TRANSACTION PROCESSING FOR DISTRIBUTED REAL TIME DATABASE SYSTEM

A DISSERTATON SUBMITTED TO FACULTY OF TECHNOLOGY UNIVERSITY OF DELHI

In The Partial Fulfillment of the Requirements for the Award of the Degree Of
MASTER OF ENGINEERING

IN

COMPUTER TECHNLOGY & APPLICATIONS
Submitted by:
PARUL SINGH

College Roll No. 11/CTA/07

Delhi University Roll No. 12208

Under the guidance of

Mrs. Rajni Jindal

[image: image1.wmf]

DEPARTMENT OF COMPUTER ENGINEERING

DELHI COLLEGE OF ENGINEERING

UNIVERSITY OF DELHI
2008-200
CERTIFICATE

This is to certify that the work contained in this dissertation entitled “Transaction Processing For Distributed Real Time Database System” submitted by Parul Singh is the requirement for the partial fulfillment for the award of the degree of Master of Engineering in Computer Technology and Applications, Delhi College of Engineering is an account of her work carried out under my guidance and supervision in the academic year 2008-2009.

 Mrs. Rajni Jindal
 Assistant Professor

 Department Of Computer Engineering,

 Delhi College of Engineering,

 Delhi

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extend my heartiest felt gratitude to everybody who helped me throughout the course of this project. I would like to express my the best regards to Mrs. Rajni Jindal, Department of Computer Engineering for the constant motivation and support during the duration of this project. It is my privilege and honor to have worked under her supervision. Her invaluable guidance and helpful discussions in every stage of this project really helped me in materializing this project. It is indeed difficult to put her contribution in few words.
I am firstly grateful to the Almighty and then to my parents for their moral support all the time; they have been always around to cheer me up, in the odd times of this work. I am also thankful to my friends for their unconditional support and motivation during this work.

Parul Singh

M.E. (Computer Technology & Applications)

College Roll No. 11/CTA/07

Delhi University Roll No. 12208

ABSTRACT

The Transaction processing systems provide a predictable response to a predictable request within an acceptable time; it ensures that all the participating sites agree on the final outcome (commit or abort) of the transaction. Real Time Database (RTDB) System can be viewed as an amalgamation of a conventional Database Management System (DBMS) and real time system.

The work in this dissertation has been done in the context of real-time application than impose “firm deadline” for transaction completion. There are several factors that contribute to the difficulty in the transaction deadline. One of the major factors is the data conflict between executing-committing-transaction. This data conflict introduces the dependency between the transactions. Due to this dependency the dependent transaction wait for the subordinate transaction to commit in order to maintain the ACID semantics in the distributed data. Since the duration of the commit phase is unpredictable due to delay in communication and system failures. The dependent transaction can miss its deadlines while waiting for commitment of the transaction. This dissertation identifies the shortcomings of the double space commit protocol (2SC), a high performance distributed real time systems and process suitable modifications in it. The modified protocol reduces the data inaccessibility of the messages and improves the system performance to a great extent. In this project we are going to be work on four modules (mainly):-

1. Transaction manager

2. Transaction generator

3. Lock manager

4. Data generator

 In this project we have done the process linking between the transaction manager and the transaction generator. And now we have done is to simulate a double space model by using above four models (transaction generator, transaction manager, lock manager, data generator).

List of Figures

Figure 2.1: Distributed Transaction Execution……………………….........7

Figure 2.2: Two-Phase Commit Protocol for Committing
 Transactions………………………………………………….. .9

Figure 2.3: Two Phase Commit When Cohort Votes No…………………10

Figure 2.4: Two-Phase Commit when Cohort Votes

 Yes but Master Decides Abort………………………………..11
Figure 2.5: Presumed Abort when Cohort Votes No….…………………..15
Figure 2.6: Presumed Abort when cohorts Votes Yes but
 Master Decides Abort…………………………………………16

Figure 2.7: Presumed commit for committing transaction………………...17

Figure 4.1: Structure of distributed real-time database systems……………35
Figure 5.1: DRTDBS Simulation Model…………………………………...39
INDEX

 CHAPTER-1: Introduction…………………………………………………….1

1.1 Background…………………………………………………....1

 1.2 Problem Statement ……………………………………………5

 1.3 Organization of the Thesis…………………………………….5

CHAPTER-2: Literature Review……………………………………………….6

2.1 Introduction…………………………………………………....7

2.2 Two Phase Commit Protocol………………………………….9

 2.2.1 Forgetting the Transaction……………………………..11

 2.2.2 Recovery from Failures………………………………...12

 2.3 Presumed Abort Protocol……………………………………...14

 2.4 Presumed Commit Protocol…………………………………...16

 2.5 Three Phase Commit Protocol………………………………...18

 2.6 Real Time Commit Protocol…………………………………..19

CHAPTER-3: Real-Time Commit Protocol…………………………………...22

3.1 Real Time Applications Framework………………………….22

 3.1.1 Hard Deadline Real Time Applications………………...22

 3.1.2 Soft Deadline Real Time Applications……………….....23

 3.1.3 Firm Deadline Real Time Applications………………....23

3.2 Work Contributions…………………………………………...23

 3.2.1 Firm Deadline Transaction Semantics…………………..25

 3.2.2 Analysis of 2SC Distributed Real Time Commit

 Protocol………………………………………………….26

 3.2.3 Dependencies and Proposed Conflicts Resolving

 Strategies………………………………………………...27

3.3 Modified 2SC Distributed Real Time Commit

 Protocol………………………………………………………...30

CHAPTER-4: Components of Simulation Model………………………………33

 4.1 Literature……………………………………………………….33
 4.1.1 Transaction Manager…………………………………….35

 4.1.2 Transaction Generator…………………………………...35

 4.1.3 Lock Manager…………………………………………..36

 4.1.4 Data Generator………………………………………….36

CHAPTER-5: Simulation Model………………………………………………...37

 5.1 Overview ………………………………………………………37
 5.2 Database Model………………………………………………...39

 5.3 System Model…………………………………………………..39

 5.4 Priority Assignment…………………………………………….40

 5.5 Concurrency Control……………………………………………41

 5.6 Execution Model………………………………………………..41

CHAPTER-6: Conclusion and Future modification....…………………………42

 6.1 Conclusion……………………………………………………...42
 6.2 Future Modifications……………………………………………43
 APPENDIX……………………………………………………………………….44

 CHAPTER-7: Reference…………………………………………………………82

CHAPTER-1

INTRODUCTION

1.1 BACKGROUND
Transaction processing systems provide a predictable response to a predictable request within an acceptable time. The transaction processing applications in such areas as finance, insurance, manufacturing, distribution, and retailing are typically very large by almost any measure: size of data bases, number of users, number of data base updates, complexity and volume of processing, even geographical extent (some systems are distributed over international networks). Emerging applications of transaction processing systems are electronic mail and office automation. Transaction processing is a computer-based group of logical operations. In order for transaction processing to work, all the operations must succeed or fail as a group. A simple example of transaction processing is paying a utility bill from your bank account. The process of paying a bill from your account consists of debiting your account by say, 100 US dollars (USD), and crediting your utility provider’s account. Systems capable of transaction processing must pass tests for atomicity, consistency, isolation and durability, otherwise known as the ACID test. Transactions are known as Atomic, meaning that the transaction will either happen or not. If one account is debited, then another account has to be credited. The transaction processing system must always be Consistent with its own rules. If errors occur in the transaction on either side, then the transaction will fail. Isolating transactions means that other processes never see information during the transaction. They may see information before or after the transaction, but not during the transaction. For example, if two people are booking the last theatre seat at the same time, they can both see the seat before the booking, but only one person will succeed in booking that seat. Transactions must be Durable. This means that when that final seat in the theatre has been booked and you have received notification that the seat is yours, it is permanently recorded. No matter what problems occur to the system, there are back-ups in place in the transaction processing system to ensure that the record stays permanent.

Database Systems are designed to manage large bodies of information. The management of data involves both the definition of structures for the storage of information and the provision of mechanisms for the manipulation of information. Thus, database is a collection of objects, which satisfy a set of integrity constraints [5]. Centralized database systems are those that run on a single computer system and do not interact with each other computer system. Such system span a range from single-user database systems running on personal computers to high-performance database systems running on mainframe systems [5].
Distributed database systems consists of collection of sites, connected together via some kind of communications network, in which each site is a database system site in its own right, but the site have agreed to work together, so that, a user at any site can access data anywhere in the network, exactly as if, the data were all stored at the user’s own site. Many real-time database applications, especially in the areas of communication systems and military systems, are inherently distributed in nature. The distributed database system can thus be regarded as a kind of partnership among the individual local DBMSs at the individual local sites; a new software component of each site-logically an extension of the local DBMS provides the necessary partnership functions, and it is the combination of this new component together with the existing DBMS that constitutes what is usually called the distributed database management system. Distributed database systems implement a transaction commit protocol to ensure transaction atomicity.
A Real Time Database (RTDB) system can be viewed as an amalgamation of a conventional Database Management System (DBMS) and a real-time system. Like a DBMS, it has to process transactions and guarantee basic correctness criteria. Furthermore it has to operate in real-time, satisfying timing constraints imposed on transaction commitments and on the temporal validity of data [20]. A real-time data base system (RTDBS) is designed to provide timely response to the transactions of data intensive applications.
The program, used by users to interact with database, are executed and, thus partially ordered sets of read and write operations are generated. This set of operations is called a transaction. The transaction is an atomic unit of work, which is either completed in it entirely or not at all. The transaction terminates either by executing commit or an abort operation. A commit operation implies that the transaction was successful, and, hence all its updates should be incorporated into the database permanent fashion. An abort operation indicates that the transaction has failed, and, hence requires the database management system to cancel or abolish all its effects on the database system. In short, a transaction is an “all or nothing” unit of execution. A transaction that updates the objects of the database must preserve integrity constraints of the database. For example, in a bank, an integrity constraint can be imposed on account that an account cannot have a negative balance. Transfer of money from one account to another, reservation of train tickets, filing of tax returns, entering marks on a student’s grade sheet etc. are all examples of transactions.
Many distributed real time database applications store their data distributed across various sites. These sites are connected via a communication network. A single transaction needs to process various data within specified period of time. The difficulty is that the data may be dispersed at various sites and, therefore the transaction has to execute at various sites in a timely fashion. In such a distributed environment, the problem is that transaction at some sites could decide to commit while at some sites it could decide to abort resulting in a violation of transaction atomicity. To address and overcome this problem, distributed database systems use a transaction commit protocol. A commit protocol ensures the uniform commitment of the distributed transaction, that is, it ensures that all the participating sites agree on the final outcome (commit or abort) of the transaction. Most importantly, this guarantee is valid even in the presence of site or network failures.
Over the last two decades, database researchers have proposed a variety of distributed transaction commit protocols. To achieves their functionality, these commit protocols typically require exchange of multiple messages, in multiple phases, between the participating sites (where the distributed transaction executes). In addition, several log records are generated, some of which have to be “forced”, that is, flushed to disk immediately in a synchronous manner. Due to these costs, commit processing can result in a significant increase in transaction execution times, making the choice of commit protocol an important design decision for distributed database system [12].
From a performance point of view, commit protocol can be compared on the following three issues [8]:

Effect on normal processing: This refers to the extent to which the protocol affects the normal (no-failure) distributed transaction processing performance. That is, how expensive is it to provide atomicity using this protocol?
Non-blocking: A commit protocol is said to be non-blocking if, in the event of a site failure; it permits transactions that were being processed at the failed site to terminate at the operational sites without waiting for the failed sites without waiting for the failed site to recover. With blocking protocols, there is a possibility of transaction processing grinding to a halt in the presence of failures. Non-blocking protocols, on the other hand, are designed to ensure that, such major disruptions do not occur.
Recovery: The issue of speed of recovery appears less critical for two reasons: First, failure durations are usually orders of magnitude larger than recovery times. Second, failures are usually rare enough that we do not except to see a difference in average performance among the protocols because of one commit, protocol having a faster recovery time than the other. With this viewpoint, we focus here on the mechanisms required during normal operation to provide the functionality of recovery, rather than on the recovery process itself.
For designing the commit protocols for a distributed RTDB system, we need to address two questions: First, how do we adopt the standard commit protocols into the real-time domain? Second, how to increase the throughput of the system? We address the last question in this dissertation. In particular, we consider applications that have firm- deadlines. For such applications, completing a transaction after its deadlines has expired is of no utility and may even be harmful. Therefore transactions that miss their deadlines are “killed”, that is, immediately aborted and discarded from the system without being executed to completion.
1.2 Statement of Problem
The aim of this dissertation is to simulate the double space commit, a high performance distributed real-time commit protocol [9] for distributed real-time database systems. The work also identifies the shortcomings in this commit protocol and proposes suitable modification in it. For this, the database has to be modeled and simulated. The experiments are conducted to determine the transactions throughput of the system under different workloads.
1.3 Organization

In this chapter, an overview of the distributed database systems is given and also the statement of the problem is presented. The remainder of the work is organized as follows
In chapter 2 includes discussion about the execution of the transaction in distributed environment. The chapter also includes the discussion about various commit protocols used in the distributed database systems.
 In chapter 3, we have discussed about the distributed real-time database systems and various types of real-time applications. We have clearly mentioned the semantics of firm deadline transaction semantics. The double space (2SC) real-time commit protocol has been analyzed in this chapter and some drawbacks associated with this protocol have been identified. The suitable modification for this protocol has been proposed in this chapter.
In chapter 4, components of database simulation model has been discussed in detail

In chapter 5, a real-time database simulation model has been discussed in detail.

Finally chapter 6 includes the overall summary of the work included in this dissertation.
 CHAPTER-2
LITERATURE REVIEW

Transaction processing systems are similar to real-time systems in so far as their goal is to provide a predictable response to a predictable request within an acceptable time. A Distributed real time database system (DRTDBS) is a collection of multiple, logically interrelated databases distributed over a computer network. They support transactions that have explicit timing constraints. The timing constraint of a transaction is expressed in the form of a deadline, which indicates that it must complete before some specific time in future. Many applications such as military tracking, medical monitoring, stock arbitrage system, network management, aircraft control and factory automation etc. depend heavily on DRTDBSs for the proper storage and retrieval of data located at different remote sites have certain timing constraints associated with them. A distributed transaction executes at multiple sites in order to ensure the atomicity of the distributed transaction. The commit protocols ensure the uniform commitment of the distributed transaction, i.e., it ensures that all the participating sites agree on the final outcome (commit or abort) of the transaction. Most importantly this guarantee is valid even in the presence of site or network failures [12]. A very little work has been done on issue of ensuring distributed transaction atomicity. In this chapter, I shall discuss the commit protocols, and the three-phase commit protocol. The drawbacks from which this distributed commit protocols suffers have also been discussed. Then, description of the optimistic real-time commit protocols available in literature will be presented, which allows the transactions to access uncommitted data in a controlled fashion in order to improve the performance of the system.
2.1 Introduction
 Masters

[image: image2]
 Figure 2.1: Distributed Transaction Execution
A common model adopted for the execution of distributed transaction is shown in figure 2.1. A master process is created at one of the sites, where the transaction is submitted. This site coordinates the execution of the transaction 0. On the other hand, a cohort process on behalf of the transaction is created at the sites, where the transaction needs to access data usually, there is only cohort on behalf of the transaction at each such site. The master sends the STARTWORK message to the cohort to acquire the data item on which some operation is to be carried out. Depending on the transaction architecture and it’s execution pattern, either the master may send the STARTWORK messages at the same instant of time to all cohorts without waiting for their responses, i.e. the cohorts of the transaction will execute in a parallel fashion [8] or the master may send the subsequent STARTWORK message only after the previous cohort has completed the work assigned to it, i.e. the cohorts of the transaction execute one after the another in a sequential fashion [8]. A cohort, after successfully executing the master’s request, sends a WORKDONE message back to its master. The cohort has sent a WORKDONE message to the master; it means that the cohort is willing to commit the transaction. A variety of transaction commit protocols have been devised for this model, most of which are based on the classical two phase commit (2PC) protocol [5]. In this section, we briefly describe the 2PC protocol. When all the work assigned to the transaction is completed, the mater may decide to conclude the transaction. The master and all cohorts must agree on a common decision. However, the sending of the WORKDONE message by a single cohort does not enforce any binding on the master to agree on the decision. The cohort could still be aborted even after the WORKDONE message was sent due to the reasons such as concurrency control, system failures etc. Second there can be communication links failures, or some of the sites hosting the cohorts of the transaction may get failed. Therefore, a commit protocol is needed to ensure that all cohorts and the master have reached to a uniform decision. The decision will be binding on all sites, even if, a failure occur 0. A variety of transaction commit protocols have been devised, most of which are based on the classical two-phase commit (2PC) protocol [5]. The two-phase commit protocol is discussed in considerable detail in the next section.
A Discussion about Failures
There are two points needed to be discussed before starting the description of the 2PC protocol: First, how a site comes to know about failures of the communication link or the remote site, and second, how failures are handled 0?
In general, a timeout mechanism is used to solve the first problem. If the response to a message is not received from the remote site within the specified timeout period, the master site assumes that either the Communication link to the remote site or the remote site itself has failed. For the second problem, when site recovers from a failure, it is handed over to the recovery manager of the site. The recovery manager maintains the log about transactions activities. From this log record, if it finds a COMMIT log record for a transaction, cohort knows that the transaction had committed before the failure occurred. So, the recovery manager ensures that the effects of the committed transactions are to be redone. In the same way, if it finds an ABORT log record, it knows that the transaction was aborted before the failure occurred. In these cases, the recovery manager ensures that the effects of the aborted transactions are to be undone. The only problem is for the transactions about which neither a COMMIT nor an ABORT log record is found 0. The actions, that recovery process needs to take in this case, depend on the commit protocol being used. Many commit protocols have been developed for conventional distributed database systems, including two phase commit (2PC) (Gray, 1993), presumed commit (PC) (Mohan, 1986), presumed abort (PA) (Mohan, 1986). The common method adopted by these protocols to resolve executing–committing conflicts is blocking. And these protocols typically require exchange of multiple messages, in multiple phases, between the master and the cohorts. We will discuss them with the description of the various protocols.

2.2 Two-Phase Commit Protocol
The two-phase commit (2PC) protocol consists of two phases [5]. In the first phase, known the voting phase.

[image: image3]
Figure 2.2: Two-Phase Commit Protocol for Committing Transactions
In this phase, the master enquires the cohort to vote in order to reach a global decision (commit or abort). The second phase is called as decision phase, in which, the decision taken in first phase is conveyed to the cohort and implemented. The first phase is initiated by the Master by sending the VOTE and PREPARES messages in parallel to all its cohorts. The Master sends this message, so as, to inform the cohort at various sites that it would like to commit the transaction. On receiving the VOTE to PREPARE message, a cohort, if it is ready to commit, force-writes a PREPARE log record to its stable storage, and sends a YES vote to the master as shown in Figure 2.2. The names on the arrows in the figure indicates the messages and names in italics indicate the log records, and the name with ** indicating that the log record is force-written. At this point, the cohort is said to be in prepared state, wherein, it cannot be unilaterally aborted by the other transaction but has to wait for the final decision from the master. On the other hand, a cohort, that decides to abort the transaction, writes (not force-writes) an ABORT log record and sends a NO vote to the master as shown in figure 2.3.

[image: image4.emf]Master Cohort

Vote to Prepare

Vote NO

Abort

Abort**

 Figure 2.3: Two Phase Commit When Cohort Votes No
Since a NO vote acts like a veto, the cohort unilaterally abort itself without waiting for the final decision from the master. After receiving the votes from all cohorts, the master initiates the second phase of the protocol. If, all the votes received are YES, then it moves to commit. Master force-writes a COMMIT log record and sends commit messages to all the cohorts. When cohort receives the COMMIT message, it moves the committing state, force-writes a COMMIT log record, and send an ACK message to the master. The master writes an END log record after receiving the ACKs from all the cohort as shown in figure 2.2. Now the master forgets the transaction, i.e. the control information about the transaction is removed from memory at the master’s site. If the master receives even one NO vote, it moves to the aborting state by force-writing an ABORT log record and sends ABORT messages to rest of all its cohorts that are either in the prepared state or not. These cohorts, after receiving the ABORT message, move to the aborting state, force-writes an ABORT log record and send an ACK message to the master. The master writes an END log record after receiving the ACKs from all those cohorts that were sent the ABORT message, and then forgets the transaction as shown in figure 2.4.

[image: image5.emf]Master Cohort

Vote to Prepare

Vote Yes

Abort**

Abort

END

Ack

ABORT

Figure 2.4: Two-Phase Commit when Cohort Votes Yes but Master Decides Abort
2.2.1 Forgetting the transaction

When the master or a cohort of a transaction is created at a site, some data structures are allocated and control information is generated for the transaction. It is desirable that the transaction manager at the site hosting the master or cohort forgets the transaction at the earliest possible time. A transaction manager forgets the transaction by releasing the data structure allocated to the transaction and by removing the control information about the transaction from memory. Once a transaction forgets the transaction, it is no more in a position to answer queries about the transaction. Any further queries about the transaction will always get a no information response from the transaction manager. Therefore, a transaction manager forgets the transaction only, when, it is sure that no more queries about the transaction will be asked. The no information response does not mean that the transaction manager has no information at all about the transaction. It simply means that no such information is available in the memory. There may be information in the log on the stable storage, but it will be too inconvenient for the transaction manager to find the information from the log in the absence of any control information about the transaction. Of course, if a crash occurs, the log will be scanned while recovering from the crash and the information found would be used to undo/redo the operations of the transactions. The transaction manager forgets the transaction by writing an END log record (not forced). For a cohort, the END log record is merged with the COMMIT or the ABORT records itself, because the cohort can forget the transaction at the time of writing the COMMIT or the ABORT record. Thus, there is no need for the cohort to write a separate END log record. The master, however, writes the END log record only when it has received the ACKs from all the cohorts that were sent the decision message. This is because, if an ACK from a cohort has not been received, there is a chance that the cohort will query the master in near future about the outcome of the transaction.
2.2.2 Recovery from Failures

Recovery manager is responsible for recovery from failures of the system, whenever site as well communication link fails. In case of failure of a site, if a timeout occurs while the master is waiting for the vote from a cohort, it assumes a NO vote and aborts the transaction as described above. If a cohort’s site comes to know that the master’s site has failed before receiving the VOTE to PREPARE message from the master, the cohort is simply aborted. However, if the master fails after the cohort has dispatched the YES vote; the cohort will periodically try to contact the master until the decision from the master is received. In the same fashion, if master does not receive an ACK for the decision it has sent to the cohort, it will periodically re-send the decision to the cohort until it finally receive the ACK.
Recovery manager perform redo and undo operations for the transactions. If it finds COMMIT record in the log, it performs the redo operation otherwise if ABORT record is found it performs undo operation. If an END record is also found in the log for such a transaction, the recovery manager forgets the transaction. The END log record for a cohort is merged with the COMMIT or ABORT record. Therefore, if the recovery process finds a PREPARE record and a COMMIT or ABORT record for the transaction, it knows that the site was hosting a cohort of the transaction; performs the appropriate redo/undo operations; and forgets the transactions. In case of the masters, the END record will be found only if all the ACKs from the cohorts were received and the log record had reached the stable storage before the trash occurred. Therefore, if a COMMIT or ABORT record is found but the PREPARE record and the END record are not found in the log, it can be judged that (a) master for the transaction was executing at that sight,(b) the decision about the transaction had been taken, and (c) some cohorts might not have yet received the decision. Therefore, the recovery manager periodically sends the decision message to the cohorts until it receives ACKs from them. After receiving all ACKs, the recovery manager writes an END record in the log, and forgets the transaction.
When the recovery manager does not found any log record such as PREPARE, COMMIT, ABORT for the transaction, it assumes that all such processes were in the executing state, and abort them. Another case is that the recovery manager finds a PREPARE record in the log, but finds no further COMMIT or ABORT record. It comes to know that the site was hosting a cohort, and the crash occurred after the cohort had sent a YES vote but before it could receive the decision from the master. On recovery from a failure, such cohorts cannot take a unilateral decision about the fate of the transaction. Therefore, the recovery manager queries the master about the outcome of the transaction. Obviously, the master would not have received ACKs from such a cohort; therefore, the master would have retained the information about the transaction, and will reply accordingly. The recovery manager at the cohort’s site will take the appropriate action based on the master’s reply.
Failure blocking of the cohorts
In the distributed system, the failure blocked cohorts are those who are waiting for the decision from the master that has failed. This situation occurs, when master has dispatched the PREPARE messages, but has failed before it could dispatch the decision to the cohorts. All those cohorts that had voted YES will be waiting in the prepared state for the master’s decision. This is in contrast with the data-blocked cohorts where the cohorts blocked waiting for the data items held by other cohorts. The failure-blocked cohorts continue to hold system resources such as locks on data items. Due to this, the other transactions are blocked for those data items resulting in cascaded blocking. If the down time for the master is long, it may result in major disruption of transaction processing activity in the distribution system.
No information case
Consider a situation where the master fails after sending the VOTE to PREPARE messages. After receiving the VOTE and PREPARE message, the cohort goes into the prepared state and sends a YES vote to the failed master. When the master recovers from the failure, the recovery process at the master doesn’t find any information related to the commit processing of the transaction and hence, it aborts and forgets the transaction. It also d-allocates all resources that were located to the transaction and removes all information related to the transaction in the memory. The cohort, on the other hand, queries the master about the result of the transaction as the master has forgotten the transaction, it has no information about the transaction! Therefore a cohort on getting a no information spot from the master can correctly assume that, the transaction was aborted. The other solution to this situation could have been to force-write a log record at the master before sending the VOTE to PEPARE message. But, the extra force-write may have an adverse impact on the performance of the commit protocol.
2.3 Presumed Abort Protocol
The 2PC protocol suffers with overheads of transmission of several messages and force writing of several log records. A variant of the 2PC protocol, called presumed abort (PA) [8], attempts to reduce these overheads by requiring all cohorts to follow a “in the no information case, abort:” rule. As it has been discussed in the previous section that, when the no information case occurs, it can be correctly assumed that the transaction was aborted. PA attempts to reduce the transmission of few messages and log writes is such a way that there will be many more situations when the no information case will occur. For example, if after coming up from failure, a site queries the master about the final outcome of a transaction and finds no information available with the master, the transaction is correctly assumed to have been aborted. With this assumption the cohorts can avoid to either send acknowledgements for the ABORT messages from the master or to force-write the ABORT log record

[image: image6.emf]Master Cohort

Vote to Prepare

Vote NO

Abort

Abort

 Figure 2.5: Presumed Abort when Cohort Votes No
Secondly, the master can also avoid to force-write the ABORT log record or to write an END log record after the ABORT. Figure 2.5 shows the execution of PA for a cohort that vote NO, and figure 2.6 shows the execution of PA when cohort votes YES but the master decides to abort the transaction.
When a site recovers from a failure, the only case it will query the master about the outcome of the transaction is that it finds a PREPARE record in the log. If the master had decided the commit, then it cannot forget the transaction without receiving the ACK from the cohort.

[image: image7.emf]Master Cohort

Vote to Prepare

Vote Yes

PREPARE*

ABORT

Abort ABORT

Figure 2.6: Presumed Abort when cohorts Votes Yes but Master Decides Abort
Therefore, in such a case, master will respond with the COMMIT message. On the other hand, if the decision was abort, the master would have forgotten the transaction without waiting for the ACK from the cohort. Therefore, on getting a no information response, the cohort can correctly assume that the transaction was aborted. In all the cases, when the recovery process does not find any commit processing record in the log, will simply (and correctly) abort the master or cohort as described in section 2.2.4.
 In short, the PA protocol behaves identically to 2PC for committing transactions, but has reduced message and logging overheads for aborted transactions.
2.4 Presumed Commit Protocol
As in the basic 2PC, Presumed Commit Protocol (PRC) consists of a voting phase and a decision phase. However, PRC reduces the cost of committing a transaction by not requiring that the participants to force write a commit decision during the decision phase. PRC achieves this by making an explicit commit presumption about the outcome of transaction in the absence of information about the transactions. That is, after recovering from a failure, when a participant in the execution of a distributed transaction inquires the coordinator of the transaction about the status of the transaction, the coordinator responds with a commit decision if it has no recollection about the transaction. In any distributed system, we find that the number of committed transactions is much more than the number of aborted transactions. Based on this observation, a variation of presumed abort is proposed that attempts to reduce the messages and logging overheads for committing transactions rather than aborting transactions. This variation, called presumed commit (PC) [7], requires all cohorts to follow a “in the no information case, commit” rule. In this commit protocol, cohorts do not send acknowledgements for the COMMIT global decision, and do not force-write the COMMIT log record. In addition, the master does not write an END log record. Instead, the cohorts send acknowledgements for the ABORT decision, and ABORT log records are force-written. The result is that when the no information case arises, the cohort can correctly assume that the transaction was committed.
 Master Cohort
COLLECTING** Vote to Prepare

 Vote Yes PREPARE**

 COMMIT** Commit COMMIT

 Fig 2.7: Presumed commit for committing transaction
Now, a cohort that has entered the prepared state on receiving the VOTE to PREPARE message queries the master about the result of the transaction. In this case the response will be a no information case, because the master site has already forgotten the transaction. By following the “presumed commit” rule, the cohorts will dead the commit. This leads to inconsistent decision about transaction, because the transaction had been aborted by the recovery process at the master’s site. In order to solve this inconsistency problem, the master is required to force-write a COLLECTING log record before initiating the commit protocol. This log record contains the names of the entire cohort involved in executing that transaction.
 I n brief, we conclude that presumed commit reduce the message and logging overheads for the committing transactions, but increases the overheads of aborting transactions. Except for the extra COLLECTING record, the abort processing in PC is same as in 2PC.
RPC applicability is curtailed due to its cost to commit read-only transactions, which are the majority of the transactions in the any general database system.
 It fails to eliminate the initiation log records required by PRC for the read only transaction.
2.5 Three-Phase Commit Protocol

A fundamental problem with all of the commit protocols discussed above is that the cohorts may become blocked waiting for a decision in the event of a failure at the master site and remain blocked until the failed site recovers [8]. To address the blocking problem, a three-phase commit (3PC) protocol was proposed in [24].This protocol achieves a non-blocking capability by inserting an extra phase, called the “pre-commit phase”, in between the two phases of the 2PC protocol. In the pre-commit phase, a preliminary decision is reached regarding the fate of the transaction.
The information made available to the participating sites as a result of this preliminary decision allows a global decision to be made despite a subsequent failure of the master site. Note, however, that the price of gaining non-blocking functionality is increases in the communication overheads since there is an extra round of message exchange between the master and the cohorts have to force-write additional log records in the pre-commit phase [12].

2.6 Real-Time Commit Protocols in Literature
The commit protocols described above were designed for conventional database systems and do not take transaction priorities into account. In a real-time environment, this is clearly undesirable since it may result in priority inversion, wherein high priority transactions are made to wait by low priority transactions. Priority inversion is usually prevented by resolving all conflicts in favor of transactions with higher priority [12]. Removing priority inversion in the commit protocol, however, is not fully feasible. This is because, once a cohort reaches the prepared state, it has to retain all its data locks until it receives the global decision from the master, this retention is fundamentally necessary to maintain atomicity. Therefore, if a high priority transaction request access to a data item that is locked by a “prepared cohort” of lower priority, it is not possible to forcibly obtain access by preempting the low priority cohort. In this sense, the commit phase in a distributed RTDBS is inherently susceptible to priority inversion. More importantly, the priority inversion interval is not bounded since the time duration that a cohort is in the prepared state con be arbitrary long (for example, due to network delays). It is important to note that the prepared data blocking described above is orthogonal to the decision blocking (because of failures) that was discussed under 3PC. In all the commit protocols including 3PC, transaction can be affected by “prepared data blocking”. Moreover such data blocking occurs during normal processing, whereas, decision blocking occurs only during failure situations [31].
The lifetime of transaction is divided into two stages i.e. execution stage and commitment stage. In the execution stage, the operations of a transaction are processed at different sites of the system, while, in the commitment stages, a commit protocol is needed to ensure transaction atomicity [2]. In a DRTDBS, transactions are associated with deadlines. One of the important factors in contributing to the difficulty in meeting deadlines is data conflicts amongst transaction i.e. executing-executing conflicts and executing-committing conflicts. Distributed database systems implement a transaction commit protocol but commit processing can significantly increase the execution time of transaction. This is special problem in real time context since it has direct adverse effects on the systems ability to meet transaction deadlines constraints. So, a suitable commit protocol is an important design decision for DRTDBS with respect to affect no normal processing, resilience to failure and speed of recovery. A very few papers are available in the literature that have tried to address this issue. The researchers have proposed some real-time commit protocol in the literatures. The works in papers [10] [11] have basically considered either relaxing the traditional notion of atomicity or strict resources allocation and resources performances guarantees from the system. Gupta et al. [8] has proposed opt protocol, which allows requesters to access the data held by the committing transactions. Further, he suggested shadow-opt and healthy-opt protocol [13]. In Healthy-Opt a health factor is associated with each transaction and transaction is allowed to lend its data only if its health factor is greater than a minimum value M. in shadow, whenever it borrow a data page. The original transaction continues its execution and shadow is blocked at the point of borrowing. If the lending transaction commits, the borrowing cohort is aborted. Even with this, it still does not solve the problem of complexities. The committing transaction may still have a high probability of being cause of blocking until they miss there deadlines. Lam proposed deadline-driven conflict resolution (DDCR). Conflict resolution in DDCR is divided into two parts (a) resolving conflicts at the conflict time; and (b) reversing the commit dependency when a transaction, which depends on a committing transaction, wants to enter the decision phase and its deadline is approaching. DDCR resolves different transaction conflicts according to the dependency relationship between the lock-requester and lock-holder. But it creates additional workload for the systems for maintaining the records and also the second option of write-read conflicts is creating priority inversion problems. Haritsa proposed (PROMPT) protocol 0. The protocol allows transaction to optimistically borrow, the updated data of transactions currently in their commit phase, in a controlled manner. This controlled borrowing reduces the data inaccessibility and the priority inversion that is inherent in distributed real-time commit processing. Based on the above real-time commit protocol B. Qin and Y.Liu suggested a 2SC (double space) real-time commit protocol [9]. 2SC allows non-healthy transactions to lend its locked data to the transactions in its commit dependency set. When the prepared transaction is aborts, only the transaction in its abort dependency set are aborted while the transaction in its commit dependency set execute as normal. This high performance distributed real time commit protocol has also problem in write-write conflict & write-read conflict there is still problem of priority inversion in write-read conflicts. There is no consideration of deadlock solving strategy. So, in order to meet out these challenges, the design of a better commit protocols is a very important need of DRTDBS.

CHAPTER-3

REAL-TIME COMMIT PROTOCOL

The commit protocols used in conventional database systems cannot be directly used in Real-time database systems. The conventional transaction commit protocols do not take into considerations the real-time nature of the transactions, therefore commit protocols need some modifications to cater to the specific requirements of the real-time transactions. These protocols require exchange of multiple messages, in multiple phases, between the participating sites where the distributed transaction executed. In addition, several log records are generated, some of which have to be “forced”, that is, flushed to disk immediately. Due to these costs, commit processing can result in a significant increase in transaction execution times. Consequently, the choice of commit protocol is an especially important design decision for distributed real-time database systems (RTDBS). In this chapter, first we will discuss the types of Real-time systems. Next we will analyze the new high performance distributed real-time commit protocol called as double space commit i.e. 2SC protocol and propose a suitable modification in it.

3.1 Real-Time Applications Framework
The real-time applications can be classified into the following three categories based on how the application is impacted by the violation of the task completion deadline [16]:
3.1.1 Hard Deadline Real-Time Applications:

In these applications, the consequences of missing the deadline of even a single task could be catastrophic. Life-critical applications such as flight control systems or missile guidance systems belong to this category. Database systems for efficiently supporting hard deadline real-time, where all transaction deadlines have to be met, appear infeasible due to the large variance between the average case and the worst case execution times of a typical database transaction. The large variance is due to transactions interacting with the operating system, the I/O subsystem, and with each other in unpredictable ways. Guaranteeing completion of all transactions within their deadlines under such circumstances requires an enormous excess of resource capacity to account for the worst possible combination of concurrently executing transactions.

3.1.2 Soft Deadline Real-Time Applications:
In these applications, the tasks are associated with deadlines, but even if a task fails to complete within the deadline, it is allowed to execute up to completion. Generally, in these systems, a “value function” assigns a value to the tasks. This value remains constant up to the deadline, but starts decreasing after the deadline. The questions to be addressed in these applications include how to identify the proper value function, which actually may be application dependent.
3.1.3 Firm Deadline Real-Time Applications:
These applications are different from the soft deadline applications in the sense that the task, which miss the deadline, are considered worthless (and may even be harmful if executed to completion) and are thrown out of the system immediately. The emphasis, thus, is on the number of tasks that complete within their deadlines. Our interest in the RTDB systems is on the applications in the firm deadline real-time domain [16]. We believe that understanding firm deadline RTDB systems will provide necessary insight into the RTDB technology, which is necessary for addressing the more complex framework of soft deadline applications. Therefore, we have carried out our work from the perspective of a “Firm Deadline Real-Time Database System”.
3.2 Work Contributions
Many real-time database applications are inherently distributed in nature [17] [18]. For example the intelligent network services described in [3] and the mobile telecommunication system discussed in [19]. The more recent applications included in this category are data-feed and electronic commerce services that have become available on the World Wide Web. Research in the area of real-time system has been underway for more than a decade. But the focus is primarily more on the centralized database system rather the much less attention has been provided to the distributed real-time database systems. In distributed real-time database systems transactions operates on distributed data. The transaction has to maintain the ACID semantics of data in distributed environment. While the issue of designing real-time protocols to ensure distributed transaction serializability has been considered to some extent, very little work has been done with regard to the equally important issue of ensuring distributed transaction atomicity.
In RTDB systems, the resource scheduling and concurrency control mechanisms make use of transaction priorities in order to achieve high performance, that is, to maximize the number of transactions successfully committing before the expiry of their deadlines. The standard transaction commit protocols used in conventional database systems cannot be directly used in distributed RTDB system because they suffer from the fact that they are not priority cognizant. Moreover, the performance considerations in conventional database systems and those in RTDB systems are different while the average transaction throughput (or the average transaction response time) is the primary concern in conventional systems, RTDB system strive to maximize the number of transactions that complete before their deadlines expire. For designing the commit protocols for distributed RTDB systems, we need to address two major questions: first, how do we adapt the standard commit protocols into the real-time domain? Second, how do the real-time variants of the commit protocols compare in their performance? We address these questions in this work. As mentioned earlier, we consider the “firm deadline” application framework, wherein transactions that miss their deadlines are considered to be worthless and are immediately “killed”, that is, aborted and discarded from the system without being executed to completion. The performance goal in a firm deadline RTDB system is to minimize “deadline miss percent”, that is, the steady-state percentage of transactions missing their deadlines. Our contributions in this regard are three-fold:

1. We first precisely define the process of transaction commitment and the conditions
Under which a transaction is said to miss its deadline in a firm-deadline distributed Real-time database system.

2. We evaluate a new optimistic real-time commit protocol, called double space commit

(2SC), that is similar to the “PROMPT real-time commit protocol” 0 in its basic Design but incorporates additional features that gives the best performance for high Performance distributed real-time transaction.
3. We propose a suitable modification to this new high performance real-time commit . Protocol in order to eliminate the waiting of dependent transactions so that the
 Probability of dependent transactions missing the deadlines becomes less. We also
 Introduce the additional dependency set for transaction in order to achieve consistency
 in the database.

3.2.1 Firm Deadline Transaction Semantics
The transaction model that we have used in our work is firm real-time transaction. According to the semantics of firm deadlines, the master and all the cohorts of a successfully executed transaction should commit the transaction before the deadline expire or all of them should abort immediately upon deadline expiry. However it is impossible to provide such guarantees because of the arbitrary message delays and the possibility of failures. To avoid inconsistencies in such a case, we need to define the firm deadline semantics in distributed environment as follows 0.
A distributed firm deadline real-time transaction is said to be committed if the master has reached the commit decision before the expiry of the deadline at its site. This definition applies irrespective of whether the cohorts have also received and recorded the commit decision by the deadline.
To ensure transaction atomicity with the above definition, the prepared cohorts that receive the final decision after the local expiry of the deadline still implement this decision. And the transaction, which would normally expect the data to be released by the deadline, only experiences a delay.

3.2.2 Analysis of 2SC Distributed Real Time Commit Protocol
From the database consistency requirement perspective of the financial system, banking system etc., analysis of the 2SC distributed real time protocol is required. Suppose, there is one cohort having write lock on same data item (X) whose initial last update value was 20 and pre-committed value is 40 and it has sent the prepared messages to its coordinator. It has not received the commit message from its coordinator and in uncertain state. Meanwhile, if another transaction or cohort requests a write lock for the same data item (X) then, by maintaining some relevant information, first cohort will permit the second one to use its pre-committed dirty data 40. The second one will start its execution with this dirty data. Here, there is only commit dependency in these two [9] [2]. If first commits then the second will commit. The second cannot commit before the commitment of first. But, it first aborts due to abort decision of coordinator then its modified value i.e.40 is not made permanent. Here, second will commit leaving database in inconsistent state with the update made on the basis of pre-committed dirty data read from first one even if first aborts since there is only commit dependency between them. Hence, there should also be abort dependency in between these two [22] to avoid occurrence of inconsistency in database.
Again, suppose there is one cohort having write lock on same data item (X) whose initial last update value was 20 and pre-committed value is 40 and it has sent the prepared message to its coordinator. It has not received the commit message from its coordinator and in uncertain state. Meanwhile, if another transaction or cohort requests a read lock for the same data item (X) then, by maintaining some relevant information, first cohort will permit the second one to use its pre-committed dirty 40. The second one will start its execution with this dirty data. Here, there is only abort dependency in these two [15]. If first aborts, the second will abort leaving database in consistent state. But the second can commit before the commitment of first because there is no commit dependency between these two. Here, second will commit leaving inconsistency with the read operation done on the basis of pre-committed dirty data read from first one, even if, first has not committed since there is only abort dependency between them. Hence, there should also be commit dependency in between these two to avoid occurrence [2] [22] of inconsistency in database. Thus, by considering the above two cases, a suitable modification is needed.
3.2.3 Dependencies and Proposed Conflict Resolving Strategies
A real time database system should maintain data consistency as well as it must satisfy timing constraints associated with transaction, which are typically expressed in terms of deadlines. Sharing of data items in conflicting modes creates dependencies among the conflicting transactions and constraints their commit order. Biao Qin and Ylin define two different types of the dependencies in their paper.
Commit dependency (CDS)
If a transaction t2 updates a data item after another transaction t1, a commit dependency is created from t2 to t1. Here t2 is not allowed to commit until t1 is committed [23].
Abort dependency (ADS)
If t2 reads an uncommitted data item written by t1, an abort dependency is created from t2 to t1.
These dependencies are required to maintain the ACID properties of the transaction. The dependencies between transactions can be easily implemented at site by adding the dependency attributes. A transaction table at each site is used to maintain the following information for each locally active transaction or cohorts, if it is dependent on uncommitted local transactions or cohorts.

CDS (Ti): the set of transactions, which are committed dependent on transaction Ti.

ADS (Ti): the set of transactions, which are aborted dependent on transaction Ti.

Also, a dependency table at coordinator site is maintained for dependency information of each dependent cohort after receipt of prepared message. When data conflicts occur, there are three possible cases of conflict.
Case 1: Read-write Conflict.
If t2 requests exclusive-lock while t1 is holding a exclusive-lock, a commit dependency is defined from t2 to t1. First, the transaction id of t2 is added to the CDS (t1). Then t2 acquires the exclusive-lock.
 Case: Write-Write Conflict.

If both locks are exclusive-locks, such that the write of T2 can not overwrite the write of T1, then commit and abort dependencies are then defined from T2 to T1. After the transaction id of T2, id2, added to the CDS (T1) and ADS (T1). T2 acquires the exclusive-lock.
Case 3: Update -Read Conflict
If T2 requests a inclusive-lock while T1 is holding a exclusive-lock, an abort dependency AND a commit dependency is then defined from T2 to T1. If HF (T1)4 ≥ MinHF, the transaction id of T2, id2 is added to ADS (T1), AND CDS (T1) and then acquires the read-lock; otherwise, if HF (T1) < MinHF, T2 is blocked.

 On the basis of the above conflicts cases, the accesses of data item in conflicting mode are processed as follows.
If ((T2 CD T1) AND (T2! AD T1))

 {

 CDS (T1) =CDS (T1) U {T2};

 T2 is granted a write lock;

 }

 else if ((T2 CD T1) AND (T2 AD T1) AND (both transactions locks are exclusive lock)

 {

 CDS (T1) =CDS (T1) U {T2};

 ADS (T1) =ADS (T1) U (T2);

 T2 is granted a write lock;

 }

 else if ((T2 AD T1) AND (T2 CD T1) AND (HF(T1) ≥ MinHF))
 {
 CDS (T1) =CDS (T1) U {T2};
 ADS (T1)=ADS (T1) U (T2)
 T2 is granted a read lock;

 }

 else T2 will be blocked;

After T2 had accessed the locked data, three situations may arise.
1 T1 receives decision before T2 has completed its local processing:

 i. If global decision is to commit,
 {

 T1 commits.
 All the transaction in ADS (T1) and CDS (T1) will execute as usual.

 Set of ADS (T1) and CDS (T1) deleted.
 Again, T2 will send a message to its master to delete the related

 dependency set.

 }

 ii. If the global decision is to abort,
 {

 T1 aborts.
 The transactions in dependency set of T1 will execute as the following
 steps:
 The transactions in ADS (T1) AND CDS (T1) will be aborted.

 The transactions in ADS (T1) AND CDS (T1) will execute as usual.

 Here, also T2 will send a message to its master to delete the related

 dependency set.

 The set of ADS (T1) and CDS (T1) will be deleted.

 }
2 T2 completes data processing before T1 receives global decision:
T2 is allowed to send prepared message with its dependency set information to master. But T2’s master will be not allowed to send commit message till it as dependency set of any one of its cohorts. If T1 receives its global decision the transaction will execute as the first scenario. But if T2’s own deadline expires, it will be killed and removed from the dependency set of T1.
3 T2 aborts before, T1 receives decision
 In this situation, T2’s updates are undone and T2 will be removed from the dependency set of T1.

3.3 Modified 2SC Distributed Real Time Commit Protocol
On the basis of above discussed concepts, the complete pseudo code of the protocol is given below to overcome the shortcomings of 2SC.
Modified Algorithm:
If (T1 receives global decision before T2 ends execution) Then

 {

ONE: if (T1’s global decision is to commit) Then

 {

 T1 enters in the decision phase;

 All transaction in ADS (T1) and CDS (T1) will execute as usual;

 Delete set of ADS (T1) and CDS (T1);

 Again, T2 will send a message to its master to delete the related

 dependency set.

 }

 Else

 {

 T1 aborts;

 The transactions in ADS (T1) AND CDS (T1) will be aborted.

 The transactions only in CDS (T1) will be executed as usual. Here,

 AlsoT2 will send a message to its master to delete the related

 dependency set;

 The set of ADS (T1) and CDS (T1) will be deleted;
 }

 }

Else

If (T2 ends executing phase before T1 receives global decision)

 {

 While (! (T1 receive global decision OR T2 misses deadline))
 T2 will be allowed to send WORKDONE message to its master;

 If (T2 misses deadline)

 {

 Undo the computation of T2;

 T2 is killed without exchanging messages;

 Delete T2 from in CDS (T1) U ADS (T1);
 Process T1 as a normal case without conflict;

 }

Else

 GOTO One;

 }
The checking of the non-dependencies for ensuring to send the commit message requires additional message from cohort processes to master from the different certain sites. However, the message cost is getting lower in most distributed systems as the speed and capacity of the network is increasing at a high rate. The commit of a global transaction is said to be safe if the following properties are satisfied.
i. The commit of transaction must be permanent.

ii. The commit of transaction must be atomic.

iii. The commit of transaction must be consistent.
The first and second properties are to ensure the persistency & atomicity whereas the third one is to ensure that commitment of transaction should be in accordance to precedence relation. Here, each site maintains the information regarding the global commit ordering in the proposed protocol. So, it fulfills the above mentioned property. Since the transaction already in the dependency set of another transaction or the transaction already having another transaction in its dependency set cannot permit another incoming transaction to read or update, it will nullify the cascaded abort and length of each abort chain is limited to one.

CHAPTER-4

COMPONENTS OF SIMULATION MODEL

4.1 Literature

From the foregoing discussion, we see that a large on-line transaction processing system requires a "total system" design. Indeed, these systems have become possible only through an increasing synergy between the exploitation of computer hardware and software. Moreover, only in the past fifteen years has the profound importance of data base technology been realized, leading system designers in both the academic and commercial worlds to focus on the theoretical and practical issues surrounding the implementation of data base-oriented transaction processing systems. As data base systems have grown in size, diversity, and importance, it has become increasingly important to search for ways of accommodating growth in the number and complexity of applications, as well as the migration to cost effective hardware, a greater diversity of users, and multiple levels and types of access to data bases [7]. The qualities of a data base system that tend to promote its durability and survivability in the face of these demands must reside not only in the organizational structusre of the data base itself, but also in the entire hardware/software structure that contributes to the total system. Ideally, all of the major components of the system - the underlying hardware architecture, the operating system, the data. Communications subsystem, and the data base management facilities-should reinforce and complement one another to produce a system that meets contemporary data base management requirements. Transactions arrive in a Poisson stream and each transaction has an associated value and deadline. Transactions consist of a sequence of read and write page operations. A read operation involves a concurrency control request to get access permission, followed by a disk I/O to read the page, followed by a period of CPU usage for processing the page. Write requests are handled similarly except for their disk I/O--their disk activity is deferred until the transaction has committed. Here we assume that the RTDBS has sufficient buffer space to retain updates until commit time. We also assume the use of a log-based recovery scheme where only log pages are forced to disk prior to commit. A transaction that is restarted follows the same access pattern as the original transaction. If a transaction is not completed by its deadline, it is immediately aborted and discarded [7].
[image: image8.emf]
Fig: 4.1 Structure of distributed real-time database systems

The model has four main components: a source that generates transactions this is known as transaction generator (a source of concern for enterprises engaged in online commerce); a transaction manager that models the execution of transactions; a Lock manager used for locking the transactions to avoid the failure; Data generator that can be used foe testing; concurrency control (CC) manager that implements the details of the concurrency-control algorithms; a resource manager that models the CPU and I/O resources; and a sink that gathers statistics on completed transactions. The priority mapped unit is embedded in the transaction manager.

4.1.1 Transaction manager

The transaction manager, with its ability to create transaction when requested by the application components allow resources enlistment and de-listment ,and to initiate and conduct 2 Phase Commit protocol with the resources managers, forms to core component of a transaction processing environment. Transaction processing is design to maintain a computer systems (typically, but not related to, a database or some modern file systems) in a known, consistent state, by ensuring that any operation carried out on the systems that are independent are either all completed successfully or all cancelled successfully.
4.1.2 Transaction generator
Transaction generators are a source of concern for enterprises engaged in online commerce. As stronger authentication systems are deployed, we expect transaction generators to pose an increasing threat. This emerging form of malware hijacks legitimate sessions and generates fraudulent transactions using legitimate credentials, instead of stealing authentication credentials. By operating within the browser, transaction generators can potentially hide their effects by altering the user’s view of information provided by any site. Consequently, it is necessary to extend identity systems to include a Transaction Confirmation component. As an example defense, Spy Block is a browser extension and confirmation agents that provide a simple mechanism for web sites to request confirmation [19].
4.1.3 Lock manager
A distributed lock manager provides distributed applications with a means to synchronize their accesses to shared resources.
DLM (Distributed Lock Manager) have been used as the foundation for several successful clustered file systems, in which the machine in a cluster can used each other storage via a unified file systems, whish significant advantages for performance and availability. The DLM is not used not only for the file locking but also for coordination of all disk access [6] [19].
4.1.4 Data generator
Data generator is a set of strongly typed random data generators that can be used for testing. All generators supports generating a single value using generate () [6] or multiple using values using generate (count as integer). This is called as data generator.
CHAPTER-5
SIMULATION MODEL

5.1 Overview

To implement and evaluate the double space real-time commit protocol (2SC) [4], we consider a real-time database model given in [4]. Figure 4.1 depicts the system model from the perspective of transaction flow. This model captures many applications in real world for example the airline reservation system. In the system any new or re-submitted transaction is assigned a priority relative to the concurrent transaction.
The model consists of database that is distributed, in a non-replicated manner, over N sites connected by network. The transaction is responsible for generating the transaction on one out of the N sites. The transaction manager generates the transaction i.e., cohorts on remote site on behalf of the master. Before a transaction performs any operation on a data object, it has to go through the concurrency control component to obtain a lock on that object. If the request is denied the transaction is placed into the wait queue for that particular data object. The waiting transaction will be awakened when the requested lock is released. If the request is granted, the transaction will access the disk and perform some computation on data object. A transaction may continue this “request operation cycle” many times until it commits. During its commit stage, the transaction releases all the locks it has been holding. The concurrency control algorithm aborts a low priority transaction if it is holding a lock on data object and at the same time any high priority transaction request for lock on same data object. In that case, the restart component will decide by checking the deadline of the transaction that whether the aborted transaction should be re-submitted or terminated. The Sink component of the model is responsible for gathering the statistics for the committed or terminated transactions. In addition, a network manager models the behavior of the communications network.

 In the following sections, we describe various components of the simulation model. Subsequently, we describe the execution pattern of a typical transaction.

[image: image9.png]Transaction Transaction
Manager Generator

Sink

Terminate
Abort

ready queue

wait Queue '
Memory

Commit
C.C.Manager

Priority’
Assignment

Database
Operation

Computation

i Site 1

Site 2 Network Site 3
. Manager

 Figure 5.1: DRTDBS Simulation Model

5.2 Database Model

The database is modeled in the form of collection of NumFiles that are uniformly distributed across all the NumSite sites. There are transactions arriving at each of the site in a continuous fashion in an independent Poisson stream at the rate of the ArrivalRate, and each transaction is assigned a firm deadline time using the formula DT=AT + SlackFactor*ET, where DT, AT, ET are the deadline, arrival and execution time respectively, of transaction T, while SlackFactor is a constant that provides the control over the tightness/ slackness of transaction deadlines. The execution time is the total services time at the resources that the transaction requires for its execution(Since the resource time is a function of the number of messages and the number of forced-writes, which differ from one commit protocol to another, we compute the execution time assuming execution in a centralized system.). Each transaction has the “single master, multiple cohorts” structure. The master resides at the site where transaction is submitted and cohorts are submitted at other remaining generated randomly.
5.3 System Model
In the distributed database system model, a communication network interconnects sites. There is no global shared memory in the system, and all sites communicate via message exchange over this communication network. Each distributed transaction in this model exists in the form of a master process that executes at the various sites, where the required data items reside. Here, each transaction is assigned a globally unique priority based on its real time constraints. This priority is carried out by all of the cohorts of the transaction at each data site. If there is any local data in the access list of the transaction,
One cohort will be executed locally. Before accessing a data item, the cohort needs to obtain a lock on the items. Sharing of the data items in conflicting modes creates dependencies among the conflicting local transactions & cohort or cohort & cohort, and also constraints their commit order. The following simplifying assumptions are also made.

· The processing of a transaction requires the use of CPU and the accesses to data items located at either the local site or at a remote site.
· The transaction already in the dependency set of another transaction or the transaction already having another transaction in its dependency set cannot permit another incoming transaction to read or update.

· Arrivals of transactions at a site are independent of the arrivals at other sites.

· The transaction is assigned a globally distinct real time priority by using specific
 Priority assignments.
· The cohorts of the transaction at the relevant sites are activated to perform the operations.

· A distributed real time transaction is said to commit if the master has reached to the commit decision before the expiry of the deadline at its site. This definition applies. Irrespective of whether the cohorts have also received and recorded the commit decision by the deadlines 0. Here, each cohort makes a series of read and update accesses. Read accesses involve a concurrency control request to obtain access followed by a disk I/O to read followed by a CPU usage for processing the data item. Update requests are handled in the same way except for the disk I/O. the updating of data item takes place asynchronously after the transaction has committed.

5.4 Priority Assignment.

The transaction in a RTDBS is typically assigned priorities in order to minimize the number of missed deadlines. In our model, all the cohorts of a transaction inherit their master’s priority. Further, this priority, which is assigned at arrival time, is maintained throughout the course of the transaction’s existence in the system. Messages also retain their sending transaction’s priority. Transaction priority assignment policy used is the widely used earliest deadline first (EDF) [15].
5.5 Concurrency Control
Our simulation system adopts an extended 2PL high priority (E2PL-HP) protocol for concurrency control. The basic 2PL-HP protocol, which is based on the classical strict two-phase locking protocol, operates as follows: when a cohort requests a lock on a data item that is held by one or more higher priority cohorts in conflicting lock mode, the requesting cohort waits for the item to be released. On the other hand, if only lower priority cohorts are holding the data item in a conflicting lock mode, the lower priority cohorts are aborted and the requesting cohort is granted the desired lock. The extension of E2PL-HP is as following: First, on receipt of the PREPARE message from the master, a cohort releases all its read locks but retains its update locks until it receives and implements the global decision from the master. Second, a cohort that is in the prepared state cannot be aborted, irrespective of its priority inversion. Third, the requesters are allowed to access locked data in a controlled manner.
5.6 Execution Model.

When the transaction arrives in the system, it is assigned the set of the sites where it has to execute. It is also assigned the local database at each site in the from of file. The deadline of transaction is determined by the formula given in section 4.1. The parameter ExecPattern specifies whether the transaction will execute in a sequential or parallel fashion. The master is then started up at the originating site, forks off a local cohort and sends messages to initiate each of its cohorts at the remote participating sites. Each cohort makes the series of request for read and writes accesses. The request goes through the concurrency control manager, which provides the lock on the data item.
 After all the cohorts have completed their data processing, the master initiates the commit protocol. If the transaction’s deadline expires either before this point, or before the master has written the global decision log record, the transaction is killed. If the master has written the commit decision log record before the expiry of the deadline, the transaction is said to be committed.

CHAPTER-6
CONCLUSION AND FUTURE MODIFICATION

6.1 Conclusion
In this dissertation, we have performance distributed real time commit protocol (2SC) for distributed real time database systems. Now here we use Transaction-processing architectures for distributed RTDBS and evaluated their performance under various work loads and system configurations. The primary performance consideration in an RTDBS (i.e., a data base system that processes transactions with timing constraints) is to provide schedules that maximize the number of satisfied timing constraints. We investigated how successful each transaction-processing architecture is in achieving that performance goal
The simulation focuses on transaction processing systems where transaction has “firm deadline semantics’. Using a detailed simulation model of firm deadline RTDB system, we evaluated the deadline miss percent and success ratio of 2SC real time commit protocol.

Firstly we have defined the firm deadline transaction semantics. A part from ensuring the data integrity constraints, we have focused primarily on increasing the transactions throughout of the system. We have analyzed the 2SC real time commit protocol and identified its limitations and suggestions some suitable modification in it. The modified protocol reduces the data inaccessibility of the messages and improves the system performance to a great extent.
6.2 Future Modifications

The work that has been presented in this dissertation can be extended in a variety of ways:

1.) The study was focused primarily on the transaction processing systems where transactions have firm deadline semantics. The implementation of real time commit protocol can be extended to “soft” deadline systems, where transactions are allowed to continue even after expiry of their deadlines.

2.) The simulator that has been designed allows the transactions to execute in sequential manner. It can be modified in future to simulate the execution of transactions in parallel fashion. Accordingly the performance measurements can be done and realize the advantage of parallel execution.

3.) The conventional commit protocols suffer from the problem of “prepared data blocking”. The 2SC real time commit protocol solves this problem to a great extent but it also suffers from the problem of “decision blocking”. So the work can be extended to provide non blocking capability to 2SC protocol in case of site failures.

CHAPTER-7
REFRENCES

[1] GRAY, J. and REUTER, A. “Transaction Processing: Concepts and Technique”,

Morgan Kaufman, San Mateo, CA, 2006

 [2] LAM, K., PANG, C., SON, S.H. and CAO, J., “Resolving executing- committing conflicts in distributed real-time database systems”. The computer journal, 42(8), pp 674-692., 1999.
[3] B.PURIMETLA et al., “A study of Distributed Real-Time Active Database Applications,” Proc, IEEE Workshop Parallel and Distributed Real-Time Systems, 2003.

[4] JOHN A. STANKOVIC, KRITHI RAMAMRITHAM, DON TOWSLEY, “Scheduling in Real-Time Transaction Systems”, Department of Computer and Information Science, University of Massachusetts, Amherst, Mass, 01003.

[5] ABRAHAM SILBERSCHATZ, HENERY F. KORTH, S. SUDARSHAN, “Database System Concepts”, McGraw-Hill Computer Science Series, International Student Edition, 1997.

[6] GUPTA, R.K., “Commit Processing in Distributed On-Line and Real-Time Transaction Processing Systems”, Master of Science (Engineering) Thesis, Supercomputer Education and Research, I.I.Sc. Bangalore, India, 2000.

[7] C.MOHAN and B.LINDSAY and RON OBERMARCK, “Transaction management in the R* Distributed Database Management Systems”, ACM Transaction on Database Systems, Vol 11 no 4, December 1986, PP 378-396.
[8] RAMESH GUPTA and JAYANT HARITSA, “Commit Processing in Distributed Real-time Database Systems”. Proceedings of the National Conference on Software for Real-time Systems, Cochin, India, January 1996, pp 195-204.

[9] Qin B. and LIU, Y. “High Performance Distributed Real-Time Commit Protocol Journal of Systems and Software, Elsevier Science Inc., Volume 6, Issue 2, November 15, 2003, PP 145-152.

[10] CHRYSANTHIS, P.K., SAMARAS, G. and AL-HOUMAILY, Y.J., “Recovery and Performance of Atomic Commit Processing in Distributed Database Systems”, Recovery Mechanisms in Database, V. Kumar and M. Hsu, Eds. Prentice Hall, 1998.
[11] SOPARKAR, N., LEVY, E., KORTH, H.F. and SILBERSCHATZ, A., “Adaptive Commitment for Real-time Distributed Transaction”, Technical Report TR-92-15, Dept. of Computer Science, University of Texas, Austin.

[12] GUPTA, R., HARITSA, J., RAMAMRITHAM, K., and SESHADRI, S., “Commit Processing in Distributed Real-time Database Systems”. In Proc. Real-Time Systems Symposium, Washington DC.IEEE Computer Society Press, San Francisco, 1998.
[13] GUPTA, R., HARITSA, J., RAMAMRITHAM, K., “More Optimistic about real time distributed commit processing”. In Proc. Real-Time Symp.

[14] HARITSA, J., RAMAMRITHAM, K., and GUPTA, R., “ The PROMPT Real-Time Commit Protocol”, IEEE Transaction on Parallel and Distributed systems, 11(2) pp160-181., 2000.

[15] BIAO QIN and YUNSHENG LIU, “High Performance Distributed real-time commit protocol”, In the Journal of systems and software, Elsevier Science Inc. PP 1-8., 2003.

[16] JAYANT R. HARITSA, MICHAEL J. CAREY, and MIRON LIVNY., “Data Access Scheduling in Firm Real-Time Database Systems”. The Journal of Real-Time Systems, 4(3), 1992.
[17] S. SON, “Real-Time Database Systems: A New Challenge,” Data Eng. Bulletin, vol. 13, no.4, Dec.1990.

[18]O. ULUSOY, “Research Issues in Real-Time Database Systems”, Technical report BU-CEIS-94-32, Dept. of Computer Eng. And Information Science, Bilkent Univ., Turkey, 1994.

[19] Y. YOON, “Transaction Scheduling and Commit Processing for Real-Time Distributed Database Systems”, PhD thesis, Korea Advanced Inst. Science and Technology, May-1994.

[20] LAM, K.Y. AND KUO, TEI-WEI. “Real-Time Database Systems: Architecture and Techniques”, Kluwer Academic Publishers, 2001.

[21] BESTAVROS, A. LIN K.J. and SON, S.H. “Real-Time Database Systems: Issues and Applications”, Kluwer Academic Publishers, 1997.

[22] LAM, K., “Concurrency Control in Distributed real-time database systems” PhD thesis, City University of Hong Kong, 1994.

[23] RAMAMRITHAM, K. and CHRYSTANTHIS, P.P. (1996) A Taxonomy of correctness criteria in database applications. VLDB J., 5, pp 85-97.
[24] LEE, J., “Concurrency Control algorithms for real time database systems”. PhD thesis, Department of Computer Science, University of Virginia, 1994.

[25] DALE SKEEN, “Non-blocking Commit Protocol”, proceedings of the ACM International Conference on Management of Data (SIGMOD), Ann Arbor, Michigan, 1981, PP 133-142.
[26] YOUSEF J. AL-HOUMAILY, PANOS K. CHRYSANTHIS and STEVEN P. LEVITAN, “Enhancing the performance of presumed commit protocol”, Proceedings of the ACM Symposium on Applied Computing, San Jose, CA, USA, February 28-March 1, 1997.

[27] A. SHAH and GHOSAL, D. “A Stochastic Analysis of the Performance of Distributed Database with Site and failure”, Department of Computer Science, Cornell University, New York, Technical Report 90-1072, 1990.
[28] ARIF GHAFOOR and P. BRUCE BERRA, “An Efficient Communication Structure for Distributed Commit Protocols”, IEEE Journal on Selected Areas in Communications, Vol. 7, No. 3, April 1989, PP 375-389.

[29] BIPIN C. DESAI and BOUTROS S. BOUTROS, “Performance of a Two Phase Commit Protocol”, Information and Software Technology, Vol. 38, Issue 9, 1996, PP 581-599.

[30] BRUCE G. LINSAY, LAURA M. HAAS, C. MOHAN, PAUL F. WILMS and ROBERT A.YOST, “Computation and Communication in R*: A Distributed Database Manager”, ACM Transactions on Computer Systems (TOCS), Vol. 2, No. 1, Feb. 1984, PP 24-38.
[31] GOPI K. ATTALURI and KENNETH SALEM, “The Presumed-Either Two Phase Commit Protocol”, IEEE Transactions on Knowledge and Data Engineering Vol. 14, No. 5, Sept.-Oct. 2002, PP 1190-1196.

[32] KAM-YIU LAM, JIANNONG CAO, CHUNG-LEUNG PANG and SANG H. SON, “Resolving Conflicts with Committing Transactions in Distributed Real Time Database”, Proceedings of the Third IEEE International Conference on Engineering of Complex Computer Systems, Como, Italy, sep.8-12, 1997, PP 49-58.
[33] PETER THANISCH, “Atomic Commit in Concurrent Computing”, IEEE Concurrency, Parallel and Distributed Technology, Vol. 8, No. 4, Oct.-Dec. 2000, PP 34-41.
[34] RICARDO M. FRICKS, ANTONIO PULIAFITO and KISHOR S. TRIVEDI, “Performance Analysis of Distributed Real-Time Databases”, Proceedings of the IEEE International Symposium on Computer Performance and Dependability (IPDS 98), Sep. 7-9,1998, PP 184-194.
[35] SHYAN-MING YUAN, “A Resilient Decentralization Commit Protocol”, Proceedings of the IEEE fifth International Symposium on Parallel Processing, Anaheim, CA, USA, April 30-May 2, 1991, PP 481-486.

[36] TAEKYUNG BYUN and SONGCHUN MOON, “Non-Blocking Two-phase Commit Protocol to avoid Unnecessary Transaction Abort for Distributed Systems”, The Journal of Systems Architecture, Vol. 43, Issue 1-5, March 1997, PP 245-254.
[37] ULUSOY O. and Belford, G. “Real-Time Scheduling in Database Systems”, Information Systems, Vol. 18, No. 8, Dec.1993, PP 569-580.

APPENDIX

Main module
#include <iostream.h>

#include <conio.h>

#include <iomanip.h>

#include <fstream.h>

#include <stdlib.h>

#include <dir.h>

#include<stdio.h>

#include<dos.h>

#include "TRANMAN.H"

Account_Manager AM;

//These are all the functions used

void Deposit(int bal);

void Withdrawal(int bal);

void Balance(int bal);

void AccManager();

void Menu();

void eventlist();

void Exit();

//These are the variables used

int Dnum;

int bal;

char select;

int main(){

 //This function clears the screen everytime the program comes back to

 //the main menu function.

// clrscr();

 //Main menu function

 Menu();

 return 0;

 }

 //The deposit function handles deposits coming into the program

void Deposit(){

 clrscr();

 cout <<"\n\tEnter an amount: $";

 cin >>Dnum;
 if(Dnum != 0){

 ofstream Depo("Bank.tcd");

 Depo<<bal;

 Depo.close();

 cout <<"\n\tAmount deposited: $"<<Dnum<<endl;

 cout <<"\n\n\tYour balance is now: $"<<bal<<endl;

 }else{

 cout<<"\n\tIncorrect amount, try again."<<endl;

 getch();

 AccManager();

 }

 cout <<"\n\n\tPress any key to contine..."<<endl;

 getch();

AccManager();

 }

 //The Withdrawal function is what it says it is. It withdraws any amount

 //entered but will not minus the account.

void Withdrawal(){

 clrscr();

 int Wnum;

 cout <<"\n\tEnter an amount: ";

 cin >>Wnum;

 if(Wnum != 0){

 ifstream Without("Bank.tcd");

 Without>>bal;

 Without.close();

 bal = bal - Wnum;

 if(bal < 0){

 cout <<"Your account can not be minus, please enter another amount."<<endl;

 getch();

 Withdrawal();

 }

 ofstream Within("Bank.tcd");

 Within<<bal;

 Within.close();

 }

 cout <<"\n\n\tAmount withdrewed: $"<<Wnum;

 cout <<"\n\n\tYour balance is now: $"<<bal;

 cout <<"\n\n\tPress any key to continue..."<<endl;

 getch();

 AccManager();

 }

 //The balance function displays what ever amount is in the Bank file

void Balance(){

 clrscr();

 bal;

 ifstream Balout("Bank.tcd");

 Balout>>bal;

 Balout.close();

 //This is the overall main menu list

void Menu(){

 clrscr();

 cout <<"\t\t\tMain Menu"<<endl;

 cout <<"\t\t\t========="<<endl;

 cout <<"\n\n\t1) Transaction Manager"<<endl;

 cout <<"\n\t2) Event List"<<endl;

 cout <<"\n\t3) Quit"<<endl;

 cout <<"\n\n\tEnter selection: ";

 cin >>select;

 if(select == '1'){

 AccManager();

 }else{

 if(select == '2'){

 eventlist();

 }else{

 if(select == '3'){

 Exit();

 }else{

 Menu();

 }

 }

 }

 }

 //This the main program list

void AccManager(){

 clrscr();

 cout <<"\t\t\Transcation Manager"<<endl;

 cout <<"\t\t\t=============="<<endl;

 cout <<"\n\n\t1) Make a Deposit"<<endl;

 cout <<"\n\t2) Make a Withdrawal"<<endl;

 cout <<"\n\t3) Check your Balance"<<endl;

 cout <<"\n\t4) Main Menu"<<endl;

 cout <<"\n\t5) Quit"<<endl;

 cout <<"\n\n\tEnter your selection: ";

 cin >>select;

 if(select == '1'){

 Deposit();

 }else{

 if(select == '2'){

 Withdrawal();

 }else{

 if(select == '3'){

 Balance();

 }else{

 if(select == '4'){

 Menu();

 }else{

 if(select == '5'){

 Menu();

 }else{

 AccManager();

 }

 }

 }

 }

 }

 }

void eventlist(){

 clrscr();

 AM.Manager();

 Menu();

 }

void Exit(){

 clrscr();

 cout <<"\n\t\t\t Program Comments"<<endl;

 cout <<"\t\t\t---------------"<<endl;

 getch();

 }

Transaction manager
class Account_Manager{

public:

void Manager(){ //Manager is the main program function because it

 //controls access to all the other functions.

clrscr();

char select;

cout<<"\n\t\t\tFinance Organizer"<<endl;

cout<<"\n\t\t\t=============="<<endl;

cout<<"\n\n\tAdd Events(A)"<<endl;

cout<<"\n\tVeiw Events(V)"<<endl;

 cout<<"\n\tDelete Events(D)"<<endl;

cout<<"\n\tPost Events(P)"<<endl;

//cout<<"\n\tAbout Event Controller(I)"<<endl;

cout<<"\n\tQuit(Q)"<<endl;

cout<<"\n\n\tEnter selection: ";

cin>>select;

 //This is a very straightforward if else statement.

 //To activate any of the proceeding functions you have to type

 //the corresponding letter eg (V --> View).

if((select == 'V')||(select == 'v')){

View();

 }
 else{

if((select == 'A')||(select == 'a')){

Add();

 }
 else{

if((select == 'P')||(select == 'p')){

 Post();

 }
 else{

if((select == 'Q')||(select == 'q')){ ile); //now it's being saved as a text file and the

 //following information is being entered.

Out<<Event_Name<<endl;

Out<<Event_Amount<<endl;

 Out<<Event_Post<<endl;

Out<<Event_Balance<<endl;

Out.close();

 cout<<"\n\tDo you want to add another(y/n): ";

 cin>>add;

 if((add == 'y')||(add == 'Y')){

 Add();

 }else{

 Manager();

 }

}

void Post(){ //The Post function post the amount you entered for the event

 //and gives you the balance as and saves that information back

 //in the same file.

 clrscr();

 int E_Num;

 int E_Amt;

cout<<"\n\t\t\t\aPost Events"<<endl;

cout<<"\t\t\t============"<<endl;

cout<<"\n\n #"<<"\t"<<"Event Name"<<"\t"<<"Event Amount"<<"\t"<<"Event Posted"<<"\t"<<"Event Balance"<<endl;

cout<<"=="<<endl;

 File Content(); //this function is described in more detail below.

 cout<<"\n\tEnter an Event Amount: ";

 cin>>E_Amt;

char Event_Name[20];

int Event_Amount;

int Event_Post;

int Event_Balance;

int new_Balance;

 char post;

 char File_Name[20];

struct ffblk f;

 char ff_name[26];

 int count = 0;

 //the findfirst() function finds all the txt files in the

 //corrent folder

int done = findfirst("*.txt",&f,FA_HIDDEN);

 while(!done){ //this while function loops brining up all the text file <<endl;

 Out<<E_Amt<<endl;

 new_Balance = Event_Balance - E_Amt;

 Out<<new_Balance<<endl;

 Out.close();

 break;

 }else{

 continue;

 }

 }

 cout<<"\n\n\tThe amount <"<<E_Amt<<"> has been posted to Event Number <"<<count<<">."<<endl;

cout<<"\n\tDo you want to post another(y/n): ";

cin>>post;

 if((post == 'y')||(post == 'Y')){

 Post();

 }else{

 Manager();

 }

}

void View(){ //you will be able to view all the events you have entered

clrscr();

cout<<"\n\t\t\t\aView Events"<<endl;

cout<<"\t\t\t============"<<endl;

cout<<"\n\n #"<<"\t"<<"Event Name"<<"\t"<<"Event Amount"<<"\t"<<"Event Posted"<<"\t"<<"Event Balance"<<endl;

cout<<"=="<<endl;

File_Content();

cout<<"\n\tPress any key to go to the main menu...."<<endl;

getchar();

Manager();

}

private:

void File_Content(){ //File_Content is what brings up all the files that is in the

 // current folder.

 //Everything here was explaned in the post function

char Event_Name[20];

int Event_Amount = 0;

int Event_Post = 0;

int Event_Balance = 0;

struct ffblk f;

 char ff_name[26];

 int count = 0;

int done = findfirst("*.txt",&f,FA_HIDDEN);

 while(!done){

 count++;

 ifstream In(f.ff_name);

 In>>Event_Name;

 In>>Event_Amount;

In>>Event_Post;

 In>>Event_Balance;

 In.close();

cout<<"\n "<<count<<setw(15)<<Event_Name<<setw(15)<<Event_Amount<<setw(15)<<Event_Post<<setw(15)<<Event_Balance<<endl;

 done = findnext(&f);

} getchar();

 }

 void About(){

 clrscr();

 char opt;

 cin>>opt;

 if(opt == 'q'){

 exit(1);

 }else{

 Manager();

 }

 }

 void Delete(){ //The Delete function is very important because after

 //the full amount has been posted for an event you

 //could delete to save space.

 int E_Num;

 clrscr();

cout<<"\n\t\t\t\aDelete Events"<<endl;

cout<<"\t\t\t============"<<endl;

cout<<"\n\n #"<<"\t"<<"Event Name"<<"\t"<<"Event Amount"<<"\t"<<"Event Posted"<<"\t"<<"Event Balance"<<endl;

cout<<"=="<<endl;

 File_Content();

 cout<<"\n\tEnter an Event Number: ";

 cin>>E_Num;

char del;

struct ffblk f;

 char ff_name[26];

 int count = 0;

int done = findfirst("*.txt",&f,FA_HIDDEN);

 while(!done){

 count++;

 ifstream In(f.ff_name);

 In.close();

 done = findnext(&f);

 if(count == E_Num){

 remove(f.ff_name);

 break;

 }else{

 continue;

 }

 }

cout<<"\n\tDo you want to delete another(y/n): ";

cin>>del;

 if((del == 'y')||(del == 'Y')){

 Delete();

 }else{

 Manager();

 }

}

};

Lock manager

#include<iostream.h>

#include<iomanip.h>

#include<string.h>

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

#include"global.h"

#include"lock.h"

#include"cc_info.h"

#include"abort.h"

#include"commit.h"

#include"depend.h"

#include"message.h"

#include"eve_list.h"

#include"trangen.h"

#include"tranman.h"

#include"fcreate.h"

#include"dataman.h"

void accessdata(int siteno,transaction *cohort_under_process)

{

 int in;

 message_list* msglist=::ptr_linear_message_list_site[siteno-1];

 dependency_set* dependency_list=::linear_dependency_set_site[siteno-1];

 tran_operation *cohort_under_process_ope;

 cohort_under_process_ope=cohort_under_process->transaction_type;

 struct address e;

 long int recsize=sizeof(e);

 char strl[5];

 in=siteno;

 itoa(in,strl,10);

 char data_file[]="file";

 strcat(data_file,strl);

 FILE *fp;

 fp=fopen (data_file,"rb+");

 if (fp==NULL)

 {

 puts("cannot open file");

 }

 else

 {

while (cohort_under_process_ope)

{

 rewind(fp);

 while(fread(&e,recsize,1,fp)==1)

 {

 if(e.regNum==(cohort_under_process_ope->txn_data))

 {

if(e.flag==0)

{

 cout<<endl<<"before writing flag value is"<<e.flag<<endl;

 e.flag=1;

 cohort_under_process_ope->lock_received=1;

 fseek(fp,-recsize,SEEK_CUR);

 fwrite(&e,recsize,1,fp);

 fseek(fp,-recsize,SEEK_CUR);

 fread(&e,recsize,1,fp);

 cout<<"after writing flag value is"<<e.flag<<endl;

 fclose(fp);

 concurrency_control_site(siteno,cohort_under_process_ope,cohort_under_process);

 fp=fopen (data_files,"rb+");

}

 break;

 }//end of if(e.regNum==(cohort_under_process_ope->txn_data))

 }//end of while(fread(&e,recsize,1,fp)==1)

 cohort_under_process_ope=cohort_under_process_ope->next;

 }//end of while(cohort_under_process_ope)

 }//end of elseif

 fclose (fp);

 int flag=1;

 cohort_under_process_ope=cohort_under_process->transaction_type;

 while(cohort_under_process_ope)

 {

 if(cohort_under_process_ope->site_no==siteno)

 {

 if(cohort_under_process_ope->lock_received==0)

 {

 flag=0;

 break;

 {

 if(cohort_under_process->total_txn_proc_site==1)

 {

 no_of_transaction_completed_execution++;

 cout<<endl<<"transaction committed="<<cohort_under_process->transaction_num<<endl;

 //remove waiting messages from waiting messages queue of dependent transaction

 //if(ptr_waiting_message_queue[siteno-1]!=NULL)

 //ptr_waiting_message_queue[siteno-1]=::remove_wait_msg_queue(dependency_list,msglist,ptr_waiting_message_queue[siteno-1]);

 //delete ADS(T1) and CDS(T1)

 if(dependency_list!=NULL)

 linear_dependency_set_site[site_no_info-1]=delete_dependency_node(dependency_list,cohort_under_process->transaction_num);

 cout<<endl<<"all locks are released by transaction"<<cohort_under_process->transaction_num<<"at site"<<siteno<<endl;

 releasedata(siteno,cohort_under_process);

 linear_CC_info_list_site[siteno-1]=::delete_txn_CC_info_list(cohort_under_process->transaction_num,siteno,::linear_CC_info_list_site[siteno-1]);

 }

 else

 {

 if(cohortlist->transaction_num==cohort_under_process->transaction_num)

 {

 cohortlist->lock_acquired=1;

 break;

 }

 else

 cohortlist=cohortlist->next;

 }

 if(cohortlist->lock_granted==(cohortlist->total_txn_proc_site-1)) //ie all work done messages are received

 process_workdone_messages(siteno,cohortlist);

 }

 }

 }//end of if(flag==1)

 }//end of function lockdata(int siteno,transaction *cohort_under_process)

 void releasedata(int siteno,transaction *cohort_under_process)

 {

int in;

int dependent=0;

tran_operation *cohort_under_process_ope;

cohort_under_process_ope=cohort_under_process->transaction_type;

struct address e;

long int recsize=sizeof(e);

char strl[5];

in=siteno;

itoa(in,strl,10);

char data_file[]="file";

strcat(data_file,strl);

FILE *fp;

fp=fopen (data_files,"rb+");

if (fp==NULL)

{

 puts("connot open file");

}

else

{

while(cohort_under_process_ope)

{

rewind(fp);

while(fread(&e,recsize,1,fp)==1)

{

if(e.regNum==(cohort_under_process_ope->txn_data))

{

 //check here if there is any dependency for this dataitem

 //if there is dependency then donot set flag=0;

 dependent=checkfordependency(cohort_under_process,

 cohort_under_process_ope->txn_data,siteno);

 if(dependent==0) //ie there is no dependency

 {

 if(e.flag==1)

 {

 e.flag=0;

 cohort_under_process_ope->lock_received=0; //new added statement

 fseek(fp,-recsize,SEEK_CUR);

 fwrite(&e,recsize,1,fp);

 fseek(fp,-recsize,SEEK_CUR);

 fread(&e,recsize,1,fp);

 data_holder_txn_list_site[siteno-1]=::delete_data_holder_list(cohort_under_process->transaction_num,

 siteno,cohort_under_process_ope->txn_data,::data_holder_txn_list_site[siteno-1]);

 //search here the waiting data item list for this particular data released on this site

 if(waiting_list_dataitem_site[siteno-1]!=NULL)

 {

fclose(fp);

search_wait_data_txn_list(cohort_under_process_ope->txn_data,siteno);

fp=fopen(data_file,"rb+");

}

 }//end of if(e.flag==1)

 }//end of if(dependent==0)

 break;

 }//end of if(e.regNum==(cohort_under_process_ope->txn_data))

 }//end of while(fread(&e,recsize,1,fp)==1)

 cohort_under_process_ope=cohort_under_process_ope->next;

 }//end of while(cohort_under_process_ope)

 }//end of elseif

 fclose(fp);

 }//end of function void releasedata (int siteno,transaction *cohort_under_process)

 int checkfordependency(transaction* cohort,int dataitem,int siteno)

 {

 dependency_set* dependency_list=::linear_dependency_set_site[siteno-1];

 int flag=0;

 while(dependency_list)

 {

 if(dependency_list->lock_holding_txn_num==cohort->transaction_num)

 {

 if(dependency_list->abort_dependency_set!=NULL)

 {

 if(dependency_list->abort_dependency_set->lockeddata==dataitem)

 flag=1;

 }

if(dependency_list->commit_dependency_set!=NULL)

{

if(dependency_list->commit_dependency_set->lockeddata==dataitem)

flag=1;

}

break;

 }//end of if(dependency_list->lock_holding_txn_num==cohort->transaction_num)

else

 dependency_list=dependency_list->next; //end of else-if

 }

 return flag;

 }

 void PriorityBasedDataSnatch(CC_info_list *lock_info,int siteno)

 {

 int message_type,parent_site_no,receiver_site_no,sender_site_no;

 int txn_number=lock_info->txn_num;

 transaction* low_prio_holder;

 low_prio_holder=::ptr_cohort_queue_at_site[siteno-1];

 while(low_prio_holder)

 {

 if(low_prio_holder->transaction_num!=txn_number)

 low_prio_holder=low_prio_holder->next;

 else

 break;

 }

 if(low_prio_holder==NULL)

 {

 low_prio_holder=subtxn_being_processed_site[siteno-1];

 while(low_prio_holder)

 {

 if(low_prio_holder->transaction_num!=txn_number)

 low_prio_holder=low_prio_holder->next;

 else

 break;

 }

 }

 lock_info->txn_in_aborted_state=1;

 //below routine is to send abort message to parent site

 if(siteno!=low_prio_holder->txn_parent_site)

 {

 message_type=5;

 parent_site_no=low_prio_holder->txn_parent_site;

 receiver_site_no=low_prio_holder->txn_parent_site;

 sender_site_no=siteno;

 if(ptr_linear_message_list_site[parent_site_no-1]==NULL

 && ::ptr_cohort_queue_at_site[parent_site_no-1]==NULL)

 {

 (ptr_linear_message_list_site[parent_site_no-1]);

 }

 else //if this is parent site then send abort message to cohorts and remove waiting messages from message queue

 {

 message_type=6;

 parent_site_no=low_prio_holder->txn_parent_site;

 sender_site_no=low_prio_holder->txn_parent_site;

 for(int t=1;t<low_prio_holder->total_txn_proc_site;t++)

 {

 receiver_site_no=low_prio_holder->sub_txn_processing_site_no[t];

 if(ptr_linear_message_list_site[receiver_site_no-1]==NULL

 && ptr_cohort_queue_at_site[receiver_site_no-1]==NULL)

 {

 event_num++;

 linear_event_list=insert_event_list(low_prio_holder->transaction_num,

 event_num,4,0,receiver_site_no,PresentSimTime+220,linear_event_list);

 }

 ptr_linear_message_list_site[receiver_site_no-1]=insert_message_list(low_prio_holder->transaction_num,

 parent_site_no,sender_site_no,receiver_site_no,message_type,PresentSimTime+20,ptr_linear_message_list_site[receiver_site_no-1]);

 //remove waiting messages from waiting message queue of this aborted transaction from parent site.

 if(ptr_waiting_message_queue[parent_site_no-1]!=NULL)

 ptr_waiting_message_queue[parent_site_no-1]=::removemessage(ptr_waiting_message_queue[parent_site_no-1],

 siteno,low_prio_holder->transaction_num);

 } //end of for loop

 }

 release_data_low_prio_txn(lock_info->data_item_locked,siteno,low_prio_holder);

 //to release the locks acquired by low priority transaction

 low_prio_holder=remove_low_prio_cohort(low_prio_holder,low_prio_holder->transaction_num,siteno);

 }

 void release_data_low_prio_txn(int dataitem, int siteno,transaction *cohort_under_process)

 {

 int in;

 tran_operation *cohort_under_process_ope;

 cohort_under_process_ope=cohort_under_process->transaction_type;

 struct address e;

 long int recsize=sizeof(e);

 char strl[5];

 in=siteno;

 itoa(in,strl,10);

 char data_file[]="file";

 strcat(data_file,strl);

 FILE *fp;

 fp=fopen (data_file,"rb+");

 if(fp==NULL)

 {

 puts("cannot open file");

 }

 else

 {

 while(cohort_under_process_ope)

 {

 if(cohort_under_process_ope->txn_data==dataitem)

 {

 rewind(fp);

 while(fread(&e,recsize,1,fp)==1)

 {

 if(e.regNum==dataitem)

 {

 if(e.flag==1)

 {

 e.flag=0;

 cohort_under_process_ope->lock_received=0; //new added statement

fseek(fp,-recsize,SEEK_CUR);

fwrite(&e,recsize,1,fp);

fseek(fp,-recsize,SEEK_CUR);

fread(&e,recsize,1,fp);

 data_holder_txn_list_site[siteno-1]=::delete_data_holder_list(cohort_under_process->transaction_num,

 siteno,dataitem,::data_holder_txn_list_site[siteno-1]);

 } //end of if(e.flag==1)

 break;

 } //end of if(e.regNum==(cohort_under_process_ope->txn_data))

 } //end of while(fread(&e,recsize,1,fp)==1)

 break;

 } //end of if(cohort_under_process_ope->txn_data==dataitem)

 else

 cohort_under_process_ope=cohort_under_process_ope->next;

 } //end of while(cohort_under_process_ope)

 } //end of elseif

 fclose(fp);

 } //end of function void releasedata(int siteno,transaction *cohort_under_process)

 void generate_workdone_message(int site_num,transaction *cohort_processed)

 {

 dependency_set *dependency_list=linear_dependency_set_site[site_num-1];

 abort_set* abortset;

 commit_set* commitset;

 CC_info_list* cclist=::linear_cc_info_list_site[site_num-1];

 int txn_number=cohort_processed->transaction_num;

 int parent_site_no=cohort_processed->txn_parent_site;

 int sender_site_no=site_num;

 int receiver_site_no=cohort_processed->txn_parent_site;

 int message_type;

 int flag=0;

 cout<<"dependency list is " <<endl;

 if(dependency_list!=NULL)

 display_dependency_set(dependency_list);

 while(dependency_list)

 {

 abortset=dependency_list->abort_dependency_set;

 if(abortset!=NULL)

 {

 while(abortset)

 {

 if(abortset->lock_requesting_txn_num==cohort_processed->transaction_num)

 {

 flag=1;

 break;

 }

 abortset=abortset->next;

 }

 }

 if(flag==0)

 {

 commitset=dependency_list->commit_dependency_set;

 if(commitset!=NULL)

 {

 while(commitset)

 {

 if(commitset->lock_requesting_txn_num==cohort_processed->transaction_num)

 {

flag=1;

break;

 }

 commitset=commitset->next;

 }

 }

 }

 if(flag==1)

 break;

 else

 dependency_list=dependency_list->next;

 }//end of while(dependency_list)

 if(flag==0) //this transaction is not dependent on any transaction

 {

 cout<<endl<<"workdone message is generated by transaction"

<<cohort_processed->transaction_num<<"at parent site"<<parent_site_no<<endl;

if(ptr_linear_message_list_site[parent_site_no-1]==NULL &&

ptr_cohort_queue_at_site[parent_site_no-1]==NULL)

{

message_type=1;

ptr_linear_message_list_site[parent_site_no-1]=insert_message_list(txn_number,

parent_site_no,sender_site_no,receiver_site_no,message_type,PresentSimTime+20,ptr_linear_list_site[parent_site_no-1]);

 event_num++;

linear_event_list=insert_event_list(txn_number,event_num,4,0,parent_site_no,PresentSimTime+10,linear_event_list);

display_evelist(linear_event_list);

}

else

{

message_type=1;

ptr_linear_message_list_site[parent_site_no-1]=insert_message_list(txn_number,parent_site_no,

sender_site_no,receiver_site_no,message_type,PresentSimType+20,ptr_linear_message_list_site[parent_site_no-1]);

}

}

else

{

//check whether T1 has reached global decision or not by checking CClist

while(cclist)

{

if(cclist->txn_num==dependency_list->lock_holding_txn_num)

break;

cclist=cclist->next;

}//end of while(cclist)

if(cclist!=NULL)

{

if(cclist->txn_in_commited_state==1) //subordinate transaction T1 is in commit state ie reached global decision

{

cout<<endl<<"workdone message is generated by transaction"<<cohort_processed->transaction_num<<"at parent site"<<parent_site_no<<endl;

if(ptr_linear_message_list_site[parent_site_no-1]==NULL && ptr_cohort_queue_at_site[parent_site_no-1]==NULL)

{

message_type=1;

ptr_linear_message_list_site[parent_site_no-1]=insert_message_list(txn_number,parent_site_no,sender_site_no,receiver_site_no,

 message_type,PresentSimTime+20,ptr_linear_message_list_site[parent_site_no-1]);

 event_num++;

 linear_event_list=insert_event_list(txn_number,event_num,4,0,parent_site_no,PresentSimTime+10,linear_event_list);

display_evelist(linear_event_list);

 }

 else

 {

 message_type=1;

 ptr_linear_message_list_site[parent_site_no-1]=insert_message_list(txn_number,parent_site_no,sender_site_no,

receiver_site_no,message_type,PresentSimTime+20,ptr_linear_message_list_site[parent_site_no-1]);

 }

 }//end of if(cclist->txn_in_committed_state==1)

 else //T1 has not received global decision put T2 in message queue

 {

 message_type=1;

 cout<<endl<<"workdone message is not generated by transaction"<<cohort_processed->transaction_num<<"as it is dependent on transaction"

 <<dependency_list->lock_holding_txn_num<<endl;

 ptr_waiting_message_queue[site_num-1]=insert_message_list(txn_number,parent_site_no,sender_site_no,receiver_site_no,message_type,

 PresentSimTime+20,ptr_waiting_message_queue[site_num-1]);

 }

 }//end of if(cclist!=NULL)

 else

 cout<<endl<<"subordinate transaction is not found in cclist"<<endl;

 }//end of else

 display_message_list(ptr_linear_message_list_site[parent_site_no-1]);

 }//end of generate_workdone_message(transaction *cohort_processed,int site_num)

 void search_wait_data_txn_list(int dataitem,int sitenum)

 {

 transaction_wait_data* waitlist,*current,*prev,*temp;

 waitlist=current=prev=temp=waiting_list_dataitem_site[sitenum-1];

 int dataToBeAllocated,transactionNoNeedData;

 cout<<endl<<"Data realesed by processed transaction"<<dataitem<<endl;

 cout<<endl<<"list of lock data item needed by transaction"<<endl;

 while(temp)

 {

 cout<<temp->data_item<<" ";

 temp=temp->next;

 }

 while(current)

 {

if(current->data_item==dataitem)

 {

 cout<<endl<<"going to lock the released data item by waiting transaction"<<current->txn_num<<endl;

 //process this transaction in waiting list dataToBeAllocated=current->data_item,transactionNoNeedData=current->txn_num;

break;

}

 else

 {

prev=current;

current=current->next;

}

}

 waiting_list_dataitem_site[sitenum-1]=delete_waitdata_from_waitlist(waiting_list_dataitem_site[sitenum-1],dataToBeAllocated);

 process_data_wait_txn_list(dataToBeAllocated,transactionNoNeedData,sitenum);

}

void process_data_wait_txn_list(int dataitem,int tran_num,int site_num)

 {

 transaction* temp=::subtxn_being_processed_site[site_num-1];

 tran_operation* cohort_process_ope;

 message_list* msglist=::ptr_linear_message_list_site[site_num-1];

 dependency_set* dependency_list=::linear_dependency_set_site[site_num-1];

 while(temp)

 {

 if(temp->transaction_num==tran_num)

 {

 cout<<"us"<<endl;

 cohort_process_ope=temp->transaction_type;

 struct address e;

 long int recsize=sizeof(e);

 char strl[5];

 int in=site_num;

 itoa(in,strl,10);

 char data_file[]="file";

 strcat(data_file,strl);

 FILE* fp;

 fp=fopen(data_file,"rb+");

 if(fp==NULL)

 {

puts("cannot open file");

 }//end of if(fp==NULL)

 rewind(fp);

 while(fread(&e,recsize,1,fp)==1)

 {

 if(e.regNum==dataitem)

 {

if(e.flag==0)

 {

 e.flag=1;

 while(cohort_process_ope)

 {

 cout<<"us3"<<endl;

 if(cohort_process_ope->txn_data==dataitem)

 {

 cout<<"us4"<<endl;

 cohort_process_ope->lock_received=1;

 break;

 }

 else

 cohort_process_ope=cohort_process_ope->next;

 }

 cout<<"us5"<<endl;

 fseek(fp,-recsize,SEEK_CUR);

 fwrite(&e,recsize,1,fp);

 fseek(fp,-recsize,SEEK_CUR);

 fread(&e,recsize,1,fp);

 ::data_holder_txn_list_site[site_num-1]=::insert_data_holder_list(dataitem,

 temp->transaction_num,data_holder_txn_list_site[site_num-1]);

 ::linear_CC_info_list_site[site_num-1]=::cc_list(site_num,cohort_process_ope,temp);

display_CC_info(::linear_CC_info_list_site[site_num-1]);

}

break;

 }
//end of if(e.regnum)

 } // end of while(fread)

 fclose(fp);

 int flag=1;

 cohort_process_ope=temp->transaction_type;

 while(cohort_process_ope)

{ cout<<"us6"<<endl;

 if(cohort_process_ope->site_no==site_num)

{

if(cohort_process_ope->lock_received==0)

{

flag=0;

 break;

 } //end of if(cohort_process_ope->lock_received==0)

}//end of if(cohort_process_ope->site_no==siteno)

 cohort_process_ope=cohort_process_ope->next;

 }//end of while(cohort_process_ope)

 if(flag==1)

 {

 cout<<"us7"<<flag<<endl;

 if(temp->total_txn_proc_site==1)

 cout<<"us8"<<endl;

 no_of_transaction_completed_execution++;

 // remove waiting message from waiting message queue of dependent transactions

 //if(ptr_waiting_message_queue[site_num-1]!=NULL)

 ptr_waiting_message_queue[site_num-1]=::remove_wait_msg_queue(dependency_list,

 msglist,ptr_waiting_message_queue[site_num-1];

 //delete ADS(T1) and CDS(T1) if(dependency_list!=NULL)

linear_dependency_set_site[site_num-1]=delete_dependency_node(dependency_list,temp->transaction_num);

cout<<endl<<"All locks are released by transaction"<<temp->transaction_num<<"at site"<<endl;

releasedata(site_num,temp);

linear_CC_info_list_site[site_num-1]=::delete_txn_CC_info_list(temp->transaction_num,site_num,

 ::linear_CC_info_list_site[site_num-1]);

}

else

{

cout<<"us9"<<endl;

if(site_num!=temp->txn_parent_site)

generate_workdone_message(site_num,temp);

else

{

::linear_CC_info_list_site[site_num-1]=modify_cc_infoo_list_state(1,0,temp->transaction_num,

 ::linear_CC_info_list_site[site_num-1]);

 temp->lock_acquired=1;

 if(temp->lock_granted==(temp->total_txn_proc_site-1)) //ie all workdone messages are received

 process_workdone_messages(site_num,temp);

 }

 }

 } //end of if(flag==1)

 break;

 }//end of if(temp)

 else

 temp=temp->next;

 }//end of while(temp)

 }

 void process_workdone_messages(int siteno,transaction* txnlist)

 {

 CC_info_list* current=::linear_CC_info_list_site[siteno-1];

 int message_type;

 int txn_number,parent_site_no,sender_site_no,receiver_site_no;

 int TimeLeft;

 while(current)

 {

 if(current->txn_num==txn_list->transaction_num)

 break;

 current=current->next;

 }

 if(current)

 {

if(current->Txn_in_commited_state==1)

 {

 message_type=2;

 TimeLeft=txnlist->transaction_deadline_time->PresentSimTime;

 txnlist->healthfactor=float(TimeLeft/::MinTime_commit_process);

 }

 else

 {

 linear_dependency_set_site[siteno-1]=delete_dependency_node_modifyCClist(linear_dependency_set_site[siteno-1],txnlist->transaction_num);

 releasedata(siteno,txnlist);

 message_type=6;

 }

 txn_number=txnlist->transaction_num;

 parent_site_no=txnlist->txn_parent_site;

 sender_site_no=txnlist->txn_parent_site;

 for(int t=1;t<txnlist->total_txn_proc_site;t++)

 {

 receiver_site_no=txnlist->sub_txn_processing_site_no[t];

 if(ptr_linear_message_list_site[receiver_site_no-1]==NULL

 && ptr_cohort_queue_at_site[receiver_site_no-1]==NULL)

 {

 cout<<endl<<"message type"<<message_type<<"is inserted in message list at site"<<receiver_site_no<<endl;

 ptr_linear_message_list_site[receiver_site_no-1]=insert_message_list(txn_number

parent_site_no,sender_site_no,receiver_site_no,message_type,PresentSimTime+20,

 ptr_linear_message_list_site[receiver_site_no-1]);

 cout<<endl<<"message list at site"<<receiver_site_no<<"is"<<endl;

 display_message_list(ptr_linear_message_list_site[receiver_site_no-1]);

 event_num++;

 linear_event_list=insert_event_list(txn_num<er,event_num,4,txnlist->total_txn_proc_site,receiver_site_no,PresentSimTime+120,linear_event_list);

 }

 else

 {

 ptr_linear_message_list_site[receiver_site_no-1]=insert_message_list(txn_number,parent_site_no,sender_site_no,

 receiver_site_no,message_type,PresentSimTime+20,ptr_linear_message_list_site[receiver_site_no-1]);

 cout<<endl<<"message list at site"<<receiver_site_no<<"is"<<endl;

 display_message_list(ptr_linear_message_list_site[receiver_site_no-1]);

 }//end of for loop

 }//end of if(current)

 }

 void concurrency_control_site(int siteno, tran_operation *cohort_being_processed_ope, transaction* cohort_being_processed)

 {

 CC_info_list *data_holder_info;

 tran_operation* altlink_cohort_being_processed_ope=cohort_being_processed_ope;

 data_holder_info=linear_CC_info_list_site[siteno-1];

 //int txn_holding_data;

 //txn_holding_data=::search_data_holder_txn(altlink_cohort_being_processed_ope->txn_data,::data_holder_txn_list_site[siteno-1]);

 while(data_holder_info)

 {

 if(altlink_cohort_being_processed_ope->txn_data==data_holder_info->data_item_locked) /*&& (data_holder_info->txn_num==txn_holding_data)*/

 cout<<endl<<"Accessed concurrency control routine"<<endl;

 if(data_holder_info->txn_in_commited_state==0)

 {

 if(cohort_being_processed->transaction_deadline_time>=data_holder_info->deadline_of_txn)

 {

 cout<<endl<<"transaction"<<cohort_being_processed->transaction_num<<"is added in waiting list for dataitem"<<altlink_cohort_being_processed_ope->txn_data<<endl;

 waiting_list_dataitem_site[siteno-1]=add_wait_data_txn_list(cohort_being_processed->transactin_num,altlink_cohort_being_processed_ope->txn_data,waiting_list_dataitem_site[siteno-1]);

 } //end of (cohort_being_processed_ope->transaction_deadline_time<=data_holder_info->deadline_of_txn)

 else

 {

 process_low_prio_txn(altlink_cohort_being_processed_ope,data_holder_info,cohort_being_processed,siteno);

 accessdata_high_prio_txn(altlink_cohort_being_processed_ope,cohort_being_processed,siteno);

 }

 }//end of if(data_holder_info->txn_in_commited_state==0)

 else

 {

 comdata_locking_routine_site(cohort_being_processed_ope,altlink_cohort_being_processed_ope,data_holder_info,siteno);

 cout<<endl<<"altlink_cohort_being_processed_ope"<<cohort_being_processed_ope->lock_received<<endl;

 }

 break;

 }//end of if(cohort_processed_ope->txn_data==data_holder_info->data_item_locked)

else

 data_holder_info=data_holder_info->next;

 }//end of while(data_holder_info)

 }

 voidpocess_low_prio_txn(tran_operation* high_prio_req_ope,cc_info_list*lock_info,transaction*high_prio_req,int siteno)

 {

 cout<<endl<<"reached in process low priority tran"<<endl;

 PriorityBasedDataSnatch(lock_info,siteno); operation*altlink

 }

 void accessdata_high_prio_txn(tran_operation*altlink_cohort_being_processed_ope,transaction*cohort_being_processed,int siteno)

 {

 int in;

 tran_operation*cohort_under_process_ope=altlink_cohort_being_processed_ope;

 struct addess e;

 long int recsize=sizeof(e);

 char strl[5];

 in=siteno;

 itoa(in,strl,10);

 char data_file[]="file";

 strcat(data_file,strl);

 FILE *fp;

 fp=fopen(data_file,"rb+");

 if (fp==NULL)

 {

 puts("cannot open file");

 }

 else

 {

 rewind(fp);

 while(fread(&e,recsize,,fp)==1)

 {

 if(e.regNum==(cohort_being_processed_ope->txn_data))

 {

 if(e.flag==0)

 {

 cout<<endl<<"before writing flag value is"<<e.flag<<endl;

 e.flag=1;

 cohort_being_processed_ope->lock_received=1;

 fseek(fp,-recsize,SEEK_CUR);

 fwrite(&e,recsize,1,fp);

 fseek(fp,-recsize,SEEK_CUR);

 fread(&e,recsize,1,fp);

 cout<<"after writing flag value is"<<e.flag<<endl;

 ::data_holder_txn_list_site[siteno-1]=::insert_data_holder_list(cohort_being_processed_ope->txn_data,cohort_being_processed->transaction_num,::data_holder_txn_list_ite[siteno-1]);
::linear_CC_info_list_site[siteno-1]=::cc_list(siteno,cohort_under

_process_ope,cohort_being_processed);

 }

 }

 break;

 }

 fclose(fp);

 }

}

void comdata_locking_routine_site(transaction *borrower,tran_operation *borrower_ope,CC_info_list *lender, int siteno)

{

int choice;

transaction* lendertxn=subtxn_being_processed[sitesiteno-1];

if(lender->type_operation=='R' && borrower_ope->txn_operation=='R')

 choice=1;

 else

if(lender->type_operation=='W' && borrower_ope->txn_operation=='W')

 choice=2;

 else

if(lender->type_operation=='R' && borrower_ope->txn_operation=='W')

 choice=3;

 else

if(lender->type_operation=='W' && borrower_ope->txn_operation=='R')

 choice=4;

 int data_item_locked=borrower_ope->txn_data;

 int Txn_in_commited_state=0;

 int txn_in_aborted_state=0;

 int txn_num=borrower->transaction_num;

 int deadline_of_txn=borrower->transaction_deadline_time;

 char type_operation=borrower_ope->txn_operation;

 int lock_holding_txn_num=lender->txn_num;

 int lock_requesting_txn_num=borrower->transaction_num;

 commit_set *com_set;

 abort_set *abo_set

 while(lendertxn)

 {

 if(lendertxn->transaction_num==lender->txn_num)

 break;

 else

 lendertxn=lendertxn->next;

 }

 cout<<endl<<"borrower="<<borrower_ope->txn_operation<<"lender="<lender->type_operation<<endl;

 cout<<endl<<"choice="<<choice;

 switch(choice)

 {

case 1:

 cout<<endl<<"reached in comdata locking routine case"<<choice<<endl;

borrower_ope->lock_received=1;

linear_CC_info_list_site[siteno-1]=insert_CC_info_list(data_item_locked,Txn_in_commited_state,txn_in_aborted_state, txn_num,deadline_of_txn,type_operation,linear_cc_info_list_site[siteno-1]);

 break;

case 2:

 cout<<endl<<"reached in comdata locking routine case"<<choice<<endl;

borrower_ope->lock_received=1;

com_set=new commit_set;

com_set->lock_requesting_txn_num=lock_requesting_txn_num;

com_set->next=NULL;

abo_set=new abort_set;

abo_set=NULL;

linear_dependency_set_site[siteno-1]=insert_dependency_set (data_item_locked,lock_holding_txn_num,com_set, abo_set,linear_dependency_set_site[siteno-1]);

linear_CC_info_list_site[siteno-1]=insert_CC_info_list(data_item_locked,Txn_in_commited_state,txn_in_aborted_state,txn_num,deadline_of_txn,type_operation, linear_CC_info_list_site[siteno-1]);

 break;

case 3:

 cout<<endl<<"reached in comdata locking routine case"<<choice<<endl;

borrower_ope->lock_received=1;

com_set=new commit_set;

com_set->lock_requesting_txn_num=lock_requesting_txn_num;

com_set->next=NULL;

abo_set=new abort_set;

abo_set=NULL;

linear_dependency_set_site[siteno-1]=insert_dependency_set (data_item_locked,lock_holding_txn_num,com_set, abo_set,linear_dependency_set_site[siteno-1]);

linear_CC_info_list_site[siteno-1]=insert_CC_info_list (data_item_locked,Txn_in_commited_state,txn_in_aborted_state,txn_num,deadline_of_txn,type_operation, linear_CC_info_list_site[siteno-1]);

 break;

 case 4:

 cout<<endl<<"reached in comdata locking routine case"<<choice<<endl;

 if (lendertxn->healthfactor>=MinHF) //check if lender transaction is healthy

 {

 borrower_ope->lock_received=1;

 abo_set=new abort_set;

 abo_set->lock_requesting_txn_num=lock_requesting_txn_num;

 abo_set->next=NULL;

 com_set=new commit_set;

 com_set=NULL;

 linear_dependency_set_site[siteno-1]=insert_dependency_set (data_item_locked,lock_holding_txn_num,com_set, abo_set,linear_dependency_set_site[siteno-1]);

 linear_CC_info_list_site[siteno-1]=insert_CC_info_list (data_item_locked,Txn_in_commited_state,txn_in_aborted_state,txn_num,deadline_of_txn,type_operation, linear_CC_info_list_site[siteno-1]);

 }

 else

 {

 //borrower should be blocked ie put in waiting list for data item

cout<endl<<"the borrower transaction"<<borrower_transaction_num<<"is added in waiting list for dataitem"<<borrower_ope->txn_data<<endl;

waiting_list_data_item_site[siteno-1]=add_wait_data_txn_list(borrower->transaction_num,borrower_ope->txn_data,waiting_list_dataitem_site[siteno-1]);

 }

 break;

 default:break;

 } //end of switch (choice)

 cout<<"dependency list is<<endl;

 if(linear_dependency_set_site[siteno-1]!=NULL)

 display_dependency_set(linear_dependency_set_site[siteno-1]);

 }

 transaction_wait_data *add_wait_data_txn_list(int t_number,int dataitem,transaction_wait_data* wait_list)

 {

 transaction_wait_data *current=wait_list,*waitlist=wait_list,*newnode;

 newnode=new transactin_wait_data;

 if(!newnode)

 {

cout<<"allocation problem";

return wait_list;

 }

 newnode->data_item=dataitem;

 newnode->txn_num=t_number;

 newnode->next=NULL;

 if(wait_list==NULL) return newnode;

 while(current->next!=NULL)

 current=current->next;

 current->next=newnode;

 newnode->next=NULL;

 cout<<endl<<"Waiting List For Dataitem at SiteNo"<<::site_no_info<<endl;

 current=wait_list;

 cout<<"Transaction No"<<"DataItem"<<endl;

 while(current)

 {

 cout<<setw(4)<<current->txn_num<<setw(20)<<current->data_item<<endl;

 current=current->next;

 }

 return wait-list;

 }

 transaction_wait_data *delete_waitdata_from_waitlist(transaction_wait_data* first, int d_item)

 {

 transaction_wait_data *prev,*succ,*current;

 prev=succ=current=first;

 while(succ)

 {

 if(succ->data_item==d_item)

 else

 {

 prev->next=succ->next;

 succ->next=NULL;

 delete succ;

 }

 }

 break;

 }

 else

 {

 prev=succ;

 succ=succ->next;

 }

 }

 return current;

}
Simulator

#include<iostream.h>

#include<stdio.h>

#include<conio.h>

#include"global.h"

#include"fcreate.h"

#include"initialize.h"

#include"eve_list.h"

#include"trangen.h"

#include"tranoper.h"

#include"message.h"

#include"depend.h"

#include"cc_info.h"

#include"lock.h"

#include"dataman.h"

#include"tranman.h"

void main()

{

 int no_of_sites,range;

 cout<<endl<<"simulation status "<<endl;

 cout<<"Enter number of transaction required for simulation=";

 cin>>num_sim_transaction;

 cout<<"Enter number of operations required in transaction=";

 cin>> NO_OF_OPER;

 cout<<"Enter maximum number of sites required by the system=";

 cin>>no_of_sites;

 total_num_of_sites=no_of_sites;

 cout<<"Input number of data items needed in the each database=";

 cin>>range;

 database_gen(no_of_sites,range); //generate the database at the sites

 init_trangen(no_of_sites);

 init_tranman(no_of_sites);

 init_cohort_process(no_of_site);

 init_message_list(no_of_sites);

 cout<<"\n startingSimTime: "<<PresentSimTime<<endl;

 display_evelist(linear_event_list);

 while((total_num_of_transaction<=num_sim_transaction) &&(linear_event_list!=null))

 {

 update_time();

 display_evelist(linear_event_list);

 linera_event_list=event_departure(linear_event_list);

 switch(event_type)

 { case 0:

 trans_gen(no_of_sites);

 break;

 case 1:

 trans_proc(no_of_sites);

 break;

 case 2:

 process_txn_cohort_queue();

 break;

 case 3:

 departcohortfromcohortqueue();

 break;

 case 4:

 process-message();

 break;

 case 5:

 depart_message();

 break;

 default:break;

 }

 }//end of while(total_num_of_task<num_of_task)

 for(int i=0;i<no_of_sites;i++)

 {

 cout<<endl<<"txn generated at site no. "<<(i+1)<<endl;

 display_transaction_list(ptr_node_list[i]);

 }

 for(int j=0;j<no_of_sites;j++)

 {

 cout<<endl<<"sub txn generated at site no. "<<(j+1)<<endl;

 display_transaction_list(ptr_cohort_queue_at_site[j]);

 }

 for(int k=0;k<no_of_sites;k++)

 {

 cout<<endl<<"message at site no. "<<(k+1)<<endl;

 display_message_list(ptr_linear_message_list_site[k]);

 }

 for(int k=0;k<no_of_sites;k++)

 {

 cout<<endl<<"waiting message at waiting message queue at site no. "<<(k+1)<<endl;

 display_message_list(::ptr_wating_message_queue[k]);

 }

 cout<<endl<<"Transaction completed execution="<<no_of_transaction_completed_execution<<endl;

 cout<<endl<<"Transaction aborted= "<<::no_of_transaction_aborted<<endl;

 cout<<endl<<"Transaction killed= "<<::no_of_transaction_killed<<endl;

 }//end of main()

 "Global.cpp include definitions of global variables"

 #include"global.h"

 int total_num_of_transaction,num_sim_transaction,NO_OF_OPER,total_num_of_sites;

 dependency_set*linear_dependency_set;

 int event_txn_num,event_num,event_type,length_site,site_no_info;

 int PresentSimTime,SimTime_last_event,SimTime_since_last_event;

 int SimTime_next_event;

 float MinHF,MinTime_commit_process;

 event_list*linear_event_list;

 int no_of_transaction_completed_execution;

 int no_of-transaction_restarted;

 int no_of_transactions_aborted;

 int no_of_transactions_killed;

 message_list **ptr_waiting_message_queue;

 message_list **ptr_linear_message_list_site;

 int length;

 tran_operation *operation_list;

 transaction_wait_data **waiting_list_dataitem_site;

 transaction **ptr_node_list;

 transaction *temp;

 transaction **ptr_cohort_queue_at_site;

 transaction **subtxn_being_processed_site;

 #define scheduled 1

 #define unscheduled 0

 int *cpu_site;

 cpu **cpu_status_site;

 transaction **cohort_need_processing;

 transaction **add_waiting_list_for_cpu_site;

 dependency_set **linear_dependency_set_site;

 abort_set **linear_abort_set_site;

 commit_set **linear_commit_set_site;

 CC_info_list **linear_CC_info_list_site;

 data_holder_list**data_holder_txn_list_site;

Cohorts

……

Site3

Site2

Site N

Site1

Master Cohort

 Vote to Prepare

 Vote Yes PREPARE

COMMIT** Commit

 END COMMIT

 Ack

PAGE
ii

_1307740197.doc
[image: image1.png]

