host is selected for scheduling, it will be the least loaded

among it’s kind.

3.7  The Process Migration Mechanism

In the proposed system, all the user jobs will be submitted by the initiators only, so that

they can be monitored, processed and migrated from one host to other idle host depending

upon the load of the machine. So this must be a stateful implementation where the details

of each process will be kept by the scheduler in its internal data structures. This informa-

tion will have a mapping of executing process with the host where the process is being

executed.

For each user job/ group of jobs, a unique sessionManager is created, which requests for

the hosts, keep the updated information of each process and help in the migration of proc-

ess from one idleHost to other idleHost. The requests for idle hosts given by sessionMan-
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agers are kept in a queue by scheduler. Selecting a job from a logical queue is based on the

priority of the job which is calculated by the initiating sessionManager and sent as part of

the job request. The scheduler gives the name of the idleHost for the job execution

depending upon the Idle Host List maintained by it. Thus a session Manager submits the

job on the specified idleHost and waits for the completion of the process on that idleHost.

Each and every idleHost, continuously, measures the load of the machine (the Load Meas-

urement Algorithm, will be discussed in next chapter) while executing the user process in

different thread. While executing the process, if the load the machine crosses the

MIG_LOAD parameter than the idleHost sends the Migrate message to the scheduler,

requesting it to migrate the process to another available idleHost. On receiving Migrate

message, the scheduler reschedule the process on a different idleHost with the process

state received in the migrate message. The sessionManager now resubmit the migrated

process on the new idleHost with the current process state and continues the process till

the end or till further migration. The whole migration activity is kept transparent to the

user and is implemented in the proposed system itself.

3.8  Messages in Proposed Protocol

Messages used in the proposed system can be classified into the following types

(1). C2SCHAN Messages

Client to Scheduler Channel messages. These are exchanged between the

schedulers in the NIS servers and their clients. Clients could be the job scheduling ones

i.e idleHosts or the job initiating clients - initiators and sessionManagers.

(2). CCHAN Messages

Client Channel messages. These are exchanged between the clients.
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(3). ACHAN Messages

Administration Channel Messages. These are exchanged by the schedulers

among themselves.

3.8.1  C2SCHAN Messages

The abbreviations in parentheses are used later in this document

(1). initiator to scheduler

1. Session Initiation Request    (sinitreq)

2. Session Location Request    (slocreq)

3. Session Restart Request    (sessrestart)

(2). scheduler  to initiator

1. Session Initiated    (sinitok)

2.  Session Initiation Failed    (sinitfail)

3. Session location reply    (slocreply)

(3). sessionManager to scheduler

1. Session finished   (sessfin)

2. Idle host request    (ihreq)

3. I am Alive    (iamalive)

(4). scheduler  to sessionManager

1. Idle host reply    (ihreply)

2. New Idle host allocation for migration (ihreply_migrate)
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(5). idleHost to scheduler

1. Idle host registration    (ihregn)

2. Idle host deregistration    (ihdregn)

3. Idle host migration request     (proc_migrate)

3.8.2  CCHAN Messages

(1). sessionManager to initiator

1. Session Over    (sessover)

2. Job status info.    (jstinfo)

3. I am alive    (iamalive)

4. Action failed    (actionfail)

(2).sessionManager to idleHost

1. Job scheduling request    (jsreq)

2. Job suspension request    (jsuspreq)

3. Continue a suspended job    (jcontreq)

4. Job termination request    (jtermreq)

(3). idleHost to sessionManager

1. Job status info    (jstinfo)

2. Job scheduling request rejected    (jsreject)

3. Job completed successfully    (jover)

4. Job terminated with error    (jfail)

5. I am alive    (iamalive)
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6. No such job    (nosuchjob)

3.8.3  ACHAN Messages

(1). scheduler to scheduler

1. Idle host registration    (ihregn)

2. Idle host deregistration    (ihdregn)

3. Idle host Migration request (proc_migrate)

4. Session start    (sstart)

5. Session over    (sessover)

6. Availability Metric Modification    (AvmModMsg)

7. Idle Host List Updation Request    (ihlUpdMsg)

There may be some more messages esp. ACHAN ones. We will identify them when we

decide if it will be possible to use IP Multicasting. We may be able to do away with some

of these messages by using IP Multicasting in some places.

3.9  The idle host registration/deregistration/migration process

1. If idleHost has just been started it does the following thing(s)

      1. Checks if there is another idleHost already running. If yes, refuses to start.

      2. Finds it’s NIS server.

2. idleHost measures the load of the machine.

3. Checks where the load value lies - in the idle range, busy range or migrate range.

4. If this is the first time the load is being measured and if it is in the idle range a ihregn

message is sent to the scheduler.

5. If this is not the first time, it checks the value of the previous measurement. If both the

values lie in the same range, either idle, busy or migrate range, nothing is done except

for replacing the previous measurement’s value with the current value. However, if the



44

values lie in different ranges, a message is sent to the scheduler in the NIS server. In

the following table plv stands for previous load value and clv stands for current load

value.

6. The next measurement is done after N units of time.

3.10  The Scheduling Session

1. The user may submit his job by invoking initiator.

2. initiator becomes a background process and gives the prompt back to the user. It may

not relinquish the controlling terminal.

3. It then displays the start-up window.

4. Once the jobs have been defined, initiator obtains scheduling related information from

the user and validates it.

5. The real scheduling starts now. Information related to the jobs is with jsmt in it’s mem-

ory (or may be in a file).

PLV’s Range CLV’s Range Message Sent

idle idle -

busy busy -

migrate migrate -

busy migrate migrate_proc

busy idle ihregn

idle migrate migrate_poc

idle busy ihdregn

migrate busy -

TABLE 1.  Load values and messages
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6. initiator finds the NIS server of the host in which it is running. It then requests the

scheduler in that server to start a session for it’s schedule (sinitreq). It will supply the

necessary information about the session.

7. The scheduler (scheduler) checks if it is possible to start a new session. If it can’t, it

sends the message sinitfail. If it can, it starts the backend of jsmt which is called ses-

sionManager. It makes a note of this session, informs it’s peers and the initiator (sini-

tok).

8. One of the inputs given to sessionManager while starting it will be the name of the

host from which the initiation request came. This is necessary for scheduling jobs with

the scheduling type Local. No idle host request is sent to the scheduler for these jobs.

They are sent to the initiating machine.

9. The user is free to stop the initiator as sessionManager will take over. If the user does

not stop initiator, it enters the monitoring mode so as to monitor it’s session. It sends a

job monitoring request (jmreq) to the sessionManager. This will make sessionMan-

ager to send the status information of the jobs (jstinfo) to the initiator. If the user stops

initiator during monitoring, sessionManager is informed about it (jmterm) so that it

can stop sending status information.

10. sessionManager reads the information about the jobs, assigns priority to each job.

11. sessionManager selects the first job to be scheduled. Selection is based on the priority.

inititator checks the requirements of the job and sends a request for an idle host

(ihreq).

12. scheduler receives this request and adds it to the job queue.

13. scheduler selects a request from the request queue.

14. scheduler searches it’s idle hosts list for a hosts which will be able to satisfy the

requirements of the request. If such a host is found, it informs sessionManager (ihre-

ply) and removes the request from the queue. If there is no suitable host, scheduler

turns it’s attention to the job of next higher priority.

15.When sessionManager receives the name of the idle host, it sends the complete details

of the job to be scheduled to the idleHost of the idle host (jsreq).
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16. The target host checks it’s current load. If it can accept the job request, it schedules the

job and sends the status of the job to the source host (jstinfo). Otherwise, it sends jsre-

ject.

17.If the request is rejected, sessionManager contacts it’s scheduler once again. On the

other hand, if the request is accepted, sessionManager changes the state of the job

from Waiting to Running.

18.When sessionManager has successfully scheduled all it’s parallel jobs, it waits.

19. sessionManager sends an iamalive message periodically to it’s scheduler and to all of

it’s monitoring initiators. If this message is not received for a certain amount of time,

the scheduler assumes that the session has been interrupted and registers this informa-

tion in it’s session info file. The monitoring initiators can time out and inform the user

and close the connection.

20.When a job is completed successfully, the idleHost informs sessionManager through

the message jover. If the job stops due to some error the message jfail is sent instead.

21.idleHost sends ws_iamalive periodically to the source host’s sessionManager.

22.When all the jobs are over, sessionManager sends the message sessover to the initia-

tor, if it is still monitoring and deregisters it’s session from it’s scheduler (sessfin).

23.When the idleHost reaches to its migrate range, it get the current process state and fill

the process state data structure.

24.idleHost constructs the the message migrate_proc, fills it with the updated process

state to be migrated and stops the execution of that process.

25.The migrate_proc message has been sent from the idleHost to the scheduler.

26.On receiving the migrate_proc message the scheduler searches its Idle Host List data

structure for the next available host.

27. Scheduler constructs the message ihreply_migrate with the stopped process current

state and the new idleHost where the process can be resubmitted.
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28.The ihreply_migrate message is sent to the sessionManager, the sessionManager

resubmit the job on the new idleHost and updates its state with the process state data

structure.

29. User’s job is continued to be executed as it was earlier executing before the migration

taken place. At the end jover message is sent back to the sessionManager.

30. It the initiator was monitoring the session, sessionManager sends sessover message

to the initiator, acknowledging it about the completion of the job.

Once the scheduling starts, the user is free to close all the windows, including the start-up

window. sessionManager will continue to write the session details in the disk.

3.11  A Job Monitoring Session

User can monitor the jobs submitted by him. It can be a part of the initiator or the user may

have options for the job monitoring as well.

1. The user starts initiator.

2. The start-up window will be displayed and the user will click the ‘Monitor Jobs’ but-

ton.

3. initiator gets all the relevant inputs from the user. It then requests it’s scheduler to

locate the session (slocreq).

4. The scheduler checks it’s memory to see if any such session is active anywhere in the

network. If yes, it sends the name of the host who started the session (slocreply). If

there is no information in the memory, the scheduler checks it’s history file and, gets

the name of the session’s log file and sends it back (slocreply). If no such session had

existed, the scheduler send the message (slocreply).

5. If the session is not active, initiator reads the log file and displays it in the monitoring

window. It also informs the user that the session is inactive.

6. If the session is active, initiator sends a monitoring request (jmreq) to the session-

Manager who started the session.
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7. sessionManager first sends information about all the jobs which have completed and

then forwards all the jstinfo messages which it gets from it’s target idleHosts.

8. If the user wants to terminate the monitoring process, sessionManager is informed

about it so that it can stop forwarding monitoring information (jmterm).

9. When the session is over and if the monitoring initiator is still listening, sessionMan-

ager sends information about the completion of the session (sessover)

3.12  Rescheduling (jobs)

Rescheduling is done when the session is active and has stopped due to errors in one or

more jobs. This can be done from the monitoring window. After rectifying the error(s), the

user is required to specify a Rescheduling Start Point which is nothing but the job from

which scheduling is to be continued. This can be done by simply clicking the job in the

monitoring window. The message sessresched is sent to sessionManager.

3.13  Job manipulation

The job manipulation facilities are limited at present.

(1). A running job can be suspended (jsuspreq)

Obviously not all jobs can be suspended. This will be applicable to execut-

ables only.

(2). A suspended job can be continued (jcontreq)

(3). A running job can be terminated (jtermreq)

All these manipulations can be done on a job only by the user who started the session or

by any privileged user. If the target idleHost is unable to find the job running in it’s mem-

ory, it sends back a message to the effect (nosuchjob). If the specified action cannot be

performed, the message actionfail is sent back.
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3.14  Restarting (a session)

A session is restarted if it has been interrupted. Every sessionManager records the status

of a session continually in a file. The session can be restarted by supplying the name of

this file. This file can contain the following information

(1). All the scheduling information given by the user

(2). The session schedule computed by sessionManager

(3). The status of the jobs

The message sessrestart is sent by jsmt to the Scheduler.

3.15  JSMT Administration

Currently, the JSMT Administration Process (JAP), is limited to the dissemination of

session and idle host information only. The following events/information is sent by a

scheduler to it’s peers.

(1). Idle Host Registration

(2). Idle Host Deregistration

(3). Session Start

(4). Session Over

3.16  The Possibility of Using IP Multicast

IP Multicast can be used for the following things

3.16.1  For exchanging messages between the schedulers

This is how we propose to do this. A common multicast host group address will be known

to every scheduler. It will join this group as soon as it comes up. Every ACHAN message

will be sent to this group which will automatically be forwarded to the members of the
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group. The advantage here is that a scheduler need not know the names of the machines in

which the other schedulers are running.

3.16.2  For sending and receiving session monitoring messages

This could be done in the following way. Every scheduler will have a set of multicast

addresses with it. Whenever, a sessionManager is started, it is assigned one of these

addresses. From the viewpoint of the sessionManager this is the address of the group of

jsmts who are interested in monitoring the session owned by sessionManager. Every

jsmt which wishes to monitor a session is informed about this address and it has to join

that group in order to receive status information.

3.17  Drawbacks

• The source directory of the jobs can, at present, only be a NFS mounted directory.

Local disk directories are not supported.

• When a job is interrupted due to shutdown, power failure etc., it will only be restarted,

not continued.

• For the current draft of the process migration protocol, the latest process which sends

the idleHost to the migrate load range, is selected for the migration purposes. A proper

process selection algorithm is to be devised which can select the appropriate process to

be migrated. It is another topic of the research, so i am finding it difficult to cover this

in the present thesis.
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CHAPTER 4                       Load Measurement Algorithm

4.1  Building blocks of Load Measuring System

In the current section it shows the design aspects of a distributed system where the load

balancing is attempted to provide reasonable solution to measure the load of the machine

in a parameterized formula form. The overall system may be divided into following sub-

systems:

4.2  Load Balancing System

The load balancing subsystem is to be running on each and every workstation connected

in LAN. Its main task is to get the system parameters and compute the load of the system

using a proper Load Measurement Algorithm. Depending upon the load, the machine can

be registered or de-registered for the further remote execution of the users’ processes. The

core of this system is Load Measurement Algorithm which will be discussed in next sec-

tion. Following are the main components of the Load Balancing System:

4.2.1  Information Subsystem (idleHost)

The information subsystem is in charge of collecting and maintaining global information

about each available node in the network and its load condition. This can be assumed to be

a centralised resource for the informations about the runnable ready workstations with

their respective system loads.

4.2.2  Decision Making Subsystem (scheduler)

The decision making subsytem is meant to keep the records of currently available hosts

that can be treated as being Idle. The list of all available idlehosts is created by the regis-

tration & de-registration messages. The responsibility of this subsystem is to decide the

most appropriate host for the requested program execution. This subsystem also schedules

the users’ jobs on the remote idle hosts.
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4.2.3  Execution Subsystem

The execution subsystem has the responsibility to execute the user’s job on the remote idle

host being selected by the decision making subsystem and return the execution status of

the process back to the user. This subsystem will use fork() & exec() system calls of the

unix operating system to execute the remote process. Also it must provide a facility to ini-

tiate a process in a remote machine. This process interacts with the user and access to data

files in a transparent manner, as it would be executing in the user local machine.

The Load Balancing System design and implementation are proposed to be incrementally

developed. At the first the basic load formula will be discussed which may provide the

base for any load balancing system. During this stage this system collects statistical data

about the values of relevant variables under diverse user-selected distribution policies

based on diverse metric approaches. These data base can be used to get the load value of

any machine at the given time of experimentation.

4.3  Parameters for the Load Measurement Algorithm

There my be sufficient performance degradation due to the unbalanced load distribution.

This may convey lower system throughput and increased response time for arriving jobs.

We can devise a mechanism to determine a highly convenient, not necessarily optimum,

execution site for an incoming job.

For such an algorithm to work following steps are to be taken care of:

1.What system parameters?

2.Formula for the load?

3.How system parameters can be collected?

4.The policy for the load collection?
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4.4  Performance Metric System Parameters

A workstation in a LAN has many parameters that must be considered for its load meas-

urement. These parameters may include the cpu idle percentage, memory statistics, input/

output statistics and the number of processes waiting in the run-queue. Any well-behaved

operating system will give a CPU-bound process as much CPU as it has available, pro-

vided that the processing needs of all other processes are met as well. Because most sys-

tems use only a small fraction of their processing power, there is usually more than 90%

free CPU available at any time. Thus CPU cycles will be wasted unless utilized. An

extremely sensitive correlation exists between I/O traffic in the node and the response time

for the I/O bound jobs. Similarly a correlation exists between the number of I/O packets

being transferred by the network interface of the host and the completion time of the jobs

on the node. So the total number of packets being transferred should be taken into account

while calculating the load of the node. Depending upon the load of a workstation its mem-

ory statistics may change significantly. A heavier process may tend to result in more mem-

ory faults. So the average number of memory faults should also be considered for the load

calculation of the machine. A loaded node may have bigger process run-queue. So the

length of system’s run-queue will be taken into account for the measurement of the load

value.

4.4.1  CPU Busy Percentage

Abbreviation of central processing unit, and pronounced as separate letters. The CPU is

the brains of the computer. Sometimes referred to simply as the processor or central proc-

essor, the CPU is where most calculations take place. In terms of computing power, the

CPU is the most important element of a computer system.

The processor plays a significant role in the following important aspects of your computer

system:

Performance: The processor is probably the most important single determinant of system

performance in the PC. While other components also play a key role in determining per-
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formance, the processor’s capabilities dictate the maximum performance of a system. The

other devices only allow the processor to reach its full potential.

Software Support: Newer, faster processors enable the use of the latest software. In addi-

tion, new processors such as the Pentium with MMX Technology, enable the use of spe-

cialized software not usable on earlier machines.

Reliability and Stability: The quality of the processor is one factor that determines how

reliably your system will run. While most processors are very dependable, some are not.

This also depends to some extent on the age of the processor and how much energy it con-

sumes.

Energy Consumption and Cooling: Originally processors consumed relatively little power

compared to other system devices. Newer processors can consume a great deal of power.

Power consumption has an impact on everything from cooling method selection to overall

system reliability.

Motherboard Support: The processor you decide to use in your system will be a major

determining factor in what sort of chipset you must use, and hence what motherboard you

buy. The motherboard in turn dictates many facets of your system’s capabilities and per-

formance.

CPU busy percentage is a critical parameter to judge the load of the CPU, at the run-time.

The CPU

Cpu_busy_percentage = (CPU_BUSY_SEC * 100) / CPU_ONLINE_SEC. (EQ 1)

4.4.2  Number of Processes in the run queue

A process is an execution stream in the context of a particular process state. It is an execu-

tion stream as a sequence of instructions. Process state determines the effect of the instruc-

tions. It usually includes (but is not restricted to):
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                + Registers

                + Stack

                + Memory (global variables and dynamically allocated memory)

                + Open file tables

                + Signal management information.

In multiprogramming systems like unix multiple processes run at a time. It allows system

to separate out activities cleanly. Multiprogramming introduces the resource sharing prob-

lem - which processes get to use the physical resources of the machine when? One crucial

resource: CPU. Standard solution is to use pre-emptive multitasking - OS runs one process

for a while, then takes the CPU away from that process and lets another process run. Must

save and restore process state. Fairness is a key issue it must ensure that all processes get

their fair share of the CPU.

For accounting reasons the operating system keeps track of how much time is spent in

each user program. It also keeps a running sum of the total amount of time spent in all user

programs. Two threads increment their local counters for their processes, then concur-

rently increment the global counter. Their increments interfere, and the recorded total time

spent in all user processes is less than the sum of the local times. So there are various

activities are being carried by the operating system to handle the various processes in unix

like multiprogramming environment. So the number of simultaneously executing process

gives a parameter for load measurement.

4.4.3  Total number of input output packets: IO statistics

A workstation which is connected to a LAN also undergoes with a lot of layering for the

IO traffic control. It may receive various input packets at the same time it may send mes-

sages to the remote host. So there are two important concepts to study the load for the IO

operations:

• Sending a message on the network
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An outgoing message begins with an application system call to write data to a socket.

The socket examines its own connection type and calls the appropriate send routine

(typically INET). The send function verifies the status of the socket, examines its proto-

col type, and sends the data on to the transport layer routine (such as TCP or UDP).

This protocol creates a new buffer for the outgoing packet (a socket buffer, or struct

sk_buff skb), copies the data from the application buffer, and fills in its header informa-

tion (such as port number, options, and checksum) before passing the new buffer to the

network layer (usually IP). The IP send functions fill in more of the buffer with its own

protocol headers (such as the IP address, options, and checksum). It may also fragment

the packet if required. Next the IP layer passes the packet to the link layer function,

which moves the packet onto the sending device’s xmit queue and makes sure the

device knows that it has traffic to send. Finally, the device (such as a network card) tells

the bus to send the packet.

• Receiving a message from the network

An incoming message begins with an interrupt when the system notifies the device that

a message is ready. The device allocates storage space and tells the bus to put the mes-

sage into that space. It then passes the packet to the link layer, which puts it on the

backlog queue, and marks the network flag for the next ‘‘bottom-half’’ run; The bot-

tom-half is a system that minimizes the amount of work done during an interrupt.

Doing a lot of processing during an interrupt is not good precisely because it interrupts

a running process; instead, interrupt handlers have a ‘‘top-half’’ and a ‘‘bottom-half’’.

When the interrupt arrives, the top-half runs and takes care of any critical operations,

such as moving data from a device queue into kernel memory. It then marks a flag that

tells the kernel that there is more work to do - when the processor has time - and returns

control to the current process. The next time the process scheduler runs, it sees the flag,

does the extra work, and only then schedules any normal processes.

There are lot of processed involved for sending a message on the network and receiving a

message from the network. So as the number of input and output packets received by the

workstation on a LAN increases its load characteristics also get changed. So the total

number of input and output packets gives a valuable parameter for the load measurement.
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4.4.4  Memory Page Faults: Memory statistics

Virtual memory is divided up into pages, chunks that are usually either 4096 or 8192 bytes

in size. The memory manager considers pages to be the atomic (indivisible) unit of mem-

ory. For the best performance, we want each page to be accessible in Main memory as it is

needed by the CPU. When a page is not needed, it does not matter where it is located. A

page fault occurs when the CPU tries to access a page that is not in main memory, thus

forcing the CPU to wait for the page to be swapped in. Since moving data to and from

disks takes a significant amount of time, the goal of the memory manager is to minimize

the number of page faults. Where a page will go when it is "swapped-out" depends on how

it is being used.

Writing a page to disk need not wait until a page fault occurs. Most modern UNIX systems

implement pre-emptive swapping, in which the contents of changed pages are copied to

disk during times when the disk is otherwise idle. The page is also kept in main memory

so that it can be accessed if necessary. But, if a page fault occurs, the system can instantly

reclaim the pre-emptively swapped pages in only the time needed to read in the new page.

This saves a tremendous amount of time since writing to disk usually takes two to four

times longer than reading. Thus pre-emptive swapping may occur even when main mem-

ory is plentiful, as a hedge against future shortages.

Since it is extremely rare for all (or even most) of the processes on a UNIX system to be in

use at once, most of virtual memory may be swapped out at any given time without signif-

icantly impeding performance. If the activation of one process occurs at a time when

another is idle, they simply trade places with minimum impact. Performance is only sig-

nificantly affected when more memory is needed at once than is available. This swapping

and associated page faults can be used to measure the load of the machine.

4.5  Parameterized formula for the Load Measurement

As a result of above presented hypothesis about the load of a workstation it may be con-

cluded that the load(L), can be considered as follows:
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L = f(cpu_busy_percentage, mem_faults, io_stat, proc_run_queue); (EQ 2)

where,

L = Load of the workstation

cpu_busy_percentage = system given cpu busy percentage

mem_faults = memory faults generated by cpu at the time of load measurement

proc_run_queue = total number of runnable processes at the time of load measurement

This association between the parameters have to be formulated. The attempt to get the

association among them lead to devise following algorithm.

1. Decide about the time interval for the collection of data. The above parameters are

interval specific, so a proper time interval is needed to get their values. The time inter-

val t, should be as minimum as possible. (Ideally,    t -> 0)

2. Get a scale to measure the load of the workstation. Since the time taken in the execution

of a cpu bound time consuming process is directly proportional to the system load. So

the execution time of that process can be a good indicator of the load of a machine in

the units of time.

3. Collect the samples of the load value as an individual function of the parameters

defined above (cpu_busy_percentage, mem_faults, io_stat, proc_run_queue).

4. Plot the samples to get the graph between load vs parameters values.

5. Using the best fit strategy a smooth curve can be drawn (with minimum deviations) that

will give the load as the function of each parameter individually.

6. Take the weighted average of the various load values to get the parameterized formula

for the Load Measurement of the machine. (These weights have to be assigned heuris-

tically)

The various plots are being present below for the Dec Alpha Server (RISC Architecture,

running digital OS, named as OSF). Here the load of the machine is calculated as the time

taken to execute a significantly long process and the load parameters are collected at time

intervals of 10 seconds.
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FIGURE 1. Graph between Load of a machine and CPU Busy Percentage

FIGURE 2. Graph between Load of a machine and I/O statistics
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FIGURE 3. Graph between Load of a machine and Memory Faults

FIGURE 4. Graph between Load of a machine and Length of Run-queue
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The samples for the above graphs have been collected using the output of ’vmstat’ com-

mand of unix. These samples have been collected at different points of time to get the vast

distribution of the domain value. The major events when data collection was done were:

• During link generation time, more cpu intensive work was going on.

• During back-up time, more network processing was going on.

• During normal processing time, number of processes in the run-queue was high.

• During normal procession time, when number of users were working, generating lot of

page faults.

The graphs with the best fitted strategy have been used to get the trend of these observa-

tions. These graphs have been plotted with minimum standard deviation. It was found that

the exponential graph fitting provides least deviation, so for all the observations exponen-

tial graphs have been plotted.

Let lc, ln, lf and lp are the load values corresponding to the load parameters as

cpu_idle_percentage, network_io_packets, memory_faults and number_of_process in run-

queue respectively. So from above graphs it can be shown that:

lc = mc * exa*cpu_busy_per + Cc; (EQ 3)

Similarly, load measured for network_io_packets is:

ln = mn* exn*network_io_packets + Cn; (EQ 4)

Load value corresponding to memory page faults is:

lf = mf* exf*memory_faults + Cf; (EQ 5)

whereas the load value for the number of processes in run-queue is:

lp = mp * exp*number_of_process + Cp; (EQ 6)

In above equations, Cc, Cn, Cf and Cp are the constants that correspond to the minimum

load value of the workstation for the respective parameters. From above four equations the
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net load of the workstation can be calculated with some weighted average of these values.

If L denotes the net load of the machine then:

L =   lc + ln   +   lf    + lp; (EQ 7)

So the Load Value of a machine is:

L = mc*exa*cpu_busy_per + mn*exn*network_io_packet + mf* exf*memory_faults + mp*

exp*number_of_process + C (EQ 8)

mc, mn,mn and mp are named as multiplication factor and the exponents xa, xn, xp and xf

are named as exponent factors. Their values are shown in following table, which are taken

from the inclinations of the above graphs.

At any instant depending upon the system parameters, the load value of the machine can

be calculated. This load value is a relative term, it only gives the value for the posterior

analysis. So depending upon some threshold value, the host that can be considered as idle,

may be selected for the user’s job submission.

Lmin         = 1.32 + 1.047 + 1.514 + 1.80 = 5.56 (EQ 9)

A machine may be treated as a loaded one, when it’s load value is more than Lthreshold.

Using some heuristic it could be a sufficiently good approximation that Lthreshold will be

a value at which it assumes 50% of the fully loaded value. In this way Lthreshold can be

determined.

Lthreshold     = 2.4 + 2.8 + 3.3 + 3 = 11.5 (EQ 10)

TABLE 2. Values of Multiplication Factor and Exponent Factor for DEC Alpha Server (RISC
Architecture)

Load Parameter Multiplication Factor (m) Exponential Factor (x)

cpu_busy_percentage 1.32 9.1x10-3

Network_io_pkts 1.8 1.5x10-5

Number_of_processes 1.04 6.3x10-3

Tot_mem_faults 1.51 9.45x10-4
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Heuristically we can defined the migrate range, let it be 70% of fully loaded value so, from

the above formula we can find.

Lmigrate = 3.2 + 3.36+ 4.1 + 4.3 = 14.96 (EQ 11)

The simulation and results for the above derivation can be seen in the Appendix B.
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CHAPTER 5 Implementation Design and Message

Structures

Distributed systems are based on message passing semantics. There is no concept of

shared memory as all the nodes have their own different system image. So the communi-

cation among the nodes is carried out by the messages between them. These messages

may be the control message or they may be the information sharing messages. In this

chapter some of the important messages for the scheduling and migration of the processes

have been discussed.

5.1  Common Structures

 In this section, we list some of the structures which are used in more than one message.

5.1.1  Message Header

All the messages have a header. At present, it is a very simple one and is of the following

structure

                                 typedef struct

                                 {

                                     int   whatMesg;

                                 } MsgHeader;

The value of the member whatMesg will indicate the type of the message and will aid the

receiver to decipher the rest of it.

5.1.2  Session Details

                                 typedef struct

                                 {

                                     char  title[];

                                     char login[];
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                                     char type[];

                                     char release[];

                                     char file[];

                                 } SessionInfo;

This structure is used in some of the session related messages.

5.1.3  Host Details

                                 typedef struct

                                 {

                                     int nProcesses;

                                     int maxProcesses;

                                     char mountedDirs[][];

                                     char otherFacilities[][];

                                 } HostDetails;

This is used in messages related to hosts. The member otherFacilities will contain a list of

tools or libraries or anything else which is unique to a particular host or type of hosts.

5.2  Messages

5.2.1  Session Initiation Request

          typedef struct

          {

               MsgHeader mhead;

               SessionInfo sinfo;

          } SessionInitReq;

This message is sent by jsmt to it’s scheduler at the start of a session. The scheduler will

extract information from this and store it in it’s memory for future references and initiate a

session.
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5.2.1.1 Members

• mhead.whatMsg

Will contain the value SESS_INIT.

• sinfo.title

The title of the session as given by the user.

• sinfo.login

The login from which the session was started.

• sinfo.type

The type of the session. Presently, the following types are supported

(1). LGEN: Link Generation

(2). PGEN: Patch Generation

(3). EXEC: Executable

• sinfo.release

In LGEN and PGEN sessions this will contain the release.

• sinfo.file

The PERT file.

5.2.2  Session Initiation Successful

          typedef struct

          {

               MsgHeader mhead;

               int port_for_JM_reqs;

          } SessionInitOk;

This message is sent by the scheduler to a jsmt when a session has been successfully

started and registered.
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5.2.2.1 Members

• mhead.whatMsg

Will contain the value SESS_INIT_OK

• port_for_JM_reqs

The port in which the sessionManager created for managing this session will be listen-

ing for job monitoring requests.

5.2.3  Session Initiation Failed

          typedef struct

          {

               MsgHeader mhead;

               char reason[];

          } SessionInitFail;

This message is sent by the scheduler to a jsmt when a session initiation attempt fails.

5.2.3.1 Members

• mhead.whatMsg

Will contain the value SESS_INIT_FAIL.

• reason

The reason for failing.

5.2.4  Session Restart

This message is sent by jsmt to it’s scheduler when it wants to restart an interrupted ses-

sion. The structure of this message identical to that of Session Initiation Request.

5.2.4.1 Members

• mhead.whatMsg

Will contain the value SESS_RESTART.
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• sinfo.file

The name of the status file.

5.2.5  Session Finished

          typedef struct

          {

               MsgHeader mhead;

               int sid;

          } SessionFin;

This message is sent by sessionManager to it’s scheduler when a session is over. The

scheduler, on receiving this, will remove the session information from the memory and

store it in the disk. This is also sent by sessionManager to a monitoring jsmt.

5.2.5.1 Members

• mhead.whatMsg

Will contain the value SESS_FIN.

• sid

The session ID provided by the scheduler. This will be a ‘don’t care’ value when the

message is sent by sessionManager to a monitoring jsmt as it will be monitoring only

one session and will inherently know which session is over.

5.2.6  Session Reschedule

The jobs of a session are rescheduled after error rectification. This is done on active ses-

sions. This message is sent by jsmt to sessionManager.

          typedef struct

          {

               MsgHeader mhead;
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               char startPoint[];

          } SessionResched;

5.2.6.1 Members

• mhead.whatMsg

Will contain the value SESS_RESCHED.

• startPoint

The ID of the job from which rescheduling should start.

5.2.7  Session Location Request

          typedef struct

          {

               MsgHeader mhead;

               SessionInfo sinfo;

          } SessionLocReq;

This message is sent by any jsmt who wishes to do job monitoring to it’s scheduler.

5.2.7.1 Members

• mhead.whatMsg

Will contain the value SESS_LOC_REQ.

• sinfo.login

The user who initiated the session.

5.2.8  Session Location Reply

          typedef struct

          {

               MsgHeader mhead;

               char title[];
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               char host[];

               int active;

               union

               {

                int port_for_JM_req;

                char sessionLog[];

             }input;

          } SessionLcnReply;

This message is sent by scheduler to jsmt in response to the Session Location Request

message and contains information about the host on which the requested session was

started.

5.2.8.1 Members

• mhead.whatMsg

Will contain the value SLR_SESSION if a matching session is found,

SLR_NOSUCHSESSION otherwise.

• title

The title of the session.

• host

The host in which the session was started.

• active

This flag will be True if the session is still running and False if it has already been

completed.

• input.port_for_JM_req

If the flag active is True, this will contain the port number in the host machine to which

job monitoring requests are to be sent.

• input.sessionLog
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If the session is over, this will contain the name of the log file which contains the details

of the session.

5.2.9  Idle Host Request

          typedef struct

          {

               MsgHeader mhead;

               char jid[];

               int hostType;

               char hostName;

               HostDetails resourceReqs;

          } IdleHostRequest;

This message is sent by sessionManager to it’s scheduler for obtaining a host for a job.

5.2.9.1 Members

• mhead.whatMsg

Will contain the value IHREQ.

• jid

The identity of the job for whom a host is being requested.

• hostType

Type of the required host. It will be either a combination of HP, Digital, and Sun or the

value Any.

• hostName

The name of a host in case a specific host is required. If both hostType and hostName

have valid values, they should be matching.

• resourceReqs.mountedDirs

The list of directories which should be accessible in the required host.

• resourceReqs.otherFacilities
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The list of facilities which should be provided by the required host.

5.2.10  Idle Host Allocation

          typedef struct

          {

               MsgHeader mhead;

               char host[];

               char jid[];

          } IdleHostAlloc;

This message is sent by the scheduler in response to a idle host request and is received by

sessionManager.

5.2.10.1 Members

• mhead.whatMsg

Contains the value IHA_HOST.

• host

The name of the idle host.

• jid

The job for which the host has been allocated.

5.2.11  Idle Host Registration

          typedef struct

          {

               MsgHeader mhead;

               int hostType;

               char hostName[];

               HostDetails availableResources;

          } IdleHostRegn;
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This is sent by the idleHost of an idle machine to it’s scheduler.

5.2.11.1 Members

• mhead.whatMsg

Will contain the value IHREGN.

• hostName

May be redundant.

• availableResources.mountedDirs

Directories which are accessible.

• availableResources.otherFacilities

5.2.12  Process Migration Request

          typedef struct

          {

               MsgHeader mhead;

               int hostType;

               char hostName[];

               ProcessDetails procState;

        } ProcessMigrationReguest;

This is sent by the idleHost of an idle machine to it’s scheduler.

5.2.12.1 Members

• mhead.whatMsg

Will contain the value PROCMIGRATION.

• hostName

May be redundant.

• procSatate.procName
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Name of the process.

• procState.procState

Complete process state that is to be transferred to another machine.

5.2.13  Process Scheduling Request

          typedef struct

          {

               MsgHeader mhead;

               char pid[];

               char  pname[];

               char srcDir[];

               char logFile[];

               char cwd[];

               int   processType;

               char commandLine[];

               uid_t puid;

               gid_t pgid;

        } ProcSchedRequest;

This is the message sent by initiator to a idleHost when it wants to schedule a job.

5.2.13.1 Members

• mhead.whatMsg

Will contain the value PROCSCHED_REQ

• pid

The ID of the job to be scheduled.

• pname

The name of the job.

• srcDir
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The directory in which the job (file) is present.

• logFile

The log file in which the output of the job is to be stored if the job is a background one.

• cwd

The directory in which the job is to be executed.

• commandLine

The command line of the job.

• puid

The user ID with which the job is to be executed.

• pgid

The group ID with which the job is to be executed.

5.2.14  Process Status Information

There are two different structures representing this message. The following structure is

used when the message is sent by a idleHost to a scheduling sessionManager.

          typedef struct

          {

               MsgHeader mhead;

               char pid[];

               int status;

        } ProcStatus_jw2jb;

5.2.15  IamAlive, Session Over and Idle Host Deregistration

These four messages have the following simple structure

          typedef struct

          {
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               MsgHeader mhead;

        };

The value of mhead.whatMsg

The message iamalive is sent by idleHost to a sessionManager and by sessionManager

to it’s scheduler and it’s monitoring jsmts periodically. The sessover message is sent by

sessionManager to a jsmt when the session is completed. The idle host deregistration is

sent by idleHost to it’s scheduler when the machine load increases beyond a tolerable

limit. jmterm sent by a monitoring jsmt to the sessionManager which provides the status

information to terminate the monitoring session.

5.2.16

          typedef struct

          {

               MsgHeader mhead;

               char pid[];

        };

This simple structure is used by the following messages:

Message Value

I am Alive IAMALIVE

Session Over SESSOVER

Idle Host Deregistration IHDREGN
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5.2.17  Action Failed

          typedef struct

          {

               MsgHeader mhead;

               int action;

               char reason[];

        };

This message is sent when an action requested by the user cannot be done.

Message Sender Receiver

PROC_REJECT idleHost sessionManager

PROC_SUCC idleHost sessionManager

PROC_FAIL idleHost sessionManager

NOSUCHPROC idleHost

sessionManager

sessionManager

jsmt

Sender Receiver

idleHost sessionManager

sessionManager initiator
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CHAPTER 6 System Modelling - Analysis and Design

This chapter describes the Analysis part of OMT. We haven’t written a separate problem

statement and picked objects from that. We have picked our objects from the description

of the architecture of the system.

6.1  Object Modelling

6.1.1  The initial object list

• Scheduler

• Idle Host List

• Idle Host Info.

• Idle Host Request List

• Idle Host Request

• Session List

• Session Info.

• Idle Host

• Job Server

The daemon which accepts external jobs and schedules them in the local host.

• Job Initiator

• Session

• Job

The association among the above object can de seen in following diagram:
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FIGURE 5. Association of various object in the proposed protocol

6.1.2  Data Dictionary

• Job Initiator
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Scheduler

Session ListIdle Host Request ListIdle Host List

Session InfoIdle Host RequestIdle Host Info
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The front end which takes input from the user and requests the scheduler for the start of

a session.

• Job Monitor

That part of the front end which helps the user to monitor the jobs of a session; con-

verses with the Scheduler and sessionManager for this.

• Session

A collection of jobs; initiated by a Job Initiator and assigned by the Scheduler to a

sessionManager which will manage it till the end.

• Status File

Contains information about the jobs of a session.

• Job

The unit of JSMT which is scheduled in an Idle Host. A job’s scheduling can depend

on that of zero or more of others.

• sessionManager

The backend of jsmt which starts and manages a scheduling session; also takes part in

the monitoring session.

• Idle Host

A machine which is ready for hosting jobs. It keeps track of it’s load and informs the

Scheduler about it’s willingness to accept jobs. Once a job is scheduled, this object

informs the backend about the status of the job.

• Scheduler

The central object of the JSMT system. This keeps track of all the idle hosts in the net-

work, receives requests for idle hosts from sessionManagers and allocates hosts for

them. It also keeps track of all the sessions of the network - both active and completed

ones. All the schedulers share their information.

• Idle Host Info

Details which an idle host send about itself.
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• Idle Host List

A collection of Idle Host Info objects maintained by the Scheduler.

• Idle Host Request

The request for an idle host.

• Idle Host Request List

A collection of Idle Host Request objects from which the Scheduler selects requests

one by one and allocates hosts from the Idle Hosts List.

• Session Info

Details of a session - title, initiator etc., sent by a Job Initiator to the Scheduler at the

beginning of a session.

• Session List

A collection of Session Info objects maintained by the Scheduler for monitoring pur-

poses. Information about currently alive jobs are maintained in the memory of the

Scheduler and information about completed ones are stored in a file for future refer-

ence.

6.1.3  Associations

1. The front end can be a job initiator or a job monitor.

2. A job initiator talks with only one scheduler.

3. The job initiator initiates a session.

4. Each session is made up of many jobs.

5. A job may (or may not) depend on other jobs.

6. A session is started and managed by a sessionManager.

7. Each session has a status file.

8. The status file is generated by the sessionManager handling the session.

9. The monitor converses with a sessionManager for getting the status of the jobs of a ses-

sion.
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10. The Scheduler has three types of information with it - the Idle Hosts List, the Idle

Hosts Requests’ List and the Session List.

11. The Idle Host List contains information about the all the idle hosts who have reported

their idleness to the server.

12. The Idle Hosts Requests’ List has all the requests for idle hosts received by the Sched-

uler.

13. The Session List is made up of information about all the sessions in the network.

14. The Scheduler shares information with it’s peers.

15. The Scheduler creates many sessionManagers for managing sessions.

16. The Scheduler keeps track of many idle hosts in it’s domain.

17. The Scheduler also talks with many job initiators and job monitors.

6.1.4  Attributes

6.1.4.1 Idle Host Info

• name

• current number of processes

• maximum processes that can be supported

• mounted directories

• other facilities

6.1.4.2 Idle Hosts List

• number of idle hosts

6.1.4.3 Idle Host Request

• ID of the job for which the host is required

• Type of the job
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• Type of the required host

• Name of the required host, if known

• Maximum number of processes created by the job at any time

• The priority of the job

• Required directories

• Required facilities

6.1.4.4 Idle Host Request List

• Number of idle host requests

6.1.4.5 Session Info

• Session title

• Login of the initiator

• Session type

• Release, if needed

• PERT file

• Session ID

6.1.4.6 Session List

• Number of alive sessions

6.1.4.7 Scheduler

• Number of sessionManagers

• Details of each sessionManager - process ID, listening port.

6.1.4.8 sessionManager

• Name of the PERT file
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6.1.4.9 Idle Host

• Name

• Type

• Load (average)

• Current number of processes

• Maximum number of processes that can be supported

• Mounted directories

• Other facilities

6.1.4.10 Process

• Process ID

• Process Name

• Source Directory

• Log File

• Working Directory

• Command line

• User ID

• Group ID

• Scheduling type

• Execution host type

• Execution host, if needed

• Expected execution time

6.1.4.11 Session

• Session title

• Initiator’s login
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• Session type

• Release

• Name of the PERT file

6.1.4.12 Status file

• Name

6.1.4.13 Job Initiator

• Login

• User ID

• Group ID

6.1.4.14 Job Monitor

• Login

• User ID

• Group ID

• The multiplicity of the association has between the classes Session and Job on the lat-

ter’s side has been modified from zero or more to one or more. This is because a session

comes into existence only if there is atleast one job.

• A similar modification has been done in the association serves between the classes Idle

Host and sessionManager in the former’s side.

• The class Scheduler was previously having a aggregate relationship with the classes

Idle Host Info, Idle Host Request, and Session List. This has been converted to three

one-to-one associations named maintains between the Scheduler and the three classes.
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6.2  Dynamic Model

6.2.1  Scenarios and Event Trace Diagrams

6.2.1.1 Process Scheduling

• The Job Initiator sends a session start request to the Scheduler.

• The Scheduler spawns a sessionManager to handle the new session.

• The Scheduler updates the Session List and informs the Job Initiator about the suc-

cessful start of the session.

• The newly spawned sessionManager starts sending idle host requests for it’s jobs.

• The Scheduler adds these requests to the Idle Host Request List.

• The Scheduler selects a request from the list and asks the Idle Host List for a match-

ing host.

• When the Scheduler gets the idle host’s name, it passes it on to the sessionManager.

• sessionManager sends a job scheduling request to the Idle Host.

• The Idle Host schedules the job and send it’s status to sessionManager which updates

the Status File.

• When the last job is completed successfully, sessionManager updates the status file

and informs the Scheduler and the Job Initiator.
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FIGURE 6. Event Trace Diagram for Process Scheduling

6.2.1.2 Session Restart

• The Job Initiator sends a session restart request to the Scheduler.

• The Scheduler spawns a sessionManager to handle the session and updates it’s Ses-

sion List.
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FIGURE 7. Session Restart

6.2.1.3 Idle Host Registration and Deregistration

• The Idle Host sends a registration or deregistration request to the Scheduler.

• The Scheduler asks the Idle Host Info List to either add or remove the Idle Host Info.

FIGURE 8. IdleHost Registration and Deregistration flow

6.2.1.4 Session Start Failed

• The Job Initiator sends a session start request to the Scheduler.

• The Scheduler tries to spawn a sessionManager and fails.

• It then informs the Job Initiator about the failure.
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FIGURE 9. Session Start Failed scenario

6.2.1.5 Job Scheduling - Request Rejected

• The backend (sessionManager) sends a job scheduling request to the Idle Host.

• The Idle Host rejects the request as it can’t host any more jobs.

• The backend sends a fresh idle host request for the rejected job.

FIGURE 10.  Job Scheduling Request Reject
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6.2.2  State Diagrams

We will be drawing the state diagrams of the following classes only

(1). Scheduler

(2). Idle Host

(3). sessionManager   (backend)

(4). Job Initiator

(5). Job Monitor

(6). Idle Host Request List

6.2.2.1 Scheduler

FIGURE 11. Object model of the Scheduler

The Scheduler does two activities simultaneously.

Scheduler

Processing Inputs

Scheduling requests
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• Scheduling Requests

The Scheduler schedules requests from the idle host request list. The expanded state

diagram of this activity is included later in the document.

• Processing Inputs

Simultaneously, the Scheduler accepts inputs from the outside world. This activity too

is expanded later in the document.

Peer Messages

FIGURE 12. Messages from the peer

"   "

do: modify the session list

" "

do: modify the idle host list
regn/dregn/rearrange

Idle Host

start/restart/end
Session
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Client Messages

FIGURE 13. Messages from the client

The scheduler can receive and handle four kinds of client messages simultaneously.

Client messages

Idle Host MessagessessionManager Messages

Job Monitor MessagesJob Initiator Messages
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Job Initiator Messages

FIGURE 14. Process Initiation Request

This contains the activities that take place in the beginning of a job scheduling session.

The session initiation request comes from the job initiator. Once a session is started, the

scheduler starts receiving ‘iamalive’ messages from the session managers i.e sessionMan-

agers. If the message is not received for a prolonged period of time, the session is assumed

to be over. This is explained in a different state diagram later.

Job Initiator Messages
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Start failed
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Session started

do: register session
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 [FAILED]
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sessionManager Messages

FIGURE 15. SessionManager Messages

The second diagram in this set depicts the handling of the ‘iamalive’ messages sent by the

session manager.
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Idle Host Messages

FIGURE 16. IdleHost Messages

6.2.2.2 Idle Host

FIGURE 17. IdleHost Object
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The Idle Host objects do three activities simultaneously.

• Load Checking

Keeps track of the load of the machine.

• Job Scheduling

Receives job scheduling requests and handles them.

• Process Migration

Once jobs are scheduled, it entertains requests for migrating them. For the different

kinds of manipulation facilities currently supported see section Job Migration.

Load Checking

FIGURE 18. Load Checking Activity of IdleHost
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Job Scheduling

FIGURE 19. Job Scheduling by IdleHost
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6.2.2.3 sessionManager (The ‘Backend’)

FIGURE 20. SessionManager Object

Also called the Session Manager, this object is responsible for a session and performs the

following activities simultaneously

• Process Ordering

This refers to the planning of a schedule for the jobs in the session. Priorities of the jobs

are decided. This need not be static. This could be changed dynamically as the session

progresses.

• Process Distribution

Jobs are distributed based on the current schedule.

• Session Restart

sessionManager

'iamalive'

Distribute Jobs

Monitor

Job Ordering
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A user can restart a session if it is terminated abruptly. The session will actually be con-

tinued in this case i.e jobs which have been completed successfully will not be resched-

uled.

• Process Monitoring

The session manager also accepts monitoring requests from clients and services them.

• Sending ‘iamalive’ messages

The ‘iamalive’ messages are sent to the scheduler and to all the monitoring clients.

6.2.2.4 Process Initiator

FIGURE 21. Process initiation
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6.2.2.5 Idle Host Request List

The idle host request list contains the requests sent in by the session managers for idle

hosts. It is used by the scheduler and there are two kinds of activities

• Request Selection

• Queue Selection

Request Selection

FIGURE 22. Request Selection Diagram
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Queue Selection

FIGURE 23. Introducing priority queues for the job scheduling

The history state H has been used to indicate that control returns to the state in which the

object was when the timer matured.

6.3  Operations

We give a class-wise list of operations. This may not be the complete list. To quote James

Rumbaugh et. al. from Object-Oriented Modelling and Design

“The list of potentially useful operations is open-ended and it is difficult

          to know when to stop adding them.”
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We haven’t listed the operations of all the classes; only the major players have been cov-

ered. The operations listed here correspond to the actions and activities in the state dia-

grams.

6.3.1  Scheduler Operations

• schedule()

• receiveInputs()

• spawnSessionManager()

• handleJobInitiatorMsg()

• handleJobMonitorMsg()

• handleIdleHostMsg()

• handleSessionManagerMsg()

• handlePeerMsg()

6.3.2  Idle Host Operations

• periodicLoadCheck()

• getLoadRange()

• informScheduler()

• receiveInputs()

• scheduleJob()

• sendIAmAlive()

• manipulateJob()

6.3.3  Session Manager (i.e) sessionManager Operations

• readPERTFile()

• readStatusFile()

• prepareSchedule()
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• runSession()

• receiveInputs()

• handleIAmAlive()

• sendIAmAlive()

• handleStatusInfo()

• sendStatusInfo()

• addListener()

• removeListener()

• sendManipulationRequest()

6.3.4  Job Initiator Operations

6.3.5  Job Monitor Operations

6.3.6  Idle Host Request List Operations

• getNextRequest()

• ignoreRequest()

• modifyPriorities()

• sort()

• queueSelection()

6.3.7  Session List Operations

• registerSession()

• deregisterSession()

• matchSession()

• moveSession2History()

• matchSessionInHistory()
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6.3.8  Idle Host List Operations

• getHost()

• registerHost()

• deregisterHost()

• modifyHost()

We have done a fair amount of system designing before we even started the object modelling of the system.

This has been explained in the chapter JSMT System Architecture.

6.4  Identifying Subsystems

We have done a fair amount of system designing before we even started the object model-

ing of the system. Following building blocks of the protocol implementation can be

designed:

(1). User Interface

Constituent Objects: Job Initiator, Job Monitor.

(2). Scheduler

Constituent Objects: Scheduler, Idle Host List, Idle Host Request List, Ses-

sion List, Session Info, Idle Host Request, Idle Host Info.

(3). Session Manager

Constituent Objects: Session Manager (sessionManager), Session, Job, Sta-

tus File.

(4). Host

Constituent Objects: Idle Host.



105

6.4.1  System Topology

Following is the complete architecture of the proposed system. It depicts all the major

messages for the process scheduling and the various nodes to be designed into the system.

In the following figure, it shows the non-preemptive process migration scenario.

FIGURE 24. The Architecture of the proposed system
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6.5  Physical locations of the subsystems

Since our application is a distributed system, we have decided to allocate subsystems to

processors i.e physical locations before attempting to identify concurrency. There are three

different physical locations for the subsystems.

• Server

All the subsystems can be present in the server. The subsystems Scheduler and Session

Manager will (and should) be present. Since a server too can be used for starting ses-

sions and hosting jobs, the subsystems User Interface and Idle host can be present here.

• Idle Host

The machine which hosts jobs. This will contain the subsystem Idle Host. All the

machines covered by our application will contain this subsystem. The user can use this

for starting sessions too.

• User’s Machine

Used for starting sessions with the subsystem User Interface. Since it can host jobs too,

the subsystem Idle Host too can be present.
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CHAPTER 7                       Conclusions and Future Work

In this thesis we have proposed a distributed process scheduling and process migration

protocol to enable transparent load balancing and load sharing in heterogeneous Unix

clusters, the machines in the cluster may have different architectures and may run different

flavors of Unix operating system. But all the machines must implement the protocol. The

protocol supports remote execution or non-preemptive process migration because the pro-

cesses can migrate across heterogeneous machines.

We also define a set of conventions that each machine must follow. For example, the

UNIX process ids have to be mapped with protocol specific ids in a certain manner, the

scheduling process must be on NFS or it can’t be a process residing on the local machine,

etc. the conventions specify the requirements of the protocol without dictating the way

they are implemented. Distinguishing the conventions from the protocol has the benefit

that different implementations can implement the conventions differently, but as long as

they are implemented, the protocol works fine.

The protocol tries to provide as single system image to the cluster of machines. But this

cannot be achieved unless the other resources like files, devices, sockets, etc., of all the

nodes in a distributed system are transparently accessible from any node in the system.

Conventions are also defined for maintaining more of less uniform views for files on all

machines.

It is seen that a few Unix process management semantics are impossible to extend over a

distributed environment without heavy overhead. Hence, the protocol has not been imple-

mented in the kernel level mode, but in the user level mode only. The user level implemen-

tation of the protocol provides more flexibility and reduced threats towards the Unix

kernel. The protocol may be implemented in the kernel also, but it requires a lot of home-

work with the existing behavior of system calls implemented in Unix. Linux may be a bet-

ter operating system, which may be used for the implementation of the protocol in Linux

kernel.
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The protocol works with any load sharing policy and also try to use existing standard pro-

tocols as much as possible. For example, it does not design a new distributed file system

protocol for file sharing. Instead, it uses the existing standard protocol NFS for preserving

uniform file system view in the nodes of a distributed system.

The protocol handles both the node and network failures. For node failure, the job or the

process may be rescheduled on different coherent node. Network failures are made trans-

parent in the system in the sense that these only delay the message exchange among the

machines. But top the user, this looks only a reduced performance. For failure detection

the protocol assumes existence of a connection oriented protocol. This simplifies the

design of the protocol.

A possible user level implementation architecture is also proposed in this thesis. Even it

seems that a completely user level implementation will not be possible with the kind of

transparency the protocol is trying to achieve with the desired performance and efficiency

The proposed implementation architecture defines some layers over the exiting Unix ker-

nel, that may be used for user level process scheduling and process migration and don’t

requires and modification in the existing Unix kernel. In the protocol, a group of user’s job

can also be scheduled simultaneously, which introduces the concept of sessionManager.

Distributed load measurement algorithm has been discussed which may be used in hetero-

geneous Unix networks. This separates the information subsystem from the execution sub-

system for the greater system efficiency.

7.1  Future Work

Although we have designed the process scheduling and migration protocol for Unix for a

heterogeneous cluster, a complete implementation is required to measure the correctness

and performance of the protocol. The kernel level implementation of the protocol can be

done for the greater extend of the performance and efficiency. This can be tried out on

Unix implementations for which source code is available (for example, Linux and Net-

BSD). After experience with these implementations, the protocol can be reevaluated and
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suitably modified. Process selection algorithm can be added to get the complete view of

process migration system.
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Appendix A(1)

• Following is a sample Unix shell script, which is being called by the idleHost in the

Load Measurement Code for load sharing purposes. Following script measures the total

number of input and output packets (tot_io_pkts), cpu_busy_percentage, total number

of memory faults (tot_mem_flts) and total number of processes in run-queue

(tot_proc_exe) in the machine in the last duration of sampling.

#!/bin/ksh

#######################################################################

#   File Name : GetParam.Script                                                   #

#   Author : Milan Saxena                                                       #

#   Last Modified by :                                                                                #

#   Last Modified :                                                                                #

#   Brief Description : This is the shell script made to find the cpu load #

# parameters, as cpu_per_busy, faults, tot_io_pkts, #

# and no of processes in executio. #

#           #

########################################################################

net_file="/tmp/.netst_result"

vms_file="/tmp/.vmstat_result"

NetLoad.Script $net_file &

sleep 5

vmstat 10 2 > $vms_file

proc=0

max_proc=0

per_cpu_idle=0

#get the name of the operating system

ostype=` uname|cut -c1 `

#let us calculate the values for netstat

#for digital unix

if [ "$ostype" = "O"  ]

then

max_proc=64

last_ipkts=`awk '{new=NF-4; if(NR == 4){print $new}}' $net_file`

last_opkts=`awk '{new=NF-2; if(NR == 4){print $new}}' $net_file`

fi

#for sun

if [  "$ostype" = "S"  ]

then

max_proc=1909
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last_ipkts=`awk '{new=NF-4; if(NR == 4){print $new}}' $net_file`

last_opkts=`awk '{new=NF-2; if(NR == 4){print $new}}' $net_file`

fi

# for hp

if [  "$ostype" = "H"  ]

then

max_proc=76

last_ipkts=`awk '{new=NF-4; if(NR == 4){print $new}}' $net_file`

last_opkts=`awk '{new=NF-2; if(NR == 4){print $new}}' $net_file`

fi

#for linux

if [  "$ostype" = "L"  ]

then

max_proc=64

last_ipkts=`awk '{new=NF-4; if(NR == 4){print $new}}' $net_file`

last_opkts=`awk '{new=NF-2; if(NR == 4){print $new}}' $net_file`

fi

echo `expr $last_ipkts + $last_opkts`

#Calculate the virtual memory statistics fo all the three flavours

#vmstat for sun

if [ "$ostype" = "S" ]

then

per_cpu_idle=`awk ' {if(NF > 8 && $NF!="id" && NR == 4){print $NF} }'

$vms_file`

fault=`/usr/xpg4/bin/awk '{if(NF > 8 && NR == 4){ sub(/M/,"000",$7); {print

$7}}}' $vms_file`

echo $per_cpu_idle

echo $fault

fi

#vmstat for digital

if [ "$ostype" = "O" ]

then

per_cpu_idle=`awk ' {if(NF > 8 && $NF!="id" && NR == 5){print $NF} }'

$vms_file`

fault=`awk '{if(NF > 8 && $14!="sy" && NR == 5){ sub(/M/,"000",$7); {print

$7}}}' $vms_file`

echo $per_cpu_idle

echo $fault

fi

#vmstat for hp



Appendix A(1) 116

if [ "$ostype" = "H" ]

then

per_cpu_idle=`awk ' {if(NF > 8 && $NF!="id" && NR == 4){print $NF}}'

$vms_file`

fault=`awk '{if(NF > 8 && $14!="sy" && NR == 4){ sub(/M/,"000",$7); {print

$7}}}' $vms_file`

echo $per_cpu_idle

echo $fault

fi

#vmstat for sun

if [ "$ostype" = "L" ]

then

per_cpu_idle=`awk ' {if(NF > 8 && $NF!="id" && NR == 4){print $NF} }'

$vms_file`

fault=`awk '{if(NF > 8 && NR == 4){ sub(/M/,"000",$7); {print $7}}}'

$vms_file`

echo $per_cpu_idle

echo $fault

fi

#finding percentage of processes executing

proc=`ps -e|wc -l|awk '{print $1}'`

echo $proc

rm -f $net_file

rm -f $vms_file
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Appendix A (2)

• Following is a sample Unix script NetLoad.Script, which is being called by the script

GetParam.Script defined in Appendix A (1). Following script mesures the total number

of input and output packets, send or recieved by the machine during the last interval of

sampling.

#!/bin/ksh

#######################################################################

#   File Name : GetParam.Script                                                  #

#   Author : Milan Saxena                                                      #

#   Last Modified by :                                                                               #

#   Last Modified :                                                                               #

#   Brief Description : This is the shell script made to find the cpu load #

# parameters, as cpu_per_busy, faults, tot_io_pkts,  #

# and no of processes in execution. #

#                                                                                                                                          #

#######################################################################

# The following code was added during Sun porting

grep=grep

awk=awk

id=id

ostype=`uname|cut -c1`

#set up the aliases and shell variables

#for sun

if [ "$ostype" = "S" ]

        then

                 grep="/usr/xpg4/bin/grep"

                 awk="/usr/xpg4/bin/awk"

                 id="/usr/xpg4/bin/id"

        fi

#code ends here

#get the type of OS

if [ "$ostype" = "O" ]

then

/usr/sbin/netstat -i 10 >> $1 &

else

netstat -i 10 >> $1 &

fi

sleep 12

job_count=`jobs -l | wc -l`

if [ ${job_count} -ne 0 ]

then

netstat_pid=`jobs -l | awk '{print $3}'`
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kill -9 ${netstat_pid}

if [ $? -ne 0 ]

then

while [ 1 ]

do

kill -0 ${netstat_pid} > /dev/null 2>&1

if [ $? -eq 0 ]

then

kill -9 ${netstat_pid}

break

fi

done

fi

fi

exit



Appendix B 119

Appendix B

1.) SIMULATION AND RESULTS

For Dec Alpha Server (RISC Architecture), load values are shown as below. These results

were taken by a load measurement script which in given in the appendix A.

TABLE 3. Load Parameters and the measured Load Value

I+O PKTS        CPU_BUSY        MEM_FAULTS      PROCESSES       LOAD_VAL

-----------------------------------------------------------------------------------------------------------

45926.000000    18.000000 339.000000 115.000000                 9.377328

18068.000000    17.000000 372.000000 114.000000                     8.215099

19492.000000    21.000000 379.000000 114.000000                     8.336581

17269.000000    15.000000 326.000000 116.000000                     8.095818

21399.000000    18.000000 326.000000 116.000000                     8.284259

24834.000000    19.000000 370.000000 115.000000                     8.500853

23662.000000    17.000000 327.000000 114.000000                     8.328816

26860.000000    20.000000 344.000000 114.000000                     8.528652

27189.000000    20.000000 370.000000 115.000000                     8.607431

25044.000000    30.000000 327.000000 115.000000                     8.588831

33545.000000    24.000000 408.000000 107.000000                     8.902819

31303.000000    25.000000 344.000000 109.000000                     8.717259

30212.000000    21.000000 326.000000 111.000000                     8.603562

30554.000000    23.000000 371.000000 112.000000                     8.749929

31952.000000    26.000000 370.000000 110.000000                     8.825301

24866.000000    20.000000 426.000000 109.000000                     8.551944

37666.000000    25.000000 389.000000 113.000000                     9.144222
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I+O PKTS        CPU_BUSY        MEM_FAULTS      PROCESSES       LOAD_VAL

-----------------------------------------------------------------------------------------------------------

31385.000000    26.000000 349.000000 111.000000                     8.772418

33043.000000    29.000000 440.000000 114.000000                    9.119063

32213.000000    31.000000 438.000000 113.000000                    9.096849

40745.000000    29.000000 386.000000 112.000000                    9.332512

38031.000000    32.000000 338.000000 113.000000                    9.167611

45094.000000    30.000000 370.000000 114.000000                    9.561434

27931.000000    20.000000 326.000000 113.000000                    8.522588

38988.000000    28.000000 338.000000 116.000000                    9.190659

41007.000000    33.000000 405.000000 117.000000                    9.516909

21866.000000    17.000000 333.000000 120.000000                    8.356977

27527.000000    26.000000 463.000000 121.000000                    8.990629

23666.000000    19.000000 371.000000 107.000000                    8.351097

13910.000000    12.000000 339.000000 107.000000                    7.846696

16740.000000    12.000000 22.000000 88.000000                      7.168590

21050.000000    19.000000 338.000000 88.000000                      7.954191

15551.000000    12.000000 326.000000 88.000000                      7.641700

27302.000000    19.000000 345.000000 89.000000                      8.217996

6621.000000      8.000000 326.000000 94.000000                      7.379263

8000.000000      9.000000 326.000000 95.000000                     7.445283

1265.000000      35.000000 310.000000 99.000000                     34.152638

74.000000         36.000000 429.000000 109.000000                   92.374321

894.000000       57.000000 298.000000 110.000000                  31.563347

16087.000000   15.000000 509.000000 108.000000                  8.335574
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I+O PKTS        CPU_BUSY        MEM_FAULTS      PROCESSES       LOAD_VAL

-----------------------------------------------------------------------------------------------------------

6360.000000     11.000000 503.000000 120.000000                  8.125178

5741.000000     14.000000 509.000000 123.000000                  8.204270

0.000000           100.000000 0.000000 100.000000                  8.581940

69620.000000    63.000000 1018.000000 97.000000                   13.292508

45175.000000    99.000000 10.000000 101.000000                 10.292423

80710.000000    65.000000 1017.000000 95.000000                  14.206496

0.000000           100.000000 0.000000 107.000000                 8.671421
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2.) SIMULATION AND RESULTS

For SUN Solari (RISC Architecture sparc SUNW,Ultra-5_10 ), load values are shown as

below. These results were taken by a load measurement script which in given in the appen-

dix A.

TABLE 4. Load Parameeters and the measured Load Value

CPU_BUSY     PROCESSES      MEM_FAULTS   I+O PKTS       LOAD_VAL

-----------------------------------------------------------------------------------------------------------

4.00                 34.00                     24.00                        253.00                        21.83

45.00               36.00                     586.00                      3047.00                      34.25

5.00                 36.00                     105.00                      257.00                        22.04

4.00                 35.00                     24.00                        267.00                        21.84

1.00                 36.00                     34.00                        313.00                        21.34

1.00                 36.00                     24.00                       206.00                         21.29

2.00                 36.00                     24.00                       275.00                         21.50

4.00                 35.00                     105.00                     203.00                         21.82

6.00                 37.00                     107.00                     876.00                         22.54

95.00               40.00                     41.00                       771.00                         62.01

72.00               42.00                     334.00                    1137.00                        45.74

71.00               40.00                     582.00                    2496.00                        45.96

82.00               42.00                    636.00                     1995.00                        52.65

79.00               42.00                    548.00                     1897.00                        50.55

76.00               43.00                    680.00                     3304.00                        49.49

64.00               42.00                    577.00                     4464.00                        43.44

59.00               42.00                    241.00                     5166.00                       41.45

58.00               42.00                    575.00                     5387.00                       41.20
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CPU_BUSY     PROCESSES  MEM_FAULTS   I+O PKTS       LOAD_VAL

-----------------------------------------------------------------------------------------------------------

76.00                40.00                    556.00                      2114.00                    48.73

81.00                42.00                   525.00                       2590.00                    52.29

75.00                50.00                   421.00                       3912.00                   49.25

82.00                42.00                   517.00                       14443.00                 64.56

61.00                42.00                   777.00                       4608.00                   42.09

2.00                  36.00                   34.00                         473.00                     21.60

1.00                  36.00                   24.00                         228.00                     21.30

2.00                  36.00                  24.00                          327.00                     21.52

3.00                  36.00                  105.00                       230.00                      21.66

1.00                  36.00                  24.00                         239.00                      21.31

81.00                42.00                  670.00                       3697.00                    53.01

61.00                50.00                  42.00                         7251.00                    44.06

74.00                50.00                  61.00                         11254.00                   55.12

91.00                41.00                  129.00                       27804.00                  105.94

61.00                50.00                  48.00                         6618.00                    43.53

68.00                42.00                  520.00                       8386.00                    48.71

46.00                42.00                  423.00                       6879.00                    37.38

74.00                42.00                  133.00                       366.00                      46.49

62.00                42.00                  277.00                       3777.00                    41.93

89.00                42.00                  396.00                       2243.00                    57.92

58.00                42.00                 728.00                        4447.00                    40.56

55.00                42.00                 550.00                        5287.00                    39.78

79.00                42.00                 618.00                       2852.00                     51.12
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CPU_BUSY     PROCESSES   MEM_FAULTS      I+O PKTS       LOAD_VAL

-----------------------------------------------------------------------------------------------------------

50.00                  41.00                   581.00                          5799.00                  38.08

67.00                  42.00                   826.00                          2864.00                  44.02

74.00                  42.00                   401.00                          2210.00                  47.54

78.00                  39.00                   728.00                          2511.00                  50.27

72.00                 40.00                    398.00                          3012.00                  46.82

64.00                 39.00                    535.00                          2237.00                  42.00

81.00                  39.00                   725.00                          1731.00                  51.81

80.00                  39.00                   605.00                          2617.00                  51.63

69.00                  39.00                   520.00                          3871.00                  45.68

81.00                  39.00                  403.00                           2798.00                  52.38

67.00                  39.00                  510.00                           3764.00                 44.51

70.00                  39.00                  565.00                           1450.00                 44.78

61.00                  37.00                  747.00                           2759.00                 40.86

39.00                  39.00                  295.00                           3241.00                 32.24

56.00                 39.00                   310.00                          1136.00                  37.55

76.00                 39.00                   402.00                          5381.00                  50.84

99.00                 38.00                   35.00                            256.00                    65.34

53.00                 39.00                  639.00                           6064.00                  39.52

65.00                 39.00                  996.00                           2905.00                  43.01

85.00                 38.00                  118.00                           5654.00                  57.10

72.00                 38.00                  233.00                           4551.00                  47.79

43.00                 39.00                  417.00                           4375.00                  34.38

47.00                 39.00                  451.00                           3685.00                   35.5


