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Chapter 1
Introduction
Artificial intelligence is an important topic of the current computer science
research. In order to be able to act intelligently a machine should be aware
of its environment. The visual information is essential for humans. There-
fore, among many di erent possible sensors, the cameras seem very important.
Automatically analyzing images and image sequences is the area of research
usually called ’computer vision’. This thesis is related to the broad subject
of automatic extraction and analysis of useful information about the world
from image sequences. The focus in this thesis is on a number of basic oper-
ations that are important for many computer vision tasks. These basic steps
are analyzed and improvements are proposed. The thesis is divided into three
parts: statistical modeling, motion detection and motion measurements. Each
part corresponds to one of the basic tasks that were considered. The parts
are described separately next in this chapter. Beside proposing the new so-
lutions, the new algorithms are applied to a number of practical problems
and working demonstrational systems were built. From the huge number of
possibilities the attention given to the applications usually named ’looking
at people’ where the goal is to detect, track and more generally to interpret
human behavior. Although in the 80’s it was considered among the hardest
areas of computer vision and one of the least likely to have a quick success, the
’looking at people’ has become a central topic of the computer vision research
today. The applications that receive particular attention in this thesis are:
surveillance/monitoring and visual user interfaces.
The outline of the thesis is given next. The three parts of the thesis and
the corresponding chapters are shortly introduced. The chapter 8, the last
one, brings some final conclusions and some personal views that resulted from
this work.
1
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CHAPTER 1. INTRODUCTION
1.1 Statistical modeling
One of the reasons for the early success of the computer vision systems is
in proper application of the well-established pattern recognition and statistics
techniques. A basic general task is to estimate the probability density function
from the data. An intelligent system should be able to gather data from the
environment and use this data to adapt and to learn on-line. The first part
of this thesis analyzes the problem of recursive (on-line) probability density
estimation. Furthermore, finite mixtures and in particular the mixtures of
Gaussian distributions are used. A finite mixture is a probability density
function that is presented as a weighted sum of simpler base density functions.
The components of the Gaussian mixture are the Gaussian distributions. The
Gaussian mixture is a  exible model appropriate for many situations and used
very often in the computer vision area.
Chapter 2 presents an algorithm for recursive estimation of the parameters
of a finite mixture. A stochastic approximation can be used to get the recur-
sive equations and that is standard theory. However, the recursive equations
su er from the common problem that the estimation highly depends on proper
initial parameter values. Furthermore, we also need to specify the number of
components of the mixture a priori. Choosing the appropriate number of com-
ponents for the given data is also a standard topic from the literature. Based
on some recent results and some approximations, an algorithm is proposed to
choose the appropriate number of components and estimate the parameters
of the mixture in an recursive procedure. The algorithm starts with a large
number of components. Then the unimportant components are identified and
discarded. Simultaneously the parameters are estimated. The new algorithm
is also less sensitive to the initial parameter values.
Chapter 3 brings a further elaboration on the problem. In chapter 2 the
data was coming from a stationary process. A more general problem is con-
sidered here. The data is now coming from a process that can have some
stationary periods but also some sudden or gradual changes in data statistics
are possible. An extension of the algorithm from chapter 2 is presented. The
new algorithms can adapt to the changes. Both the parameter values and the
number of components are adapted. The algorithm can be essential for many
practical on-line systems to quickly get an up to date compact model for the
data.
1.2. MOTION DETECTION
3
1.2 Motion detection
The scene analysis often starts with segmenting the foreground objects from
the background. This basic image sequence processing step is the topic of the
second part of this thesis. The focus is on the real-time surveillance systems.
The foreground segmentation algorithm should be robust and able to adapt
to di cult and changing conditions. Furthermore, only the common case is
analyzed when the camera is mostly static.
Chapter 4 presents an analysis of the common pixel-based background
foreground/ background segmentation. The assumption is that the images
of the scene without the intruding objects exhibits some regular behavior and
that the scene can be described by a probability density function for each pixel
in the image. If the statistical model of the scene is available the foreground
objects are detected by spotting the parts of the image that don’t fit the scene
model. The main problem is updating and adapting the scene model. An
e cient algorithm that has an adaptive Gaussian mixture for each image pixel
is developed using the results from the previous chapters. Further, another
e cient algorithm using a non-parametric k nearest neighbors approach is
proposed. The algorithms are evaluated and compared.
Chapter 5 brie y presents two practical scene analysis applications where
the foreground/ background segmentation was the basic image processing step.
The first application is a tra c monitoring problem. The algorithms from the
previous chapter were directly applied since the camera was static. Final
demonstrational system was able to automatically extract some important
tra c parameters and detect some tra c events of interest. The second ap-
plication was a more challenging case of tennis game matches. Using the
extracted silhouette of a tennis player, the movements of the player are recog-
nized using an appropriate set of features. Two interesting and timely prob-
lems of a practical nature are considered and the results could be of interest to
many professionals in the field including archivists, broadcasters and the law
enforcement sector. Although very specific, the two appli cations have many
elements that are important for any surveillance/monitoring system.
1.3 Measuring motion
Detecting objects was analyzed in the previously described chapters. Tracking
objects is another basic operation a computer should perform in order to
understand the environment. The image motion or ’optical  ow’ can b e defined
as the movement of the image patterns in an image sequence. This basic
4
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motion is important for many computer vision tasks and closely related to the
object tracking problem. Measuring the motion of a single point in the image
presents an ’ill-posed’ problem. However, it is usually reasonable to assume
that the points from a small image neighborhood have some similar motion.
The movement is then calculated for a small image patch by searching the
next image from the sequence for a similar patch. In a similar way an object
can be tracked. A larger part of the image is considered then and therefore a
more elaborate model is needed to model the possible transformation from one
image to another. This type of object tracking is usually known as ’template
matching’. The third part of the thesis presents some improvements for the
basic image motion problem and a simple 3D object tracking scheme using
template matching.
Chapter 6 gives an analysis of the problem of choosing the points in an
image for calculating the image movement. These points are usually called
’feature points’. Not every point from an image is suitable for computing the
optical  ow. This problem is known as ’the aperture problem’. Consider for
example an area of uniform intensity in an image. The movement of a small
patch within the area would not be visible and the calculated optical  ow will
depend on noise. There are some standard procedures for selecting suitable
points. This chapter points out that most feature point selection criteria are
more concerned with the accuracy, rather than with the robustness of the
results. A way of estimating the ’region of convergence’ is proposed. The
size of the ’region of convergence’ can be used as a measure of feature point
robustness.
Chapter 7 presents a simple heuristic for e cient object tracking based
on the template matching. The focus in this chapter is on face tracking but
the results are generally applicable. In a tracking scheme an object is first
detected and then tracked. We use a simple generic 3D model to describe
the transformations between the initial object appearance and the subsequent
images. However there are many deformations and changes not covered by
this model. Standard approach is to use a database of di erent appearances
of the object to model the possible changes statistically. However this is not
generally applicable since in many situations we don’t know a priori what
kind of object we are going to track. We propose a simple generally applicable
heuristic that updates the initial object appearance using new images.
Part I
Statistical modeling
5
Chapter 2
Recursive Unsupervised
Learning
There are two open problems when finite mixture densities are used to model
multivariate data: selecting the number of components and initialization. In
this chapter an on-line (recursive) algorithm is proposed to simultaneously
estimate the parameters of the mixture and select the number of components.
The new algorithm is not sensitive to the initialization. A prior is used as a
bias for maximally structured models. A stochastic approximation recursive
learning algorithm is proposed to search for the maximum a posteriori solution.
2.1 Introduction
The finite mixture probability density models have been analyzed many times
andusedextensivelyformodelingmultivariate data [16, 8]. In [3] an e cient
heuristic was proposed to select compact models for the available data. A
certain type of prior is introduced that presents, in a way, a bias for more
structuredmodels. Thiscanbeusedforthefinite mixtures to simultaneously
estimate the parameters and select the appropriate number of components.
This prior has no closed form solution and an incremental search procedure
was proposed. A similar heuristic and another prior wes used in [6], but only
as a step in a standard model-selection scheme (for standard model selection
schemes see section 2.1).
The work we present here is inspired by the mentioned ideas from [3] and
[6]. Our contribution is in developing an on-line version. We use a stochastic
approximation procedure to estimate the parameters of the mixture recur-
sively. We propose a way to use the mentioned prior from [6] in the recursive
7
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equations. Consequently, we can select the number of components of the mix-
ture on-line. In addition, the new algorithm can arrive at the similar results
as the previously reported algorithms but much faster.
In section 2.2 we introduce the notation and discuss the standard problems
with the finite mixtures. In section 2.3 we describe the previously mentioned
idea to simultaneously estimate the parameters of the mixture and select the
number of components. Further, in section 2.4 we develop an on-line version.
The final practical algorithm we used in our experiments is described in section
2.5. In section 2.6 we demonstrate how the new algorithm performs for a
number of standard problems.
2.2 Problem definition
In this section we introduce the finite mixtures and the related problems.
2.2.1 Estimating the parameters
Let us denote the probability density function of a stochastic vector variable
~x as p(~
x;~ ) where the vector ~  contains the function parameters. A mixture
density with M components can be written as:
M
M
X
X
p
p
p(~
x;~
(M )) =
p
(~
x;~
)with
=1 (2.1)
m
m
m
m
m=1
m=1
(M )={p
where ~
,..,p
,~
,..,~
}. The number of parameter depends on
1
M
1
M
the number of components M we decide to use. The mixing densities are de-
noted by p
(~
x;~
)where~
are the parameters. The mixing weights denoted
m
m
m
by p
are positive. An example is the mixture of the three Gaussian distri-
m
butions given in table 2.1 and further discussed later. The finite mixtures are
a powerful tool for clustering purposes (see for example the ’Iris’ data-set we
used in our experiments). However, the finite mixtures are also very e ective
as a general tool for modeling multivariate data (for example the ’Shrinking
spiral’ data-set analyzed later, table 2.2).
(1)
(t)
Let us denote the set of the available data samples by X = {~
x
,...,~
x
}.
The standard tool for estimating the parameters of a mixture model from the
data is the ’Expectation Maximization’ (EM) algorithm [4]. The EM algorithm
can be used to perform an incremental local search for the maximum likelihood
(ML) estimate:
2.3. SOLUTION USING MAP ESTIMATION 9
b
~
=max
(log p(X ;~ ))
~
Apart from its simple implementation and its global convergence to a local
maximum, one of the serious limitations of the EM algorithm is that it can
end up in a poor local maximum if not properly initialized. The selection of
the initial parameter values is still an open question that was studied many
times. Some recent e orts are reported in [17, 18].
2.2.2 Selecting the number of components
Note that in order to use the EM algorithm we need to know the appropri-
ate number of components M . Too many components will ’over-fit’ the data.
Choosing an appropriate number of components is important. Sometimes,
for example, the appropriate number of components can reveal some impor-
tant existing underlying structure that characterizes the data. Full Bayesian
approaches sample from the full a posteriori distribution with the number
of components M considered unknown. This is possible using Markov chain
Monte Carlo methods as reported recently [11, 10]. However, these meth-
ods are still far too computationally demanding. Most of the practical model
selection techniques are based on maximizing the following type of criteria:
J(M,~ (M )) = log p(X ;~
(M )) - P(M) (2.2)
Here log p(X ;~
(M)) is the log-likelihood for the available data. This part can
be maximized using the EM. However, introducing more mixture components
always increases the log-likelihood. The balance is achieved by introducing the
increasing function P (M ) that penalizes complex solutions. Some examples of
such criteria are: ’Akaike Information Criterion’ [1], ’Bayesian Inference Cri-
terion’ [14], ’Minimum Description Length’ [12], ’Minimum Message Length’
(MML) [19] etc. For a detailed review see for example [8].
2.3 Solution using MAP estimation
(M )) that has
Suppose that we have a prior for the mixture parameters p(~
similar properties as the function P (M ) from (2.2) that penalizes complex
solutions. Instead of (2.2) we could use:
log p(X ;~ (M )) + log p(~ (M )) (2.3)
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The procedure is then as follows. We start with a large number of components
M. Maximizing (2.3) is equal to searching for the ’maximum a posteriori’
(MAP) solution. This could be done using for example the EM algorithm.
The prior presents, in a way, a bias for more compact models. While searching
for the MAP solution, the prior drives the irrelevant parameters to extinction.
In this way we simultaneously estimate the parameters and reduce the number
of components M until the balance is achieved.
The mixing weights define a multinomial distribution which presents a
building block for the mixture densities (see for example [7], Chapter 16). The
recently proposed algorithm [6] is using the Dirichlet prior for the underlying
multinomial distribution:
X
M
p(~
(M ))   exp
c
log p
(2.4)
m
m
m=1
If the parameters c
are negative (improper prior), the Dirichlet prior has
m
some interesting properties. It can be shown that the standard MML criterion
(mentioned in section 2.2) in the standard form (2.2) when written for the finite
mixtures has a part that has the form (2.3). The prior introduced in this way
is the Dirichlet prior with the coe cients c
equal to -N/2whereN presents
m
the number of parameters per component of the mixture. See [6] for details.
This gives the theoretical background for using the improper Dirichlet prior
and provides a way to choose the parameters c
.
m
The parameters c
have a meaningful interpretation. For a multinomial
m
distribution, c
presents the prior evidence (in the MAP sense) for a certain
m
class m (number of samples a priori belonging to that class) . Negative evi-
dence means that we will accept that the class m exists only if there is enough
evidence for the existence of the class. In this sense the presented linear con-
nection between c
and the number of parameters N , that follows from the
m
MML criterion, seems very logical. Consequently, while searching for the MAP
solution, when a mixing weight p
becomes negative the component can be
m
removed. This also ensures that the mixing weights stay positive.
2.4 Recursive (on-line) solution
Let all the parameters of the Dirichlet prior (2.4) be the same c
= -c (for the
m
finite mixtures we use c = N/2 as it was mentioned in the previous section).
The Dirichlet prior is the conjugate prior for the multinomial distribution (see
[7]) and we get the following simple MAP solution:
2.4. RECURSIVE (ON-LINE) SOLUTION 11
X
t
(i)
p
ˆ
= 1
o
(~
x
) - c) (2.5)
m
m
K (
i=0
P
P
P
M
t
M
(i)
where K =
(
o
(~
x
) - c)=t - Mc (since
o
= 1) is the nor-
m
m
m=1
i=0
m=1
malization constant that takes care that the weights sum up to one. For a
stand-alone multinomial distribution, the ’ownerships’ o
have values 0 or 1
m
indicating which class m the sample belongs to. For the mixture densities we
get the ’soft’ ownerships given by (2.6). The given equation (2.5) is used as
one of the steps of the EM algorithm in [6] and we are going to analyze here
a recursive version.
(t)
~
A recursive procedure uses a current estimate b
for the first t data sam-
(t+1)
~
(t+1)
ples and the new data sample ~
x
to get the new estimate b
.Forvery
large data-sets this can greatly reduce the computation costs since in this way
we run through the data only once, sequentially. Without a natural conjugate
prior for the mixture densities we need some stochastic approximation proce-
dure. We use the general stochastic approximation from [13]. The connection
with the EM algorithm is described in [15]. See also appendix A. However, the
procedure is also very sensitive to the initial conditions and in the beginning
(small t) the equations tend to be very unstable. The modifications proposed
later in this paper overcome these problems.
This stochastic approximation procedure leads to simple and intuitively
clear recursive version of (2.5) given by:
-1
(t+1)
(t)
(t)
(t+1)
(t)
p
ˆ
=ˆ
p
+(1+t - Mc)
(o
(~
x
) - ˆ
p
)
m
m
m
m
with the ’ownerships’:
(t)
(t)
~
~
(t)
(t)
p
o
(~
x)=ˆ
p
(~
x; b
)/p(~
x; b
) (2.6)
m
m
m
m
However, it is not clear how this equation could be used since 1 + t - Mc is
negative in the beginning (for small t).
Let us now take one more look at the non-recursive version of the update
equations. After dividing (2.5) by t, we get:
ˆ
- c/t
m
p
ˆ
=
m
1 - Mc/t
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P
t
1
(i)
where ˆ
=
o
(~
x
) is the standard ML estimate and the bias from the
m
m
t
i=0
prior is introduced through the c/t. The equation holds if we assume that
none of the components was discarded (we need at least Mc/t < 1).
The bias from the previous equation decreases for larger data sets (larger t).
For a recursive procedure, the data set is constantly getting larger. However,
if a small bias is acceptable we can keep it constant by fixing the c/t to some
constant value c
= c/T with some large T . This means that the bias will be
T
alwaysthesameasifitwouldhavebeenforadatasamplewithT samples.
The fixed bias leads to the following well behaved and easy to use recursive
update equation:
(t)
(t+1)
(~
x
)
c
m
T
(t+1)
(t)
-1
(t)
-1
p
p
- ˆ
p
ˆ
=ˆ
+(1+t)
(o
) - (1 + t)
(2.7)
m
m
m
1 - Mc
1 - Mc
T
T
Here T should be su ciently large to make sure that Mc
< 1. Furthermore,
T
(t+1)
p
simply as in the non-recursive version, when ˆ
< 0 we can discard this
m
component while working on-line.
ThemostcommonlyusedmixtureistheGaussianmixture. Amixture
component p
(~
x;~
)=N (~
x; ~
µ
,C
)hasthemean~µ
and the covariance
m
m
m
m
m
matrix C
as the parameters. For the Gaussian mixture we get also simple
m
equations for the rest of the mixture parameters:
(t)
(t+1)
o
(~x
)
(t+1)
(t)
b
m
~d
-1
~
µ
= b
~
µ
+(t +1)
(2.8)
m
m
m
(t)
p
ˆ
m
(t)
(t+1)
o
(~
x
)
T
ˆ
m
~
(t+1)
(t)
-1
(t)
d
d
- ˆ
C
= ˆ
C
+(t +1)
(~
C
) (2.9)
m
m
m
m
m
(t)
p
ˆ
m
(t)
(t+1)
- b
where ~d
= ~
x
~
µ
. See for example [15] for details.
m
m
2.5 A simple practical algorithm
For an on-line procedure it is reasonable to fixthein uence of the new samples
-1
by replacing the term (1 +t)
from the recursive update equations (2.8), (2.9)
and (2.7) by a =1/T . There are also some practical reasons for using a fixed
small constant a. This reduces the problems with instability of the equations
for small t. Furthermore, fixed a helps in forgetting the out-of-date statistics
(random initialization and component deletion) more rapidly.
2.6. EXPERIMENTS
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For the sake of clarity we present here the whole algorithm we used in
our experiments. We start with a large number of components M and with
a random initialization of the parameters (see next section for an example).
We h ave c
= aN/2. Further, we use Gaussian mixture components with
T
full covariance matrices. Therefore, if the data is d-dimensional, we have
N = d + d(d +1)/2 (the number of parameters for a Gaussian with full
covariance matrix). The on-line algorithm is then given by:
(t)
~
(t+1)
• Input: new data sample ~
x
, current parameter estimates b
(t)
(t)
(t)
(t)
~
~
(t+1)
p
(t+1)
(t+1)
• calculate ’ownerships’: o
(~
x
)=ˆ
p
(~
x
; b
)/p(~
x
;b
)
m
m
m
m
( t )
(t+1)
(t)
o
(~
x
( t + 1)
)
(t)
c
p
p
- ˆ
p
• update mixture weights: ˆ
=ˆ
+ a(
) - a
m
T
m
m
m
1-Mc
1-Mc
T
T
(t+1)
• check if there are irrelevant components: if ˆ
p
< 0 discard the com-
m
ponent m (M = M - 1) and renormalize the remaining mixing weights
• update the rest of the parameters:
(t+1)
(t)
(t)
( t )
o
(~
x
( t + 1)
)
(t+1)
- b
— b
~
µ
= b
~
µ
+ w~d
(where w = a
and ~d
= ~
x
~
µ
)
m
m
m
m
m
m
( t)
p
ˆ
m
T
~d
(t+1)
(t)
(t)
— ˆ
C
= ˆ
C
+ w(~d
- ˆ
C
) (tip: limit the update speed w =
m
m
m
m
m
min(20a,w))
(t+1)
~
Output: new parameter estimates b
This simple algorithm can be implemented in only a few lines of code. The
recommended upper limit 20a for w simply means that the updating speed is
limited for the covariance matrices of the components representing less then
T
d
5% of the data. This was necessary since ~d~
is a singular matrix and the
covariance matrix may become singular if updated too fast.
2.6 Experiments
In this section we demonstrate the algorithm performance on a few stan-
dard problems. We show the results of 100 trials for each data set. For the
real-world data-sets we randomly sample from the data to generate longer
sequences needed for our sequential algorithm. For each of the problems we
present in table 2.2 how the selected number of components of the mixture
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was changing with sequentially adding new samples. Further, we present one
of the common solutions from the trials. Finally, the number of components
that was finally selected is presented in the form of a histogram for the 100
trials.
The random initialization of the parameters is the same as in [6]. The
(0)
means b
~
µ
of the mixture components are initialized by some randomly chosen
m
data points. The initial covariance matrices are a fraction (1/10 here) of the
mean global diagonal covariance matrix:
Ã
!
n
X
1
(0)
(i)
(i)
T
C
= 1
(~x
- b
~
µ)(~
x
- b
~µ)
I
m
10d trace
n
i=1
P
1
n
(i)
where b
~
µ =
~
x
is the global mean of the data and I is the identity
n
i=1
matrix with proper dimensions. We used first n = 100 samples. It is possible
to estimate this initial covariance matrix recursively. Finally, we set the initial
(0)
mixing weights to ˆ
p
=1/M . The initial number of components M should
m
be large enough so that the initialization reasonably covers the data. We used
here the same initial number of components as in [6].
2.6.1 The ’Three Gaussians’ data set
First we analyze a three-component Gaussian mixture (see table 2.1). It was
shown that the EM algorithm for this problem was sensitive to the initializa-
tion. A modified version of the EM called ’deterministic anealling EM’ from
[17] was able to find the correct solution using a ’bad’ initialization. For a
data-set with 900 samples they needed more than 200 iterations to get close
to the solution. Here we start with M = 30 mixture components. With ran-
dom initialization we performed 100 trials and the new algorithm was always
able to find the correct solution simultaneously estimating the parameters of
the mixture and selecting the number of components. Similar batch algo-
rithm from [6] needs about 200 iterations to identify the three components
(on a 900 sample data-set). From the plot in table 2.2 we see that already
after 9000 samples the new algorithm is usually able to identify the three
components. The computation costs for 9000 samples are approximately the
same as for only 10 iterations of the EM algorithm on a 900 sample data-set.
Consequently, the new algorithm for this data set is about 20 times faster
in finding the similar solution as the previously mentioned algorithms. In [9]
some approximate recursive versions of the EM algorithm were compared to
the standard EM algorithm and it was shown that the recursive versions are
usually faster. This is in correspondence with our results.
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Empirically we decided that 50 samples per class are enough and used a =
1/150. In table 2.1 we present the final estimates from one of the trials (also
presented in table 2.2 by the ’s = 2 contours’ of the Guassian components).
We also used the last 150 samples and a properly initialized EM algorithm to
find the ML estimates. The results are very similar (table 2.1).
Parameters True values Final estimate ML estimate
~
(last150 samples)
p
0.33 0.35 0.33
1
p
0.33 0.30 0.29
2
p
0.33 0.35 0.37
3
£ 0 -2 ¤
£ 0.15 -1.99 ¤
£ 0.25 -2.06 ¤
T
T
T
~
µ
1
£ 00¤
£ 0.10 -0.02 ¤
£ -0.01 -0.01 ¤
T
T
T
~
µ
2
£ 02¤
£ 0.09 1.99 ¤
£ 0.02 1.95 ¤
T
T
T
~
µ
· 20
¸·1.83 -0.08
¸·1.59 -0.13
¸
3
C
1
-0.08 0.23
-0.13 0.25
00.2
· 20
¸·2.17 0.03
¸·2.30 0.00
¸
C
2
00.2
0.03 0.22
0.00 0.20
· 20
¸·2.51 0.12
¸·2.80 0.09
¸
C
3
00.2
0.12 0.20
0.09 0.22
Table 2.1: The three Gaussians data set
2.6.2 The ’Iris’ data set
We disregard the class information from the well-known 3-class, 4-dimensional
’Iris’ data-set [2]. From the 100 trials the clusters were properly identified 81
times. This shows that the order in which the data is presented can in uence
the recursive solution. The data-set had only 150 samples (50 per class) that
were repeated many times. We can expect that the algorithm would perform
better with more data samples. We used a =1/150. The typical solution
in table 2.2 is presented by projecting the 4-dimensional data to the first two
principal components.
2.6.3 The ’Shrinking Spiral’ data set
This data-set presents a 1-dimensional manifold (’shrinking spiral’) in the three
dimensions with added noise:
~
x = £ (13 - 0.5t)cost (0.5t - 13) sin tt¤ + ~
n
16 CHAPTER 2. RECURSIVE UNSUPERVISED LEARNING
with t ~ Uniform[0, 4p]andthenoise~
n ~ N(0,I). The modified EM called
’SMEM’ from [18] was reported to be able to fit a 10 component mixture
in about 350 iterations. The batch algorithm from [6] is fitting the mixture
and selecting 11, 12 or 13 components using typically 300 to 400 iterations
for a 900 samples data set. From the graph in table 2.2 it is clear that we
achieve similar results but much faster. About 18000 samples was enough to
arrive at a similar solution. Consequently, again the new algorithm is about
20 times faster. There are no clusters in this data-set. It can be shown that
fixing the in uence of the new samples by fixing a hasasthee ect that the
in uence of the old data is downweighted by a exponential decaying envelope
t-k
S(k)=a(1 - a)
(for k<t). For comparison with the other algorithms
that used 900 samples we limited the in uence of the older samples to 5%
of the in uence of the current sample by a = - log(0.05)/900. In table 3.1
we present a typical solution by showing for each component the eigen-vector
corresponding to the largest eigen-value of the covarance matrix.
2.6.4 The ’Enzyme’ data set
The 1-dimensional ’Enzyme’ data-set has 245 data samples. It was shown in
[11] using the MCMC that the number of components supported by the data
is most likely 4, but 2 and 3 are also good choices. Our algorithm arrived at
similar solutions. In the similar way as before we used a = - log(0.05)/245.
2.7 Conclusions and discussion
The new algorithm was able to solve di cult problems and to arrive at sim-
ilar solutions as other much more elaborate algorithms. Compared to the
previously proposed algorithms the new algorithm is also faster. However, the
most important advantage of the new algorithm is that the data is processed
sequentially. When the data also arrives sequentially, as for many on-line work-
ing systems, a recursive procedure may be essential to give ’quick’ up-to-date
parameter estimates.
Introducing a prior and using the MAP estimation to select compact mod-
elsisane cient heuristic. However, this leaves some open questions (see also
the discussion in [3]). The in uence of the prior we used is fixed by taking
c = N/2 (see sections 3 and 4). This follows from the MML criterion, but it is
only an approximation of the MML. Furthermore, we presented an on-line pro-
cedure and the in uence of the prior needs to be balanced with the in uence
of the data. The in uence of the data is controlled by setting the constant a.
Larger in uence of the prior leads to more biased and more compact models.
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It should be noted that the constant a also controls the speed of updating the
parameters and the accuracy of the results. However, the parameters of the
algorithm have a clear meaning and it is not di cult to choose them and to
arrive at some compact representation of the data.
Appendix - Recursive parameter estimation
The general stochastic approximation procedure we used is given by:
(t+1)
(t)
(t)
(t)
b
~
~
~
~
-1
-1
(t+1)
= b
+(t +1)
I(b
)
~g(~
x
,b
)
with
p(~
x;~ )
~
)=
~g(~
x,~
log p(~
x;~ )=
~
p(~
x;~ )
T
and where I(~
)=E(~
g(~
x;~ )~g(~x;~
)
) is the Fisher information matrix corre-
sponding to one observation. Under some regularity conditions [5] for t  8
(t)
*
*
~
-1
we have consistency and asymptotic e ciency: (b
- ~
)   N(;0, (tI (~
))
)
in distribution [13]. However, it turns out that calculating and inverting the
Fisher information matrix I(~
) becomes quite complicated for most of the
practical cases. Therefore many alternatives were proposed.
For the finite mixtures, in the same way as when using the EM algorithm, it
turns out that it is useful to introduce a discrete unobserved indicator vector
T
~y =[y
...y
]
. The indicator vector specifies the mixture component from
1
M
which each particular observation is drawn. The new joint density function
can be written as a product:
y
y
)=p(~y; p
p(~
x, ~
y;~
,..,p
)p(~
x|~y;~
,..,~
)= p
p
(~
x;~
)
m
m
1
M
1
M
m
m
m
where exactly one of the y
from ~
y can be equal to 1 and the rest are ze-
m
ros. The indicator vectors ~
y have a multinomial distribution defined by the
mixing wei ghts p
,..,p
. The observed data ~
x and unobserved indicators ~
y
1
M
) can be replaced by
form together the complete observation. The matrix I(~
(t)
~
its upper bound I
(b
) -the Fisher information matrix corresponding to one
c
observation but now for the complete data. The e ciency is lost but under
certain conditions we still get consistent estimates [5].
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Chapter 3
Adaptive Recursive
Unsupervised Learning
We propose a set of simple on-line equations for fitting a finite mixture model
to sequential data. The algorithm can adapt to some sudden or gradual
changes of the data statistics. Both the parameters of the mixture and the
number of components are simultaneously adapted. A simple outlier detec-
tion rule is used to generate new components if the data statistics changes. A
prior is used as a bias for maximally structured models. The prior helps in
discarding the insignificant components.
3.1 Introduction
The finite mixture probability density model is a powerful tool for modeling
multivariate data [15, 10]. The ’Expectation Maximization’ (EM) algorithm
[5] is a standard method for fittingamixturemodeltothedata. Manymodifi-
cations of the EM algorithm have been proposed in the literature, for example
[16, 17]. In some situations, as for many on-line working systems, a recursive
procedure is essential to give ’quick’ up-to-date parameter estimates. Ap-
proximate recursive (on-line) versions of the EM algorithm were discussed in
[14, 11]. For the given data, it is also important to select a finite mixture
model having an appropriate number of components to avoid ’under fitting’
or ’over fitting’. Often, the appropriate number of components can reveal an
underlying structure that characterizes the data. In [3] and [6] an e cient
heuristic was used to select compact models for the available data. A certain
type of prior is introduced that presents, in a way, a bias for more structured
models. This can be used for the finite mixtures to simultaneously estimate
21
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the parameters and select the appropriate number of components. Inspired by
the mentioned ideas, in the previous chapter we developed an on-line version
to recursively update the parameters and select the number of components.
In this chapter we consider a general situation when the data comes from a
process that is stationary for some periods but some sudden or gradual changes
can occur from time to time. Automatic detection of various types of data
changes was analyzed many times in the literature [3]. See also the ’novelty
detection’[4] and the closely related ’outlier detection’ [1]. In the case of on-
line data, instead of detecting the changes we could simply constantly update
the parameters and in that way we could always have a density estimate that
describes the current situation. It is important to note here that also the
number of components should be adapted. In [12] a simple on-line procedure
was proposed to adapt to the changes. They proposed to add new components
to the mixture every time there comes a new data sample not well described by
the current model. The result was a non-parametric procedure with constantly
increasing number of components. This is not appropriate for practical use.
In this paper we add new components in a similar way, but based on the
results from the previous chapter of this thesis we also detect and discard the
out-of date components. The result is an on-line algorithm that constantly
updates the model parameters and the number of components of the mixture
to re ect the most current distribution. In addition, when the data comes
from a stationary process the new algorithm can estimate the parameters and
select the appropriate number of components to arrive at similar results as
some previously reported algorithms but much faster. In this paper we focus
on the Gaussian mixture, but the results could be extended to other mixture
typ es .
In section 3.2 we introduce the notation and discuss the on-line parameter
estimation. Further, in sections 3.3 and 3.4 we describe the additional com-
ponent deletion and the component generation rule for on-line updating the
number of mixture components. The final practical algorithm we used in our
experiments is described in section 3.5. In section 3.6 we demonstrate how the
new algorithm performs for a number of problems.
3.2 Problem definition
Lets denote the probability density function of a stochastic vector variable ~
x
) where the vector ~
contains the function parameters. A mixture
as p(~
x;~
density with M components can be written as:
3.2. PROBLEM DEFINITION
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,..,~
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1
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m
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are positive. A recursive procedure uses a current estimate b
for the first t
(t+1)
~
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data samples and the new data sample ~
x
to get the new estimate b
.
The stochastic approximation from [13] gives:
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the parameters. For the Gaussian mixture we get:
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If the data statistics is changing, the simplest approach to adapt the pa-
rameter estimates is just to rely more on the newest samples by replacing
-1
(t +1)
from the recursive update equations (3.4), (3.5) and (3.6) above with
a small constant a =1/T . This also reduces the problems with instability
of the equations for small t. In the next sections two additional update rules
are described: the component deletion rule and the component generation
rule. The component deletion rule detects the non-important components and
discards them. The component generation rule should generate new compo-
nents when needed. Together this two rules take care that also the number of
components M is adapted to the situation. Furthermore, both the EM and
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the recursive versions can end up in a poor solution if not properly initial-
ized. The additional rules make the procedure also much less sensitive to the
initialization.
3.3 Deletion rule
The component deletion rule is based on the results from the previous chapter.
The equation for recursive update of the mixing weights (3.2) is modified to
include the in uence of a prior that presents, in a way, a bias toward more
compact solutions and drives the unimportant components to extinction:
(t)
(t+1)
(~
x
)
c
-1
m
-1
T
(t+1)
(t)
(t)
p
=ˆ
p
+(1+t)
(o
- ˆ
p
) - (1 + t)
(3.6)
ˆ
m
m
m
1 - Mc
1 - Mc
T
T
The prior we used is the Dirichlet prior for the mixing weights [8], but with
negative coe cients as suggested in [6]. The in uence of the prior is controlled
by the constant c
= c/T . This prior is related to an approximation of the
T
standard ’Minimum Message Length’ (MML) [19] model selection criterion
and we get c = N/2whereN presents the number of parameters per compo-
nent of the mixture. As mentioned before, to rely more on the latest data we
-1
fixthein uence of the new samples by replacing the (1 + t)
from (3.6) by
asmallconstanta =1/T .HereT should be su ciently large to make sure
(t+1)
that Mc
< 1. Weak components are discarded simply when ˆ
p
< 0. This
T
m
also ensures that the mixing weights stay positive.
3.4 Generation rule
When the data statistics changes the components should be also generated
to be able to fully adapt to the changes. We propose here a ”component
generation rule”. Our approach is based on two previous results: the ’adaptive
kernel’ from [12] and the recent recursive mixture learning we analyzed in the
previous chapter.
As mentioned, the recursive equations described in section 2 are highly
sensitive to initialization. Similar problems occur also with sudden changes
in the data statistics. In order to overcome this problems but also to avoid
specifying the number of components M, it was proposed in [12] to start with
a single component and add new components whenever there is new data not
described well by the current model. The new components are added simply
by:
3.4. GENERATION RULE
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where C
is an appropriate initial covariance matrix. Note that if we add
0
a new component for each new data sample we get a simple non-parametric
kernel based approximation (the mixture components from (3.1) can then
be considered as kernels). The non-parametric approaches are not sensitive
to initialization and are consistent under very weak conditions. However, the
non-parametric approaches would be unpractical for an on-line procedure since
M is constantly growing and the model would soon be too computationally
and memory intensive. If we use some reasonable rule to decide when to add
a component and when to only update the mixture, we get a sort of ’adaptive
kernel’ approach with the number of components M still growing but at much
slower rate. By choosing the decision rule to generate new components more
or less often we balance between the non-parametric kernel based approach
and a parametric recursive finite mixture fitting. When a new component is
added the dimensionality of the likelihood surface changes and this allows the
estimator to proceed towards a ”good” solution and escape the local maxima.
Furthermore, as noted in [17], the problems with mixture models often arise
when there are unpopulated areas in the parameter space. The algorithms
using a constant number of components M , usually have di culties in moving
the components to the unpopulated areas through the positions that have a
lower likelihood. Here simply new components are generated for this areas.
The ’adaptive kernel’ approach, analyzed in detail in [12], is using only the
”component generation rule”. Their approach still has a constantly growing
number of components and can not be used for a practical on-line procedure.
However we added here the described ”component deletion rule” to select the
compact models for the data and keep the number of components bounded.
For a stationary process, in the previous chapter of this thesis we start with a
large number of components and a random initialization. A similar algorithm
using only the described delete rule was analyzed. The weakly supported
components are discarded and the algorithm was able to arrive at a compact
model for the data. It was demonstrated that this scheme is not very sensitive
to the initialization. We could conclude that the results of the new algorithm,
that is using the same deletion rule, should not be very sensitive to the way the
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new components are generated by the component generation rule. Therefore,
we choose to add new components whenever it seems that there are changes
in the data statistics. If it was a false alarm (for example just an outlier)
the delete rule should take care that the unnecessary added components are
removed eventually.
To decide when to add a component we need some sort of clustering cri-
terion. There are many possibilities for this. The simplest, as in [12], is to
check the Mahalanobis distance of the new sample from the current mixture
components:
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If the minimum of this distances exceeds a threshold
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then the point is ”far” from the existing components (in a way not well de-
scribed by the current mixture) and a new component should be created. The
threshold R
can be used to control the generation of the components. In our
c
experiments we used R
= 4 that implies creating a new component for any
c
observation that is at least two standard deviations away from all the existing
mixture components. Another way could be to create components stochas-
(t+1)
tically, for instance, with probability inversely proportional to the D(~x
).
This also has some similarities with simulated annealing.
In the previous chapter of this thesis (also in [6]), the initial covariance
matrices that were used for the random initialization were a fraction (1/10
was used) of the mean global diagonal covariance matrix:
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identity matrix. The data is d-dimensional. The recursive versions are:
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We use here this covariance matrix to initialize the new components. We
calculate the up-to-date covariance matrix recursively again using the small
-1
constant a instead of (1 + t)
.
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3.5 A simple practical algorithm
For the sake of clarity we present here the whole algorithm we used in our
experiments. Firstwewaitforsometime(hereweused100samples)togeta
(t)
reasonable estimate for the global initialization matrix C
. Then, with the
0
first next sample we can start with a single component. We have c
= aN/2.
T
Further, we use Gaussian mixture components with full covariance matrices.
Therefore, if the data is d-dimensional, we have N = d + d(d +1)/2 (the
number of parameters for a Gaussian with full covariance matrix). The on-
line algorithm is then given by:
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Output: new parameter estimates b
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This simple algorithm can be implemented in only a few lines of code. The
recommended upper limit 20a for w simply means that the updating speed is
limited for the covariance matrices of the components representing less then
T
d~
d
5% of the data. This is recommended since ~
is a singular matrix and the
covariance matrix may become singular if updated too fast. Singular covari-
ance matrix is a common problem also for the standard EM algorithm and
thiscouldleadtosomedi culties. However, with this small modification we
never encountered any problems. The weak components are simply discarded
before they can become singular.
3.6 Experiments
The properties of the presented algorithm are demonstrated and analyzed in
this section using a number of examples. Since the algorithm is intended
for on-line usage, we focus on the large-sample properties and computational
complexity. We start with comparing the algorithm with the two related
previously reported algorithm from [12] and the algorithm from the previous
chapter.
3.6.1 Only the generation rule
First, we compare the new algorithm to the related ’adaptive kernel’ from
[12]. Our algorithm has a similar component generation rule but we added an
additional component deletion rule. In order to demonstrate the di erences,
we use the static 1D Gaussian mixture example from [12]: 0.5N(-2,0.5) +
0.5N (0.5, 1.5). We present the results from 100 trials and we set a =0.01.
In figure 3.1a we present how the average number of components M changes
with increasing number of samples. The ’adaptive kernel’ is constantly adding
new components and after some time the number of components is, although
much lower than for a standard kernel based approach, too high to be used
in a practical on-line procedure. However, in a static case, as noted in [12],
most of these components are not significant. This e ect is strongly present
here since we use a rather large constant a =0.01 and the not often updated
components are quickly dying o . Figure 3.1c presents a typical solution after
15000 samples. We can see that only 4 components were significant. Still,
there was no principled rule to discard the non-significant components. In
this paper we added the component deletion rule. The solution for the same
data using the new algorithm is presented in figure 3.1d. We observe that the
solution looks quite similar but correctly only 2 large components are present.
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The i n uence of the prior from the section 3 is clearly visible. The obsolete
components are suppressed and eventually discarded. In the graph 3.1a we
show also the average number of components for the new algorithm. The
component deletion rule takes care that the number of used components stays
bounded. The number of components seems to converge to a steady state.
The simple component generation rule will add new components for any new
far away data sample. Even in a stationary case the far away samples will
occur from time to time. This means that even with the new algorithm there
will be a few insignificant nuisance components. On the other hand, these
components will allow adaptation if the data statistics changes. To avoid
this insignificant components when using the mixture estimate from the new
p
algorithm, we could for example consider only the components with ˆ
> a.
m
In figure 3.1b we show again the average number of the components for the
new algorithm but now we show only the significant components. We observe
that the average number of components converges to the correct number 2.
Further through the experiments we will always report only the number of
components that have ˆ
p
> a.
m
The two typical solutions of the two algorithms seem to be very similar
(figure 3.1c and d). In figures 3.1e,f,g and h we present the average L1 and L2
errors with respect to the true distribution. Because of using a fixed constant a
we can also observe that the errors seem to converge to a fixed value. However,
the asymptotic convergence to zero is not relevant for an on-line adaptive
procedure. The convergence rate was discussed in [12]. The new algorithm
performs slightly better with much less parameters. This is because the new
algorithm was able to correctly identify the two components.
3.6.2 Only the deletion rule
Another closely related method is the recursive mixture learning algorithm
we presented in the previous chapter of this thesis where only the component
deletion rule was used. The algorithm needs a random initialization using a
large number of components. Eventually the algorithm discards the obsolete
components and arrives at a compact model for the data. The new algorithm
has an automatic start (using one component). The component generation
rule takes care that in the beginning the data gets well covered by the initial
components of the mixture model. Furthermore, the important advantage of
adding the component generation rule is, of course, that the new algorithm
can adapt to the data statistics changes by adapting also the number of com-
ponents.
To compare the two algorithms we analyze the three-component Gaussian
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mixture from table 3.1. It was shown that the standard EM algorithm for
this problem was sensitive to the initialization. A modified version of the EM
called ’deterministic annealing EM’ from [16] was able to find the correct solu-
tion using a ’bad’ initialization. For a data-set with 900 samples they needed
more than 200 iterations to get close to the solution. In previous chapter we
start with M = 30 mixture components (as in [6]). With random initialization
we performed 100 trials and the algorithm was always able to find the correct
solution simultaneously recursively estimating the parameters of the mixture
and selecting the number of components. In figure 3.2a we present how the
average number of components changes with more samples. We performed the
same test using the new algorithm, figure 3.2b. In the beginning a large num-
ber of components is automatically generated. The maximum average number
was M = 16 and then the number of components decreased to the correct 3
components. Because of the smaller and better distributed (compared to the
random initialization we used previously) number of components at the be-
ginning, the new algorithm can identify the 3 components a bit faster than
the previous algorithm. Furthermore, the similar batch algorithm from [6]
needs about 200 iterations to identify the three components (on a 900 sample
data-set). From the plot in table 3.2b we see that already after 9000 sam-
ples the new algorithm is usually able to identify the three components. The
computation costs for 9000 samples are approximately the same as for only 10
iterations of the EM algorithm on a 900 sample data-set. Consequently, the
new algorithm for this data set is about 20 times faster in finding the similar
solution than the previously mentioned algorithms and similar to the algo-
rithm we proposed in chapter 2. In [11] some approximate recursive versions
of the EM algorithm were compared to the standard EM algorithm and it was
shown that the recursive versions are usually faster. This is in correspondence
with our results. Because of the discussed e ects of the generation rule we
also observe some occasional nuisance components occuring at the end when
the 3 Gaussians are already identified. However, as we noted, this components
will be useful when the data statistics changes. This is demonstrated in the
experiments that follow.
Empirically we decided that 50 samples per class are enough and used
a =1/150. In table 3.1 we present the final estimates from one of the trials.
Only the three largest components are presented. The components are also
presented in figure 3.2c by the ’s = 2 contours’. We also used the last 150
samples and a properly initialized EM algorithm to find the ML estimates.
Theresultsareverysimilar(table3.1).
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3.6.3 Adaptation
The important property of the new algorithm is that it can automatically
adapt to the changes of the data statistics. This is demonstrated on a few
examples. First we use the previously described three-component Gaussian
mixture (see table 3.1). After 9000 samples we add one more component hav-
T
ing the mean µ
=[0 4]
and the same covariance matrix as the other
4
three components. All the mixing weights are changed at that moment to
be equal to 0.25. In figure 3.3a we show how the average number of compo-
nents changed for 100 trials. First, the three components are identified and
the number of components remains almost constant with occasional nuisance
components as discussed before. When the data statistic changes, the com-
ponent generation rule adds a number of components. After some time the
number of components again converges to a constant; this time 4. In figure
3.3b we show a typical solution after 9000 data samples, just before the data
statistics changes. In figure 3.3c a typical final estimate after 18000 samples
is presented. The algorithm has an automatic start and it can adapt to the
changes in data statistics.
Another example is the ’shrinking Spiral’ data set. This data-set presents
a 1-dimensional manifold (’shrinking spiral’) in three dimensional space with
added noise:
~
x = £ (13 - 0.5t)cost (0.5t - 13) sin tt¤ + ~
n
with t ~ Uniform[0, 4p]andthenoise~
n ~ N(0,I). After 9000 samples we
exchange the sin and cos from the above equation. This gives a spiral that
is spinning in the other direction. In figure 3.3e we show a typical solution
after 9000 data samples, just before the data statistics changes and in figure
3.3f we show a typical final estimate after 18000 samples. For each component
(p
> a) we show the eigen-vector corresponding to the largest eigen-value
m
of the covariance matrix. The algorithm was able to automatically fitthe
mixture to the spiral and choose an appropriate number of components. The
sudden change of the data statistic presented no problem.
The modified EM called ’SMEM’ from [17] was reported to be able to fit
a 10 component mixture in about 350 iterations. The batch algorithm from
[6] is fitting the mixture and usually selecting 11, 12 or 13 components using
typically 300 to 400 iterations for a 900 samples data set. From the graph 3.3d
it is clear that we achieve similar results but much faster. After 9000 samples
we arrive at an appropriate solution but with some more components. We
tested the algorithm also for a static case and we observed that about 18000
samples was enough to arrive at a similar solution as the previously mentioned
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algorithms (see also [ziv]). Again the new algorithm is about 20 times faster
and similar to the related algorithm from chapter 2.
There are no clusters in this data-set. It can be shown that fixing the
in uence of the new samples by fixing a hasasthee ect that the in uence
of the old data is downweighted by a exponential decaying envelope S(k)=
t-k
a(1 - a)
(for k<t). For comparison with the other algorithms that
used 900 samples we limited the in uence of the older samples to 5% of the
in uence of the current sample by a = - log(0.05)/900. From the graph 3.3d
we also observe that the number of components is much less stable than in the
previous cases. This is because the Gaussian mixture is just an approximation
of the true data model. Furthermore, there are no clusters to clearly define
the number of components.
3.7 Conclusions and discussion
We proposed an adaptive recursive algorithm. The important advantage of
the new algorithm is that can adapt to possible data statistics changes. Both
the parameters and the number of components are adapted. As a consequence
the algorithm has also an automatic start. Further, the new algorithm was
able to solve di cult problems and to arrive at similar solutions as other much
more elaborate algorithms. Compared to the previously proposed algorithms
the new algorithm is also faster.
Two rules were introduced: the generation rule to create the components
when needed and the deletion rule to discard the nuisance components. These
two rules are used to adapt to the changes in the data statistics but also to
avoid local maxima of the likelihood surface and proceed to a ’good’ solu-
tion. When a component splits into two close components or similarly when
a local maximum of the likelihood is achieved because two close components
are modelled as one bigger component, the two rules used here are not very
e ective. It would be appropriate to check the goodness of fitfromtimeto
time in some way ([9], Chapter 15). The modified EM from called ’SMEM’
from [17] performs split and merge steps to avoid the local maxima. Another
interesting reference is the recent ’greedy’ EM from [18] where adding new
components to avoid these situations is discussed. Developing an on-line rule
for splitting the components is a possible topic for further research.
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Figure 3.1: Comparison to only generation rule
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Parameters True values Final estimate ML estimate
~
(3 largest components) (last 150 samples)
p
0.33 0.32 0.31
1
p
0.33 0.33 0.35
2
p
0.33 0.33 0.33
3
£ 0 -2 ¤
£ 0.14 -1.95 ¤
£ 0.35 -1.91 ¤
T
T
T
~
µ
1
£ 00¤
£ 0.00 0.08 ¤
£ -0.11 0.12 ¤
T
T
T
~
µ
2
£ 02¤
£ -0.26 2.02 ¤
£ -0.40 2.03 ¤
T
T
T
~
µ
3
· 20
¸·2.08 -0.05
¸·1.66 -0.10
¸
C
1
-0.05 0.17
-0.10 0.20
00.2
· 20
¸·1.99 -0.02
¸·2.20 -0.01
¸
C
2
00.2
-0.02 0.20
-0.01 0.21
· 20
¸·1.75 0.04
¸·1.98 0.12
¸
C
3
00.2
0.04 0.18
0.12 0.16
Table 3.1: The three Gaussians data set
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Chapter 4
Adaptive background
modeling
Background maintenance and subtraction is a common computer vision task.
We analyze the usual pixel-level approach. First, the contributions from the
literature are summarized and some basic principles and requirements are
extracted. Further, based on the presented principles, some standard theory
and some recent results, we develop two e cient adaptive algorithms. The
first algorithm is using the parametric Gaussian mixture probability density.
Recursive equations are used to constantly update the parameters and to select
the appropriate number of components for each pixel. The second algorithm is
using the non-parametric k nearest neighbor based density estimate. Finally,
the two algorithms are analyzed and compared.
4.1 Introduction
A static camera observing a scene is a common case of a surveillance system
[12, 30, 8, 23]. Detecting intruding objects is an essential step in analyzing
the scene. An usually applicable assumption is that the images of the scene
without the intruding objects exhibit some regular behavior that can be well
described by a statistical model. If we have a statistical model of the scene, an
intruding object can be detected by spotting the parts of the image that don’t
fit the model. This process is usually known as ”background subtraction”.
Usually a simple bottom-up approach is applied and the scene model has
a probability density function for each pixel separately. A pixel from a new
image is considered to be a background pixel if its new value is well described
by its density function. For example for a static scene the simplest model
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could be just an image of the scene without the intruding objects. The next
step would be, for example, to estimate appropriate values for the variances
of the pixel intensity levels from the image since the variances can vary from
pixel to pixel. This was used for example in [30]. However, pixel values often
have complex distributions and more elaborate models are needed. In this
paper, we consider two popular models: the parametric Gaussian mixture and
the non-parametric k nearest neighbors (k-NN) estimate.
The scene could change from time to time (sudden or slow illumination
changes, static objects removed etc.). The model should be constantly up-
dated to re ect the most current situation. The major problem for the back-
ground subtraction algorithms is how to automatically and e ciently update
the model. In this paper we summarize the results from the literature and
extract some basic principles (section 4.2). Based on the extracted principles
we propose, analyze and compare two e cient algorithms for the two models:
Gaussian mixture and k-NN estimate. The Gaussian mixture density func-
tion is a popular  exible probabilistic model [14]. A Gaussian mixture was
proposed for background subtraction in [7]. One of the most commonly used
approaches for updating the Gaussian mixture model is presented in [22] and
further elaborated in [10]. A Gaussian mixture having a fixed number of com-
ponents is constantly updated using a set of heuristic equations. Based on
the results from the previous chapter of this thesis and some additional ap-
proximations we propose a set of theoretically supported but still very simple
equations for updating the parameters of the Gaussian mixture. The impor-
tant improvement compared to the previous approaches is that at almost no
additional cost also the number of components of the mixture is constantly
adapted for each pixel. By choosing the number of components for each pixel
in an on-line procedure, the algorithm can automatically fully adapt to the
scene. Another simple probabilistic model from the literature is the kernel
based estimate and it was the base for the background subtraction algorithm
[5]. We propose an e cient algorithm based on the more appropriate non-
parametric k-NN based model. Both the Gaussian mixture and the k-NN
based algorithm are designed starting from some general principles given in
section 4.2. The both algorithms have similar parameters with a clear meaning
and that are easy to set. We also suggest some typical values for the param-
eters that work for most of the situations. Finally, we analyze and compare
the two proposed algorithms.
The paper is organized as follows. First, in section 4.2 we analyze the
common pixel-based background subtraction problem and extract some basic
principles. In section 4.3 we develop an e cient algorithm using the Gaussian
4.2. PROBLEM ANALYSIS
43
mixture density model. In section 4.4, an e cient algorithm is proposed us-
ing the non-parametric k-NN density model. Finally, in the last section, the
algorithms are evaluated and compared.
4.2 Problem analysis
The simple pixel-based background subtraction can be described as follows.
(t)
We denote the vector describing the value of a pixel at time t by ~
x
.The
elements of the vector are usually the RGB pixel values. Gray values or some
other color space values are also possible. The probability density function
modeling a pixel is p
(~
x). The pixel is marked as background if its new value
b
(t+1)
~x
is well described by its density function, usually:
(t+1)
p
(~
x
) >T
b
b
where T
is a chosen threshold value.
b
The problem is estimating the density function (the pixel model) from the
data. There are various standard ways that can be divided into the parametric
and the non-parametric ones. However, there are some requirements specific
for the background subtraction task.
• time and memory e cient - Background subtraction is in practice
just the starting video processing step in a system that is usually sup-
posed to work in real-time. Therefore, it is important to make this step
both time and memory e cient. For a parametric approach, this leads
to the fast recursive algorithms. Recursive algorithms are also memory
e cient since only the parameters of the model are saved per pixel and
updated for every new data sample.
• adaptive - The di cult part of the background subtraction task is the
maintenance of the background model. The illumination in the scene
could change gradually (daytime and weather conditions in an outdoor
scene) or suddenly (switching light in an indoor scene). A new object
could be brought into the scene or a present object removed from it.
The background subtraction module should be able to adapt to these
changes. The density estimates should rely more on the recent data.
We use an exponential decaying window. At time t the in uence of
t-k
the older samples at time k is downweighted by (1 - a)
(k 6 t)
where the constant a describes how fast the in uence is decreasing. The
exponential window is often used in practice because it has a simple
recursive implementation.
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• automatic learning - We don’t always have some clear images without
the intruding objects to learn the model. The model should be automat-
ically constructed and updated. We assume that the intruding objects
do not cover a pixel for a long time. Therefore, if we estimate the model
using data from a longer period, the in uence of the intruding objects
should be minimal and the estimated density function should be close to
that of the background. As an improvement we could decide to update
the model of a pixel only for the pixel values when the pixel is detected
as the background:
(t+1)
(t+1)
if (p
(~
x
) >T
)updatep
using ~
x
b
b
b
In this way we get into problems with adaptation to the possible changes
of the background scene. The model could still adapt to some slow grad-
ual changes. However for some sudden changes, for example, if a new
object is brought into the scene or a present object removed from it,
the background model would never be updated anymore for the corre-
sponding pixels. The heuristic that can be derived from the standard
approaches like [22] and [5] is a compromise. The values of the foreground
pixels are remembered in some way, for example using an additional den-
sity function per pixel p
(~
x) that is always updated. If the foreground
b+f
(t+1)
pixels exibit some stabile behavior, here simply p
(~
x
) >T
this
b+f
f
means that after some sudden change again a stabile situation occurred.
Therefore we can use:
(t+1)
(t+1)
if ((p
(~x
) >T
)or(p
(~
x
) >T
)) update p
(4.1)
b
b
b+f
f
b
This introduces an additional delay before a static object can become
a part of the background. The delay is controlled by the additional
threshold T
. The objects that don’t stay static long enough will not be
f
included in the background model. Some specific solutions are presented
later.
The described simple pixel-based background modeling is analyzed here.
The main problem is estimating the density function for the pixels according to
the described requirements. As said before, from the many possible parametric
models we use the standard  exible parametric Gaussian mixture model. From
the possible non-parametric models we use the k-NN based approach that is
appropriate for our purpose because of its simplicity.
4.3. GAUSSIAN MIXTURE BACKGROUND MODEL 45
4.3 Gaussian mixture background model
Here, we analyze the Gaussian mixture model and its application for the back-
ground subtraction.
4.3.1 Model
A Gaussian mixture density with M components can be written as:
X
M
X
M
p
p
p(~
x;~ )=
N (~
x; ~
µ
,C
), with
=1 (4.2)
m
m
m
m
m=1
m=1
and ~  = {p
,...,p
,~µ
,...,~
µ
,C
,...,C
}.Where~
µ
,...,~
µ
are the means
1
M
1
M
1
M
1
M
and C
,...,C
are the covariance matrices describing the Gaussian distribu-
1
M
tions. The mixing weights denoted by p
are positive. Parameter estimates
m
(t)
~
at time t will be denoted as b
. Adaptive recursive estimation of both the
parameters and the number of components is discussed in chapter 2. The
parameters are updated recursively according to the stochastic approximation
procedure from [21]. Two rules, component generation and component dele-
tion, are added to adapt also the number of components and choose compact
models for the data. The generation rule is inspired by the ’adaptive kernel’
approach from [18]. The deletion rule is inspired by the recent results from
[3, 6].
4.3.2 Modifications for background subtraction task
We develop a practical background subtraction algorithm using the recursive
update equations from chapter 2.
Time and memory e cient
Although the update equations from presented in chapter 2 are very sim-
ple, some additional approximations can significantly speed up the algorithm.
The recursive equations for updating the Gaussian mixture parameters are
presented in [24]. In the previous chapter of this thesis the equation for re-
cursiveupdateofthemixingweightsismodified to include the in uence of
a prior that presents, in a way, a bias toward more compact solutions and
drives the unimportant components to extinction. A simplified version since
we don’t usually have many component (M is small), is given as:
(t+1)
(t)
(t)
(t+1)
(t)
p
ˆ
=ˆ
p
+ a(o
(~x
) - ˆ
p
) - ac
T
m
m
m
m
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with the ownerships:
(t)
(t)
~
(t)
(t+1)
(t)
(t)
(t+1)
o
(~
x
)=ˆ
p
N (~
x; b
~
µ
, b
C
)/p(~
x
; b
) (4.3)
m
m
m
m
The constant c
describes the in uence of a prior [6]. According to the MML
T
criterion [27] c
= aN/2whereN is the number of parameters per component
T
of the mixture. The constant a controls the previously discussed exponential
envelope that is used to limit the in uence of the old data. Further, we are
going to assume that the Gaussians from the mixture are not close to each
other (if there are two close components they can be modelled as a single
(t+1)
larger component). Under this assumption, if a new data sample ~x
is
(t)
(t+1)
’close’ to the m-th component, the ownership o
(~
x
) for the new sample
m
will be almost 1 and almost 0 for the other components. Therefore, instead
of expensive calculation of the ownerships we do the following. We can define
that a sample is ’close’ to a component if the Mahalanobis distance from the
component is for example less than three standard deviations. Then we set
(t)
(t+1)
the o
(~
x
) = 1 for the largest ’close’ component and 0 for the others.
m
Furthermore, also for computational reasons we assume the covariance matrix
2
in the form of C
= s
I . The distance of a new sample from the m-th
m
m
(t)
(t)
1
2
(t+1)
(t+1)
- b
T
(t+1)
- b
component is calculated as: D
(~
x
)=
(~
x
~
µ
)
(~
x
~
µ
).
m
m
m
s
2
m
Finally, instead of calculating the whole density function for the back-
ground subtraction as an approximation we use the calculated Mahalanobis
distances from the components. This allows an e cient implementation since
it turns out that in this way we never actually calculate the density function.
An additional advantage is that it is easy to choose a resonable threshold value.
GM
We u se T
= 4 that corresponds to four standard deviations distance from
b
the components. In total, this will lead to a sort of ’on-line k-means’ clustering
algorithm similar to the heuristic from [22] with the important di erence that
also the number of components is selected on-line.
Adaptive
As discussed in chapter 2 the two mentioned rules, component generation
and deletion, update the number of components and choose compact models
for the data. The rules also help in automatically adapting to some sudden
changes in data statistics and the algorithm is not very sensitive to the initial
conditions. The generation rule simply adds a new component whenever there
is a new sample that is not well described by the current distribution. We
define ’close’ to a component, as mentioned above, by being within three
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standard deviations from the component’s mean. If a sample is not ’close’ to
any of the components a new component is generated:
(t+1)
min D
(~
x
) > T
m
g
We use T
= 3, as mentioned. When a new component is generated it is ini-
g
(t+1)
(t+1)
2
p
(t+1)
s
2
tialized by: ˆ
= a, b
~
µ
= ~
x
, b
= s
. Weneedsomereasonable
M+1
M+1
M+1
0
2
value for s
.Weuseafraction(0.2 is used here, see also previous chapter
0
of this thesis) of the mean variation of the pixel values. We use a simple ro-
°
°~
°
(t)
(t-1)
bust estimate by calculating the median med of the di erences °
x
- ~
x
for all the pixels between two successive frames and for a number of pairs of
images:
v
s
=0.2 med
0
0.68
2 (4.4)
The deletion rule is added to discard the obsolete components. A compo-
(t+1)
p
nent is deleted if its weight becomes negative ˆ
< 0. This also ensures that
m
the weights stay positive. Adapting the number of components is in uenced
by the constant c
. If the data is d-dimensional and we use the simplified
T
covariance matrix, the total number of parameters is d +1 is and we have
c
= aN/2=a(d +1)/2. Usingalargerc
means increasing the in uence of
T
T
the prior and stronger preference toward compact solutions. In chapter 3 we
used a =0.01 for a data set with two components which is close to a typical
situation for the background data. Here a is usually smaller since we want to
consider a longer time period. In order to keep the low number of components
we fixthein uence of the prior by using c
=0.01(d +1)/2.
T
Automatic learning
It would be impractical to estimate one more distribution to be able to directly
implement the logic we discussed in section 4.2. We observe that the algorithm
performs on-line clustering. We can assume that the intruding objects will be
represented by some additional clusters with small weights p
.Asin[22],
m
instead of using two distributions per pixel we can simply select the first B
largest clusters to be the background model:
X
B
p
(~
x) ~
p
N(~
x; ~
µ
,C
)
b
m
m
m
m=1
and all the components make the p
(~
x). If the components are sorted to
b+f
have descending weights we have:
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Ã
!
b
X
GM
p
B =argmin
> (1 - T
)
m
f
b
m=1
GM
where T
is a measure of the maximum portion of the data that can belong
f
to the foreground objects without in uencing the background model. For
example, if a new object comes into a scene and remains static for some time it
will probably generate an additional stabile cluster. Since the old background
is occluded the weight p
of the new cluster will be constantly increasing.
B+1
GM
If the object remains static long enough, its weight becomes larger than T
f
and it can be considered to be part of the background. The object should be
GM
static for approximately (we don’t consider the c
)log(1- T
)/ log(1 - a)
T
f
GM
frames. For example for T
=0.1anda =0.001 we get 105 frames.
f
4.3.3 Practical algorithm
The whole practical algorithm can be summarized as:
(t)
~
(t+1)
Input: new data sample ~
x
, current parameter estimates b
-com-
ponents sorted to have decreasing weights p
,initiallyM =0.
m
• background subtraction:
³P
´
b
— find B =argmin
p
> (1 - T
GM
)
(we use T
GM
=0.1)
b
m
m=1
f
f
GM
2
— if D
<T
and m 6 B it is a background pixel. Here D
=
m
m
b
T
(t)
~
~d
(t)
d
s
2
d
(t+1)
- b
/(b
)
(with~
= ~
x
~
µ
) is the Mahalanobis distance
m
m
m
m
m
GM
of the new sample from the m-th mode (we use T
=4)
b
• background update:
— for the first (the largest) ’close’ mode (D
<T
) update the pa-
m
g
rameters (we use T
=3):
g
(t+1)
(t)
(t)
* ˆ
p
p
p
=ˆ
+ a(1 - ˆ
) - ac
(where c
=0.01(3 + 1) for
m
m
m
T
T
3-dimensional data)
(t+1)
(t)
(t)
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p
~
µ
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~
µ
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)~d
m
m
m
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(t)
~d
(t+1)
(t)
(t)
2
2
2
* (b
s
)
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s
)
+(a/ˆ
p
)(~
d
- (b
s
)
)
m
m
m
m
m
m
* sort the mode so that we again have decreasing weights p
m
— for all other modes:
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(t+1)
(t)
* ˆ
p
=(1- a)ˆ
p
- ac
m
m
T
(t+1)
* deletion rule: if ˆ
p
< 0 discard the component m (M =
m
M - 1)
— generation rule: if not ’close’ to any of the components (min(D
) >
m
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= ~
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)
=
g
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M+1
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2
s
, M = M +1
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(t+1)
~
Output: new parameter estimates b
Two subparts of the algorithm are: the background update and the back-
ground subtraction. Additionally from time to time we need to update the
2
initialization variance s
, equation (4.4) (a histogram can be used to find the
0
median). We also need to specify the maximum number of components M
p
s
and reserve the memory for the ˆ
-s, b
~µ
-s and b
-s. In practice a maximum
m
m
m
of 4 components is enough.
4.4 Non-parametric k-NN background model
Here, we analyze the nonparametric density estimation techniques for the
background subtraction.
4.4.1 Model
The non-parametric methods estimate density function without making as-
sumptions about the form of the density function. A popular non-parametric
method is the kernel based estimation [20, 16]. The kernel estimate is con-
structed by centering a kernel K at each observation. To suppress the in u-
ence of the old data we again use the exponentially decaying envelope and for
practical reasons we disregard the old samples having little in uence:
X
t
(n)
t-n
p
p(~
x) ~
K(~
x; ~
x
,D), with p
=(1- a)
(4.5)
n
n
n=t-K
If we decide to throw away the samples that have less than 10% in uence with
(t)
respect to the in uence of the newest sample ~x
we get:
K =[log(0.1)/ log(1 - a)]
where [.] is the ’round-to-integer’ operator. The model is presented by the set
of K samples from the recent history. The in uence of a sample depends on its
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weight p
and the space where the in uence of a sample is present is controlled
n
by D.ToobigD leads to an oversmoothed solution where the close structures
are merged together. Too small D leads to a very noisy and spiky estimate of
the density function. The parameter D is called the smoothing factor or the
bandwidth. While in practice the kernel form K has little in uence, the choice
of D is critical [1, 28]. However, it is easy to avoid this problems by using
another standard non-parametric approach: the k nearest neighbors (k-NN)
density estimate. The logic of the k-NN estimate is in a way opposite to the
logic of the kernel estimates. The k-NN estimate is obtained by increasing the
D until certain amount of data is covered by the kernel. In this way we get
larger kernels in the areas with small number of samples and smaller kernels in
the densely populated areas which is a desirable property. Usually the uniform
kernel is used. The needed size of the kernel defined by its diameter D is used
as the density estimate:
d
p(~x) ~ 1/D
where d is the dimensionality of the data. Using the k-NN estimates as density
estimates leads to some practical problems, but using the k-NN estimates for
the classification purposes, as needed here, is straightforward and often used
[2]. The parameter we need to set is the number k of the nearest samples.
One nearest neighbor is often used. To be more robust to some outliers we
use k =[0.1K].
4.4.2 Modifications for background subtraction task
We propose a practical background subtraction algorithm here based on the
non-parametric k-NN density estimate.
Time and memory e cient
The number of samples K in the model will be usually much larger than
the number of clusters when the Gaussian mixture is used. For example for
amoderatea =0.001 we need K = 2301 samples which is far too much
since it means keeping all this samples for each image pixel. However, if we
don’t include samples from every incoming frame we could still have samples
from a wide time span with a reasonable total number of samples. Following
this idea we also note that instead of changing the weights p
it is possible to
n
approximate the exponential envelope by appropriately changing the frequency
of adding new samples to the model. In figure 4.1 we present an approximation
with three steps for a =0.001. The samples from the past are divided into
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Figure 4.1: Approximation of the exponential envelope
three groups. Each group stands for 30% of the total area under the envelope
(the last 10% - the oldest samples - are not considered as mentioned before).
The total number of frames per group can be calculated as:
K
=[log(0.7)/ log(1 - a)]
short
K
=[log(0.4)/ log(1 - a) - K
]
mid
short
K
=[log(0.1)/ log(1 - a) - K
- K
]
long
mid
short
If we decide to use for example N = 10 samples per group we will have a total
of K =3N = 30 samples. A new sample is added to the short-term group
after every K
/N frames. The mid-term group gets the oldest one from the
short
previous short-term group every K
/N frames. The long-term group gets a
mid
new sample (the last one from the previous mid-term group ) every K
/N
long
frames. In this way we get the recent history most densely sampled but we
still keep some of the old samples in the mid and long-term groups.
The background subtraction is now implemented in a simple way. For a
NP
(t)
specified threshold T
, the new sample ~
x
belongs to the background:
b
Ã
!
X
K
NP
D
>T
> k
n
b
n=1
where squared distance of the new sample ~
x
(t+1)
from the model sample ~x
(n)
2
(n)
(t+1)
T
(n)
(t+1)
is calculated by D
=(~
x
- ~
x
)
(~
x
- ~
x
). The notation we used
n
NP
assumes that the result of the operation D
>T
is equal to 1 if it is true and
n
b
0 if it is false. It is important to note that as soon as the sum is equal to k we
can stop calculating the sum. Usually many pixels belong to the background
and in this way we don’t need to always go through all the samples.
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Adaptive
Again, the in uence of the old data is controlled by the constant a.Theap-
proximation with three groups of samples is described previously. The para-
metric approaches are usually sensitive to the initial conditions. On the other
hand the non-parametric approaches don’t have these problems.
Automatic learning
The heuristic described in section 4.2 used to suppress the in uence of the in-
truding objects on the background model can be implemented in the following
(1)
(K)
way. Besides the samples ~x
,...,~
x
from the model, we keep also a set of
(1)
(K)
(n)
corresponding indicators b
,...,b
. The indicator b
indicates if the saved
(n)
sample ~
x
belongs to the background model. All the samples give the p
b+f
(k)
estimate and only the samples with b
= 1 give the background model:
Ã
!
K
X
(k)
NP
b
(D
>T
)
> k
n
b
n=1
(t+1)
When we add a new sample ~
x
to the model the corresponding indicator
is set to:
Ã
!
Ã
!
X
K
X
K
(k)
NP
NP
NP
if
b
(D
>T
)
> k or
D
>T
> T
n
n
b
b
f
n=1
n=1
then b =1,otherwiseb =0
If a new object remains static it will take some time before it can become
the part of the background. Since the background is occluded, the number of
samples in the model corresponding to the object will be increasing. We could
expect the new samples to be close to each other. If the neighborhood defined
NP
NP
by t he T
is large enough we could use T
=[0.1K ] as a corresponding
b
f
GM
value to the va lue T
=0.1discussedfortheGaussianmixture. Inasimilar
f
NP
way, approximately after log(1 - T
/K)/ log(1 - a) frames, the threshold
f
T
NP
will be exceeded and the new samples start to be included into the
f
background model (the b-s are 1). In the Gaussian mixture case the new object
is usually presented by an additional cluster that is immediately included into
the background model. However, since the data is not clustered for the non-
parametric method it will take additional time log(1- k/K)/ log(1- a)before
the pixels corresponding to the object start to be recognized as the background.
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NP
For a =0.001, T
=[0.1K]andk =[0.1K] it will take approximately
f
2 · 105 = 210 frames.
4.4.3 Practical algorithm
The whole practical algorithm is given by:
(t+1)
(1)
(K)
Input: new data sample ~
x
, the samples from the model ~x
,...,~
x
,
(1)
(K)
corresponding indicators b
,...,b
, for initialization we put values from the
first frames into the model and the b-s to 1.
indicator b issetto1if((k
> k)or(k
> T
)), otherwise
b
b+f
f
NP
b =0(weuseT
=[0.1K])
f
(1)
(K)
Output: updated set of samples ~
x
,...,~
x
and the corresponding indi-
(1)
(K)
cators b
,...,b
.
We suggest the value T
NP
=4s
as a reasonable threshold value. Here s
0
0
b
is the mean variation of the pixel values mentioned previously, equation (4.4).
Initially we need to select the number of samples per group N and reserve
the memory for the K =3N samples. For the Gaussian mixture we needed
to set the upper limit for the number of components but it had no important
in uence on the results. However, the number of samples K is an important
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parameter here. More samples lead to more accurate results. However this
also leads to slower performance and a large amount of memory is needed for
the model.
4.5 Evaluation and comparison
Evaluating and comparing computer vision algorithms is a di cult task. We
analyze the evaluation problem and present some experiments to evaluate and
compare the two proposed algorithms.
4.5.1 Fitness/cost measures
Usually it is not possible to capture the algorithm’s e ectiveness in a single
measure (except for some very specific applications). Background subtraction
can be regarded as an image segmentation algorithm. Many di erent fitness
measures are used [26, 31]. The three important fitness/cost measures for our
problem are:
• true positives - percentage of the pixels that belong to the intruding
objects that are correctly assigned to the foreground.
• false positives - percentage of the background pixels that are incorrectly
classified as the foreground.
• processing time - the reported processing time is measured on a Pentium
4 at 2GHz and normalized to the time needed for an 320 × 240 image.
4.5.2 Performance analysis
To illustrate and later also analyze the performance of the algorithms we used
adi cult scene. There was a monitor with rolling interference bars in the
scene. The plant from the scene was swaying because of the wind. The im-
age sequence we used contains the typical situations an adaptive background
subtraction algorithm should deal with [25]. In figure 4.2 we show some inter-
esting frames from the sequence and the results of the background/foreground
segmentation for both algorithms. We used the typical parameter values we
suggested before. To get comparable results we used K =21forthenon-
parametric model ( N = 7 samples for each of the three groups described in
section 4.4). First, in figure 4.2a we show that the object (the hand) remaining
still for some short time does not in uence the background model. The hand
was not moving for about 70 frames and at frame 405 it was still not included
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into the background. We used a =0.001 (see the discussion in section 4.4).
In figure 4.2b we show the situation at frame 440 just after the cup was re-
moved from the scene. The new background from behind the cup is classified
as foreground in the beginning. However, after enough time has passed, at
frame 640, this problem is solved as shown in figure 4.2c. In figure 4.2d we
showthelastframeofthesequencethatisusedforevaluationlater. Wecan
conclude that both algorithms can deal with common background subtraction
problems in a proper way.
In order to better understand the performance of the algorithms we also
show the estimated background models for some characteristic pixels at some
characteristic frames in figure 4.3. For the Gaussian mixture, we plot a sphere
for each component of the mixture that is part of the background model (first
B components, see section 4.3 ). The points within the presented spheres are
GM
classified as background for the suggested threshold T
= 4. For the non-
b
NP
parametric model, we present the corresponding T
=4s
spheres around
0
b
the samples that are part of the model (the indicators b = 1, section 4.4). Since
k =[0.1 · K]=2,adatasampleisclassified as background if it is included
in at least two of the presented spheres (two nearest neighbors). First, in
figure 4.3a we show both models at frame 405 for a pixel from the area of the
monitor that was occluded by the hand. Because of the interference bars on
the monitor we notice a clear bi-modal form well captured by both models.
We observe that the new pixels values from the hand (the cluster of points
left-below in the graphs) had not in uenced the background model. The non-
parametric model had included some samples from this group but they were
marked with b-s equal to 0. The Gaussian mixture had an additional Gaussian
to model these points with p
=0.069 at this point of time which was not
3
enough to be a part of the background (B was 2). Further, in figure 4.3b we
show the models for a pixel from the area of the removed cup at frame 640.
The new background is now a part of both models (the upper group of pixel
values in the graph) and there is a part (the lower cluster) of the both models
describing the old pixel values while the cup was in the scene. Finally, in figure
4.3c we show the models for a pixel from the area of the waving plant. The
GM model again used two Gaussians to model this complex distribution. We
notice that the GM with the simple covariance matrix is sometimes a crude
approximation of the true distribution.
We used the last frame from the sequence, figure 4.2d, to further analyze
the performance of the algorithms. The frame is manually segmented to gen-
erate the ground truth. The result of the segmentation for both algorithms
is compared to the ground truth by counting the true positives and the false
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frame 405 segmented - Gaussian mixture segmented - non-parametric
a) the object stays still for some time
frame 440 segmented - Gaussian mixture segmented - non-parametric
b) just after removing an object (the cup) from the scene
frame 640 segmented - Gaussian mixture segmented - non-parametric
c) the background is adapted (the part behind the removed object)
original image - frame 840 segmented - Gaussian mixture segmented - non-parametric
d) object in the scene without shadow - used for evaluation
Figure 4.2: Typical situations
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GM NP
a) pixel (288,128), frame 404 - the monitor occluded by the hand for some time
GM NP
b) pixel (221,197), frame 640 - the removed cup
GM NP
c) pixel (283,53), frame 840 - the waving plant
Figure 4.3: Example models
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Figure 4.4: ROC curve
GM
NP
positives. This is done for di erent values of the thresholds T
and T
.
b
b
The results are plotted as receiver operating characteristic (ROC) curves in
figure 4.4. The ROC curve is a standard way to present and analyze the
discriminative power of an algorithm [4]. We see that both algorithms are
performing similarly. However, since as we noted (see for example figure 4.3c)
the NP model is more  exible and therefore often much closer to the true
distribution, for small thresholds (upper part of the curves) the NP method
is performing better. The common problem of the k-NN approach is that the
model tends to be too specific if it is based on a small number of samples as
here. Therefore we observe somewhat better suppression of the noise (bet-
ter generalization) for the simpler GM model for larger threshold values (GM
curve is more to the left). In the paper we suggested some reasonable values
GM
NP
for the thresholds T
and T
. The operating points selected in this way,
b
b
as indicated on the ROC curves (figure 4.4), present a reasonable initial choice.
However, the optimal choice for the thresholds will depend on the application
and the needs of the further processing.
Since the processing time is important we plot the ROC curves with the
corresponding measured time, figure 4.4. We observe that the processing time
of the NP model depends on the threshold value. For a background pixel
we stop calculations as soon as we find its k nearest neighbors. However, for
smaller threshold values (upper part of the curve) we need to check more of the
samples from the model searching for the k nearest neighbors. Similarly, the
increase of the processing time is also present when there is a large foreground
object in the scene. In figure 4.5 we present the measured processing time
for the whole sequence. We observe that also the GM model needs more time
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when a foreground object is present (in the middle of the sequence and at the
end) since new components are generated to model the foreground. We observe
a larger variation of the processing time for the NP model. These variations
for the NP model are even larger if we use more samples as a model.
4.5.3 Parameters and comparison
The algorithms usually have a number of parameters which need to be set by
the user. For di erent parameter values the algorithm performs di erently.
GM
NP
The final background threshold T
(here T
and T
)isanexampleofa
b
b
b
parameter that has a great in uence on the results. Plotting the false positives
and the true positives for di erent thresholds as a ROC curve is a standard
way to present the discriminative power of an algorithm free of the threshold
value. A generalization is the Pareto front [15] that was used recently in [13]
for evaluating and comparing the segmentation algorithms. The Pareto front
for an algorithm is a surface in the fitness/costs space that corresponds to
the best possible results for all possible parameter values. The fitness/cost
measures we use are: the true positives, the true negatives and the processing
time, as presented at the beginning of this chapter. Extensive search of the
parameter space should be done. For the presented algorithms we construct
a simple sketch of the Pereto front. We suggested the values for most of the
parameters of both algorithms. Except the final threshold T
,afreeparameter
b
for both algorithms is the parameter a that controls how fast the algorithms
can adapt to new situations. To simplify the procedure, and since the meaning
of the parameter a is clear and it has the same in uence on the performance
of both algorithms, we use fixed typical values a =0.001 for slow changing
scenes and a =0.005 for more dynamic ones. The frames near the end of
the sequence are used for analysis to avoid the in uence of the transitional
processes.
Since there are no free parameters that directly in uence the processing
time for the GM model, the Pareto front for our sequence looks like it is
presented in figure 4.6a. On the other hand, for the NP model we have to
choose the number of samples N per group. The number of samples has
a direct in uence on the processing time and on the accuracy. Therefore,
for the NP model we measure the true positives, the false-positives and the
NP
processing time for di erent threshold values T
and for di erent N (from
b
1 till 15). The results are summarized in figure 4.6b. Finally, to compare the
algorithms we plot the both Pareto fronts on a same graph in figure 4.6c. The
two surfaces are close to each other, but the NP method mostly outperforms
the GM method.
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In figure 4.7 we show the results on two other sequences. Since the object
in the sequences are much more dynamic we used a =0.005. The results
illustrate that the performance is highly dependent on the situation. First,
a standard tra c scene is used. This was a rather simple background scene
without any dynamic elements. However, it was hard to distinguish the car
left-down from the road because of the similar colors. This led to worse results
than for the previous much more di cult scene (the monitor and the waving
plant). For this scene the GM performs a bit better than the NP method as
illustrated in 4.7a. The rather crude GM approximation seems to be good
enough for this situation. Usually, a single Gaussian is used to model each
pixel. This also leads to less processing time. The second sequence is the very
di cult waving trees sequence used in [5]. The results are much worse than for
the previous sequences, but both algorithms can deal with the dynamic nature
of the scene and it is possible to track the person walking behind the trees.
However, because of the complex pixel value distributions we observe that
the NP is now performing much better, figure 4.7b. Because of the dynamic
nature of the scene the processing time is also much higher. The GM needed
19ms per frame on average. The performance of the algorithms depends on
the situation. In general for more challenging scenes where the pixels have
complex distributions the NP approach seems to be a better choice.
4.6 Related work
We analyzed the common simple pixel-based background subtraction. There
are many aspects of the background subtraction task that are not considered
here. We list some possible improvements:
• spatial correlation - A pixel value is not independent of the values from its
neighboring pixels. Taking this into account could lead to big improve-
ments. Usually this fact is used in some way in some postprocessing
steps (disregarding the isolated pixels or some other morphological op-
erations on the segmented images etc.). Some examples could be found
in [5].
• temporal correlation - A pixel value is not independent of the values the
pixel had previously. An approach taking this into account is presented
in [25]. There, the pixel value distribution over time is modelled as an
autoregressive process. In [11] the Hidden Markov Models [19] are used.
• higher level knowledge - The background subtraction module is just a
part of a larger system. The results from the background subtraction
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Figure 4.6: Constructing Pareto front for the ’cup’ sequence
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are propagated to the higher level modules. Use of this higher level
knowledge could greatly improve the object detection. For example,
while tracking an object we could build a model of the object. This is
discussed for example in [9] and [29]. Furthermore, for certain situations
some appropriate higher level change detection schemes can be added to
boost the adaptation process (see [25] for example).
• shadow detection - The intruding object can cast shadows on the back-
ground. Usually, we are interested only in the object and the pixels
corresponding to the shadow should be detected [17].
For various applications some of the described additional aspects might be
important. Taking them into consideration could lead to some improvements
but, this is out of scope of this paper. Anyhow, many of the described improve-
ments could be implemented as appropriate postprocessing steps. Therefore,
the results presented can be used as an initial step for many of the presented
practical background subtraction schemes.
4.7 Conclusions
Two e cient methods are presented for constructing and updating the density
function of the background scene for each pixel. Some general principles for the
pixel-based background subtraction are first given. This principles were used
to derive the algorithms using some standard theory and some recent results.
The performance of the algorithms is analyzed in detail. Both algorithms can
deal with most of the standard problems of the background subtraction task.
Furthermore, the in uence of the few parameters of the algorithms is also
studied.
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Chapter 5
Two Video Analysis
Applications
This chapter addresses two applications. The first application involves detec-
tion and tracking of moving vehicles along a highway whose tra cisbeing
monitored using cameras. The second application is automatic analysis of
tennis game matches. The both applications have the background/foreground
segmentation as the basic video processing step.
5.1 Introduction
A huge amount of video material is produced daily: television, movies, surveil-
lance cameras etc. As the amount of the available video content grows, higher
demands are placed on video analysis and video content management. A gen-
eral review of the image based content indexing is given in [1]. The video
indexing is reviewed for example in Brunelli et al [2].
Probably the most frequently solved problem when videos are analyzed is
segmenting a foreground object from its background in an image. After some
regions in an image are detected as the foreground objects, some features
are extracted that describe the segmented regions. These features together
with the domain knowledge are often enough to extract the needed high-level
semantics from the video material. In this paper we present two automatic
systems for video analysis and indexing. In both systems the segmentation
of the foreground objects is the basic processing step. The extracted features
are then used to solve the problem. The first system (described in the next
section) is a tra c video analysis system. The foreground objects that need
to be detected are the vehicles on a highway. Usually, there is a huge gap
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(“semantic gap”) between the low-level features extracted from the foreground
objects and the high-level concepts. However, for this domain it was possible
to manually map the extracted features to the events that need to be detected
(high-level concepts) in a simple way. The second system (section 3 of this
paper) analyzes videos of tennis games. It is di cult to manually generate the
mapping from the features to the high-level concepts. Therefore we exploited
the learning capability of Hidden Markov Models (HMMs) to extract high-level
semantics from the raw video data automatically.
Although very specific, the two applications have many elements that are
important for any surveillance/ monitoring system.
5.2 Tra cvideos
One of the many tasks of the Dutch Ministry of Transport is construction
and maintenance of dual carriage highways in The Netherlands. AVV is an
advisory organ that among others gathers statistical data on road usage for
tra c management and  ow control. Nowadays, the video camera equipment
is mainly used for dynamic goals, i.e. keeping control on what is going on.
The recorded videotapes are usually re-used every 24 hours. Workers in the
tra c control centers do not have time and capability to analyze the video
material for gathering the statistical data.
5.2.1 Problem definition
In the project “Secure Multimedia Retrieval” (SUMMER) attention has been
given to the possibilities of automatically extracting statistical data from traf-
fic video material. A number of events of interest for the AVV were defined.
The task was to automatically detect these events.
5.2.2 Object detection and feature extraction
A video camera was mounted above a highway, somewhere around the middle
of one side of the highway (see figure 5.1). One camera monitors one side of
the highway. The camera points in the direction of the tra c. The di culties
with the vehicles occluding each other are reduced if the camera is placed very
high. However, mounting the camera too high was not practical. Therefore,
the position of the camera was a compromise. The angle of the camera with the
respect to the road was also a compromise. When the camera is for example
parallel to the road we can see a long part of the road but the accuracy is
decreased and there is a large amount of occlusion between the vehicles. The
5.2. TRAFFIC VIDEOS
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view angle of the camera lens is another parameter that needs to be chosen.
The detailed analysis of the choices we made is given in [4].
Since the camera was static and the background scene was not changing
rapidly we used a background subtraction method described in the previous
chapter and also in [6]. See figure 5.1d and 5.1e for the results.
The camera intrinsic parameters (focal length, lens distortion parameters
etc.) were estimated using a calibration object and the technique from [5].
Some standard dimensions of the road were known. The 3D model was fitted
to the road to estimate the camera extrinsic parameters (position and orien-
tation). See figure 5.1a and 5.1b. The 3D model is also used to segment the
image into the driving lanes — figure 5.1c. We assumed that the road is a  at
surface which is usually true for a small part of a highway.
After the background subtraction, it is straightforward to detect the vehi-
cles that are entering the scene. Furthermore we also estimated the speed of
the vehicles. The bumpers of the vehicles were detected and tracked, figure
5.1f. Tracking techniques are the topic of the next chapters. We assumed that
the bumper is approximately at the same height from the road surface for all
the vehicles. Therefore, since the camera was calibrated, we could estimate
the speed of the vehicles. For details see [4].
5.2.3 Results
The following events are detected: unnecessarily left lane driving, slow tra c
on left lane, slow tra c on right lane, fast tra c on left lane, fast tra c
on right lane, left lane passing, right lane passing, lane change, vehicle on
emergency lane, truck on left lane.
The clips containing the events are automatically cut out from the raw
material and compressed. The clips and the statistical data have been stored
in a database and a user interface has been build to access the data and
the video images in combination with administrative data AVV has stored in
separate databases, such as data on accidents, tra c jams, road details, etc.
The tra c monitoring was previously analyzed a number of times, for
example in [3]. One of our contributions is in solving the occlusion prob-
lem by carefully choosing the camera parameters and position. Further, a
demonstration system is built to show the integration of di erent informa-
tion sources from di erent databases with the results from the tra cvideo
analysis system. There was a predefined set of events to detect. In the pre-
liminary experiments the system was able to detect the events from 4 hours
of video under di erent weather and tra c conditions. A demonstration
and some further details about the project are at the moment available at
72 CHAPTER 5. TWO VIDEO ANALYSIS APPLICATIONS
Figure 5.1: Vehicle segmentation and feature extraction: (a) Original image;
(b) Fitted 3D model; (c) Segmented road; (d) Original image and a vehicle;
(e) Segmented foreground; (f) Detected and tracked bumper of the vehicle.
5.3. TENNIS GAME VIDEOS
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Figure 5.2: Demo user interface
: www.cs.utwente.nl/~summer. A screen shot of the final interface is given
in figure 5.2.
5.3 Tennis game videos
The project ”Digital media warehouse system” (DMW) aims to advance scal-
able solutions to content-based retrieval technique in large multi-media databases
(see: www.cs.utwente.nl/ dmw).
5.3.1 Problem definition
A case study is done and the limited domain of tennis game videos was ana-
lyzed to demonstrate the extraction and querying of high-level concepts from
raw video data. The aim was to recognize di erent tennis strokes from the
ordinary TV broadcast tennis videos.
5.3.2 Object detection and feature extraction
From the whole video of a tennis game we use the game shots when the camera
is observing the whole field as in figure 5.3a. These shots can be automatically
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extracted from the video using a number of global image features and some
heuristics.
First step is to segment the player from the background. The camera was
not always static so the problem was solved in a di erent way. The initial
segmenting is by detecting the dominant color of the scene, figure 5.3b. The
remaining lines are removed using a 3D model of the scene that was fitted to
the scene automatically, figure 5.3c. An example of the final segmentation is
given in figure 5.3d. Details about the segmentation are given in [8].
Further, we extract some specific features characterizing the shape of the
segmented player’s binary representation. The moving light display experi-
ments from Johansson [10] demonstrated that people are able to recognize
human activities provided by relatively little information (motion of a set of
selected points on the body). Additional motivations for our approach are
some recent results in recognizing human activities from their binary repre-
sentations Fujiyoshi and A. Lipton [11] and Rosales and Sclaro  [12]. Besides
the standard shape features such as orientation (f
), and eccentricity (f
), we
1
2
extract the following features:
• The position of the upper half of the mask with respect to the mass
center (f
), its orientation (f
), and the eccentricity (f
). These fea-
3-4
5
6
tures describe the upper part of the body that contains most of the
information.
• A circle is centered at the mass center as shown in figure 5.3e. For each
segment of the circle, we count the number of pixels in the mask (f
).
7-14
This can be seen as a general approximate description.
• The sticking-out parts (f
) are extracted by filtering and finding
15-16
local maximums of the distance from a point on the contour to the mass
center. Only certain angles are considered as indicated in figure 5.3f.
The player position in the image was not used since it was not leading to
any improvement according to the experiments.
5.3.3 Results
Parts of video showing di erent tennis strokes were manually extracted. Auto-
matic extraction is also possible using the audio, see Petkovic (14) for further
elaboration. We used first order left-to-right discrete HMMs with 4 to 48
states. We used the k-means algorithm to divide the feature space into the
5.3. TENNIS GAME VIDEOS
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Figure 5.3: Player segmentation and feature extraction: (a) Original image;
(b) Initial segmentation; (c) Fitted 3D model; (d) Final segmentation; (e) Pie
features; (f) Skeleton features.
Fe atu re s\ Experiment 1a 1b 2
f
82 79 76
1-4
f
85 82 80
1-6
f
81 78 76
1-2,5-6
f
89 88 87
1-2,15-16
f
86 82 79
1-16
f
91 89 88
2-4,15-16
f
85 78 78
7-14
f
93 87 86
7-16
Table 5.1: Recognition results (%)
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discrete states - codebook. We tried various codebook sizes in the range of
8 - 80 symbols.
The first experiment we conducted had two goals: (1) determine the best
feature set and (2) investigate the person independence of di erent feature
sets. Hence, we have performed a number of experiments with di erent fea-
ture combinations. In order to examine how invariant they are on di erent
players (both male and female ones), two series of experiments have been con-
ducted: 1a and 1b. In the series 1a, we used the same player in the training
and evaluation sets, while in 1b HMMs were trained with one group of play-
ers, but strokes performed by other players were evaluated. In both cases,
the training and the evaluation set contained 120 di erent sequences. To be
able to compare our results with Yamato at al (13), we selected the same six
events to be recognized: forehand, backhand, service, smash, forehand volley
and backhand volley. In each experiment, six HMMs were constructed - one
for each type of events we would like to recognize. Each stroke sequence was
evaluated by all HMMs. The one with the highest probability was selected
as the result (parallel evaluation). In order to find the best HMM parame-
ters, a number of experiments with di erent number of states and codebook
sizes were performed for each feature combination. The recognition accura-
cies in table 5.1 (% of correctly classified strokes using parallel evaluation)
show that the combination of pie and skeleton features (f
)achievedthe
7-16
highest percentage in the experiment 1a. The recognition rates dropped in
experiment 1b as expected, but the combination of eccentricity, the mass cen-
ter of the upper part, and skeleton features (f
)poppedupasthe
2-4,15-16
most person independent combination, which is nearly invariant on di erent
player constitutions. The optimal result with this combination of features was
achieved with the codebook size of 24 symbols and HMMs with 8 states. For
this case and for our data set we present the number of true strokes and how
they were classified as a matrix in table 5.2 (confusion matrix). We observe
that the errors usually occur between the similar strokes as backhand volley
and backhand, forehand volley and forehand and also forehand and service.
Compared to (13), the improvement is around 20% (experiment 1b) ant it is
mostly due to improved, more informative, and invariant features (in the first
place the novel skeleton features and then the pie features). The improvement
we achieved is certainly more significant taking into account that we used TV
video scenes with a very small player shape compared to the close-ups used in
(13).
In the second experiment, we investigated recognition rates of di erent fea-
ture combinations using 11 di erent strokes: service, backhand slice, backhand
5.4. CONCLUSIONS
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true\rec. backh. foreh. service backh.vol foreh.vol smash
backh. 19 1
foreh. 22 3
service 3 43
backh.vol 2 8
foreh.vol 1 1 8
smash 2 8
Table 5.2: An example confusion matrix
spin, backhand spin two-handed, forehand slice, forehand spin, smash, fore-
hand volley, forehand half-volley, backhand volley, and backhand half-volley.
The training and the evaluation set remained the same as in experiment 1b,
only the new classification was applied. Although some strokes in this new
classi fication are very similar to each other (for example volley and half-volley
or backhand slice and spin), the performance (table 5.1, last column) dropped
only slightly.
5.4 Conclusions
In general, to be able to completely understand the video material, computers
need to achieve visual competence near the level of a human being. This is
still far beyond the state of the art. Nevertheless, for particular applications
it is possible to design systems that create the appearance of high-level un-
derstanding. A basic video analysis step is segmentation of the foreground
objects from the background. The usefulness and importance of this step is il-
lustrated in this paper. For two domains, tra c videos and tennis game videos,
we presented here two video indexing systems that automatically extract the
high-level concepts from the video using the segmented images.
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Measuring motion
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Chapter 6
Basic Image Motion
The problem considered here is how to select the feature points (in practice
small image patches are used) in an image from an image sequence, such that
they can be tracked well further through the sequence. Usually, tracking is
performed by some sort of local search methods searching for a similar patch
in the next image from the sequence. Therefore, it would be useful if we could
estimate ’the size of the convergence region’ for each image patch. It is less
likely to erroneously calculate the displacement for an image patch with a
large convergence region than for an image patch with a small convergence
region. Consequently, the size of the convergence region can be used as a
proper goodness measure for a feature point. For the standard Lucas-Kanade
tracking method we propose a simple and fast method to approximate the
convergence region for an image patch. A ’scale-space’ point of view is also
mentioned. In the experimental part we test our hypothesis on a large set of
real data.
6.1 Introduction
The term ”feature point” denotes a point in an image that is su ciently di er-
ent from its neighbors (L-corner, T-junction, a white dot on black background
etc.). The position of a feature point is well defined and this is useful in many
applications [17]. An important example is the simple ’optical  ow’ pr oblem
[10, 2] where the task is to find, for a feature point from one image, the corre-
sponding point in the next image from a sequence. Usually it is assumed that
some small neighborhood is also moving together with the point and therefore
a small image patch around the point can be considered. When the displace-
ments are small, the Lucas-Kanade algorithm [15] is commonly used to search
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for the similar patch from the next image. Furthermore, it is often useful to
track the feature points further through the sequence. The positions of the
tracked feature points are used for example in [3, 20] or in the ’structure and
motion’ algorithms [22, 1, 9].
The errors that occur during tracking should be detected. The task of
’monitoring’, i.e. checking whether the points from a sequence that are found
still look similar to the original feature point, is discussed in [21, 18] and
further elaborated in [6, 11]. Furthermore, the false measurements can also
be detected on a higher level of the processing chain, for example when the
measurements are combined into 3D structure and motion estimates (see [9]).
The problem considered in this paper is how to select the feature points from
the initial image that are less likely to lead to false measurements (therefore
suitable for tracking). Feature point selection strategies are analyzed and
evaluated many times [17]. However, the selection in the important tracking
context was not often analyzed previously. In [23] there is a tracking evalua-
tion experiment for a few corner detectors. In [21] the Harris corner operator
[8] is analyzed in connection with the accuracy of the matching (summarized
in section 6.2). Standard feature point operators (usually corner detectors)
give a numerical value, the so-called interest response (IR), at a pixel loca-
tion based on the intensity values from the local image neighborhood. The
points with high IR are the possible feature point candidates. The IR of the
standard feature point detectors is related to the accuracy of the matching.
However, tracking involves also some other factors. The practical tracking is
performed by some sort of local search which might not converge to the cor-
rect solution. Furthermore, similar structures in the neighborhood can lead
to mismatching that is hard to detect. With larger movements in the image
(low temporal sampling) we can expect the mismatching problem to occur of-
ten. We propose an additional goodness measure, ’the size of the convergence
region’ (SCR), for the selected points which can help to identify and discard
the point candidates that are likely to be unreliable. In section 6.3, for the
Lucas-Kanade tracker we propose a simple method for estimating the SCR for
a feature point. We show how this can improve the standard feature point
detectors. We use two common, simple and fast corner detectors: the Harris
corner operator (many times evaluated the best) and the recently often used
SUSAN corner detector [19] (which is based on quite di erent principles). For
the selected corners we estimate the SCR and show that the points with small
SCR are usually the points that are erroneously tracked. For evaluation we
use a large set of data with ground truth. In section 6.6, we further analyze
the problem and propose yet another simple method that can lead to im-
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provements. In this paper we considered the common Lucas-Kanade tracker.
However, the main idea could be useful, if appropriately applied, for numerous
other tracking/matching schemes.
6.2 Image Motion
The simplest and often used approach for calculating the movement of a small
image patch from an image I
is to search the next image I
for a patch that
0
1
minimizes the sum of squared di erences [10, 2]:
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where W is the window of the feature (interest) point under consideration,
T
~x
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]
presents the 2D position in the image plane and ~
d is
im
im
im
the displacement between the two frames. In practice the integration denotes
simply summing over all the image pixels within the patch.
If we use a truncated Taylor expansion approximation in (6.1), we can find
~
d that minimizes the sum of squared di erences by solving:
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(~
x
) are the derivatives of I
in the x
and the
x
im
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direction at the image point ~
x
. The dependence on ~
x
is left out for
im
im
im
simplicity.
The Lucas-Kanade procedure [15, 14] minimizes (6.1) iteratively. The
solution of the linearized system (6.2) is used to warp the new image I
and
1
the procedure is repeated. This can be written as:
-
e (k), with ~
~
-1
d(k +1)= ~
d(k)+Z
d(0) = 0 (6.5)
where ~
d(k) presents the estimated displacement at the k-th iteration. Equation
e (k) (linear interpolation
(6.4) with the image I
warp ed usin g ~
d(k)givesus-
1
is usually used). The described algorithm is the Gauss-Newton minimization
procedure (see [5], chapter 6).
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The image derivatives and the matrix Z are calculated only once [7]. Sys-
tem (6.2) is solved in each iteration using the same matrix Z.Thereforethe
matrix Z should be both above the noise level and well-conditioned. This
means that the eigenvalues
,
of Z should be large and they should not
1
2
di er by several orders of magnitude. Since the pixels have a maximum value,
the greater eigenvalue is bounded. In conclusion, an image patch can be ac-
cepted if for some predefined   we have:
IR
=min(
,
) >   (6.6)
Harris
1
2
The presented formulation is given in [21] (the Harris corner detector was
2
originally implemented as det(Z) - atrace(Z)
where a is a constant).
6.3 Estimating the convergence region
*
*
We denote the true displacement by ~
d
and define ~
x(k)= ~
d
- ~
d(k). In the
ideal case (no noise and no deformations) the minimized function (6.1) can
T
be locally approximated by J(~
x) ˜ ~
x
Z~x. This is another way to interpret
the Harris operator given by (6.6). Here we introduce the notion of ’the
convergence region’ for a selected point, which is more global in nature.
The iteration equation (6.5) can be rewritten as:
-
e (k), with ~x(0) = ~
-1
*
~
x(k +1)= ~
x(k) - Z
d
(6.7)
First we define:
V (~
x)=k~
xk (6.8)
Successful tracking would mean that
V (~
x(k)) = k~
x(k)k   0fork  8 (6.9)
The convergence region is the domain where for each initial displacement
~x(0) the tracking process converges. The size of this region would be an
appropriate criterion to define how well the feature point could be tracked.
Suppose that we can find a domain S with the following properties:
~
x(k)   S,
V (~
x(k)) < 0and~
x(k +1)  S (6.10)
with
V (~
x(k)) = V (~
x(k +1))- V (~
x(k)). Convergence is guaranteed within
S since what we state is simply that we want to always move closer to the
solution. Our function V (~
x) is symmetric and monotonously increasing with
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k~
xk.Ifwefind the point ~
x
closest to the origin for which
V (~
x
) > 0, the region
c
c
k~
xk < k~
x
k will have the mentioned properties. The distance k~
x
k can be used
c
c
to describe the size of the estimated convergence region and consequently it is
a proper feature point goodness measure denoted further as IR
.
SCR
In figure 6.1 we present an illustrative example. We selected 30 ’corner-like’
feature points (7 × 7 pixels image patches). After a circular camera movement
some of the feature points were erroneously tracked (black boxes). From the
scatter diagram we observe that the radius of the estimated convergence region
(x-axis,IR
in pixels) discriminates the well tracked and the lost feature
SCR
points. We also see that the smaller eigenvalue does not carry this information
(y-axis, relative IR
value with respect to the largest).
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Figure 6.1: An illustrative experiment
The theory presented here is inspired by the nonlinear system analysis
methods [24] and in this sense V (~
x) corresponds to theLyapunovfunction.
6.4 Implementation
The highly nonlinear function
V (~
x) depends on the local neighborhood of the
feature point. As an example see figure 6.1 (feature point 4). The function
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V (~x) is presented using a 0.5 pixel grid. We show also the estimated conver-
gence region k~
xk < k~
x
k (indicated by the circle).
c
In practical implementation, for each feature point we compute
V (~
x)for
some discrete displacements around the feature point till we find the first
V (~x) > 0:
-1
Input: I
, g
, g
, W , Z
, SS (an array of 2D displacements ~
d with non-
°
°
0
x
y
°
°
o
decreasing
° ~
d
°- we use 8 points (angular sampling every 45
)oncon-
centric circles with radiuses increasing in 0.5 pixel steps starting from
initial 0.5 pixel radius)
*
1. ~
x(0) = (~
d
=)SS(i)
e (window W from I
*
2. Calculate -
simulated using W shifted for ~
d
from
1
I
)
0
-
e (one Lucas-Kanade iteration step)
-1
3. ~
x(1) = ~x(0) - Z
4. If k~
x(1)k > k~
x(0)k (equivalent to
V > 0) return k~
x
k = k~
x(0)k
c
else {i = i +1;go to 1}
Output: IR
= k~x
k
SCR
c
The computational cost for a feature point is comparable with the com-
putations needed for calculating the movement of the point. In our case, the
average number of iterations (that are similar to the Lucas-Kanade iterations)
o
is 8(because of every 45
)·2(because of 0.5 pixel sampling steps)· averagek~
x
k.
c
Increasing the number of the angular or the radial sampling steps does not
lead to significant changes in the results we present in the next section while
decreasing the number of sampling steps degrades the results. Further, in our
experiments the algorithm was modified to stop when we find
V > 0forthe
third time (step 4 from above is modified) and for IR
we used the average
SCR
of the three distances k~
x
k. This leads to small improvements and also less
c
coarsely sampled results.
6.5 Experiments
The initial frames from the image sequences we used are presented in figure
6.4. The sequences are from the CMU VASC Image Database. The sequence
”marbled-block” used in [16] is added (complex motion - both camera and an
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object are moving). The sequences exhibit a variety of camera movements,
object textures and scene depth variations. Most of the sequences have 512 ×
480 format. The chosen sequences have very small displacements between
the consecutive frames. Therefore, it was possible to select and track the
feature points (7x7 pixel patches) for some short time. This was used as the
ground truth. To generate more di cult situations and some errors we start
again from the initial frame and calculate, for the selected feature points, the
displacement between the initial and i-th frame in the sequence (skipping the
frames in between) using the Lucas-Kanade procedure with fixed 20 iterations.
We c hoo se i so that per sequence for at least 20% of the feature points the
displacement is erroneously calculated.
First we selected ’corner-like’ points having IR
> 0.05. From ini-
Harris
tial 2143 points 754 lead to false measurements. We select the same number
of feature points using the SUSAN corner detector and get 876 ’bad’ points.
The worse performance of the SUSAN detector in the tracking context is in
correspondence with [23]. In our experiments we use the 3 × 3 Sobel operator
for the image derivatives. For the SUSAN corner detector we use usual 3.5
pixels radius circular neighborhood for the feature points (giving a mask W
containing 37 pixels). If I
is the intensity value at the center pixel the re-
C
6
sponse function is IR
=37/2- P
exp(-(I (~
x
) - I
)/t)
). Negative
SUSAN
im
C
W
values are discarded. For additional details see [19]. For our data, we have
empirically chosen t = 15. For both SUSAN and Harris detectors the feature
points are the local maxima but constrained to be at a minimum of 15 pixel
distance from each other.
During the selection we need to set a threshold and discard the features
point candidates having IR below the threshold. If we plot the results for
di erent thresholds we get a ’receiver operator characteristic’ (ROC) curve
that shows the discriminative power of the IR. For our data set with the
ground truth (total of 2143 feature points selected from the sequences) we
plot the empirical ROC curves (linear interpolation is used between the points
on the curve). A feature point belongs to the true-positives if it was selected
and it was well tracked. The false-positives are the points selected but lost.
Relative values are used (divided by the total number of the well tracked and
the ’bad’ ones respectively). The ROC curves in figure 6.2 show clearly the
large improvements when the new defined IR
is used.
SCR
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6.6 Feature points and scale
The problems with tracking usually occur when the points are selected in the
areas where we can find similar structures in the neighborhood. An example
is the feature point 4 presented in figure 6.1. Similar structures in the vertical
direction make this point highly unreliable (properly detected using the SCR).
If we blur the image (convolve with a Gaussian kernel with standard deviation
s), the close similar structures will merge and become indistinguishable [12].
For example the feature point 4 will be in an area that after blurring looks like a
vertical line and therefore not interesting anymore. For the problematic point
4 and the isolated and well tracked point 12, we show in figure 6.3 how the
IR
changes with blurring the image. Although initially the point 4 was
Harris
ranked more promising, after some blurring the point 12 is ranked correctly
as the better one. In conclusion, another simple method for detecting and
discarding the weak points is to blur the images and check if the points can
still be selected. The results using IR
with blurring (for di erent s)
Harris
are illustrated in figure 6.3 by plotting the ROC curves for our data set. The
optimal result for our data set was achieved using s =2.5andinfigure 6.3
we show that it is similar to the result using SCR. Although, as presented,
the feature point 4 can be correctly identified as unreliable by both proposed
criteria, IR
(Harris with blurring) and IR
do not describe the
Harris(s )
SCR
same e ects. Further improvement can be achieved by combining them. In
figure 6.3 we show also the ROC curve for the empirical combination IR
+
SCR
log(IR
). Finding the optimal combination is beyond the scope of
Harris(s=2.5)
this paper. In table 6.1 we present the values for the area under ROC curve
(AUC) [4] for all the presented experiments.
We propose to use the new defined IR
and IR
as an additional
SCR
Harris(s )
check for the feature point candidates selected initially using a standard corner
detector (IR
). Using only the IR
to directly select the points is not
Harris
SCR
advised since it does not consider the accuracy of the matching. Besides,
computing IR
for all the image pixels is computationally expensive. One
SCR
might suggest to use the blurred IR
to directly select the points.
Harris(s )
However, blurring images changes the positions of the detected corners (local
maxima) [12, 13]. The corners detected in the blurred images might not have
in the original images where the
the desired properties described by IR
Harris
tracking is actually done. For example, detecting corners in the blurred images
using s =2.5 leads to a large number of points that are highly unreliable when
we look the original images. The best result for our data set obtained with
s =1.5(figure 6.3 and table 6.1) is still quite poor compared to the other
proposed methods.
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6.7 Conclusions and recommendations
The problem of estimating the motion of a feature point has two aspects: the
accuracy of the result and the convergence of the tracker. The accuracy is
well addressed by the standard feature point detectors. The corner-like points
can be accurately matched. The Harris corner operator is a nice example.
A well conditioned matrix Z assures low sensitivity to the noise but only
if the tracking converges. Our new goodness measures are related to the
convergence of the tracker. Consequently, the new measures should be used
as an additional check to improve the selection. Practically, the e ect is that
the ’clean’ corners, like L-corners from a structure in man made environment,
that are usually fairly stable during tracking are preferred. The feature points
from a local area with rapidly changing and inconsistent gradients are usually
unreliable and discarded by the new criteria. An important case are the areas
with repetitive structures (an example is discussed in the previous section).
Tracking can easily switch to a similar structure in the neighborhood and this
errors would be di cult to detect.
Having no prior knowledge about the scene we select small patches (here
it was 7 × 7 pixel) for tracking and assume no deformation between successive
frames. For the feature point candidates (local maxima of the IR
or
Harris
possibly IR
) we compute the additional IR
or IR
(blurred
SUSAN
SCR
Harris(s)
IR
is also possible) and discard the problematic ones. By blurring
SUSAN(s )
the images we consider a larger neighborhood of a feature point. When calcu-
lating IR
we use only the initial image and therefore also consider a larger
SCR
neighborhood. Although the ’no deformation’ assumption between frames has
less chance to be valid, using the larger neighborhood in this way seems to
be useful in practice. The AUC results (table 6.1) show large improvements
for the Harris detector IR
with the additional check using the IR
Harris
SCR
or the blurred IR
. The empirical combination of the new measures
Harris(s)
leads to even better results for our data set.
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Figure 6.2: Improvement using SCR
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Table 6.1: Area under ROC curve- comparison
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Chapter 7
3D Object Tracking
A simple method is presented for 3D head pose estimation and tracking in
monocular image sequences. A generic geometric model is used. The initial-
ization consists of aligning the perspective projection of the geometric model
with the subjects head in the initial image. After the initialization, the gray
levels from the initial image are mapped onto the visible side of the head model
to form a textured object. Only a limited number of points on the object is
used allowing real-time performance even on low-end computers. The appear-
ance changes caused by movement in the complex light conditions of a real
scene present a big problem for fitting the textured model to the data from
new images. Having in mind real human-computer interfaces we propose a
simple adaptive appearance changes model that is updated by the measure-
ments from the new images. To stabilize the model we constrain it to some
neighborhood of the initial gray values. The neighborhood is defined using
some simple heuristics.
7.1 Introduction
The reconstruction of 3D position and orientation of objects in monocular
image sequences is an important task in the computer vision society. This
paper concentrates on 3D human head tracking. The applications we have
in mind are: model-based coding for video conferencing, view stabilization
for face expression recognition and various possible human-computer interface
applications. Anyway, the approach proposed here can be applied in general
for rigid object tracking in 3D.
In the initialization procedure we align our generic geometric head model
with the observed subject’s head. This can be done manually, or automatically
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100 CHAPTER 7. 3D OBJECT TRACKING
by using some other algorithm [12]. For new images in the sequence, tracking
consists of estimating the human head pose with respect to this initial pose.
Because of the perspective projection of standard cameras it is possible to
estimate the 3D pose from the 2D image data. We use an initially aligned
generic geometric 3D head model. Therefore, as described later, the 3D pose
is estimated only up to a scaling factor. However, this is of no importance for
the applications we are considering.
The paper is organized as follows. Related work is presented in the next
section. Then the geometric part of our model based approach is described.
The adaptive radiometric model is presented in section 7.6. Finally, the whole
algorithm is described and some experimental results are discussed.
7.2 Related work
One of the big problems in tracking algorithms is the object appearance change
caused by movement under realistic light conditions. These e ects are usually
very hard to model. In almost all realistic situations light conditions are
complex and unknown.
Many 3D head tracking methods start from tracking some distinctive fea-
ture points on the head (for example eyes, nose, mouth corners etc.) in the
2D image plane [13]. The appearance changes caused by movement in realis-
tic light conditions are addressed by choosing appropriate similarity norms for
tracking the selected feature points. A generic 3D model is then fitted to these
2D measurement to estimate the 3D head pose. The biggest drawback is that
features can be lost because of occlusions or some other not modeled e ects.
Knowledge about the 3D object geometry can be used to predict feature point
occlusion and to recover it if it appears again. An attempt is reported in [11]
where they also used the 2D feature trajectories in a structure from motion
algorithm to update the generic 3D model geometry.
Another way is to use the generic 3D model geometry directly. This is
usually done by forming a textured 3D head model using the initial image
[1]. This textured model is then fitted to the data from the new images. We
also use the textured 3D model in this paper. In [10] the so called ’backward
procedure’ is proposed for fitting the model to the data where the roles are
switched and a new image is actually fitted to the model. This allows e cient
implementation since the needed derivatives (see section 7.7) are calculated
only once for the initial image. However, this is not possible for the adaptive
procedure we propose here. An e cient solution is obtained here by using
only a limited number of points on the object and the response of a Gaussian
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filter at these points as a model with reduced size.
In practice, because of complex light conditions, head movements intro-
duce large changes in the texture of the previously described textured 3D
head model. An approach is to form a large image database of the object
under various light conditions. Then a model should be constructed from
the data. This is usually done by finding a representative orthogonal linear
subspace using principal component analysis (PCA) [14] [9]. This subspace is
used to represent the whole database (all possible appearances of the object
when it moves in realistic light conditions). How much is a new image ”face
like” is calculated by measuring the distance from this subspace. This ”brute
force” method needs a long and hard to perform preparation procedure, which
is highly unpractical for real user interface applications. A textured cylindri-
cal model with PCA appearance changes modeling is presented in [7]. We
search here for other simpler and more appropriate solutions. In a typical
situation we have only one image of the object - the initial image. Then, using
some heuristics we define some neighborhood around the initial gray values to
constrain possible object appearance changes.
No big appearance changes are expected for small movements between two
consecutive images. We then try to use the gray levels from the new images
to update the 3D objects texture. This is somewhat similar to the methods
that use optical  ow (movement of gray level patterns in the images) as their
input [3]. Because of error accumulation these methods were not able to deal
with longer image sequences. Some solutions were proposed trying to prevent
this ’drift away’ [8] [15]. Our method constrains the texture appearance to the
neighborhood of the initial values and in this way prevents the ’drift away’.
7.3 Model based approach
We use a model-based approach where we try to find the best fit of the model to
the images in the sequence. The parameters we want to estimate are contained
in the vector:
T
~
q =[ xyzaß ]
(7.1)
where x, y, z describe the position and a,ß,   are the Euler angles describing
the head orientation in the camera coordinate system.
If we don’t take into account the previous history of the head movement
and we consider all the image pixel measurements equally important, the prob-
lem can be formulated as follows:
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Figure 7.1: The Geometric Model
Z
b
2
~
q = argmin
(
(model(~
q ) - currentimage)
) (7.2)
~
q
image
where integration is done over the whole image area and b~
q presents the esti-
mated pose parameters. Here, model(~
q ) presents the model generated image
and currentimage is the current image from the camera.
In practice, it is not feasible to have the complete model of the imaging
process. Therefore, we are bound to use a number of approximations. We
divide the model into two parts: a geometric part and a radiometric part.
These two parts are described in the next sections.
7.4 The geometric model
There are various ways to describe the geometry of 3D objects [2]. We use a
triangular mesh, the common representation supported by fast graphics hard-
ware. The mesh we use (Figure 7.1) is generated as an attempt to represent
the 3D geometry of a human head.
T
Let ~
x
=[x
y
z
]
present the position of a fixed point
obj,i
obj,i
obj,i
obj,i
i on the object’s surface in the camera coordinate system. This position, of
course, depends on the head pose ~
x
= ~
x
(~
q ). For simplicity of notation
obj,i
obj,i
we will further often omit ~
q.
We assume that the camera is calibrated. Therefore we know the per-
spective projection function ~x
= p(~
x
) of the camera lens system that
im,i
obj,i
projects the 3D point ~x
to the 2D image plane point ~
x
.Ifthecamera
obj,i
im,i
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doesn’t introduce any distortions we have:
"
#
· x
¸
x
o bj,i
im,i
z
~x
=
= p(~
x
)=f ·
(7.3)
ob j,i
y
im,i
obj,i
y
ob j,i
im,i
z
ob j,i
where f presents the focal length of the camera lens.
A generic geometric human head model is used. The size of the subject’s
head is unknown and we don’t want to complicate the initialization proce-
dure. Therefore, the initial position (contained in ~
q
) is known only up to a
0
scaling factor. As a consequence 3D head position is estimated only up to the
scaling factor. As mentioned before, this doesn’t present a problem for the
applications we are considering.
7.5 Problem definition
We de fine a set of test points on the object ~
x
. For our triangular mesh
obj,i
model we choose the centers of the triangles in the mesh as shown in Figure 7.1.
Our proposal is to check the fit of the model only at these object defined points
and not to try to reconstruct the image. This can heavily reduce the amount
of data to be processed and speed up the tracking algorithm. Therefore, our
problem (7.2) for the k-th image can be redefined as:
b~
P
q
=argmin
[ 1
k
w (i,~
q
)
~
q
k
k
i
X
w(i, ~
q
) (M
(i) - I
(p(~
x
(~
q
))))] (7.4)
k
k
k
obj,i
k
i
where the summing is done over all test points. Here, M
(i)presentsthe
k
model-predicted gray value to be observed when ~
x
is projected to the
obj,i
image plane and I
(p(~
x
)) is the actual observed value at that position in
k
obj,i
the current image. We search for the pose parameters b
~
q
that give the best
k
fit.
The meas urement s are weighted by:
w(i, ~
q
)=
k
½ A(i) · ~
x
· ~
n
, for ~
x
· ~
n
< 0
obj,i
obj,i
obj,i
obj,i
0, otherwise (7.5)
Apoint~
x
corresponds to a triangular patch i oftheobjectsurfaceas
obj,i
defined by the generic geometric model. The size of the patch is denoted by
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A(i). The current normal of the patch is described by ~
n
= ~n
(~
q
). In
obj,i
obj,i
k
total, the weight w(i, ~
q
) presents the visible size of the triangular patch i.
k
Note that occlusion by other triangular patches is not included in this model.
However we don’t expect such situations to occur often.
Because of many not modeled e ects some measurements can contain un-
expectedly high errors. Therefore, instead of the standard quadratic norm we
use the less sensitive Geman & McClure robust error norm:
2
(x)= x
(7.6)
1+x
2
/s
2
Here, s controls the di erence beyond which a measurement is considered as
an outlier [4].
7.6 The radiometric model
The radiometric model describes which gray value M
(i) is expected to be ob-
k
served in the k-th image when object point x
is projected onto the image
obj,i
plane. In general this depends on the local surface radiometric properties, local
surface orientation and light conditions. Approximate radiometric models ex-
ist [6] and theoretically M
(i) should then be written as: M
(i, ~
x
(~
q
),~
q
).
k
k
obj,i
k
k
However, the local surface properties are unknown. Also the lighting condi-
tions in real scenes are very complex in general and we are forced to use a
number of approximations.
7.6.1 Approximate radiometric mo dels
After initial alignment of the 3D object with the first image (k =0)inthe
sequence we can obtain the values M
(i) for the test points ~
x
visible for
0
obj,i
that head model pose:
M
(i)=I
(f(~
x
(~
q
))) (7.7)
0
0
obj,i
0
where the ~
q
presents the parameters selected to align the generic model with
0
the subjects head in the initial image.
Thesimplestapproximatemodelisthesocalledconstant brightness as-
sumption that predicts the gray value in the k-th image as:
cb
M
(i)=M
(i) (7.8)
0
k
This model is correct for Lambertian surfaces and with only ambient light
present, which is far from realistic. A simple relaxation is to allow global
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Figure 7.2: Function  (I
)forß =0.0004
k
brightness changes by adding a constant a to all points gray values. Further
approximation is to include linear brightness changes in the image plane over
the object.[5]. This crude model can be written as:
lin
M
(i)=M
(i)+a +[ bc] · ~
x
(7.9)
0
im,i
k
where we have a dot product of the vector [ bc] and image projection of
the i-th object point, vector ~
x
. The parameters a, b, c should be estimated
im,i
for each new image k.
We use this additive model to describe some global illumination changes.
Although this model does not need any preparation procedure, the changes in
the appearance of the human face are to complex to be well approximated in
this way. We introduce an adaptive model in the next section which allows
oating around this model.
7.6.2 Adaptive radiometric model
For small object movements between two consecutive images we don’t expect
large changes in appearance and the constant brightness modelcanstillbe
used. Then, an adaptive model can be formed. After model fitting on the
new image using the constant brightness assumption between two images, the
measurements from the new image can be used to update the model. The
predicted value for the next k + 1-th image becomes:
adaptive
adaptive
M
(i)=M
(i)+a · (innovation) (7.10)
k+1
k
adaptive
innovation = I
(p(~
x
(b~
q
))) - M
(i) (7.11)
k
obj,i
k
k
here constant a encodes our assumption that the gray value is not supposed to
change rapidly by taking into account the previous values with exponentially
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decreasing weights (1st order AR filtering). With this kind of innovation we
have the error accumulation problem but now low-pass filtered. For a =1this
is similar to some optical  ow approaches, and for a =0wegettheconstant
brightness assumption model.
The initially obtained values M
(i) contain the gray values for certain
0
head pose and illumination. We can try to use this measurements too to
form the innovation. A crude approximation of the appearance changes from
this initial values is the linear model described by (7.9). Our assumption is
that the gray values are not going far away from this model. We incorporate
this in the innovation by using the following combination of the current mea-
lin
surement I
(p(~
x
)) and linear model M
(i) which is based on the initial
k
obj,i
measurements M
(i):
0
(I
(p(~
x
))) =
k
obj,i
I
(p(~
x
))-M
(i)
l in
lin
+ M
(i) (7.12)
k
o bj,i
k
k
(1+ß·(I
(p(~
x
))-M
(i))
)
l in
2
2
k
o bj,i
k
The function   compresses the measured values I
(p(~
x
)) to some neigh-
k
obj,i
lin
borhood of the simple model M
(i) as presented in Figure 7.2. This is con-
k
trolled by the constant ß. Note that this function has actually the form of the
derivative (in uence function) of the robust norm introduced in (7.6).
Finally we define our adaptive model with:
innovation =  (I
(p(~
x
))) - M
(i) (7.13)
k
obj,i
k
This simple model encodes our two assumptions. First, the gray values are
not changing rapidly, controlled by the parameter a. Second, we approximate
lin
changes from the initial values M
(i) by a linear model M
(i)andassume
0
k
that the gray values remain in the neighborhood of this simple model , con-
trolled by the parameter ß. Only initial alignment of the 3D model is needed
to form the model.
7.7 Algorithm
For each new image we have to find the optimal head pose vector b~
q according
to (7.4). We already need the initial alignment of the 3D model. Afterwards,
we assume that there are no large changes in head pose between two successive
images and for each new image we use the previous head pose as the starting
position. Than we search for the nearest local minimum using Gauss-Newton
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iterative procedure. For determining image derivatives we use Gaussian ker-
nels. Our measurements are also done with Gaussian blurred image at the
same scale.
Note that (7.4) has also the weights w(i, ~
q
) described by (7.5) that depend
k
on the current pose ~
q
. For simplicity, we don’t include this in derivatives for
k
the Gauss-Newton iterative procedure. Anyway, this is included in the line
search part after we determine the search direction. Also, the robust norm is
included only as a weight factor in every iteration forming in total an iteratively
reweighted least square (IRLS) minimization procedure.
Further, the parameters a, b, c for the linear approximate radiometric model
should also be estimated. This could be done together with b~
q.Forsimplicity
we do this separately. Since (7.9) is linear with respect to its parameters this
is done in a single iteration. The same weights w(i, ~
q
) described by (7.5) and
k
the same robust norm (7.6) are used.
Finally the whole algorithm can be described as follows:
1. initialization
input: initial image I
and pose ~
q
0
0
output: initial texture M
(i)
0
• obtain M
(i) for the visible points according to the initial pose ~
q
0
0
2. tracking -
input: current image I
, current texture M
(i) and predicted pose ~
q
(=
k
k
k
~
q
in our case, we don’t use any temporal model for head movement
k-1
in this paper)
output: M
(i),~
q
, ~
q
= ~
q
k+1
k
k
k+1
• constant brightness assumption, find optimal ~
q
according to (7.4)
k
• fit the approximate linear model, find a, b,c
• update model, according to (7.10) and (7.12)
7.8 Experiments
Various experiments were conducted. Our unoptimized test version of the
algorithm was able to work at standard PAL 25 frames/second even on a
low-end Pentium Celeron 500MHz. The time needed for an IRLS algorithm
iteration was less than 10ms. We used three iterations per image and the
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Figure 7.3: Adaptive model and estimated angle   (roll rotation)
rest of the time was used for visualization. A cheap web camera is used that
gives 320x240 pixel images with a large amount of noise. Using few images
of known objects we approximately determined the camera focal length in a
simple experiment. The camera pixels are assumed to be squares. Smoothing
and di erentiation is done with Gaussian kernels (with standard deviation
=2). For the robust norm s =100isused.
7.8.1 Experiment 1
To illustrate the operation of the adaptive model we constructed an experiment
where the subject has rotated his head parallel the image plane (roll rotation)
and than remained in that position. We wanted to investigate only the in-
uence of the appearance changes. This kind of movement is chosen because
it doesn’t su er from the geometric model errors. The light conditions were
chosen to be not too di cult (no specular re ections and only small global
brightness changes). For better comparison instead of the linear approximate
lin
cb
model M
(i) in (7.12) we used only the constant brightness model M
(i).
cb
The adaptive algorithm (here only around M
(i)) for a =0.3andß =0.0004
could handle the changes but they were to big for the pure constant brightness
approach (a = 0 ) which diverged after some time. It was also quite instable
before it diverged (see Figure 7.3). For parameters a =1andß = 0 the adap-
tive model can drift away similar to some optical  ow approaches. As it can
be observed in Figure 7.3, after this short movement the model was already
not fitting the target properly.
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7.8.2 Experiment 2
We conducted a series of experiments in typical o ce conditions at various
locations. Some captures from the tests are presented in Figure 7.4. Di cult
light conditions caused large appearance changes. The movements were of
normal speed. Rapid movements can also be handled except for large out
the plane rotations (pitch and jaw rotations). Out the plane rotations of up
to approximately 35 degrees can be handled. This, however, depends on the
camera focal length and object -camera distance. Web cameras have usually
very small focal length and for this angle we could almost see only one half
of the head (see the figures). For the parameters a and ß we always used
a =0.3andß =0.0004 and that appeared to work good for various situations.
In future we plan to obtain ground truth data in order to investigate the
precision of the algorithm and the in uence of the parameters a and ß.For
the moment the results were checked only visually by backprojecting the 3D
mesh head model over the images. For bigger a the tracker relied too much
on the new measurements and tended to  oat away sooner. The parameter
ß describes how much the appearance can change. Too small ß (big changes
possible) allows the model to  oatawaywithtime. Atleastfortheinitial
pose (initial image) we would like to have the neighborhood defined by ß
small enough that the model can not  oat away. This can then be used as a
criterion for choosing an appropriate ß.
7.9 Conclusions
A real-time 3D head tracking algorithm is presented. A simple heuristic model
is used to describe the appearance changes caused by movement in realistic
light conditions. The algorithm was able to operate in various realistic con-
ditions using cheap low-end equipment. Together with an automatic initial-
ization procedure and reinitialization when the target is lost, the algorithm
seems to be a promising solution for a number of applications. The algorithm
heavily relies on the initial image. Therefore, small movements around the
initial head pose were handled the best. However, for many human-computer
interaction applications this would be exactly the way the system would be
used.
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Figure 7.4: Real time tracking
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Chapter 8
Conclusions
This chapter brings some final conclusions and some recommendations for
further research. Also some personal views and worries are presented.
8.1 Conclusions and recommendations
A number of important basic computer vision tasks are analyzed in this thesis.
Some improvements are proposed and a number of practical applications is
addressed. The focus was on the vivid area of the current computer vision
research called ’looking at people’ [4] and the related applications. Each of
the chapters of the thesis has its own set of conclusions. Some final remarks
are listed here.
The first part of the thesis (chapters 2 and 3) analyzed the problem of
recursive probability density function estimation. The finite mixtures as a
common  exible probabilistic model were used to model the incoming data
on-line. The proposed simple recursive algorithms seem to be able to e -
ciently solve ver y d i cult problems. Being able to automatically obtain a
compact statistical model of the data is of great importance for the develop-
ment of the intelligent systems. There are many possibilities for extending
the work from this part of the thesis. First, the result could be extended to
other hierarchical models (e.g. Hidden Markov Models). Furthermore, there
is a huge number of possible applications of the algorithm (for the moment
only the problem of background scene modelling is analyzed in chapter 4).
Note that the algorithms are based on a number of approximations and the
accuracy of the results can not be expected to be better than the standard
well-established and more elaborate methods. However, the presented fast
recursive solution can be essential for many real-time working systems. If bet-
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ter accuracy is required the algorithms could be still important to generate a
reasonable starting point for further refinement.
The second part of the thesis (chapters 4 and 5) studied the foreground/
background segmentation, a standard problem in many automatic scene analy-
sis appli cations. E cient solutions are proposed and analyzed for the standard
pixel-based foreground/background segmentation. Furthermore, the analysis
and the solutions for two practical problems are presented. The results are of
interest for the development of the monitoring/surveillance systems.
The third part of the thesis (chapters 6 and 7) is about image motion
and object tracking, also standard problems in the automatic scene analysis
applications. The object tracking is in practice realized by some local search
algorithm. Chapter 6 points out the importance of ’the region of convergence’
of the local search for the tracking problem. If the convergence region is large
we can expect robust results. Small convergence region is an indication of
possible unreliable tracking results. The principle is generally applicable but
it might be hard to estimate the convergence region. A simple solution is
presented for the simple but important problem of feature point tracking.
Because of the high complexity, the models that are used in computer
vision are very often learned from the data rather than hand generated. How-
ever, for many practical problems it seems that the human knowledge and
the hand generated models are indispensable. As an illustration of these two
paradigms, consider how one might represent a dancer. One extreme would be
to construct an articulated 3D model with texture-mapped limbs and hand-
specified degrees of freedom. On the other hand, we could use a large num-
ber of images of the dancer in M di erent poses from N vantage points, and
some general statistical model could be learned from this data. What are the
inherent strengths and weaknesses of these two approaches and how to com-
bine them are the important issues of the computer vision research of today.
Throughout this thesis the choices are made and the human generated and
learned models are combined on di erent processing levels. Two examples
are the solutions from chapter 5 for the two applications : tra c monitoring
and tennis game analysis. Chapter 7 analyzed some advantages of the sim-
ple human generated models and proposed an object tracking method. The
tone in this chapter was in favor of the human generated models. On the
other hand, the first part of the thesis proposed an e cient on-line learning
algorithm which might be applied for many purposes and could make the hand-
generated models less needed. The following joke is related to this situation:
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”A mathematician, a physicist, and a statistician are shooting on a target
using only one gun. The mathematician quickly calculates the distance, the
velocity, the angle, etc. and shoots. Well, he misses by an inch to the LEFT!
The physicist takes the gun. The physicist also takes into consideration the
gravity, air friction, and such things... and fires! Well, he misses by an inch
to the RIGHT! The statistician takes the gun, sets the gun position somewhere
in between the previous two attempts, fires and HITS THE TARGET!”
Although the statistician seems the smartest of the three, if there were not
the previous two close approximate shots, it would probably have been a long
time shooting around until he could hit the target.
8.2 Some general open issues and recommendations
The general goal of the computer vision research is to make the computer
aware of its environment. There are many application that could help people
in various ways. However, when many such perceptually aware machines, that
can be present everywhere, are connected together, we get a possibility to
concentrate information about people and a situation which closely resembles
George Orwell’s dark vision of a government that can monitor and control
your every move [3]. Every computer scientist should be aware of this and the
related issues and the possible applications of the developed techniques. Some
of the results from this thesis were used to design two interactive demos. The
demos can be shown on computer screen or using a projector as presented in
figure 8.2a. It is simple to create an illusion of a mirror in this way and provide
natural interaction. Such installations are also known as ’camera-projector’
systems. For some more elaborate technical solutions see [2, 5].
The first demo is using the techniques from the part two of this thesis to
detect and track people and ’shoot’ on them, figure 8.2b. Di erent scenarios
are possible. For example the goal of the game could be to perform some
tasks (move from one side to the other, seize some objects etc.) in front of the
camera moving fast and hiding from the camera to avoid being spotted. A
standard surveillance algorithm is presented in an amusing way but possible
misusages of such system are made very clear.
The second demo is related to the third part of this thesis. Motion is used
to play a shape sorting game. Additional image transformations are performed
as awards or when the game is over, figure 8.2c. The game is a tribute to the
Lucas-Kanade motion estimation technique [1] and the ’peg-in-hole’ problems
from computer vision. The human motion controls the game but the computer
also provokes the human motion and in a way also controls it.
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The two games were presented to many people. The result was many
smiling faces. Hopefully, the future computer vision research will aim mostly
at achiving similar results.
a) simple virtual mirror
intruder detection and tracking intruder destroyed
b) object detection and tracking game
shape sorting game over transformation as award
c) shape sorting game based on optical  ow
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Summary
“Motion Detection and Object Tracking in Image Sequences”,
Zoran
Zivkovi´c, Ph.D. thesis, University of Twente, Enschede, June 5, 2003.
The visual information is essential for humans. Therefore, among many di er-
ent possible sensors, the digital video cameras seem very important for making
machines that are aware of their environment and are able to act intelligently.
This thesis is related to the subjects: computer vision and artificial intelli-
gence. The focus in this thesis is on a number of basic operations that are
important for many computer vision tasks. The thesis is divided into three
parts: statistical modeling, motion detection and motion measurements. Each
part corresponds to one of the basic tasks that were considered. From the huge
number of possibilities the attention here is on the applications usually named
’looking at people’ where the goal is to detect, track and more generally to
interpret human behavior.
One of the reasons for the early success of the computer vision systems is
in proper application of the well-established pattern recognition and statistics
techniques. An intelligent system should be able to constantly adapt and learn
from the data it gathers from the environment. The first part of this thesis an-
alyzes the problem of recursive (on-line) probability density estimation. The
’finite mixtures’ and in particular on the mixtures of Gaussian distributions
are used. An algorithm is proposed that estimates the parameters and the
appropriate number of components in a mixture simultaneously. The new al-
gorithm is also less sensitive to the initial parameter values. A modified version
of the algorithm that can adapt to changes in data statistics is also presented.
The algorithm can be essential for many real-time systems to quickly get an
up to date compact statistical model for the data.
The scene analysis often starts with segmenting the foreground object from
the background. This basic image sequence processing step is the topic of the
second part of this thesis. If the statistical model of the scene is available the
foreground objects are detected by spotting the parts of the image that don’t
fit the scene model. The main problem is updating and adapting the scene
119
120
BIBLIOGRAPHY
model. Two e cient pixel-based foreground/background segmentation algo-
rithms are presented. Furthermore, two practical applications are analyzed:
atra c monitoring application and automatic analysis of the tennis game
matches. The results could be of interest to many professionals in the field
including archivists, broadcasters and the law enforcement sector. Although
very specific, the two applications have many elements that are important for
any surveillance/monitoring system.
Beside detecting the objects, tracking the objects is another basic scene
analysis task. The third part of the thesis considers first the related basic
image motion problem. The image motion or the ’optical  ow’ can be defined
as the movement of the image patterns in an image sequence. A common
problem is how to choose points in an image where the image movement can be
calculated reliably. There are some standard procedures to select the suitable
points. Most of them are more concerned with the accuracy, rather than with
robustness of the results. A way for estimating the ’region of convergence’ for
the image points is proposed. The size of the ’region of convergence’ can be
used as a measure of feature point robustness. Further in the third part of the
thesis, a simple heuristic for e cient object tracking based on the template
matching is presented. The attention is on face tracking but the results are
generally applicable. In a tracking scheme an object is first detected and then
tracked. We use a simple generic 3D model to describe the transformations
between the initial object appearance and the subsequent images. However
there are many deformations that not described by this model. We propose a
simple generally applicable heuristic that updates the initial object appearance
with the new images.
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