1. Introduction
1.1 Introduction

 In recent years, computer has already become one kind of information appliances in modern people’s daily life. People can use computer to deal with the complex documents, get new information and do shopping online etc. However, all the advantages of using computer talked above are convenient to normal people, and the disabled always cannot enjoy the modern life with computer.
 Many auxiliary devices for the disabled were designed case by case, such as eye-control mouse, head-control mouse, and Morse-code text input system using single button etc. Although these auxiliary devices can provide the disabled communication interface for using computer, there is a common defect that is the user must wear some kind of appurtenance of the auxiliary devices. The defect may cause discomfort of the disabled who usually continue using these auxiliary devices for a long term. In order to solve above problem, here in this thesis we have presented an auxiliary device system developed by using the digital image processing technique. It is unnecessary to wear any type of appurtenance when using the auxiliary device system. There are many similar papers discussing image processing in reference section [7][8]. Most of them only explain the algorithm improvement of digital image recognition, not integrating the hardware of auxiliary device.
1.2 Related Work
 In general, face recognition techniques can be divided many auxiliary devices for the disabled were designed case by case, such as eye-control mouse, head-control mouse, and Morse-code text input system using single button etc. Although these auxiliary devices [1][2] can provide the disabled communication interface for using computer, there is a common defect that is the user must wear some kind of appurtenance of the auxiliary devices. The defect may cause discomfort of the disabled who usually continue using these auxiliary devices for a long.
 Over the last ten years or so, face recognition has become a popular area of research in computer vision and one of the most successful applications of image analysis and understanding. Because of the nature of the problem, not only computer science researchers are interested in it, but also neuroscientists and psychologists. It is the general opinion that advances in computer vision research will provide useful insights to neuroscientists and psychologists into how human brain works, and vice versa.
1.3 Approach
 In order to develop the text input system, the image processing technique are used. The various techniques used are –face detection from image, Lips Detection and to find out the status of lips. The purpose of the thesis is to implement a face tracking system executing lips images extraction subject to the relative position of the lips on the face. The status of mouth-opened or mouth-closed can be recognized by the corresponding vertical distance between upper lip and lower lip on the image. Once the status of mouth-opened or mouth-closed is detected, representing logical “1” or “0” respectively. Image recognition technique was applied for detecting the status of mouth-opened or mouth-closed to replace a mechanical button in our system. Moreover, the text input system includes the PS2 keyboard interface and the RS232 mouse interface to connect PC. Therefore, we can reach the purpose of use lips image recognition to control computer. It will be more convenient and comfortable for the disabled to use our image recognition system to control the computer.

1.4 Thesis Organization
For better understanding we have given various chapters on the proposed approach, organized in a systematic way as explained below.

Chater-1 Introduction: It presents a brief overview of the proposed approach, such as how the face detection and lips extraction process is followed. It gives the complete introduction about the process followed to implement the text input system developed using lip image recognition.

Chapter-2 Color space for skin color: This chapter presents the color space used in skin color detection and gives the basic overview of different color spaces like RGB , HSV. It also gives the overview of skin color detection process from the images.
Chapter- 3 Face detection: It presents the complete process of face detection; it explains the face detection algorithm.

Chapter - 4 Lips Extraction: Presents the process of lips extraction from the face detected image. It also includes the edge detection algorithms.
Chapter-5 Result and Discussion: It explain the proposed approach by summarizing it and presents output for test images.
 Chapter-7 Conclusion: Concludes the approach by brief summary.
2. Color space for Skin Color
2.1- Introduction
 Color is a perceptual phenomenon related to the human response to different Wavelengths in the visible electromagnetic spectrum. A small number of basic functions can perform good spectral approximations of most perceivable colors even though the number of basic functions needed to completely describe the full spectrum is infinite. Generally, a color is described as a weighted combination of three primary colors that form a natural basis. There are many color spaces currently being used. The color spaces most often used are RGB, normalized RGB and Luminance plus chrominance (YIQ, YUV, YCbCr) , Hue and saturation (HSV and HSL).
2.2 Color Space
 A color space is a method by which we can specify, create and visualize color. As humans, we may define a color by its attributes of brightness, hue and colorfulness. A computer may describe a color using the amounts of red, green and blue phosphor emission required to match a color. A printing press may produce a specific color in terms of the reflectance and absorbance of cyan, magenta, yellow and black inks on the printing paper. A color is thus usually specified using three co-ordinates, or parameters. These parameters describe the position of the color within the color space being used. They do not tell us what the color is, that depends on what color space is being used.

 An analogy to this is that I could tell you where I live by giving directions from the local garage, those directions only mean anything if you know the location of the garage beforehand. If you don’t know where the garage is the instructions are meaningless.
2.3 Different Color Models

 Different color spaces are better for different applications, for example some equipment has limiting factors that dictate the size and type of color space that can be used. Some color spaces are perceptually linear, i.e. a 10 unit change in stimulus will produce the same change in perception wherever it is applied. Many color spaces, particularly in computer graphics, are not linear in this way. Some color spaces are intuitive to use, i.e. it is easy for the user to navigate within them and creating desired colors is relatively easy. Other spaces are confusing for the user with parameters with abstract relationships to the perceived color. Finally, some color spaces are tied to a specific piece of equipment (i.e. are device dependent) while others are equally valid on whatever device they are use.
 The color spaces most often used are RGB, normalized RGB and Luminance plus chrominance (YIQ, YUV, Y Cb Cr) , Hue and saturation (HSV and HSL).
 2.3.1 RGB Space
 Red-green-blue (RGB) space is one of the most common color spaces representing each color as an axis. Most color display systems use separate red, green, and blue as light sources so that other colors can be represented by a weighted combination of these three components. The set of red, green, and blue can generate the greatest number of colors even though any other three colors can be combined in varying proportions to generate many different colors. All colors that can be displayed are specified by the red, green, and blue components. One color is presented as one point in a three-dimensional space whose axes are the red, green, and blue colors. As a result, a cube can contain all possible colors. The RGB space and its corresponding color cube in this space can be seen in Figure 2.1. The origin represents black and the opposite vertex of the cube represents white.
Figure 2.1.shows RGB color space and the color cube. Any color can be represented as a point in the color cube by (R, G, and B). For example, red is (255, 0, 0), green is (0, 255, 0), and blue is (0, 0, 255).
The axes represent red, green, and blue with varying brightness. The diagonal from black to white corresponds different levels of gray. The magnitudes of the three components on this diagonal are equal. The RGB space is discrete in computer applications. Generally, each dimension has 256 levels, numbered 0 to 255. In total, 256 3 different colors can be represented by (R,G,B), where R, G, and B are the magnitudes of the three elements, respectively. For example, black is shown as (0, 0, 0) while white is shown as (255, 255, 255).
 [image: image1.png]

 Fig 2.1 2-D rendering of 3-D histogram

 Model viewed along the green-magenta axis.
2.3.2 Normalized RGB Space

 Normalized RGB space is formed independently from varying lighting levels. It is a representation that is easily obtained from the RGB values by a simple normalization procedure:
[image: image2.png]

As the sum of the three normalized components is known (r+ g+b = 1), the third component does not hold any significant information and can be omitted, reducing the space dimensionality. The remaining components are often called ”pure colors”, for the dependence of r and g on the brightness of the source RGB color is diminished by the normalization. A remarkable property of this representation is that for matte surfaces, while ignoring ambient light, normalized RGB is invariant (under certain assumptions) to changes of surface orientation relatively to the light source.
2.3.3 HSI, HSV and HSL – Hue Saturation Intensity (value/Lightness) Space

 Hue-saturation based color spaces were introduced when there was a need for the user to specify color properties numerically. They describe color with intuitive values, based on the artist’s idea of tint, saturation and tone. Hue defines the dominant color (such as red, green, purple and yellow) of an area, saturation measures the colorfulness of an area in proportion to its brightness .The ”intensity”, ”lightness” or ”value” is related to the color luminance. The intuitiveness of the color space components and explicit discrimination between luminance and chrominance properties made these color spaces popular in the works on skin color segmentation. Color spaces can be transformed from one to another easily. A transformation from RGB to HSV can be formulated as below, although there are many alternative formulations.
[image: image3.png]L((R-G)+(R-B)
Tk GE TR BIG B)
|min(RG.B)
R+G+B
(R+G+B)

arceos

1

[image: image4.emf]
 Fig 2.2 HSV color space
2.3.4 YIQ, YUV, YCbCr (Luminance - Chrominance)
 These are the television transmission color spaces, sometimes known as transmission primaries. YIQ and YUV are analogue spaces for NTSC and PAL systems respectively while YCbCr is a digital standard. These color spaces separate RGB into luminance and chrominance information and are useful in compression applications (both digital and analogue). These spaces are device dependent but are intended for use under strictly defined conditions within closed systems. They are also quite unintuitive, unless of course you are a TV engineer.
 Y = 0.299 R + 0.578 G + 0.114B...……………….. (a)
Cr = R – Y...………………………………………. (b)

Cb = B – Y...………………………………………. (c)
 [image: image5.png]

 RGB Image

[image: image6.png]

 Hue Plane Saturation Plane Luminance Plane

Fig 2.3 RBG Image and corresponding Hue Saturation Luminance Planes.
2.4 Skin Color Detection
 Skin color detection is a very popular and useful technique for detecting and tracking human-body parts. It receives much attention mainly because of its wide range of
applications such as, face detection and tracking, naked people detection, hand detection and tracking, people retrieval in databases and Internet, etc. The main goal of skin color detection or classification is to build a decision rule that will discriminate between skin and non-skin pixels. Identifying skin colored pixels involves finding the range of values for which most skin pixels would fall in a given color space. In general, a good skin color model must have a high detection rate and a low false positive rate. That is, it must detect most skin pixels while minimizing the amount of non-skin pixels classified as skin. Commonly used skin detection algorithms can detect skin regions accurately.
 The choice of color space can be considered as the primary step in skin-color classification. The RGB color space is the default color space for most available image formats. Any other color space can be obtained from a linear or non-linear transformation from RGB. The color space transformation is assumed to decrease the overlap between skin and non-skin pixels thereby aiding skin-pixel classification and to provide robust parameters against varying illumination conditions. The color model for different color spaces are shown in figure. The different color model are -Full color model (including skin and non skin color), Skin Color model and non skin color model.
[image: image7.png]

 Fig 2.3 Full color model(including skin and non skin)
1. Most colors fall on or near the gray line.
2. Black and white are by far the most frequent colors, with white occurring slightly more frequently.

3. There is a marked skew in the distribution toward the red corner of the color cube.
[image: image8.png]

 Fig 2.4 Non Skin Model
 [image: image9.png]Red

Black White

Blue

 Fig 2.5 Skin Model
The final goal of skin color detection is to build a decision rule, that will discriminate between skin and non-skin pixels. This is usually accomplished by introducing a metric, which measures distance (in general sense) of the pixel color to skin tone. The type of this metric is defined by the skin color modelling method. One method to build a skin classifier is to define explicitly (through a number of rules) the boundaries skin cluster in some color space. For example:
(R, G, B) is classified as skin if:
 R>95 and G>40 and B>20 and

 Max {R,G,B} – min{R,G,B} > B and

 R-G >15 and R > G and R > B

 The simplicity of this method have attracted (and still does) many Researchers The obvious advantage of this method is simplicity of skin detection rules that leads to construction of a very rapid classifier. The main difficulty achieving high recognition rates with this method is the need to find both good color space and adequate decision rules empirically.
3. Face Detection
 3.1 Introduction:

 Processing of facial information has been an active research area for purposes such as intelligent vision-based human-computer interaction, face tracking, face recognition, facial expression analysis and human emotion recognition systems. However, most of the facial image processing methods assume that faces have been previously localized and identified within the image.
A robust face detection technique [4][10] is therefore a requirement to build fully automated systems that analyze facial information. The task of human face detection is to determine in an arbitrary image whether or not there are any human faces in the image, and if present, localize each face and its extent in the image, regardless of its three-dimensional position and orientation. Such a problem is a very challenging task because faces are non-rigid forms and have a high degree of variability in size, color, shape and texture. While many of the earlier applications of face detection processed images captured under controlled lighting condition and with a rather simple background, new applications have emerged in recent years, which require faces to be detected in presence of complex background and under varying lighting condition.
3.2 Face Detection Approaches

 With over 150 reported approaches to face detection, the research in face detection has broader implications for computer vision research on object recognition. Nearly all model-based or appearance-based approaches to 3D object recognition have been limited to rigid objects while attempting to robustly perform identification over a broad range of camera locations and illumination conditions. Face detection can be viewed as a two-class recognition problem in which an image region is classified as being a “face” or “nonface.” Consequently, face detection is one of the few attempts to recognize from images (not abstract representations) a class of objects for which there is a great deal of within-class variability (described previously). It is also one of the few classes of objects for which this variability has been captured using large training sets of images and, so, some of the detection techniques may be applicable to a much broader class of recognition problems.
 We classify single image detection methods into four categories; some methods clearly overlap category boundaries:

1. Knowledge-based methods - These rule-based methods encode human knowledge of what constitutes a typical face. Usually, the rules capture the relationships between facial features. These methods are designed mainly for face localization.

 2. Feature invariant approaches - These algorithms aim to find structural features that exist even when the pose, viewpoint, or lighting conditions vary, and then use these to locate faces. These methods are designed mainly for face localization.

3. Template matching methods - Several standard patterns of a face are stored to describe the face as a whole or the facial features separately. The correlations between an input image and the stored patterns are computed for detection. These methods have been used for both face localization and detection
4. Appearance-based methods - In contrast to template matching, the models (or templates) are learned from a set of training images which should capture the representative variability of facial appearance. These learned models are then used for detection. These methods are designed mainly for face detection.

3.2 Face detection and tracking algorithm

We now give a definition of face detection: Given an arbitrary image, the goal of face detection is to determine whether or not there are any faces in the image and, if present, return the image location and extent of each face.

 The challenges associated with face detection can be attributed to the following factors:

1. Pose -The images of a face vary due to the relative camera-face pose (frontal, 45 degree, profile, upside down), and some facial features such as an eye or the nose may become partially or wholly occluded.

2. Presence or absence of structural components- Facial features such as beards, mustaches, and glasses may or may not be present and there is a great deal of variability among these components including shape, color, and size.

 3. Facial expression - The appearance of faces are directly affected by a person’s facial expression.

 4. Occlusion - Faces may be partially occluded by other objects. In an image with a group of people, some faces may partially occlude other faces.

 5. Image orientation - Face images directly vary for different rotations about the camera’s optical axis.

 6. Imaging conditions -When the image is formed, factors such as lighting (spectra, source distribution and intensity) and camera characteristics (sensor response, lenses) affect the appearance.
An overview of our face detection algorithm is depicted in Fig. 3.1, which contains two major modules:
 1. Face localization for finding face candidates.
 2. Facial feature detection for verifying detected face candidates.
The algorithm first estimates and corrects the color bias based on a lighting compensation technique. The corrected red, green, and blue color components are then nonlinearly transformed in the Y Cb Cr color space. The skin-tone pixels are detected using an elliptical skin model in the transformed space. The parametric ellipse corresponds to contours of constant Mahalanobis distance under the assumption of Gaussian distribution of skin tone color. The detected skin-tone pixels are iteratively segmented using local color variance into connected components which are then grouped into face candidates based on both the spatial arrangement of these components and the similarity of their color. The size of a face candidate can range from 13 X 13 pixels to about three fourths of the input image size. The facial feature detection module rejects face candidate regions that do not contain any facial features such as eyes, mouth, and face boundary. A detected face enclosed by an ellipse with the associated eyes-mouth triangle is shown in Fig. 3.1.
[image: image10.emf]
 Fig 3.1 Face Detection Algorithm

3.4 Lighting Compensation and Skin Color Detection
 The appearance of the skin-tone color depends on the lighting conditions. Here a light compensation technique is introduced which uses ‘Reference white’ to normalize the color appearance. We regard the pixels
with the top 5 percent of the luma (non gamma corrected luminance) value in the range as reference white only if the number of these pixels sufficiently large (> 100) . The R , G and B components of image are adjusted so that the average grey value of these reference white pixels is linearly scaled to 255. The image is not changed if a sufficient number of reference-white pixels is not detected or the average color is similar to skin tone. This assumption is reasonable not only because an image usually contains ‘real white’ no pixels in some regions of interest (such as eye regions), but also because the dominant bias color always appears as real white. Fig. 3.2 demonstrates an example of our lighting compensation method. Note that the yellow bias color in Fig. 3.2a has been removed, as shown in Fig. 3.2b. With lighting compensation, our algorithm detects fewer non face pixels and more skin-tone facial pixels (see Figs. 3.2c and3. 2d).
[image: image11.emf]
Fig 3.2 Skin Detection (a) A yellow biased image (b) Light compensated image (c) Skin region of (a) shown in white (d) Skin region of (b)
3.5 Skin Color Modelling
 Modelling skin color require choosing an appropriate color space and identifying a cluster associated with skin color in this space. It has been observed that the normalized red-green (rg) space is not the best choice for face detection. Based on Terrillon et al.'s [40] comparison of nine different color spaces for face detection, the tint-saturation-luma (TSL) space provides the best results for two kinds of Gaussian density models (unimodal and a mixture of Gaussians). We adopt the YCb Cr space since it is perceptually uniform is widely used in video compression standards (e.g., MPEG and JPEG) , and it is similar to the TSL space in terms of the separation of luminance and chrominance as well as the compactness of the skin cluster. Many research studies assume that the chrominance components of the skin-tone color are Independent of the luminance component. However, in practice, the skin-tone color is nonlinearly dependent on luminance. We demonstrate the luma dependency of skin-tone color in different color spaces in Figs.3. 3 and 3.4, based on skin patches. Detecting skin tone based on the cluster of training samples in the Cb Cr subspace, shown in Fig. 3.3b, results in many false positives. Face detection based on the cluster in the (Cb /Y) – (Cr/Y) subspace, shown in Fig. 3c, results in many false negatives. Therefore, we nonlinearly transform the YCb Cr color space to make the skin cluster luma-independent. This is done by fitting piecewise linear boundaries to the skin cluster (see Figs. 3.5a and 3.5b). The details of the model and the transformation are described in Appendix A. The transformed space, shown in Figs.3. 5c and 3.5d, enables a robust detection of dark and light tone colors Fig 3.6 shows the more skin tone pixels with low and high luma are detected in the transformed subspace than in the Cb Cr subspace.
[image: image12.emf]
 Fig. 3.3 (a)The Y Cb Cr color space (b) A 2D projection in Cb Cr subspace (c) A 2 D projection in (Cb/Y) – (Cr/Y) subspace
[image: image13.emf]
 Fig 3.4 The Dependency of skin tone color (a) r g Y color space (b) CIE xyY and (c) HSV color space.
[image: image14.emf]
 Fig 3.5 Non linear transformation of the Y Cb Cr color space (a) Y Cb Subspace (b) Y Cr subspace (c) transformed Y Cb Cr color space (d) 2D projection of (c)
3.6 Localization of Facial Features

Among the various facial features, eyes and mouth are the most prominent features for recognition and estimation of 3D head pose . Most approaches for eye localization are template-based. However, we directly locate eyes, mouth, and face boundary based on their feature maps derived from both the luma and chroma of an image. We consider only the area covered by a face mask that is built by enclosing the grouped skin tone region with a pseudo convex hull. Fig 3.6 shows an example of face mask.

[image: image15.emf]
Fig 3.6 Face Mask (a) four face candidates (b) one of face candidate (c) Group skin area (d) face mask
3.6.1 Mouth Map
 The color of mouth region contains stronger red component and weaker blue components then other facial region. Hence the chrominance component Cr is greater than Cb in mouth region. Further the mouth has a relatively low response in Cr/Cb features but it has a high response in [image: image16.png]

 So mouth map can be constructed as follows:
[image: image17.png]MouthMap =
Map = C2-(C2 = 0-C./C)", @)
1Y Gyt '

o
TS cwwoes

[

[image: image18.wmf]
Where both [image: image19.png]

 and Cr/Cb are normalized to the range [0 255] and n is number of pixels within face mask. [image: image20.png]

 is estimated as ratio of average [image: image21.png]

 to the average Cr/Cb. Figure 3.7 shows the construction of mouth map.
[image: image22.emf]
Fig 3.7 Construction of Face map
3.6.2 Face Boundary Map and Face Score

 We form an eye-mouth triangle for all possible combinations of the two eye candidates and one mouth candidate. Each eye-mouth triangle is verified by checking
 1. Luma variations and average gradient orientations of eye and mouth blobs,

 2. Geometry and orientation of the triangle, and
 3. The presence of a face boundary around the triangle.
A face score is computed for each verified eye-mouth triangle based on its eyes/mouth maps, ellipse vote, and face orientation that favors upright faces and symmetric facial geometry. The triangle with the highest score that exceeds a threshold is retained. Fig.10shows the boundary map which is constructed from both the magnitude and the orientation components of the luma gradient within the regions having positive orientations of the gradient orientations (i.e., have counterclockwise gradient orientations). Finally we can utilize the Hough Transform to extract the best fitting ellipse.
[image: image23.emf]
 Fig 3.8 Computation of face boundry

3.7 Cleaning of skin regions
 When processing images with complex background, skin-color segmentation can yield small isolated detected regions in the background due to colors similar to the ones of human skin. These regions have typically a size of a few pixels and may be assimilated to noise, which can be eliminated using a median filtering. Morphological operators, such as opening and closing, are then applied to refine the remaining regions and construct a face mask. These morphological operators use a structural element, which is matrix that defines a neighborhood shape and size. As human faces are likely to have round shapes, our structural element is a disk. The size of the structural element used for each morphological operation is set automatically according to the sizes of the image and the skin region. Applying the face mask on the original image, we get the final extracted face region. Figure 5(b) shows the final extracted face of the image in Figure 4. In this case, the size of the structural element was computed to include 13 neighbor pixels
3.7.1 Morphological Operations
 Morphology is a technique of image processing based on shapes. The value of each pixel in the output image is based on a comparison of the corresponding pixel in the input image with its neighbors. By choosing the size and shape of the neighborhood, you can construct a morphological operation that is sensitive to specific shapes in the input image.
 Morphologic operations are especially suited to the processing of binary images and greyscale images. Dilation and erosion are two fundamental morphological operations.
Dilation adds pixels to the boundaries of objects in an image, while erosion removes pixels on object boundaries. Dilation is expected to produce an image that is brighter that the original and in which small, dark details have been reduced or eliminated. In the other hand, erosion produces darker image, and the sizes of small, bright features were reduced.

[image: image24.png]

 (a) (b) (c)
 Fig 3.9

(a) images of squares of size 1,3,5,7,9,15 pixels on the side.

(b) erosion of (a) witha structuring element of 1’s,13 pixels on the side.

(c) Dilation of (b) with the same structuring element.
In the morphological dilation and erosion operations, the state of any given pixel in the output image is determined by applying a rule to the corresponding pixel and its neighbors in the input image.

The rule used to process the pixels defines the operation as a dilation or an erosion.

Dilation - The value of the output pixel is the maximum value of all the pixels in the input pixel’s neighborhood. In a binary image, if any of the pixels is set to the value 1, the output pixel is set to 1.

Erosion - The value of the output pixel is the minimum value of all the pixels in the input pixel’s neighborhood. In a binary image, if any of the pixels is set to 0, the output pixel is set to 0.

4. Lip Extraction
4.1 Introduction
 The effective automatic location and tracking of a person’s lip is a problem that has proven very difficult in the field of computer vision. The overwhelming interest in this topic stems from the numerous applications in which the visual information extracted from the mouth region could improve the performance of the vision system. It has been demonstrated that there is a wide range of applications such as audio-visual speech recognition, audio-visual person identification, and lip synchronization. Different methods for lip segmentation have been proposed in last decade. One kind of method for extracting lip is based on the segmentation directly from the color space. The processing time is a prominent advantage of these algorithms. However, low color contrast between the lip and the face skin for unadorned faces makes the problem difficult. The extraction of lip area is sensitive to color change. For Images with weak color contrast, the method cannot satisfactorily outline the boundary of the lip region. Clustering of the mouth area using color features is another solution to the problem of lip segmentation. Lip image clustering is usually performed under the assumption that the number of clusters (e.g. skin and lip clusters) is given. However, factors such as facial hair and the visibility of the teeth in the mouth opening, demand that the number of clusters has to be selected adaptively. Model-based techniques, such as Deformable Templates, Active Shape Models, and Snakes generally use a set of feature points to approximate the lip contours with spline functions, thus giving a mouth model. They achieve high robustness if reliable constraints on the mouth model deformation are included in the cost function, which is defined on the basis of heuristic considerations or through generally supervised learning from examples. Although wavelet transformation has been successfully applied in edge detection, there are few reports on using this method to extract lip since the outer labial contour of the mouth has very poor color distinction when compared against its skin background, which makes the extraction of the lip a difficult problem. In this paper, we propose a novel automatic lip segmentation algorithm based on wavelet multiscale edge detection across the discrete Hartley transform (DHT) . In our experiment, we extract lip from color face images by wavelet multiscale edge detection across C3 component of the DHT. Comparative study with some existing lip segmentation algorithms has indicated the superior performance of the developed algorithm. The paper is organized as follows: in Section 2, details of the lip segmentation algorithm are presented. Section 3 presents the implementation of the whole lip segmentation process. The performance of the developed algorithm is compared with other lip segmentation methods.
4.2 Edge Detection Algorithms
 Edge detection refers to the process of identifying and locating sharp discontinuities in an image. The discontinuities are abrupt changes in pixel intensity which characterize boundaries of objects in a scene. Classical methods of edge detection involve convolving the image with an operator (a 2-D filter), which is constructed to be sensitive to large gradients in the image while returning values of zero in uniform regions. There is an extremely large number of edge detection operators available, each designed to be sensitive to certain types of edges.

There are many ways to perform edge detection. However, the majority of different methods may be grouped into two categories:

Gradient: The gradient method detects the edges by looking for the maximum and minimum in the first derivative of the image.

 Laplacian: The Laplacian method searches for zero crossings in the second derivative of the image to find edges. An edge has the one-dimensional shape of a ramp and calculating the derivative of the image can highlight its location. Suppose we have the following signal, with an edge shown by the jump in intensity below:

Suppose we have the following signal, with an edge shown by the jump in intensity below:

[image: image25.jpg]

If we take the gradient of this signal (which, in one dimension, is just the first derivative with respect to t) we get the following:

[image: image26.jpg]

Clearly, the derivative shows a maximum located at the center of the edge in the original signal. This method of locating an edge is characteristic of the “gradient filter” family of edge detection filters and includes the Sobel method. A pixel location is declared an edge location if the value of the gradient exceeds some threshold. As mentioned before, edges will have higher pixel intensity values than those surrounding it. So once a threshold is set, you can compare the gradient value to the threshold value and detect an edge whenever the threshold is exceeded. Furthermore, when the first derivative is at a maximum, the second derivative is zero. As a result, another alternative to finding the location of an edge is to locate the zeros in the second derivative. This method is known as the Laplacian and the second derivative of the signal is shown below:

[image: image27.jpg]

4.2.1 Sobel Operator

The operator consists of a pair of 3×3 convolution kernels as shown in Figure 1. One kernel is simply the other rotated by 90°.

[image: image28.png]-1 0 | +1 +1 | +2 | +1

2| 0 [+2 0|00

1] 0 [+1 12|
Gx Gy

These kernels are designed to respond maximally to edges running vertically and horizontally relative to the pixel grid, one kernel for each of the two perpendicular orientations. The kernels can be applied separately to the input image, to produce separate measurements of the gradient component in each orientation (call these Gx and Gy). These can then be combined together to find the absolute magnitude of the gradient at each point and the orientation of that gradient. The gradient magnitude is given by:

[image: image29.png]1G] = yG=? + Gy?

Typically, an approximate magnitude is computed using:

[image: image30.png]|G| = |Gz| + |Gyl

which is much faster to compute.

The angle of orientation of the edge (relative to the pixel grid) giving rise to the spatial gradient is given by:

[image: image31.png]# = arctan({Gy/Gz)

4.2.2 Robert’s cross operator
The [image: image32.png]

Roberts Cross operator performs a simple, quick to compute, 2-D spatial gradient measurement on an image. Pixel values at each point in the output represent the estimated absolute magnitude of the spatial gradient of the input image at that point.

The operator consists of a pair of 2×2 convolution kernels as shown in Figure. One kernel is simply the other rotated by 90°. This is very similar to the Sobel operator.

[image: image33.png]+1

+1

Gy

These kernels are designed to respond maximally to edges running at 45° to the pixel grid, one kernel for each of the two perpendicular orientations. The kernels can be applied separately to the input image, to produce separate measurements of the gradient component in each orientation (call these Gx and Gy). These can then be combined together to find the absolute magnitude of the gradient at each point and the orientation of that gradient. The gradient magnitude is given by:

[image: image34.png]1G] = yG=? + Gy?

although typically, an approximate magnitude is computed using:

[image: image35.png]|G| = |Gz| + |Gyl

which is much faster to compute.

The angle of orientation of the edge giving rise to the spatial gradient (relative to the pixel grid orientation) is given by:

[image: image36.png]8 = arctan(Gy/Gz) — 3n /4

|G| = |Gx| + |Gy|
 [image: image37.png]

 (a) Original Image
 [image: image38.png]

 (b) Edge Detected Image
 Fig 4.1 Sober Edge Detection Images
4.3 Lips Extraction from Edge Detected Image
 Now we can extract the lips from the edge detected image. In order to detect lips we will use pattern matching technique . We have defined the fixed pattern for open and close lip status , we compare this pattern with the edge detected image and we ge the status of mouth opened or close depending on the distance between the lips.
4.4 Processing and Recognition of the Lips image

 We can get the complete lips image after the extraction and allocations process of lips range. Next step, we should define the status of mouth-opened or mouth-closed. We must define and extract the contour of the area between the upper lip and the lower when the mouth is opened or closed. In the past researches, the status of mouth-opened or mouth-closed was obtained from the deformed template or color information. The former method needs complex calculation so that it is not suitable for real-time application. The latter one discussed in [3] [5] showed the satisfactory results but not perfect. We doubt whether the latter method is suitable for real-life application after our experiments. Based on reasons discussed above, we proposed the method measuring the dark-black range between the upper-lip and the lower-lip to recognize the status of mouth-opened or mouth-closed. First of all, we perform the RGB multiple threshold operations of the skin color range and the dark-black range in the lips image, and then we can get two binary images. It is so called binarization. Next, we perform the inverse operation for the binary image showing the skin color area. Finally, we perform the logical AND operation for the binary image showing skin color area and the binary image showing the dark-black area, and then we can obtain the dark-black area between the upper-lip and lower lip obviously. The result is shown in Fig. 5(a). We can obtain the contour of lips image when mouth-opened or mouth-closed following the equation (2). A in equation (2) is the original dark-black area between the upper lip and lower lip when mouth-opened or mouth-closed. In equation (2) represents the contour of the dark-black area between the upper lip and lower lip when mouth-opened or mouth-closed. The result is shown in Fig 4.

 When we obtain the contour of the dark-black area between the upper lip and lower lip, we can recognize the status of mouth-opened or mouth-closed. We defined three straight lines to observe the variation of gray level. Then we record the relative distance between the two end points representing the edge points of each straight line intersecting with the contour of the dark-black area. Next, we set three distance threshold values. While the relative distance between two end points on each straight line is greater than the corresponding predefined threshold respectively, the mouth will be recognized as the status of mouth-opened. On the other hand, the mouth would be recognized as the status of mouth-closed. The test result is shown in Fig.4.2
 [image: image39.emf]
 Original Lip Image

 [image: image40.emf]

 (a)

 [image: image41.emf]
 (b)

 [image: image42.emf]
 (c)
 Fig 4.2 Processing and recognition result of lips
5. Results and Discussions
5.1 Summary
 The process of implementation of Text input system is basically divided into two parts. First part is deals with the image processing techniques for face detection and lips extraction. The face detection process contains two major modules: face localization for finding face candidates and facial feature detection for verifying detected face candidates. The algorithm first estimates and corrects the color bias based on a lighting compensation technique. The corrected red, green, and blue color components are then nonlinearly transformed in the Y Cb Cr color space.

 The skin-tone pixels are detected using an elliptical skin model in the transformed space. The detected skin-tone pixels are iteratively segmented using local color variance into connected components which are then grouped into face candidates based on both the spatial arrangement of these components and the similarity of their color. The size of a face candidate can range from 13 X 13 pixels to about three fourths of the input image size. The facial feature detection module rejects face candidate regions that do not contain any facial features such as eyes, mouth, and face boundary.
 Once we acquire the information of mouth opened or mouth-closed, we can transfer this information to the Morse Code text input system to execute the function of text input system. The Morse-Code text input system accepts Morse code in binary format to transfer to the computer’s communication format. In general, the short-long tone proportion of Morse code of is 1:3. Our Morse-code text input system was designed with an adaptive variation algorithm, the system can accept different text input rate. The morse code decoder accept the input in the form of 0’s and 1’s corresponding to mouth closed and open. The morse code decoder then decode this message in form of dot and dash and further give the output in the form of alphabets.
 [image: image43.png](a) lips opened (b) lips closed

(©) lips opened (d) lips closed

(e) lips opened

 Fig 5.1 Lips Status

	A.-

B-...

C-.-.

D-..

E.

F..-.

G--.
	H....
I..

J.---

K-.-

L.-..

M--

N-.
	O---

P.--.

Q--.-

R.-.

S...

T-
	U..-

V...-

W.--

X-..-

Y-.--

Z--..
	0-----

1.----

2..---

3...--

4....-

5.....

6-....
7--...

8---..

9----.
	Fullstop .-.-.-

Comma --..--

Query ..--..

 Morse code Table
6. Conclusions
6.1 Conclusions
 A text input system based on lips image recognition is presented by use face detection and lips recognitions algorithms. In this system the lips recognition is used to develop the text input system for serious disabled.
The whole system can divided in to four parts – Acquiring images from CCD, Face Detection, Lips Images range allocation and extraction and morse code text generation.

 Moreover it is not necessary to wear any appurtenance of the auxiliary device. The whole system had been proved feasible and stable after completing test experiments. I hope that this system will help serious disabled people to communicate with normal people more easily.
7. References
[1] Campadelli, P., Lanzarotti, R., Savazzi, C., “ A Feature-Based Face Recognition System, ＂ Image Analysis and Processing, 2003.Proceedings. 12th International Conference on , pp. 68 – 73, 2003.
[2] Chiang, C.C., Tai, W.K., Yang, M.T., Huang, Y.T., Huang, C.J.,“A Novel Method For Detecting Lips, Eyes and Faces in Real Time,” The Journal of Real Time Image, vol.9, pp.277-287, 2003.

[3] Gomez, E., Travieso, C.M., Briceno, J.C., Ferrer, M.A.,“Biometric Identification System by Lip Shape,＂ Security Technology, 2002. Proceedings. 36th Annual 2002 International Carnahan Conference on , pp.39 – 42, 2002.

[4] Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K.,“Face Detection in Color Images,”Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol. 24, pp. 696 – 706, 2002.
 [5] M.-H. Yang, D. Kriegman, and N. Ahuja. Detecting Faces in Images: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1):34–58,Jan 2002.

[6] Yao, Hongxun., Gao, Wen., “Face Detection and Location Based on Skin Chrominance and Lip Chrominance Transformation From Color

Images,＂The Journal of The Pattern Recognition Society, vol.34, pp.1555-1564, 2001.
 [7] Ko, J.G., Kim, K.N., et.al.,“Facial Feature Tracking For Eye-Head Controlled Human Computer Interface,＂TENCON 99. Proceedings of the IEEE Region 10 Conference , vol. 1, pp.72 – 75, 1999.
[8] Hunke, M., Waibel, A.,“Face Locating and Tracking For Human-Computer Interaction, ＂ Signals, Systems and Computers, 1994. 1994 Conference Record of the Twenty-Eighth Asilomar Conference on , vol. 2 , pp. 1277 – 1281, 1994.
 [9] H. Yao and W. Gao. Face Detection and Location Based on Skin Chrominance and Lip Chrominance Transformation from Color Images. Pattern Recognition, 34:1555–1564,2001.
 [10] M.-H. Yang and N. Ahuja. Detecting Human Faces in Color Images. In Proceedings of IEEE International Conference of Image Processing, pages 127–139,1998.

Source codes
//Mains.cpp
#include "stdafx.h"

#include <stdio.h>

#include <string.h>

#include <ctype.h>

static const struct

{

const char letter, *morse;

}

Code[] =

{

/*{ 'A', ".-" },

{ 'B', "-..." },

{ 'C', "-.-." },

{ 'D', "-.." },

{ 'E', "." },

{ 'F', "..-." },

{ 'G', "--." },

{ 'H', "...." },

{ 'I', ".." },

{ 'J', ".---" },

{ 'K', ".-.-" },

{ 'L', ".-.." },

{ 'M', "--" },

{ 'N', "-." },

{ 'O', "---" },

{ 'P', ".--." },

{ 'Q', "--.-" },

{ 'R', ".-." },

{ 'S', "..." },

{ 'T', "-" },

{ 'U', "..-" },

{ 'V', "...-" },

{ 'W', ".--" },

{ 'X', "-..-" },

{ 'Y', "-.--" },

{ 'Z', "--.." },*/

 //{ ' ', "" },

{ 'A', ".- " },

{ 'B', "-... " },

{ 'C', "-.-. " },

{ 'D', "-.. " },

{ 'E', ". " },

{ 'F', "..-. " },

{ 'G', "--. " },

{ 'H', ".... " },

{ 'I', ".. " },

{ 'J', ".--- " },

{ 'K', ".-.- " },

{ 'L', ".-.. " },

{ 'M', "-- " },

{ 'N', "-. " },

{ 'O', "--- " },

{ 'P', ".--. " },

{ 'Q', "--.- " },

{ 'R', ".-. " },

{ 'S', "... " },

{ 'T', "- " },

{ 'U', "..- " },

{ 'V', "...- " },

{ 'W', ".-- " },

{ 'X', "-..- " },

{ 'Y', "-.-- " },

{ 'Z', "--.. " },

{ ' ', " " },

};

/*==

Function name
 : encode

Created On : 11/21/2008 3:03:54 PM

Author Name : <Pravesh>

Argument : char array

Description : encode a string into morse code

==*/

void encode(const char *s)

{

size_t i, j;

 for (i = 0; s[i]; ++i)

 {

for (j = 0; j < sizeof Code / sizeof *Code; ++j)

 {

if (toupper(s[i]) == Code[j].letter)

{

printf("%s", Code[j].morse);

break;

}

}

}

putchar('\n');

}

/*==

Function name
 : decode

Created On : 11/25/2008 3:03:54 PM

Author Name : <Pravesh>

Argument : char array

Description : decode morse code into string

==*/

void decode(const char *morse)

{

 size_t i = 0, j = 0;

 bool notfound = false;

 while((morse[i] == '.') || (morse[i] == '-') || (morse[i] == ' '))

{

 notfound = false;

for(j=0;j< (sizeof(Code)/sizeof(*Code)); ++j)

 {

if(Code[j].letter == ' ')

{

notfound = true;

break;

}

size_t size = strlen(Code[j].morse);
if (memcmp(Code[j].morse,&morse[i],size)== 0)

 {

putchar(Code[j].letter);

i += size;

break;

}

}

if(notfound == true)

{
printf("\n No Equivalent Character for this morse code\n");

break;

}

}

 putchar('\n');

 }

 int _tmain(int argc, _TCHAR* argv[])

 {

 if(argc < 2)

return -1;

int fp;

int fp1;

unsigned char morsecode[200];

int nSrcImgWidth;

int nSrcImgHeight;

unsigned __int64 nFrameNumber = 1;

 unsigned __int64 offset = 0;

 IplImage* pImage = 0;

uchar* pLumaData
 =0;//new
 uchar[nSrcImgWidth*nSrcImgHeight];

uchar* pCbData = 0 ; //new uchar[nSrcImgWidth*nSrcImgHeight];

uchar* pCrData

 = 0; //new uchar[nSrcImgWidth*nSrcImgHeight];

IplImage* ppImage = 0;

uchar* ppLumaData

= 0;//new uchar[nSrcImgWidth*nSrcImgHeight];

uchar* ppCbData

= 0;//new uchar[nSrcImgWidth*nSrcImgHeight];

uchar* ppCrData

= 0;//new uchar[nSrcImgWidth*nSrcImgHeight];

int first_pixel = 0;

int second_pixel = 0;

int FramesAnalysed = 0;

int spaces = 0;

unsigned char tempchar;

nFrameNumber = 1;

unsigned int uDiffSum = 0;

int val1 = 0;

int val2 = 0;

uchar* ppImageData = 0;

int n;

int CMatrix[3][3] = {1,2,1,0,0,0,-1,-2,-1};

int start_pix = 0;

int end_pix = 0;

unsigned char temp;

bool open = false;

int countv = 0;

CvHaarClassifierCascade *cascade;

CvMemStorage *storage;

int searchw = 90, searchh = 60;

IplImage* origimage;

IplImage* pImageRGB = 0;
IplImage*pImagejpg = cvCreateImage(cvSize(720,576),IPL_DEPTH_8U, 3);

//IplImage*sampleCopyGrayscale=cvCreateImage(cvSize(HAAR_SAMPLE_X,HAAR_SAMPLE_Y), IPL_DEPTH_8U, 1);

int times;

for(int arg=1; arg<argc; arg++)

{

if(strcmp(argv[arg], "-s"))

{

open = false;

origimage = cvvLoadImage(argv[arg]);

cvResize(origimage,pImagejpg,CV_INTER_LINEAR);

printf("Image : %s\n", argv[arg]);
printf("\t \t Image resized to 720x576 and Image Opened\n");

cvvNamedWindow("Image Show");

cvvShowImage("Image Show", pImagejpg);

//cvvWaitKey(0);

int nSrcImgChannels = pImagejpg->nChannels;

intnSrcImgWidthStride=pImagejpg >widthStep/sizeof(uchar);

nSrcImgWidth = pImagejpg->width;

nSrcImgHeight = pImagejpg->height;

int nSrcImgDepth
= pImagejpg->depth;

 cvCvtColor(pImagejpg , pImagejpg,CV_BGR2YCrCb);
uchar* pSrcImageData
=(uchar*)pImagejpg->imageData;

pLumaData

=new uchar[nSrcImgWidth*nSrcImgHeight];

nSrcImgWidth = (nSrcImgWidth/8)*8;

nSrcImgHeight = (nSrcImgHeight/8)*8;

ppImageData = new uchar[nSrcImgWidth*nSrcImgHeight];

for(int i=0; i<nSrcImgWidth; i++)

{

for(int j=0; j<nSrcImgHeight; j++)

{

pLumaData[j*nSrcImgWidth+i] = pSrcImageData[j*nSrcImgWidthStride+i*nSrcImgChannels];

}

}

memcpy(ppImageData, pLumaData, nSrcImgHeight*nSrcImgWidth*sizeof(uchar));

pImage = cvCreateImage(cvSize(nSrcImgWidth, nSrcImgHeight), IPL_DEPTH_8U, 1);

pImage->origin = 0;

ppImage = cvCreateImage(cvSize(nSrcImgWidth, nSrcImgHeight), IPL_DEPTH_8U, 1);

memcpy(pImage->imageData, pLumaData, nSrcImgHeight*nSrcImgWidth*sizeof(uchar));

for(int i=1; i<(nSrcImgHeight-1); i++)

{

for(int j=1; j<(nSrcImgWidth-1); j++)

 {

tempchar = (unsigned char)(abs(CMatrix[0][0]*pLumaData[(i-1)*nSrcImgWidth+j-1] + CMatrix[0][1]*pLumaData[(i-1)*nSrcImgWidth+j] + CMatrix[1][0]*pLumaData[i*nSrcImgWidth+j-1] + CMatrix[1][2]*pLumaData[i*nSrcImgWidth+j+1] + CMatrix[2][0]*pLumaData[(i+1)*nSrcImgWidth+j-1] + CMatrix[2][1]*pLumaData[(i+1)*nSrcImgWidth+j] + CMatrix[0][2]*pLumaData[(i-1)*nSrcImgWidth+j+1] + CMatrix[2][2]*pLumaData[(i+1)*nSrcImgWidth+j+1]+CMatrix[1][1]*pLumaData[(i)*nSrcImgWidth+j]));

if(tempchar > 100)

ppImageData[i*nSrcImgWidth+j] = tempchar;

else

ppImageData[i*nSrcImgWidth+j] = 0;

}

}

memcpy(ppImage->imageData, ppImageData, nSrcImgHeight*nSrcImgWidth*sizeof(uchar));

printf("\t \t Edges are detected\n");

cvNamedWindow("After Edge Detection", 1);

cvShowImage("After Edge Detection", ppImage);

//cvvWaitKey(0);

CvHaarClassifierCascade* cascade;// = cvLoadHaarClassifierCascade("<default_face_cascade>", cvSize(24,24));

Char*filename= "haarcascade_frontalface_alt.xml";

cascade = (CvHaarClassifierCascade*)cvLoad(filename, 0, 0, 0);

storage = cvCreateMemStorage(0);

CvSeq*faces= cvHaarDetectObjects(pImage,

cascade,

storage,

1.3,

3,

0 /*CV_HAAR_DO_CANNY_PRUNNING*/,

cvSize(48, 48));

/* for each face found, draw a red box */

 for(i = 0 ; i < (faces ? faces->total : 0) ; i++)

{

CvRect *r = (CvRect*)cvGetSeqElem(faces, i);

cvRectangle(pImage,

cvPoint(r->x, r->y),

cvPoint(r->x + r->width, r->y + r->height),

CV_RGB(255, 0, 0), 1, 8, 0);

}

printf("\t \t Faces are detected\n");

cvNamedWindow("After Face Detection" , 1);

 cvShowImage("After Face Detection", pImage);

 cvvWaitKey(0);

for(i = 0 ; i < (faces ? faces->total : 0) ; i++)

{

CvRect *r = (CvRect*)cvGetSeqElem(faces, i);

searchw = 80;

searchh = 50;

if(r->width < searchw)

searchw = r->width;

if(r->height < searchh)

searchh = r->height;

times = 0;

 for(int y=(r->x); y< (r->x + r->width); y+=6)

{

for(int x=(r->y); x<(r->y + r->height); x+=6)

{

countv = 0;

for(int n=0; n<searchw; n++)

{

start_pix = 0;

end_pix = 0;

for(int m=0; m<searchh; m++)

{

if(ppImageData[(x+m)*nSrcImgWidth+y+n] > 100)

{

if(start_pix == 0)

start_pix = m;

else if(((mstart_pix) > 2) && (end_pix == 0))

end_pix = m;

}

}

if((end_pix - start_pix) > 25)

 countv++;

}

if(countv >= 21)

{

times++;

if(times > 3)

{

open = true;

break;

}

}

}

if(open)

break;

}

if(open)

break;

}

nFrameNumber++;

if(open)

{

printf("\t \t Open Lip Detected \n\n");

temp = '-';

open = false;

}

else

{

 printf("\t \t Closed Lip Detected \n\n");

temp = '.';

}

morsecode[arg-1] = temp;

}

else

{

morsecode[arg-1] = 32;

}

}

if(strcmp(argv[argc-1], "-s"))

{

morsecode[arg-1] = 32;

}

int i = 0;

printf("\n\n Morse Code is:\t");

while((morsecode[i] == '.') || (morsecode[i] == '-') || (morsecode[i] == ' '))

 {

printf("%c", morsecode[i]);

i++;

 }

printf("\n\n Word is:\t");

 decode((const char*)morsecode);

delete [] pLumaData;

delete [] ppImageData;

return 0;

}

10

_1296156392.unknown

_1296144538.bin

