
A
Dissertation on

SYSTEM LOG PROCESS FOR

APPLICATION SOFTWARE IN LINUX

Submitted in partial fulfillment of the requirements
for the award of the degree of

MASTER OF ENGINEERING

(Computer Technology & Applications)

Submitted By :
Dhirender Kumar

College Roll No. 03/CTA/07
Delhi University Roll No. 12202

Under the guidance of :
Mr. Manoj Kumar (Asstt. Professor)

Department Of Computer Engineering
Delhi College of Engineering, Delhi.

Department Of Computer Engineering
Delhi College of Engineering
Bawana Road, Delhi-110042

University of Delhi
(2008-2009)

CERTIFICATE

 DELHI COLLEGE OF ENGINEERIG
 (Govt. of national capital territory of Delhi)
 BAWANA ROAD, DELHI- 110042.

It is to certify that the work that is being presented in this project entitled

“SYSTEM LOG PROCESS FOR APPLICATION SOFTWARE IN

LINUX”, in partial fulfillment of the requirement for the award of the

degree of Master of Engineering in Computer Technology and Application

submitted by Dhirender Kumar (03/CTA/07), is an authentic record of the

student’s own work carried out under the supervision and guidance of Mr.

Manoj Kumar , in the Department of Computer Engineering.

 Mr. Manoj Kumar

 Department Of Computer Engineering

 Delhi College of Engineering

i

ABSTRACT

Operating system observability requires communications with the system

log process by the application software. IPC stands for interprocess

communication, which describe the different ways of message passing

between different processes that are running on some operating systems. The

histories of these messages or processes are used in the software testing

process. This task is done by log file analyzer. Main objective of this thesis

is to propose a methodology of the system log process which is used to make

the log files of the different processes running for the different software.

System log process contains the two components – message queue operation

and process log.

 Message queue consist of the method that perform on the

message queue. Methods are defined for the creation of message queue,

sending and receiving message to / from the message queue. Process log

defines the method for processing the log message, it involves the checking

of process_id of the receiving log message, buffering of log message and

writing the contents of the buffer to the log files.

ii

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extend my heartiest felt

gratitude to everybody who helped me throughout the course of this project.

I would like to express my heartiest felt regards to Mr. Manoj kumar for the

constant motivation and support during the duration of this project. It is my

privilege and honor to have worked under his supervision. His invaluable

guidance and helpful discussions in every stage of this project really helped

me in materializing the project.

I would also like to take this opportunity to present my sincere regards

to my teachers viz. Dr. Daya Gupta (HOD), Dr. Anita Goel, Mrs. Rajni

Jindal, Dr S. K. Saxena, Mr. Manoj Sehti, Ms. Akshi Kumar for their

support and encouragement.

I am thankful to my friends and classmates for their unconditional support

and motivation during this project.

Dhirender Kumar

M.E. (Computer Technology & Applications)

College Roll No. 03/CTA/07

Delhi University Roll No. 12202

iii

 TABLE OF CONTENTS

CERTIFICATE…………………………………………………………………. i

ABSTRACT……………………….…………………………………………….. ii

ACKNOWLEDGEMENTS …………………………………………………….. iii

TABLE OF CONTENTS………………………………………………………… iv

LIST OF FIGURES & PROGRAMS...…………………………………………. vii

LIST OF TABLES……………………………………………………………….. viii

1 INTRODUCTION……………………………………………………………. 1

1.1 History…………………………………………………………………. 1

 1.2 Operating system……………………………………………………… 2

 1.3 Log files……………………………………………………………….. 3

 1.4 Proposed work…………………………………………………………. 3

 1.5 Related work…………………………………………………………… 4

2 MESSAGE COMMUNICATON IN LINUX……………………………….. 5

2.1 System calls……………………………………………………………. 5

2.2 Hardware and software layer of Linux………………………………… 6

3 BASIC FORMAT OF PROGRAM…………………………………………. 7

3.1 Source program ……………………………………………………...... 7

3.2 executable program……………………………………………………. 7

3.3 A source program in C………………………………………………… 8

3.4 Executable file format…………………………………………………. 9

iv

3.5 System memory………………………………………………………... 9

4 PROCESS MANAGEMENT………………………………………………… 10

4.1 Process…………………………………………………………………. 10

4.2 Process memory……………………………………………………….. 11

 4.2.1 Text segment………………………………………………… 11

 4.2.2 Data segment………………………………………………… 11

 4.2.3 Unitialized data segment…………………………………….. 12

 4.2.4 Stack segment………………………………………………... 12

4.3 The u area……………………………………………………………… 12

4.4 Creating a process……………………………………………………… 13

4.5 Process ID……………………………………………………………… 17

5 INTERPROCESS COMMUNICATION…………………………………… 18

5.1 Interprocess Communication………………………………………….. 18

 5.1.1 Message queues……………………………………………… 18

 5.1.2 Semaphores………………………………………………….. 18

 5.1.3 Shared memory……………………………………………… 18

5.2 Creating a message queue……………………………………………… 21

5.3 Message queue operations……………………………………………... 25

5.4 A client-server message queue………………………………………… 31

6 SYSTEM LOG PROCESS…………………………………………………… 35

6.1 Proposed algorithm for system log process……………………………. 35

6.2 System log process…………………………………………………….. 36

6.3 Flow diagram of system log process…………………………………… 38

v

6.4 Source code for system log process……………………………………. 39

7 CONCLUSION & FUTURE WORK……………………………………….. 46

7.1 Conclusion……………………………………………………………... 46

7.2 Future work…………………………………………………………….. 47

8 REFERENCES………………………………………………………………... 48

vi

LIST OF FIGURES & PROGRAMS

Figure 1: Hardware and software layers of Linux…………………………… 6

Program 1: A source program in C……………………………………............. 8

Figure 2: Parent child process relationship……………………………………5

Program 2: Generating a child process………………………………………….6

Figure 3: Some ipcs output……………………………………………………19

Program 3: Generating message queues………………………………………. 23

Figure 4: Conceptual view of message queue after the client has sent

 all seven Message…………………………………………………... 32

Figure 5: Conceptual view of message queue after the first client

 message has Been processed……………………………………….. 33

Figure 6: Flow diagram of system log process……………………………… 38

Program 4: Source code for system log process………………………………..39

vii

LIST OF TABLES

Table 1: Summary of the fork system call………………………………………….13

Table 2: Fork error messages……………………………………………………….14

Table 3: Summary of getpid system call……………………………………………17

Table 4: Ipcs command line options………………………………………………..20

Table 5: Summary of the msgget system call………………………………………21

Table 6: Msgget error messages……………………………………………………22

Table 7: Summary of the msgsnd system call……………………………………....26

Table 8: Msgsnd error messages……………………………………………………27

Table 9: Summary of the msgrcv system call………………………………………28

Table 10: Actions for msgrcv as indicated by msgtyp values……………………...29

Table 11: Msgrcv error messages………………………………………………….30

viii

Chapter 1

Introduction

1.1 History

The first computers did not have operating systems. By the early 1960s, commercial

computer vendors were supplying quite extensive tools for streamlining the development,

scheduling, and execution of jobs on systems. batch processing

The operating systems originally deployed on , and, much later, the original

 operating systems, only supported one program at a time, requiring only a

very basic scheduler. Each program was in complete control of the machine while it was

running. Multitasking (timesharing) first came to mainframes in the 1960s.

mainframes

microcomputer

In 1969-70, first appeared on the and later the . It soon became

capable of providing cross-platform time sharing using preemptive multitasking,

advanced memory management, memory protection, and a host of other advanced

features. UNIX soon gained popularity as an operating system for mainframes and

minicomputers alike.

UNIX PDP-7 PDP-11

MS-DOS provided many operating system like features, such as disk access. However,

many DOS programs bypassed it entirely and ran directly on hardware. IBM's version,

, ran on IBM microcomputers, including the and the , and

MS-DOS came into widespread use on clones of these machines.

PC DOS IBM PC IBM PC XT

IBM PC compatibles could also run Microsoft , a operating system

from the early 1980s. Xenix was heavily marketed by Microsoft as a multi-user

alternative to its single user operating system. The of these personal

computers could not facilitate kernel memory protection or provide dual mode operation,

so Xenix relied on cooperative multitasking and had no protected memory.

Xenix UNIX-like

MS-DOS CPUs

1

http://en.wikipedia.org/wiki/Batch_processing
http://en.wikipedia.org/wiki/Mainframes
http://en.wikipedia.org/wiki/Microcomputer
http://en.wikipedia.org/wiki/UNIX
http://en.wikipedia.org/wiki/PDP-7
http://en.wikipedia.org/wiki/PDP-11
http://en.wikipedia.org/wiki/MS-DOS
http://en.wikipedia.org/wiki/IBM_PC-DOS
http://en.wikipedia.org/wiki/IBM_PC
http://en.wikipedia.org/wiki/IBM_PC_XT
http://en.wikipedia.org/wiki/IBM_PC_compatible
http://en.wikipedia.org/wiki/Xenix
http://en.wikipedia.org/wiki/UNIX-like
http://en.wikipedia.org/wiki/MS-DOS
http://en.wikipedia.org/wiki/CPU

The -based was the first IBM compatible personal computer capable

of using dual mode operation, and providing memory protection. However, the adoption

of these features by software vendors was delayed due to numerous bugs in their

implementation on the 286, and were only widely accepted with the release of the Intel

.

80286 IBM PC AT

80386

Classic , and supported only

(Windows 95, 98, & ME supported preemptive multitasking only when running 32-bit

applications, but ran legacy 16-bit applications using cooperative multitasking), and were

very limited in their abilities to take advantage of protected memory. Application

programs running on these operating systems must yield CPU time to the scheduler when

they are not using it, either by default, or by calling a function.

Mac OS Microsoft Windows cooperative multitasking

Windows NT's underlying operating system kernel which was a designed by essentially

the same team as 's , a UNIX-like operating system

which provided protected mode operation for all user programs, kernel memory

protection, preemptive multi-tasking, virtual file system support, and a host of other

features.

Digital Equipment Corporation VMS

1.2 Operating system

Operating system (commonly abbreviated to either OS or O/S) is an interface between

hardware and user; it is responsible for the management and coordination of activities

and the sharing of the resources of the computer. The operating system acts as a host for

 that are run on the machine. As a host, one of the purposes of an

operating system is to handle the details of the operation of the . This relieves

application programs from having to manage these details and makes it easier to write

applications. Almost all computers (including , ,

,) as well as some , domestic appliances

(dishwashers, washing machines), and use an operating system of

some type.

computing applications

hardware

handheld computers desktop computers

supercomputers video game consoles robots

portable media players

2

http://en.wikipedia.org/wiki/80286
http://en.wikipedia.org/wiki/IBM_PC_AT
http://en.wikipedia.org/wiki/80386
http://en.wikipedia.org/wiki/Mac_OS
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Cooperative_multitasking
http://en.wikipedia.org/wiki/Windows_NT
http://en.wikipedia.org/wiki/Digital_Equipment_Corporation
http://en.wikipedia.org/wiki/VMS
http://en.wikipedia.org/wiki/Applications_%28computing%29
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Handheld_computers
http://en.wikipedia.org/wiki/Desktop_computers
http://en.wikipedia.org/wiki/Supercomputers
http://en.wikipedia.org/wiki/Video_game_consoles
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Portable_media_player

1.3 Log files

Log files are files that contain messages about the system, including the kernel, services,

and applications running on it. There are different log files for different information. For

example, there is a default system log file, a log file just for security messages, and a log

file for cron tasks.

Log files can be very useful if you are trying to troubleshoot a problem with the system

such as trying to load a kernel driver or if you are looking for unauthorized log in

attempts to the system. This chapter discusses where to find log files, how to view log

files, and what to look for in log files.

Some log files are controlled by a daemon called syslogd. A list of log messages

maintained by syslogd can be found in the /etc/syslog.conf configuration file.

1.4 Proposed work

In every operation system the processes are control by the kernel, their history is stored in

the log files which is formed by default in the operating system. This research was done

to make the log files of the particular processes running in the different software

packages at different terminals in a network. In this research we have some terminals

over which the different software packages are running these terminals are connected

through the server. Every terminal send the system calls to the server in the form of

messages. These messages are collect in a queue called message queue. These messages

are received from message queue and are segregated on the basis of their process_id.

Then these messages are buffered in the individual buffers and when the buffer get full

then the content of the buffer are write to the log files to maintain the record of the

process running on the different software packages

3

1.5 Related work

Lot of work has been done for the log file analysis, i.e. to analyze the log files of the

operating system to compare the test result checking in the process of the software

testing. In the process of log file analysis the log files are analyzed line by line to find out

the difference between the assumed result and actual result. Log files are analyzed to find

out the debugging in the working of any software. Efficiency of any software is also

determined by analyzing the log files through log file analyzer. But rarely work has been

done in the field of the system log process through which we can make the log files of the

process running on some particular software package. System log process is a very useful

tool in the field of the software testing. Because by system log process we can make the

log files of any particular software which can be used by log file analyzer to know the

efficiency of any software to perform any particular task under the controlled way.

4

Chapter 2

Message communication in Linux

 2.1 System Calls

Some previously defined functions used by programs are actually system calls. While

resembling library functions in format, system calls request the operating system to

directly perform some work on behalf of the invoking process. The code that is executed

by the operating system lies within the kernel (the central controlling program that is

normally maintained permanently in memory). The system call acts as a high/mid-level

language interface to this code. To protect the integrity of the kernel, the process

executing the system call must temporarily switch from user mode (with user privileges

and access permissions) to system mode (with system/root privileges and access

permissions). This switch in context carries with it a certain amount of overhead and

may, in some cases, make a system call less efficient than a library function that performs

the same task. Keep in mind many library functions (especially those dealing with input

and output) are fully buffered and thus allow the system some control as to when specific

tasks are actually executed.

Issuing an apropos command similar to the one previously discussed but using

the value 2 in place of 3 will generate synopsis information on all the system calls . It is

important to remember that some library functions have embedded system calls. For

example, << and >>, the C++ insertion and extraction operators, make use of the

underlying system calls read and write.

The relationship of library functions and system calls is shown in Figure 1.. The arrows

in the diagram indicate possible paths of communication, and the dark circles indicate a

context switch. As shown, executable programs may make use of system calls directly to

request the kernel to perform a specific function. On the other hand, the executable

programs may invoke a library function, which in turn may perform system calls.

5

2.2 Figure 1. Hardware and software layers of LINUX.

 User mode

Executable
program

Library function

System call

--

 Kernel mode
Kernel

 Hardware

6

Chapter 3

Basic Format of Program

3.1 source program— A source program is a series of valid statements for a

specific programming language (such as C or C++). The source program is stored in a

plain ASCII text file. For purposes of our discussion we will consider a plain ASCII text

file to be one that contains characters represented by the ASCII values in the range of 32–

127. Such source files can be displayed to the screen or printed on a line printer. Under

most conditions, the access permissions on the source file are set as nonexecutable. A

sample C++ language source program is shown in Program 1

3.2 executable program— An executable program is a source program

that, by way of a translating program such as a compiler, or an assembler, has been put

into a special binary format that the operating system can execute (run). The executable

program is not a plain ASCII text file and in most cases is not displayable on the terminal

or printed by the user.

7

3.3. Program 1 A source program in C .
 /*

 Display Hello World 3 times

 */

 #include <stdio.h>

 #include <unistd.h> // needed for write

 #include <cstring> // needed for strcpy

 #include <cstdlib> // needed for exit

 using namespace std;

 char *cptr = "Hello World\n"; // static by placement

 char buffer1[25];

 int main()

{

 void showit(char *); // function prototype

 int i = 0; // automatic variable

 strcpy(buffer1, "A demonstration\n"); // library function

 write(1, buffer1, strlen(buffer1)+1); // system call

 for (; i < 3; ++i)

 showit(cptr); // function call

 return 0;

 }

 void showit(char *p){

 char *buffer2;

 buffer2= new char[strlen(p)+1];

 strcpy(buffer2, p); // copy the string

 printf(“buffer2”); // display string

 delete [] buffer2; // release location

}

8

3.4 Executable File Format

In a Linux environment, source files that have been compiled into an executable form to

be run by the system are put into a special format called ELF (Executable and Linking

Format). Files in ELF format contain a header entry (for specifying hardware/program

characteristics), program text, data, relocation information, and symbol table and string

table information. Files in ELF format are marked as executable by the operating system

and may be run by entering their name on the command line. Older versions of UNIX

stored executable files in a.out format (Assembler output Format). When C/C++

program files are compiled, the compiler, by default, places the executable file in a file

called a.out.

3.5 System Memory

In UNIX, when an executable program is read into system memory by the kernel and

executed, it becomes a process. We can consider system memory to be divided into two

distinct regions or spaces. First is user space, which is where user processes run. The

system manages individual user processes within this space and prevents them from

interfering with one another. Processes in user space, termed user processes, are said to

be in user mode. Second is a region called kernel space, which is where the kernel

executes and provides its services. As noted previously, user processes can only access

kernel space through system calls. When the user process runs a portion of the kernel

code via a system call, the process is known temporarily as a kernel process and is said to

be in kernel mode. While in kernel mode, the process will have special (root) privileges

and access to key system data structures. This change in mode, from user to kernel, is

called a context switch.

In UNIX environments, kernels are reentrant, and thus several processes can be in

kernel mode at the same time. If the system has a single processor, then only one process

will be making progress at any given time while the others are blocked.

9

Chapter 4

Process Management

4.1 Process

Fundamental to all operating systems is the concept of a process. A process is a dynamic

entity scheduled and controlled by the operating system. While somewhat abstract, a

process consists of an executing (running) program, its current values, state information,

and the resources used by the operating system to manage the process. In a UNIX-based

operating system, such as Linux, at any given point in time, multiple processes appear to

be executing concurrently. From the viewpoint of each of the processes involved, it

appears they have access to and control of all system resources as if they were in their

own standalone setting. Both viewpoints are an illusion. The majority of operating

systems run on platforms that have a single processing unit capable of supporting many

active processes. However, at any point in time, only one process is actually being

worked upon. By rapidly changing the process it is currently executing, the operating

system gives the appearance of concurrent process execution. The ability of the operating

system to multiplex its resources among multiple processes in various stages of execution

is called multiprogramming (or multitasking). Systems with multiple processing units,

which by definition can support true concurrent processing, are called multiprocessing.

As noted, part of a process consists of the execution of a program. A program is an

inactive, static entity consisting of a set of instructions and associated data.If a program is

invoked multiple times, it can generate multiple processes We can consider a program to

be in one of two basic formats.

10

4.2. Process Memory

Each process runs in its own private address space. When residing in system memory, the

user process, like Gaul, is divided into three segments or regions: text, data, and stack.

4.2.1 Text segment— The text segment (sometimes called the instruction

segment) contains the executable program code and constant data. The

text segment is marked by the operating system as read-only and cannot be

modified by the process. Multiple processes can share the same text

segment. Processes share the text segment if a second copy of the program

is to be executed concurrently. In this setting the system references the

previously loaded text segment rather than reloading a duplicate. If

needed, shared text, which is the default when using the C/C++ compiler,

can be turned off by using the -N option on the compile line. In Program 1,

the executable code for the functions main and showit would be found in

the text segment.

4.2.2 Data segment— The data segment, which is contiguous (in a virtual

sense) with the text segment, can be subdivided into initialized data (e.g.,

in C/C++, variables that are declared as static or are static by virtue of

their placement) and uninitialized data. In Program 1., the pointer variable

cptr would be found in the initialized area and the variable buffer1 in

the uninitialized area. During its execution lifetime, a process may request

additional data segment space. In Program 1. the call to the library routine

new in the showit function is a request for additional data segment space.

Library memory allocation routines (e.g., new, malloc, calloc, etc.) in

turn make use of the system calls brk and sbrk to extend the size of the

data segment. The newly allocated space is added to the end of the current

uninitialized data area. This area of available memory is sometimes called

the heap.

11

4.2.3 Some authors use the term BSS segment for the unitialized data segment.

4.2.4 Stack segment— The stack segment is used by the process for the

storage of automatic identifiers, register variables, and function call

information. The identifier i in the function main, buffer2 in the function

showit, and stack frame information stored when the showit function is

called within the for loop would be found in the stack segment. As

needed, the stack segment grows toward the uninitialized data segment.

The area beyond the stack contains the command-line arguments and

environment variables for the process. The actual physical location of the

stack is system-dependent.

4.3. The u Area

In addition to the text, data, and stack segments, the operating system also maintains for

each process a region called the u area (user area). The u area contains information

specific to

 the process (e.g., open files, current directory, signal actions, accounting information)

and a system stack segment for process use. If the process makes a system call (e.g., the

system call to write in the function main in Program 1.), the stack frame information for

the system call is stored in the system stack segment. Again, this information is kept by

the operating system in an area that the process does not normally have access to. Thus, if

this information is needed, the process must use special system calls to access it. Like the

process itself, the contents of the u area for the process are paged in and out by the

operating system.

12

4.4. Creating a Process

It is apparent that there must be some mechanism by which the system can create a new

process. With the exception of some special initial processes generated by the kernel

during bootstrapping (e.g., init), all processes in a Linux environment are created by a

fork system call, shown in Table 1. The initiating process is termed the parent, and the

newly generated process, the child.

Table 1. Summary of the fork System Call.

Include File(s)
<sys/types.h>

<unistd.h> Manual Section 2

Summary Pid_t fork (void);

Success Failure Sets errno
Return

0 in child, child process ID in the parent -1 Yes

[*] The include file <sys/types.h> usually contains the definition of pid_t. However, in

some environments the actual definition will reside in <bits/types.h>. Fortunately, in

these environments the <sys/types.h> contains an include statement for the alternate

definition location, and all remains transparent to the casual user. The include file

<unistd.h> contains the declaration for the fork system call.

The fork system call does not take an argument. If the fork system call fails, it returns a

-1 and sets the value in errno to indicate one of the error conditions shown in Table 2.

13

Table 2. fork Error Messages.

Constant perror Message Explanation

11 EAGAIN Resource

temporarily

unavailable

The operating system was unable to allocate

sufficient memory to copy the parent's page table

information and allocate a task structure for the

child.

12 ENOMEM Cannot allocate

memory

Insufficient swap space available to generate another

process.

 If the library function/system call sets errno and can fail in multiple ways, an error

message table will follow the summary table. This table will contain the error number (#),

the equivalent defined constant, the message generated by a call to perror, and a brief

explanation of the message in the current context.

Otherwise, when successful, fork returns the process ID (a unique integer value) of the

child process to the parent process, and it returns a 0 to the child process. By checking the

return value from fork, a process can easily determine if it is a parent or child process. A

parent process may generate multiple child processes, but each child process has only one

parent. Figure 2 shows a typical parent/child process relationship.

14

(a). Figure 2. The parent/child process relationship.

Parent 1

child 1
child 2 child 3

Parent 2

child 4

As shown, process P1 gives rise to three child processes: C1, C2, and C3. Child process

C1 in turn generates another child process (C4). As soon as a child process generates a

child process of its own, it becomes a parent process.

15

(b)Generating a child process.
/* First example of a fork system call (no error check) */

 #include <iostream>

 #include <sys/types.h>

 #include <unistd.h>

 using namespace std;

 int main()

{

 cout << "Hello\n";

 fork();

 cout << "bye\n";

 return 0;

 }

The output of the program is as follows:.

linux$ p1.5

Hello

bye

bye

Notice that the statement cout << "bye\n"; only occurs once in the program at line 12,

but the run of the program produces the word "bye" twice—once by the parent process

and once by the child process. Once the fork system call at line 11 is executed there are

two processes each of which executes the remaining program statements.

16

4.5. Process ID

Associated with each process is a unique positive integer identification number called a

process ID (PID). As process IDs are allocated sequentially, when a system is booted, a

few system processes, which are initiated only once, will always be assigned the same

process ID. For example, on a Linux system process 0 (historically known as swapper) is

created from scratch during the startup process. This process initializes kernel data

structures and creates another process called init. The init process, PID 1, creates a

number of special kernel threads to handle system management. These special threads

typically have low PID numbers.

Other processes are assigned free PIDs of increasing value until the maximum system

value for a PID is reached. The maximum value for PIDs can be found as the defined

constant PID_MAX in the header file <linux/threads.h> (on older systems check

<linux/tasks.h>). When the highest PID has been assigned, the system wraps around

and begins to reuse lower PID numbers not currently in use.

The system call getpid can be used to obtain the PID . The getpid system call does not

accept an argument. If it is successful, it will return the PID number. If the calling

process does not have the proper access permissions, the getpid call will fail, returning a

value of – 1 and setting errno to EPERM (1).

Table 3. Summary of the getpid System Call.

Include File(s) <sys/types.h>

<unistd.h>

Manual Section 2

Summary pid_t getpid(void);

Success Failure Sets errno

Return The process ID –1 Yes

17

Chapter 5

Interprocess Communication

5.1. Interprocess communication

The designers of UNIX found the types of interprocess communications that could be

implemented using signals and pipes to be restrictive. To increase the flexibility and

range of interprocess communication, supplementary communication facilities were

added. These facilities, added with the release of System V in the 1970s, are grouped

under the heading IPC (Interprocess Communication). In brief, these facilities are

5.1.1 Message queues— Information to be communicated is placed in a

predefined message structure. The process generating the message specifies its type

and places the message in a system-maintained message queue. Processes accessing

the message queue can use the message type to selectively read messages of specific

types in a first in first out (FIFO) manner. Message queues provide the user with a

means of asynchronously multiplexing data from multiple processes.

5.1.2 Semaphores— Semaphores are system-implemented data structures used

to communicate small amounts of data between processes. Most often, semaphores

are used for process synchronization.

5.1.3 Shared memory— Information is communicated by accessing shared

process data space. This is the fastest method of interprocess communication. Shared

memory allows participating processes to randomly access a shared memory segment.

Semaphores are often used to synchronize the access to the shared memory segments.

18

All three of these facilities can be used by related and unrelated processes, but these

processes must be on the same system (machine).

Like a file, an IPC resource must be generated before it can be used. Each IPC resource

has a creator, owner, and access permissions. These attributes, established when the IPC

is created, can be modified using the proper system calls. At a system level, information

about the IPC facilities supported by the system can be obtained with the ipcs command.

For example, on our system the ipcs command produces the following output shown in

following Figure 3.

. Figure 3 Some ipcs output.
linux$ ipcs

------ Shared Memory Segments ------

Key shmid owner perms bytes nattch Status <-- 1
0x00000000 25198594 root 666 247264 3

------ Semaphore Arrays ------

key semid owner perms nsems Status <-- 2
0x00000000 65537 root 666 4

0x00000000 98306 root 666 16

0x00000000 131075 root 666 16

0x00000000 163844 root 666 16

 (1) One shared memory segment attached (shared) by three processes.

(2) Four sets of semaphores all owned by root.

(3) No message queues are currently allocated.

19

The ipcs utility supports a variety of options for specifying a specific resource and the

format of its output. The meaning of each is shown in Table 3

Additionally, -s, -q, or -m can be used to indicate semaphore, message queue, or shared

memory, and can be followed by –i and a valid decimal ID to display additional

information about a specific IPC resource .

Table 4. ipcs Command Line Options.

Resource Specification Output Format

–a All (default) –c Creator

–m Shared memory –l Limits

–q Message queues –p Process ID

–s Semaphores –t Time

 –u Summary

20

5.2. Creating a Message Queue

A message queue is created using the msgget system call (Table 5).

Table 5. Summary of the msgget System Call.

Include

File(s)

<sys/types.h>

<sys/ipc.h>

<sys/msg.h>

Manual

Section 2

Summary int msgget (key_t key,int msgflg);

Success Failure Sets errno

Return Nonnegative message queue identifier

associated with key

–1 Yes

If the msgget system call is successful, a nonnegative integer is returned. This value is

the message queue identifier and can be used in subsequent calls to reference the message

queue. If the msgget system call fails, the value –1 is returned and the global variable

errno is set appropriately to indicate the error (see Table 6). The value for the argument

key can be specified directly by the user or generated using the ftok library function (as

covered in the previous discussion). The value assigned to key is used by the operating

system to produce a unique message queue identifier. The low-order bits of the msgflg

argument are used to determine the access permissions for the message queue. Additional

flags (e.g., IPC_CREAT, IPC_EXCL) may be ORed with the permission value to indicate

special creation conditions.

A new message queue is created if the defined constant IPC_PRIVATE is used as the key

argument or if the IPC_CREAT flag is ORed with the access permissions and no

previously existing message queue is associated with the key value. If IPC_CREAT is

specified (without IPC_EXCL) and the message queue already exists, msgget will not

fail but will return the message queue identifier that is associated with the key value

(Table 6.).

21

Table .6. msgget Error Messages.

Constant Perror

Message
Explanation

2 EOENT No such file or

directory

Message queue identifier does not exist for this key

and IPC_CREAT was not set.

12 ENOMEM Cannot allocate

memory

Insufficient system memory to allocate the message

queue.

13 EACCES Permission

denied

Message queue identifier exits for this key, but

requested operation is not allowed by current access

permissions.

17 EEXIST File exists Message queue identifier exists for this key, but the

flags IPC_CREAT and IPC_EXCL are both set.

28 ENOSPC No space left on

device

System imposed limit (MSGMNI) for the number of

message queues has been reached.

43 EIDRM Identifier

removed

Specified message queue is marked for removal.

Program 2 generates five message queues with read/write access, uses the ipcs command

(via a pipe) to display message queue status, and then removes the message queues.

22

Program .3 Generating message queues.

 /* Message queue generation */

 #define _GNU_SOURCE

 #include <cstdio>

 #include <unistd.h>

 #include <linux/limits.h>

 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/msg.h>

 using namespace std;

 const int MAX=5;

 int <-- 1

 main(){

 FILE *fin;

 char buffer[PIPE_BUF], proj = 'A';

 int i, n, mid[MAX];

 key_t key;

 for (i = 0; i < MAX; ++i, ++proj) {

 key = ftok(".", proj);

 if ((mid[i] = msgget(key, IPC_CREAT | 0660)) == -1) {

 perror("Queue create");

 return 1;

 }

 }

 fin = popen("ipcs", "r"); <-- 2

 while ((n = read(fileno(fin), buffer, PIPE_BUF)) > 0)

 write(fileno(stdout), buffer, n);

 pclose(fin);

 for (i = 0; i < MAX; ++i) <-- 3

 msgctl(mid[i], IPC_RMID, (struct msqid_ds *) 0);

 return 0;

 }

23

(1) Create five message queues.

(2) Use a named pipe to execute the ipcs command.

(3) Remove the five message queues.

When run on our system, this program produces the output as follows indicating that five

message queues have been generated.

 Output of Program 3.

linux$ p3

------ Shared Memory Segments ------

key shmid owner perms bytes nattch status

0x00000000 25198594 root 666 247264 3

------ Semaphore Arrays ------

key semid owner perms nsems status

0x00000000 65537 root 666 4

0x00000000 98306 root 666 16

0x00000000 131075 root 666 16

0x00000000 163844 root 666 16

------ Message Queues ------

key msqid owner perms used-bytes messages

0x41153384 2260992 gray 660 0 0

0x42153384 2293761 gray 660 0 0

0x43153384 2326530 gray 660 0 0

0x44153384 2359299 gray 660 0 0

0x45153384 2392068 gray 660 0 0

24

5.3. Message Queue Operations

Message queues are used to send and receive messages. An actual message, from the

system's standpoint, is defined by the msgbuf structure found in the header file

<sys/msg.h> as

struct msgbuf {

 long int mtype; /* type of received/sent message */

 char mtext[1]; /* text of the message */

 };

This structure is used as a template for the messages to be sent to and received from the

message queue.

The first member of the msgbuf structure is the message type. The message type, mtype,

is a long integer value and is normally greater than 0. The message type, generated by the

process that originates the message, is used to indicate the kind (category) of the

message. The type value is used by the msgrcv system call to selectively retrieve

messages falling within certain boundary conditions. Messages are placed in the message

queue in the order they are sent and not grouped by their message type.

Following mtype is the reference to the body of the message. As shown, this is defined as

a character array with one element: mtext[1]. In actuality, any valid structure

member(s), character arrays or otherwise, that make up a message can be placed after the

requisite mtype entry. The system assumes a valid message always consists of a long

integer followed by a series of 0 or more bytes (the organization of the data bytes is the

programmer's prerogative). It is the address of the first structure member after mtype that

the system uses as its reference when manipulating the msg structure . Therefore, users

can generate their own message structures to be placed in the message queue so long as

the first member (on most systems this is the first four bytes) is occupied by a long

integer.

25

Messages are placed in the message queue (sent) using the system call msgsnd (Table 7).

Table 7. Summary of the msgsnd System Call.

Include File(s) <sys/types.h>

<sys/ipc.h>

<sys/msg.h>

Manual Section 2

Summary int msgsnd (int msqid, struct msgbuf *msgp,

 size_t msgsz, int msgflg);

Success Failure Sets errno

Return 0 -1 Yes

The msgsnd system call requires four arguments. The first argument, msqid, is a valid

message queue identifier returned from a prior msgget system call. The second argument,

msgp, is a pointer to the message to be sent. As noted, the message is a structure with the

first member being of the type long integer. The message structure must be allocated (and

hopefully initialized) prior to its being sent. The third argument, msgsz, is the size

(number of bytes) of the message to be sent. The size of the message is the amount of

storage allocated for the message structure minus the storage used for the message type

(stored as a long integer). The message size can be from 0 to the system-imposed limit.

The fourth argument to msgsnd, msgflg, is used to indicate what action should be taken

if system limits for the message queue (e.g., the limit for the number of bytes in a

message queue) have been reached. The msgflg can be set to IPC_NOWAIT or to 0. If

set to IPC_NOWAIT and a system limit has been reached, msgsnd will not send the

message and will return to the calling process immediately with errno set to EAGAIN. If

msgflg is set to 0, msgsnd will block until the limit is no longer at system maximum (at

which time the message is sent), the message queue is removed, or the calling process

catches a signal. The system uses the msgsz argument to msgsnd as its msg.msg_ts

value, the msgbuf.mtype value as its msg.msg_type, and the msgbuf.mtext reference as

msg.msg_spot.

26

If msgsnd is successful, it returns a value of 0; otherwise, it returns a value of -1 and sets

errno to indicate the nature of the error. See Table 8.

Table 8. msgsnd Error Messages.

Constant perror Message Explanation

4 EINTR Interrupted system

call

When sleeping on a full message queue, the

process received an interrupt.

11 EAGAIN Resource temporarily

unavailable

Message cannot be sent (msg_qbyte limit

exceeded) and IPC_NOWAIT was specified.

12 ENOMEM Cannot allocate

memory

Insufficient system memory to copy message.

13 EACCES Permission denied Calling process lacks write access for the

message queue.

14 EFAULT Bad address msgp references a bad address.

22 EINVAL Invalid argument • Message queue identifier is invalid.

• mtype is nonpositive.

• msgsz is less than 0 or greater than

system limit.

43 EIDRM Identifier removed Message queue has been removed.

27

Messages are retrieved from the message queue using the system call msgrcv,

summarized in Table 9

Table 9. Summary of the msgrcv System Call.

Include File(s) <sys/types.h>

<sys/ipc.h>

<sys/msg.h>

Manual Section
2

Summary ssize_t msgrcv (int msqid, struct msgbuf *msgp,

 size_t msgsz, long msgtyp, int

 msgflg);

Success Failure Sets errno

Return Number of bytes actually received -1 Yes

The msgrcv system call takes five arguments. The first, as for the msgsnd system call, is

the message queue identifier. The second, msgp, is a pointer to the location (structure)

where the received message will be placed. The receiving location should have as its first

field a long integer to accommodate the message type information. The third argument,

msgsz, is the maximum size of the message in bytes. This value should be equal to the

longest message to be received. Truncation of the message will occur if the size value is

incorrectly specified, and depending upon the value for msgflg (see following section),

an error may be generated. The fourth argument, msgtyp, is the type of the message to be

retrieved. The message type information is interpreted by the msgrcv system call, as

shown in Table 10.

28

Table 10. Actions for msgrcv as Indicated by msgtyp Values.

When

msgtyp value

is msgrcv takes this action

0 Retrieve the first message of any msgtyp.

> 0 Retrieve the first message equal to msgtyp if MSG_EXCEPT is not

specified. If MSG_EXCEPT is specified, the first message that is not

equal to the msgtyp.

< 0 Retrieve the first message of the lowest type less than or equal to

absolutevalue of msgtyp.

Using the type argument judiciously, a user can, with minimal effort, implement a

priority-based messaging arrangement whereby the message type indicates its priority.

The fifth and final argument, msgflg, is used to indicate what actions should be taken if a

given message type is not in the message queue, or if the message to be retrieved is larger

in size than the number of bytes indicated by msgsz. There are three predefined values

that msgflg can take. IPC_NOWAIT is used to indicate to msgrcv that it should not

block if the requested message type is not in the message queue. If MSG_EXCEPT is

specified and the msgtyp value is greater than 0, msgrcv returns the first message not

equal to msgtyp. MSG_NOERROR directs msgrcv to silently truncate messages to

msgsz bytes if they are found to be too long. If MSG_NOERROR is not specified and

msgrcv receives a message that is too long, it returns a -1 and sets the value in errno to

E2BIG to indicate the error. In don't-care situations, the value for msgflg can be set to 0.

When msgrcv is successful, it returns the number of bytes actually retrieved. See Table

11

29

Table 11. msgrcv Error Messages.

 Constant Perror Message Explanation

 EINTR Interrupted system

call

When sleeping on a full message queue, the process

received an interrupt.

 E2BIG Argument list too

long

mtext is greater than msgsz and MSG_NOERROR is

not specified.

 EACCES Permission denied Attempt made to read a message, but the calling

process does not have permission.

 EFAULT Bad address msgp references a bad address.

 EINVAL Invalid argument • Message queue identifier is invalid.

• msgsz is less than 0 or greater than the system

limit.

 ENOMSG No message of

desired type

Message queue does not have a message of type

msgtyp, and IPC_NOWAIT is set.

 EIDRM Identifier removed Message queue has been removed.

30

5.4. A Client–Server Message Queue

At this point we can use what we have learned about message queues to write a pair of

programs that establish a client–server relationship and use message queues for

bidirectional interprocess communication. The client process obtains input from the

keyboard and sends it via a message queue to the server. The server reads the message

from the queue, manipulates the message by converting all alphabetic text in the message

to uppercase, and places the message back in the queue for the client to read. By mutual

agreement, the client process identifies messages designated for the server by placing the

value 1 in the message type member of the message structure. In addition, the client

includes its process ID (PID) number in the message. The server uses the PID number of

the client to identify messages it has processed and placed back in the queue. Labeling

the processed messages in this manner allows the server to handle messages from

multiple clients.

This works nicely, as in multiple client situations, because not every client has initial

access to the PID of the server.

For example, if the client process with a PID of 17 placed each word in the statement

"The anticipation is greater than the realization." into separate messages,

the current state of the message queue would be as depicted in Figure A. As shown, the

messages placed in the queue by the client (PID 17) are labeled as a message type of 1

(for the server).

31

Figure A. Conceptual view of message queue after the client has sent all seven

messages

System message
Queue structure

First message

Last message

16(4+12)

1 1

16(4+12)

1

7(4+3)

Message
queue item

Message
queue item

Message
queue item

Message
type

Permission structure

When the server reads the queue, it obtains the first message of type 1. In our example

this is the message containing the word The. The server processes the message, changes

the message type to that of the client, and puts the message back on the queue. This

leaves the message queue in the state shown in Figure 4.

32

Figure B. Conceptual view of message queue after the first client message has

been processed.

First message
Last message

7(4+3)
1 1

6(4+2)
1

16(4+12)

Message
queue item

Message
queue item

Message
queue item

Message
type

First message

Permission structure

To accomplish this task, both the client and server programs need to access common

include files and data structures. These items are placed in a local header file called

local.h, An examination of this file reveals that the messages placed in the queue

consist of a structure with three members. The first member (which must be of type long

if things are to work correctly) acts as the message type (mtype) member. Here we call

33

this member msg_to, since it contains a value that indicates the process to whom we are

addressing the message. We use the value of 1 to designate a message for the server

process, and other positive PID values to indicate a message for a client. The second

member of the message structure, called msg_fm (which is also a long integer), contains

the ID of the process that is sending the message. In the program example, if the message

is sent by a client, this value will be the client PID. If the message is sent by the server,

this value will be set to 1. The third member of the message structure is an array of a

fixed size that will contain the text of the actual message.

34

Chapter 6

System log process

6.1 Proposed Algorithm For System Log Process

This algorithm consist of the two parts namely message queue operation and process log

whose steps are as follows:

ALGORITHM :

Message queue operation

Step 1:- Define the three methods getQ(), sendQ(log_msg), and rcvQ() to create the

 message queue and sending and receiving the message to/from the message

 queue.

Step 2:- Send the messages to the message queue through sendQ(log_msg) method.

Step 3:- Receive the message from the message queue through rcvQ() method.

Process log

Step 4:- Define the method msg segregate(msg, type, process_id) to segregate the

 message on the basis of their process_id.

Step 5:- Buffering the messages on the basis of their process-id.

Step 6:- If the buffer is full then write the buffer to the log files.

35

6.2 SYSTEM LOG PROCESS

System log process is a process through which we make the log files on the server, for all

the processes running on the client nodes. Every process running on the node has a

unique identification number called process_id. It means that the every process coming to

the server from a particular client will have the same process_id. And the process coming

to the server from any other client or node will have some other process_id. Thus first of

all we receive the message from the different nodes which contains process_id,

message_id, and message size and message text. These messages are received in the

form of the system calls sending to the server and are collected in the message queue

through the getQ() function.

 Message queue is initialize through getQ() function. It uses the msgget()

system call to create the message queue whose syntax is :

 int msgget (key_t key, int msgflg)

 getQ() uses this system call and return a unique message queue identifier,

msg_id, on successful compilation. This identifier is used for interacting with the queue

for sending and receiving messages. The msgget() return -1, if the system wide limit on

the number of message queue has exceeded.

 sendQ() function is used to send the message to the message queue. This

method is used by the application software to send the message to the message queue,

which is read by the system log process. The syntax of the msgsnd() system call is as

follows-

 int msgsnd(int msqid, struct msgbuf*msg, int size, int flag);

 The msqid is the message queue identifier returned by msgget() in the method

getQ(). Using this identifier ensures that the messages are sent to the queue created by

our mechanism.msg has the two parts mtype, and mtext. The mtext defines contain the

message and mtype defines the type of the message. size is the size of message.

 The method rcvQ() is used to receive the message from the message queue

and to get the process_id of the sending process. rcvQ() uses msgrcv() system call to get

the message from the message queue. The syntax of Msgrcv() is as follows-

int msgrcv(int msqid, struct msgbuf*msg, int size, long type, int flag):

36

 The msqid, size and msg are as defined above for msgsnd() system call .

The type specifies which message on the queue is desired. Flag is specified as

MSG_NOERROR which means that any message bigger than size bytes will be

shortened to size bytes and no error will be returned.

 rcvQ() uses the system call msgctl() to get the process_id of the sending process

for the received message. The syntax for msgctl() is as follows-

 int msgctl(int msqid, int cmd, struct msqid_ds *buf)

 here struct msqid_ds is maintained by the kernel of the operating system for every

message queue.

Each program in execution has a unique process_id. Msgsegregate() function segregate

the message received from different application software on the basis of their

Process_id. It maintain a table indexed on process_id i.e. to buffer all the process of the

same node or same process_id. On receiving the message from message queue it is stored

in its buffer if buffer is not full. If the buffer is full then the content of the buffer is sent

to log files , and buffer being empty to store the other messages in it. Then a new log file

with the name (name of software + process_id) will create, if it does not exist and the

content will write to it. The name of software is same for each run of the application

software, but the process_id is different. Thus log message for each run of the application

software will store in a new log file.

 Through this method the processes of any software can be stored in the form of a

log file. Which can be used in the future to check the processes of a particular software

to perform the particular task.

37

6.3 FLOW DIAGRAM OF SYSTEM LOG PROCESS

 process_id3 tag Process_id4 tag
 Process_id2 tag
 Process_id1tag

s

 Buffer is full Buffer is full Buffer is full

38

NODE 1 NODE 4 NODE 2

System calls

Message queue
initialize through

getQ()

sendQ(log_msg)
for sending msgs to
msg queue

rcvQ()
to receive the msg from msg
queue and to get process_id of
sending process & tag the msg
with msg_type and flag for
msg_noerror

Buffering of
msgs of
process_id 1

Buffering of
msgs of
process_id 3

Buffering of
msgs of
process_id 2

Msg segregate(msg, type, process_id)

Write the
content of
buffer to the
log file with
(name of
software
+process_id)

Write the
content of
buffer to the
log file with
(name of
software
+process_id)

Write the
content of
buffer to the
log file with
(name of
software
+process_id)

SERVER mtext

msize

msg_id

NODE 3

6.4 Source Code For System Log Process

*/ Local header files used in the System Log Process */

 #define _GNU_SOURCE

 #include <stdio.h>

 #include <unistd.h>

 #include <linux/limits.h>

 #include <sys/types.h>

 #include <sys/ipc.h>

 #include <sys/msg.h>

 const int MAX=5;

 int main()

 {

 FILE *fin;

 char buffer[PIPE_BUF], proj = 'A';

 int i, n, mid[MAX];

 key_t key;

 for (i = 0; i < MAX; ++i, ++proj)

 {

 key = ftok(".", proj);

 if ((mid[i] = msgget(key, IPC_CREAT | 0660)) == -1)

 {

 perror("Queue create");

 return 1;

 }

 }

 fin = popen("ipcs", "r");

 while ((n = read(fileno(fin), buffer, PIPE_BUF)) > 0)

 write(fileno(stdout), buffer, n);

 pclose(fin);

 for (i = 0; i < MAX; ++i)

 msgctl(mid[i], IPC_RMID, (struct msqid_ds *) 0);

 return 0;

 }

39

This is the program to send the messages of client to the server so that the server can
respond accordingly. These messages are the system calls of all the processes running on
the client terminal.

/* program for client to send messages to the server */

 #include "local.h"

 #include <cstdio.h>

 using namespace std;

 int main()

 {

 key_t key;

 pid_t cli_pid;

 int mid, n;

 MESSAGE msg;

 static char m_key[10];

 cli_pid = getpid();

 if ((key = ftok(".", SEED)) == -1)

 {

 perror("Client: key generation");

 return 1;

 }

 if ((mid=msgget(key, 0)) == -1)

 {

 mid = msgget(key,IPC_CREAT | 0660);

 switch (fork()) {

 case -1:

 perror("Client: fork");

 return 2;

 case 0:

 sprintf(m_key, "%d", mid);

 execlp("./server", "server", m_key, "&", 0);

 perror("Client: exec");

 return 3;

 } } }

 while (1)

 {

40

 msg.msg_to = SERVER;

 msg.msg_fm = cli_pid;

 write(fileno(stdout), "cmd> ", 6);

 memset(msg.buffer, 0x0, BUFSIZ);

 if ((n=read(fileno(stdin), msg.buffer, BUFSIZ)) == 0)

 break;

 n += sizeof(msg.msg_fm);

 if (msgsnd(mid, &msg, n, 0) == -1)

 {

 perror("Client: msgsend");

 return 4;

 }

 If((n=msgrcv(mid, &msg, BUFSIZ, cli_pid, 0)) != -1)

 write(fileno(stdout), msg.buffer, n);

 }

 msgsnd(mid, &msg, 0, 0);

 return 0;

 }

41

This is the program to receive the messages from client to the server so that the server
can store the system calls of the client software application. These messages are the
system calls of all the processes running on the client terminal.

/* program for server to receive the messages from clients */

 #include "local.h"

 #include <stdio.h>

 #include <ctype.h>

 #include <stdlib.h>

 int main(int argc, char *argv[])

 {

 int mid, n;

 MESSAGE msg;

 void process_msg(char *, int);

 if (argc != 3)

 {

 // cerr << "Usage: " << argv[0] << " msq_id &" << endl;

 return 1;

 }

 mid = atoi(argv[1]);

 while (1)

 {

 memset(msg.buffer, 0x0, BUFSIZ);

 if ((n=msgrcv(mid, &msg, BUFSIZ, SERVER, 0)) == -1)

 {

 perror("Server: msgrcv");

 return 2;

 }

 else if (n == 0) break;

 process_msg(msg.buffer, strlen(msg.buffer));

 msg.msg_to = msg.msg_fm;

 msg.msg_fm = SERVER;

 n += sizeof(msg.msg_fm);

 if (msgsnd(mid, &msg, n, 0) == -1)

 {

42

 perror("Server: msgsnd");

 return 3;

 }

 }

 msgctl(mid, IPC_RMID, (struct msqid_ds *) 0);

 exit(0);

 }

This is the program to make a message queue on the server so that all the system calls
coming to the server can stored in the message queue. Through this program we can send
and receive the messages to the message queue.

/* a program to make a message queue. Receive and send the message
to the message queue */

 #include <stdio.h>

 #include <errno.h>

 #include <sys/ipc.h>

 #include <sys/msg.h>

 int main()

 {

 printf("Hi there, here is msgget!\n") ;

 /* Parameters */

 key_t key = 0 ;

 int msgflg = 03600 ;

 /* Return value */

 int msqid ;

 /* Create the message queue */

 msqid = msgget(key, msgflg) ;

 printf("msqid: %i\n", msqid) ;

 if (msqid == -1)

 {

 printf("msgget: initializing message queue failed!\n") ;

 perror("errno:") ;

 return -1 ;

43

 }

 else

 {

 printf("msgget: msgget succeeded (msqid: %i)\n", msqid);

 }

 printf("Hi there, here is msgsnd!\n") ;

 /* Parameters */

 size_t msgsz = 5 ;

 struct message

 {

 long mtype ;

 const char *mpointer ;

 } ;

 struct message msg ;

 msg.mtype = 0 ;

 msg.mpointer = "hello" ;

 if (msgsnd(msqid, msg.mpointer, msgsz, msgflg) == 0)

 {

 printf("msgsnd: message was successfully placed into

 messagequeue %i.\n", msqid) ;

 }

 else

 { printf("msgsnd: sending message to message queue %i

 failed.\n", msqid) ;

 return -1 ;

 }

 printf("Hi there, here is msgrcv!\n") ;

 /* Parameters */

 int msgtyp = 0 ;

 struct message_rcv

 {

 long mtype ;

 char messtxt[msgsz] ;

 } *msg_rcv ;

 msg_rcv = malloc(msgsz*sizeof(char) + sizeof(long)) ;

 /* Receive the message */

 printf("msgflg: %5o\n", msgflg) ;

44

 printf("msgtyp: %d\n", msgtyp) ;

 long msgactsz ;

 // Actual number of bytes placed in the structure

 if (msgactsz = msgrcv(msqid, msg_rcv, msgsz, msgtyp,

 IPC_NOWAIT) != -1)

 {

 printf("msgrcv: message successfully read from message

 queue%i.\n", msqid) ;

 }

 else

 {

 printf("msgrcv: receiving message from message queue %i

 failed.\n", msqid) ;

 fprintf(stderr, "errno: %i\n", errno) ;

 return -1 ;

 }

 printf("We finally made it past the invocation (msgactsz

 =%d,mtext: %s)!\n", msgactsz, msg_rcv->messtxt) ;

 return 0 ;

 }

45

Chapter 7

Conclusion and Future Work

7.1 CONCLUSION

System log file is a process through which we can make the log record of all the

processes running on any particular node in any software to check its efficiency and

checking its error. System log process is a part of the software testing, which can be used

to test the error and efficiency of the software under testing. By using the log file

analyzer we can recognize that which process is responsible for the error in the software

so that we can remove that very easily. The name of log files made in system log process

will contain the process_id i.e. we can easily calculate the number of processes executed

by the software.

46

7.2 FUTURE WORK

Every event of the software process can be stored in the log files and by using the log file

analyzer we can analyze the log files to find out any error or any kind of failure of the

software to perform any task. We can use the system log process to test any kind of

software very effectively. We can compare the two software on the basis of their

performance to do any particular task. We can use the system log process to find out the

efficient software to do any task. Because the efficiency of the software is depending on

the time and the number of processes to complete any work. Through system log process

we can compare the most efficient software running on the different systems at the same

time by comparing their number of processes. Log analyzer uses the system log files to

find out the number of processes executed by any software to perform any given task.

47

REFERNCES

1. A. James H, Z. Yingjun: General Test Result Checking with Log File Analysis,

IEEE Trans. On Software Engineering, vol 29, No. 7, pp. 634-648 (2003)

2. A. Goel, S.C. Gupta, S.K. Wasan: Probe Mechanism for Object-Oriented

Software Testing. In Mauro Pezze, editor, In Proceedings of Fundamental

Approaches to Software Engineering (FASE 2003), Lecture Notes in Computer

Science, LNCS 2621, pp. 310-324, Warsaw, Springer, Poland, (2003)

3. A.Silberschatz, P.B. Galvin: Operating System Concept, Fifth Edition ,John

Wiley & Sons (2000).

4. J.H. Andrews, “Testing Using Log File Analysis: Tools, Methods and Issues”,

Proc. Int’l Conf. Automated Software Eng. (ASE ‘98), pp. 157-166, Oct. 1998.

5. J.S. Gray,”Interprocess Communications in Linux”, Prentice Hall PTR, (2003).

6. R.J. Moore: A universal dynamic trace for Linux and other operating systems. In

Proceedings of FREENIX Track (2001)

7. W.R. Stevens, “Advanced Programming in the UNIX Environment”, Addison -

Wesley Longman, Singapore Pte. Ltd., (2001).

8. W.R. Stevens: UNIX Network Programming Volume 2: Interprocess

Communications. 2nd Edition, Pearson Education (1995)

48

	
	 Mr. Manoj Kumar Department Of Computer Engineering
	 Delhi College of Engineering
	Dhirender Kumar
	1.1 History
	1.2 Operating system
	1.3 Log files
	1.4 Proposed work
	1.5 Related work
	Message communication in Linux
	 2.1 System Calls
	2.2 Figure 1. Hardware and software layers of LINUX.
	3.3. Program 1 A source program in C .
	3.4 Executable File Format
	3.5 System Memory

	4.1 Process
	4.2. Process Memory
	4.3. The u Area
	4.4. Creating a Process
	Table 1. Summary of the fork System Call.
	Table 2. fork Error Messages.
	(a). Figure 2. The parent/child process relationship.
	(b)Generating a child process.

	4.5. Process ID
	Table 3. Summary of the getpid System Call.

	5.1. Interprocess communication
	. Figure 3 Some ipcs output.
	Table 4. ipcs Command Line Options.

	5.2. Creating a Message Queue
	Table 5. Summary of the msgget System Call.
	Table .6. msgget Error Messages.
	Program .3 Generating message queues.
	 Output of Program 3.

	5.3. Message Queue Operations
	Table 7. Summary of the msgsnd System Call.
	Table 8. msgsnd Error Messages.
	Table 9. Summary of the msgrcv System Call.
	Table 10. Actions for msgrcv as Indicated by msgtyp Values.
	Table 11. msgrcv Error Messages.

	5.4. A Client–Server Message Queue
	Figure A. Conceptual view of message queue after the client has sent all seven messages
	Figure B. Conceptual view of message queue after the first client message has been processed.

	Chapter 6
	System log process
	6.1 Proposed Algorithm For System Log Process

