STUDY OF VARIOUS ASPECTS OF APPLICATION OF SEGMENTAL CONSTRUCTION TECHNIQUE IN BUILDINGS

A Major Thesis

Submitted in Partial Fulfillment of

The Requirement for Award of Degree of

MASTER OF ENGINEERING

In

STRUCTURAL ENGINEERING

By

AJAY GUPTA (PT/ME(S) 2002-02)

University Roll No. 9131

Under the Guidance

of

Prof. D. GOLDAR

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING DELHI COLLEGE OF ENGINEERING DELHI UNIVERSITY, NEW DELHI 110042

CANDIDATE DECLARATION & CERTIFICATE

This is certify that the project work entitled "*STUDY OF VARIOUS ASPECTS OF APPLICATION OF SEGMENTAL CONSTRUCTION TECHNIQUE IN BUILDINGS*" is a bonafide record of work done submitted me for the partial fulfillment of the requirement for the degree of **Master of Engineering, Civil Engg.** (Structural Engineering) from Delhi college of Engineering, Delhi.

This project has been carried out under the supervision of Prof. D. Goldar of my college.

I have not submitted the matter embodied in this direction for the award of any other degree.

Name	Roll No.	Signature
Ajay Gupta	9131	

CERTIFICATE:

This is to certify that above statement made by candidate is to the best of our knowledge.

Prof. D. Goldar Dept.of Civil Engineering Delhi College of Engineering Delhi-110042

ACKNOWLEDGEMENT

It gives me great pleasure to thank my project guide **Prof. D. GOLDAR** who has been highly inspiring throughout the time I was engaged in doing my project and providing me with invaluable support and guidance without which this project would not have been completed.

I would also like to express my gratitude to Mr. Rajiv Ahuja (Managing Director) Arch Consultancy Services (P) Ltd. for encouraging me in doing this invaluable course in Civil Engineering, and Mr. R. K. Gupta (Managing Director) Bridgecon (India) (P) Ltd. for unconditionally parting his experiences in the field of "Precasting" and "Design and Fabrication of Launching Systems and Steel Shutterings" without which the project would not have been a success.

I also wish to extend my thanks to my colleagues for helping me in gathering the information required for completing the project.

Dated:

AJAY GUPTA M.E. (Structures), Roll No. 9131 (Examination Roll No. Issued by University of Delhi),

ABSTRACT

The project entitled "STUDY OF VARIOUS ASPECTS OF APPLICATION OF SEGMENTAL CONSTRUCTION TECHNIQUE IN BUILDINGS" developed by Ajay Gupta under the guidance of project guide **Prof. D. GOLDAR** is an attempt to study use of modernization in Civil Engineering works by introduction of "Precasting of Elements of a Building" along with development of "Fully Automatic Self Raising Launching System for Building Construction" to facilitate reduction in construction time and improvement in Quality of Construction.

The Project brings out the Goods and Bads of the Application of Segmental Construction Technique in Buildings in contrast to Normal Cast-In-Situ Construction.

CHAPTER PLAN

- (i) Certificate
- (ii) Acknowledgement
- (iii) Abstract
- (iv) Chapter Plan
- 1. Introduction
 - a. Advantages of Mechanization
 - b. Segmental construction technique in buildings.....(basic definition)

(iv)

- c. Objective of research program
- d. Scope of Study
- 2. Origin of the Problem

(Observations behind selection of the chosen topic)

- 3. Literature Review
 - a. Study of available Indian Standard Code of practice available
 - b. Scope of study for present work
- 4. Results of Solid slab type system
- 5. Conclusions (for Solid slab type system)
- 6. Results of Cellular slab type system
- 7. Conclusions (for Cellular slab type system)
- 8. Developing a Launching System for Erection of Precast Elements of a Building.
- 9. Annexure 1

(Recommended design procedures and construction related provisions....)

- 10. Annexure 2
 - a. Study of Comparison of Design of Roof Slabs Constructed By In-Situ Construction and Roof Slabs Constructed By Segmental Construction Technique.
 - b. Developing a Convenient Tool for Quick and Reasonably Accurate Analysis. (An insight of how the SOFTWARE works?)

- 11. Annexure 3
 - a. Part 1: Design Calculations of RCC cellular slab cast-in-situ
 - b. Part 2: Design Calculations of PSC cellular slab design to be constructed by segmental construction technique
 - c. Part 3: Design Calculations of RCC continuity in cellular slab design to be constructed by segmental construction technique
- 12. DILEMMA FOUND IN INDIAN STANDARD (Determination of creep effects)
- 13. References

INTRODUCTION

Prefabrication of concrete structures is one of the most remarkable developments in the construction process of concrete structures in the last few decades. This prefabrication is closely related to the developments in the precasting industry, which in turn is one of the most important steps towards mechanization of building industry.

Mechanization of processes have a distinct advantage over manual processing which is reflected in the quality of the output. This advantage can be attributed to some of the inherent characteristics of mechanization mechanism i.e.

- 1. Mechanization necessitates establishment of the manufacturing process and a flow chart of the sequence of activities to be performed on raw material until the final product is produced.
- 2. The sequence of activities once defined in a manufacturing process induces a control over the product quality which can be assessed and rectified as and when required along the process sequence.
- The sequencing reduces the decision making efforts since WHAT NEXT? can be foreseen and the solutions can be sought after and defined at various levels of malfunctioning of the process machinery/ system in advance.
- 4. Repetitive behavior of the process in a predefined format allows us to define the functions/ activities on the critical path and helps us in economizing by shifting the efforts from less critical zones to the zones of high criticality thus saving time and wastage of efforts on less critical activities.
- 5. Over all improvement in quality of product and its production time can be achieved.
- 6. All of the above lead to economies of scale/ scope.

The need for mechanization of the construction industry has been understood and practiced by many in past. The use of segmental construction technique by Delhi Metro Rail Corporation (DMRC) for construction of Mass Rapid Transit System (MRTS) for Delhi stands as one of the greatest examples of all times being witnessed by us in India.

SEGMENTAL CONSTRUCTION TECHNIQUE IN BUILDINGS

The topic refers to the precasting of various elements of a building independently in a casting yard/ factory with scientifically designed quality control program and joining them on requisite site in their respective positions to get a structure incorporating all the necessary features for its intended use.

The basic definition of the topic suggests following basic requirements of the construction process

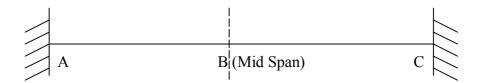
- 1. Design of building elements to be precast as an individual identity.
- 2. Adequacy of the dimensions and other properties of the precast element when placed in harmony with the other elements (cast-in-situ/ precast) in the service stage of the structure.
- **3.** Development of a scheme for construction of the precast elements.
- **4.** Development of scheme for transportation of the precast elements to the requisite site location.
- **5.** Development of a scheme for lifting, positioning and connecting the precast elements with the rest of the structure.
- **6.** Design of a launching systems incorporating all feature for erection of precast elements and performing other construction related activities.

OBJECTIVES OF RESEARCH PROGRAM

- 1. To study the various aspects of application of segmental construction techniques in buildings.
- 2. To compare the economy achieved in the design of building elements to be constructed by segmental construction technique in contrast to the design of building elements to be constructed by cast-in-situ construction technique.
- **3.** To develop a schematic launching system for buildings.

SCOPE OF STUDY

- 1. A general study of the various requirements of a good construction and to perform a comparative study of various construction activities in the light of segmental construction technique and cast-in-situ construction technique.
- 2. To study the basic difference in the design procedure of building elements to be constructed by segmental construction technique in contrast to the design of building elements to be constructed by cast-in-situ construction technique.
- **3.** The design of multistory buildings is a topic of research from various prospects. For the research conducted under present thesis, we have confined our study to the design of solid slabs / cellular slabs to be constructed by segmental construction technique and solid slabs / cellular slabs to be constructed by cast-in-situ construction technology and to study the comparison between the two types of construction methodology in regards to the design of slabs conducted under the present work.
- 4. In the development of launching system for buildings present thesis is confined to developing a schematic Launching system highlighting its essential components, their requirements, their functioning in general and making a drawing showing various functions that can be performed with the proposed launching system.


ORIGIN OF THE PROBLEM

Before selecting the present topic for research we studied the behavior of beams through a number of examples of continuous beams of varying span arrangements and observed some strange facts/ phenomenon which compelled us to do a research in this area. These analysis were performed in highly crude manner and were not preserved in any form for presenting them for any healthy discussion. However the truth behind some of our observations has been boosted by the experiences of "Delhi Metro Rail Project".

The ongoing chapter is an attempt to explain these phenomenons with some simple examples and facts available to us:

a. Change in bending moment distribution in beams with change in construction technology.

Consider a single span beam of length 5m with following loading conditions

Dead Load of beam = 0.3 t/m^2 Weight of Super Imposed Dead Load on the beam = 0.2 t/m^2 Live Load on beam = 0.2 t/m^2 Width of slab contributing to the loaded width effective for the beam = 4m Support condition = Fixed / Built in Effective span of the beam = 5m

If the beam is constructed by cast-in-situ construction technique

Bending Moment at Support = $4 \times (0.3+0.2+0.2) \times 5^2 / 12 = 5.834$ tm Bending Moment at Mid Span = $4 \times (0.3+0.2+0.2) \times 5^2 / 24 = 2.917$ tm

If the beam is constructed by segmental construction technique

Bending Moment at Support = $0 + 4 \ge (0.2+0.2) \ge 5^2 / 12 = 3.333$ tm Bending Moment at Mid Span = $4 \ge (0.3) \ge 5^2 / 8 + 4 \ge (0.2+0.2) \ge 5^2 / 24 = 5.416$ tm

OBSERVATIONS:

- 1. In beam constructed by cast-in-situ construction technology, the bending moment distribution is such that the bending moment at support section is much higher than the bending moment at mid span section. However in contrast to this, in beam constructed by segmental construction technology, the bending moment distribution is such that the bending moment at mid span section is much higher than the bending moment at support section.
- 2. In general the nature of bending moment is hogging at support and sagging at mid span. Now if the beam supports a slab rigidly connected to it then the Moment Resisting Capacity at mid span is much higher than the same at support section, because the slab contributing as flange of T beam is effective only in sagging moment condition (compression at top face and tension at bottom face). If this statement is true than the beam designed to be constructed by segmental technology should have smaller dimensions and hence more economical.
- 3. In general for spans up to 5m the maximum bending moment at any section in the beam designed to be constructed by segmental construction technique is smaller than the bending moment at any section in the beam designed to be constructed by cast-in-situ construction technology. However the same is not true for spans larger than 10m, and a transition stage exists between 5m to 10m, i.e. the maximum bending moment at any section is nearly same or comparable in the two methods of construction.
- 4. If the total load transferred to the beam before continuity of the beam is established is lower than the total additional loads (including live loads) transferred to the beam after the continuity is established then the maximum bending moment developed at any section in the beams designed to be constructed by segmental construction technique will always be lesser than the same in beam designed to be constructed by

cast-in-situ construction technology irrespective of the span length. This statement is perfect for single span beams fixed at ends, and generally true for continuous beams deviating only marginally in occasional situations.

MATHEMATICAL PROOF TO THE ABOVE STATEMENT

Let us consider the following data:

Dead Load tranferred to the beam before continuty is established = W1 t/m Dead Load tranferred to the beam after continuty is established = W2 t/m Live Load on beam = W3 t/m Support condition = Fixed / Built in Effective span of the beam = L (m)

If the beam is constructed by cast-in-situ construction technique

Bending Moment at Support = $(W1+W2+W3) \times L^2/12$ Bending Moment at Mid Span = $(W1+W2+W3) \times L^2/24$ Maximum bending moment at any section in the beam = $(W1+W2+W3) \times L^2/12$

If the beam is constructed by segmental construction technique

Bending Moment at Support = $0 + (W2+W3) \times L^2 / 12$ Bending Moment at Mid Span = W1 x L² /8 + (W2+W3) x L² /24

Maximum bending moment at any section in the beam = W1 x $L^2/8 + (W2+W3) x L^2/24$

IF W1 x $L^{2}/8 + (W2+W3)$ x $L^{2}/24 \le (W1+W2+W3)$ x $L^{2}/12$

Then $3 \times W1 + (W2 + W3) \le 2 \times (W1 + W2 + W3)$

i.e. $3 \ge W1 - 2 \ge W1 \le 2 \ge (W2 + W3) - (W2 + W3)$

i.e. $W1 \le (W2 + W3)$

Which is same as the condition assumed, therefore we can say that design of beams designed to be constructed by segmental construction technique will always be economical provided the said condition is achieved.

b. Better distribution of moment along the span.

The absolute maximum bending moment lies at support section in continuous beams designed to be constructed by cast-in-situ technology; and the same lies at mid span in the beams designed to be constructed by segmental construction technique. Maximum moment at mid span is a desirable condition from many considerations such as:

- 1. Greater Moment resisting capacity of mid span section due to T beam effect as explained earlier.
- 2. Since the absolute maximum bending moment lies at mid span which in turn governs the cross-sectional dimensions of the beam, therefore it results in lesser congestion of steel at support section.
- 3. The bending moments due to lateral loads such as wind force and earthquakes is more concentrated at support sections; than at mid span sections, therefore by concentrating the maximum moment due to basic loads (dead load) at mid span location leaves us with a safety margin at support sections for absorbing those unexpected high intensities of lateral load phenomenon's for which a normal cast-in-situ constructed structure can not be designed due to many reasons including economy of the structure.

c. Greater reserve strength.

1. The absolute maximum bending moment in continuous beams designed to be constructed by cast-in-situ technology lies at support section therefore the yielding of concrete at ultimate state of loading starts at support sections. Since the concrete is brittle in nature therefore many a times the section fails due to excessive rotation demanded by the mechanism leading to collapse much before the formation of three hinge mechanism required for collapse of the beam. In contrast to this the absolute maximum bending moment in continuous beams designed to be constructed by segmental construction technique lies at mid span section, therefore the yielding starts at mid span section, so that a single hinge is formed which can not lead to complete collapse, therefore segmental construction technique ensures that the structure does

not collapse before the complete failure mechanism is formed or collapse load is reached.

d. Control of deflections.

The simplest method of controlling deflections is to provide precamber in the structure during its casting. Practically it is difficult to provide correct precamber in shuttering arrangement during cast-in-situ construction, because the entire arrangement of shuttering is supported on staging system consisting of several hundred numbers of pipes or steel trestles, precise leveling of these steel trestles is a difficult task in general and in some cases it is absolutely impossible due to prevailing site conditions. Besides this the problem gets intensified if the structure possesses a two way behavior so that the deflection pattern resembles a dome structure which is almost impossible to achieve. It is generally observed that precamber is not provided in cast-in-situ construction.

In contrast to the above in segmental construction, the elements of the building/ structure are precasted in casting yard where the shuttering rests on a rigid concrete bed at ground level. The leveling of shuttering is therefore relatively easier. More so the big elements especially the elements having two way behavior are cast in small units each having one way behavior, these units are assembled and connected at site to form the two way behaving structure. In doing so the problem of providing precamber in a dome like pattern is completely eliminated, further reducing the required efforts.

In the light of above fact it can be concluded that by segmental construction technique, economy is guaranteed in building elements whose design governs by deflection criteria.

e. Reduced shrinkage and creep effects.

Precasting of structural elements reduces the chances of cracking due to shrinkage and creep effects. In general it has been found that the strains developed due to shrinkage and creep effects gets accumulated near joints thereby inducing internal tension at the joints so that joints fails during real time disastrous loading like wind storms and earthquakes without developing the expected resistance.

Several literatures justify this belief, study of one such literature is mentioned below:

SP: 25 – 1984 (Handbook on Causes and Prevention of Cracks in Buildings)

Clause 10.7.17 Use of Precast Components: as per this clause "judicious use of precast components can help to reduce incidence of cracking in structures since such components are pre-shrunk".

Clause 2.5.4 Measures for Controlling Cracks Due to Shrinkage: as per this clause "construction based on use of precast components has a distinct advantage over in-situ concrete job since initial shrinkage is made to take place without any restraint prior to incorporation of the components in a building, thus obviating subsequent shrinkage".

Clause 10.7.15 Pace of Construction: as per this clause "in concrete work, it is necessary that before construction of any masonry work either over it or by its side, most of drying shrinkage, creep and elastic deformation should be allowed to take place so as to avoid cracks in masonry or cracks at junction of concrete and masonry. Creep in concrete depends upon age of concrete at the time of loading: delayed loading thus reduces creep. Construction schedule should therefore be drawn and pace of construction regulated keeping these requirements in view and jobs should not be rushed through unnecessarily and unwittingly".

It can therefore be concluded that, this codal provision restricts the pace of construction to allow sufficient time for shrinkage and creep to take place in the building frame, on the contrary precasting in casting yard allows shrinkage and creep phenomenon to occur without restraint and without transferring any effect on its neighboring elements since they are scheduled to be cast at least a month in advance of their actual positioning and connection at their final position on site, thus improving the quality of construction without imposing any restriction on the pace of construction. Some other facts related to construction activities also suggests more and more use of segmental construction technique for construction of RCC structures (Buildings)

f. Better time management and planning opportunities.

In segmental construction any sequence of precasting of structural elements can be planned without bothering about the position of the element cast in the actual structure therefore the planning of construction activities is much easier and has wide range of flexibility compared to the casting schedule planned for any cast-in-situ construction.

g. Faster Construction.

In segmental construction it is possible to plan construction sequence in such a manner that the precasting of first floor elements is completed with in the time required for casting of foundations so that the elements of first floor are ready to placed at their requisite position in the structure, similarly the elements of second floor are cast with in the time required for placing the elements of first floor in the structure so that the no time is wasted between construction of one floor and its subsequent floor on account of miscellaneous activities like fixing of scaffolding, fixing of shuttering over the scaffolding, in-situ casting, and providing sufficient time for cast concrete to gain strength good enough to hold its self weight so that de-shuttering can be done.

h. Ease in construction.

In a casting yard all the elements are cast at ground level, formwork is supported over firm ground generally paved with RCC/ PCC concrete, all the corners of the formwork are accessible, the location of casting is nearly same for all the casting activities, the hauling distance of concrete produced is kept as small as possible, proper platforms for placing vibrators and other equipments/ tools are available. Presence of all these facilities eases the process of casting of elements.

In contrast to this in cast-in-situ construction form work is supported over scaffoldings which are relatively shaky, as the height of the element to be cast increases (with floor levels) it becomes more and more difficult to provide proper platforms for supporting the equipments/tools like vibrators, psychologically also the working labor finds it difficult to work at greater heights affecting the quality of work produced, more over the hauling distance for concrete increases with increasing height of the building inducing problems in regards to the workability of concrete, thus affecting the design of the concrete mix.

i. Improved quality and durability.

The control of quality of concrete is highly improved in casting yard which in turn improves the durability of the structure finally constructed.

The improved quality control is achieved due to following major reasons:

- 1. General reduction in age of cement used for casting, due to continuous cycle of concreting.
- 2. Possibility of more frequent monitoring of quality of ingredients of concrete, i.e. water, course aggregates, fine aggregates etc due to centralization of batching plant.
- 3. proper mixing of concrete through automatic/semi automatic concrete mixers, and use of the same concrete product without tempering it with water or cement slurry so that the quality of concrete produced is maintained un till it is finally cast. This is possible only if the hauling distance for concrete is kept small.
- 4. Placing and compaction of concrete is also improved, because all the activities are performed at smaller heights so that handling of equipments is easier.
- 5. Better curing of concrete through use of automatic sprinkling systems.

Since all the activities are centralized therefore labor can be more easily trained which in turn improves the ratio of skilled labor to the total labor available at site. Improvement in this ratio automatically results in greater quality control than the same available at site in in-situ construction.

j. Reduced cost of construction.

In segmental construction the sizes of building elements are fixed in such manner so as to allow multiple uses of shuttering/ formwork. It results in reduction in cost of shuttering, more over since the handling of form work is controlled in a much better way it improves the reusability of the formwork by many folds.

The following data collected in this regards clearly proves this fact:

Project Name: Construction of Elevated Viaduct From km 8.0 to 14.3 on Barakhamba Road -Cannaught Place – Dwarka Section (Line No. 3) (DMRC Phase-I) Contractor: Persys – Punj Lloyd JV Total Length of Viaduct: 6300 m Total Number of Spans: 252 Nos. Number of Pier Segments: @ 2 segments per span = 504 Nos. Number of Intermediate segments: 1702 Nos. Number of Pier segments Moulds/ shuttering = 6Nos. Number of repetitions per mould = 504/6 = 84 times Number of Intermediate segments Moulds/ shuttering = 10Nos. Number of repetitions per mould = 1702/10 = 170.2 times

These moulds/ shutters still exist in good condition and ready for casting of another set of same number of segments again if required.

Cost comparison of shuttering in segmental/ cast-in-situ construction

Segmental construction adopted in the project

Transverse Width of the segments = 10.75mArea of Shuttering = $14.75m^2/m$ (approx) Weight of Shuttering = $150kg/m^2$ Cost of Fabrication = Rs 75 per kg Cost of Shuttering = $75 \times 150 = Rs \ 11250 \text{ per m}^2$ Cost of 6 moulds of Pier Segment $= 6 \ge 14.75 \ge 2m$ (length) ≥ 11250
= Rs 19.92 LakhsCost of 2 side bulkheads for each mould $= 2 \ge 0.75 \ge 19.92 = Rs 29.88$ Lakhs(Almost equal to 0.75 times the normal shutter per Bulkhead)Cost of 10 moulds of Intermediate SegmentCost of 10 moulds of Intermediate Segment $= 10 \ge 14.75 \ge 3m$ (length) ≥ 11250
= Rs 49.79 LakhsCost of 1 side bulkheads for each mould $= 0.75 \ge 49.79 = Rs 37.34$ Lakhs(Almost equal to 0.75 times the normal shutter per Bulkhead)

Total cost of Shuttering moulds = Rs 136.93 Lakhs

Equivalent cost of shuttering in case of cast-in-situ construction

Reusability of Shuttering in in-situ construction = 30 to 50 times depending upon handling facilities

Assuming 40 times reusability of the shuttering on an average

Total area of Shuttering required = $14.75 \times 6300/40 = 2323 \text{ m}^2$ Total cost of Shuttering = $2323 \times 11250 = \text{Rs} \ 261.33 \text{ Lakhs}$

Saving in cost = 261.33 - 136.93 = Rs 124.40 Lakhs

+ Shuttering Moulds still available in good shape and condition for casting of similar Numbers again

+ Time.

% saving = (124.40/261.33) x 100 = 47.60%

Cost comparison of scaffolding segmental/ cast-in-situ construction

Cast-in-situ construction

Total Plan area of scaffolding = $(10.75+3) \times 6300 = 86625 \text{ m}^2$ Cost of Scaffolding for 10m average height = Rs 4000 to Rs 6000 per m² Assuming cost of scaffolding = Rs 5000 per m² Reusability of scaffolding = 10 times Total cost of scaffolding = $(86625/10) \times 5000 = \text{Rs} 433.10 \text{ lakhs}$

Segmental construction adopted in the project

Total number of Launching girders used = 4 Nos. Weight of each Launching girder = 225 tonne Total cost of Launching girder = $225 \times 4 \times 75000 = \text{Rs} 675$ lakhs

The cost of scaffolding is little less than cost of Launching girders but after the project the scaffoldings are not usable or lost, on the contrary the Launching girders have been modified with an addition of another 50 tonnes (total for 4 launching girders) and are in use at present therefore average cost of launching girder for the project can be taken as 675/2 = Rs 337.5 lakhs (50% of original cost)

Saving in cost = 433.10 – 337.5 = Rs 96.25 Lakhs

+ Launching girder still available in good shape and condition for use in another project
+ Time.

% saving = (96.25/337.5) x 100 = 28.51%

The % saving in cost increases with number of reusability of both Shuttering Moulds and Launching girder.

Saving is also achieved in cost of concrete since transportation of concrete is not required. In the similar manner savings are achieved in almost all activities related to concreting.

The only additional activity increasing the cost of construction is involved in transportation of the precast segments from the casting yard to the site which can be controlled by proper planning of casting yard near the site location. Basic difference in the design procedure of building elements to be constructed by segmental construction technique in contrast to the design of building elements to be constructed by cast-in-situ construction technique.

In in-situ construction the various elements of a building are monolithically connected to each other unless they are intentionally designed to be connected through special connectors or bearings. For monolithically connected elements framing together to form the complete structure, the structure can be analyzed using commonly used elastic methods of analysis like slope-deflection method, moment distribution method, matrix method of analysis etc, the computer based software's like STAAD, NISA-CIVIL, STRUDL, S-CAAD, RM-2000, ANSYS etc. may be used as quick and convenient tools of analysis. The entire analysis can be done as a single stage construction.

In segmental construction the structure passes through various stages in which certain elements of the building exist as monolithically connected to each other and several elements exist as simply resting over the remaining structure and behave as simply supported. Theses simply supported precast elements are then connected to the rest of the structure though various techniques viz.

- Connection through in-situ concreting at the joints.
- Connection by welding of dowel bars left projected in the precast elements and covering the joint with cement mortar or prepackaged non shrink concrete.
- Connection by prestressing the precast elements using high tension cable strands passing through duct holes left in the precast elements during concreting.
- Connection by bolting of base plates anchored at the ends of precast element during precasting.

In all the cases the elements which are precast behave as simply supported for Dead Weight of the structural concrete before continuity of the element is established with the rest of the structure and behave as continuous members for other loads including live loads after the continuity is established with the rest of the structure.

The segmental construction technique therefore demands a two step design procedure i.e. design for simply supported condition before continuity is established and as continuous

structure after continuity is established. As an example design procedure mentioned in IS 14215 -1994 has been iterated below.

IS 14215-1994

Indian Standard-DESIGN AND CONSTRUCTION OF ROOFS AND FLOORS WITH PRECAST REINFORCED CONCRETE CHANNEL UNITS- CODE OF PRACTICE

Clause 4: Structural design

4.1

The Channel units shall have adequate strength and stability in accordance with IS 456: 1978 during the following stages:

- i) De moulding
- ii) Handling, stacking, transporting and placing; and
- iii) Final stage with all designs dead and imposed loads acting on the floor/roof.

4.3 Design stage I (Just after Placing of *In-situ* Concrete)

- **4.3.1** At the time of laying the units, the load comprises the self-weight of the channel units, the weight of *in- situ* concrete in the joint between the two units and also the incidental live load, likely to act on the structure at this stage. In absence of more accurate information, incidental load may be taken as half the imposed load likely to act on the structure at final stage as recommended in IS 875(Part 2): 1987.
- **4.3.2** Effective section: At this stage of loading, as in *in-situ* concrete has not attained any strength to ensure monolithicity, the effective width of channel unit shall be taken as width of flange portion only.

4.4 Design stage 2 (With full design load)

4.4.1 Loads: At this stage, the loads acting on the structure shall comprise dead load and full imposed load as per IS 875(Part 2): 1987. This shall be maximum load likely to act on the structure during its lifetime. For calculating the limit state of collapse at the

critical section, a combined load factor of at least 1.5 shall be applied for calculating the limit state of collapse load.

4.4.2 Effective section: As the *In- Situ* concrete has attained strength at this stage, an effective width equal to the nominal width of the unit shall be taken for calculating the strength of section.

4.5 Design Bending Moment and Shear Force

When the floors /roofs consist of three or more continuous and approximately equal spans, the value of bending moment and shear force coefficients given in IS:456-1978 may be used. These coefficients shall be used for imposed live load as well as dead load of finishing but not for dead weight of units (incliding that of in-situ concrete) shall be added.

- 4.6 In Situ concrete, which brings monolithic connection and continuity between pre cast units, shall be designed in accordance with IS 3935:1966.
- 4.7 When Pre cast units are used for the construction of buildings in high seismic zones the floor and roof shall be strengthened in accordance with **9** of IS 4326: 1993.

5.0 STORAGE, TRANSPORTATION AND ERECTION OF PRE CAST ELEMENTS

5.1 Handling and transportation of units: The pre cast units shall be handled by placing slings placed at about 1/5 of span from ends. Care shall be taken to see that no support is placed at the center of the span and the main reinforcement is always at the bottom of the stacked units, that is trough shall be facing downwards.

Literature Review

<u>IS 14215: 1994</u>

Indian Standard – DESIGN AND CONSTRUCTION OF FLOORS AND ROOFS WITH PRECAST REINFORCED CONCRETE CHANNEL UNITS – CODE OF PRACTICE

The code includes Eight Design Tables as mentioned below:

- Table 1 "Design Table for 300mm Wide Channel Units Simply Supported"The Design Table covers Effective Span Range from 2.10m to 4.50m
- Table 2 "Design Table for 300mm Wide Channel Units Continuous over Two Equal Spans"The Design Table covers Effective Span Range from 2.10m to 4.50m
- Table 3 "Design Table for 300mm Wide Channel Units Continuous over Three Equal Spans, Residential building"

The Design Table covers Effective Span Range from 2.10m to 4.50m

- Table 4 "Design Table for 600mm Wide Channel Units Simply Supported, Residential Building"
 The Design Table covers Effective Span Range from 2.10m to 4.50m
- Table 5 "Design Table for 600mm Wide Channel Units Continuous over Two Equal Spans, Residential building"
 The Design Table covers Effective Span Range from 2.10m to 4.50m

 Table 6 "Design Table for 600mm Wide Channel Units Continuous over Three Equal Spans, Residential building"
 The Design Table covers Effective Span Range from 2.10m to 4.50m

Table 7 Limit State Moment of Resistance and Shear Capacity of 300mm wide Channel Units

Table 8 Limit State Moment of Resistance and Shear Capacity of 600mm wide Channel Units

GENERAL FINDINGS

The design tables referred in the code are valid for an effective Span Range of 2.10m to 4.50m, for larger spans the general design procedure mentioned in the code has to be followed.

This IS code does not provide any reference for deflection check however it does recommend use of provisions given in IS 456 for checks not included in this code of practice.

The arrangement of channels shown in this code indicates design of slabs as one way behavior, however concrete topping may be provided with reinforcement in longer direction to cater for two way behavior of slabs.

The stiffness of slab is much higher in effective span direction (shorter span) than in longer span direction therefore the coefficients for design of slabs spanning in two directions given in IS 456 are no longer valid, rather the bending moment coefficients for continuous beams given in IS 456 are referred in this code (which are much higher than the coefficients for two way spanning slab system).

<u>IS 6061 (part I) – 1971</u>

Indian Standard – CODE OF PRACTICE FOR CONSTRUCTION OF FLOOR AND ROOF WITH CONSTRUCTION OF FLOOR AND ROOF WITH JOISTS AND FILLER BLOCKS PART I: WITH HOLLOW CONCRETE FILLER BLOCKS

<u>IS 6061 (Part II) – 1981</u>

Indian Standard – CODE OF PRACTICE FOR CONSTRUCTION OF FLOOR AND ROOF WITH CONSTRUCTION OF FLOOR AND ROOF WITH JOISTS AND FILLER BLOCKS PART II: WITH HOLLOW CLAY FILLER BLOCKS

<u>IS 6061 (Part III) – 1981</u>

Indian Standard – CODE OF PRACTICE FOR CONSTRUCTION OF FLOOR AND ROOF WITH CONSTRUCTION OF FLOOR AND ROOF WITH JOISTS AND FILLER BLOCKS

PART III: WITH PRECAST HOLLOW CLAY BLOCK JOISTS AND HOLLOW CLAY FILLER BLOCKS

<u>IS 6061 (Part IV) – 1981</u>

Indian Standard – CODE OF PRACTICE FOR CONSTRUCTION OF FLOOR AND ROOF WITH CONSTRUCTION OF FLOOR AND ROOF WITH JOISTS AND FILLER BLOCKS PART IV: WITH PRECAST HOLLOW CLAY BLOCK AND SLAB PANELS

GENERAL FINDINGS

IS 6061 (PART I) and IS 6061 (PART II) recommends maximum effective span of 6.0m, however IS 6061 (PART III) and IS 6061 (Part IV) recommends only a general design procedure.

All these codes does not provide any reference for deflection check however it does recommend use of provisions given in IS 456 for checks not included in these codes of practice.

In Structural arrangement suggested by IS 6061 (PART I) and IS 6061 (PART II) the stiffness of slab is much higher in effective span direction (shorter span) than in longer span direction therefore the coefficients for design of slabs spanning in two directions given in IS 456 are no longer valid, and analysis as per T Girder with Slab is required. The bending moment coefficients for such a system are much higher in effective span direction than in other direction.

In Structural arrangement suggested IS 6061 (PART III) and IS 6061 (PART IV) bending moment coefficients are recommended for direct design of the slab. The coefficient mentioned in the code are close to the bending moment coefficients mentioned in IS 456 for design of continuous beams, again the coefficients are much higher than corresponding values recommended in IS 456 for two way spanning slabs.

<u>IS 13990: 1994</u>

Indian Standard – PRECAST REINFORCED CONCRETE PLANKS AND JOISTS FOR ROOFING AND FLOORING – SPECIFICATION.

GENERAL FINDINGS

This standard lays down the requirements for precast reinforced concrete planks and joist used for construction of roofs and floors. The plank lengths up to 1.50m long only are covered under this Indian standard specification.

IS14142: 1994

Indian Standard – DESIGN AND CONSTRUCTION OF FLOORS AND ROOFS WITH PREFABRICATED BRICK PANEL – CODE OF PRACTICE

This standard lays down recommendations of floor and roof with prefabricated brick panels (concrete brick panels of maximum length 1.1m for grade of concrete less than M-40 and maximum length 1.2m for grade of concrete more than M-40)

As per this code joists shall be designed as continuous beam, it may be designed either as simply supported or continuous T-Beam in accordance with IS 456.

Scope of Study for present work

In general the available standards deal with maximum effective span up to 4.50m and in one case up to 6.0m only. The design procedure recommends design of slab units as continuous beams i.e. in general the two way behavior of slab is superceded with one way continuous beam effect which is more appropriate for the arrangements suggested there in. However in all these cases the bending moment coefficients are much higher than a normal RCC slab.

In present study two types of slab systems have been included viz.

Type 1: Solid slab: (continuation of work started in Minor Thesis)

- 1. Reinforced concrete beams designed to span in one direction as simply supported for dead weight of the slab, over which structural concrete topping shall be provided with reinforcement for full continuity in both directions so that the slab behave as two way bending structure for loads transferred after continuity is achieved.
- 2. Span Range considered for analysis is 7.00m to 11.00m.
- 3. Deflection check has been considered as per Annexure C of IS 456: 2000.
- 4. Effect of concentrated loads placed at mid span of the slab has been analyzed using bending moment coefficients recommended by Pigeaud's curves and its supporting methodology for which the book titled 'REINFORCED CONCRETE DESIGNER'S HANDBOOK' TENTH EDITION authored by: CHARLES E. REYNOLDS AND JAMES C. STEEDMAN has been referred.

The design has been conducted for in-situ construction methodology and segmental construction technique separately and the results of the two are compared.

Type 2: Cellular slab: (New addition in Major Thesis)

- 1. Prestressed concrete cell beams/ similar to box girders designed to span in one direction as simply supported for dead weight of the slab, over which structural concrete topping shall be provided with reinforcement for full continuity in both directions so that the slab behave as two way bending structure for loads transferred after continuity is achieved.
- 2. Span considered for analysis is 30.00m x 20.00m.
- 3. For continuity effects grid floor analysis has been adopted
- 4. Deflection check has been considered as per Annexure C of IS 456: 2000.
- 5. Effect of concentrated loads is not considered.

The design has been conducted for in-situ construction methodology as RCC Cellar Slab/ Grid Floor and for segmental construction technique as Prestressed concrete beam simply supported in direction of effective span and full continuity at supports in shorter span as well as longer span direction provided by un-tensioned Reinforcement. The two analyses have been performed separately and the results of the two are compared.

For detailed description of design methodology refer annexure attached at the end of this report.

ANALYSIS RESULTS O	F SOLID SL	AB SYSTEM	Г					
		DoibiLin	<u>-</u>					
INPUT INFORMATION								
Density of Concrete			=	2.5	t/m ³			
Density of Flooring			=	2.0	t/m ³			
Thickness of Flooring			=		mm			
Grade of Concrete			=	M-	25	and	M-	40
Grade of Steel			=	Fe-	415			
fck			=	2550	t/m ²	and	4080	t/m ²
fy			=	42330	t/m ²			
Xumax/d			=_	0.48				
Partial factor of safety		auc	7					
Dead Load		Ŷ	=	1.5				
Live Load			=	1.5				
Bar dia to be used				0	mm			
Clear Cover in Lx Direction			-		mm			
clear cover in Lx Direction				20	rrirri			
Bar dia to be used			=	8	mm			
Clear Cover in Ly Direction			=		mm			
Self Weight of Slab			=	Varies				
Dead Load due to Floor Finisl	ning's		=		t/m²			
Live Load			=	0.2	t/m²			
Type of Slab Panel considere	d for analysis		=	Internal F	Donol			
Type of Stab Hanel considere	u for analysis							
			(continu	Jous on al	reuge	:5)		

																			M	-25
			ng Ly Dir.	Segmental const.	Flexure Deflection	2.1897	0.0000	0.000	0000.0	0.9158	1.2211	0.9158	1.2211	4.8300	7.0000	0.1150	0.3940	0.5066	0.2671	0.3434
			Wall Alo	<u> </u>		1.8069	0.000	0.000	0.000	0.8791	1.1721	0.8791	1.1721	4.8300	7.0000	0.1150	0.3965	0.5098	0.2676	0.3440
			Slab With Partition Wall Along Ly Dir.	Cast-in-situ const.	Flexure Deflection	0.000	0.000	0.000	0.0000	1.5082	2.0110	1.5082	2.0110	4.8300	7.0000	0.1150	0.3887	0.4998	0.2660	0.3420
	1.000		Slab W	Cast-in-		0.000	0.0000	0.000	0.0000	1.1731	1.5641	1.1731	1.5641	4.8300	7,0000	0.1150	226210	0.5113	0.2678	0.3443
	п		ng Lx Dir.	Segmental const.	Flexure Deflection	2.1438	0.000.0	0.000	0000.0	0.9114	1.2152	0.9114	1.2152	4.8300	7.0000	0.1150	0.2673	0.3436	0.3951	0.5080
	Ly/Lx	•	Wall Alo	Segmer	Flexure	1.7609	0.0000	0.000	0.0000	0.8747	1.1662	0.8747	1.1662	4.8300	7.0000	0.1150	0.2678	0.3443	0.3976	0.5111
			Slab With Partition Wall Along Lx Dir.	Cast-in-situ const.	Flexure Deflection	0.000	0.000	0.000	0000	1.5170	2.0227	1.5170	2.0227	4.8300	7.0000	0.1150	0.2662	0.3422	0.3896	0.5009
r	`	2	Slab Wi	Cast-in-e	Flexure	0.0000	0.000	0.000	0.000	1.1907	1.5876	1.1907	1.5876	4.8300	7.0000	0.1150	0.2679	0.3444	0.3980	0.5118
	11	11	Wall	Segmental const.	Flexure Deflection	1.9906	0.0000	0.000	0.0000	0.8967	9561.1	0.8967	1.1956	0.000	1.0000	1.0000	0.000	0.000	0.000	0.0000
			Partition .	Segmer	Flexure	1.6691	0.0000	0.0000	0.0000	0.8658	1.1544	0.8658	1.1544	0.0000	1.0000	1.0000	0.000	0.0000	0.0000	0.000
			Slab Without Partition Wall	Cast-in-situ const.	Flexure Deflection	0.0000	0.000	0.000	00000	1.4729	1.9639	1.4729	1.9639	0.000	1.0000	1.0000	0.000	00000	0.000	0000
			3 S	Cast-in-s	Flexure	0.000.0	0.000	0.000.0	0000'0	1.1378	1.5170	1.1378	1.5170	0.000	1.0000	1.0000	0.000	0.000.0	0000.0	0.000.0
						Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	27	load	oad	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support
						רא סויי	βuolA	רא פויי	βnolA	רא <u>סו</u> יני	6uoj¥	רא סוי	βuoj∀	id app ty fact	ath of I	th of l _i	רא םוני	βuoj∀	רא סויר	βuolA
anel						(delS er	W: of th	oM gnibn tias) beo Fir Load	∃ beaG _	(del2 er	the the the	oM gnibn TI92) beo FIr Load	Dead L	entrated load applied (partial safety factor)	Contact Length of load	Contact Width of load	spe	Moment ntrated Ic		enp
Size of Slab Panel	×.	LY							eroteB)					Total conce (10	0	الا ۱۸۹۲. of «e Load]	ts due to Load (se of the Stn Stand Lished	beed nei η Η Είτ. L ητίπυἰτη ς	the Slat the Slat

								M	-7	25
3.4995	1.7277	1.1829	1.5645	0.1430	9.1544	4.1869	3.0311	4.0755	0.1430	
3.0825	1.6819	1.1467	1.5161	0.1180	11.0673	5.3672	3.9165	23367	0.1	21.43%
1.8969	2.5108	1.7742	2.3530	0.1820	3.3802	4.5307	3.3349	4.4818	0.1820	217
1.5708	2.0754	1.4409	1.9084	0.1060	5.9080	8.2505	6.1301	8.7010	0.1	
3.3225	1.5588	1.3065	1.7232	0.1400	8.9146	3.8626	3.4701	4.6676	0.1400	
2.9034	1.6105	1.2723	1.6773	0.1150	10.7854	4.9551	4.6820	6.2761	0.1	23.91%
1.7832	2.3649	1.9066	2.5236	0.1840	3.1279	4.1963	3.5432	4.7552	0.1840	23.
1.4586	1.9320	1.5887	7:0994	0.1100	5.1092	7.0631	6.4035	9.0525	0.1	
2.8873	1.1956	0.8967	1.1956	0.1300	8.5381	3.2258	2.5990	3.5231	0.1300	
2.5349	1.1544	0.8658	1.)544	0.1090	10.0837	4.0005	3.2862	4.5096	0.1	25.29%
1.4729	1.9639	1.4729	1.9639	0.1740	2.7501	3.7074	2.9161	3.9367	1740	25.1
1.1378	1.5170	1.1378	1.5170	0.0980	4.6630	6.5210	5.4200	7.7540	0.1	
Positive Bending Moment 1 at Mid Span	Negative Bending Moment 1.5170 at Support	Positive Bending Moment at Mid Span	Negative Bending Moment 1.5170 at Support	less of Slab	Positive Steel at Mid Span	Negative Steel at Support	Positive Steel at Mid Span	Negative Steel at Support	of the slab	kness due to
(m\mt n Lx Dir.		ending M Ly Dir.	∃ letoT Along	Over all Required Thickness of Slab	gna Dir.	л Ч Ч	png Dir.	. Кл ЧМ	Governing Thickness of the slab	% Reduction in Slab Thickness due to Precasting
				Over all	bəriup	el Rec "M	of Ste imp	вэіА	Gover	% Reduc

																		M	-40
		ng Ly Dir.	Segmental const.		1.9447	0.000	0.000	0.0000	0.8923	1.1897	0.8923	1.1897	4.8300	7.0000	0.1150	0.3956	0.5087	0.2674	0.3438
		Wall Alo			1.4241	0.000.0	0.00	0.000	0.8423	1.1231	0.8423	1.1231	4.8300	7.0000	0.1150	0.3989	0.5129	0.2680	0.3446
		Slab With Partition Wall Along Ly Dir.	Cast-in-situ const.		0000.0	0.000.0	0.000.0	0.000	1.5038	2.0051	1.5038	2.0051	4.8300	7,0000	0.1150	0.3889	0.5000	0.2660	0.3420
	1.UUU	Slab Wr		- 1	0000.0	0.000.0	0.000.0	0.000	1.0981	1.4641	1.0981	1.4641	4.8300	7.0000	0.1150	0.3993	0.5134	0.2681	0.3447
	n	ng Lx Dir.	Segmental const.		1.9141	0000.0	0.000	0.000	0.8894	1.1858	0.8894	1.1858	4.8300	7.0000	0.1150	0.2676	0.3440	0.3966	0.5099
=	гулск	Wall Alo		- 1	1.3934	0.000.0	0.000.0	0.000	0.8394	1.1192	0.8394	1.1192	4.8300	7.0000	0.1150	0.2682	0.3449	6666.0	0.5141
		Slab With Partition Wall Along Lx Dir.	Cast-in-situ const.		0.0000	0.000	0.000	0.000	1.5126	2.0168	1.5126	2.0168	4.8300	7.0000	0.1150	0.2662	0.3422	0.3897	0.5010
7	7	Slab Wr			0000.0	0000.0	0000	0.000.0	1.1113	1.4818	1.1113	1.4818	4.8300	7.0000	0.1150	0.2682	0.3448	0.3998	0.5140
П	Ш	Mall	Segmental const.		1.7456	0000.0	0000.0	0.0000	0.8732	1.1642	0.8732	1.1642	0.0000	1.0000	1.0000	0.000	0000.0	0000.0	0000.0
		Partition \	Segmen	LIEXULE	1.3169	0.000	0.000	0.000	0.8320	1.1094	0.8320	1.1094	0.000	1.0000	1.0000	0,0000	0.000	0.000	0.000
		Slab Without Partition Wall	Cast-in-situ const.	Uninaliar	0.000	0.000.0	0000.0	0.000	1.4729	1.9639	1.4729	1.9639	0.000	1.0000	1.0000	0.000	0.000.0	0.0000	0000.0
			Cast-in-	LIEXULE	0.000.0	0.000.0	0.000.0	0.000	1.0716	1.4288	1.0716	1.4288	0.000	1.0000	1.0000	0.000	0.000.0	0.000	0.000
				Positive	Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Total concentrated load applied including (partial safety factor)	oad	oad	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support
				· ·		, βuo¦∀		, βuo¦₩	רא Dir.		רא מיני		d appl	Length of load	th of Ic		pnolA pnolA		buołA
anel				(q	elS e	Wt. of th	ioM gnibr 19e2) beo - beod 1	Dead D	(del2 ei	ment due VVt. of th + Live Lo	llee) beo	Dead L	entrated load applied (partial safety factor)	Contact Leng	Contact Width of load	spe	Moment Moment		ənp
<u>Size of Slab Panel</u> Lx	Ly			lan		s ant to :	1 pribrie6 Vituritrico detee ei			stnemoM of the Str (beds)	ο γtiunita		Total conce (i	10		ر W4: of الا W4: of	t eub st Load (se ht the St it befail	beed ne.) + Fir. L) Yiunity o	the Slat (other th

								M	4	10
3.2326	1.6984	1.1597	1.5335	0.1270	9.4150	4.7000	3.4443	4.6159	0.1270	
2.6653	1.6360	1.1103	1.4677	0.0930	13.0492	7.2225	5.4474	7.4868	0.1	29.83%
1.8927	2.5051	1.7698	2.3471	0.1810	3.3476	4.4644	3.3013	4.4131	0.1810	29.1
1.4974	1.9775	1.3662	1.8088	0.0890	7.0484	9.7913	7.5444	10.7015	0.1	
3.0711	1.5298	1.2860	1.6957	0.1250	9.1087	4.3032	3.9267	5.2597	0.1250	
2.5010	1.4641	1.2393	1.6333	0.0010	12.5913	6.6101	6.4307	8.9144	0.1	31.69%
1.7788	2.3590	1.9023	2.5178	0.1830	3.1006	4.1408	3.5054	4.6782	0.1830	31.(
1.3795	1.8266	1.5111	1.9958	0.0920	6.0715	8.3605	7.9247	11.2019	0.1	
2.6188	1.1642	0.8732	1 1642	0.1140	8.7924	3.6677	3.0059	4.0644	0.1140	
2.1489	1.1094	0.8320	1) 1094	0.0860	11.7035	5.3349	4.5883	6.3542	0.1	34.48%
1.4729	1.9639	1.4729	1.9639	0.1740	2.7175	3.6473	2.8772	3.8647	1740	34.
1.0716	1.4288	1.0716	1.4288	0.0830.0	5.4554	7.5888	6.5889	9.4083	0.1	
Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	ess of Slab	Positive Steel at Mid Span	Negative Steel at Support	Positive Steel at Mid Span	Negative Steel at Support	f the slab	ness due to
n tm/m) Lx Dir.		د Dir A Dirbnə		Over all Required Thickness of Slab	Dir. ນມສີ	ר× אי	gng Dir	רא ו אוי	Governing Thickness of the slab	% Reduction in Slab Thickness due to Precasting
				Over all	pərinț	el Red ما		Area	Gover	% Reduc

				u u	۲ 6		Ly/Lx	11	1.286				
							10.11.01		200 111 111		V04-10		
1		Slab Without Cast.in.eitu const	Without Partition Wall	'artition Wall Socimental const	Vlab V Coct b	Slab With Parition Wall Along LX Uir. Cast in site const 1 Segmental const	Vall Alot Segmer	Vall Along LX UIT. Segmental const	Clab WI	Slab With Partition Wall Along Ly Lit. Cast.in.eitu const 1 Sogmantal const	Vall Alor Seamen	Nall Along Ly Uir. Seamentel const	
1	Flexure	Flexure Deflection	Flexure	Flexure Deflection	Flexure	Flexure Deflection	Flexure	1	Flexure	Deflection		Flexure Deflection	
Positive Bending Moment at Mid Span		0.0000	1.8069	2.3428	0.000.0	0.000.0	1.9141		0.0000	00000	1.9600	2.5419	
Negative Bending Moment at Support	t 0.0000	0:0000	0.000	0.000	0.000	0:000	0.000	0.000	0.000	000010	0.0000	0.000	
Positive Bending Moment at Mid Span	t 0.0000	0.000	0.000	0.000	0.000.0	0000.0	0.000	0.000	0.0000	000010	0.0000	0.000	
Negative Bending Moment at Support	t 0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.000.0	0.0000	0.0000	0000	0.0000	0.0000	
Positive Bending Moment at Mid Span	t 1.7252	2.2720	1.2977	1.3736	1.7772	2.3111	1.3129	1.3953	1.8033	2.3241	1.3194	1.4018	
Negative Bending Moment at Support	t 2.2608	2.9774	1.7006	1,8001	2 3290	3.0286	1.7205	1.8285	2.3632	3.0457	1.7290	1.8371	
Positive Bending Moment at Mid Span	t 1.1687	1.5391	0.8791	0.9305	1.2039	1.5656	0.8894	0.9452	1.2216	1.5744	0.8938	0.9496	
Negative Bending Moment at Support	t 1.5582	2.0521	1.1721	1.2407	1.6052	2.0874	1.1858	1.2603	1.6288	2.0992	1.1917	1.2662	
t	0.0000	0.000	0.000	0.000	4.8300	4.8300	4.8300	4.8300	4.8300	4.8300	4.8300	4.8300	
1	1.0000	1.0000	1.0000	1.0000	7,0000	7.0000	7,0000	7.0000	7.0000	7.0000	7.0000	7.0000	
1	1.0000	1.0000	1.0000	1.0000	0.1150	0.1150	0.1150	0.1150	0.1150	0.1150	0.1150	0.1150	
Positive Bending Moment at Mid Span	t 0.0000	0.0000	0.000	0.000	0.3172	0.3157	0.3169	0.3163	0.4948	0.4771	0.4925	0.4842	
Negative Bending Moment at Support	t 0.0000	0:000	0.000	0.0000	0.4078	0.4059	0.4075	0.4066	0.6362	0.6134	0.6333	0.6225	
Positive Bending Moment at Mid Span	t 0.0000	0.0000	0.0000	0.0000	0.3632	0.3556	0.3621	0.3586	0.2883	0.2790	0.2871	0.2827	M
Negative Bending Moment at Support	t 0.0000	0.000	0.0000	0.000	0.4670	0.4573	0.4655	0.4610	0.3707	0.3587	0.3691	0.3635	-25

								M	-4	25
4.4279	2.4596	1.2323	1.6297	0.1660	9.5286	4.9950	2.5796	3.4498	0.1660	
3.7719	2.3623	1.1809	1.5608	0.1280	12.2393	6.9356	3.5592	4.8159	10	15.74%
2.8012	3.6591	1.8534	2.4579	0.1970	4.5998	6.1004	3.1499	4.2244	0.1970	15.7
2.2981	2.9994	1.5099	1.9995	0.1170	7.7944	10.8644	5.3910	7.4801	0	
4.2075	2.2361	1.3038	1.7213	0.1630	9.2388	4.6215	2.8021	3.7458	0.1630	
3.5439	2.1280	1.2515	1.6513	0.1250	11.8265	6.3928	3.9296	5.3283	0.1	16.41%
2.6268	3.4345	1.9212	2.5447	0.1950	4.3553	5.7778	3.3123	4.4399	0.1950	16.
2.0944	2.7368	1.5671	2.072	0.1130	7.4158	10.3468	5.9885	8.3890	0	
3.7164	1.8001	0.9305	1.2407	0.1530	8.8252	3.9945	2.1517	2.8996	0.1530	
3.1046	1.7006	0.8791	1)1721	0.1180	11.1724	5.4339	2.9428	4.0114	0.1	19.05%
2.2720	2.9774	1.5391	2.0521	0.1890	3.8914	5.1687	2.7414	3.6935	0.1890	19.
1.7252	2.2608	1.1687	1.5582	0.1050	6.7045	9.3833	4.8911	6.8690	0.1	
Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	ress of Slab	Positive Steel at Mid Span	Negative Steel at Support	Positive Steel at Mid Span	Negative Steel at Support	of the slab	kness due to
n tm/m) (m/m)		A gnibne V لاץ Dir.		Required Thickness of Slab	Dir. Dir.	.×⊐	Dir. Dir.	רא ו אוי	Governing Thickness of the slab	% Reduction in Slab Thickness due to Precasting
				Over all	pəriuş	el Rec v/n	of Ste mo	вэлА	Govern	% Reduct

Size of Slab Panel	6															
							I	- 0		Ly/Lx	n	1.286				
				Sat Sat Sat	Slab Without Partition Wall	Partition \	Mall	Slab With Partition	Slab With Partition Wall Along Lx Dir.	Wall Alor	ig LX Dir.	Slab Wit	Slab With Partition Wall Along Ly Dir.	Wall Alo	ng Ly Dir. tol conce	
		T		Flexure 1			Flexure Deflection		Flexure Deflection	Flexure Deflection	Flexure Deflection	Flexure	Flexure Deflection	Flexure	Flexure Deflection	
	peq (qejS et	רא סיגי	Positive Bending Moment at Mid Span	0.0000	0.0000	1.4241	2.0672	0.0000	0.0000	1.5006	2.2203	0.000	0.000	1.5466	2.2663	
y of the S (benzilo	אעי סניו + רוֹאפּ רכ		Negative Bending Moment at Support	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.0000	0.000	
	teo) beo Fir Load I	ر کارت مراجع	Positive Bending Moment at Mid Span	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	0.000	0.0000	0.000	0.000	0.000	
(Before	+ T beeO		Negative Bending Moment at Support	0.0000	0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000	0.000	0.0000	
si antou	per (del2 er	רא Dir.	Positive Bending Moment at Mid Span	1.5950	2.2665	1.2434	1.3346	1.6405	2.3045	1.2543	1.3563	1.6601	2.3176	1.2608	1.3628	
Moments of the Str ished) ment due	۷۸۴. م۴ ۴۱ + Live Lo		Negative Bending Moment at Support	2.0902	2.9589	1.6295	17489	2 1500	3.0201	1.6437	1.7773	2.1755	3.0371	1.6522	1.7859	
) ytiunitni Idetee	ties) beo Fir Load	רא סייני	Positive Bending Moment at Mid Span	1.0805	1.5347	0.8423	0.9041	1.1113	1.5611	0.8497	0.9188	1.1246	1.5700	0.8541	0.9232	
oo refiA)	l bsed L +		Negative Bending Moment at Support	1.4406	2.0462	1.1231	1.2054	1.4818	2.0815	1.1329	1.2250	1.4994	2.0933	1.1388	1.2309	
Total concentrated load applied including (partial safety factor)	entrated load applied (partial safety factor)	d appli 7 facto	ied including xt)	0.0000	0.000.0	0.000	0.000	4.8300	4.8300	4.8300	4.8300	4.8300	4.8300	4.8300	4.8300	
Conta	Contact Length of load	h of L	Jad	1.0000	1.0000	1.0000	1.0000	7.0000	7.0000	7.0000	7.0000	7,0000	7.0000	7.0000	7,0000	
	Contact Width of load	h of lo	- 1	1.0000	1.0000	1 0000	0000	0.1150	0.1150	0.1150	0.1150	0.1150	0.1150	0.1150	0.1150	
si enutou	spec	Lx Dir.	Positive Bending Moment at Mid Span	0.0000	0.000	0,000	0.000	0.3176	0.3157	0.3174	0.3166	0.4994	0.4773	0.4982	0.4883	
the Str lished			Negative Bending Moment at Support	0.0000	0.0000	0.000	0.000	0.4083	0.4059	0.4081	0.4070	0.6421	0.6137	0.6405	0.6278	
	eonoo of	لا کاند.	Positive Bending Moment at Mid Span	0.0000	0.0000	0.000	0.0000	0.3651	0.5570	0.3646	0.3602	0.2907	0.2791	0.2900	0.2849	M
			Negative Bending Moment at Support	0.0000	0.0000	0.000	0.0000	0.4694	0.4574	0.4687	0.4632	0.3737	0.3588	0.3729	0.3663	-40

								M		10
4.1174	2.4137	1.2081	1.5972	0.1480	9.2837	5.5427	2.9033	3.8729	0.1480	
3.3056	2.2927	1.1441	1.5117	0.1010	14.4832	9.2343	4.8672	6.6049	i.	24.49%
2.7949	3.6508	1.8491	2.4521	0.1960	4.5366	5.9794	3.1233	4.1701	0.1960	24.
2.1595	2.8176	1.4153	1.8731	0.0950	9.6079	13.3997	6.8792	9.5872	1.0	
3.8932	2.1843	1.2790	1.6882	0.1450	9.5126	5.1275	3.1655	4.2202	450	
3.0723	2.0518	1.2143	1.6016	0.0980	14.0358	8.5553	5.4651	7.4655	0.1450	56%
2.6202	3.4260	2.1181	2.5389	0.1940	4.2980	5.6683	3.2820	4.3784	940	25.26%
1.9581	2.5583	1.4764	1.9512	0.0920	9;0758	12.6611	7.7097	10.8757	0.1940	
3.4018	1.7489	0.9041	1,2054	0.1350	9:0948	4.4647	2.4435	3.2866	350	
2.6675	1.6295	0.8423	1.1231	0:0930	13.0634	7.1898	4.0251	5.5171	0.1350	%6
2.2665	2.9689	1.5347	2.0462	0.1880	3.8446	5.0789	2.7206	3.6504	1880	28.19%
1.5950	2.0902	1.0805	1.4406	0.0850	8.2604	11.5882	6.3167	8.9482	0.1	
Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	ess of Slab	Positive Steel at Mid Span	Negative Steel at Support	Positive Steel at Mid Span	Negative Steel at Support	the slab	ness due to
(m\mt n Lx Dir.		M gnibne Ly Dir	8 letoT PnolA	Over all Required Thickness of Slab	Dir. Dir	ר×ו אי	bug Dir	רא ו אי⊄	Governing Thickness of the slab	% Reduction in Slab Thickness due to Precasting
				Over all	pərinț	m\ ² baA la	of Ste	Area	Goven	% Reduc

					11 11	11 7		Ly/Lx	11	1.571				
Slab M	Slab V		/ithout	Slab Without Partition Wall	Wall	Slab Witl	—i — F	Wall Alon	g Lx Dir.	Slab Wrt	Slab With Partition Wall Along Ly Dir.	Wall Alo	1g Ly Dir.	
Cast-in-situ const. Flexure Deflection	Cast-in-situ cor Flexure Deflec	itu cor Deflec	tion I	Segmental const. Flexure Deflection	Segmental const. Flexure [Deflection]			Segmental const. Flexure Deflectior	Segmental const. Flexure Deflection	Cast-in-si Flexure [[Cast-in-situ const. Flexure [Deflection]	Segmen Flexure	Segmental const. Flexure [Deflection]	
Positive Bending Moment 0.0000 0.0000 at Mid Span		0000.0		1.8834	2.5266	0000	0.000	1.9906	2.6797	0.000	0.0000	2.0366	2.7409	
Negative Bending Moment 0.0000 0.0000 at Support	0.000	0.000	_	0.000	0.0000	0.0000	0.0000	0.0000	0.000	0.0000	0.000	0.000	0.0000	
Positive Bending Moment 0.0000 0.0000 at Mid Span	0.0000	0.0		0.000	0.0000	0.0000	00000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	
Negative Bending Moment 0.0000 0.0000 at Support	0.0000	000.0	0	0.000	0.0000	0,000	0.0000	0.0000	0.000	0.0000	0.0000	0.000	0.0000	
Positive Bending Moment 2.1140 2.7645 at Mid Span	2.1140	2.7645		1.5565	1.6649	2.1760	2.8032	1.5746	1.6907	2.2070	2.8187	1.5823	1.7010	
Negative Bending Moment 2.7590 3.6079 at Support	2.7590 3	3.6075	-	2.0314	2.1728	2.8400	3.6585	2.0549	2.2065	2.8803	3.6787	2.0650	2.2200	
Positive Bending Moment 1.2039 1.5744 at Mid Span	1.2039	1.5744		0.8864	0.9482	1.2392	1.5964	0.8967	0.9629	1.2569	1.6052	0.9011	0.9687	
Negative Bending Moment 1.6052 2.0992 at Support	1.6052	2.0992	~	1.1819	1.2642	1.6523	2.1286	1.1956	1.2838	1.6758	2.1403	1.2015	1.2916	
Total concentrated load applied including 0.0000 0.0000 (partial safety factor)		0.000		0,000	0.000	4.8300	4.8300	4.8300	4.8300	4.8300	4.8300	4.8300	4.8300	
1.0000		1.000		1.0000	1.0000	7.0000		7.0000	7.0000	7.0000	7.0000	7.0000	7.0000	
Contact Width of load 1.0000 1.0000				1.0000	0000	0.1150	0.1150	0.1150	0.1150	0.1150	0.1150	0.1150	0.1150	
Positive Bending Moment 0.0000 0.0000 at Mid Span	0.000	0000	_	0.000	0.000	2766.0	0.3363	0.3376	0.3368	0.5354	0.5191	0.5339	0.5243	
Negative Bending Moment 0.0000 0.0000 at Support	0.000	0.000	-	0.000	0.000	0.4342	0.4324	0.4340	0.4330	0.6883	0.6674	0.6864	0.6741	
Positive Bending Moment 0.0000 0.0000 at Mid Span	0.0000	0000		0.000	0.0000	0.3600	0.3532	0.3593	0.3555	0.2573	0.2508	0.2567	0.2529	M
Negative Bending Moment 0.0000 0.0000 at Support	0.0000	0.00		0.000	0.000	0.4629	0.4541	0.4619	0.4570	0.3308	0.3224	0.3301	0.3252	-25

								M	-2	25
4.9662	2.8941	1.2216	1.6168	0.1790	9.7101	5.3802	2.3173	3.0948	0.1790	
4.1528	2.7514	1.1578	1.5316	0.1330	12.8665	7.7761	3.2909	4,4419	i.	12.25%
3.3378	4.3461	1.8560	2.4627	0.2040	5.2937	7.0094	3.0181	4.0460	0.2040	12.
2.7424	3.5686	1.5142	2.0066	0.1250	8 .5838	11.9356	4.8390	6.6478	0.2	
4.7072	2.6395	1.3184	1.7408	0.1750	9.4457	5.0242	2.5807	3.4433	750	
3.9028	2.4889	1.2560	1.6575	0.1300	12.4091	7.1842	3.7137	5.0195	0.1750	13.37%
3.1395	4.0909	1.9496	2.6827	0.2020	5.0250	6.6536	3.2150	4.3064	020	13.
2.6137	3.2742	1.5992	2.1152	0.1210	8.1827	11.3826	5.4291	7:0037	0.2020	
4.1915	2.1728	0.9482	1 2642	0.1650	9.0325	4.4139	1.9850	2.6701	0.1650	
3.4399	2.0314	0.8864	1,1819	0.1230	11.7502	6.2205	2.7867	3.7885	0.1	16.24%
2.7645	3.6079	1.5744	2.0992	0.1970	4.5367	6.0095	2.6623	3.5838	1970	16.2
2.1140	2.7590	1.2039	1.6052	0.1130	7.4988	10.4580	4,4400	6.1586	0.1	
Positive Bending Moment 2.1140 at Mid Span	Negative Bending Moment 2.7590 at Support	Positive Bending Moment 1.2039 at Mid Span	Negative Bending Moment 1.6052 at Support	es of Slab	Positive Steel at Mid Span	Negative Steel at Support	Positive Steel at Mid Span	Negative Steel at Support	the slab	ness due to
	i) tnemol Along	M gnibne Ly Din	8 letoT gnolA	Over all Required Thickness of Slab	סטפ Dir:		ومرو Dir.	רא אוק	Governing Thickness of the slab	Reduction in Slab Thickness due to Precasting
				Over all	pəyint	el Rec m\ ^s	of Ste imc	вэлА	Govern	% Reduct

																	M	-40
		ng Ly Dir.	Segmental const. Flexure Deflection	2.4500	0.000	0.000	0.000	1.6520	2.1560	0.9408	1.2544	4.8300	7.0000	0.1150	0.5284	0.6793	0.2545	0.3272
		Wall Alc		1	0.000	0.000	0.000	1.5100	1.9707	0.8600	1.1466	4.8300	7.0000	0.1150	0.5391	0.6931	0.2588	0.3328
		Slab With Partition Wall Along Ly Dir	Cast-in-situ const. Flexure Deflection	0.000	0.000	0.000	0.000	2.8187	3.6787	1.6052	2.1403	4.8300	7,0000	0.1150	0.5191	0.6674	0.2508	0.3224
т Р Ц т	1/g.1	Slab Wr	Cast-In-s Flexure	0.000.0	0000.0	0.000	0.000	2.0211	2.6377	1.1510	1.5347	4.8300	7.0000	0.1150	0.5398	0.6941	0.2591	0.3331
	n	ng Lx Dir.	Segmental const. Flexure Deflection	2.3888	0.000	0.0000	0.000	1.6417	2.1425	0.9349	1.2466	4.8300	7.0000	0.1150	0.3371	0.4334	0.3571	0.4591
=	гулсх	Wall Alo			0000.0	0.000	0.000	1.5023	1.9606	0.8555	1.1407	4.8300	7.0000	0.1150	03380	0.4346	0.3617	0.4650
		Slab With Partition Wall Along Lx Dir.	Cast-in-situ const. Flexure Deflection	0.000	0.000	0.0000	0.0000	2.7955	3.6484	1.5920	2.1227	4.8300	7.0000	0.1150	0.3364	0.4325	0.3533	0.4542
7	Ŧ	Slab Wi			000010	0.000.0	000010	6799.1	2.6074	1.1378	1.5170	4,8300	7.0000	0.1150	0.3381	0.4347	0.3620	0.4654
П	П	Nall	Segmental const. Flexure Deflection	2.2509	0000.0	0.000	0.000	1.6184	2.1122	0.9217	1.2289	0.0000	1.0000	1.0000	0.000	0000.0	0.000	0000.0
		Partition \			0.000	0.000	0.000	1.4894	1.9438	0.8482	1.1309	0.000	1.0000	1.0000	0,000	0000	0.000	0.0000
		Slab Without Partition Wall	Cast-in-situ const. Flexure Deflection	0.000	0.000	0.0000	0.0000	2.7568	3.5978	1.5700	2.0933	0.0000	1.0000	1.0000	0.0000	0.0000	0.000	0.000.0
			Cast-in-s Flexure	0.000.0	0.000	0.000	0.000	1.9514	2.5468	1.1113	1.4818	0.000	1.0000	1.0000	0.000	0.000	0.000.0	0.000
				Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support		oad	oad	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support
					, ∀long	רא סור. –		רא Dir.	βuolA	רא מיי.	pnolA	d appl :	th of	th of Ic		, βuolA	רא <u>ס</u> ור	
anel				(del≳ ei	Wt. of th	oM gnibn Tiez) beo Fir Load	д реад	(del2 ei	thioWV	oM gnibn 192) bso Flr Load	д рвад Ц	entrated load applied (partial safety factor)	Contact Length of load	Contact Width of load	spe	memom Moment		ənp
<u>Size of Slab Panel</u> Lx	Ly					. gnibneð tiunitnop tstat						Total conce ()	Ĩ		ltotw/ it (beout er	ts due to Losd + Lin of the Stru bf the Stru bedei	beed nei) + Fin L offinuity o	the Stat

								M	_[10
4.6304	2.8353	1.1953	1.5816	0.1600	10.0093	5.9293	2.5902	3.4519	0.1600	
3.6569	2.6638	1.1188	1.4794	0.1050	15.2304	10.2849	4,4419	6.0174	0.1	21.57%
3.3378	4.3461	1.8560	2.4627	0.2040	5.1906	6.8247	2.9839	3.9838	0.2040	21.
2.5609	3.3318	1.4101	1.8678	0.1010	10.5232	14.6357	6.1108	8.4154	0.2	
4.3676	2.5759	1.2920	1.7057	0.1560	9.7285	5.5404	2.8996	3.8598	0.1560	
3.4022	2.3962	1.2172	1.6057	0.1020	14.7300	9.5521	5.1085	6.9433	1.0	22.39%
3.1319	4.0809	1.9453	2.5769	0.2010	4.9482	6.5088	3.1880	4.2514	0.2010	22.3
2.3360	3.0421	1.4998	1.9824	0.0980	9.9637	13.8538	6.9241	9.8072	0.2	
3.8693	2.1122	0.9217	1 2289	0.1470	9.2665	4.8625	2.2208	2.9820	0.1470	
2.9747	1.9438	0.8482	1) 309	0.0970	13.7533	8.1817	3.7703	5.1474	0.1	25.00%
2.7568	3.5978	1.5700	2.0933	0.1960	4.4729	5,8892	2.6437	3.5455	1960	25.1
1.9514	2.5468	1.1113	1.4818	0.0920	9.0391	12.5872	5.5650	7.7425	0.1	
Positive Bending Moment at Mid Span	Negative Bending Moment 2.5468 at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	ess of Slab	Positive Steel at Mid Span	Negative Steel at Support	Positive Steel at Mid Span	Negative Steel at Support	f the slab	rness due to
(m\mt n Lx Dir.		M pnibne	8 letoT Along	Over all Required Thickness of Slab	נית Dirt	ו×ר איק שיק	ពីប	ו גֿ אי∀	Governing Thickness of the slab	% Reduction in Slab Thickness due to Precasting
				Ó	pəriup		of Ste	вэлА		1 %

																	M	-25
		ing Ly Dir.	Segmental const. Flexure Deflection	4.9106	0.000	0.0000	0.000	1.6378	2.1838	1.6378	2.1838	6.2100	9.0000	0.1150	0.5065	0.6512	0.3433	0.4414
		Wall Alc		1	0.000	0.000	0.000	1.5431	2.0574	1.5431	2.0574	6.2100	9,0000	0.1150	0.5104	0.6562	0.3441	0.4424
		Slab With Partition Wall Along Ly Dir.	Cast-in-situ const. Flexure Deflection	00000	0.000	0.000	0.000	2.8431	3.7908	2.8431	3.7908	6.2100	9.0000	0.1150	0.5017	0.6450	0.3424	0.4402
C C C		Slab Wi	Cast-In-s Flexure	0000.0	0.000	0.000	0.000.0	2.1068	2.8091	2.1068	2.8091	6.2100	9.0000	0.1150	0.5129	0.6594	0.3446	0.4431
1	11	ng Lx Dir.	Segmental const. Flexure Deflection	4.8600	0.000	0.0000	0.000	1.6330	2.1773	1.6330	2.1770	6.2100	9.0000	0.1150	0.3436	0.4417	0.5076	0.6526
	гулск	Wall Alo		3.8475	0.000	0.0000	0.000.0	1.5358	2.0477	1.5358	2.0477	6.2100	9.0000	0.1150	0.3443	0.4427	0.5114	0.6576
		Slab With Partition Wall Along Lx Dir.	Cast-in-situ const. Flexure Deflection	0.000	0.0000	0.0000	0.0000	2.8577	3.8102	2.8577	3.8102	6.2100	9.0000	0.1150	0.3425	0.4404	0.5025	0.6460
6	6	Slab Wi		0000.0	0.000.0	0.000	0.000	2.1287	2.8382	2.1287	2.8382	6.2100	9.0000	0.1150	0.3447	0.4432	0.5134	0.6601
П	Ш	Wall	Segmental const. Flexure Deflection	4.5816	0.000	0.0000	0.000	1.6062	2.1416	1.6062	2.1416	0.000	1.0000	1.0000	0.000	0.000	0.000	0.000
		Partition ,	Segmen Flexure	3.6956	0.000	0.000	0.000	1.5212	2.0282	1.5212	2.0282	0.000	1.0000	1.0000	0.000	0.000.0	0.000	0.000.0
		Slab Without Partition Wall	Cast-in-situ const. Flexure Deflection	0.0000	0.000	0.0000	0.000	2.7921	3.7228	2.7921	3.7228	0.0000	1.0000	1.0000	0.000	0.000	0.000	0.0000
			Cast-In-8 Flexure	0.000	0.000.0	0.000	0.000	2.0412	2.7216	2.0412	2.7216	0.000	1.0000	1.0000	0.000	0.000.0	0.000.0	0.000
				Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support		oad	oad	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support
				רא <u>ס</u> וּגי		רא סוי.		רא סוג	βnolÅ	רא מיי	, βuolA	d appl ty fact	th of	th of Ic		βuolA	רא פוני	
anel				i (dal2 ei	W. of th	oM pnibn 192) beo Fir Load	д реад) (del2 er	thioWV	oM gnibn 192) (self Flr Load	д bead L	entrated load applied (partial safety factor)	Contact Length of load	Contact Width of load	spe	Moment Intrated Ic		ənp
<u>Size of Slab Panel</u> Lx	Ly					. gnibneð tiunitnop letze zi						Total conce	Ō		ltotw/ it (beout er	t eub str Load + Lix of the Stru bf the Stru bedei	beed nei) + Fin L offinuity o	the Slat (other th

								M	-7	25
7.0549	2.8350	1.9811	2.6252	0.1940	12.8917	4.7485	3.4422	4.6189	0.1940	
5.9769	2.7136	1.8872	2.4998	0.1550	15.3905	6.0957	4,4312	6.0055	-i	15.65%
3.3448	4.4358	3.1855	4.2310	0.2300	4.5778	6.1521	4.5416	6.1161	0.2300	15.
2.6197	3.4685	2.4514	3.2522	0.1290	7.7161	10.8211	7.9419	11.2824	0.2	
6.8366	2.6190	2.1406	2.8296	0.1920	12.6248	4.4268	3.7811	5.0693	0.1920	
5.7276	2.4904	2.0472	2.7053	0.1520	15.1124	6.7053	4.9749	6.7523	0.1	17.24%
3.2002	4.2506	3.3602	4.4562	0.2320	4.3273	5.8194	4.7493	6.3891	0.2320	17.
2.4734	3.2814	2.6421	3.4983	0.1320	6.9643	9.6952	8.3246	11.8175	0.2	
6.1878	2.1416	1.6062	2.1416	0.1810	12.3023	3.8618	3.0295	4.0893	0.1810	
5.2168	2.0282	1.5212	2 0282	0.1460	14.4538	4.8321	3.8378	5.2293	0.1	18.83%
2.7921	3.7228	2.7921	3.7228	0.2230	3.9393	5.3155	4.1167	5.5614	2230	18.1
2.0412	2.7216	2.0412	2.7216	0.1200	6.5054	9.1440	7.3052	10.4631	0.2	
Positive Bending Moment 2.0412 at Mid Span	Negative Bending Moment 2.7216 at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	ess of Slab	Positive Steel at Mid Span	Negative Steel at Support	Positive Steel at Mid Span	Negative Steel at Support	the slab	ness due to
(m\mt n Lx Dir.		M gnibne Ly Dir	8 letoT gnolA	Over all Required Thickness of Slab	Dirt סטפ	רא איל	ومو Dir.	רא ו אי∨	Governing Thickness of the slab	% Reduction in Slab Thickness due to Precasting
				Over all	pəlint	el Rec m\²	of Ste	eəıA	Govern	% Reduct

																			M	-40
			na Ly Dir	Semental const	Deflection	4.3284	0:000	0.000	0.000	1.5819	2.1092	1.5819	2.1092	6.2100	0000.6	0.1150	0.5088	0.6542	0.3438	0.4420
			n Wall Aln	Sentine	1	2.9869	0.000	0.0000	0.0000	1.4531	1.9375	1.4531	1.9375	6.2100	9.0000	0.1150	0.5140	0.6608	0.3448	0.4434
			Slab With Partition Wall Along Ly Dir	Cast-in-situ nonst	Deflection	0.0000	0.0000	0.0000	0.0000	2.8358	3.7811	2.8358	3.7811	6.2100	0000.6	0.1150	0.5018	0.6452	0.3424	0.4402
	U UU		Slah W	Cast-in-	Flexure	0.0000	0.000	0.0000	0.000	1.9391	2.5855	1.9391	2.5855	6.2100	9,0000	0.1150	0.5151	0.6623	0.3451	0.4437
	#		na Lx Dir	Sermental runst	Deflection	4.2525	0.000	0.0000	0.0000	1.5746	2.0995	1.5746	2.0995	6.2100	9.0000	0.1150	0.3440	0.4423	0.5099	0.6556
	w ×	1	n Wall Aln	Senme	10	2.9363	0.0000	0.0000	0.000	1 4483	1.9310	1.4483	1.9310	6.2100	9,0000	0.1150	0.3450	0.4436	0.5149	0.6620
		والمعارك والمحارك	Slab With Partition Wall Along Lx Dir	Cast-in-situ const	Deflection	0.0000	0.0000	0.000	0.000	2.8504	3.8005	2.8504	3.8005	6.2100	0000.6	0.1150	0.3426	0.4404	0.5026	0.6462
	6	6	Slah W	Cact-in-	Flexure	0.000	0000.0	0.000	0.000	1.9610	Z.6147	1.9610	2.6147	6.2100	9.0000	0.1150	0.3452	0.4438	0.5156	0.6629
	n	n	Wall	Segmental const	Deflection	3.9994	0.000	0.0000	0.0000	1.5503	2,0671	1.5503	2.0671	0.000.0	1.0000	1.0000	0.000	0.000	0.000	0.0000
			Partition	Seame	Flexure	2.8097	0.0000	0.0000	0.0000	1.4361	1.9148	1.4361	1.9148	0.0000	1.0000	1.0000	0.0000	0.000.0	0.000.0	0.000.0
			Slah Without Partition Wall	citu nonst	Deflection	0.0000	0000.0	0.0000	0.0000	2.7848	3.7130	2.7848	3.7130	0.000	1.0000	1.0000	0.0000	0.000	0.000	0.0000
			0.	Cast-in-situ nu	Flexure	0.0000	0.0000	0.0000	0.0000	1.8881	2.5175	1.8881	2.5175	0.0000	1 0000	1.0000	0.000	0.000	0.000	0.0000
						Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support		load	load	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support
						רא Dir.		ر کارت		Lx Dir.			βnotA	oad app ety fac	ngth of	idth of	רא Dir.	gnolA	لې کېر	βnolA
anel						(dal2 er	WF: of fi	oM gnibn Nec) beo Fhr Load	l bead l	(delZ er	Wi of th	oM gnibn Nes) beo Flr Load	Д рва <u>д</u> Г	entrated load applied (partial safety factor)	Contact Length of load	Contact Width of load		Moment Moment		ənp
Size of Slab Panel	Lx	Ly							eroteB)					Total conc	0		to . MV 11: [beod 97	te due to Load (se id + Lio to S of tr bedei	an Dead) + Flr. L ntinuity c	the Slat the Slat

								M		10
6.4191	2.7634	1.9257	2.5512	0.1710	13.0617	5.3032	3.8740	5.1847	0.1710	
4.9540	2.5983	1.7979	2.3809	0.1180	17.8126	8.2587	6.1304	8.3608	0	25.33%
3.3376	4.4263	3.1782	4.2213	0.2290	4.5246	6.0481	4.4868	6.0087	0.2290	25.
2.4542	3.2478	2.2842	3.0292	0.1060	9.1975	12.8414	9.7013	13.7762	0.2	
6.1711	2.5418	2.0845	2.7551	0.1680	12.8213	4.9712	4.3033	5.7535	0.1680	
4.7296	2.3746	1.9632	2,5330	0,160	17.3666	7.6727	6.9414	9.4963	0.1	27.27%
3.1930	4.2409	3.3530	4.4467	0.2310	4.2803	5.7277	4.6899	6.2728	0.2310	21.
2.3062	3.0585	2.4766	3 2776	0,1090	8.1850	11.3402	10.1113	14.3223	0.2	
5.5497	2.0671	1.5503	2.0671	0.1580	12.4452	4.3343	3.4385	4.6315	0.1580	
4.2458	1.9148	1.4361	1.9148	01110	16.4974	6.4768	5.3061	7.2772	0	28.83%
2.7848	3.7130	2.7848	3.7130	0.2220	3.8988	5.2358	4.0704	5.4699	0.2220	28.
1.8881	2.5175	1.8881	2.5175	0.0990	7.6443	10.6977	8.8707	12.7008	20	
Positive Bending Moment 1.8881 at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment 2.5175 at Support	iss of Slab	Positive Steel at Mid Span	Negative Steel at Support	Positive Steel at Mid Span	Negative Steel at Support	the slab	ness due to
(m/mt n) Lx Dir.	βnolA	ending M Ly Dir.		Over all Required Thickness of Slab	Dir.	ר× אוע	ong Dir	ראׂו אוי	Governing Thickness of the slab	% Reduction in Slab Thickness due to Precasting
				Over all	pərinț	m/ ¹ دا Red	of Ste mo	вэлА	Govern	% Reduct

																			M	-25
				ng Ly Ulf.	Segmental const. Flexure [Deflection	5.6194	0000.0	0000.0	0000.0	2.3377	3.1195	1.7069	2.2745	6.2100	000016	0.1150	0.6035	0.7759	0.3832	0.4927
			2012-01-012				0000.0	0.000	0.000	2.1479	2.8662	1.5674	2.0898	6.2100	9.0000	0.1150	0.6157	0.7916	0.3904	0.5020
			14	Slap with Parition wall Along Ly Ulf.	Cast-in-situ const. Flexure Deflection	0.000	0.000	0.0000	0.000	4.0659	5.4258	2.9670	3.9560	6.2100	9.0000	0.1150	0.5978	0.7686	0.3799	0.4885
	1 33		01-1-10		Cast-in- Flexure	0.000	0.000.0	0.0000	0.000.0	3.0070	4.0127	2.1943	2.9257	6.2100	9.0000	0.1150	0.6203	0.7976	0.3933	0.5056
	I			ng ex uir.	Segmental const. Texure Deflection	5.5434	0.000	0.000	0.000	2.3277	3.1062	1.6986	2.2648	6.2100	9.0000	0.1150	0.3904	0.5019	0.4450	0.5722
	v liuti v	L L	- 10 U-11 01-	1 Wall Ald			0.000.0	0.000.0	0,000	2.1345	2.8484	1.5576	2.0768	6.2100	9,0000	0.1150	0.3912	0.5030	0.4492	0.5776
			641- 11	Slab With Parition Wall Along LX UII.	Cast-in-situ const. Flexure Deflection	0.0000	0.000	0.000	0.000	4.0360	5.3858	2.9452	3.9269	6.2100	9.0000	0.1150	0.3900	0.5014	0.4432	0.5698
	6	Ŧ			Cast-in- Flexure	0.0000	0.000.0	0.000.0	0000.0	2.9670	3 9694	2.1661	2.8868	6.2100	0.000.6	0.1150	0.3916	0.5034	0.4510	0.5798
	п	n	1014-11	vvall	Segmental const. Flexure Deflection	5.2903	0.00	0000	0.000	2.2944	3.0617	1.6743	2.2324	0000010	1.0000	1.0000	0.0000	0000	0000	0000
				VILNOUT MAILION WAI	Segmel Flexure	3.9488	0.000	0.0000	0.000.0	2.1179	2.8262	1.5455	2.0606	0.0000	1.0000	1.0000	0.0000	0.0000	0.000.0	0.0000
			یا دارد. ۱۰۰۰ ماری (مارد از مارد		situ const. Deflection	Ö	0.0000	0.000	0.0000	3.9860	5.3192	2.9087	3.8783	0.000.0	1.0000	1.0000	0.000	0.000	0.0000	0.0000
					Cast-in-situ Flexure Def	0.000	0.000	0.000	0.0000	2.8871	3.8527	2.1068	2.8091	0.0000	1.0000	1.0000	0.000	0.0000	0.000	0.000
						Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support		oad	oad	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support
						.x Dir.	l pnolA	רא סויי	βποlΑ	בא Dir.	pnolA	ر کی این	pnolA	ad appl et v fact	gth of I	dth of lo	רא סור.	pnolA	רא סות	βnolA
anel						(del2 e	aub triam VA: of th + Live Lo	<u>д</u> ез) рео	д рвад Г	(dsIS er	Ht to .WV	iles) beo Ties) beo Fir Load	реад Г	entrated load applied (partial safety factor)	Contact Length of load	Contact Width of load		Moment Nument	gnibne8 to conce	ənp
Size of Slab Panel	Ľ	Ly					stnemoty 2 of the S bed)	(innitroo						Total conce	ඊ 	Ō	ער רoad] אין אאן סנ	vid + beo. Vid + beo.	remoM g beed ner (1 T + (1 b Y iunitr detse	the Stat the Stat

								M	-7	25
8.5606	3.8954	2.0891	2.7672	0.2220	13.2010	5.6058	3.0679	4.1018	0.2220	
6.9402	3.6578	1.9578	2.5918	0.1650	16.6155	7.7516	4.2194	5.6966	0.2	10.12%
4.6637	6.1944	3.3469	4.4445	0.2470	5.9417	8.0218	4.3749	5.8803	0.2470	10.
3.6273	4.8103	2.5876	3.4313	0.1410	9.7739	13.9087	7.2456	10.1024	0.2	
8.2615	3.6081	2.1436	2.8370	0.2190	12.9266	5.2598	3.2038	4.2823	0.2190	
6.6010	3.3514	2.0068	2.6644	0,1610	16.3047	7.2869	4.4830	6.0601	0	10.25%
4.4260	5.8872	3.3884	4.4967	0.2440	5.7088	7.7157	4,4985	6.0458	0.2440	10.
3.3586	4.4628	2.6161	3.4666	0.1370	9.3569	13.3373	7.7038	10.8139	0.2	
7.5847	3.0617	1.6743	2.2324	0.2090	12.5447	4.6915	2.6336	3.5424	0.2090	
6.0667	2.8262	1.5455	2.0606	0.1560	15.5018	6.3155	3.5534	4.8240	0	55%
3.9860	5.3192	2.9087	3.8783	0.2390	5.2468	7.1081	3.9401	5.3140	0.2390	12.5
2.8871	3.8527	2.1068	2.8091	0.1290	8.6490	12.3907	6.6559	9.3644	0.	
Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment 2.8091 at Support	ss of Slab	Positive Steel at Mid Span	Negative Steel at Support	Positive Steel at Mid Span	Negative Steel at Support	the slab	ness due to
רא Dir.		ending M		Over all Required Thickness of Slab	ong Dir.	×] Pi∀	Dir. Dir.	لا ∧ان	Governing Thickness of the slab	% Reduction in Slab Thickness due to Precasting
			- 50	Over all I	beniup	el Red ۲/۳	of Ste mo	Årea	Govern	% Reduct

																														M	-40
			aa Lii Die		begmental const. Elevino Deflection	nellection	4.9866		0.000		0.000.0		0.000		2.2544		3.0084		1.6451	2.1935	6.2100	9.0000	0.1150	0.6092			0.7833		0 3866 0		0.4971
			0 0 2 2 2 2 2 2 2 2 2				3.1894		0.0000		0.000		0.000		2.0180		2.6929		1.4726	1.9634	6.2100	0000.6	0.1150	0.6233			0.8014		0.395.0)	0.5079
			the Doctifier		Cast-In-situ const. Elevina Toffaction	ninalian	0.000		0.000		0.000		0.000		4.0559		5.4125		2.9597	3.9463	6.2100	9.0000	0.1150	0.6980			0.7689		0.3800		0.4886
	1 277	1	0124700		_	_	0.0000		0.000.0		0.000.0		0.000		2.7273		3.6394		1.9902	2.6536	6.2100	9.0000	0.1150	0,6259	}		0.8047		0 3966 0		0.5099
	п		s - 1 × ∩is		Segmental const. Elevino I Defication	Uninalian	4.8853		0.0000		0.000		0.000		2.2411		2.9906		1.6354	2.1805	6.2100	9.0000	0.1150	0.3907			0.5024		0 4469		0.5746
	v l v	L L L	Clob XII (445 Doct 4 to 00 for 1 k Div		_	_	3.1134		0.0000		0.000.0		0.000		2.0080		2.6796		1.4653	1.9637	6.2100	9.0000	0.1150	0,3918)		0.5037		0.4520		0.5811
			b Doetition		Cast-In-situ const. Elevino Indication	Uninalian	0.000		0.000		0000.0		0000.0		4.0260		5.3725		2.9379	3.9172	6.2100	9.0000	0.1150	0.3900			0.5014		6677 U		0.5699
	6	Ŧ	CIAN 100				0.000.0		0.0000		0000.0		0.000		2.6973		3.5994		1.9683	2.6244	6.2100	9.0000	0.1150	0.3919)		0.5039		0.4530)) []	0.5824
	п	п		# all	Segmental const. Elsviro IDefication	Uninalian	4.6322		0.000		0000.0		0.0000		2.2078		2.9462	7	1.611	2.1481	0.0000	1 0000	1 0000	0.000			0.0000		0000		0000.0
			Dodition 1000	L .	nemgec Flowing	LIEXULA	3.0122		0.000		0.0000		0.000		1.9947		2.6618		1.4556	1.9408	0.000	1.0000	1.0000	0.000)))		0.0000)	0.000
			turit do		Cast-In-situ const. Elevine Deflection	ninalian	0.000		0.000		0.0000		0.000		3.9760		5.3058		2.9014	3.8686	0.000	1.0000	1.0000	0.000	}		0.0000		0000	0000.0	0.0000
			0		Cast-In-SI Elex.um Tr		0.000	0.000	0.000.0		0.000.0		2.6274		3.5061		1.9173	2.5564	0.000	1.0000	1.0000	0.0000)))		0.0000		0000	0	0.000		
							Positive Bending Moment at Mid Snan										Negative Bending Moment at Sumort		Positive Bending Moment at Mid Span	Negative Bending Moment at Support	77	oad	oad	Positive Bendina Moment	at Mid Span	Nedative	Bending Moment	at Support	Positive Bending Moment	at Mid Span	Negative Bending Moment at Support
							.x Dir.	۲				(ŋ			🚊 Bending Moment	хŋ	βuolÅ			, βuolA	d appl v facti	타이	h of Ic			δι					, Buo¦∀
anel							(delC e	эц	nent du Mr. of t FLive L	jjes	s) pe	807	Греэ <mark>Д</mark>	(0	iel2	; əı	nent dur Mt. of th Live Lo	٩J	jes) pec	Dead L	entrated load applied (partial safety factor)	Contact Length of load	Contact Width of load	s	зрв	ta ol t	ome pater	M t	iono gribi	to c Ber	ənp
Size of Slab Panel	L×	Ľy				E	inutoun		tnemolv of the (bertei)	۸ųnı	nitad	ю	erote8)	SĮ	aın:			ţο) op 19ffA)	Total conce (k	ට 	IÕ	to .fv (beo-	τeγ γιγγ	ыц əs)	+ pe) pec	ן יי דס ג רי	Deac Fir Viity	l ne. + (i nito	nibne8 [other th det2 off fter co

								M	_/	10
7.8502	3.7917	2.0317	2.6906	0.1970	13.3982	6.1806	3.4171	4.5585	0.1970	
5.8307	3.4943	1.8676	2.4713	0.1260	19.3179	10.4032	5.7614	7.8127	0.1	19.92%
4.6539	6.1814	3.3397	4 4349	0.2460	5.8526	7.8487	4.3287	5.7900	0.2460	19.
3.3532	4 4441	2.3868	3.1635	0.1130	11.8740	16.8810	9.0503	12.6567	0.2	
7.6171	3.4930	2.0823	2.7551	0.1930	13.1377	5,8204	3.5953	4.7949	0.1930	
5.5132	3.1833	1.9173	2.5348	0.1230	18.8424	9.7216	6.1527	8.3610	0.1	20.58%
4.4160	5.8739	3.3812	4.4871	0.2430	5.6254	7.5535	4.4486	5.9485	0.2430	20.
3.0892	4.1033	2.4213	3.2068	0.1100	11.2925	16.0726	9.6738	13.6374	0.2	
6.8400	2.9462	1.6111	2.1481	0.1830	12.7404 11.2925	5.2086	2.9573	3.9713	0.1830	
5.0069	2.6618	1.4556	1.9408	0.1190	17.7532	8.3742	4.8201	6.5726	0.1	23.11%
3.9760	5.3058	2.9014	3.8686	0.2380	5.1749	6.9679	3.9012	5.2375	0.2380	23.
2.6274	3.5061	1.9173	2.5564	0.1030	10.4706	15.0102	8.3519	11.8175	0.2	
Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Over all Required Thickness of Slab	Positive Steel at Mid Span	Negative Steel at Support	Positive Steel at Mid Span	Negative Steel at Support	f the slab	% Reduction in Slab Thickness due to Precasting
רא Dir.	βnolΑ	لا کاند	βnolA	Thickne	חור.	хŋ	טור.	ר או	ness o	in Slab Thick Precasting
(ա/աքս	ii) tnemol	М рпірле	8 letoT	Required	bud		ទី១៨		Governing Thickness of the slab	tion in Sla Preca
				Over all	beiuț	m/² el Rec	ot Ste imp	€91∯	Govern	% Reduct

																			M	-25
			ona Ly Dir.	Segmental const.	Deflection	9,6044	0.000	0.0000	0.000	2.6644	3.5526	2.6644	3.5526	7.5900	11.0000	0.1150	0.6178	0.7943	0.4194	0.5392
			n Wall Ald	Segme	1-	7.4869	0.000	0.000	0.000	2.4611	3.2815	2.4611	3.2815	7.5900	11.0000	0.1150	0.6237	0.8019	0.4206	0.5407
			Slab With Partition Wall Along Ly Dir.	Cast-in-situ const.	Flexure Deflection	0.0000	0.0000	0.0000	0.0000	4.9550	6.6066	4.9550	6.6066	7.5900	11 0000	0.1150	0.6123	0.7872	0.4183	0.5378
	1 000	2	Slab W	Cast-in-s	Flexure	0000.0	0.000.0	0.000.0	0.000	3.4086	4.5448	3.4086	4.5448	7.5900	11.0000	0.1150	0.6280	0.8075	0.4214	0.5418
	H		na Lx Dir.	Segmental const.	Deflection	9.4909	0.0000	0.0000	0.000	2.6635	3.5380	2.6535	3.5380	7.5900	11.0000	0.1150	0.4197	0.5396	0.6193	0.7962
	v/ ×	; - 1	Wall Alor	Segmer	1	7.3734	0.000	0.000	0.000	2.4503	3.2670	2.4503	3.2670	7.5900	11.0000	0.1150	0.4208	0.5410	0.6248	0.8033
			Slab With Partition Wall Along Lx Dir.	Cast-in-situ const.	Deflection	0.000	0.000	0.000	0.000	4.9767	6.6356	4.9767	6.6356	7.5900	11.0000	0.1150	0.4184	0.5380	0.6131	0.7882
	=	=	Slab W	Cast-in-(Flexure	0000.0	0.000.0	0.000.0	0000.0	3.4412	4.5883	3.4412	4.5883	7.5900	11.0000	0.1150	0.4215	0.5420	0.6285	0.8081
	n	n	Wall	Segmental const.	Deflection	9.0750	0000.0	0000.0	0000	2.6136	3,4848	3.6136	3.4848	0.000	1.0000	1.0000	0.000	0000.0	0000	0000.0
			Partition	Segmer	Flexure	7.1466	0.000	0.000	0.000	2 4285	3.2380	2.4285	3.2380	0.000	1.0000	1.0000	0.000	0.000	0.000	0.000
			Slab Without Partition Wall	Cast-in-situ const.	Deflection	0.0000	0.000.0	0.000	0.000	4.8895	6.5195	4.8896	6.5195	0.000	1.0000	1.0000	0.0000	0000.0	0000.0	0000.0
			0	Cast-in-:	Flexure	0.000.0	0.000.0	0.000.0	0.000	3.3215	4.4286	3.3215	4.4286	0.000	1.0000	1.0000	0.000	0.000	0.000	0.000.0
						Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Total concentrated load applied including (partial safety factor)	load	load	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support
					ł		βnolA	لا کاند		רא סיר.		لا ک الت		ad app stv fac	igth of	dth of I	רא Dir.	gnolA	لې کېن	ິຍດາA
anel						(dsl2 ei	Wt. of th	oM gnibn Nec) beo Fir Loed	J besG	(dsiC er	Wi of th	oM gnibn Nec) beo Flr Load	Д рва <u>д</u> Г	entrated load applied (partial safety factor)	Contact Length of load	Contact Width of load		Moment Moment		ənp
Size of Slab Panel	Lx	Ly							eroteB)			l gnibne8 Σγίωπίτα Idetee		Total conc (0		ib Load) M. M	te due ta Load (se Nt the Stru S ent Stru berd	an Dead) + Flr. L ntinuity c	the Slab the Slab

								M	-7	25
12.8866	4.3469	3.0838	4.0918	0.2540	17.3988	5.3376	3.8849	5.2077	0.2540	
10.5717	4.0834	2.8817	3 8222	0.1980	20.5118	6.8157	4.9599	6.7015	0	13.90%
5.5673	7.3938	6.3733	7.1444	0.2950	5.7832	7.7792	5.7569	7.7561	0.2960	13
4.0366	5.3523	3.8300	5.0866	0.1530	9.7103	13.6714	9.9545	14.1694	0.2	
12.5641	4.0776	3.2728	4.3342	0.2510	17.1903	5.0654	4.1912	5.6129	0.2510	
10.2445	3.8080	3.0751	4.0703	0.1950	20.2474	6.4509	5.4220	7.3274		15.49%
5.3951	7.1736	5.5898	7 4238	0.2970	5.5539	7.4751	5.9495	8.0089	0.2970	15.
3.8627	5.1303	4.0697	5 3964	0.1560	8.9546	12.5271	10.3447	14.7166	0.2	
11.6886	3.4848	3.6136	3.4848	0.2400	16.8852	4.5392	3.5104	4.7278	0.2400	
9.5751	3.2380	2.4285	3.2380	0.1890	19.6371	5.6499	4.4054	5.9781	ö	16.96%
4.8896	6.5195	4.8896	6.5195	0.2890	5.1783	6.9861	5.3512	7.2256	0.2890	16.
3.3215	4.4286	3.3215	4.4286	0.1450	8.4283	11.8719	9.2341	13.2026	7.0	
Positive Bending Moment 3.3215 at Mid Span	Negative Bending Moment 4.4286 at Support	Positive Bending Moment at Mid Span	Negative Bending Moment 4.4286 at Support	ss of Slab	Positive Steel at Mid Span	Negative Steel at Support	Positive Steel at Mid Span	Negative Steel at Support	the slab	ness due to
	βnolA	ending M Ly Dir.	βuoľA	Required Thickness of Slab	Dir. Dir.	r×⊐ ∀IV	Dir. Dir.	רא אוי	Governing Thickness of the slab	% Reduction in Slab Thickness due to Precasting
				Over all F	bəriup	el Rec ۱۹	of Ste mo	вэлА	Govern	% Reducti

																	M	-40
	ng Ly Dir.	Segmental const.	Flexure Deflection	8.3944	0.000	0.000	0.000	2.5483	3.3977	2.5483	3.3977	7.5900	11.0000	0.1150	0.6214	0.7989	0.4201	0.5401
	Wall Alo	Segmer	Flexure	5.5584	0.000	0.000	0.000	2.2760	3.0347	2.2760	3.0347	7.5900	11.0000	0.1150	0.6286	0.8082	0.4216	0.5420
	Slab With Partition Wall Along Ly Dir.	Cast-in-situ const.	Flexure Deflection	0.000	0.000	00000	0000.0	4.9441	6.5921	4.9441	6.5921	7.5900	11.0000	0.1150	0.6124	0.7874	0.4183	0.5378
1.000	Slab Wi	Cast-in-s	Flexure	0.000	0.000	0.000	0.000	3.0819	4.1092	3.0819	4.1092	7.5900	11.0000	0.1150	0.6309	0.8112	0.4220	0.5426
Ш	ng Lx Dir.	Segmental const.	Deflection	8.2809	0.000	000010	0000.0	2.5374	3.3832	2.5374	3.3832	7.5900	11.0000	0.1150	0.4203	0.5404	0.6224	0.8003
Ly/Lx	Wall Alo	Segmer	Flexure	5.4828	0.000	0.000	0.000	2.2688	3.0250	2.2688	3.0250	7.5900	11.0000	0.1150	0.4217	0.5422	0.6296	0.8095
	Slab With Partition Wall Along Lx Dir.	Cast-in-situ const.	Flexure Deflection	0.0000	0.000	0.0000	0.0000	4.9658	66211	4.9658	6.6211	7.5900	11.0000	0.1150	0.4185	0.5380	0.6132	0.7884
	Slab W	Cast-in-	Flexure	0.0000	0.000	0.000.0	0.000	3.1145	4.1527	3.1145	4.1527	7.5900	11.0000	0.1160	0.2210	0.5427	0.6314	0.8118
11 11	Wall	Segmental const.	Deflection	7.9028	0.0000	0.0000	0.0000	2.5011	3.3348	2.5011	3.3348	0.000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000
	Without Partition Wall	Segmer	Flexure	5.2938	0.000	0.000	0.000	2.2506	8000.E	2.2506	3.0008	0.000	1.0000	1.0000	0.000	0.000	0.000	0.000
	Slab Without	situ const.	Deflection	0.000	0.000	0000.0	000010	4.8787	6.5050	4.8787	6.5050	0.000	1.0000	1.0000	0.000	0000.0	0000.0	0.000
	0	Cast-in-situ	Flexure	0000.0	0.000.0	0.000.0	0000.0	3.0165	4.0220	3.0165	4.0220	0.000	1.0000	1.0000	0.000.0	0.000.0	0.000.0	0.000
				Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support		oad	oad	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support
				Lx Dir.	gnolÅ	دې وير.	βnolA	רא Dir.	βnolÅ	لا کارر	gnotA	d appl :v fact	th of	th of lo	Lx Dir.	gnolA	دې وير.	βnoiA
anel				(del2 ei	tt to .tW	oM gnibn 198) beo Flr Load	u beaG	(dsi2 ei	ub trem 11 to . 147 + Live Lo	ties) beo	J beaG	entrated load applied (partial safety factor)	Contact Length of load	Contact Width of load	spei	Moment Moment		ənp
Size of Slab Panel Lx Ly					2 edt to y	l pnibne8 (fiunitoco letee stat		si enutou	stnements of the Str (bened)) Yiinniin		Total conce (¢	າວັ		ر Peor e ار ۸۸، ۹۰	t eub str es) beo. ht the Str htS edt it bedei	bead nei) + Flr, L (i	the Slat the Slat

				-				M	_/	10
11.5641	4.1966	2.9684	3.9378	0.2220	17.4556	5.9402	4.3454	5.8123	0.2220	
8.4630	3.8429	2.6976	3.5767	0.1470	23.2385	9.1973	6.7849	9.2107	0.2	24.49%
5.5565	7.3795	5.3624	7.1299	0.2940	5.7136	7.6462	5.6857	7.6194	0.2940	24.
3.7128	4.9204	3.5039	4.6518	0.1230	11.5917	16.2697	12.1341	17.2881	0.2	
11.2386	3.9236	3.1598	4.1835	0.2190	17.2293	5.6324	4.7115	6.2946	0.2190	
8.1733	3.5672	2.8984	3.8345	0.1450	22.7987	8.6464	7.4782	10.1625	0.0	26.01%
5.3843	7.1591	5.5790	7.4095	0.2960	5.4902	7.3533	5.8740	7.8642	0.2960	26.
3.3366	4.6954	3.7459	4.9645	0.1260	10.5465	14.6970	12.5630	17.8630	0.2	
10.4039	3.3348	2.5011	3.3348	0.2090	16.8659	5.0370	3.9274	5.2793	0.2090	
7.5444	3.0008	2.2506	3.0008	0.1400	21.9820	7.5319	6.0050	8.1890	0	27.43%
4.8787	6.5050	4.8787	6.5050	0.2880	5.1212	6.8766	5.2882	7.1044	0.2880	27.
3.0165	4.0220	3.0165	4.0220	0.1170	9.9013	13.8984	11.1555	15.9564	0.2	
Positive Bending Moment at Mid Span	Negative Bending Moment 4.0220 at Support	Positive Bending Moment at Mid Span	Negative Bending Moment 4.0220 at Support	iss of Slab	Positive Steel at Mid Span	Negative Steel at Support	Positive Steel at Mid Span	Negative Steel at Support	the slab	ness due to
(m\mt n Lx Din		M gnibne Ly Dir.		Required Thickness of Slab	Dir. Dir.	ר× אוי	ومرو Dir.	ן ג יוע	Governing Thickness of the slab	% Reduction in Slab Thickness due to Precasting
				Over all	bariup	m\² el Rec	et2 to imp	вэлА	Govern	% Reduc

<u>CONCLUSION</u> (FOR SOLID SLAB TYPE SYSTEM)

The analysis results indicate that the design of slabs is primarily governed by deflection criteria. The result shows reduction in slab thicknesses due to precasting of the slab element in comparison to the required slab thickness in cast-in-situ construction methodology.

The reduction in slab thickness as percentage of the slab thickness required for design of slab element to be cast-in –situ lies in the range of **10% to 26%** when M-25 Grade of concrete is used along with Fe-415 HYSD reinforcement.

The reduction in slab thicknesses tends to increase with increase in Grade of Concrete primarily due to enhancement in Modulus of elasticity which helps in controlling the deflections.

The percentage reduction in slab thicknesses as compared to the Cast-in-situ construction when M-40 Grade of concrete is used along with Fe-415 HYSD reinforcement lies in the range of **20% to 34.5%**.

From the analysis it is quite clear that where ever the design of structural elements is governed by deflection criteria, the segmental construction method has tremendous potential in providing economy in the design of such elements.

Since 10% to 34.5% economy is achieved in the design of slabs which contribute to 60% to 70% of the total structural dead weight of the building therefore almost 10% to 24% economy is achieved in the structural part of the building due to slab elements only further this reduction in weights will reduce the forces on the beams and columns giving more economy to the design. Above all reduction in average weights by 20% means that 20% more stories can be constructed over the same foundations and the ground, thus giving an option for achieving new heights in building construction.

ANALYSIS RESULTS OF CELLULAR SLA	B TYPE SYST	EM		
Density of Concrete	=	2.5	t/m ³	
Density of Flooring	=	2.0	t/m ³	
Thickness of Flooring	=	100	mm	
Grade of Concrete	=	M-	40	
Grade of Steel	=	Fe-	415	
íck 🛛	=	4080	t/m ²	
fy	=	42330	t/m ²	
Xumax/d	=	0.48		
Partial factor of safety 🛛 🖊 🏹 🦳				
Dead Load 🛛 👘 🏹 🚬	<u>, </u>	1.5		
Live Load	=	1.5		
Bar dia to be used	=		mm	
Clear Cover in Lx Direction	=	20	mm	
Bar dia to be used	=	16	mm	
Clear Cover in Ly Direction	=		mm	
(Clear cover in Lx and Ly direction has been taken sa	ame for siplification			
Self Weight of Slab	=	Varies		
Dead Load due to Floor Finishing's	=	0.2	t/m ²	
Live Load	=	0.2	t/m ²	
Type of Slab Panel considered for analysis	=	Internal F	'anel	

																							M	-40
		(Wall Along Ly Ulr. Cosmontol const	Flexure Deflection			ı		ı		ı					ı	L.							
			l Wall Ald	Flexure					•		i		•	• • •		ı					1			
		i i i	Slab With Partition Wall Along Ly Ult.	Flexure Deflection			ı		ı		ı		•			I			-	-	1			1
	009.1						ı		·		ı		•	- - -		I				1	I	1		1
	n	(Vall Along LX UIT. Cosmontal coset	Flexure Deflection			ļ		·		ı		·			I				-		-	1	,
=	гулсх	•	VVall Alor Common				,				1		i			ı				,				
			Slab With Partition Wall Along LX Ulr. Cost is often const. Commental const.	nu curar. Defection		· · · · ·							·			Ţ					1	-		
50	30		Cost is o	Flexure	, ,	· · · · ·														,				,
Ш	П		Partition VVall	eastritsuu consu loeginema consu leastritsuu consu. Flexure Deflection Elexure Deflection Elexure Deflection	000									60.96		7.14	27.48	00:0	1.00	1.00	00.0	0.0	00.0	00.0
			Parition 1	Flexure			0.0		0.0		0.0		*	60.96		7.14	27.48	0.0	8	1.00	0.0	0.0	0.0	00. 0
			Slab Without Partition Wall	Flexing Deflection	0.0	8.000								168.14		19.34	73.89	0:00	1.00	1.00	0.0	0.0	0.00	0.0
		Ċ		Flexure		Panent 0.00 Panent 0.00 Panent 0.00 Panent 0.00 Panent 0.00 Panent 0.00 Panent 0.00 Panent 0.00								165.84		19.07	72.84	0.0	1.8	1.00	0.0	0.0	0.0	0.0
					Positive Bending Moment	+ Fir Load 0 0 0 Along Ly Dir Along Ly Dir Along Ly Dir 0								Negative Bending Moment		Eustive Bending Mornent at Mid Span	Negative Bending Moment at Support		oad	lad	Positive Bending Moment at Mid Snan	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support
				T						<u>,</u> ۲			Dositive Dending Moment X at Mid Span	, <u> </u>			, <u> </u>	d appli v facti	Length of load	ch of lo		, <u> </u>		buo¦∀
anel						s er	ent du ל. of th שוי e ענ	W H	əs) p	еог	т реа	a	(del2 e	ent ther M. of th O. svi	A JI	əs) peo	Dead L	centrated load applied (partial safety factor)	Contact Leng		spe	InamoM ol batentr	, poibna8 pibna8	ənp
<u>Size of Slab Panel</u> Lx	Ly				enuto		stnemt of the S (bed)	μλ c	nuitu	00	efore	8)		stnemo the Stru (bed)	ţ0	λtinnitn) op 19ffA)	Total conce (i)			10 .1⁄V 1 [beo⊐ 9	ot eub st Vid + Lood Vit 2 oft t Vit2 oft t	beeCine. ארוי בי (י	the Stat

								M	_	10					
	•	ı		1	1	·	1	•							-
-	1	1		1	1	•	1	•			•				-
	1	L					·				,				
	,	L	,	•	ı	,	ı				,				-
-	·	T	ı	1		•	T								
•	•	1		,	C		-				•				
I	1	Ŧ	I	,											
,	1	ł	I				-	,						e orce	
*	60.96	7.14	27.48	0.5200		34.49	3.96	15.42	0.5200		0.2817	0.2817		prestressing force	
+	60.96	7.14	27.48	0.5200		34.49	3.96	15.42	0.5	35.00%	0.2817	0.2	0.28%	ed by pre:	
86.07	168.14	19.34	73.89	0.8000	31.74	60.85	6.83	26.47	8000	35.1	0.2825	2825	0.2	ion is balanced by	
84.86	165.84	19.07	72.84	0.7500	32.43	64.42	7.21	27.96	0.8		0.2715	0.2		irect	- a b
Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Positive Bending Moment at Mid Span	Negative Bending Moment at Support	Over all Required Thickness of Slab	Positive Steel at Mid Span	Negative Steel at Support	Positive Steel at Mid Span	Negative Steel at Support	the slab	Reduction in Slab Thickness due to Precasting	The Slab considered here is cellular type, the	Average thickness of slab including RUC - shuftering slab	% Reduction in Slab Thickness due to Precasting	bending moment at mid span in Lx direct cases not considered for cellular slab	
ר× Dir.		لـy Dir.		¹ Thickne	Dir.	х Т	Dir.	ן גק	Governing Thickness of the slab	n Slab Thickr Precesting	nere is co 	kness of slab in shuttering slab	n Slab Thickr Precasting	g momer of consid	101 0 01 0
(m/mt a	ii) tnemol	M pribre	8 letoT	Required	δυα	olA	សិមថ	olA	ning Thick	tion in SI Prec	sidered	ickness shuffei	tion in SI. Prec	bendin. rases n	
				Over all		el Red ember Il str.			Goven	% Reduct	The Slab con	Average 10	% Reduct	*	

<u>CONCLUSION</u> (For cellular slab type system)

The analysis results indicate that although the design of cast-in-situ RCC cellular slabs still governs by deflection criteria, but the difference in the over all structural height of the slab is not much. This is because of the fact that the section in cellular structure is optimized to maximum extent by concentrating the concrete and steel reinforcement at the most desired locations thereby reducing the weight of the slab system which is normally contributing heavily towards deflection.

The design of cellular slab to be constructed by segmental construction technique, has been done as prestressed concrete beam simply supported in direction of effective span and full continuity at supports and in shorter span as well as longer span direction provided by untensioned Reinforcement.

The reduction in slab thickness achieved is due to the effect of prestressing otherwise the greater thickness of web demanded by the system of segmental construction for achieving continuity in both the directions may result in increase in over all weight of the slab.

The two system when compared shows nearly same average structural depth of the slab. However the use of prestressing does result in reduction in total reinforcement required.

The result of RCC cellular slab indicates that the thickness of web/ cross ribs governs by the crieteria of maximum shear stress therefore it is bound to increase with increase in span or intensity of live loads, however in prestressed system adopted in segmental construction the additional shear can be taken care off by controlling prestressing force and profiling the post tensioned cable in better manner therefore the system of segmental construction appear to have greater potential of savings in concrete for higher span lengths and higher live load intensities.

Above all reduction in over all height of the slab from 800mm in RCC cellular cast –insitu to 520mm in PSC cellular segmental construction has a distinct advantage in reducing the total height of the building, which is important for tall buildings.

Note: The savings in regards to shuttering and scaffolding in segmental construction will continue to provide an edge to segmental construction over cast-in-situ construction method.

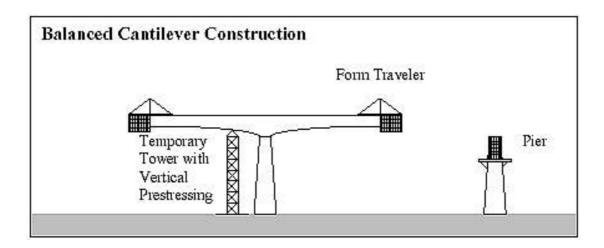
DEVELOPING A LAUNCHING SYSTEM FOR ERECTION OF PRECAST ELEMENTS OF A BUILDING

The use of Launching Systems in construction of structures is not new to the world; however the use of Launching Systems is confined to specific structures in general. The use of Launching systems in buildings is a rare experience. This section highlights the use of Launching systems, and discusses features of good Launching Systems already in use.

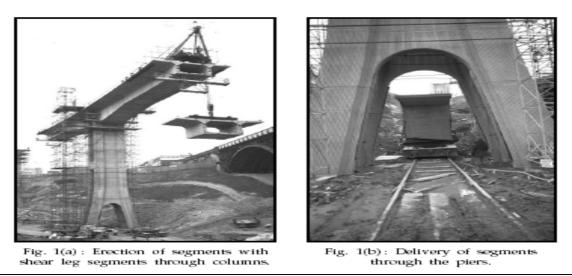
This section also discusses the requirements of a good Launching System to be used specifically in buildings, and finally gives a schematic Launching System satisfying the basic requirements. At the very end of the project a discussion on constraints and other requirements of the successful segmental construction technique with use of launching systems deriving support from already erected structure leaves us with a number of un answered questions for us explore in future before realizing the dream of frequent use of the technique in reality.

What are Launching Systems?

Launching Systems are machines developed for handling the precast elements of a structure.


The launching systems can be broadly classified into three categories.

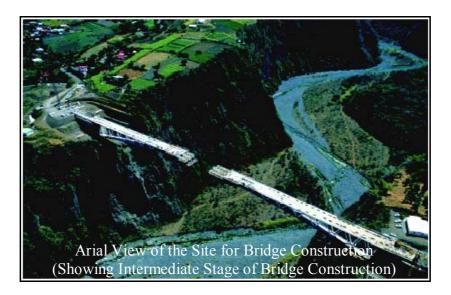
- a. Launching Systems deriving their support from the Ground.
- b. Launching Systems deriving their support from the already erected structure.
- c. Launching Systems deriving their support partly from the ground and partly from the already erected structures.


All the types of Launching Systems have been successfully used in construction industry.

The kinematics of different launching systems differs from each other so much so that the technical requirement and criteria's governing their design are altogether different. One can still visualize a fact that the final goal in each case is the same i.e. providing a technology that helps in erection of precast elements for the construction of the desired structure. These systems also helps in construction of cast in situ elements which can be placed segment by segment or casting of the entire structure in single stage as per the requirements of the design, in such a case the entire shuttering may be mounted over the launching system and the

casting may be done and kept in place till the desired strength is achieved. The cantilever construction equipments used in construction of Cantilever type bridges built over rivers and marines is a perfect example of such launching systems.

As shown above the entire shuttering for the concrete element to be cast is mounted over a launching system popularly known as Form Traveler. The Same system with some minor modifications can be used for lifting of precast concrete elements, in both the cases the design philosophy need consideration for the additional weight of the launching system which is mounted over the structure to be constructed.



Source of Information: fib Symposium 2004 on "Segmental Construction in Concrete" Organized by: The Institution of Engineers (India) Held on 26 November, 2004 at New Delhi, India.

The photographs shown above provide a view of the construction of Byker Viaduct in U.K (it is the first segmental viaduct constructed in U.K.). In this project precast segments are lifted

using a Cantilever type Launching system, these segments are brought over rails passing through the pier base where space has been specifically provided for delivery of segments. The project provides a perfect example of planning where the shape of the permanent structure is modified to facilitate the construction methodology required to suit the project site conditions.

The above Photograph shows the form traveler designed by VSL (Prestressing) for

Source of Information: fib Symposium 2004 on "Segmental Construction in Concrete" Organized by: The Institution of Engineers (India) Held on 26 November, 2004 at New Delhi, India.

construction of "Bras de la Plain Bridge on the Island of Revnion in the Indian Ocean (France)". The bridge structure is 280-m long pan embedded in counter weight abutments.

The arial view of the site clearly indicates that the erection of Shuttering over staging is not at all possible because of presence of flowing water and the frightening depth of the steep cut valley. The advent of segmental construction technique and launching systems is a gift of science and technology that has made such dream projects a reality now.

The photograph shows construction of 14.6KM Stretch of Span-By-Span Construction of D.M.R.C. Line-3 Project using Launching System **exclusively designed for construction of elevated Viaduct using "Precast Segmental Construction Technique" by Arch Consultancy Services (P) Ltd.** This viaduct is now operational and stands as a record in the history as one of the fastest executed project in the world.

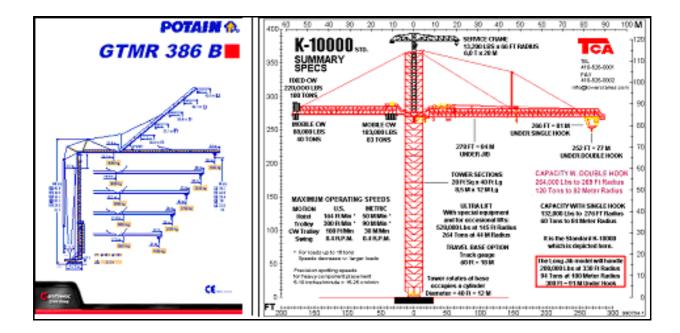
The examples of use of Launching systems in construction presented so far belongs to "Category b" i.e. these Launching Systems derive their support from the already erected structure.

Source of Information: Practical involvement in the DMRC line-3 Project as a member of Design Team for the Design and Planning of Launching System for Line-3 Project. The "Category c" i.e. Launching Systems deriving their support partly from the ground and

partly from the already erected structures also enjoy much use in construction of bridges.

The above photograph shows the Truss type Launching system deployed for construction of Flyover at Anand Rao Circle in Bangalore. The Front leg of the Launcher rests on rails laid on the ground and the rear leg rests over the already erected structure.

The "Category a" i.e. Launching Systems deriving their support from the Ground are the most primitive form of Launching Systems. This type of Launching Systems is generally found not suitable in complex projects where the structure posses sharp changes in vertical and horizontal gradients. Truly speaking at places where the structure is surrounded by water body like river, marine or a pond, the possibility of deriving support from ground becomes a difficult task.


The technology used in simple material handling equipment as shown below is another example of launching system deriving their support from the ground.

The launching systems shown above are mostly concerned with construction of bridges.

Source of Information: Web sites on cranes (Internet info media).

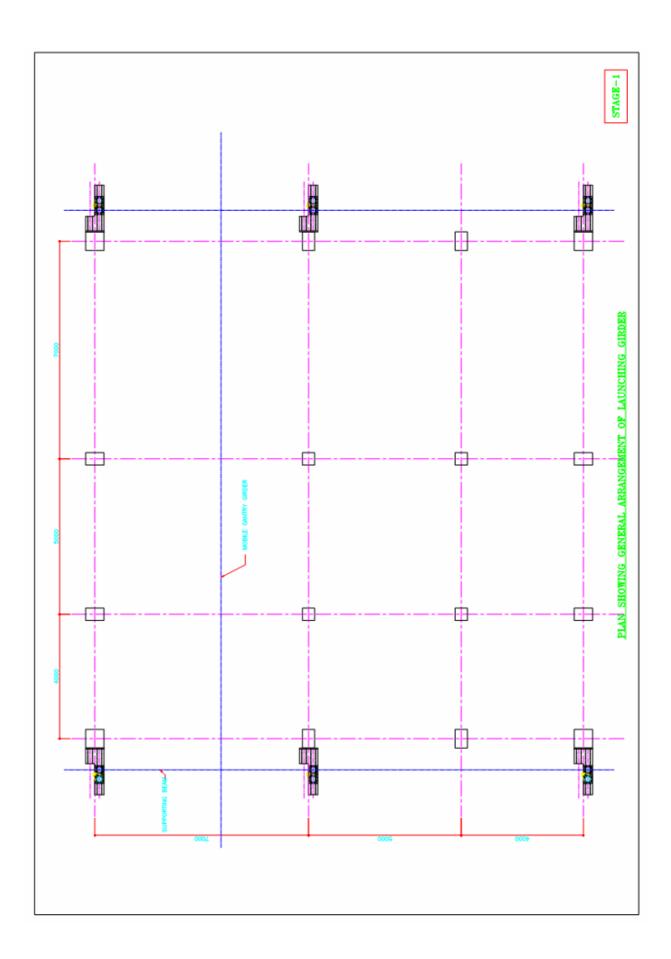
The use of specifically designed launching systems in buildings is a rare chance. However Tower cranes are general material handling machines that are ere extensively used for the construction of Buildings.

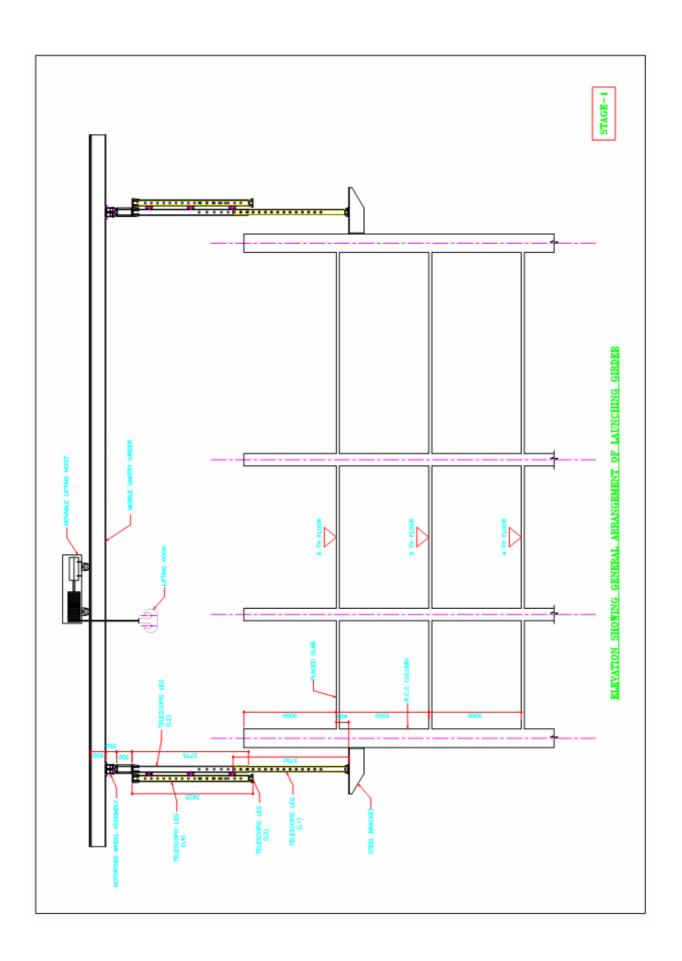
Tower cranes are assembled on ground. They are available in wide variety and range

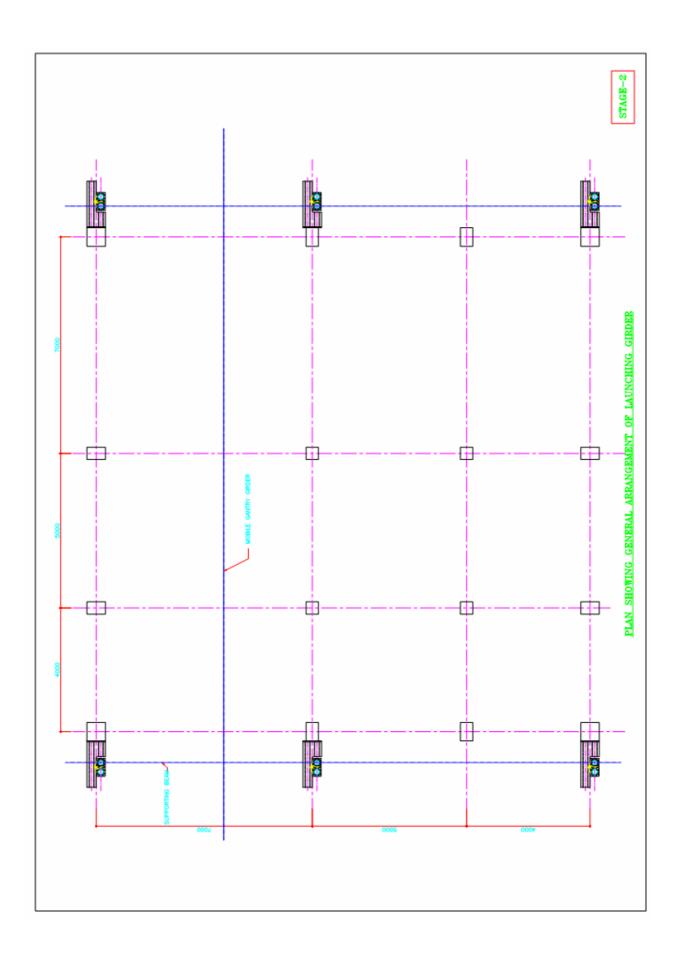
The photographs shown above give general information on lifting capacities of two different brands of tower cranes. The photograph of POTAIN (Left Side) shows that the optimum lifting capacity decreases with increase in height and horizontal range. As an example at a height 42.9m and horizontal radius of 13.1m the lifting capacity is 8000Kg, which reduces to 1500Kg with same height and horizontal radius of 50.0m. In precasting the weight of precast units is generally in the range of 10tonnes to 100tonnes or more for small sub element to elements precasted as single unit such as a large wall panel or a roof slab or in some cases one complete room etc. the horizontal range of 13.1m which gives largest capacity is too small for the machine to operate from a singe point and therefore require frequent shifting.

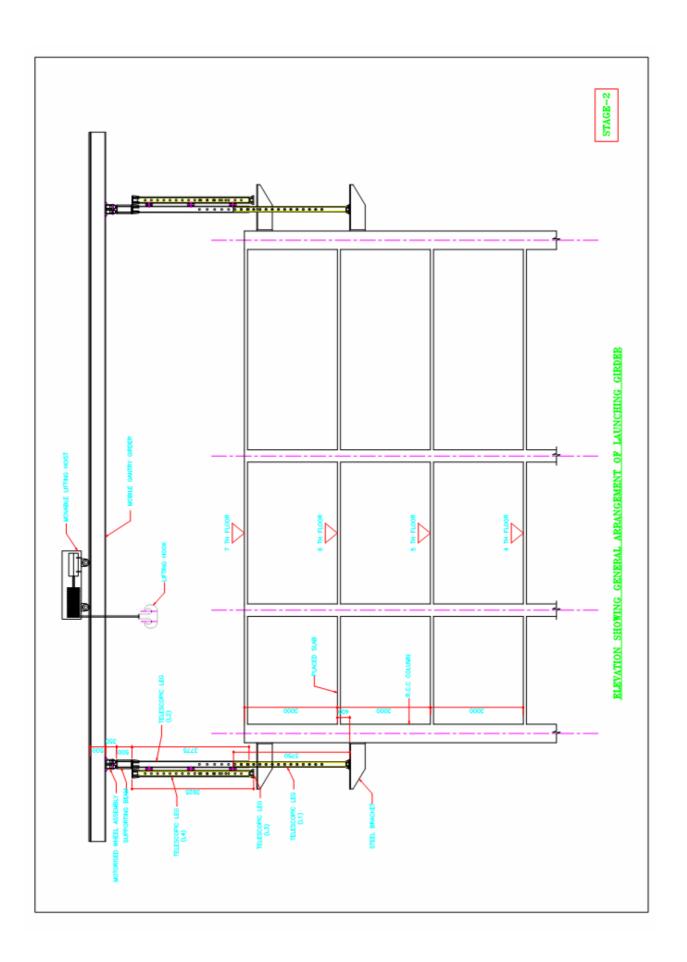
The photograph of K-10000 (Right Side) gives a higher capacity of 120tonne at a horizontal radius of 82mand a height of 12m. The crane rotates about a cylinder of 12m diameter provided at its base. Although the crane satisfies our requirements but it is highly costly affair. The 12m dia of its rotating base is good enough to tell about its structural dimensions.

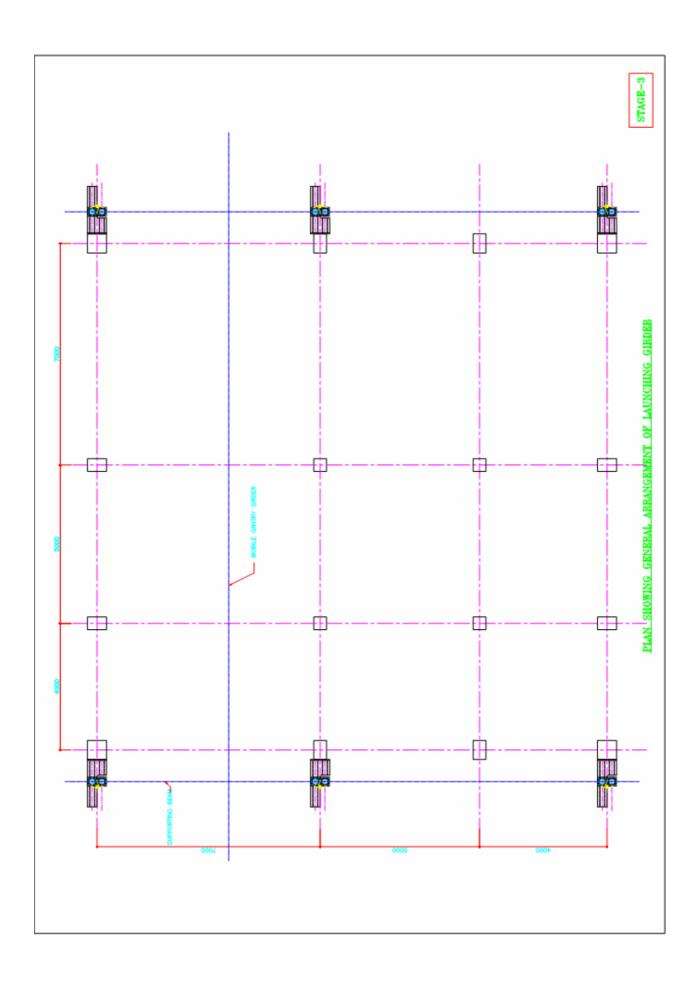
Source of Information: Web sites on cranes (Internet info media).

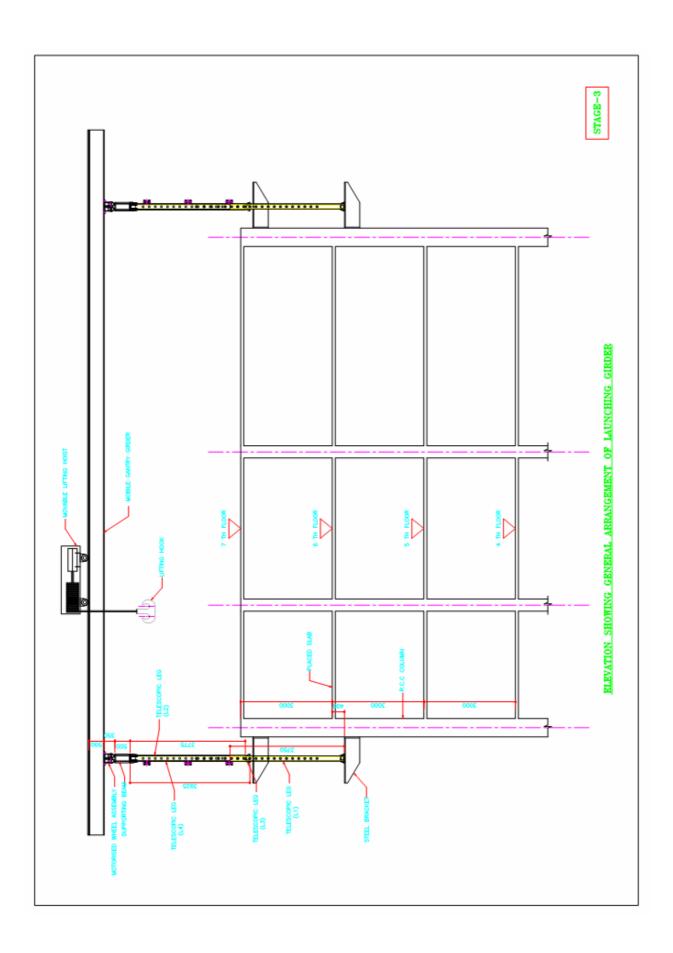

The following pages give a schematic Launching System Developed as a part of this thesis.

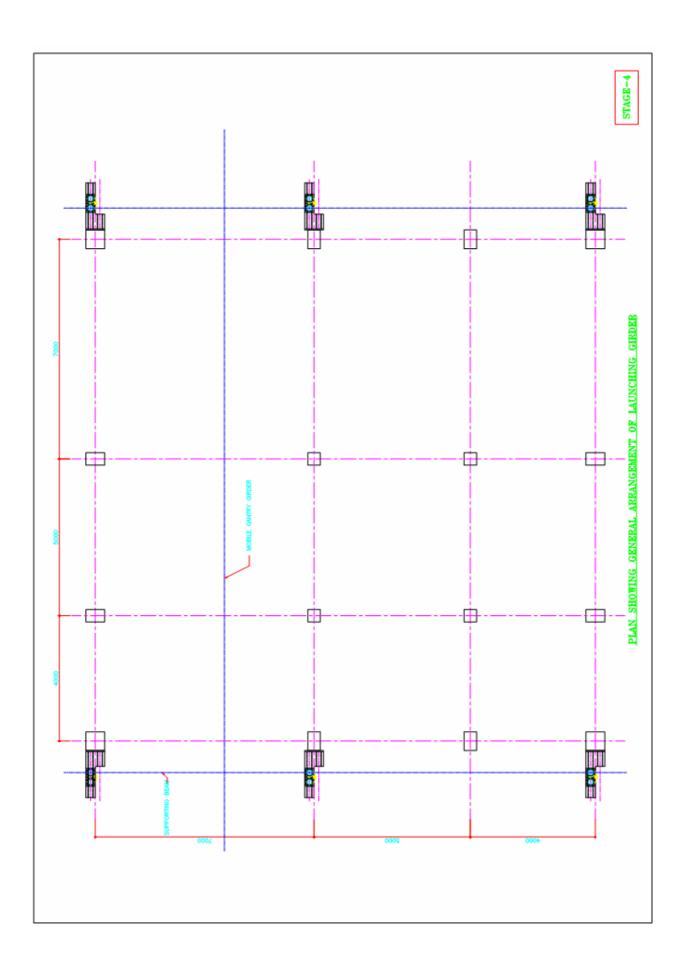

The Launching System has following Basis Features which have been inculcated to cater for the requirements of segmental construction in buildings. Although the system might come up with its own limitations before it actually comes in practice, but at present we have tried to introduce all the features required for a successful Launching System.

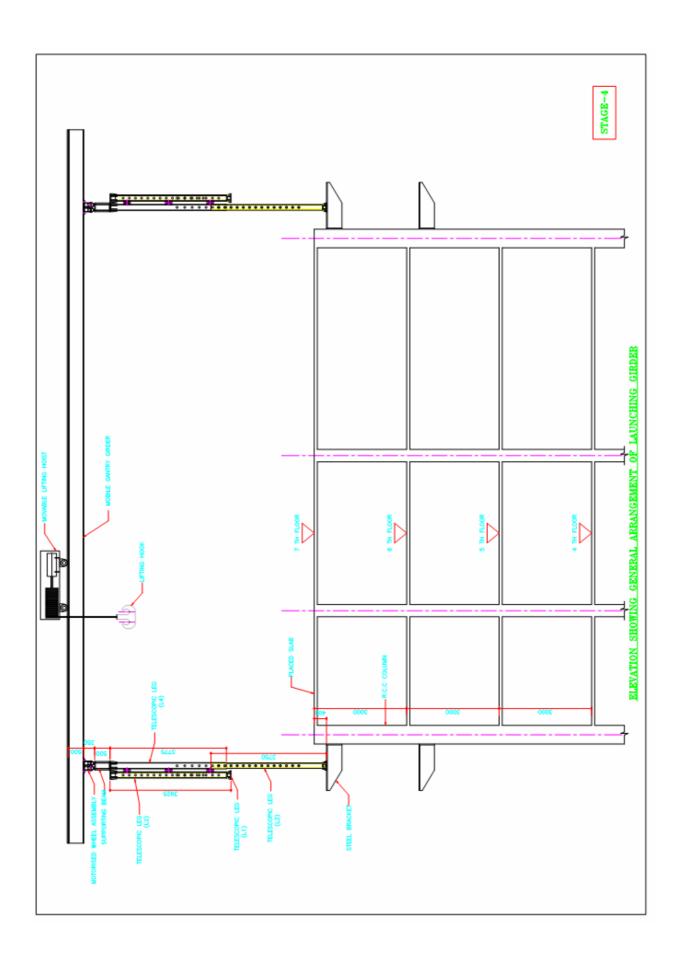

Basic features of the Launching System developed for segmental construction of a building:

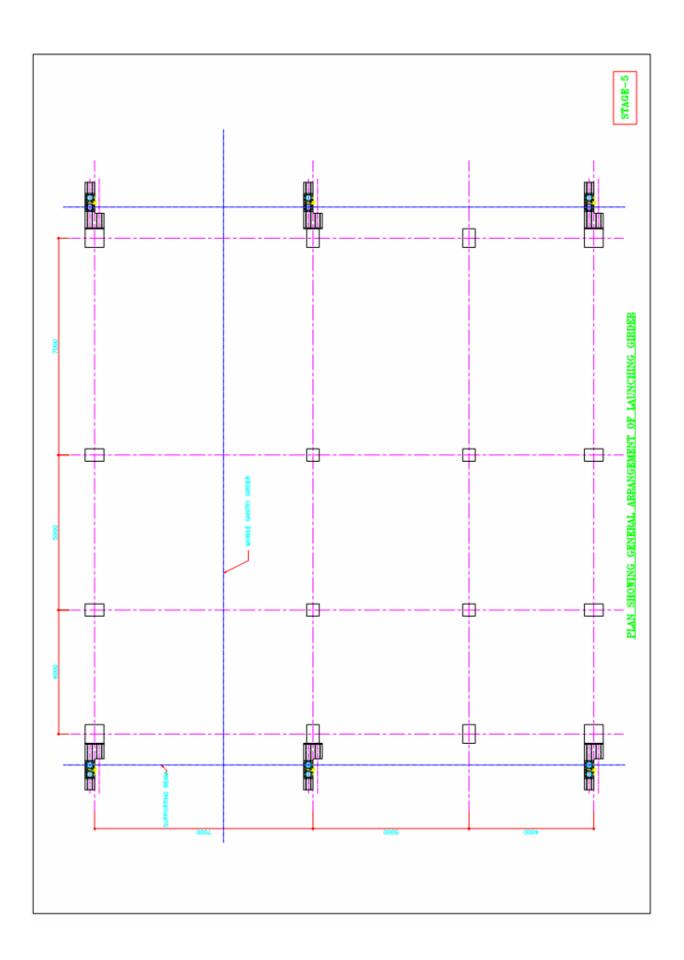

- a. The launching system consists of a number of supporting steel columns which holds a supporting beam in longitudinal (Longer dimension of the building) direction. A mobile gantry girder runs over the supporting beam, and the gantry girder is provided with an electrically operated movable lifting hoist.
- b. The Launching System provides accessibility to practically every possible location covered with in its longitudinal supporting beam.
- c. The Supporting Steel Columns are Telescopic legs which provide flexibility of adjustments in operating height of the Launching System.
- d. The entire Launching System is mounted over steel Brackets mounted over the building to be constructed so that the Height of the System required reduces to a range of 3.0m to 7.0m approximately. The ability to work at any height of the building without increasing the overall height of the Launching System makes it more efficient and economical.
- e. The Visibility of all the parts of the Launching System through naked eyes from one location (possible only due to its small height) reduces the chances of accidents and hence improves operational safety in a big manner.
- f. I envisage that all the functions of the Launching System can be automated using electronic modules which will add a sense of modernization making it one of the most versatile machines for building construction in future.

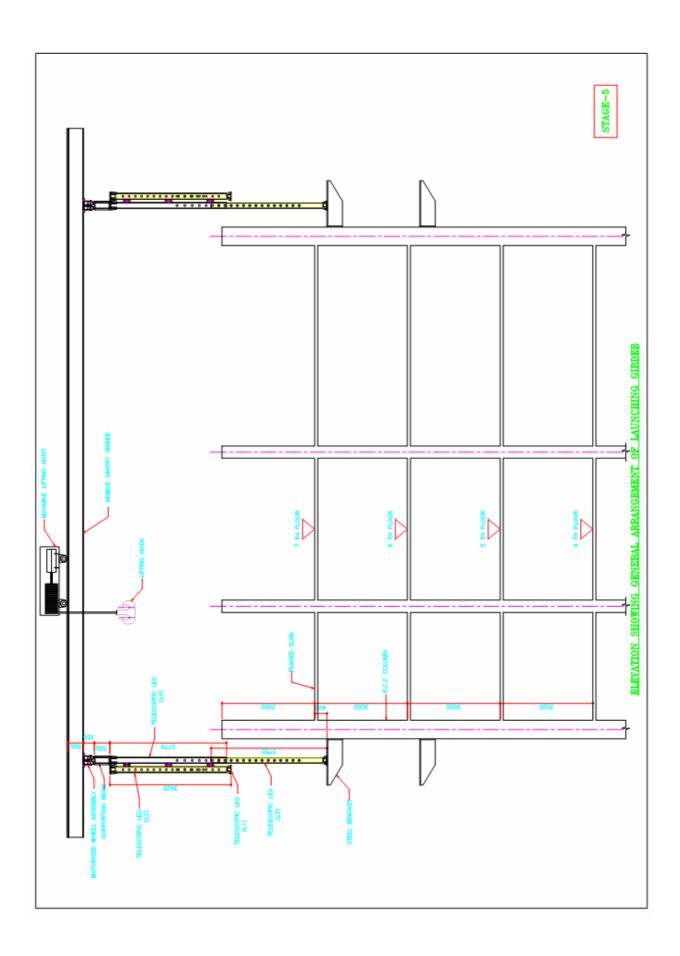

With the features discussed above, the Machine can be technically called a "<u>Fully Automatic</u> <u>Self Raising Launching System for Building Construction</u>".

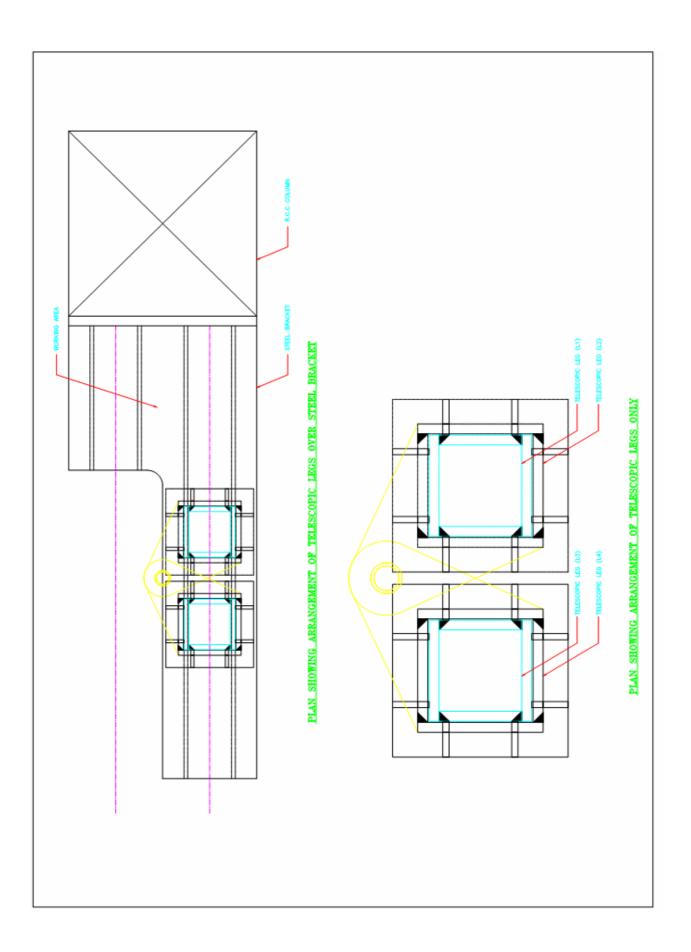


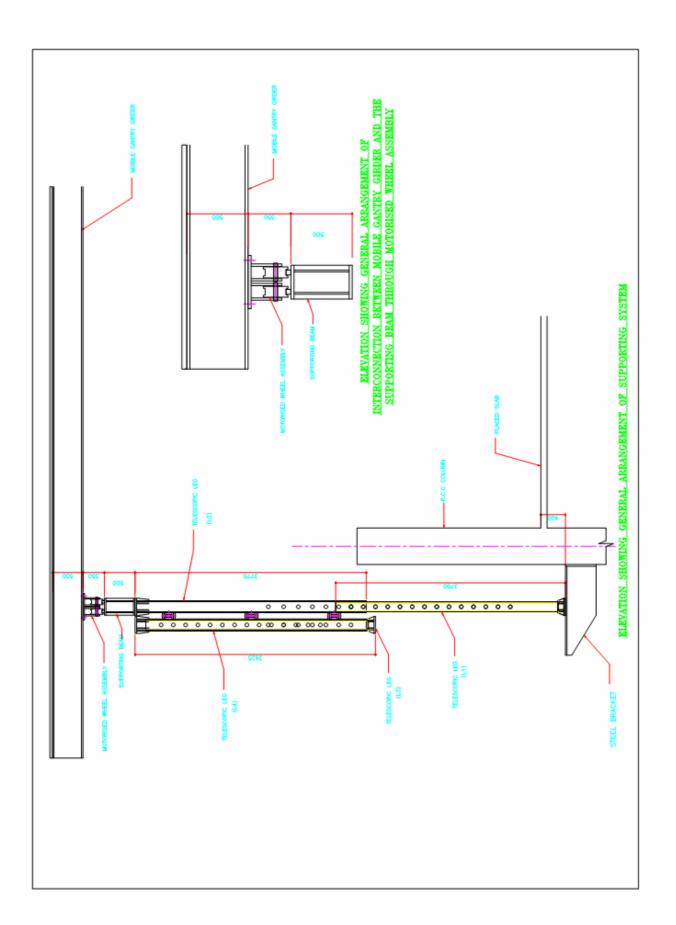


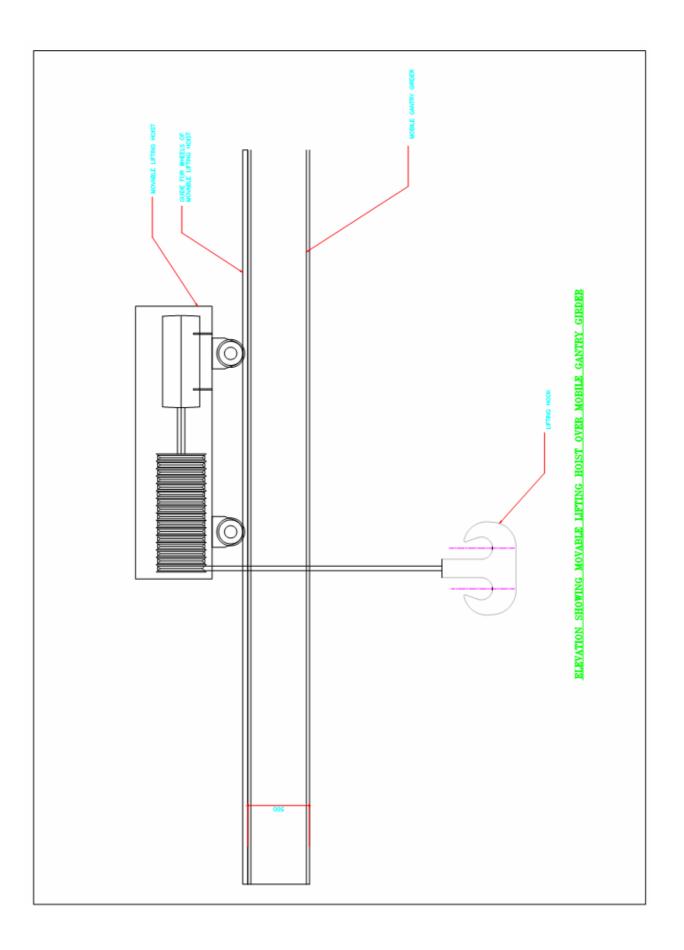








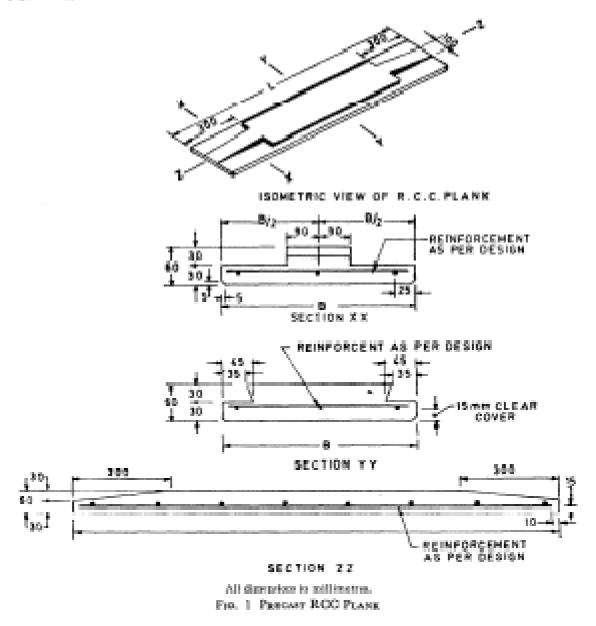




Annexure 1

Recommended design procedures and structural checks, construction related provisions as recommended by present Indian Standards (only those Standards which are studied under present work have been included)

IS 13990-1994

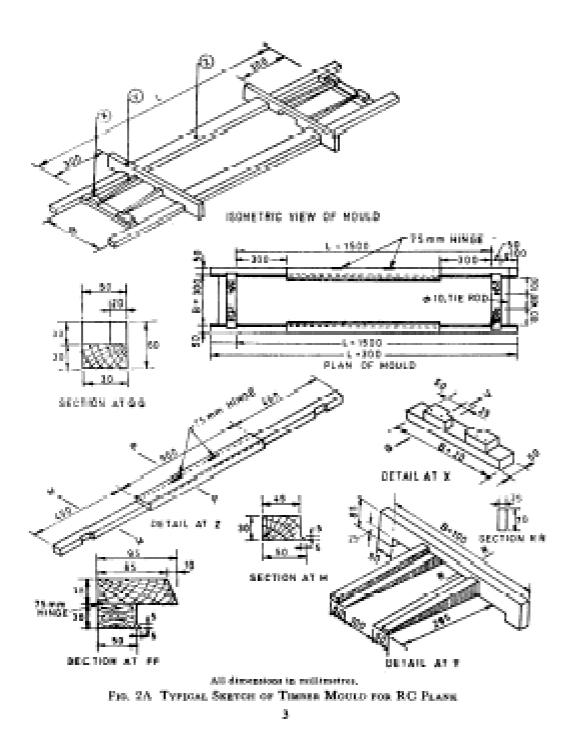

Indian Standard-PRECAST REINFORCED CONCRETE PLANKS AND JOISTS FOR ROOFING AND FLOORING- SPECIFICATION

Clause 5: Design

5.1 The Planks shall be designed as simply supported for self weight including *in-situ* concrete over haunches, and as a continuous slab for a load comprising live load, self weight and dead load of floor finish and/or water proofing treatment .The design shall be in accordance with the limit state method of IS 456:1978.

5.2 Reinforcement

- Reinforcement for the planks shall comprise three equally spaced bars of required diameter along the length of planks as main reinforcement. Distribution reinforcement shall be equal to or more than the minimum recommended for slabs in IS 456:1978. The main reinforcement shall also fulfill the requirement of maximum permissible spacing given in IS 456: 1978.
- Reinforcement for planks for roofs and floors of residential buildings for spacing of joists at 1.5 m, shall comprise of 3 bars of 6 mm of mild steel grade I conforming to IS 432(Part 1): 1982 as main reinforcement and 6 mm dia bars, of mild steel grade I conforming to IS 432(Part 1): 1982, at 200 mm c/c as transverse reinforcement. In the absence of detailed design same reinforcement may be used for spacing of joist smaller than 1.5m.
- iii. Reinforcement for RCC joist shall be provided as per design (see IS13994: 1994)



(Scanned from the Code for reference)

Clause 6: CASTING AND CURING OF PRE CAST ELEMENTS

6.1 Pre cast RC Planks

- 6.1.1 **Moulds**: Moulds may be made from well-seasoned good quality timber or an equivalent wood substitute. However, in case of mass production, steel, plastic or FRP mould may be used with advantage .Any material used for making moulds shall be rigid, non absorbent and non corrodible and shall maintain the dimensions within the specified limits. Typical sketches of moulds are available in the code referred. Some of those are shown below (scanned from the code).
- **6.1.2 Casting:** Inner sides of mould shall be applied with a suitable bond release agent and it shall be kept on a smooth concrete platform coated with the bond release agent. Alternatively wrinkle free old newspaper may be used over the concrete platform. Reinforcement cage shall be placed inside the mould in such a way as to provide a cover of 15 mm. Concrete with well-graded aggregate of maximum size 10 mm shall be poured to a depth such that after compaction with a plate vibrator, shall become 30 mm. The upper side of the longitudinal members of the mould and the two tapering members shall be then placed over the mould. Concrete shall then be poured in middle and the sides and then compacted with plate vibrator. Concrete shall be finished level with the mould and the top surface shall be made rough by trowel markings. After about half an hour of casting, the two tapering members may be lifted off. The mould may be stripped off in about two hours (depending on weather). About 24 to 30 hours after casting (depending upon the weather), the cast unit shall be first slid by push and then tilted through right angles on long edge. It shall then be transported in vertical position for curing.

(Scanned from the Code for reference)

IS 14215-1994

Indian Standard-DESIGN AND CONSTRUCTION OF ROOFS AND FLOORS WITH PRECAST REINFORCED CONCRETE CHANNEL UNITS- CODE OF PRACTICE

Clause 4: Structural design

- **4.1** The Channel units shall have adequate strength and stability in accordance with IS 456: 1978 during the following stages:
 - a. De moulding
 - b. Handling, stacking, transporting and placing; and
 - c. Final stage with all designs dead and imposed loads acting on the floor/roof.
- 4.2 The units shall be designed either simply supported or continuous depending upon actual end conditions. Main reinforcements shall be either designed or shall be taken directly from tables 1 to 8 for residential loads.
- 4.3 Design stage I (Just after Placing of In-situ Concrete)
- 4.3.1 At the time of laying the units, the load comprises the self-weight of the channel units, the weight of in- situ concrete in the joint between the two units and also the incidental live load, likely to act on the structure at this stage. In absence of more accurate information, incidental load may be taken as half the imposed load likely to act on the structure at final stage as recommended in IS 875(Part 2): 1987.
- 4.3.2 Effective section: At this stage of loading, as in *In-situ* concrete has not attained any strength to ensure monolithicity, the effective width of channel unit shall be taken as width of flange portion only.
- 4.4 Design stage 2 (With full design load)
- 4.4.1 Loads: At this stage, the loads acting on the structure shall comprise dead load and full imposed load as per IS 875(Part 2): 1987. This shall be maximum load likely to

act on the structure during its lifetime. For calculating the limit state of collapse at the critical section, a combined load factor of at least 1.5 shall be applied for calculating the limit state of collapse load.

4.4.2 Effective section: As the In- Situ concrete has attained strength at this stage, an effective width equal to the nominal width of the unit shall be taken for calculating the strength of section.

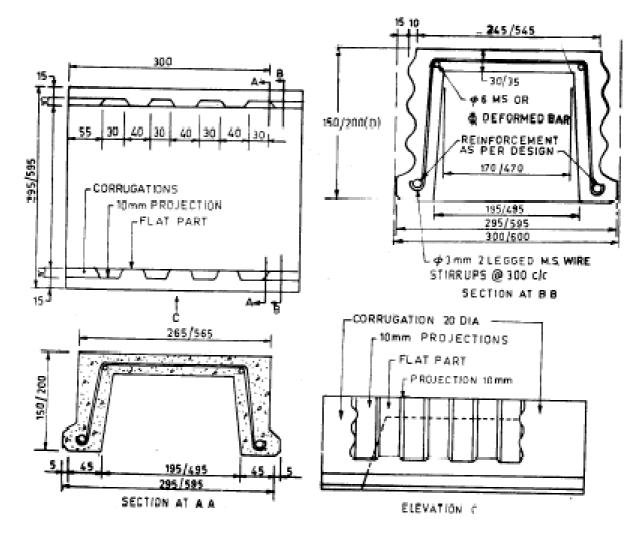


FIG. 1 A CHANNEL UNIT

5

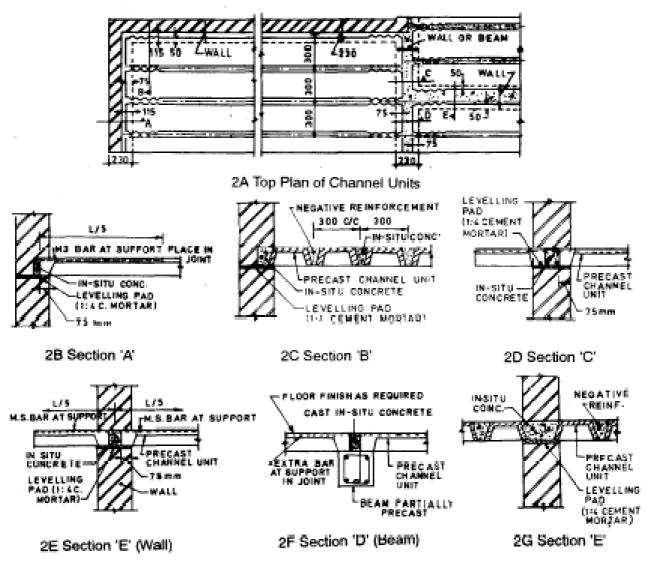


FIG. 2 DETAILS OF JOINTS IN A FLOOR WITH CHANNEL UNITS

6

4.5 **Design Bending Moment and Shear force:**

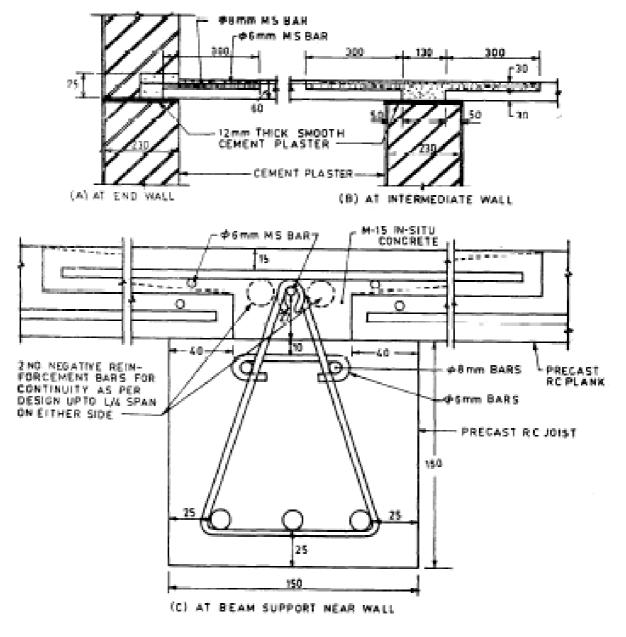
When the floors/roofs consist of three or more continuous and approximately equal spans, the values of bending moment and shear force coefficients given in IS 456: 1978 may be used. These coefficients shall be used for imposed live load as well as dead load of finishing but not for dead weights of units (including that of *In-situ* concrete). To the bending moment and shear forces so found out, simply supported moment and shear force due to dead weight of units (including that of *In-situ* concrete) shall be added.

- 4.6 In Situ concrete, which brings monolithic connection and continuity between pre cast units, shall be designed in accordance with IS 3935:1966.
- 4.7 When Pre cast units are used for the construction of buildings in high seismic zones the floor and roof shall be strengthened in accordance with 9 of IS 4326: 1993.

5.0 STORAGE, TRANSPORTATION AND ERECTION OF PRE CAST ELEMENTS

- 5.1 Handling and transportation of units: The pre cast units shall be handled by placing slings placed at about 1/5 of span from ends. Care shall be taken to see that no support is placed at the center of the span and the main reinforcement is always at the bottom of the stacked units, that is trough shall be facing downwards.
- 5.2 Transportation: The unit shall be lifted either manually, or preferably with the help of a chain pulley block or mechanically with a hoist and placed side by side across the span to be covered.
- 5.3 Placing and aligning: The top surface of the wall or beam support shall be leveled so as to provide uniform bearing to the webs of the channel units. While placing the units, care shall be taken not to drag the units or apply load eccentrically, which may damage the unit. The units are to be placed should be leveled with 6 mm thick plaster (1 cement: 3 fine sand) finished with a floating coat of neat cement plaster and a thick coat of lime wash or Kraft paper. This is necessary to allow free movement of the roof over the walls/ beams so as to avoid development of thermal stress.

IS 13994-1994


Indian Standard-DESIGN AND CONSTRUCTION OF FLOOR AND ROOF WITH PRECAST REINFORCED CONCRETE PLANKS AND JOISTS- CODE OF PRACTICE

Clause 4: Design requirements

4.1 Loads

The design load on various components of the flooring/roofing shall comprise self weight, imposed load in accordance with IS 875 (Part 2):1987 and dead load due to floor finish in case of intermediate floors and dead load due to roof treatment in case of roofs in accordance with IS875(Part 1): 1987.

- 4.2 Structural design of Roof/floor
- 4.2.1 Pre cast RC Planks: The plank shall be designed as simply supported for self weight including *in- situ* concrete over haunches, and as a continuous slab for a load comprising live load, self weight and dead load of floor finish and/or water proofing treatment. The design shall be in accordance with the limit state method of IS 456:1978
- 4.2.2 Partially pre cast joists
- 4.2.2.1 The joists shall be designed as simply supported or continuous T- beam with 60 mm flange thickness (equal to full thickness of flange with *In- situ* concrete) depending upon whether joists are having single span or continuous over adjacent span. Reinforcement shall be determined in accordance with IS 456: 1978 for the required spacing and span of the joists.

All dimensions in millimetres.

FIG. 4 TYPICAL SKETCH SHOWING DETAILS OF DIFFERENT BEARING POSITION

- 4.2.2.2 For large spans requiring high moment of resistance, either the depth of joist can be increased, or if the depth cannot be increased due to headroom requirements, the joist shall be designed as doubly reinforced beam at the support. In the latter case, the bottom reinforcement of the joist shall be kept projecting out by about 20 mm and the bottom reinforcements of joists covering adjacent spans shall be welded together for continuity. The top reinforcement to resist negative moment shall also be provided in the joists upto a distance from supports as specified in Is 456: 1978. This shall be embedded in *In-situ* concrete. The moments and shears at various sections shall be determined either theoretically or the coefficients given in IS 456: 1978 may be used, wherever applicable. Moment of resistance of T- beam with different reinforcement based on limit state methods is given in table 1 for reference.
- 4.2.3 Cover to reinforcement: A minimum clear cover of 15 mm for planks and 25 mm for joists shall be provided.
- 4.3 When the pre cast units are used for construction of buildings in high seismic zones, the roofs/ floors shall be strengthened in accordance with the provision of IS 4326: 1993.

IS 14201-1994

Indian Standard-PRECAST REINFORCED CONCRETE CHANNEL UNITS FOR CONSTRUCTION OF FLOORS AND ROOFS- SPECIFICATION

This standard covers the requirements for the pre cast reinforced concrete channel units having a length up to 4.5 m used for construction of roofs and floors. In general, this standard lays down dimensional specifications of pre cast reinforced concrete channel units.

FIG. 1 A CHANNEL UNIT

1

Annexure 2

STUDY OF COMPARISON OF DESIGN OF ROOF SLABS CONSTRUCTED BY IN-SITU CONSTRUCTION AND ROOF SLABS CONSTRUCTED BY SEGMENTAL CONSTRUCTION TECHNIQUE

To study the comparison we have developed small software in EXCEL SPEARDSHEET (CALCULATION TOOL OF MS OFFICE A WINDOWS BASED SOFTWARE)

KEY ASPECT CONSIDERED FOR DEVELOPMENT OF THE SOFTWARE

- Analysis of slabs for uniformly distributed loads (structural dead load, floor finishing and live load) for in-situ construction of slab i.e. slab considered to be monolithically cast with the beams as support using bending moment coefficients given in ANNEX D of INDIAN STANDARD CODE OF PRACTICE FOR PLAIN AND REINFORCED CONCRETE IS 456 : 2000. The software has facility for considering all the support conditions as mentioned in the code IS 456: 2000
- Analysis of slabs for concentrated loads such as due to partition walls, other type of concentrated loads can also be considered. For analysis Pigeaud's curves has been used.
- For computerized use of Pigeaud's curves the curves as given in various references are superimposed over graphs of same scale printed on transparencies and having a finer grid using the facility of photocopying available these days. The values of bending moment coefficients for different values of ratio of U/Lx and ratio of V/Ly [ratio of loaded length i.e. contact length of the concentrated load + additional length available due to dispersion of load at 45 degrees through the effective slab thickness to the span length along the direction of loaded length] are read from these curves. Fourteen tables of values are thus generated each corresponding to a different value of Ly/Lx curve.

Tables corresponding to Ly/Lx equal to 1.00, 1.25, 1.41, 1.67, 2.00 and 2.50 have been taken from Table 54, Table 55 and Table 56 of the book titled 'REINFORCED

CONCRETE DESIGNER'S HANDBOOK' TENTH EDITION authored by: CHARLES E. REYNOLDS AND JAMES C. STEEDMAN.

Table corresponding to Ly/Lx equal to 1.11 has been taken from chapter 12 'design of two way slabs' of the book titled 'LIMIT STATE DESIGN OF REINFORCED CONCRETE' THIRD PRINT authored by: P. C. VARGHESE.

The values so obtained from these curves are connected with the help of programming tools and values lying any where in the range of Ly/Lx greater than or equal to 1.00 and less than or equal to 2.50 are obtained by linearly interpolating values between the nearest values available in the tables.

- The partial safety factors for loads to be used in the analysis are separately mentioned in the software and can be changed if a more stringent approach with higher factor of safety is demanded by the code in future.
- The software shows a line 'Construction Methodology (Write 1 for cast-in-situ construction and 2 for precast segmental construction)'. If 1 is inserted then the software applies entire partial safety factor for loads and calculates the bending moment for dead load + Floor load + Live load, otherwise if 2 is inserted then the software calculates the bending moment due to one times the Dead load (structural weight of slab) for simply supported condition spanning along direction of effective span and marks it as Design Bending Moments (due to Loads before continuity of the structure is established) and calculates Design Bending Moments (due to Loads after continuity of the structure is established) for

(1.5-1.0) x Dead load + 1.5 x Floor load + 1.5 x Live load

considering the structure to be continuous in all respects (i.e. same as analyzed in the case of cast-in-situ construction). The Bending Moments due to concentrated loads (partition walls) is analyzed using Pigeaud's curves and is same in both type of construction methodologies as the slab is made continuous by in situ concreting before erection of partition walls.

- The software includes provisions for eccentrically placed concentrated loads and span ratio adjustments for various support conditions as per Pigeaud's method of analysis. Reference for these provisions has been taken from Table 56 of the book titled 'REINFORCED CONCRETE DESIGNER'S HANDBOOK' TENTH EDITION authored by: CHARLES E. REYNOLDS AND JAMES C. STEEDMAN.
- The software also considers check for deflection using span empirical relation with span depth ratio, suggested by IS 456: 2000 clause 23.2.1. The software also includes the modification factor to span depth ratio due to other factors viz. tension reinforcement, compression reinforcement, ratio of web width to flange width. Reference has been taken from clause 22.2.1 page 55 of sp: 24-1983 for the empirical formula for modification factor due to tension reinforcement for direct use in the software.
- Note: modification factors due to compression reinforcement, ratio of web width to flange width has been ignored and unity (1) has been inserted for these, however provision for these modification factors has been kept in the software.
 - The check for deflection using empirical relation with span depth ratio, suggested by IS 456: 2000 clause 23.2.1 is applicable to in-situ construction only. In case of segmental construction it is assumed that the slab shall be divided into number of beams spanning along effective span of the slab. These precast elements will be provided with precamber against structural weight of the slab so that the top surface of the slab will be perfectly horizontal after achieving continuity through application of in-situ concreting. Therefore the slab will deflect for

(1.5-1.0) x Dead load + 1.5 x Floor load + 1.5 x Live load + concentrated load if any. The software also includes the calculation of deflection due to long term effects like shrinkage and creep.

Reference for these calculations has been taken from ANNEX C of INDIAN STANDARD CODE OF PRACTICE FOR PLAIN AND REINFORCED CONCRETE IS 456: 2000.

For the calculation of basic value of deflection before cracking of concrete section ELEMENT ANALYSIS TOOL OF STAAD III has been used. The software automatically generates the input file for STAAD III by dividing the entire slab into 100 elements i.e. a grid of 10 x10 elements, these elements are considered as fixed at joints along the slab edges. The software generates the loading positions and load intensity in the required format of STAAD III. This input file can be simply copied from EXCEL SPREADSHEET and paste in the STAAD input file. The deflections so obtained are fed back into the EXCEL SPREADSHEET for calculation of modified short tem and long term deflection using the concept of effective moment of inertia of the cracked section as guided by ANNEX C of INDIAN STANDARD CODE OF PRACTICE FOR PLAIN AND REINFORCED CONCRETE IS 456: 2000.

- Note: the deflections are calculated for full Dead Load taken as acting on continuous structure and later a camber already provided in the slab corresponding to one times the dead load is deducted to give the actual deflection under segmental construction technique.
 - The software provides comparison of the deflections obtained and the permissible values as per clause 23.2.a and 23.2.b of IS 456: 2000. With two or three iterations depth required for satisfying deflection criteria can be obtained.
- Note: the deflections check with actual calculation of effective moment of inertia of the cracked section can be used for in-situ construction method also by putting precamber values to zero. However we have not considered it here.

DEVELOPING A CONVENIENT TOOL FOR QUICK AND REASONABLY ACCURATE ANALYSIS

The following pages give an insight of how the software works and the basic inputs required?

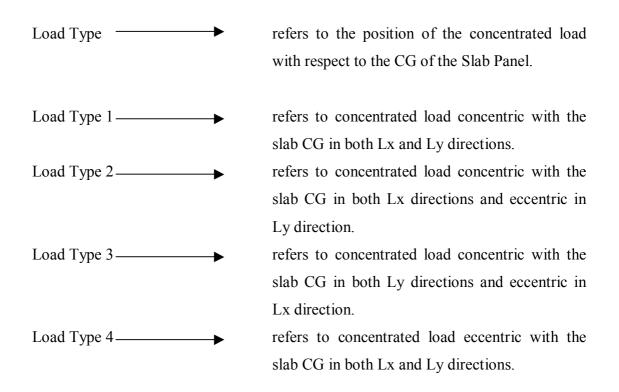
- Step 1: The SOFTWARE requires the inputs for which the slab element is to be designed The inputs are either colored in blue color or bold font is used to differentiate the input data from the normal data getting generated through internal formulas.
- Step 2: Assume suitable depth for first trial
- Step 3: Define construction methodology Write 1 for cast-in-situ construction and 2 for precast segmental construction
- Step 4: In the first part of design, slab is analyzed for uniformly distributed loads using coefficients of bending moment as mentioned in ANNEX D of INDIAN STANDARD CODE OF PRACTICE FOR PLAIN AND REINFORCED CONCRETE IS 456: 2000.

In the column marked Span type use following numerals to represent the edge conditions:

- 101 internal panels
- 102 one short edge discontinuous
- 103 one long edge discontinuous
- 104 → two adjacent edges discontinuous
- 105 two short edges discontinuous
- 106 → two long edges discontinuous

- 109 four edges discontinuous

- Step 5: After marking span type use following numerals to represent the edge type in shorter and longer span directions:
 - 1
 →
 continuous edge


 2
 →
 discontinuous edge

As per Clause D-1.6 (ANNEX D OF IS:456 2000) at a discontinuous edge, negative moment may arise depending upon the degree of fixity at the edge of the slab, therefore 50% of the reinforcement provided at mid span should extend 0.1 L into the span. In the present SOFTWARE 50% of the moment at mid span is considered to be effective at the discontinuous edge so that the codal provision of extending 50% reinforcement is automatically taken care off while calculating the final reinforcement.

Step 6: In the second part of the design the SOFTWARE deal with analysis of slab for concentrated loads using Pigeaud's curves

The distances X_{CG} and Y_{CG} should be the perpendicular from the nearest edge i.e. the shorter distance.

The loads which can not be defined by any of the above load type can be divided into several fragments so that each fragment can be individually defined by one of the above types.

The SOFTWARE includes facility for considering five concentrated loads or load fragments. The no. of concentrated loads can be increased further if required.

Step 7: In certain cases the load can be defined by proper load type, but it changes after the effect of dispersion through the effective depth of the slab is considered. To take care of this the effect of the dispersion through the effective slab thickness can be ignored making the analysis result a bit more conservative.


The SOFTWARE asks to enter 1 for effect of dispersion to be considered and 2 for effect of dispersion to be ignored.

Step 8: In the analysis for concentrated loads the Pigeaud's method suggest modification in Ly/Lx ratio depending upon the edge conditions of the Slab Panel by multiplying it by a factor K1.

In the column marked Span type use following numerals to represent the edge conditions:

101	internal panels		K1 = 1
102	one short edge discontinuous		K1 = 9/8
103	one long edge discontinuous		K1 = 7/8
104	two adjacent edges discontinuous		K1 = 1
105	two short edges discontinuous		K1 = 4/3
106>	two long edges discontinuous		K1 = 3/4
107	three edges discontinuous (one long of	edge continuous)	K1 = 6/5
108	three edges discontinuous (one short	edge continuous)	K1 = 5/6
109>	four edges discontinuous		K1 = 1

Step 9: After marking span type use following numerals to represent the edge type in shorter and longer span directions for calculation of mid span moment, according to the edge type the actual moment is obtained by multiplying calculated moment by a factor F:

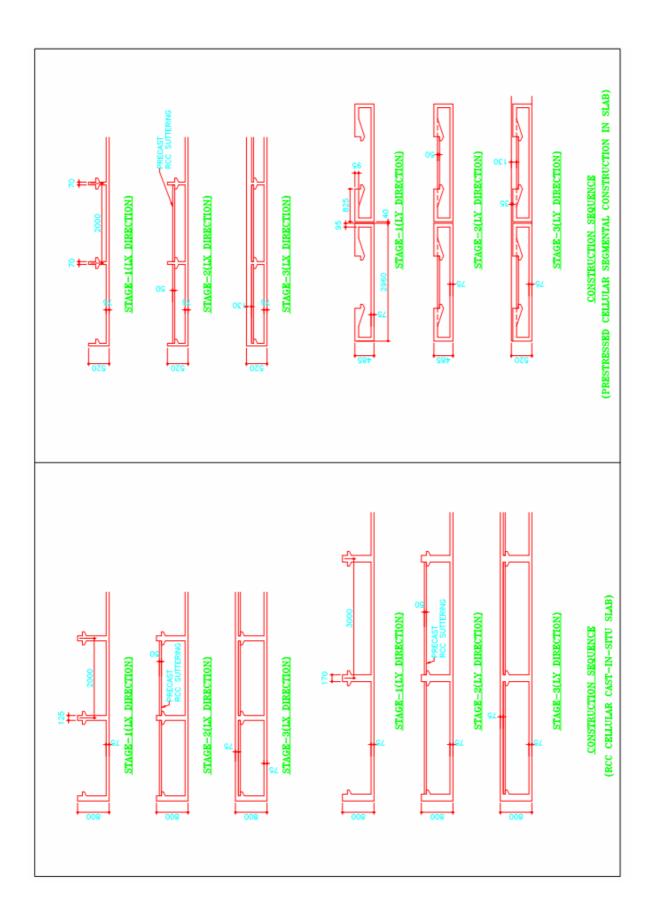
Similarly use following numerals to represent edge type in shorter and longer directions for calculation of support moment, according to the edge type the actual moment is obtained by multiplying calculated moment by a factor F:

1	\longrightarrow	edge of interior panel		F = 0.90
2	>	edge of end panel.		F = 0.25
3	>	edge of penultimate panel ly	ing towards end panel	F = 0.25

- Step 10: Finally the SOFTWARE superimpose all the bending moments calculated for uniformly distributed loads applied before continuity of the structure is achieved/ after continuity of the structure is achieved and the moments calculated for various concentrated loads.
- Step 11: The SOFTWARE directly calculates the effective depth required, ratio of depth of neutral axis to effective depth and the area of steel required using the actual effective depth considered for the analysis. The depth required can be compared with the depth assumed for the analysis and iterated accordingly; simultaneously the Xu/d ratio gives a check for ensuring that the final section is under-reinforced to ensure greater ductility as desired in all the designs.
- Step 12: The SOFTWARE also gives a check for effective depth required for satisfying the check for deflection (Span- Depth ratio) as given by IS:456 200. After comparison the depth of slab required can be iterated accordingly. This check is applicable to cast-in-situ construction. For deflection check in segmental construction method a separate sheet is used where an input for STAAD III file is generated automatically. This is fed into STAAD for Analysis, the deflection results obtained is fed back to the EXCEL-SPREADSHEET and the actual deflection including long term effects due to shrinkage and creep is calculated as per IS:456 2000. after two or three iterations the deflections can be managed with in the limiting values and the corresponding depth of slab required can be found out.

Annexure 3

Part 1:


Design Calculations of RCC cellular slab cast-in-situ

Part 2:

Design Calculations of PSC cellular slab design to be constructed by segmental construction technique

Part 3:

Design Calculations of RCC continuity in cellular slab design to be constructed by segmental construction technique

Section Pr	operties of	The Intern	al Cell Gri	d Line Alo	ng Lx Direc	tion at Mid	Span Loc	ation
		3.0)00					
	T (1)							
				<u> </u>	0.075			
						0.400		
						0.400		
		(2)						
	_					Centroi	dal Axis	
	1.4150							
0.800			• 0.170		0.650			
	(3)				0.075			
	*			-*				
		3.0)00					
·		a star D						
aiculatio	n of Cross-S	section Pro	perties					
Element	Area (A)	Z	AZ	Y	AY			
1	0.225	0.038	0.0084	1.500	0.3375			
2	0.1105	0.4	0.0442	1.500	0.1658			
3	0.225	0.7625	0.1716	1.500	0.3375			
TOTAL	0.560500		0.2242		0.8408			
		0.400		X				
	<u></u> Z=	0.400	m	Ψ Ϋ =	= 1.500	m	-	
1								
Ιx			9					
Element	b	d	<u>bd³</u> 3					
	2.000	0.075		1.30				
1	3.000	0.075	2.11E-04					
2	0.650	0.170	1.06E-03					
3	3.000	0.075	2.11E-04	<bd<sup>3/6</bd<sup>			4	
TOTAL			0.001486		I _x =	0.001486	m ⁴	
$I_{\rm Y}$								
Element	Iself=db ³ /12	$A(Y - \overline{Y})^2$						
1	0.168750	0.000000						
2	0.000266	0.000000						
3	0.168750	0.000000						
TOTAL	0.337766	0.000000			l _y =	0.337766	m ⁴	
Ιz								
	Iself=bd ³ /12	A (X-X) ²						
1	0.000105	0.029566						
2	0.003891	0.000000						
3	0.000105	0.029566						
TOTAL	0.004101	0.059133			I _Z =	0.063234	m ⁴	
	0.004101	5.555155			-2	0.000204	101	

<u>Section P</u> r	operties of	The Intern	al Cell Gri	d Line Alo	ng Ly Direa	: <u>tion at Mi</u> d	<u>Span Lo</u> c	ation
		2.0						
		2.0						
				1	0.075			
				Ţ.				
						0.400		
		(2)						
	_					Centroi	dal Axis	
	0.9375							
0.800	•	*	• 0.125		0.650			
	(3)				0.075			
				*				
	· · ·	2.0)00	-1				
Calculatio	n of Cross-S	Section Pro	perties					
Element	Area (A)	Z	AZ	Y	AY			
1	0.15	0.038	0.0056	1.000	0.1500			
2	0.08125	0.4	0.0325	1.000	0.0813			
3	0.15	0.7625	0.1144	1.000	0.1500			
TOTAL	0.381250		0.1525		0.3813			
	<u></u> Z=	0.400	m C	194	1.000	m		
	2-	0.400			- 1.000			
l _x								
			bd ³					
Element	Ь	d	3					
1	2.000	0.075	1.41E-04	<bd<sup>3/6</bd<sup>				
2	0.650	0.125	4.23E-04					
3	2.000	0.075	1.41E-04					
TOTAL			0.000704		I _X =	0.000704	m ⁴	
					~			
l _Y								
Element	Iself=db ³ /12	$A(Y - \overline{Y})^2$						
1	0.050000	0.000000						
2 3	0.000106	0.000000						
	0.050000	0.000000			I _	0.400400	4	
TOTAL	0.100106	0.000000			l _y =	0.100106	m ⁴	
Ιz								
	Iself=bd ³ /12	A (X-X) ²						
1	0.000070	0.019711						
2	0.002861	0.000000						
2 3	0.000070	0.019711						
TOTAL	0.003001	0.039422			I _z =	0.042423	m⁴	
					-			

Section Pr	operties of	The Intern	al Cell Gri	d Line Alo	ng Lx Direa	ction at Mid	Span Loca	tion
							Span Lood	
	4	1.5	500					
	1			ţ.	0.075			
				Í				
						0.400		
		(2)						
		Ŭ				Centroi	dal Axis	
	0.000					Centrol		
0.800			• 0.170		0.650			
	(3)	1			0.075			
				*				
		1.5	500	-1				
<u>Calculatio</u>	n of Cross-S	Section Pro	perties					
Element 1	Area (A) 0.1125	Z 0.038	AZ 0.0042	Y 0.750	AY 0.0844			
2	0.1125	0.038	0.0042	0.750	0.0844			
3	0.1125	0.7625	<u>0.0442</u> <u>0.08</u> 58	0.750	0.0844			
TOTAL	0.335500		0.1342		0.1781			
			L C	1Ut				
	<u></u> Z=	0.400	m		= 0.531	m		
Ιx								
'X			bd ³					
Element	ь	d	3					
1	1.500	0.075	1.05E-04	<hd<sup>3/6</hd<sup>				
2	0.650	0.170	1.06E-03					
3	1.500	0.075	1.05E-04					
TOTAL			0.001275		I _X =	0.001275	m ⁴	
					~			
l _Y								
Element	Iself=db ³ /12	$A(Y - \overline{Y})^2$						
1	0.021094	0.005397						
2 3	0.000266	0.021978						
	0.021094	0.005397				0.075005	4	
TOTAL	0.042454	0.032771			l _y =	0.075225	m ⁴	
Iz								
	Iself=bd ³ /12	A (X-X) ²						
	0.000053	0.014783						
1 2	0.000053	0.000000						
3	0.000053	0.014783						
TOTAL	0.003996	0.029566			I _z =	0.033562	m ⁴	
					-2			

Section Pr	operties of	The Intern	al Cell Gri	d Line Alo	ng Ly Direc	ction at Mid	Span Loca	<u>tion</u>
		1.0)00					
	† (1)							
				<u> </u>	0.075			
						0.400		
		(2)				0.400		
		9						
	0.000				*-	Centroi	dal Axis	
0.800	0.000		• 0.170		0.650			
	(3)	I	- I	-*	0.075			
	*-			*				
	· · ·	1.0)00	-				
<u>Calcul</u> atio	n of Cross-S	Section Pro	perties					
Element	Area (A)	Z	AZ	Υ	AY			
 2	0.075 0.1105	0.038 0.4	0.0028	0.500	0.0375			
3	0.075	0.4	0.0442	0.500	0.0034			
TOTAL	0.260500		0.1042		0.0844			
		0.400						
	<u></u> Z=	0.400	m		= 0.324	m		
Ιχ								
			bd ³					
Element	Ь	d	3					
1	1.000	0.075	7.03E-05	<bd<sup>3/6</bd<sup>				
2	0.650	0.170	1.06E-03	<bd<sup>3/3</bd<sup>				
3	1.000	0.075	7.03E-05	<bd<sup>3/6</bd<sup>				
TOTAL			0.001205		I _X =	0.001205	m ⁴	
Ιγ								
Element	Iself=db ³ /12	<u> </u>						
1	0.006250	0.002324						
2	0.000266	0.006310						
TOTAL	0.012766	0.010958			I _v =	0.023724	m ⁴	
10100	0.012100	5.510000			'y	0.020124	111	
Ιz								
Element	Iself=bd ³ /12							
1	0.000035	0.009855						
2	0.003891	0.000000						
3	0.000035	0.009855				0.000070	4	
TOTAL	0.003961	0.019711		1	$I_z =$	0.023672	m ⁴	

SUMMARY OF BENDING MOMENTS IN VARIO	OF BEN		IOMEN	S IN V	RIOUS	LOAD	COMBIN	US LOAD COMBINATIONS									
COMBINATION 1																	
PARTIAL FACTOR	OR OF S/	AFETY FI	OF SAFETY FOR LOADS	101													
Please write 1 for cast-in-situ construction and 2 for segmental construction	for cast-i	in-situ co	Instruction	1 and 2 fo	r segmer	ntal cons	truction	-								0	
DEAD LOAD																1.50	
FLOOR FINISHES LIVE LOAD	N N															1.50	
chan of the cla																	
LX LX LX		20 m 30 m															
SIGN CONVENTION:		=															
+ve means hogging	aina																
-ve means sagging	ging																
Clear Cover to Reinforcement in beams/slabs	Reinforcem	tent in be	ams/slabs													2	20 mm
Clear Cover to Reinforcement in ribs	Reinforcem	tent in rib.	S													2	20 mm
Dia of Reinforcing Bars	ng Bars															16	16 mm
Charecteristic compressive strength of concrete	compressiv	re strengt	h of concr	ete							-					40	40 N/mm ²
Charecteristic tensile strength of reinforcement	ensile stre	ingth of re	inforceme	Ħ				3								415	415 N/mm ²
		UNFAC	UNFACTORED MOMENTS		Factored Moment		3	Σ)								
LOAD CASE		◆ Dead	Floor	Live	Total	Total Depth of		of	Xumax/d	Xu for	MOR for which	MOR for MOR for which Xu which Xu makes makes	MOR for which Xu makes	Flange Width of	of	p/nx	Area of Steel
Member No Distance	0.0	Load	Finishes	Load	moment	the Member	Depth	ression Flange	ssible	Yf= Df	Xu = Df Muf	Mith Mith	marcs Yf>Df Muweh	the Member	the Member	Achieved	Required cm ²
\top	2																
51 0	MAX	71.21	20.44	20.44	168.14	0.800	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.06692	60.85
	MIN	71.21	_	20.44	168.14	0.800	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.06692	60.85
-	MAX	51.45	\rightarrow	14.78	121.52	0.80	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953		0.04797	43.62
	NIN NIN NIN	51.45		14.78	121.52	0.80	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953		0.04797	43.62
2	MAX	32.2	89 89 57 0 57 0	89 89 50 0	77.19		0.772	0.075	0.48 0.48	0.1750	240.9 240.9	312.0	338.5 338.5 338.5	2.953 2.953	0.170	0.03024	27.50
				00.0	2		4	0.00) t	0	0.044		2.222	000.4			00.12
52 0	MAX		9.39	9.39	77.24	0.800	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.03026	27.52
	MIN.	32.71	9.39	9.39	77.24	0.800	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953		0.03026	27.52
-	MAX	17.15		4.93	40.52	0.800	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.01578	14.35
	MIN	17.15	\rightarrow	4.93	40.52	0.800	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.01578	14.35
2	MAX	7.60	0.74	0.74	6.12	0.80	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953		0.00237	2.15
	MIN	2.60	0.74	0.74	6.12	0.800	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.00237	2.15

	Area of Tension Steel Required cm ²	60.85	60.85	43.62	43.62	27.50	27.50	27.52	27.52	14.35	14.35	2.15	2.15
	Shear Reinf. Xu/d Required Achieved cm ²	0.07	0.07	0.05	0.05	0.03	0.03	E0:0	0.03	0.02	0.02	0.0	0.00
	Shear Reinf. Required cm ²	11.96	11.96	11.24	11.24	11.06	11.06	9.02	9.02	9.21	9.21	10.34	10.34
	þ	0.744	0.744	0.744	0.744	0.744	0.744	0.744	0.744	0.744	0.744	0.744	0.744
	ē	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114
	Permi- ssible Shear Stress	103.02 0.114 0.744	103.02 0.114 0.744	103.02 0.114 0.744	103.02 0.114 0.744	2.10 91.23 0.114 0.744	91.23 0.114 0.744	91.23 0.114 0.744	286.7 2.10 91.23 0.114 0.744	71.56 0.114 0.744	71.56 0.114 0.744	255.4 0.16 31.42 0.114 0.744	255.4 0.16 31.42 0.114 0.744 10.34
	% Tensile Reinf.	4.64	4.64	3.32	3.32	2.10	2.10	2.10	2.10	1.09	1.09	0.16	0.16
	Shear stress	362.1	362.1	346.5	346.5	330.9	330.9	286.7 2.10		271.1	271.1	255.4	255.4
	Effective Depth	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Total Shear Moment	Breadth of the Member Memert Bending Effective Shear [%] Firesie Reinf.	47.52 168.14	47.52 168.14	45.48 121.52	45.48 121.52	43.43 77.19	77.19	77.24	0.00 37.62 77.24	40.52	40.52	6.12	6.12
Mon	Shear	47.52		45.48	45.48		43.43	37.62 77.24	37.62	35.58	35.58	33.53 33.53	0.00 33.53
Moment	Bending moment	0.0	0.0	0.0	0.0	8.0	0.00	0.0	0.0	0.0	0.0	0.0	0.00
Bending of Tors	Shear	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
alent Shear/Bending Mo due to Effect of Torsion	Breadth of the Member	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170 0.00	0.170	0.170	0.170 0.00	0.170 0.00
Equivalent Shear/Bending Moment due to Effect of Torsion	Total Depth of the Member	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Factored Shear	Total Shear	47.52	47.52	45.48	45.48	43.43	43.43	37.62	37.62	35.58	35.58	33.53	33.53
ED	Live Load	5.73	5.73	5.53	5.53	5.33	5.33	4.53	4.53	4.33	4.33	4.13	4.13
UNFACTORED SHEAR	Floor Finish- es	5.73	_			-		4.53		4.33	4.33		
UN	Dead Load	20.22	20.22 5.73	19.26 5.53	19.26 5.53	18.29 5.33	18.29 5.33	16.02 4.53	16.02	15.06 4.33	15.06 4.33	14.09	14.09
Factored Moment	Total Dead Filoor Live Torsion Load es	0.0	0.0	0.0	0.00	8.0	0.00	0.00	0.00 16.02 4.53	8.0	8.0	0.00 14.09 4.13	0.00 14.09 4.13
	Live Load	0.0	0.0	0.0	0.00	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.0
UNFACTORED TORSION	Floor Finish- es	8	00.0 00.0 00.0	8	0.00	0.00 00.0	0.00	0.00 0.00	0.00 00.00 00.00	8.0	0.0	0.00 00.00 00.00	0:00 0:00 0:00
UNF	Dead Load	0.0	80	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0

Los Los	5.7	5.7	ភូ	ភូ	ŝ	ŝ	1
Floor Finish- es	5.73	5.73	5.53	5.53	5.33	5.33	СL N
Dead Load	20.22	20.22	19.26	19.26	18.29	18.29	000
Total Dead Torsion Load	00.0	00.0	00.0	00.00	00.0	0.00	000
Live	0.00	0.00	0.00	0.00	0.00	0.00	
Floor Finish- es	0.00	0.00	0.00	0.00	0.00	0.00	
Dead Load	0.0	0.0	0.0	0.00	0.0	0.00	
	- 1	1	1 -				

CASE Dead Filor Distance Dead Finishes Distance Distance Cond Filor MIN. 2.63 0.74 MIN. 2.63 0.74 MIN. 8.69 -2.50 MIN19.00 -5.47 MIN19.00 -5.47 MIN19.00 -5.47 MIN18.97 -5.46 MIN26.01 -7.47 2 MAX18.97 -5.46 MIN. 226.01 -7.47 2 MAX26.01 -7.47 2 MAX26.01 -7.47 2 MIN. 22.014 -9.22 MIN22.04 -9.22		Total Cotal Eending Eending Eending Eending E.17 E.17 E.17 E.17 E.17 E.17 E.17 E.14.91 E.44.91	Total Depth of E the	Effective Depth	6	Xumax/d Permi-			MOR for MOR for which Xu		Flange Width of	Web Width of		
2.63 2.63 2.63 2.63 -19.00 -19.00 -19.00 -19.00 -18.97 -18.97 -18.97 -26.01 -26.01 -26.01 -22.04 -32.04					ression Flange	ssible	Xu for Yf = Df		makes Y≒Df Mub				Xu/d Achieved	Area of Steel Required cm ²
2.63 2.63 8.69 8.69 -19.00 -19.00 -18.97 -18.97 -18.97 -18.97 -18.97 -26.01 -26.01 -26.01 -26.01 -26.01 -26.01 -26.01 -26.01 -26.01 -26.01 -26.01 -27.00 -27	+ + + + + + + + + + + + + + + + + + + +		+++++++++++++++++++++++++++++++++++++++	011								\vdash		ţ
2.00 8.69 8.69 8.69 19.00 19.00 19.00 19.00 18.97 19.0000000000	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	0 772	2/N.N	ç Ç D	0.1750	240.9	012.0	0.0 20 20 20 20 20 20 20 20 20 20 20 20 20	2027 2027 2020 2020 2020	0.170	85700.0	2.17
-8.69 -19.00 -19.00 -19.00 -18.97 -18.97 -26.01 -26.01 -26.01 -26.01 -32.04	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			0.772	0.075	+	0.1750	240.9	312.0	338.5	2.953		0.00797	7.25
-19.00 -19.00 -19.00 -18.97 -18.97 -18.97 -26.01 -26.01 -26.01 -32.04 -32.04				0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.00797	7.25
-19.00 -18.97 -18.97 -18.97 -26.01 -26.01 -25.01				0.772	0.075		0.1750	240.9	312.0	338.5	2.953		0.01750	15.91
-18.97 -18.97 -18.97 -26.01 -26.01 -32.04 -32.04	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.01750	15.91
-18.97 -26.01 -26.01 -25.04 -32.04 -32.04				0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.01747	15.89
-26.01 -26.01 -32.04 -32.04				0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.01747	15.89
-26.01 -32.04 -32.04				0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.02400	21.83
-32.04				0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.02400	21.83
-32.04				0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953		0.02966	26.97
	-	\vdash	0.800	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.02966	26.97
		-	-											
32.03	9.22	-	- /	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.963	0.170	0.02965	26.96
-32.03		0000000	and the second	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.963		0.02965	26.96
34.73		-82.04	and the second second	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.963	0.170	0.03217	29.25
-34.73			\ \	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.963		0.03217	29.25
36.42	_			0.772	0.075	b.	0.1750	240.9	312.0	338.5	2.953	0.170	0.03377	30.71
MIN36.42 -10.48	8 -10.48	-86.07	0.800	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.03377	30.71
	+	+	0.800	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.03377	30.71
MIN36.42 -10.48	8 -10.48	-86.07	\vdash	0.772	0.075		0.1750	240.9	312.0	338.5	2.953	+	0.03377	30.71
-34.74	├──	┣	0.800	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.03217	29.26
MIN34.74 -9.98	9.98			0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.03217	29.26
-32.06		ц С	0.800	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.02967	26.98
	\vdash	-75.75	0.800	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.02967	26.98
	+	+	+			!		!	1	1				
-32.07	+	+	+	0.772	0.075	9.48	0.1750	240.9	312.0	338.5	2.953		0.02969	27.00
-32.U/	+	+	+	U.//2	6/N.N	┥	U.1/6U	240.9	312.0	9.925 9.925	7.963	-	0.02969	27.00
26.05	-	-61.52	+	0.772	0.075	+	0.1750	240.9	312.0	338.5	2.953		0.02404	21.86
-26.05	-	\rightarrow	-	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953		0.02404	21.86
MAX19.02 -5.48	5.48	_	-	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953		0.01752	15.93
-19.02	+	-44.97	0.80	0.772	0.075	0.48	0.1750	240.9	312.0	338.5	2.953	0.170	0.01752	15.93

	Area of Tension Steel Required cm ²	۲. ۲.	7.17	2.17	Q7.	15.01	15.91	15.89	15.89	21.83	21.83	26.97	26.97		26.96	26.96	29.25	29.25	30.71	30.71	ŀ	20.71		29.26	26.98	26.98		27.00	27.00	21.86	21.86	15.93	15.93
	Achieved Re	0			5 6	+	++	0.02	\vdash	\vdash	0.02	0.03	0.03	-	0.03	0.03	0.03	0.03	0.03	0.03	+		+	+	+	0.03		-	0.03	\neg		0.02	0.02
	Shear Reinf. Required Ac cm ²	+	+	+		+	++	2.71 (2.71			1.96 (1.96 (Not Required	Not Required	Not Required	Not Required 1	Not Required 1	Not Required								+	0.53	-	_	71	2.71
	д С С С С С С С С С С С С С С С С С С С				0.744			0.744 2		0.744 2	0.744 2	0.744 1	0.744 1		0.744 Not	0.744 Not1	0.744 Not	0.744 Not	0.744 Not	0.744 Not		U. / 44 Not Required	0 744 Not Dequire	0.744 Not	0.744 Not	0.744 Not Required					0.744 1	0.744 2	0.744
	6 La		0.114 	0.114 0	0 0 0 7 1 4 7 1 4 7 1 4			0.114 0	0.114 0	0.114 0	0.114 0	0.114 0	0.114 0		0.114 C	0.114 0	0.114 0	0.114 0	0.114 0	0.114 0				0.114		0.114 0			0.114 0		0.114 0	0.114 0	0.114 0
	Permi- ssible Shear Stress	ç Ç	31.42	31.42	8 8 8 8	00.00 74 FD	74.50	74.50	74.50	83.84	83.84	90.58	90.58		90.58	90.58	93.35	93.35	94.82	94.82		24.02	77.6	38.8	90.58	90.58		90.58	90.58	83.84 83	83.84	74.50	74.50
	% Tensile Reinf.					5 5		1.21			1.66	2.05			2.05	2.05	2.23	2.23	2.34	2.34		7.7 7.7	5 6	222	2.06	2.06			2.06			1.21	1.21
	e Shear stress	0 0 0	210.3	210.3	124.0	170 D	179.0	133.3	133.3	117.6	117.6	102.1	102.1		55.1	55.1	39.4	39.4	23.9	23.9		7.17	200	200	54.9	54.9		102.0	102.0	117.6	117.6	133.2	133.2
	Effective Depth	4	21	0.7	210	212	0.77	0.77	0.77	0.77	0.77	0.77	0.77		0.77	0.77	77.0	22.0	2.0	0.77	ļ	24	24	220	0.77	0.77		0.77	0.77	0.77	0.77	0.77	0.77
Total Shear/ Moment	Bending moment				70.07			44.84	44.84	61.43	61.43	75.72	75.72		75.71	75.71	82.04	82.04	86.07	86.07) 100 00		82.05	75.75	75.75			75.80		61.52	44.97	44.97
	Shear	2	7. j	23.12 12	815 875	00.02 00.02	23.49	17.49	17.49	15.44	15.44	13.40	13.40		7.23	7.23	5.18	5.18	3.14	3.14			- 4 5 4	5 9 5 9	7.20	7.20		13.38	13.38	15.44	15.44	17.48	17.48
Equivalent Shear/Bending Moment due to Effect of Torsion	Bending moment	0		88			800	8	8	8.0	8.0	0.0	0:0		0.00	0.0	000	0.00	89	9	0			88	8	0.00		8	8.0	0.0	0.0	0.00	80.0
(Bending t of Tors	Shear	8	3	88	38		88	8	8	8	8	8.0	8		0.00	0.0	0.00	00.0	8.0	0:0	8	38			8	0.00		8	8	8	0.0	0.00	8
alent Shear/Bending Mo due to Effect of Torsion	Breadth of the Member	0 71	D/170	0.170	0.170	2 2	0.170	0.170	0.170	0.170	0.170	0.170	0.170		0.170	0.170	0/1/0	0.170	0.170	0.170		0 1 1 0 1 1 0		0.170	0.170	0.170		0.170	0.170	0.170	0.170	0.170	0.170
	Total Depth of the Member	ç		88			800	0.0	0.0	0.80	0.8	0.80	0.80		0.80	0.80	0.80	0.80	0.80	0.80	0			38	0.80	0.80		0.0	0.80	0.80	0.80	0.80	0.00
Factored Shear	Total Shear	00 60	NG: /7	27.60	8 L	00 07 07 07 07 07 07 07 07 07 07 07 07 0	23.49	17.49	17.49	15.44	15.44	13.40	13.40		7.23	7.23	5.18	5.18	3.14	3.14		ή 1 2	- 4 - 4	5 4 19	-7.20	-7.20		-13.38	-13.38	-15.44	-15.44	-17.48	-17.48
RED	Live	č	יי יי	m m m		- 6 - 6	2.91	2.08	+	+	 88.	1.68	- 1. 88		0.83	0.83	0.63	0.63	0.43	0.43	_	2 7 7			0- 88.				-1. 68		_		-2.08
UNFACTORED SHEAR	Floor Finish- es					-	+ +	2.08	+	+	1 89.	1.68	 89.	-	0.83	0.83	0.63	0.63	0.43	0.43	-	₽ ₽ ₽	-	_	0- 80.						_	_	-2.08
	Dead Load	1	11./0	11.78			9.87 19.00	7.50	7.50	6.53	6.53	5.57	5.57		3.16	3.16	2.19	2.19	1.23	1.23	2	7 2	- C	9 19 7 19	-3.14	-3.14		ې. 5	-5.56	9.53 9	-9.53	-7.49	-7.49
Factored Moment	Total Torsion	C C		88			800	0.0	8	0.0	8	0.0	0:0		0.00	0.0	0.00	0.00	0.00	0.0					8	0.00		8	8	8	0.0	0.00	8.0
RED N	Live	-+	+	+	38	+	+	8	8	+	8	8			0.00	0.0	0.00			8		3 8	+	+	+		\vdash	-+	-	8	0.0	0.00	8
UNFACTORED TORSION	Floor Finish- es	-	-+	+	38	+	+ $+$	8	+	+	8		8	-		0.00	0.00			8	-+	38	+	+-	+		\vdash	-+	-	-	-	-	8
5	Dead Load		3	88			80	0.0	8	0.0	0.0	0.0	8		0.00	0.0	0.00	0.00	0.0	8				88	0.0	0.0		8	8	8.0	0.0	0.0	0.0

	Area of Steel Required cm ²	10	15.95	15.95	7.26	7.26	2.16	2.16	2.13	2.13	14.35	14.35	27.53	27.53	27.51	27.51	43.65	43.65	60.90	60.90	20.17	26.47	15.88	15.88	7.09	7.09	7.14	7.14	1.34	1.34	2.67	2.67
	Xu/d Achieved		0.01754	0.01754	0.00799	0.00799	0.00238	0.00238	0.00235	0.00235	0.01578	0.01578	0.03027	0.03027	0.03025	0.03025	0.04800	0.04800	0.06697	0.06697		0.04230	0.02579	0.02579	0.01151	0.01151	0.01160	0.01160	0.00218	0.00218	0.00433	0.00433
	Web Width of the Member		0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	104.0	0,125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125
	Flange Width of the Member		2.953	2.953	2.953	2.953	2.953	2.953	2.953	2.953	2.953	2.953	2.953	2.953	2.953	2.953	2.953	2.953	2.953	2.953			2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
	MOR for which Xu makes Yf>Df Muweb		338.5	338.5	338.5	338.5	338.5	338.5	338.5	338.5	338.5	338.5	338.5	338.5	338.5	338.5	338.5	338.5	338.5	338.5	0.000	231.0 731.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6
	MOR for MOR for which Xu which Xu makes makes Yf≏Df Yf>Df Muweb	0.050	312.0	312.0	312.0	312.0	312.0	312.0	312.0	312.0	312.0	312.0	312.0	312.0	312.0	312.0	312.0	312.0	312.0	312.0	1010	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1
	MOR for which Xu = Df Muf		240.9	240.9	240.9	240.9	240.9	240.9	240.9	240.9	240.9	240.9	240.9	240.9	240.9	240.9	240.9	240.9	240.9	240.9	1004	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1
	Xu for Yf = Df		0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0 4700	0.1750 0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750
	Xumax/d Permi- ssible		0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	¢,	0.40	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
	Thickness of comp- ression Flange		0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0 071	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075
	Effective Depth		0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772		0 777	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772
	Total Depth of the Member		0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	000		0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800
Factored Moment	Total Bending moment	ļ	-45.00	-45.00	-20.58	-20.58	6.14	6.14	6.06	6.06	40.52	40.52	77.27	77.27	77.21	77.21	121.59	121.59	168.27	168.27	0000	73.80	44.67	44.67	20.06	20.06	20.21	20.21	3.81 3.81	3.81	-7.58	-7.58
OMENTS	Live Load	ļ	-5.48	-5.48	-2.50	-2.50	0.74	0.74	0.73	0.73	4.93	4.93	9.39	9.39	9.38	9.38	14.79	14.79	20.46	20.46	070	0 0 10	5.40	5.40	2.47	2.47	2.49	2.49	0.42	0.42	88. Q-	0- 88: 0-
UNFACTORED MOMENTS	Floor Finishes	ļ	-5.48	-5.48	-2.50	-2.50	0.74	0.74	0.73	0.73	4.93	4.93	9.39	9.39	9.38	9.38	14.79	14.79	20.46	20.46	070	9 10	5.40	5.40	2.47	2.47	2.49	2.49	0.42	0.42	88. Q-	0. 0
UNFAC ⁻	Dead		-19.04	-19.04	-8.72	-8.72	2.61	2.61	2.58	2.58	17.15	17.15	32.73	32.73	32.71	32.71	51.48	51.48	71.26	71.26		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18.98	18.98	8.43	8.43	8.49	8.49	1.70	1.70	.9.29 -9.29	-3.29
	Î		MAX	, MIN	MAX	ΪΝ	MAX	ИW	MAX	MIN.	MAX	MIN.	MAX	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	1001		MAX	MIN	MAX	MIN.	MAX	ΪN	MAX	ΜΙΜ	MAX.	ЯМ
	CASE Distance	0	-		-		7		0		-		2		0		-		2		c		بن بنا		m		-		1.5		m	
	LOAD CASE Member No. Dista	1	ŝ						8						8						(⁷	<u>_</u>					127					

	Area of Tension Steel Required cm ²	17.07	0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	15.95 7 26	7.26	2.16	2.16	2.13	2.13	14.35	14.35	27.53	27.53	27.51	27.51	43.65	43.65	60.90	60.90	26.47	26.47	15.88	15.88	7.09	7.09	7.14	7.14	1.34	1.34	2.67	2.67
	Xu/d Achieved	6	70.0	70.0	0.01	0.0	8	0.0	0.0	0.02	0.02	0.03	0.03	0.03	0.03	0.05	0.05	0.07	0.07	0.04	0.04	0.03	0.03	0.01	0.01	0.01	0.0	0.0	0.0	0.00	0.0
	Shear Reinf. Required cm ²	5	50	4.03 7.03	59	8.26	8.26	10.35	10.35	9.22	9.22	9.03	9.03	11.08	11.08	11.26	11.26	11.98	11.98	3.85	3.85	3.48	3.48	3.33	3.33	2.20	2.20	2.22	2.22	0.93	0.93
	d1	144	0.744	U./44			0.744	0.744	0.744	0.744	0.744	0.744	0.744		0.744	0.744	0.744	0.744	0.744	0.744		0.744	0.744	0.744	0.744	0.744	0.744		0.744	0.744	0.744
	b1	* * * 0	U. 1 4	U.114 0 114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.114	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069
	Permi- ssible Shear Stress	07.47		74.5U	383	31.42	31.42	31.42	31.42	71.56	71.56	91.23	91.23	91.23	91.23	103.02	103.02	103.02	103.02	99.84	99.84	83.44	83.44	60.47	60.47	60.83	8. 80	30.60	30.60	39.82	39.82
	% Tensile Reinf.			1.21			0.16	0.16	0.16	1.09	1.09	2.10	2.10		2.10				4.64	2.74		1.65	1.65	0.73	0.73	I		0.14	0.14	0.28	0.28
	Shear stress	4 70 0	1/3.2	1/9.2 10/0	194.9	210.4	210.4	255.6	255.6	271.2	271.2	286.9	286.9	331.3	331.3	347.0	347.0	362.5	362.5	213.3	213.3	186.1	186.1	158.7	158.7	125.8	125.8	95.9	95.9	65.9	65.9
	Effective Depth	77.0	2.0	1.1U	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	22.0	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Total Shear/ Moment	Bending moment	00 14	10.01 10.01	45.UU 20.58	20.58	6.14	6.14	6.06	6.06	40.52	40.52	77.27	77.27	77.21	77.21	121.59	121.59	168.27	168.27	73.89	73.89	44.67	44.67	20.06	20.06	20.21	20.21	3.81	3.81	7.58	7.58
Total Mor	Shear	1	20.02	77.27	25.58	27.62	27.62	33.54	33.54	35.60	35.60	37.65	37.65	43.49	43.49	45.54	45.54	47.58	47.58	20.58	20.58	17.96	17.96	15.32	15.32	12.14	12.14	9.26	9.26	6.36	6.36
Equivalent Shear/Bending Moment due to Effect of Torsion	Bending moment	000			800	0.0	0.0	0.00	0.0	0.0	0.00	0.00	0.00	0.00	0.0	0,00	0.00	0.00	0.00	0.0	0.0	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00
Bending of Tors	Shear		80	30	80	0.0	00.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.0	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00
alent Shear/Bending Mo due to Effect of Torsion	Breadth of the Member	0 170		0.170	0,170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0.170	0,170	0.170	0.170	0.170	0.170	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125
	Total Depth of the Member	000				0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	08.0	0.80	0.80	0.80	0.80	0.80	0.80 0	0.80	0.80	0.80	0.80
Factored Shear	Total Shear	57.55	20.02-	-23.52	-25.58	-27.62	-27.62	-33.54	-33.54	-35.60	-35.60	-37.65	-37.65	-43.49	-43.49	-45.54	-45.54	-47.58	-47.58	20.58	20.58	17.96	17.96	15.32	15.32	12.14	12.14	9.26	9.26	6.36	6.36
RED	Live Load	č	-7.3	-2.91 a 11	i tr	-3.31	-3.31	-4.13	-4.13	-4.33	-4.33	-4.53	-4.53	-5.34		-5.54		-5.74	-5.74	2.61	2.61	2.21	2.21	1.81	1.81	1.52	1.52	1.12	1.12	0.72	0.72
UNFACTORED SHEAR	Floor Finish- es			-7.91 14	; ₽		.3.31	-4.13	4 .13	4 .33	4.33	4.53	-4.53		-5.34	-5.54	-5.54	-5.74	-5.74	2.61	2.61	2.21	2.21		1.81	1.52	1.52	1.12	1.12	0.72	0.72
	Dead Load	e c	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	δ 8 8 8 8 8	10.8	-11.79	-11.79	-14.10	-14.10	-15.07	-15.07	-16.04	-16.04	-18.31	-18.31	-19.28	-19.28	-20.24	-20.24	8.50	8.50	7.55	7.55	6.59	6.59	5.05	5.05	Э.93	3.93	2.80	2.80
Factored Moment	Total Torsion						0:0	0.0	80	0.0	0.0	0.00	0:0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	8	0.0	0.0	0.00	0:0
A RD	Live Load			36	88	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.00	8. 0	0.0	0.0	0.0	0.00	0.0
UNFACTORED TORSION	Floor Finish- es					+	8. 0	8.0	8	8	8	0.0	8	0.0	-			0.00	8.0	8	+	8; 0	0.0	0.0	0.0	-	8	8	8.0	0.00	8.0
5	Dead Load		30			8	8 0	0.0	8	8 0	8	80	8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.0	8 0	0.0 0	0.0	0.0	80	8	8	80	0.0	0.0

	Area of Steel Required cm ²	2.61	2.61	5.10	5.10	5.83	5.83	5.79	5.79	6.77	6.77	5.99	5.99	5.96	5.96	6.73	6.73	5.73	5.73		5./3	5./3	6.75	6.75	5.99	5.99	6.02	6.02	6.83	6.83	5.89	5.89
	Xu/d Achieved F	0.00424	0.00424	0.00828	0.00828	0.00947	0.00947	0.00940	0.00940	0.01099	0.01099	0.00972	0.00972	0.00968	0.00968	0.01092	0.01092	0.00931	0.00931		0.00001	0.00931	0.01096	0.01096	0.00973	0.00973	0.00977	0.00977	0.01110	0.01110	0.00956	0.00956
	VVeb Width of the A Member						0.125	0.125 0	0.125 0	0.125 0	0.125 0		\square		0.125 0			0.125 0	0.125 0			+				0.125 0					0.125 0	0.125
	Flange Width of the Member	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000		7.000	7:000	5.000 5.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
	MOR for MOR for which Xu which Xu makes makes Yf∋Df Yf>Df Muweb	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6		231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6
		212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1		212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1
	MOR for which Xu = Df Muf	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1		163.1	163.1	153.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1
	Xu for Yf= Df	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750		0.1/50	U.1/5U	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750
	, Xumax/d Permi- ssible	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	2	8 2 2 2 0	₽	₩ 0	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
	Thickness of comp- ression Flange	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075		9/N/N	9/N'N	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075
	Depth	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0,772	0.772		0.772	D.//2	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772
	Total Depth of the Member	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800		0.8 0 0 0 0 0 0	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800
Factored Moment	Total Bending moment	-7.41	-7.41	-14.45	-14.45	-16.52	-16.52	-16.40	-16.40	-19.16	-19.16	-16.95	-16.95	-16.88	-16.88	-19.04	-19.04	-16.23	-16.23		-16.23	-16.23	-19.10	-19.10	-16.97	-16.97	-17.04	-17.04	-19.34	-19.34	-16.67	-16.67
OMENTS	Live Load	-0.86	-0.86	-1.79	-1.79	-1.96	-1.96	-1.95	-1.95	-2.36	-2.36	-2.01	-2.01	-2.00	-2.00	-2.34	-2.34	-1.92	-1.92		-1.92	-1.92	-2.35	-2.35	-2.01	-2.01	-2.02	-2.02	-2.38	-2.38	-1.98	-1.98
UNFACTORED MOMENTS	Floor Finishes	-0.86	-0.86	-1.79	-1.79	-1.96	-1.96	-1.95	-1.95	-2.36	-2.36	-2.01	-2.01	-2.00	-2.00	-2.34	-2.34	-1.92	-1.92	()	-1.92	-1.92	-2.35	-2.35	-2.01	-2.01	-2.02	-2.02	-2.38	-2.38	-1.98	-1.98
UNFAC.	Dead	-3.22	-3.22	-6.05	6.05 -	-7.09	-7.09	-7.03	-7.03	-8.05 -	-8.05 -	-7.28	-7.28	-7.25	-7.25	-8.01	-8.01	-6.98	-6.98		9 9 9 8 9 8	9 9 9	αį φ	8.03 60	-7.29	-7.29	-7.32	-7.32	-8.13	-8.13	-7.15	-7.15
		MAX.	MIN	MAX	ΝIM	MAX.	х W	MAX	MIN	MAX	ΜIN	MAX	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN	2	MAX.	ZIW ZIW	Ж¥	ΪW	MAX	MIN	MAX	ΪW	MAX.	MIN.	MAX.	х W
	CASE Distance	0		1.5		m		0		1.5 1		m		0		1.5		£		(-		1.5		m		0		1.5		ო	
	LOAD CASE Member No. Dista	138						149						160						ļ	1/1						182					

	Area of Tension Steel Required cm ²	, C	7.01	2.61	10 10	283	5.83	5.79	5.79	6.77	6.77	5.99	5.99		5.96	5.96	6.73	6.73	5.73	5.73	047	2.73	6 75	6.75	5.99	5.99	6.02	6.02	6.83	6.83	5.89	5.89
	A Xu/d Te Achieved Re	+	+	+		+		0.01	0.01	0.01	0.01	0.01	0.01	_		0.01	0.01	0.01	0.01	0.01	0	+	+	+	-	0.01		0.01	_	-	0.01	0:01
		+	+													_												_				
	Shear Reinf. Required cm ²				4 Not Required A Mat Dequired	1 Not Required	0.744 Not Required	0.744 Not Required	1 Not Required	1 Not Required	1 Not Required	1 Not Required	0.744 Not Required		1 Not Required	1 Not Required	1 Not Required	1 Not Required	1 Not Required	1 Not Required		+ Not Hequired	0.744 Not Required	1 Not Required	1 Not Required	0.744 Not Required	1 Not Required	0.744 Not Required				
	р		0.744	9 U./44	2 U.744			9 0.74	9 0.744	9 0.744	9 0.744	9 0.744			9 0.744	9 0.744		3 0.744		9 0.744	V V V						9 0.744	9 0.744	9 0.744		9 0.744	9 0.74
	E E	_			n nea	+		0.069	0.069	0.069	0.069	0.069	690.0			_		0.069		0.069	0000		-	-	-	0.069						0.069
	Permi- ssible Shear Stress		202	20 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	07.72 77 77	5.69	55.69	55.32	55.32	59.36	59.36	56.43	56.43		56.06	56.06	2 9.00	59.00	55.32	55.32	10.00	363		80.63	56.43	56.43	56.43	56.43	59.36	59.36	55.69	52 [.] 60
	% Tensile Reinf.		77.0	77.0		300	0.60	0.60	0.60	0.70	0.70	0.62	0.62		0.62	0.62	0.70	0.70	0.59	0.59	0		30	220	0.62	0.62	0.62	0.62	0.71	0.71	0.61	0.61
	Shear stress	2	4 0 0	0 17 0 17	0 0 7 0 7 0	2 ~	1.7	31.9 1.9	31.9	1.9	1 . و	28.0 28	28:0 28:0		27.5	27.5	2.3	2.3	32.2	32.2	4	2 4 7 6	220	52	27.4	27.4	28.8 28.8	28.8 28.8	, -		31.1	31.1
	Effective Depth	F	2.0)// C	22	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77		0.77	0.77	0.77	0.77	0.77	0.77	0 77	220	177	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Total Shear/ Moment	Bending moment	F	- -	1.41	14.45	16.52	16.52	16.40	16.40	19.16	19.16	16.95	16.95		16.88	16.88	19.04	19.04	16.23	16.23	0 0 0	16,73	19 10	19.10	16.97	16.97	17.04	17.04	19.34	19.34	16.67	16.67
Total (Mon	Shear	E L	20 20 20 20 20 20 20 20 20 20 20 20 20 2	5.03 2.03 7.03	6) 12 7) 12	0.17	0.17	3.08	3.08	0.18	0.18	2.70	2.70		2.66	2.66	0.23	0.23	3.11	3.11	- - -	t 7	124	0.24	2.64	2.64	2.78	2.78	0.11	0.11	3.00	8.
Equivalent Shear/Bending Moment due to Effect of Torsion	Bending moment	000	8.6	0.00	0.00	800	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0,00	0.00	0.00	0.00	0000		800	0.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00
Bending of Tors	Shear	8	3.6	33	36	88	0.0	8.0	0.00	00.0	0.0	0.0	0.0		0.0	0.00	0:00	0.00	0:00	0.00	6	36		88	0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.0
alent Shear/Bending Mo due to Effect of Torsion	Breadth of the Member	1010	67 I O	0.125	0.120 72,10	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125		0.125	0.125	0.125	0.125	0.125	0.125	105	0 120	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125
	Total Depth of the Member			U.8U	0.00 0.80	0.00	0.80	0.80	0.80	08'0	0.80	0.80	0.80		0.80	0.80	0.80	0.80	0.80	0.80	000		0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Factored Shear	Total Shear		5.27 2.27	5.93 205	2015 2015	0.17	0.17	3.08	3.08	0.18	0.18	-2.70	-2.70		2.66	2.66	-0.23	-0.23	-3.11	-3.11	44	14 14	0.74	0.24	-2.64	-2.64	2.78	2.78	-0.11	-0.11	-3.00	9.00 -
ξED	Live Load		2.n	U.//	0.37	500	0.03	0.42	0.42	0.02	0.02	86.O	88. 9		0.37	0.37	-0.03	-0.03	-0.43	-0.43	ç	2 C		88	-0.37	-0.37	0.39	0.39	-0.01	-0.01	-0.41	-0.41
UNFACTORED SHEAR	Floor Finish- es	5	///n	U.//	0.37 0.37	0.03	-0.03	0.42	0.42	0.02	0.02	-0.38	-0.38		0.37	0.37	-0.03	-0.03	-0.43	-0.43	0,40	240 140		800	-0.37	-0.37	0.39	0.39	-0.01	-0.01	-0.41	-0.41
	Dead Load	2	7.4	2.41	2 0 2 0	0.17	0.17	1.21	1.21	0.08	80 0	-1.04	-1.04		1.03	1.03	0.09	-0.09	-1.21	-1.21	5	3 8		; [-1.02	-1.02	1.07	1.07	-0.05	-0 -0 -0	-1.18	-1.18
Factored Moment	Total Torsion					80	0.0	0.0	0.00	0.0	0;0	0.0	0.0		0.0	0.00	0.0	0.00	0.00	0.0	0			80	0.0	0.00	0.00	0.0	0.0	80	0.0	0:0
RED	Live		3 8			800	00.0	0.0	0.00	0.00	0.00	0.0	0.0		0.0	0.00	0.00	0.00	0.00	0.0				80	0.0	0.00	0.00	0.00	0.0	80	0.00	0.0
UNFACTORED TORSION	Floor Finish- es		3			+	++	8	0.0	0.0	8	8	8		8	-				8		+	8	88	8	0.0	0.0	8.0	8.0	8	0.0	8
NS	Dead Load			3		88	8 0	8.0	0.0	0.0	8 0	8	8		0.0	0.0	0.0	0.0	0.0	8				80	8	0.0	0.0	80	0.0	8	0.0	8

	<u>ت</u> م	red 2		→	÷	7	7	5	5	2	2	9	9	.	-	7	7	3	3	6	6	-
	Area of Steel	Required cm ²			5.94	5.17	5.17	2.65	2.65	2.72	2.72	1.36	1.36	7.21	7.21	7.17	71.17	15.93	15.93	26.49	26.49	
	p/nx	Achieved		0.00964	0.00964	0.00840	0.00840	0.00431	0.00431	0.00441	0.00441	0.00220	0.00220	0.01171	0.01171	0.01164	0.01164	0.02587	0.02587	0.04302	0.04302	
	Web Width of	the Member		0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	
	Flange Width of	the Member		2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	
	MOR for which Xu makee	Yf>Df Muweb	1	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	231.6	
	MOR for MOR for which Xu which Xu	Yf⊨Df Mub		212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	212.1	
		Xu = Df Muf		163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	163.1	
	Xu for	Yf= Df		0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	
	Xumax/d	ssible		0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	
	Thickness of comp-	ression Flange		0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	
	Effective	Depth		0.772	0.772	0.772	0.772	0.772	0.772	0,772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	0.772	
	Total Depth of	the Member		0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	0.800	
Factored Moment	Total Bending	moment		-16.82	-16.82	-14.66	-14.66	-7.53	-7.53	-7.71	-7.71	3.86	3.86	20.40	20.40	20.28	20.28	44.81	44.81	73.95	73.95	
OMENTS	Live			-2.00	-2.00	-1.82	-1.82	-0.88	-0.88	-0.90	-0.90	0.42	0.42	2.51	2.51	2.50	2.50	5.42	5.42	9.11	9.11	
UNFACTORED MOMENTS	Floor	Finishes		-2.00	-2.00	-1.82	-1.82	-0.88	-0.88	-0.90	-0.90	0.42	0.42	2.51	2.51	2.50	2.50	5.42	5.42	9.11	9.11	
UNFAC ⁻	Dead			-7.21	-7.21	-6.13	-6.13	-3.26	-3.26	-3.34	-3.34	1.73	1.73	8.58	8.58 9	8.52	8.52	19.03	19.03	31.08	31.08	
	1			MAX	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	WIN									
	CASE	Distance		-		1.5		m		0		1.5		e		0		1.5		m		
	LOAD CASE	Member No. I		8						204						215						

																					_
	Area of Tension Steel Required cm ²	5.94	5.94	5.17	5.17	2.65	2.65		2.72	2.72	1.36	1.36	7.21	7.21	7.17	71.7	15.93	15.93	26.49	26.49	
	Xu/d Achieved	0.01	0.01	0.01	0.01	0.00	0.00		0.00	0.00	0.0	0.00	0.01	0.01	0.01	0.01	0.03	0.03	0.04	0.04	
	Shear Reinf. Xu/d Required Achieved cm ²	0.069 0.744 Not Required	0.75	0.75		0.91	0.91	2.26	2.26	2.25	2.25	3.31	3.31	3.46	3.46	3.83	3.83				
	d1	0.744	0.744	0.744	0.744	0.744	0.744		0.744	0.744	0.744	0.744	0.744	0.744	0.744	0.744	0.744	0.744	0.744	0.744	
	b1	0.069	0.069	0.069	0.069	0.069 0.744	0.069 0.744		0.069 0.744	0.069 0.744	0.069 0.744	0.069 0.744	0.069 0.744	0.069 0.744	0.069 0.744	0.069 0.744	0.069 0.744	0.069 0.744	0.069	0.069 0.744	
	Permi- ssible Shear Stress	56.06	56.06	53.12	53.12	39.82	39.82		40.35	40.35	30.60	30.60	60.83	60.83	60.83	60.83	83.64	83.64	99.84	99.84	
	% Tensile Reinf.	0.62	0.62	0.54	0.54	0.27	0.27		0.28	0.28	0.14	0.14	0.75	0.75	0.74	0.74	1.65	1.65	2.75	2.75	
	Shear stress	2.0	2.0	32.0	32.0	61.9	61.9		67.3	67.3	97.2	97.2	127.2	127.2	158.4	158.4	185.6	185.6	212.8	212.8	
	Effective Depth	0.77	0.77	0.77	0.77	0.77	220		0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	
Total Shear/ Moment	Bending moment	16.82	16.82	14.66	14.66	7.53	7.63		771	7.71	3.86	3.86	20.40	20.40	20.28	20.28	44.81	44.81	73.95	73.95	
Total Mor	Shear	0.20	0.2	Э.09	90.C	5.97	5.97	L	6.50	6.50	88. 6	9.38	12.27	12.27	15.29	15.29	17.91	17.91	20.54	20.54	_
Moment ion	Bending moment	0.0	0.0	0.0	0.0	0 0 0	00/0		0,00	0,00	80.0	0.0	0.00	0.0	0.00	0.0	0.0	0.0	0.0	0.0	
Bending of Tors	Shear	0.0	8.	0.0	0.0	80	0.00	Ţ	0:00	0.00	0.0	0.0	0.00	0.0	0.00	0.0	0.0	0.0	0.0	0.0	
alent Shear/Bending Mo due to Effect of Torsion	Breadth of the Member	0.125	0.125	0.125	0.125	0.125	0.125 /		0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	
Equivalent Shear/Bending Moment due to Effect of Torsion	Total Depth of the Member	0.0	0.80	0.80	0.80	0.80	0.80		0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	
Factored Shear	Total Shear	-0.20	-0.20	-3.09	-3.09	-5.97	-5.97		-6.50	-6.50	-9.38	-9.38	-12.27	-12.27	-15.29	-15.29	-17.91	-17.91	-20.54	-20.54	
	Live Load	0.0	8.0	-0.37	-0.37	-0.77	-0.77		-0.74	-0.74	-1.14	-1.14	-1.54	-1.54	-1.81	-1.81	-2.21	-2.21	-2.61	-2.61	
UNFACTORED SHEAR	Floor Finish- es	0.03	0.03	-0.37	-0.37	-0.77	-0.77		-0.74	-0.74	-1.14	-1.14	-1.54	-1.54	-1.81	-1.81	-2.21	-2.21	-2.61	-2.61	
UN UN	Dead Load	-0.19	-0.19	-1.32	-1.32	-2.44	-2.44		-2.85	-2.85	-3.97	-3.97	-5.10	-5.10	-6.57	-6.57	-7.52	-7.52	-8.47	-8.47	
Factored Moment	Total Torsion	80	0.0	0.0	0.0	0.0	0.0		0.00		0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	
	Live Load	80	0.0	0.0	0.0	0.0	0.0		0.00	0.00	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.00	0.0	0.0	
UNFACTORED TORSION	Floor Finish- es	0.0	0.0	0.0	0.0	0.00	0.00		0.00	0.00	0.0	0.00	0.00	8.0	0.0	0.00	0.00	0.00	0.00	0.00	
ЗЙ П	Dead Load	0.00	0.0	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.00	0.00	0.00	0.00	0.00	

Check for	Deflection	<u>1</u>							
Calculatio	n of Effectiv	<u>e Moment of</u>	Inertia as j	<u>per IS:456 A</u>	<u>nnex C</u>				
1	= _		lr						
l _{eff}		1.2 - (Mr/N	/) (Z/d) (1->	(/d) (bw/b)	-				
		· · · ·	<u> </u>	· · · ·					
l _{eff}	is the effec	tive moment	t of inertia f	or the entire	Beam or S	Slab in the d	irection of e	effective spa	an
lr	is the mon	nent of inertia	a of the cra	cked sectio	n				
Mr	is the crac	king momen	t, equal to	(For lgr)/Yt					
	Where								
	Fcr	is the modu	ilus of ruptu	ire of concre	ete = 0.7 √	Fck			
	[Clause 6.3	2.2 of IS 456	: 2000 als	o reiterated	in Example	e 12 of SP 1	6 :1980 <i>(</i> Te	onth reprint .	June 1997
	lgr					neglecting tl			
	Yt					section to t			sion
					0				
М	is the max	imum mome	ent under se	ervice loads					
Z	is the lever	r arm							
d	is the effec								
х		h of the neut	tral axis						
bw	is the brea	dth of the we	eb						
b	is the brea	dth of the co	mpression	face					
Ec		ulus of elast) √Fck				
		2.3.1 of IS 4	-						
Es		ulus of elast			mm^2	1			
LS						42 600 4	і с. 4000	and the second sector	
		5.3 of IS 456	: 2000 als	o reiterated	in Example	e 12 lbt SP 1	6 :1980 (Te	nth reprint .	June 1997)
m	modular ra	tio = Es/Ec							
Note :	for the defl	ection check	of the elek	o hoth huur	and by are to	likon oo 1m			
NULE .	Ior the deli	ection check	COLLINE STAL	JS DULII DW a	and blare ta	aken as im			
Chook for	 Deflection /	L Nong Lx Dire	otion						
CHECK IOF		NONG EX DIR	<u>schon</u>						
lr	=	9.790E-03							
Mr	=	71.387263							
Fcr	=	451.57							
lgr	=	6.323E-02							
Yt	=	0.3232-02							
M	=	57.38							
Z	=	0.7611							
 d	=	0.7720							
x	=	0.0338							
bw	=	0.0330							
b	=	3.000							
Ec	=	31622.78							
Es	=	200000							
m	=	6.3245553							
CG cracke		=	0.1185	m					
			0.1100						
1.11	_								
l _{eff}	=	8.636E-03							
l _r	≤	l _{eff}	<u> </u>	lgr					
Governing	value of l _{eff}		=	6.323E-02					

<u>Maximun</u>	Deflection	n with Gros	s M.O.I. of	the Eleme	ent (i.e. gro	oss section,	neglecting	the reinfo	rcement
Deflection	due to Dea	d Load							
	nt of the Sla	b			=	4.4040			
Floor Finis					=	1.2650			
Partition V	Vall/ any otł	her Concenti	rated Load		=	0.0000	mm		
	due to Live				=	1.2650			
		ent part of Li				lects	0.7		
Refer 35.4	1.1 page 11.	4 of SP :-19	83 First Rej	print Decerr	nber 1985)				
Total Char	 + Tarma Dafle	nation (with)	L Croco M O	D.	=	6 0240			
i otal Shor	t Term Delle	ection (with I	Gross IVI. O.	.1)	-	6.9340	mm		
Addition V	l /oluo.of.Sho	irt Term Defl	oction		=	6.93	mm		
	Calculated				-	0.53	11111		
(vviti) ieli		above)							
)eflectior	n due to Sl	<u>nrinkage</u>							
a _{cs}	=	$K_3 \psi_{cs} L^2$	=	2.50	mm				
<3	=	is a consta	nt dependin	a upon the	support cor	ndition =	0.063	for fully co	ntinuous
v Vos	=	K ₄ ε _{cs} /D	=	9.91E-05			2.000		
•	-	r4 ε _{cs} /υ	-	9.91E-00					
vhere	12	=	0.70/04.0-		for 0.25 < 1	 Pt-Pc < 1.0			
	K4	-	0.72(Pt-Po						
		and	0.65(Pt-Pc		for Pt-Pc >	1.0			
	Pt	=	0.134692						
	Pc	=		(effect igno	red if any)				
	K4	=	0.264243						
	Ecs	=	0.0003						
	D	=	0.8						
_	=	20.000	m	(Effective s	pan consid	ered)			
						, 			
Deflection	n due to Cr	reep							
Elasticity	, modulus of	concrete for	creep effec	ts.	12162.61	mpa			
Age at loa		=		days					
		e following i			values are	not allowed i	n the and w	/ill cause e	rrors)
		oefficient	_						,
⁷ days	2	2.2							
28 days	1	.6							
1year	1	.1							
Deflection	due to cree	ib I	=	10.11	mm				
Fotal Defle	ction includ	ing all effect	ts		=	19.54	mm		
	r Provided it				=	0.00	mm		
		ncluding all e	effects		=	19.54	mm		
Permissibl	le limit for d	eflection			=	20.00	mm	OK	
		uding all eff		erection of	=	13.87	mm		
Jarutions a	aug abblicat	tion of finish	es						

calculation of cable forces				
				මිල
No of Prestressing Cables =		R		16
ioned Cables 4no.s 0.5 inch	dia Stands	4 05 Pre-tensione	Pre-tensioned Cables 0.5 inch dia Stands	<i>2</i> {
Type of Sheathing =		Oval Corrugated Sheet Metal Duct	uct)
X-sectional area of each cable, $A_s =$		3.948 cm ²		2
Modulus of elasticity of prestressing steel, E_s =	-	1.989E+07 t/m ²)
		(1.95x10 ⁵ MPa)		
Grade of concrete =	ſ	M- 40		
Modulus of elasticity of concrete, Ec =	0	3.677E +06 t/m ²		
Effective span =		20.000 m		
Wobble coefficient k =)			
Friction coefficient $\mu =$		0.2500		
Expected slip, s =		6.0 mm		
Half slip area (= 0.5 x A_s x E_s x s) =		23.56 tm		
Grip length inside the jack =		0.350 m		
Extra length of cable required for jack attachment =		0.750 m		
UTS of Cable = (Post-tensioned cables)		74.90 t		
Jacking End Force = (Post-tensioned cables)		75 % of UTS		
(Pre-tensioned cables)		75 % of UTS		
Duct Size =	×	20 mm		

c b a a a b (Vert) (Vert R) (Vert R) (Plan L) (m) (m) (m)	c b a H (Plan) (Plan R) (Left) (m) (m) (m) (m)	h3 H (Left) (Right) (m) (m)	h3 (Right) (m) (m)	m Stress- (Right) ing (m) stage
9.000 1.000 1.000	0.000 9.000 1.000 0.026	0.026 0.026	0.026 0.000	0.000 1
9.000 1.000 1.000	0.000 9.000 1.000 0.026			0.000 1
9.000 1.000 1.000	0.000 9.000 1.000 0.026			0.000 1
9.000 1.000	0.000 9.000 1.000 0.026			0.000 1
9.000 1.000	0.000 9.000 1.000 0.026			0.000
9.000 1.000	0.000 9.000 1.000 0.026	-+	-	0.000
9.000 1.000	0.000 9.000 1.000 0.026	\rightarrow	+	0.000
9.000 1.000	0.000 9.000 1.000 0.026	+	+	0.000
9.000 1.000	0.000 9.000 1.000 0.026	+	+	0.000
9.000 1.000	0.000 9.000 1.000 0.026	\dashv	\dashv	0.000
9.000 1.000	0.000 9.000 1.000 0.026	-	-	0.000
9.000 1.000	0.000 9.000 1.000 0.026	_	_	0.000
9.000	0.000 9.000 1.000 0.026			0.000
9.000 1.000	0.000 9.000 1.000 0.026	\rightarrow	\rightarrow	0.000
9.000 1.000	0.000 9.000 1.000 0.026	\dashv	\neg	0.000
9.000 1.000	0.000 9.000 1.000 0.026	+	+	0.000
9.000 1.000	0.000 9.000 1.000 0.026	+	+	0.000
9.000 1.000	0.000 9.000 1.000 0.026	+	+	0.000
9.000 1.000	0.000 9.000 1.000 0.026	+	+	0.000
6.000 1.000		+	+	
0.000 6.000 1.000 1.000	6.000 0.000 6.000 1.000 0.026 0 6.000 0.000 6.000 1.000 0.026 0	0.026 0.026		
6.000 1.000		+	+	0.000
0.000 6.000 1.000 1.000	6.000 0.000 6.000 1.000 0.026 0	0.026 0.026	0.026 0.000	0.000 1
6.000 1.000	0.000 6.000 1.000 0.026		_	0.000 1
6.000 1.000	0.000 6.000 1.000 0.026			0.000
6.000	6.000 1.000 0.026	0.026 0.026	0.026 0.000	0.000 1
6.000 1.000	0.000 6.000 1.000 0.026			0.000 1
6.000 1.000	0.000 6.000 1.000 0.026			0.000 1
6.000 1.000	0.000 6.000 1.000 0.026			0.000 1
6.000 1.000	0.000 6.000 1.000 0.026	+	+	0.000
2.000 1.000	0.000 9.000 1.000 0.310	+	+	0.000
0.200 2.200 0.200 0.500				0.000

Dist. of Hand end of h3 cable (measur end of ed from	0.000 Bottom 0.000 Bottom 0.000 Bottom	++	+	0.000 Bottom 0.000 Bottom	\vdash	+	U.UU Bottom	+	0.000 Bottom			+	+	+	+	-3.000 Bottom	+	+		+	-3.000 Bottom	-3.000 Bottom	-3.000 Bottom	-3.000 Bottom		3.000 Bottom	7 DDD Ton
Dist.of Di start of er cable (Cat start of er the str. the		++	+		$\left \right $			+	0.000 0.		0.000	+	+	+	+	+	+	-	+	+	3.000				9.000 3.000	\dashv	0 000 1.17
Stress- ing End	Both Both	Both Both	Both	Both Both	Both	Both	Both	Both	1 Both	Both	Both	Both	Both	Both	Both	Both	Both	: Both		Both	Both	Both	Both	Both	Both	Both	richt
Cable Length from Plan Prof.	20.000 20.000 20.000	20.000	20.000	20.000 20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	14.000	14.000	14.000	14.000	14.UUU 14.000	14 000	14.000	14.000	14.000	14.000	14.000	20.000	
Cable Length from Vert. Prof.	20.000 20.000 20.000	20.000	20.000	20.000 20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	14.000	14.000	14.000	14.000	14.000	14 000	14.000	14.000	14.000	14.000	14.000	20.000	
Tens- ioning Type	pre pre	pre pre	pre	pre pre	pre	pre	pre	pre	pre	pre	pre	pre	pre	pre	pre	pre	pre	pre	pre	pre Dre	pre	pre	pre	pre	pre	post	noot

ile in Plan)																																			
Critical Sections of vertical profile (Including the Effect of Horizontal Profile/ Bending of Cable in Plan)	 																																		
Profile/ B	Total	Length	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	14.000	14.000	14.000	14.000	14.000	14.000	14.000	14.000	14.000	14.000	14.000	14.000	20.026	3.006
Horizontal	nd	Sec 1-2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.008	0.200
Effect of I	m Right E	Sec 2-3	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	2.005	0.200
uding the	Lengths Measured From Right End	Sec 3-4	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0:000	0:000	0.000	000.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	14.000	0.200
ofile (Inclu	ngths Mea	Sec 4-5	9.000	9.000	9.000	9.000	9.000	0000'6	9.000	9.000	9.000	9.000	9.000	9.000	9.000	00016	9.000	9:000	9.000	9.000	9.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	000.9	6.000	6.000	2.005	2.205
vertical pr	Le	Sec 5-6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		0.201
ctions of	Total	Length	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20,000	20.000	20.000	20.000	14.000	14.000	14.000	14.000	14.000	14.000	14.000	14.000	14.000	14.000	14.000	14.000	20.026	3.006
Critical Se	pu	Sec 5-6	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.008	0.201
Between (om Left Ei	Sec 4-5	9.000 9.000	9.000	9.000	9.000	9.000	0000.6	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000 6	6.000	6.000	6.000	6.000	6.000	2.005	2.205
of Cable E	asured Fr	Sec 3-4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	14.000	0.200
Calculation of Total Length of Cable Between (Lengths Measured From Left EI	Sec 2-3	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	2.005	0.200
on of Tota	Ľ	Sec 1-2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.008	0.200
Calculati	CABLE		÷	2	ю	4	5	ى	7	ω	6	10	11	12	13	14	15	16	17	18	19	20	21	22	8	24	25	8	27	8	53	8	31	32	ន

en Critical Sections of vertical profile (Including the Effect of Horizontal Profile/ Bending of Cable in Plan)																																			
ng of Cab																																			
ile/ Bendi																																			
ontal Prof																																			
t of Horiz	Total 6	(deg)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	14.137	6.364
the Effec	pu	Sec 1-2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0:000	0:000	0:000	0:000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Including	m Right E	Sec 2-3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0:000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	7.069	0.000
al profile (sured Fro	Sec 3-4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0:000	0:000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
s of vertic	Lengths Measured From Right End	Sec 4-5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	7.069	6.364
l Section:	Lei	Sec 5-6	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
en Critica	Total 8	(deg)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	00000	0000	00000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	14.137	6.364
ile Betwei	q	Sec 5-6	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.00	0.000
y the Cat	om Left En	Sec 4-5	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	7.069	6.364
Calculation of Total Angle Traversed by the Cable Betwe	Lengths Measured From Left End	Sec 3-4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.000	0.000
I Angle Tr	ngths Mea	Sec 2-3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00	7.069	0.000
on of Tota	Le	Sec 1-2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Calculatic	CABLE		÷	2	e	4	5	ى	7	ω	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	õ	33	ន

	111	es in Cable Atter Friction Loss	20							
Friction Wobble Typ Coeff. m Coeff. K	Wobble Coeff. K	Typ	Type of Cable	Area of Cable cm ²	Tensile Strength N/mm ²	UTS of Cable	Jacking Force % of UTS	Jacking force (1)	Expect- ed slip, S (in mm)	Half slip area (0.5xAsx EsxS)
0.2500 0.0046	+		1 05	0.987	1860	18.73	75.00	14.04	0	0.00
0.2500 0.0046			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
0.2500 0.0046	\vdash		1 05	0.987	1860	18.73	75.00	14.04	0	0.00
			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
2500 0.0046			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
0.2500 0.0046	_		1 05	0.987	1860	18.73	75.00	14.04	0	0.00
			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
_	_		1 05	0.987	1860	18.73	75.00	14.04	0	0.00
0.2500 0.0046			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
2500 0.0046			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
-	-		1 05	0.987	1860	-18.73	75.00	14.04	0	0.00
			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
			1 05	0.987	1860	18.73	75.00	14.04	0	0.0
			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
-	-	- 1	1 05	0.987	1860	18.73	75.00	14.04	0	0.0
		I	1 05	0.987	1860	18.73	75.00	14.04	0	0.0
0.2500 0.0046	\rightarrow	I	105	0.987	1860	18.73	75.00	14.04	0	0.0
-	-	- 1	1 05	0.987	1860	18.73	75.00	14.04	0	0.0
-	-	I	1 05	0.987	1860	18.73	75.00	14.04	0	0.0
_		I	1 05	0.987	1860	18.73	75.00	14.04	0	0.0
			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
2500 0.0046			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
0.2500 0.0046			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
0.2500 0.0046			1 05	0.987	1860	18.73	75.00	14.04	0	0.00
\vdash	\vdash		1 05	0.987	1860	18.73	75.00	14.04	0	0.00
\vdash	\vdash			7.896	1860	149.80	75.00	112.35	ى	47.12
0.2500 0.0046			805	7 896	1860	149.80	75 NN	112.35	ڡ	47.12

Section												
Calculati	Calculation of Forces in Cabl	ole After Friction and Slip Loss	nd Slip Los	S								
Distance	Distance of section from start	rt of structure under consideration =	er conside	ration =		10.000 m	ε					
CABLE	Distance of Section From Start of Cable	Distance of Section From End of Cable	Column 4	Column 5	Column 6	Column 7	Column 8	Column 10	Column 11	Column 12	Column 13	Stress- ing Stage
-	10.000	10.000	10.000	0.00	0.00	0.0	0.0	14.04	0.03	0.000	0.03	-
2	10.000	10.000	10.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	-
ю	10.000	10.000	10.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	1
4	10.000	10.000	10.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	1
S	10.000	10.000	10.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	+
9	10.000	10.000	10.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	1
7	10.000	10.000	10.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	1
ω	10.000	10.000	10.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	1
б	10.000	10.000	10.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	.
10	10.000	10.000	10.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	-
11	10.000	10.000	10.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	-
12	10.000	10.000	10.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	1
13	10.000	10.000	10.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	+
14	10.000	10.000	10.000	0.00	0.00	0:00	000	14.04	0.03	0.000	0.03	1
15	10.000	10.000	10.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	-
16	10.000	10.000	10.000	0.00	0.00	0:00	0.00	14.04	0.03	0.000	0.03	1
17	10.000	10.000	10.000	0.00	0.00	00:0	0.00	14.04	0.03	0.000	0.03	1
18	10.000	10.000	10.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	+
19	10.000	10.000	10.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	-
2	7.000	7.000	7.000	0.0	0.0	0.0	0.0	14.04	0.03	0.000	0.03	-
21	7.000	7.000	7.000	0.0	0.0	0.0	0.0	14.04	0.03	0.000	0.03	-
2	7.000	7.000	7.000	0.00	0.0	0.0	0.0	14.04	0.03	0.000	0.03	-
8	7.000	7.000	7.000	0.0	0.0	0.0	0.0	14.04	0.0	0.000	0.0	-
24	7.000	7.000	7.000	0.0	0.0	0.0	0.0	14.04	0.03	0.000	0.03	÷
25	7.000	7.000	7.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	-
26	7.000	7.000	7.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	.
27	7.000	7.000	7.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	1
8	7.000	7.000	7.000	0.00	0.00	0.0	0.0	14.04	0.03	0.000	0.03	-
59	7.000	7.000	7.000	0.00	0.00	0.00	0.00	14.04	0.03	0.000	0.03	-
ස	7.000	7.000	7.000	0.0	0.0	0.0	0.0	14.04	0.03	0.000	0.03	-
μ	7.000	7.000	7.000	0.0	0.0	8.0	0.0	14.04	0.03	0.000	0.03	.
8	7.000	13.000	7.013	7.07	0.0	8	7.07	102.61	9.0	000.0	90.0	÷
R	10.000	-7.000	10.049	6.36	0.00	0.00	6.36	0.0	0.97	0.000	0.97	2

CABLE					Lenç	Lengths Measured From Right End	sured Fro	m Right B	End			
	<u> </u>	θ Ιοτίτοι	P Cos8	P Sin 0	Column	Column	Column	Column	Column	Column	Column	
	14.04	0.00	14.04	0.0	0.52	<u>- 8</u>	0.21	0.18	2.53	14.04	2.53	
2	14.04	00.0	14.04	0.0	0.52	0.0	0.21	0.18	2.53	28.09	5.06	
с Г	14.04	0.00	14.04	0.00	0.52	0.03	0.21	0.18	2.53	42.13	7.58	
4	14.04	0.00	14.04	0.00	0.52	0.03	0.21	0.18	2.53	56.18	10.11	
5	14.04	0.00	14.04	0.00	0.52	0.03	0.21	0.18	2.53	70.22	12.64	
9	14.04	00.0	14.04	0.00	0.52	0.03	0.21	0.18	2.53	84.26	15.17	
7	14.04	00.0	14.04	0.00	0.52	0.03	0.21	0.18	2.53	98.31	17.70	
	14.04	00.0	14.04	0.00	0.52	0.03	0.21	0.18	2.53	112.35	20.22	
6	14.04	0.00	14.04	0.00	0.52	0.03	0.21	0.18	2.53	126.40	22.75	
10	14.04	0.00	14.04	0.00	0.52	0.03	0.21	0.18	2.53	140.44	25.28	
11	14.04	00.0	14.04	8.0	0.52	0.0	0.21	0.18	2.53	154.48	27.81	
12	14.04	00.0	14.04	0.00	0.52	0.03	0.21	0.18	2.53	168.53	30.34	
13	14.04	00.0	14.04	0.00	0.52	0.03	0.21	0.18	2.53	182.57	32.86	
14	14.04	00.0	14.04	0.0	0.52	0.03	0.21	0.18	2.53	196.62	35.39	
15	14.04	00.0	14.04	000	0.52	0.03	0.21	0.48	2.53	210.66	37.92	
16	14.04	00.0	14.04	980	0.52	0.03	0.21	0.1 8	2.53	224.70	40.45	
17	14.04	00.00	14.04	0010	0.62	0.03	0.21	0.18	2.53	238.75	42.97	
18	14.04	0.00	14.04	0.00	0.52	0:03	0.21	0.18	2.53	252.79	45.50	
19	14.04	0.00	14.04	0.0	0.52	80:0	0.21	0.18	2.53	266.84	48.03	
20	14.04	0.00	14.04	0.00	0.52	0.03	0.21	0.18	2.53	280.88	50.56	
21	14.04	0.00	14.04	0.00	0.52	0.03	0.21	0.18	2.53	294.92	53.09	
22	14.04	0.00	14.04	0.00	0.52	0.03	0.21	0.18	2.53	308.97	55.61	
23	14.04	0.00	14.04	0.00	0.52	0.03	0.21	0.18	2.53	323.01	58.14	
24	14.04	0.00	14.04	0.0	0.52	0.03	0.21	0.18	2.53	337.06	60.67	
25	14.04	0.00	14.04	0.00	0.52	0.03	0.21	0.18	2.53	351.10	63.20	
26	14.04	0.00	14.04	0.0	0.52	0.03	0.21	0.18	2.53	365.14	65.73	
27	14.04	0.00	14.04	0.0	0.52	0.0	0.21	0.18	2.53	379.19	68.25	
28	14.04	0.00	14.04	0.00	0.52	0.03	0.21	0.18	2.53	393.23	70.78	
29	14.04	0.00	14.04	0.00	0.52	0.03	0.21	0.18	2.53	407.28	73.31	
30	14.04	0.00	14.04	0.00	0.52	0.03	0.21	0.18	2.53	421.32	75.84	
31	14.04	0.00	14.04	0.00	0.52	0.03	0.21	0.18	2.53	435.36	78.37	
32	102.61	0.00	102.61	8.0	0.52	9.0	0.21	0.14	14.78	537.97	93.14	
R	80	6.39	0.0	8.0	0.52	-0.45	0.21	0.65	0.00	537.97	93.14	
			537.97						93.142			
			0.0						0.0			
			0.0						0.0			

Relaxation Model 2	As per IRC:18-2000	Initial Stress Relaxation Loss N/mm ²	0.5fp 0 %	0.6fp 1.25 %	0.7fp 2.5 %	0.8fp 4.5 %	Values are given at 1000hours at 20°C	It is assumed to follow same pattern upto 1000h Values shall be taken as 3 times at infinity			
Relaxation Model 1	As per IS:1343-1980	ress Relaxation Loss N/mm ²	0	35	20	90	Values are given at 1000hours at 27°C	umed to follow same pattern upto 1000	as given in IRC:18 Model i.e. in the % sequence	specified with time	
	As per t	Initial Stress	0.5fp	0.6fp	0.7fp	0.8fp	Values (It is ass	as give		
Shrinkage Model 2	As per IRC:18-2000	Residual Shrinkage Strain	Days Residual Strain	4.3E-04	4.3E-04	3.5E-04	3.0E-04	2.5E-04	2.0E-04	1.9E-04	1.5E-04
	As pe	Resid	Day	rain 0	3	7	10	14	21	0(t+2)) 28	s 90
Shrinkage Model 1	08	le Strain	0.0003	Residual Strain	0.0003	0.00015	7.5E-05	0		.0002/(Log10(t+2))	ncrete in day
Shrinka	As per IS:1343-1980	Residual Shrinkage Strain	pre-tensioned =	Days % loss	0	30 50	180 75	> 180 100		post-tensioned =	where: t age of concrete in days

(000)	Creep Strain	per 10mpa	9.4E-04	8.3E-04	7.2E-04	6.1E-04	5.6E-04	5.1E-04	4.4E-04	4.0E-04	3.6E-04
IRC:18-2		ssing									
Creep Model 2 (As per IRC:18-2000)		me of stre									
ep Model		te at the ti									
Crei		%Maturity of concrete at the time of stressing	% of fck	% of fck	% of fck	% of fck	% of fck	% of fck	% of fck	% of fck	% of fck
		%Maturity	40	50	60	20	75	80	90	100	110
			Creep Coefficient								
Creep Model 1		80	Creep C	2.2	1.6	1.1					
Creep		As per IS:1343-1980	-oading	7 days	28 days	365 days	% loss	0	50	75	100
		As per l	Age at Loading	2	28	365	Days	0	30	180	> 180
0											
: with Time											
Variation of Relaxation Loss with Time											
1 of Relax		Hours % Loss	15	25	35	55	65	85	100		
Variatior		Hours	-	5	20	100	200	500	1000		

Ction 1 Calculation of Elastic Shortening Loss Age at Stage 1 Stressing = 7 days Stage 182 Age at Stage 1 Stressing = 7 days Min 59.02 Age at Stage 2 Stressing = 10000 days Min 59.02 Age at Stage 2 Stressing = 10000 days Min 59.02 Age at Stage 2 Stressing = 10000 days Min 59.02 Age at Stage 2 Stressing = 10000 days Min 0.0155 %maturity of concrete at stage 1 = 100 % Min 0.206 %maturity of concrete at stage 2 = 100 % Min 0.0755 stmospheric condition 4n Min 39.18 Maturity of concrete at stage 4 = 100 % Min 39.18 Creep Model = 1 100 % Min 39.18 0.0265 atmospheric condition 4n Min 39.18 0.0255 0.00697 4n Min 0.0265 0.00264 4n 4n Min 0.0265 0.00265 4n 4n Min 0.0255 0.00265 4n 4n Min 0.0265 4n 4n 4n Min 0.0265 4n 4n Min
2 Calculati 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

	sum Pcosð x ecc.	2.13	4.25	6.38	8.50	10.63	12.76	14.88	17.01	19.13	21.26	23.38	25.51	27.64	29.76	31.89	34.01	36.14	38.27	40.39	42.52	44.64	46.77	48.89	51.02	53.15	55.27	57.40	59.52	61.65	63.78	65.90	79.30	79.30	
	sum Pcosð	11.81	23.62	35.43	47.24	59.05	70.86	82.67	94.48	106.29	118.10	129.91	141.72	153.53	165.34	177.15	188.96	200.77	212.58	224.39	236.20	248.01	259.82	271.63	283.45	295.26	307.07	318.88	330.69	342.50	354.31	366.12	459.17	459.17	
	Pcos 0 x ecc.	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13	2.13						2.13		2.13							2.13	13.40	0.0	79.30
	Pcosð	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	11.81	93.05	0.0	459.17
	column 34	0:50	0:50	0:50	0.50	0.50	0.50	0.50	0:50	0.50	0:50	0.50	0.50	0:50	0:50	0.50	0:50	0:50	0:50	0.50	0:50	0.50	0.50	0.50	0.50	0.50	0.50	0:50	0:50	0:50	0.50	0.50	3.46	0.0	
	column 33	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	12.31	96.52	8.0	478.14
	column 32	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	09.0	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	4.57	8.0	
	column 31	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1454	1390	0	
	column 30	1500.1																																	
	column 29	640.32																																	
	column 28	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.82	2.32	2:32	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32	2.32	14.56		86.58
	column 27		12.91							12.91														12.91						12.91		12.91	<i>~</i>		501.24
	column 26																																1.522	0000	
	column 25	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	13.18	102.61	0.0	511.28
	column 24	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861	0.861		0.00	
ge 1	column 23	31.8	31.8 31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8 9	31.8 9	31.8	31.8 9	31.8	31.8	31.8	31.8	31.8	31.8	31.8	50.9	61.1	61.1	61.1	61.1	61.1	61.1	61.1	369.1	0.0	1578.8
Stage	column 22	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8 8	31.8	31.8 9	31.8	31.8	31.8	31.8 9	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	53.7	65.3	65.3	65.3	65.3	65.3	65.3	65.3	428.0	0.0	1670.1
	column 21	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8 8	31.8	31.8 9	31.8	31.8	31.8	31.8 9	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	2.2	-13.6	-13.6	-13.6	-13.6	-13.6	-13.6	-13.6	-32.8	0.0	605.8
CABLE		-	5	m	4	ហ	ى	7	ω	б	6	11	12	ά	14	15	9	17	6	19	2	21	22	33	24	52	26	27	8	23	8	ы Ю	8	ន	

	sum Pcosð x ecc.	1.93	3.86	5.79	7.72	9.65	11.58	13.51	15.44	17.37	19.30	21.23	23.16	25.09	27.02	28.95	88. 88. 198	32.80	34.73	36.66	38.59 38	40.52	42.45	44.38	46.31	48.24	50.17	52.10	54.03	55.96	57.89	59.82	72.04	69.74	
	sum Pcos <i>θ</i>	10.72	21.44	32.16	42.88	53.60	64.32	75.04	85.76	96.49	107.21	117.93	128.65	139.37	150.09	160.81	171.53	182.25	192.97	203.69	214.41	225.13	235.85	246.57	257.29	268.01	278.73	289.46	300.18	310.90	321.62	332.34	417.20	413.67	
	Pcosθ x ecc.	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93																					69.74
	Ρcosθ	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	10.72	84.86	-3.53	413.67
	column 34	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.29	0.00	
	column column 32 33	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	10.75	85.15	-3.53	414.75
		0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	7.20	0.00	
	column column 30 31	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1219	1179	0	
	column 30	1247.7																																	
	column column 28 29	713.33																																	
		2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10	2.10			
	column column 26 27	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	11.68	92.35	-3.53	450.80
	column 26	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	0.314	2.012	3.534	
	column 25	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	11.99	94.36	0.00	466.08
	column 24	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-0.181	-1.309	0.000	
Je 2	column 23	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-338.6	-306.6	0.0	
Stage :	column 22	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	-361.7	0.0	
	column 21	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	0.0	
CABLE		1	2	ო	4	ъ	ى	7	ω	6	10	11	12	t 1	14	15	16	17	8	19	8	21	22	23	24	25	28	27	8	8	ខ	91 10	32	Ж	

<u>Summary</u>	of Stress	<u>Check</u>								
<u>Stage 1</u>										
<u>otage i</u>										
1		is cast on Abutments	the casting	g bed with	prestressin	g steel stra	ands pre-ten	sione	d against	
2	The per-te the concre		ndons cast	into the co	oncrete are	released t	o transfer tł	ne pre	estress to	
3			tendons m	ay be stres	sed while t	he girder s	till rests on t	he ca	isting bed	
NL I	0 0									
Note:	Age of cor	ncrete at the	e time of tra	inster of pre	STRESS IS TA	iken as 7 d	ays			
Bendina m	ioment at t	he section o	considered	due to selfr	weight of th	e airder		=	59.02	tm
		ce applied i				- <u>j</u>		=	547.72	
			_							
<u>Stress Che</u>	<u>eck After F</u>	riction and \$	<u> Slip Loss</u>							
Total pract	roccing for	l ce left in the	otropod .		friction on	l olin looo		=	537.97	+
		ue to this p						-	93.14	
							the section		00.14	
···· J·····					J					
The stress	generated	at top fibre	of the prec	ast section				=	605.80	t/m ²
	-	at bottom f						=	1670.10	t/m ²
						1				
<u>Stress Ch</u>	<u>eck After E</u>	lastic Short	ening Loss	ac	le-					
Total prest	ressing for	ce left in the	e stressed i	cables after	elastic sho	ortening los	s	=	511.28	t
		ue to this p						=	88.34	tm
The girder	will Hogg u	ip so that th	e bending i	effect of the	girder is ge	enerated at	the section			
Th+			-646	4 4:				_	CO4 CO	412
	-	at top fibre						=	631.60 1546.01	-
The stress	generated	at bottom f	ibre of the p	precast sec	tion			-	1546.01	Um-
Stress Chr	i eck After S	⊥ hrinkage Lo	ISS							
0										
Total prest	ressing for	ce left in the	e stressed i	cables after	shrinkage	loss		=	501.24	t
		ue to this p						=	86.58	tm
The girder	will Hogg u	p so that th	e bending	effect of the	girder is ge	enerated at	the section			
TI ·									0.40.00	., 2
	-	at top fibre						=	640.32	
The stress	generated	at bottom f	ibre of the p	precast sec	tion			=	1500.06	t/m²
Stress Che	eck After C	reep Loss								
Tatal	na a aire ar fa a	الدينة المعارية		ablas -A				_	470.4.4	
		ce left in the ue to this p						=	478.14 82.59	
							the section	-	02.09	un
the glider		p oo mar m	le benuing i		gnach is gr					
The stress	generated	at top fibre	of the prec	ast section				=	659.68	t/m ²
	-	at bottom f						=	1394.86	
	30									

Stress Chec	k After Relaxation Loss			
-			150.17	
	ssing force left in the stressed cables after relaxation loss	=	459.17	
	g effect due to this prestressing force ΣPCosθ x eccentricity Il Hogg up so that the bending effect of the girder is generated at the section	=	79.30	tm
The girder wi	I Hogy up so that the bending elect of the grider is generated at the section			
The stress a	enerated at top fibre of the precast section	=	675.77	t/m ²
	enerated at bottom fibre of the precast section	-	1308.36	
rne sness g		-	1000.00	UIII
Stage 2				
1 Tł	he girder is lifted up from the casting bed and transferred to staking yard whe	ere it i	rests over	
' st	acking padestals running perpendicular to it so that it spans between them			
S	ome post tensioning tendons may be stressed in the stacking yard			
Note: A	ge of concrete at the time of transfer of prestress is taken as 28 days			
Bonding mor	nent at the section considered due to self weight of the girder	=	59.02	tm
	ssing force applied in stage 1 and 2	-	660.07	
rotar prestre			000.01	
Stress Checl	k After Friction and Slip Loss			
Total prestre	ssing force left in the stressed cables after friction and slip loss	=	537.97	t
Total bending	g effect due to this prestressing force $\Sigma PCos\theta$ x eccentricity	=	93.14	tm
The girder wi	II Hogg up so that the bending effect of the girder is generated at the section			
The stress g	enerated at top fibre of the precast section	=	605.80	
The stress g	enerated at bottom fibre of the precast section	=	1670.10	t/m ²
Stress Checl	k After Elastic Shortening Loss			
T-4-1			400.00	
	ssing force left in the stressed cables after elastic shortening loss g effect due to this prestressing force ΣΡCosθ x eccentricity	=	466.08 80.50	
rotai bending	j ellect dde to this prestressing force ZPCoso x eccentricity	-	00.00	um
The stress o	enerated at top fibre of the precast section	=	669.94	t/m ²
_	enerated at bottom fibre of the precast section	=	1339.87	
rne stress g		_	1000.0r	Um
Stress Chec	k After Shrinkage Loss			
Total prestre	ssing force left in the stressed cables after shrinkage loss	=	450.80	t
Total bending	g effect due to this prestressing force $\Sigma PCos\theta$ x eccentricity	=	76.15	tm
_	enerated at top fibre of the precast section	=	713.33	
The stress g	enerated at bottom fibre of the precast section	=	1247.72	t/m ²
Stress Checl	k After Creep Loss			
Tatal	aning from 1.4 in the standard achieve Announce land	_	A4 A 75	
	ssing force left in the stressed cables after creep loss	=	414.75	
rotar bending	g effect due to this prestressing force ΣPCosθ x eccentricity	-	69.92	um
The stress av	enerated at top fibre of the precast section	=	743.51	t/m ²
_	enerated at top hore of the precast section	-	1083.56	
me stress g		-	1003.90	W111

<u>Stress Ch</u>	ieck After Re	laxation L	<u>oss</u>							
	tressing forc							=	413.67	
Total bend	ding effect du	e to this p	restressing	force ΣPC	os∂x eccei	ntricity		=	69.74	tm
The stress	s generated a	at ton fibre	of the prec	est section				=	744.37	t/m ²
	s generated a							=	1078.67	
THE SHES	s generateu a			piecasi sec				_	1070.07	UIII
<u>Stage 3</u>										
1	The girder i the structur		ted to its i	ntended de	stination or	n the site a	nd placed a	at its p	position in	
2	The remaini	- ing part of	the dead lo	oad is cast						
naet attai	ne anv etror			rete is tran mose there						
purpose o	ns any strer f stress chec Age of some	ngth for sti sk	ructura <mark>l pu</mark>	rpose there	fore the old	l section p	roperties wi			
	f stress chec Age of cond	ngth for sti sk srete at the	ructural pur e time of tra	rpose there ansfer of pre	fore the old stress is ta	l section p aken as 100	roperties wi) days	ll be	effective fo	
purpose o	f stress cheo	ngth for sti sk srete at the	ructural pur e time of tra	rpose there ansfer of pre	fore the old stress is ta	l section p aken as 100	roperties wi) days	ll be	effective fo	
purpose o Note:	f stress chec Age of cond	ngth for str sk crete at the pendent lo	ructural pur e time of tra sses have	rpose there ansfer of pre been assun	fore the old stress is ta ned to have	l section p aken as 100 completely	roperties wi) days	ll be	effective fo	or the
purpose o Note:	f stress chec Age of cond (all time de	ngth for str sk crete at the pendent lo	ructural pur e time of tra sses have	rpose there ansfer of pre been assun	fore the old stress is ta ned to have	l section p aken as 100 completely	roperties wi) days	ll be n stag	effective fo e 2)	or the
purpose o Note: Bending n	f stress chec Age of cond (all time de noment at th	ngth for sti ck pendent lo e section (ructural pur e time of tra sses have considered	nose there ansfer of pre been assun due to self	fore the old stress is ta ned to have	l section p aken as 100 completely	roperties wi) days	ll be n stag =	effective fo e 2) 39.18	tm
purpose o Note: Bending n additional	f stress chec Age of cond (all time de noment at the stress at the	ngth for str crete at the pendent lo e section o e top fibre o	ructural pur e time of tra sses have considered of new cast	ansfer of pre been assun due to self	fore the old stress is ta hed to have weight of th	l section p aken as 100 completely	roperties wi) days	ll be n stag = =	effective fr e 2) 39.18 0.00	tm t/m ²
purpose o Note: Bending n additional additional	f stress chec Age of cond (all time de noment at the stress at the stress at the	ngth for sti crete at the pendent lo e section o e top fibre o e interface	ructural put e time of tra sses have considered of new cast of new cast	nose there ansfer of pre been assun due to self t t and old se	fore the old stress is ta hed to have weight of th	l section p aken as 100 completely	roperties wi) days	n stag = = =	effective fr e 2) 39.18 0.00 703.23	tm t/m ² t/m ²
purpose o Note: Bending n additional additional	f stress chec Age of cond (all time de noment at the stress at the	ngth for sti crete at the pendent lo e section o e top fibre o e interface	ructural put e time of tra sses have considered of new cast of new cast	nose there ansfer of pre been assun due to self t t and old se	fore the old stress is ta hed to have weight of th	l section p aken as 100 completely	roperties wi) days	ll be n stag = =	effective fr e 2) 39.18 0.00	tm t/m ² t/m ²
purpose o Note: Bending r additional additional additional	f stress chec Age of cond (all time de noment at the stress at the stress at the stress at the	ngth for sti crete at the pendent lo e section o e top fibre e interface e bottom fil	ructural put e time of tra sses have considered of new cast of new cast bre of old s	nose there ansfer of pre been assun due to self t t and old se	fore the old stress is ta hed to have weight of th	l section p aken as 100 completely	roperties wi) days	n stag = = =	effective fr e 2) 39.18 0.00 703.23 -518.85	tm t/m ² t/m ² t
purpose o Note: Bending n additional additional Total stre:	f stress chec Age of cond (all time de noment at the stress at the stress at the	ngth for str crete at the pendent lo e section of e top fibre e top fibre e bottom fil fibre of ne	ructural put a time of tra sses have considered of new cast of new cast w cast	ansfer of pre been assun due to self t t and old se ection	fore the old estress is taned to have weight of the ection	l section p aken as 100 completely	roperties wi) days	II be n stag = = = =	effective fr e 2) 39.18 0.00 703.23	tm t/m ² t/m ² t/m ²
purpose o Note: Bending n additional additional additional Total stre: Total stre:	f stress check Age of cond (all time de noment at the stress at the stress at the stress at the stress at the	ngth for sti crete at the pendent lo e section o e top fibre e interface e bottom fil fibre of ne rface of ne	ructural put e time of tra sses have considered of new cast of new cast bre of old s w cast and	ansfer of pre been assun due to self t and old se ection	fore the old estress is taned to have weight of the ection	l section p aken as 100 completely	roperties wi) days	II be n stag = = = = =	effective fr e 2) 39.18 0.00 703.23 -518.85 0.00	tm t/m ² t/m ² t/m ²

_										
1 7	The new ca	ast concrete	e attains its	strength a	nd become	effective fo	r stresses (due to) further loa	ads
2 -	The floor is	cast over t	he slab							
Note: 7	Age of con	crete at the	time of tra	nsfer of pre	stress is ta	iken as mo	re than 100	days		
((all time de	pendent los	sses have b	been assum	ned to have	completely	occurred i	n stag	je 2)	
Bending mo	oment at th	e section c	onsidered	due to floor	load			=	10.36	tm
additional s	tress at the	e top fibre o	of new cast					=	88.20	
additional s					ection			=	74.49	t/m ²
additional s	tress at the	e bottom fib	ore of old se	ection 🖉				=	-115.55	t
						4				
Total stress	s at the top	fibre of nev	v cast	~ 5				=	88.20	t/m ²
Total stress	s at the inte	erface of ne	w cast and	old sectior	1			=	1522.09	t/m ²
Total stress	s at the bot	tom fibre of	old section	n				=	444.27	t
Bending mo	oment at th	e section c	onsidered	due to live l	oad			=	10.36	tm
additional s	tress at the	e top fibre o	of new cast					=	88.20	t/m ²
additional s	tress at the	e interface i	of new cast	and old se	ection			=	74.49	
additional s	tress at the	e bottom fib	ore of old se	ection				=	-115.55	t
Total stress	s at the top	fibre of nev	v cast					=	176.40	t/m ²
Total stress				old sectior	1			=	1596.580	
Total stress								=	328.72	

DESCRIPTION OF COLUMNS
Column 1 Length of cable from vertical profile consideration up to the desired section
Column 3 Horizontal projection of cable length from horizontal profile consideration at the desired section
Column 4 Total length of the cable up to the desired section
Column 5 Angle traversed by cable in vertical plane up to the desired section
Column 6 Angle traversed by cable in horizontal plane up to the desired section
Column 7 Additional angle in cable due to any other miscellaneous reason such as slope in the profile of tension face
Column 8 Total angle traversed by cable up to the desired section
Column 10 Force in the cable after slip loss
Column 11 Cable coordinate from tension face of the section
Column 12 Additional height of cable due to any other miscellaneous reason such as slope in the profile of tension face
Column 13 Total height of cable from tension face including effect of slope of tension face if any
Column 14 Total Depth of the X-section
Column 15Distance of CG of cable from Battom Face
Column 16 CG of the Section from the Bottom Face
Column 17 Eccentricity of the Cable (+ve towards Bottom Face from CG of the Section, -ve towards Top Face from CG of the Section)
Column 18P Cos8 x Eccentricity of the cable
Column 19 Summation of P Cos8
Column 20 Summation of P Cos8 x Eccentricity of the cable
Column 21 Stress at Top Fibre
Column 22 Stress at Bottom Fibre
Column 23 Stress at CG of Cables
Column 24 Elastic shortening loss
Column 25 Force in Cables after Elastic Shortening Losss
Column 26 Loss due to Shrinkage of Concrete
Column 27 Force in Cables after Shrinkage Losss
Column 28P Cos8 x Eccentricity of the cable
Column 29 Stress at Top Fibre after losses
Column 30 Stress at Bottom Fibre after losses
Column 31 Stress at CG of Cables after losses
Column 32 Creep loss
Column 33 Force in cable after Creep loss
Column 34 Relaxation loss

<u>Check for She</u>	ear (AT SU	PPORT SE	CTION)				
Partial Safety f	actors for lo	ads					
	* ULS						
Dead Load	1.50						
Floor Finishes	1.50						
Live Load	1.50						
* Ultimate Limit							
* Serviceability	Limit State	2					
Summary of Ul	timate She	ar					
			Factored	Factored			
Load case	Bending Moment	Shear Force	Bending Moment	Shear Force			
Dead Load	0.05	19.84	0.08	29.76			
Floor Finishes	20.32	5.72	30.48	8.58			
Live Load	20.32	5.72	30.48	8.58			
Total	40.69	31.28	61.04	46.92			
<u>Stage 1 & Stac</u>	<u>1e 2</u>						
<u>Ultimate Shear</u>	Resistanc	e of Sectior	n Uncracke	d in Flexure	<u>}</u>		
Vco	=	0 67 k D V	(ft ² + 0.8 fc		=	21.97	+/m ²
VCU	_	U.O7 D D V	(11 + 0.0 11	:р n)	-	21.97	L/m
b	=	0.19	m				
D	=	0.485		~ 1			
Grade of concr	ete		au	U	M-	40	
ft	=	0.24 √ fck	0	=	154.83	t/m ²	
Area of cross S	Section			=	0.44		
fcp	=	828.35	t/m²				
Lillion at a Ohio an	Desisters		. Consideration				
<u>Ultimate Shear</u>	Resistanci	e of Section	i Cracked I	<u>n Flexure</u>			
Vcr	=			+ Mo V/M	=	8771.65	t/m²
	or	0.1 b d Vfi	ck		=	5.63	t/m ²
Governing Valu	e of Vcr				=	8771.65	t/m²
fpe	=	maximum	of 0.6fp or e	effective pre	stress after	r all losses	
	=	365.80					
fp	=	880.09	t				
area of prestres	ssing tendo	n	=	46.389	cm ²		
% area of prest			=	5.319	%		
ζο	=	103.02	t/m ²				
Mo	=	0.8 fpt (I/y)		=	22.09	t/m²	
The section is	uncracked	in flexure					
∨ertical compo	nent of pre:	stress at th	e section	=	11.95	t	
Shear capacity	of the sect	tion		=	33.91	t/m²	
Chear capacity	51 116 3601	aon		– or	2.96		
Shear reinforce	ment	=	15.85615		2.50		

<u>Service Stage</u>							
<u>_</u>							
<u>Ultimate Shear</u>	Resistance	e of Sectior	<u>Uncracke</u>	<u>d in Flexure</u>	<u>e</u>		
Vco	=	0.67 b D V	$(ft^2 + 0.8 fc$	cpft)	=	25.56	t/m ²
Ь	=	0.23					
D	=	0.52	m				
Grade of concr	ete		_	=	M-	40	
ft	=	0.24 √ fck		=	154.83	t/m ²	
Area of cross S	Section			=	0.58	m ²	
fcp	=	628.03	t/m²				
<u>Ultimate Shear</u>	Resistance	e of Sectior	<u>i Cracked i</u>	<u>n Flexure</u>			
Vcr	=	(1 - 0.55 fp	e/fp) ζc b d	+ Mo V/M	=	27.49	t/m²
	or	0.1 b d Vfd	ck		=	5.63	t/m ²
Governing Valu	e of Vcr			-	=	27.49	-
Ŭ			20	a^{2})		
fpe	=	maximum	of 0.6fp.or (effective pre	stress afte	r all losses	
	=	365.80					
fp	=	880.09	t		_		
area of prestres			=	46.389			
% area of prest	tressing ten		=	4.083	%		
ζο	=	103.02	t/m ²				
Mo	=	0.8 fpt (I/y)		=	24.01	t/m ²	
The section is	uncracked	in flexure					
					44.05		
Vertical compo	nent of pres	stress at th	e section	=	11.95	t	
Charan a su a situ	-646				27.54	+ /2	
Shear capacity	of the sect	lion		=	37.51 4.26		
Shear reinforce	un a unt	_	DD 45	or cm²/m	4.20	L	
Snear reinforce	ment	=	23.45	cm 7m			
Check for Ultim	ate Shear						
CHECK IOF OILIN	iate offeat						
Net ultimate Sł	near force			=	42.66	t	
Net ultimate Sł				=	375.45	-	
Not ditimate Of	ical stiess				J 010.40	MIII.	

						ction at Mid		
	1	3.0	000					
	T (1)			1	0.1300			
				Ť	0.1000			
						0.225		
		(2)						
		\sim				Controi	dal Axis	
	1.3850					Centrol		
0.520		*	• 0.230		0.315			_
	(3)				0.075			
			200	-*-*				
		3.0)00					
Calculatio	n of Cross-S	Section Pro	perties					_
Element	Area (A)	Z	AZ	Y	AY			
1	0.39	0.065	0.0254	1.500	0.5850	_		
2 3	0.07245	0.2875 0.4825	0.0208	1.500 1.500	0.1087	_		
TOTAL	0.687450	0.4020	0.1547		1.0312			
	<u></u> Z=	0.225	m	<u>∽</u> γ =	= 1.500	m		
Ι _Χ								
Element	ь	d	bd ³ 3					
1	3.000	0.130	_	2 1. J.3 /C				
2	0.315	0.130	1.10E-03 1.28E-03	<bd* 6<br=""><bd<sup>3/3</bd<sup></bd*>				
3	3.000	0.230	2.11E-04					
TOTAL	0.000	0.010	0.002587	S00 70	I _X =	0.002587	m ⁴	
IOIAL			0.002307		<u>- х</u>	0.002301	m	
1								
I _Y Element	Iself=db ³ /12	A(V V)2						
Liemeni 1	0.292500	A(Y - Y) ² 0.000000						
2	0.000319	0.000000						
3	0.168750	0.000000						
TOTAL	0.461569	0.000000			I _y =	0.461569	m ⁴	
Ιz								
Element	Iself=bd ³ /12	A (X-X) ²						
1	0.000549	0.009996						
2	0.000599	0.000282						
3	0.000105	0.014908						
TOTAL	0.001254	0.025186			I _z =	0.026440	m^4	

Section Pr	operties of	The Intern	al Cell Gri	d Line Alo	ng Lx Dire	ction at Mid	Span Loo	cation
	2.000							
	· ↑ (1)	(1)			0.130			
				<u>+ -*</u>	0.130			
						0.221		
		(2)						
						Centroi	dal Axis	
	0.9650							
0.520	+	*	• 0.070		0.315			
	3			İ	0.075			
	4	2.0)00	-				
Calculatio	n of Cross-S	Section Pro	perties					
Element	Area (A)	Z	AZ	Y	AY			_
1	0.26	0.065	0.0169	1.000	0.2600			
2	0.02205	0.2875	0.0063	1.000	0.0221			
3 TOTAL	0.15 0.432050	0.4825	0.0724 0.0956	1.000	0.1500			
TUTAL	0.432030		0.000	iUt	0.4321			
	<u></u> Z=	0.221	m	Ý =	1.000	m		
Ι _Χ			-					
Element	Ь	d	bd ³					
4	2.000	0.420	3	3				
1	2.000 0.315	0.130 0.070	7.32E-04 3.60E-05	<bd<sup>3/6 <bd<sup>3/3</bd<sup></bd<sup>				
3	2.000	0.075	1.41E-04					
TOTAL	2.000	0.010	0.000909	3 5070	I _x =	0.000909	m ⁴	
10 mL			5.000000		•X	0.000000		
ly								
Element	Iself=db ³ /12	$A(Y - \overline{Y})^2$						_
1	0.086667	0.000000						
2	0.000009	0.000000						
3	0.050000	0.000000						
TOTAL	0.136676	0.000000			l _y =	0.136676	m ⁴	
Ιz								
Element	Iself=bd ³ /12	A (X-X) ²						
1	0.000366	0.006352						
2	0.000182	0.000097						
3	0.000070	0.010234					4	
TOTAL	0.000619	0.016682			I _Z =	0.017301	m⁴	

					-	ction at Mid		
	I	1.5	500					
	1			1	0.130			
						0.231		
		(2)						
	_					Centroi	dal Axis	
	0.000							
0.520		*	• 0.230		0.315			
					0.075			
	(3)			. ‡	0.075			
	14	1.5	500	-				
Calculatio	n of Cross-S	Section Pro	perties					
Element	Area (A)	Z	AZ	Y	AY			
1	0.195	0.065	0.0127	0.750	0.1463			
2	0.07245	0.2875	0.0208	0.115	0.0083			
3	0.1125	0.4825	0.0543	0.750	0.0844			
TOTAL	0.379950		0.0878	906	0.2390			
	<u></u> Z=	0.231	m		0.629	m		
	2-	0.201			- 0.023			
Ix								
			bd ³					
Element	Ь	d	3					
1	1.500	0.130	5.49E-04					
2	0.315	0.230	1.28E-03	<bd<sup>3/3</bd<sup>				
3	1.500	0.075	1.05E-04	<bd<sup>3/6</bd<sup>				
TOTAL			0.001932		I _X =	0.001932	m ⁴	
$I_{\rm Y}$								
Element	Iself=db ³ /12	$A(Y - \overline{Y})^2$						
1	0.036563	0.002859						
2 3	0.000319	0.019135						
	0.021094	0.001649			I –	0.004640	4	
TOTAL	0.057976	0.023643			l _y =	0.081619	m ⁴	
Iz		_						
Element	Iself=bd ³ /12	A (X-X) ²						
1	0.000275	0.005376						
2	0.000599	0.000231						
3	0.000053	0.007113						
TOTAL	0.000926	0.012721			I _Z =	0.013647	m ⁴	

	operaes of	The men		a Line Alo	ING LX DIrec	ction at Mid	эран соо	<u>cauon</u>
	1	1.0)00					
	+ (1)				0.130			
				<u> </u>	0.130			
						0.236		
		(2)						
						Centroi	dal Axis	
	0.000							
0.520		*	• 0.230		0.315			
	3	I			0.075			
	-	11)00	-				
		1.0						
Calculatio	n of Cross-S	Section Pro	perties					
Element	Area (A)	Z	AZ	Y	AY			
1	0.13	0.065	0.0085	0.500	0.0650	_		
2	0.07245	0.2875	0.0208	0.115	0.0083			_
3	0.075	0.4825	0.0362	0.500	0.0375			
TOTAL	0.277450		0.0655	906	0.1108			
		0.236	m		0.399	m		
	2-	0.230			0.355			
Ιx								
			bd ³					
Element	Ь	d	3					
1	1.000	0.130	3.66E-04	<bd<sup>3/6</bd<sup>				
2	0.315	0.230	1.28E-03	<bd<sup>3/3</bd<sup>				
3	1.000	0.075	7.03E-05	<bd<sup>3/6</bd<sup>				
TOTAL			0.001714		I _X =	0.001714	m ⁴	
$I_{\rm Y}$								
Element	Iself=db ³ /12	$A(Y - \overline{Y})^2$						
1	0.010833	0.001314						
2 3	0.000319	0.005863						
TOTAL	0.006250	0.007935			1 -	0.025337	m ⁴	
TOTAL	0.017403	0.007933			l _y =	0.023331	m	
Iz								
	Iself=bd ³ /12	A (X-X) ²						
1	0.000183	0.003800						_
2	0.000599	0.000192						
3	0.000035	0.004559						
TOTAL	0.000817	0.008551			I _z =	0.009368	m ⁴	

SUMMARY OF BENDING MOMENTS IN VA	RY OF	BEND	ING M	OMENT	N NI S	ARIOUS	LOAD (COMBIN	RIOUS LOAD COMBINATIONS									
COMBINATION 1	TION 1																	
PARTIAL FACTOR OF SAFETY FOR LOADS	ACTOR	OF SAF	FETY FO	R LOADS	(a)													
Please write 1 for cast-in-situ construction and 2 fo	ite 1 for	cast-in-	situ con	struction	and 2 fe	or segme	r segmental construction	truction	2									
																	nrs	
DEAD LUAD FLOOR FINISHES	U IISHES																0.00	
																	1.50	
span of the slab	slab	F	1															
د د		88 88	εε															
SIGN CONVENTION:	VENTIO																	
+ve means hogging	hogging																	
-ve means sagging	sagging																	
Clear Cover to Reinforcement in beams/slabs	to Reinf	orceme	nt in bea	ms/slabs													2	20 mm
Clear Cover to Reinforcement in ribs	r to Reinf	orceme	nt in ribs														20	20 mm
Dia of Reinforcing Bars	forcing B	ars															16	16 mm
Charecteristic compressive strength of concrete	tic comp	ressive	strength	of concre	ite					1							40	40 N/mm ²
Charecteristic tensile strength of reinforcement	tic tensil	le stren(gth of rei	nforcemer	ŧ			J									415	415 N/mm ²
			UNFACT	UNFACTORED MOMENTS	OMENTS	Factored Moment)									
LOAD CASE	ASE	1	Dead	Floor	Live	Total	Total Depth of	Effective	Thickness of comp-	Xumaxd	Xu for	MOR for which	MOR for which Xu	- >	Flange Width of	Web Width of	p/nx	Area of Steel
Member	Distance		Load	Finishes	Load	moment	the Member	Depth	ression Flange	ssible	Yî = Dî	Xu = Df Muf	mares Yf≡Df Mub	mares Yf>Df Muweb	the Member	the Member	Achieved	Required cm ²
\square																		
2	0	MAX.	80.34	20.32	20.32	60.96	0.520	0.492	0.075	0.48	0.1750	152.2	198.1	204.7	3.000	0.230	0.05859	34.49
		MIN.	80.34	20.32	20.32	60.96	0.520	0.492	0.075	0.48	0.1750	152.2	198.1	204.7	3.000	0.230	0.05859	34.49
	-	MAX.	57.94	14.66	14.66	43.98	0.520	0.492	0.075	0.48	0.1750	152.2	198.1	204.7	3.000	0.230	0.04197	24.71
	+	WIN.	57.54 19.70	14.00 14.00	14.65	43.98	0.520	0.492	6/N.N	5 5 5 0	0.1/50	152.2	198.1	204.7	с. 1000 000 000 000 000 000 000 000 000 0		0.04197	24./1
	~	X N N	8 (8) 8 (8)	9.27	9.27 9.27	27.81	0.520	0.492 0.492	c/n:n	0 48 10	0.1750	152.2	130.1 198.1	204.7		0.230	0.02636	15.52
52	0	MAX.	36.80	9.30	9.30	27.90	0.520	0.492	0.075	0.48	0.1750	152.2	198.1	204.7	3.000		0.02645	15.57
		ΪN	36.80 36	0.0 0	9.30 1	27.90	0.520	0.492	0.075	0.48	0.1750	152.2	198.1	204.7	3.000 3.000		0.02645	15.57
	-	MAX	19.20	4.86	4.86	14.58	0.520	0.492	0.075	0.48	0.1750	152.2	198.1	204.7	3.000	0.230	0.01375	8.09
	, ,		19.20	4.86	4.86	14.58 2.04	0.520	0.492	0.075	0.48	0.1750	152.2	198.1 108.1	204.7	000.0	0.230	0.01375	8.09
	$^{+}$	YIN N	7.7 7.7 7	88	8 8	40.7 7		0.492	0,0,0 770 0	0 q	0.1720	7.701	1001	204.7			0.00101	
-	-	MIIN.	2.12	00.U	00.U	Z-U4	1 N2C'N	U.432	n.ur.a	0 , 40	U. I/ 3U	7.701	1.00.1	ZU4.7	0,000		U.UU131	CI.I

	of ion el 2	g	g	-	-	53	53	5	5	ത	ത	ო	ო
	Area of Tension Steel Required cm ²	34.49	34.49	24.71	24.71	15.52	15.52	15.57	15.57	8.09	8.09	1.13	1.13
	Shear Reinf. Xu/d Required Achieved cm ²	0.06	0.06	0.04	0.04	0.03	0.03	0.03	0.03	0.01	0.01	0.0	0.0
	Shear Reinf. Required cm ²	4.02	4.02	3.88	3.88	3.94	3.94	3.17	3.17	3.41	3.41	4.89	4.89
	d1	0.464	0.464	0.464	0.464	0.464	0.464	0.464	0.464	0.464	0.464	0.464	0.464
	b1	0.174	0.174	0.174	0.174	0.174	0.174	0.174	0.174	0.174	0.174 0.464	0.174	0.174
	Permi- ssible Shear Stress	103.02 0.174 0.464	103.02 0.174 0.464	92.70 0.174 0.464	92.70 0.174 0.464	77.93 0.174 0.464	77.93 0.174 0.464	77.93 0.174 0.464	77.93 0.174 0.464	59.73 0.174 0.464	65.73	30.60 0.174 0.464	30.60 0.174 0.464
	% Tensile Reinf.	3.05	3.05	2.18	2.18	1.37	1.37	1.38	1.38	0.72	0.72	109.0 0.10	0.10
	Shear stress	151.6	151.6	146.3	146.3	141.0	141.0	119.6	119.6	114.3	114.3	109.0	109.0
	Effective Depth	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49
Total Shear/ Moment	Bending moment	60.96	0.00 17.16 60.96	43.98	43.98	15.96 27.81	27.81	27.90	27.90	14.58	14.58	2.04	2.04
Total Mor	Shear	17.16	17.16	16.56	16.56	15.96	15.96	13.53	13.53	12.93	12.93	12.33	12.33
Equivalent Shear/Bending Moment due to Effect of Torsion	Breadth of the Shear moment Shear moment Depth stress Member	0:0	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.00	0.00	0.00 12.33	0.00 12.33
ending of Tors	Shear	0.0	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.0	00.00	0.0
alent Shear/Bending Mo due to Effect of Torsion	Breadth of the Member	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230
	Total Depth of the Member	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52
Factored Shear	Total Shear	17.16	17.16	16.56	16.56	15.96	15.96	13.53	13.53	12.93	12.93	12.33	12.33
ED	Live Load	5.72	5.72	5.52	5.52	5.32	5.32	4.51	4.51	4.31	4.31	4.11	4.11
UNFACTORED SHEAR	Floor Finish- es	5.72	5.72	5.52	5.52	5.32	5.32	4.51	4.51	4.31	4.31	4.11	4.11
UNF	Dead Load	22.92 5.72	22.92 5.72	21.84 5.52	21.84 5.52	20.76 5.32	20.76	18.12	18.12	17.04 4.31	17.04 4.31	15.96 4.11	15.96 4.11
Factored Moment	Total Dead Torsion Load	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.00
	Floor Live Finish Load es	0.0	0.00 0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.0	00.0 00.0	0.0
UNFACTORED TORSION	Floor Finish- es	8.0	0.0	0.0	0.00	0.00	0.00	0.0	0.00	0.00	0.0		0.00 0.00
UNE T	Dead Load	8.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0

-	147	-	
---	-----	---	--

	/d Area of /d Steel eved Required cm ²	205 1.21					543 9.08	529 9.00	529 9.00	12.36	100 12.36			590 15.25	590 15.25				950 17.37		330U 17.37	╞			590 15.25						534 9.03	
	b Xu/d P of Xu/d Per ber	30 0.00205					<u>30 0.01543</u>	<u>30 0.01529</u>	30 0.01529	30 0.02100	80 0.02100		30 0.02596	30 0.02590	30 0.02590	30 0.02806			30 0.02950	+	02620.0 USPC0	+			30 0.02590	-	+	+	+		+	
	le Web of Width of the er Member	0.230		\neg	_	-	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230			0.230	+		┢	-	-	0.230	+	+	+	+	+	U.23U	
	or Flange (u Width of the Member	 3.000		\neg		-	00 C C	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000				3.000	-		+	+	3.000	3.000		+	+	+	+	3.000	
	MOR for MOR for which Xu which Xu makes makes Yf=Df Yf>Df Mub Muweb	204.7	204.7	294.8		-	294.8	294.8	294.8	294.8	294.8	294.8		294.8				294.	294.8	+	294.0 794.8	┢	294.8		$\left \right $		244.0	24.0	294.8	+	234.8	
		198.1	198.1	319.7	319.7	319.7	319.7	319.7	319.7	319.7	319.7	319.7	319.7	319.7	319.7	319.7	319.7	319.7	319.7		319.7	319.7	319.7	319.7	319.7		319.7	019.7	319.7	319.7	319.7	
	MOR for which Xu = Df Muf	152.2	152.2	_		_	250.6	250.6	250.6	250.6	- 6	250.6	250.6	250.6				_	250.6		0.057 750.6	+	250.6		\vdash		+	+	+	+	9.UC2	
	Xu for Yf= Df	0.1750	0.1750	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033			0.3033	0.3033	0.3033	0.3033	0000	U.3U33	0.3033			0.3033	
	Xumax/d Permi- ssible	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	ç	9 8 0 4	0.48	0.48	0.48	0.48	ļ	29 Q	φ.⊃ 0	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ū.48	
	Thickness of comp- ression Flange	0.075	0.075	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130_	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0 100	0.130	0.130	0.130	0.130	0.130		0.130	0.130	0.130	0.130	U:13U	
	Effective Depth	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0,492	0.492	0.492	0.492	0.492	0.492	0	0.492 0.492	0.492	0.492	0.492	0.492	0	0.492	0.492	0.492	0.492	U.492	
	Total Depth of the Member	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520		0.520	0.520	0.520	0.520	0.520		0.520	0.520	0.520	0.520	07G.U	
Factored Moment	Total Bending moment	2.19	2.19	-7.47	-7.47	-16.35	-16.35	-16.20	-16.20	-22.20	-22.20	-27.39	-27.39	-27.33	-27.33	-29.58	-29.58	-31.08	-31.08	0	7 P 2 P 2 P	-29.61	-29.61	-27.33	-27.33		-27.42	-24.12-	-22.23	-22.23	97.9I-	
	Live Load	0.73	0.73	-2.49	-2.49	-5.45	-5.45	-5.40	-5.40	-7.40	-7.40	-9.13	-9.13	-9.11	-9.11	-9.86	9.6- 9.86	-10.36	-10.36	000	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	-9.87	-9.87	-9.11	-9.11		9.14 4.14	<u>ק</u> יי קיי	-/.41	-/.41	-0.42	
UNFACTORED MOMENTS	Floor Finishes	0.73	0.73	-2.49	-2.49	-5.45	-5.45	-5.40	-5.40	-7.40	-7.40	-9.13	-9.13				98.6-	_	\vdash	-	9 10 - 10 9 10 - 10 9 10 - 10	+	+	-	\vdash	;	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	<u>ק</u> יי קיי	-7.41	-/.41	-47 -	
UNFACT	Dead Load F	2.92	2.92	9. 9. 9. 9.	-9.85 -	-21.50	-21.50	-21.32	-21.32	-29.24	-29.24	-36.05	-36.05	-35.94			-38.97		$ \rightarrow $		-40.07						29. 6 29. 6	8 9 9 8	87.67	87.67	٩ <u>5.</u> 12	
			MIN		MIN			MAX.	, MIN.					MAX.					MIN		YWW WIN			MAX.				MIN.			MAX	
	CASE Distance	0		-		2		0		1		2		0		1		2		C	-	1		2				,	-	0	7	
	LOAD CASE Member No. Distar	53						54						ß						Ĺ	8					[à	T				

	Area of Tension Steel Required cm ²	+ 7	14.1	4,13	4.13	9.08	9.08 1	9.00	9.00	12.36	12.36	15.28	15.28		15.25	15.25	16.52	16.52	17.37	17.37		70.71)). 	10.04 16.54	15.25	15.25		15.30	15.30	12.38	12.38	9.03	9.03
	Xu/d Achieved		38	0.0	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03		0.03	0.03	0.03	0.03	0.03	0.03		3 6	3 8	3 8	88	800		0.03	0.03	0.02	0.02	0.02	0:02
	Shear Reinf. Required cm ²	254	1 N 1 N 1 N	2.33	2.33	2.03	2.03	0.464 Not Required	0.464 Not Required	Not Required	0.464 Not Required	Not Required	0.464 Not Required		0.464 Not Required	464 Not Required		U.404 Not Required	Not Hequired	U.404 Not Required	Not Deguired	0.464 Not Required	-	Not Required	0.464 Not Required	Not Required	Not Required	Not Required	0.464 Not Required				
	đ	0 464		0.464		0.464	0.464			0.464	0.464	0.464				0.464	0.464	0.464	0.464	o								0.464	0.464	0.464	0.464	0.464	
	b1	0.174	4 1 4 1 4 4 4	0.174	0.174	0.174	0.174	0.174	0.174	0.174	0.174	0.174	0.174		0.174	0.174	0.174	0.174	0.174	0.174		U. 174		0.174	0 174	0.174		0.174	0.174	0.174	0.174	0.174	0.174
	Permi- ssible Shear Stress	SU CO		44.59	44.59	62.83	62.83	62.51	62.51	71.56	71.56	77.52	77.52		77.32	77.32	79.56	79.56	81.19	81.19		0 0 0 0 0		70.70 70.70	77 33	77.32		77.52	77.52	71.56	71.56	62.51	62.51
	% Tensile Reinf.	1		0.37	0.37	0.80	0:80	0.80	0.80	1.09	1.09	1.35	1.35		1.35	1.35	1.46	1.46	1.53	1.53	:	2	8	- t	- - - -	3 22		1.35	1.35	1.09	1.09	0.80	0.80
	Shear stress	C 70		9 6 19 7	81.9	76.6	76.6	54.6	54.6	49.3	49.3	44.0	44.0		22.0	22.0	16.7	16.7	11.4	11.4	;			4 4 4 7	1 7 10	21.7		44.0	44.0	49.3	49.3	54.6	54.6
	Effective Depth	040		0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49		0.49	0.49	0.49	0.49	0.49	0.49	9	₽ 2 0		24.0 24.0		640		0.49	0.49	0.49	0.49	0.49	0.49
Total Shear/ Moment	Bending moment	0 10	2 0	7.47	7.47	16.35	16.35	16.20	16.20	22.20	22.20	27.39	27.39	1	27.33	27.33	29.58	29.58	31.08	31.08		5 5 7 7	0.0	10.02 10.02	77 33	27.33		27.42	27.42	22.23	22.23	16.26	16.26
Total Mor	Shear	0 07	000	9.27	9.27	8.67	8.67	6.18	6.18	5.58	5.58	4.98	4.98	1	2.49	2.49	1.89	1.89	1.29	1.29		9.6	8	- 4 8 8	9 9 9	2.46 2.46		4.98	4.98	5.58	5.58	6.18	6.18
Equivalent Shear/Bending Moment due to Effect of Torsion	Bending moment	0			0.0	0.00	0:0	0.00	0.0	0.0	0.0	0.0	80		0.00	000	0.00	0.00	0.00	0.0	0	3 8	3 8		80	800		0.0	0.0	0.00	0.00	0.00	0:0
Bending of Tors	Shear	8		38	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.00	T	0.00	0.00	0.00	0.00	0.00	0.0		3 8	3 8	36	80	80		8.0	0.00	0.00	0.00	0.00	0.0
alent Shear/Bending Mo due to Effect of Torsion	Breadth of the Member	0.030		0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230		0.230	0.230	0.230	0.230	0.230	0.230	0.000	0.230			0.230	0.230		0.230	0.230	0.230	0.230	0.230	0.230
Equivaler due	Total Depth of the Member	0.50	20.0	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52		0.52	0.52	0.52	0.52	0.52	0.52	010	70.0	70.0	7270	0.52	0.52		0.52	0.52	0.52	0.52	0.52	0.52
Factored Shear	Total Shear	0 07	70.0	9.27	9.27	8.67	8.67	6.18	6.18	5.58	5.58	4.98	4.98		2.49	2.49	1.89	1.89	1.29	1.29	0	07. F	07.1	- 9 8 8 8	201 C	-2.46		-4.98	-4.98	-5.58	-5.58	-6.18	-6.18
ËD	Live Load	р С С		8 8 7 8	3.09 19	2.89	2.89	2.06	2.06	1.86	1.86	1.66	1.66		0.83	0.83	0.63	0.63	0.43	0.43	ç	747 	4 5 	26	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	, 0 180		-1.66	-1.66	-1.86	-1.86	-2.06	-2.06
UNFACTORED SHEAR	Floor Finish- es	о С с		60 E	3.09		2.89	2.06	2.06	1.86	1.86	1.66	1.66		0.83	0.83	0.63	0.63	0.43	0.43	((-147 147	7 7 7	2 C - C				-1.66	-1.66		-1.86		-2.06
	Dead Load	12.00	10.40	12.21	12.21	11.13	11.13	8.44	8.44	7.36	7.36	6.29	6.29		3.55	3.55	2.47	2.47	1.39	1.39	- C	1.37	2011- 1210	04.2- 7.45	i ci	9 12 12 12 12 12 12 12 12 12 12 12 12 12		-6.28	-6.28	-7.36	-7.36	-8.43	-8.43
Factored Moment	Total Torsion				0.0	0.00	00.0	0.00	0.0	0.0	0.0	0.0	0.00		0.00	0.00	0.00	0.00	0.00	0.00				38	80	800		0.0	0.00	0.00	0.00	0.00	00.0
N RD	Live	8	36	38	0.0	0.00	0.00	0.00	00.0	00.0	0.0	0.0	0.00		0.00	0.00	0.00	0.00	0.00	0.0		38		38	38	80		0.0	00.0	0.00	0.00	0.00	0.0
UNFACTORED TORSION	Floor Finish- es	8		38	8	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.00		0.00	0.00	0.00	0.00	0.00	80		38				88		0.0	0.00	0.00	0.00		0.0
N N	Dead Load	8		38	8	0.0	0.0	0.0	8.0	8.0	8	0.0	0.0		0:0	0.0	0.0	0.0	0.0	0:0						88		0.0	8; 0	0.0	0.0	0.0	0.0

	Area of Steel Required cm ²	9.10	9.10	4.15	4.15	1.21	1.21	1.11	1.11	8.09	8.09	15.57	15.57	15.52	15.52	24.73	24.73	34.51	34.51	!	15.42	24.0	9.05	C0 V	4.02		4.16	4.16	0.66	0.66	1.54	1.54
	Xu/d Achieved	0.01546	0.01546	0.00705	0.00705	0.00205	0.00205	0.00189	0.00189	0.01375	0.01375	0.02645	0.02645	0.02636	0.02636	0.04200	0.04200	0.05862	0.05862		0.03929	0.0005		0.01075	0.01025	2	0.01059	0.01059	0.00169	0.00169	0.00393	0.00393
	Web Width of the Member	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230		U/U/U		0/0/0	0.070	0.070)	0.070	0.070	0.070	0.070	0.070	0/0/0
	Flange Width of the Member	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000		000 C				2 000)));;;	2.000	2.000	2.000	2.000	2.000	2.000
	MOR for MOR for which Xu which Xu makes makes Yf≏Df Yf>Df Muweb	294.8	294.8	294.8	294.8	204.7	204.7	204.7	204.7	204.7	204.7	204.7	204.7	204.7	204.7	204.7	204.7	204.7	204.7		130.3		130.5	130.0	130.3)	130.3	130.3	130.3	130.3	193.1	193.1
		319.7	319.7	319.7	319.7	198.1	198.1	198.1	198.1	198.1	198.1	198.1	198.1	198.1	198.1	198.1	198.1	198.1	198.1		128.1		7 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	120.1	128.3	2	128.3	128.3	128.3	128.3	208.1	208.1
	MOR for which Xu = Df Muf	250.6	250.6	250.6	250.6	152.2	152.2	152.2	152.2	152.2	152.2	152.2	152.2	152.2	152.2	152.2	152.2	152.2	152.2	1	-0.1U1 -0.1		0 4	10	1015		101.5	101.5	101.5	101.5	167.0	167.0
	Xu for Yf= Df	0.3033	0.3033	0.3033	0.3033	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750		0.1/50		0.1750	0.750	0.1750	3	0.1750	0.1750	0.1750	0.1750	0.3033	0.3033
	Xumax/d Permi- ssible	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	9	24 		₽ ₽ ₽			2	0.48	0.48	0.48	0.48	0.48	0.48
	Thickness of comp- ression Flange	0.130	0.130	0.130	0.130	0.075	0.075	0.075	0.075	0.075	0.075	0.075_	0.075	0.075	0.075	0.075	0.075	0.075	0.075		9/N/N	0.000	G/N'N	0.075	0.075	5	0.075	0.075	0.075	0.075	0.130	0.130
	Effective Depth	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	1	U.492	192	0.492	204-0	0.497	2	0.492	0.492	0.492	0.492	0.492	0.492
	Total Depth of the Member	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520		0.520		07G-0	0.520	0.520)	0.520	0.520	0.520	0.520	0.520	0.520
Factored Moment	Total Bending moment		-16.38	-7.50	-7.50	2.19	2.19	2.01	2.01	14.58	14.58	27.90	27.90	27.81	27.81	44.01	44.01	60.99	60.99		27.48	71.40	10.23	7 26	7 26)	7.50	7.50	1.20	1.20	-2.79	-2.79
OMENTS	Live Load	-5.46	-5.46	-2.50	-2.50	0.73	0.73	0.67	29.0	4.86	4.86	9.30	9.30	9.27	9.27	14.67	14.67	20.33	20.33		9.16	0. D	0.4- 14-	-+-n 	247	i	2.50	2.50	0.40	0.40	-0.93	-0.93
UNFACTORED MOMENTS	Floor Finishes	-5.46	-5.46	-2.50	-2.50	0.73	0.73	0.67	0.67	4.86	4.86	9.30	9.30	9.27	9.27	14.67	14.67	20.33	20.33		9.16 0.40	0.5	14. 14	+ CV C	CT C	i	2.50	2.50	0.40	0.40	-0.93	-0.93
UNFAC.	Dead	-21.55	-21.55	-9.88	-9.88	2.90	2.90	2.70	2.70	19.19	19.19	36.81	36.81	36.67	36.67	57.97	57.97	80.40	80.40		90.92 90.92	5 E	21.70 27.12	0 51 0	9.5		9.79	9.79	1.94	1.94	-3.85	-3.85
		MAX.	MIN	MAX.	MIN	MAX.	MIM	MAX.	MIN.	MAX.	ΜIN	MAX	MIN	MAX.	MIN.	MAX.	MIN	MAX.	MIN		MAX			MAX	NIM		MAX	MIN.	MAX.	MIN.	MAX.	MIM
	LOAD CASE	0		-		7		0		ļ		2		0		1		2		0	∍		<u>.</u>	'n	,		0		1.5		e	
	LOAD Member No.	83 83						ß						60						!	116						127					

	Area of Tension Steel Required cm ²	ç	0 0.0	9.10 11	4 1 1 1	1.21	1.21	1.11	1.11	8.09	8.09	15.57	15.57		15.52	15.52	24.73	24.73	34.51	34.51	15 40	15.47	9.05	9.05	4.02	4.02	4.16	4.16	0.66	0.66	1.54	1.54
	Xu/d Achieved	500	70.0	70.0	0.0	000	0.0	0.0	0.0	0.01	0.01	0.03	0.03		0.03	0.03	0.04	0.04	0.06	0.06	NO C	500	0.02	0.02	0.01	0.01	0.01	0.0	0.0	0.0	0.0	00:0
	Shear Reinf. Required cm ²	000	90 G D	90.0 00.0	2.5. 2.2. C	3.54	3.54	4.89	4.89	3.41	3.41	2.60	2.60		3.96	3.96	3.37	3.37	3.05	3.05	CV C	2.43	1.86	1.86	1.67	1.67	1.14	1.14	1.24	1.24	0.52	0.52
	d1		0.404	U.464			0.464	0.464	0.464	0.464	0.464	0.464	0.464		0.464	0.464	0.464	0.464	0.464	0.464	0.464		0.464	0.464	0.464	0.464		0.464	0.464	oj	0.464	0.464
	5	* 1 7 0	U. 174	U.1/4	U. 174 D 174	0.174	0.174	0.174	0.174	0.174	0.174	0.174	0.174		0.174	0.174	0.174		_	0.174	0.01	_		0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
	Permi- ssible Shear Stress	Ę	20 20 20 20 20	62.83 67.83	44.02 A 7.02	909.08	30.60	30.60	30.60	59.73	59.73	77.93	77.93		77.93	77.93	92.70	92.70	103.02	103.02	102 00	103.02	98.37	98.37	73.28	73.28	74.26	74.26	33.86 33	33.86 33	48.84	48.84
	% Tensile Reinf.	8			75.0	, 11 11	0.11	0.10	0.10	0.72	0.72	1.38	1.38			1.37				3.05	Q			2.63	1.17	1.17		1.21	0.19	0.19	0.45	0.45
	Shear stress		0.0 0.4	9 0 9 0	ο Σο Ο	2.78		109.0	109.0	114.3	114.3	119.6	119.6		141.3	141.3	146.6	146.6		151.9	a ucc	230.8	196.0	196.0	161.1	161.1	134.1	134.1	99.3	99.3	64.5	64.5
	Effective Depth	Q Q	0.43 0.43	₽ ₽ ₽	24.0 04.0	640	0.49	0.49	0.49	0.49	0.49	0.49	0.49		0.49	0.49	0.49	0.49	0.49	0.49	04.0	670	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49
Total Shear/ Moment	Bending moment	10.00	0.0	19.01 19.03	02.7	2.19	2.19	2.01	2.01	14.58	14.58	27.90	27.90		27.81	27.81	44.01	44.01	60.99	60.99	07 AQ	27.48	16.23	16.23	7.26	7.26	7.50	7.50	1.20	1.20	2.79	2.79
Total Moi	Shear	۲ د د) 0.0 0	2. D	7.2/ 0 77	9.87	9.87	12.33	12.33	12.93	12.93	13.53	13.53		15.99	15.99	16.59	16.59	17.19	17.19	7 05	3.65	6.75	6.75	5.55	5.55	4.62	4.62	3.42	3.42	2.22	2.22
Equivalent Shear/Bending Moment due to Effect of Torsion	Bending moment	000	00.0			00.0	0.00	00.0	00.0	00.0	00.0	0.00	0.00		6.00	0.00	0.00	0.00	0.00	0.00		0.00	0.0	00.0	0.00	00.0	0.0	0.0	0.00	0.00	0.00	00.0
Bending of Tors	Shear			3 0		80	0.0	0.0	0.00	0.00	0.00	0.00	0.00	T	0.00	0.00	0.00	0.00	0.00	0.00	000		0.0	0.00	0.00	0.00	0.0	0.0	0.00	0.0	0.00	0.00
alent Shear/Bending Mo due to Effect of Torsion	Breadth of the Member		0.230	D:23U		0.230	0.230	0.230	0.230	0.230	0.230	0.230	0.230		0.230	0.230	0.230	0.230	0.230	0.230	020.0	0.000	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0/0/0
	Total Depth of the Member	ί, C	22.0	72.0	72.0	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52		0.52	0.52	0.52	0.52	0.52	0.52	0 50	1920	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52
Factored Shear	Total Shear	۲ <u>۱</u>	-0.0/ -0.0/	-0.0/ 	72.5- 77 D	-9.87	-9.87	-12.33	-12.33	-12.93	-12.93	-13.53	-13.53		-15.99	-15.99	-16.59	-16.59	-17.19	-17.19	7 05	7.95	6.75	6.75	5.55	5.55	4.62	4.62	3.42	3.42	2.22	2.22
ξED	Live Load	C C	-7.03	20.2 	n n n n	9.5 9.29	-3.29	-4.11	-4.11	-4.31	-4.31	-4.51	-4.51		-5.33	-5.33	-5.53	-5.53	-5.73	-5.73	7 22	3 59	2.25	2.25	1.85	1.85	1.54	1.54	1.14	1.14	0.74	0.74
UNFACTORED SHEAR	Floor Finish- es	e c	200	88	2 7 7	3 8 7 7	-3.29	-4.11	-4.11	-4.31	-4.31	-4.51	-4.51		-5.33	-5.33	-5.53	-5.53	-5.73	-5.73	н С	3 22	2.25	2.25	1.85	1.85	1.54	1.54	1.14	1.14	0.74	0.74
	Dead Load	L F F	- I . D	-11.15	22.21-	-13.30	-13.30	-15.98	-15.98	-17.05	-17.05	-18.13	-18.13		-20.79	-20.79	-21.86	-21.86	-22.94	-22.94	77 0	140	8.53	8.53	7.62	7.62	5.84	5.84	4.55	4.55	3.25	3.25
Factored Moment	Total Torsion	0				80	0.0	8.0	0.0	0.0	0.0	0.0	0.00		0.00	0.00	0.00	0.00	0.0	0.0			0.0	0.0	0.0	0.00	0.0	8	0.0	0.0	0.0	0:0
RED	Live Load				30	88	0.0	0.0	0.0	0.0	0.0	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.0	000		0.0	0.0	0.00	0.00	8. 0	8; 0	0.0	0.0	0.00	0.0
UNFACTORED TORSION	Floor Finish- es	+	+	3		38	8	8	8	8.0	8	8. 0	0.00		0.00	0.0	0.00	0.0	0.0	8	8	+	+	8		0.0	8	-		8	0.0	8
Ŋ,	Dead Load		38	38	38	88	0.0	0.0	8 0	0.0	80	0.0	0.0		0.0	0.0	0.0	0.0	0.0	8.0	8		8	8	0.0	0.0	80	8 0	8 0	80	0.0	0:0

	Area of Steel Required cm ²	1.39	1.39	2.99	2.99	3.31	3.31	3.19	3.19	3.91	3.91	3.37	3.37	3.31	3.31	3.89	3.89	3.21	3.21		3.21	3.21	3.91	3.91	3.32	3.32	3.37	3.37	3.96	3.96	3.24	3.24
																				\downarrow												
	Xu/d Achieved	0.00355	0.00355	0.00762	0.00762	0.00843	0.00843	0.00813	0.00813	0.00996	0.0096	0.00860	0.00860	0.00843	0.00843	0.00991	0.00991	0.00817	0.00817		0.00817	0.00817	0.00996	0.00996	0.00847	0.00847	0.00860	0.00860	0.01008	0.01008	0.00826	0.00826
	Web Width of the Member	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070		0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070
	Flange Width of the Member	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000		2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
	MOR for which Xu makes Yf>Df Muweb	193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1		193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1	193.1
	MOR for MOR for which Xu which Xu makes makes Yf≏Df Yf>Df Muweb	208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1		208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1	208.1
	MOR for which Xu = Df Muf	167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0		167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0	167.0
	Xu for Yf = Df	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033		0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033	0.3033
	Xumax/d Permi- ssible	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48		0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
	Thickness of comp- ression Flange	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130		0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130
	Effective Depth	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492		0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492
	Total Depth of the Member	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520		0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520
Factored Moment	Total Bending moment	-2.52	-2.52	-5.40	-5.40	-5.97	-5.97	-5.76	-5.76	-7.05	-7.05	-9 9	-6:09	-5.97	-5.97	-7.02	-7.02	-5.79	-5.79		-5.79	-5.79	-7.05	-7.05	-6.00	-6.00	-9 9	-6.09	-7.14	-7.14	-5.85	-5.85
	Live Load	-0.84	-0.84	-1.80	-1.80	-1.99	-1.99	-1.92	-1.92	-2.35	-2.35	-2.03	-2.03	-1.99	-1.99	-2.34	-2.34	-1.93	-1.93		-1.93	-1.93	-2.35	-2.35	-2.00	-2.00	-2.03	-2.03	-2.38	-2.38	-1.95	-1.95
UNFACTORED MOMENTS	Floor Finishes	-0.84	-0.84	-1 1.80	-1.80	-1.99	-1.99	-1.92	-1.92	-2.35	-2.35	-2.03	-2.03	-1.99	-1.99	-2.34	-2.34	-1.93	-1.93		-1 1.93	-1.93	-2.35	-2.35	-2.00	-2.00	-2.03	-2.03	-2.38	-2.38	-1.95	-1.95
UNFACT	Dead Load	-3.51		9.85 9.85	9.85 9.85	. 0 14	8.14 4	-7.88	-7.88	-9.14	-9.14	-8.34	-8.34	-8.21	-8.21	-9.11	-9.11	-7.97	-7.97		-7.97	-7.97	-9.13	-9.13	-8.25	-8.25	œ Ģ	-8 9.38	-9.22	-9.22	-8.00	00. Qi
		MAX.	MIN.	MAX.	MIN.	MAX	ŃШ	MAX.	MIN.	MAX	MIN.	MAX.	MIN.	MAX	MIN.	MAX.	MIN.	MAX.	ΜΙΜ		MAX	ΜΜ	MAX	MIN.	MAX.	MIN.	MAX	MIN.	MAX.	MIN.	MAX.	MIN
	CASE	0		1.5		m		0		1.5		m		0		1.5		Э			-		1.5		Э		0		1.5		m	
	LOAD CASE Member No. Distar	138						149						160							171						182					

	Area of Tension Steel Required cm ²	0	<u>5</u>	2. C	66 C	3.31	3.31	3.19	3.19	3.91	3.91	3.37	3.37		3.31	3.31	3.89	3.89	3.21	3.21	, C	17.0	70	0 0 10	339	3.32	3.37	3.37	3.96	3.96	3.24	3.24
	Xu/d Achieved R	6	3 8	0.0 0.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01		0.01	0.01	0.01	0.01	0.01	0.01	200				00	0.0	0.01	0.01	0.01	0.01	0.01	0.01
	Shear Reinf. Required A cm ²	1, 0		00.U	Not Required	0.464 Not Required	0.464 Not Required	0.464 Not Required	0.464 Not Required	Not Required	0.464 Not Required	Not Required	464 Not Required		0.464 Not Required	464 Not Required		U.404 Not Required		U.404 Not Hequired	Not Required	464 Not Required	Not Required	0.464 Not Required	Not Required	Not Required	Not Required	0.464 Not Required				
	6 H		0.404	U.464 0 464	1 464 0 464	0.464				0.464		0.464	o				0.464	0.464	0.464	oj					1464	iloi	0.464	0.464	0.464	0.464	0.464	
	b1	5 C	4 0.0	0.014	4 I O O	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014		0.014	0.014	0.014	0.014	0.014	0.014	1000	4 4		0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
	Permi- ssible Shear Stress	VL 17	40.72	40.72 RA 70	64.79 64.79	68.05	68.05	66.75	66.75	72.54	72.54	88.38	88.38		68.05	68.05	72.30	72.30	67.08	67.08		0 2 2 0		40.27 73.54	50.89	88.05 192	88.38	88.38 89	72.79	72.79	67.40	67.40
	% Tensile Reinf.	Q Q	0.4U	U.4U	// 187	0.96	0.96	0.93	0.93	1.13	1.13	0.98	0.98		0.96	0.96	1.13	1.13	0.93	0.93		50	R 6	- t	980	96.0	0.98	0.98	1.15	1.15	0.94	0.94
	Shear stress			5, 5 2, 5	38	1.7	1.7	37.5	37.5	2.6	2.6	32.2	32.2		33.1	33.1	1.7	1.7	36.6	36.6	((2. r		33.1	i Ei	32.2	32.2	2.6	2.6	37.5	37.5
	Effective Depth	ç	24-i	0 4 0	67 U	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49		0.49	0.49	0.49	0.49	0.49	0.49	ç	₽ 2 0		2 0 2 0	670	0.49	0.49	0.49	0.49	0.49	0.49	0.49
Total Shear/ Moment	Bending moment	Ę	25	707	2 ₽0	5.97	5.97	5.76	5.76	7.05	7.05	6.09	6.09		5.97	5.97	7.02	7.02	5.79	5.79		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		9. K	38	809	6.09	6.09	7.14	7.14	5.85	5.85
Total (Mon	Shear	č	5 0 V V	7.34 114	1	99	90.0	1.29	1.29	0.09	69.0	1.11	Ţ.	1	1.14	1.14	0.06	0.06	1.26	1.26		9 K			114	14	1.11	1.11	0.09	0.09	1.29	1.29
Equivalent Shear/Bending Moment due to Effect of Torsion	Bending moment	0	38			0.0	00:0	0.0	0.00	0.00	00.0	0.0	80		89	89	0.00	0.00	0.00	0.0	0	3 8		36	80	800	0.0	0.0	0.00	0.00	0.00	0:0
Bending of Torsi	Shear		30	36		8.0	0:0	0.0	0.00	0.00	0.0	0.0	000	T	0.0	0.00	0.00	0.00	0.00	0.0	0			36	30	88	0.0	0.0	0.00	0.00	0.0	0.0
alent Shear/Bending Mo due to Effect of Torsion	Breadth of the Member	0.070	0/0.0	0/0/0	0/0/0	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0/0/0		0.070	0.070	0.070	0.070	0.070	0.070		n/n/n		0/0/0	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0/0/0
	Total Depth of the Member	ς, ο	200	1.52 0.52	0.02	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52		0.52	0.52	0.52	0.52	0.52	0.52	C C	72.0		0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52
Factored Shear	Total Shear	100	40.7	2.34	114	-0.06	90.0-	1.29	1.29	0.09	0.09	-1.11	-1.11		1.14	1.14	-0.06	-0.06	-1.26	-1.26	, ,	0 - -	07. - 0		-114	-1.14	1.11	1.11	-0.09	-0.09	-1.29	-1.29
	Live Load	0 10	0	2 0 5 0		0.0	-0.02	0.43	0.43	0.03	0.03	-0.37	-0.37		0.38	88. 0	-0.02	-0.02	-0.42	-0.42	2			3 6	3 65 5 (-	88	0.37	0.37	-0.03	-0.03	-0.43	-0.43
UNFACTORED SHEAR	Floor Finish- es	020	0 6	2) (2) () (2)		-0.02	-0.02	0.43	0.43	0.03	0.03	-0.37	-0.37		0.38	0.38	-0.02	-0.02	-0.42	-0.42	5	7 7 7		710	3 85 0 -	88	0.37	0.37	-0.03	-0.03	-0.43	-0.43
UN N	Dead Load		7.04	2.04 1.54	154	0.25	0.25	1.45	1.45	0.16	0.16	-1.14	-1.14		1.22	1.22	-0.08	-0.08	-1.38	-1.38	1 20	- r	<u>-</u>	200 0	-120	-1.20	1.17	1.17	-0.13	-0.13	-1.42	-1.42
Factored Moment	Total Torsion					0.00	0.0	0.0	0.00	00.0	0.00	0.00	0.0		0.0	0.0	0.00	0.00	0.00	0.00					80	800	0.00	0.0	0.00	0.00	0.00	00.0
RED	Live Load		38	36		80	0:0	0.0	0.00	0.00	0.0	0.0	0.0		0.0	0.0	0.00	0.00	0.0	0:0	0	3 8		36	30	80	0.0	0.0	0.00	0.0	0.00	0.0
UNFACTORED TORSION	Floor Finish- es		38	38		+	8 0	8.0	0.00	0.00	8	8	8		8	8	0.00	0.00	0.0	8					38	88	8	8	0.00	0.0		8
N N	Dead Load			38		8	0:0	0.0	0.0	0.00	8 0	0.0	0		0.0	0.0	0.0	0.00	0.0	8						88	0.0	0.0	0.0	0.0	0.0	0.0

	Area of Steel	Required cm ²		3.36	3.36	20.0	1.11	1.41	1.56	1.56	0.68	0.68	4.19	4.19	4.07	4.07	9.08	9.08	15.44	15.44	
	p/nx	Achieved		0.00855	9920000	0//00/0	0.000,70	0.00359	0.00397	0.00397	0.00173	0.00173	0.01068	0.01068	0.01038	0.01038	0.02313	0.02313	0.03934	0.03934	_
	VVeb Width of	the Member		0.070	U/U/U	0/0/0	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	
	Flange Width of	the Member		2.000 2.000 2.000				2000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	
	- >	Yf>Df Muweb		193.1	193.1	- 120 - 120 - 1	- 6 - 6 - 6	193.1	193.1	193.1	130.3	130.3	130.3	130.3	130.3	130.3	130.3	130.3	130.3	130.3	
		mares Yf=Df Mub		208.1	7000		- 007 208 7	208.1	208.1	208.1	128.3	128.3	128.3	128.3	128.3	128.3	128.3	128.3	128.3	128.3	
	MOR for which	Xu = Df Muf	()	167.0	16/.0	10/.0	167.0	167.0	167.0	167.0	101.5	101.5	101.5	101.5	101.5	101.5	101.5	101.5	101.5	101.5	
	Xu for	Yf= Df		0.3033	0.3033			0.3033	0.3033	0.3033	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	0.1750	
	Xumax/d	ssible	(9 9 0 0	2 2 2 2 2 2 0	9 Q		0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	
	Thickness of comp-	ression Flange		0.130	0.130	0,130	0 130	0.130	0.130	0.130	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	
	Effective	Depth		0.492	0.492	0.432	0.407	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	0.492	
	Total Depth of	the Member	001	0.520	0.520	0,200	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	0.520	
Factored Moment	Total	moment	()	9 9 9	ian y ian y	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-2.55	-2.82	-2.82	1.23	1.23	7.56	7.56	7.35	7.35	16.29	16.29	27.51	27.51	
OMENTS	Live		()	-2.02	7.02	- - - - - - - - - - - - - - - - - - -	7 12 - 17	9 18 18	-0.94	-0.94	0.41	0.41	2.52	2.52	2.45	2.45	5.43	5.43	9.17	9.17	
UNFACTORED MOMENTS	Floor	Finishes	()	-2.02	-7.02	- - - - - - - - - - - - - - - - - - -	7 1 12 - 1 12	9.0-	-0.94	-0.94	0.41	0.41	2.52	2.52	2.45	2.45	5.43	5.43	9.17	9.17	
UNFAC	Dead	Load		8, 8 0, 9	8 20 20		t y	999 1997 1997	-3.91	-3.91	1.97	1.97	9.89	9.89 6	9.61	9.61	21.63	21.63	35.12	35.12	
				MAX.	MIN.	MIN.	MAX	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	
	LOAD CASE	Distance	(-	L,	0. -			0		1.5		m		0		1.5		ო		
	LOAD	Member No.	00,	193					204						215						

		_													_							_
	Area of Tension Steel Required cm ²	3.36	3.36	3.02	3.02	1.41	1.41		1.56	1.56	0.68	0.68	4.19	4.19		4.07	4.07	9.08	9.08	15.44	15.44	
	Xu/d Achieved	0.01	0.01	0.01	0.01	0.00	0.00		0.00	0.00	0.00	0.00	0.01	0.01		0.01	0.01	0.02	0.02	0.04	0.04	
	Shear Reinf. Xu/d Required Achieved cm ²	0.014 0.464 Not Required	0.42	0.42		0:30	0:30	1.26	1.26	1.15	1.15		1.64	1.64	1.84	1.84	2.41	2.41				
	d f	0.464	0.464	0.464	0.464	0.464	0.464		0.464	0.464	0.464	0.464	0.464	0.464		0.464	0.464	0.464	0.464	0.464	0.464	_
	bd	0.014	0.014		0.014	0.014 0.464	0.014 0.464		0.014 0.464	0.014 0.464	0.014 0.464	0.014	0.014 0.464	0.014 0.464		0.014 0.464	0.014 0.464	0.014	0.014 0.464	0.014 0.464	0.014 0.464	
	Permi- ssible Shear Stress	68.38	68.38	65.12	65.12	46.72	46.72		49.37	49.37	33.86	33.86	74.50	74.50		73.77	73.77	98.49	98.49	103.02	103.02	
	% Tensile Reinf.	0.97	0.97	0.88	0.88	0.41	0.41		0.45	0.45	0.20	0.20	1.22	1.22		1.18	1.18	2.64	2.64	4.48	4.48	
	Shear stress	6.0	0.9	34.0	34.0	68.8 1	68.8		65.3	65.3	100.2	100.2	135.0	135.0		160.3	160.3	195.1	195.1	230.0	230.0	
	Effective Depth	0.49	0.49	0.49	0.49	0.49	0.49	1	0.49	0.49	0.49	0.49	0.49	0.49		0.49	0.49	0.49	0.49	0.49	0.49	
Total Shear/ Moment	Bending moment	6.06	6.06	5.46	5.46	2.55	2.65		2.82	2.82	1.23	1.23	7.56	7.56		7.35	7.35	16.29	16.29	27.51	27.51	
Total (Mon	Shear	0.03	0.03	1.17	1.17	2.37	2.37	L	2.25	2.25	3.45	3.45	4.65	4.65		5.52	5.52	6.72	6.72	7.92	7.92	
Equivalent Shear/Bending Moment due to Effect of Torsion	Bending moment	0.0	0.00	0.00	0.00	0.0	0,00		000	0.00	80	0.00	0.00	0.00		8.0	0.0	0.0	0.0	0.0	0.00	
Bending of Tors	Shear	0.0	0.00	0.00	0.00	0.00	0:00	Ţ	0.00	0.00	0.00	0.00	0.00	0.00		8.0	0.00	0.00	0.00	0.00	0.0	
alent Shear/Bending Mo due to Effect of Torsion	Breadth of the Member	0.070	0.070	0.070	0.070	0.070	0.070.0		0.070	0.070	0.070	0.070	0.070	0.070		0.070	0.070	0.070	0.070	0.070	0.070	
	Total Depth of the Member	0.52	0.52	0.52	0.52	0.52	0.52		0.52	0.52	0.52	0.52	0.52	0.52		0.52	0.52	0.52	0.52	0.52	0.52	
Factored Shear	Total Shear	0.03	0.03	-1.17	-1.17	-2.37	-2.37		-2.25	-2.25	-3.45	-3.45	-4.65	-4.65		5.52	-5.52	-6.72	-6.72	-7.92	-7.92	
ËD	Live Load	0.01	0.01	-0.39	-0.39	-0.79	-0.79		-0.75	-0.75	-1.15	-1.15	-1.55	-1.55		-1.84	-1.84	-2.24	-2.24	-2.64	-2.64	
UNFACTORED SHEAR	Floor Finish- es	0.01	0.01	-0.39	-0.39	-0.79	-0.79		-0.75	-0.75	-1.15	-1.15	-1.55	-1.55		-1.84	-1.84	-2.24	-2.24	-2.64	-2.64	
	Dead Load	-0.28	-0.28	-1.57	-1.57	-2.87	-2.87		-3.30	-3.30	-4.60	-4.60	-5.89	-5.89		-7.59	-7.59	-8.50	-8.50	-9.41	-9.41	-
Factored Moment	Total Torsion	0.0	0.00	0.00	0.00	0.00	0.00		0.0	0.00	0.00	0.00	0.00	0.00		8.0	0.00	0.00	0.00	0.0	0.00	
	Live Load	0.0	0.00	0.00	0.00	0.00	0.00		0.0	0.00	0.00	0.00	0.00	0.00		8.0	0.0	0.00	0.00	0.00	8 0	
UNFACTORED TORSION	Floor Finish- es	0.0	0.00	0.00	0.00	0.0	0.00		0.0	0.00	0.00	0.00	0.00	0.00		0.0	0.0	0.00	0.00	0.0	00.00	
N N	Dead Load	0.00	0.00	0.00	0.00	0.00	0.00		0.0	0.00	0.00	0.00	0.00	0.00		0.0	0.00	0.00	0.00	0.00	0.0	

<u>Check for</u>	Deflection	<u>l</u>								
<u>Calculation</u>	n of Effective	<u>e Moment of</u>	Inertia as per	IS:456 Annex C						
l _{eff}	= _	4.0.4	lr 1	(0,0,4)						
		1.2 - (Mr/M) (Z/d) (1	-x/d) (bw/b)						
l _{eff}	is the offer	tivo moment	of inertia for t	he entire Beam o	r Slah in the di	rection of effec	tivo enon			
lr			a of the crack							
Mr			t, equal to (Fo							
	Where									
	Fcr	is the modu	lus of rupture	of concrete = 0.7	Fck 🗸	_				
	[Clause 6.2	2.2 of IS 456	: 2000 also r	eiterated in Exam	ple 12 of SP 16	6 :1980 (Tenth	reprint June 1997)]			
	İgr			f the gross sectio						
	Yt	is the distar	nce of centroid	lal axis of the gro	ss section to th	ie extreme fibr	e in tension			
M			nt under servi	ce loads						
Z	is the lever									
d	is the effec	tive depth h of the neut	rol ovio							
x bw		dth of the we								
b				<u>م</u>						
Ec	is the breadth of the compression face									
U										
Γ-	[Clause 6.2.3.1 of IS 456 : 2000]									
Es	is the modulus of elasticity of steel = 200 KN/mm ² [Clause 5.6.3 of IS 456 : 2000 also reiterated in Example 12 of SP 16 :1980 (Tenth reprint June 1997)]									
		5.3 01 18 456 tio = Es/Ec	: 2000 also ri	eiterated in Exam	one 12 of SP 16	5 : 1980 (Tenth	reprint June 1997)]			
m	modular ra	10 - ES/EC								
Note :	for the defl	ection check	of the slahs	both bw and b are	taken as 1m					
14010 .										
Check for	Deflection A	Nong Lx Dire	ection							
lr	=	3.469E-03								
Mr	=	45.921								
Fcr	=	451.57								
lgr	=	2.644E-02								
Yt M	=	0.2600								
M Z	=	20.72 0.4859								
	=	0.4659								
Ы										
d x	=									
d X bw		0.0295								
X	=									
x bw	=	0.0295 0.230	mpa							
x bw b	= = =	0.0295 0.230 3.000 31622.78 200000								
x bw b Ec Es m	= = = = = =	0.0295 0.230 3.000 31622.78	mpa							
x bw Ec Es	= = = = = =	0.0295 0.230 3.000 31622.78 200000		m						
x bw b Ec Es m	= = = = = =	0.0295 0.230 3.000 31622.78 200000 6.3245553 =	mpa	m						
x bw b Ec Es m	= = = = = =	0.0295 0.230 3.000 31622.78 200000 6.3245553	mpa	m						
x bw Ec Es m CG cracke	= = = = = ed section	0.0295 0.230 3.000 31622.78 200000 6.3245553 =	mpa	m						
x bw Ec Es m CG cracke	= = = = = ed section	0.0295 0.230 3.000 31622.78 200000 6.3245553 =	mpa	lgr			Image: Constraint of the sector of			
x bw Ec Es m CG cracke	= = = = = ed section = 	0.0295 0.230 31622.78 200000 6.3245553 = 3.328E-03	mpa 0.0828							

					_				-
Maximu	m Deflectio	n with Gros	<u>s M.O.I. of th</u>	e Element (i.e. (ross sectio	on,neglecti	ng the reir	nforcement)
Deflectio	n due to Dea	d Load							
Calf Mair	what of the Cla				=	11 0410			
	ght of the Sla ishing				=	11.8410 2.9970			
Floor Finishing Partition Wall/ any other Concentrated Load						0.0000			
annon	Train any on					0.0000			
Deflection	n due to Live	Load			=	2.9970	mm		
Coefficier	nt of permane	ent part of Li	ve Load for loa	g term deflection	effects		0.7		
(Refer 35	.4.1 page 11	4 of SP :-19	33 First Reprir	nt December 1985	5) 				
						17.0050			
Total Sho	ort Term Defli	ection (with !	Gross M.O.I)		=	17.8350	mm		
Modified	 Value of Sho	urt Torm Doff	action		=	17.84	mm		
	f Calculated				-	17.04			
(**********		(10070)							
Doflactiv	on due to Sl	hrinkado							
Deneca		linkage							
a _{cs}	=	$K_3 \psi_{os} L^2$	=	0.90	mm				
~~		0 100 -							
K₃	=	is a consta	nt depending ι	upon the support (condition =		0.063	for fully cor	ntinuous
ψ_{cs}	=	K4 ε _{cs} /D	=	3.56229E-05	1			,	
where									
	K4	=	0.72(Pt-Pc)/(∀ t)	for 0.25 ≤ _	Pt-Pc < 1.0			
	•	and	0.65(Pt-Pc)/(for Pt-Pc >	. 1 0			
	Pt	=	0.11767313						
	Pc	=		(effect ignored if	anvì				
	K4	=	0.24698532						
	Ecs	=	0.000075						
	D	=	0.52						
L	=	20.000		(Effective span c	onsidered)				
Dofloctiv	on due to Ci	0.00							
Denecu		leep							
Elasticity	modulus of	concrete for	creep effects		17568.21	mpa			
Age at lo		=		days					
Please w			n age at loadir	ng (other values a	re not allow	ed in the and	d will cause	errors)	
		oefficient							
7 days	_	2.2							
<u>28 days</u> 1		1.6							
1year dovolocij		l.1).8							
days as : Deflectio	sp ι n due to cree		=	12.65	mm				
Denection		γ γ		12.00					
Total Def	lection includ	uing all effect	S		=	31.38	mm		
	er Provided i				=	11.84			
	Deflection in		ffects		=	19.54	mm		
-								01/	
Permissi	ble limit for d	leflection			=	20.00	mm	OK	
Total De	l flection inclu	l Idina all effe	i ots after erec	tion of partitions	=	16.54	mm		
	ication of finis		olo aller eret	and or partitions		10.34			
Permissi	ble limit for d	leflection			=	20.00	mm	OK	

DILEMMA FOUND IN INDIAN STANDARD

Determination of creep effects

As per IS:456-2000 clause 6.2.5.1

In absence of experimental data and detailed information on the effect of the variables, the ultimate creep strain may be estimated from the following values of creep coefficients.

Age at loading	creep coefficients
7 days	2.2
28 days	1.6
1 year	1.1

Observation

No method of interpolation of the creep coefficients is suggested specifically. As a general understanding the values can be linearly interpolated to get values corresponding to age at loading not considered in the data table.

As per SP:24-1983 (Explanatory Handbook to IS:456-1978)

Clause 5.2.5.1

Appropriate values of creep coefficient, for an age of loading different from that given in the code can be obtained by an interpolation, assuming that the creep coefficients decreases linearly with the logarithm of time in days.

Observation

A method of interpolation to obtain values of creep coefficients for age of loading not included in the data table has been established. This code also refers to reference 7 (CEB/FIP, 'international recommendations for the design and construction of concrete structures' 1970) for further detailed information on this topic.

As per IS:1343-1980 Clause 5.2.5.1

In absence of experimental data and detailed information on the effect of the variables, the ultimate creep strain may be estimated from the following values of creep coefficients.

Age at loading	creep coefficients
7 days	2.2
28 days	1.6
1 year	1.1

Clause 5.2.5.2

For calculation of deformation at some stage before the total creep is reached, it may be assumed that about half the total creep takes place in the first month after loading and that three-quarters of the total creep takes place in first six months after loading.

Observation

A method of interpretation of creep effect is suggested which is still different from the above mentioned codes.

T

As per IRC:18-2000 Clause 11.2

The strain due to creep of concrete shall be taken as specified in Table 2.

Maturity of concrete at the time of stressing as a % of fck	creep strain per 10mpa
40	9.4 x 10 ⁻⁴
50	8.3 x 10 ⁻⁴
60	7.2 x 10 ⁻⁴

(Table not shown completely)

Observation

A creep effect definition is based on maturity of concrete and the present value of stress due to permanent effects at that time.

General Observation

The method of estimation of creep effects differ in different codes although all the codes are of Indian origin. The problem need immediate concern for clarity.

More over the term "Age at Loading " is misleading since it is not defined in any of the 'IS' series of codes properly. I understand that since it is applicable to long term deformations in RCC structures therefore it can not be the age at prestressing of concrete which is generally assumed.

REFERENCES

- 1. "Handbook of Concrete Engineering" Second Edition Edited by: Mark Fintel
- "Design Principles and Detailing of Concrete Structures" Edited by: D. S. Prakash Rao
- "Reinforced Concrete Designer's Handbook" Tenth Edition Edited by: Charles E. Reynolds and James C. Steedman
- 4. "Limit State Design of Reinforced Concrete" Tenth Print Edited by: P. C. Varghese
- "Design of Reinforced Concrete Structures" 2003 Reprint Edited by: Ashok Kumar Gupta
- IS 456: 2000 "Indian Standard Plain and Reinforced Concrete Code of Practice -(Fourth Revision)
- 7. SP-16 : 1980 "Design Aids for Reinforced Concrete to IS : 456 1978"
- IS: 875 (Part 2) -1987 "Indian Standard Code of Practice for Design Loads (Other than Earthquake) for Buildings and Structures Part 2 Imposed Loads (Second Revision).
- 9. SP-24: 1983 "Explanatory Handbook on Indian Standard Code of Practice for Plain and Reinforced Concrete (IS: 456-1978)" First Reprint 1985.
- "Design of Reinforced Concrete Structures" Fourth Edition -Edited by: P. Dayaratnam.
- 11. "Construction Planning, Equipment, and Methods" Fifth Edition -
 - Edited by: R. L. Peurifoy, P.E.
 - W. B. Ledbetter, P. E.
 - C. J. Schexnayder, P.E.
- "Concrete Technology" International Student Edition First ISE Reprint 1999 Edited by: A. M. Neville and J. J. Brooks
- "Design and Construction Failures (Lessons From Forensic Investigations)" First Published in India-2001 – Edited by: Dov Kaminetzky, M.S., P.E.
- BS 8110: Part 1: 1985 "British Standard Structural Use of Concrete" Part 1. Code of Practice for Design and Construction.
- BS 8110: Part 2: 1985 "British Standard Structural Use of Concrete" Part 2. Code of Practice for Special Circumstances.

- Paper Presentation Reports of fib Symposium 2004 on "Segmental Construction in Concrete" Organized by: The Institution of Engineers (India) Held on 26 November, 2004 at New Delhi, India.
- 17. IS 14215: 1994 "Indian Standard Design And Construction Of Floors And Roofs With Precast Reinforced Concrete Channel Units – Code Of Practice".
- 18. IS 6061 (part I) 1971 "Indian Standard Code Of Practice For Construction Of Floor And Roof With Construction Of Floor And Roof With Joists And Filler Blocks (Part I: With Hollow Concrete Filler Blocks)".
- 19. IS 6061 (Part II) 1981 "Indian Standard Code Of Practice For Construction Of Floor And Roof With Construction Of Floor And Roof With Joists And Filler Blocks (Part Ii: With Hoolow Clay Filler Blocks)".
- 20. IS 6061 (Part III) 1981 "Indian Standard Code Of Practice For Construction Of Floor And Roof With Construction Of Floor And Roof With Joists And Filler Blocks (Part Iii: With Precast Hollow Clay Block Joists And Hollow Clay Filler Blocks)".
- 21. IS 6061 (Part IV) 1981 "Indian Standard Code Of Practice For Construction Of Floor And Roof With Construction Of Floor And Roof With Joists And Filler Blocks (Part Iv: With Precast Hollow Clay Block And Slab Panels)".
- IS 13990: 1994 "Indian Standard Precast Reinforced Concrete Planks And Joists For Roofing And Flooring – Specification".
- IS14142: 1994 "Indian Standard Design And Construction Of Floors And Roofs With Prefabricated Brick Panel – Code Of Practice".
- 24. IS 13994-1994 "Indian Standard-Design And Construction Of Floor And Roof With Precast Reinforced Concrete Planks And Joists- Code Of Practice".
- 25. IS 14201-1994 "Indian Standard-Precast Reinforced Concrete Channel Units For Construction Of Floors And Roofs- Specification".
- 26. Web sites on cranes (Internet Info Media)
- 27. Experience from Practical involvement in the DMRC line-3 Project as a member of Design Team for the Design and Planning of Launching System for Line-3 Project (Barakhamba to Dwarka Section).