Study of Rational Rose with UML

A Dissertation Submitted in Partial fulfillment for

the requirement of the award of Degree of
Master of Engineering
in
Computer Technology and Applications

By:

TOWFIK JEMAL
30/CTA/03

Under the guidance of

Prof. ASOK DE

DEPARTMENT OF COMPUTER ENGINEERING
DELHI COLLEGE OF ENGINEERING
UNIVERSITY OF DELHI-110042
2003-2005

DECLARATION BY THE CANDIDATE

| hereby certify that the work which is being presented in the dissertation entitled “Study of
Rational Rose with UML”, in the partial fulfillment of the requirements for the award of the degree
of Master of Engineering in Computer Technology and Applications, is an authentic record of my
work carried out under the supervision of Dr. Asok De (Prof.). I have not submitted this work

anywhere else for the award of any other degree.

(Towfik Jemal)

M.E. (CTA)

Department of Computer Engineering.
DCE, Delhi-1100042

CERTIFICATE

This is to certify that declaration made by the candidate is correct to the best of my knowledge and
belief. This is to certify that the project entitled ”Study of Rational Rose with UML” is an authentic
record of candidate’s own work carried out by him under my guidance and supervision .He has not
submitted this work for the award of any other degree.

Dr. Asok De (Prof.) Dr. D. Roy Choudhury (Prof.)

Head Head

Department of IT and project guide Department of Computer Engineering
DCE, Delhi-110042 DCE, Delhi-1100042

ACKNOWLEDGEMENTS

I am delighted to express my heartily and sincere gratitude and indebtedness to Prof Asok De,
Head Information Technology Department, Delhi College of Engineering, Delhi for his invaluable
guidance and wholehearted cooperation. His continuous inspiration only has made me complete this
project.

I am greatly thankful to Prof. D. Roy Choudhary Head of Department and Dr. Goldie Gabrani
Project Coordinator, for their support in providing resource. My heartily thanks to all professors for

their expertise and all rounded personality they have imparted to me.

(TOWFIK JEMAL)

Table of Contents

Abstract

1. Introduction

1-2
2. Overview of Rational Rose
3-11
2.1. Application Window
3
3. Use Case Diagram and Specification
12-25
3.1. System behavior
12
3.1.1. Actors
12
3.1.2. Use Cases
12
3.2. Creating and documenting actors and use cases
14
3.2.1. Creating Actors
14
3.2.2. Actor documentation
14
3.2.3. Creating Use Cases
15
3.2.4. Use Case documentation
15
3.3. Flow of events
16
3.3.1. Linking flow of Events to Use Cases
18
3.4. Use Case Relationship
19
3.5. Use Case Diagram
20
3.5.1. Use Case Toolbox
20
3.5.2. Creating the main Use Case diagram
21

3.6. Use Case Specification

22
4. Class Diagram and Specification

26-39
4.1. Overview
26
4.2. Class diagram
30
4.2.1. Class diagram Toolbox
30
4.2.2. Adding and Hiding classes and Filtering class relationship
31
4.2.3. Class Specification
31
5. Interaction Diagram and Specification
40-54
5.1.Interaction diagram overview
40
5.2.Use Case realization
40
5.3.Collaboration diagram
41
5.4. Sequence diagram
42
5.5. Toolbox
43
5.5.1. Collaboration diagram toolbox
43
5.5.2. Sequence diagram toolbox
44
5.6. Specification
44
5.6.1.0bject Specification
44
5.6.2. Class Instance Specification
46
5.6.3. Link Specification
47
5.6.4. Message Specification
50
5.7. Sequence diagram for JU course registration system
53
6. Relationship Specification
55-57

6.1. Association Relationship

55
6.2. Aggregation Relationship
55
6.3. Naming Relationship
56
6.4. Role Name
56
6.5. Multiplicity Indicator
56
. State Machine Diagram and Specification
58-70
7.1. Overview
58
7.2. State machine specification
58
7.3. State chart diagram
58
7.3.1. States
59
7.3.2. States transition
59
7.3.3. Special states
60
7.4. Activity diagram
61
7.4.1. Activities
61
7.4.2. Transitions
62
7.4.3. Decision points
62
7.4.4. Synchronization bar
62
7.4.5. Swimlanes
63
7.4.6. Initial and final activities
63
7.4.7. Object flow
64
7.5. Swimlane specification
64
7.6. State and activity specification
65

7.7. Action specification

68
7.8. State transition specification

69
7.9. Decision specification
70
7.10.Synchronization specification
70
7.11.0bject flow specification
70
8. Component Diagram and Specification
71-78
8.1. Component diagram overview
71
8.2. Source code component
71
8.3. Component diagram toolbox
72
8.4. Component specification
72
8.5. Package specification
76
8.6. Software component for the JU course registration system
77
9. Deployment Diagram and Specification
79-82
9.1. Deployment diagram overview
79
9.2. Deployment diagram toolbox
79
9.3. Processor specification
79
9.4. Device specification
81
9.5. Process specification
81
9.6. Deployment diagram for the JU course registration system
82
10. Code Generation and reverse engineering with Visual Basic
83-89
10.1. Code generation
83
10.2. Reverse engineering
85

10.3. Visual Basic code for Select Course to Teach use case

11. Rational RequisitePro

11.1. Overview

11.2. Overview
11.2.1. Project template

11.3. Working with view
11.3.1. The Attribute Matrix
11.3.2. The Traceability Matrix
11.3.3. The Traceability Tree
11.3.4. Creating Views

11.4. Querying and Searching
11.4.1. Querying overview

11.4.2. Creating and modifying queries

11.4.3. Navigating to a Requirement using the Go To command

11.4.4. Reviewing a project with cross-project traceability

11.4.5. Requirement Metrics
11.5. Discussion in RequisitePro
11.5.1. Viewing discussions
11.5.2. Configuring E-mail to discussion
11.5.3. Creating discussion
11.5.4. Reading discussion
11.5.5. Responding to discussion

11.6. Documents in RequisitePro

86

90-118

90

93

95

96

96

98

100

102

103

103

103

104

104

105

106

106

106

107

108

108

109
11.6.1. Creating RequisitePro documents

110
11.6.2. Microsoft Word
111
11.7. Requirements
112
11.7.1. Creating Requirements
112
11.7.2. Inserting Microsoft word-linked Files in requirement
113
11.7.3. Creating requirements in view
114
11.8. Hierarchy
114
11.8.1. Child requirements
114
11.8.2. Peer-requirements
114
11.8.3. Suspect relationship
115
11.9. Traceability
115
11.9.1. Traceability in view
116
11.9.2. Suspect relationship
116
11.10. Importing requirements and documents
117
11.10.1. Preparing to Import
117
12. Conclusions
119
Bibliography
120

10

ABSTRACT

Rational Rose is the visual modeling software solution that creates, analyze, design, view, modify,
and manipulate components. Visual modeling is the mapping of real world processes of a system to a
graphical representation.

An overview of the behavior of the system being developed can be depicted graphically with a use-
case diagram. Rational Rose provides the collaboration diagram as an alternative to a use-case
diagram. It shows object interactions organized around objects and their links to one another. The
statechart diagram provides additional analysis techniques for classes with significant dynamic
behavior. A statechart diagram shows the life history of a given class, the events that cause a transition
from one state to another and the actions that result from a state change. Activity diagrams provide a
way to model a class operation or the workflow of a business process.

Rational Rose provides the notation needed to specify and document the system architecture. The
logical architecture is captured in class diagrams that contain the classes and relationships that
represent the key abstractions of the system under development. The component architecture is
captured in component diagrams that focus on the actual software module organization within the
development environment. The deployment architecture is captured in deployment diagrams that map
software to processing nodes, showing the configuration of run-time processing elements and their
software processes. The way how code is generated is also included in this project.

RequisitePro helps projects succeed by giving teams the ability to manage all project requirements
comprehensively and facilitating team collaboration and communication. RequisitePro combines both
document-centric and database-centric approaches. By deeply integrating Microsoft Word with a
multi-user database, RequisitePro organize, prioritize, trace relationships, and easily track changes to
the requirements. The program’s unique architecture and dynamic links make it possible to move
easily between the requirements in the database and their presentation in Word documents. We have
studied everything mentioned above and used JU registration system to show how to use rational rose

and RequisitePro for implementation.

11

1. Introduction

Rational Rose is the visual modeling software solution that creates, analyze, design, view, modify,
and manipulate components. The Rational Rose product family is designed to provide the software
developer with a complete set of visual modeling tools for development of robust, efficient solution to
real-time systems environment. Rational Rose share a common universal standard, making modeling
accessible to nonprogrammers wanting to model business processes as well as to programmers
modeling application logic.

Visual modeling is the mapping of real world processes of a system to a graphical representation.
Models are useful for understanding problems, communicating with everyone involved with the
project (customers, domain experts, analysts, designers, etc.), modeling complex systems, preparing
documentation, and designing programs and databases. Modeling promotes better understanding of
requirements, cleaner designs, and more maintainable systems. Increasing complexity, resulting from
a highly competitive and ever changing business environment, offers unique challenges to system
developers. Models help to organize, visualize, understand, and create complex things.

As software systems become more complex, cannot understand them in their entirety. To
effectively build a complex system, the developer begins by looking at the big picture without getting
caught up in the details. A model is an ideal way to portray the abstractions of a complex problem by
filtering out nonessential details. Abstraction is a fundamental human capability that permits us to deal
with complexity. The developer must abstract different views or blueprints of the system, build
models using precise notations, verify that the models satisfy the requirements of the system, and
gradually add detail to transform the models into an implementation.

Visual modeling has one communication standard, the Unified Modeling Language (UML). The
UML provides a smooth transition between the business domain and the computer domain. Using the
UML, all members of a design team can work with a common vocabulary, minimizing
miscommunication and increasing efficiency.

Visual modeling captures business processes by defining the software system requirements from
the user’s perspective. This streamlines the design and development process. Visual modeling also
defines architecture by providing the capability to capture the logical software architecture

independent of the software language. This method provides flexibility to the system design since the

12

logical architecture can always be mapped to a different software language. Finally, with visual
modeling, parts of a system or an application can be reused by creating components of the design.
These components can then be shared and reused by different members of a team allowing changes to
be easily incorporated into already existing development software.

Through out our study project we have used JU university registration system as an example. In
JU, at the beginning of each semester, students may request a course catalog containing a list of
course offerings for the semester. Information about each course, such as professor, department, and
prerequisites will be included to help students. The new system allows students to select 21 credit
hour course offerings for the coming semester. Once the registration process is completed for a
student, the registration system sends information to the billing system so the student can be billed for
the semester, i.e. the student name is registered by the billing system for loan so that they will pay
after graduation. Professors must be able to access the online system to indicate which courses they
are going to teach, and to see which students signed up for their course offerings. For each semester,
there is a period of time that students can change their schedule. Students must be able to access the
system during this time to add or drop courses.

For the purpose of comparison we have also studied Rational RequisitePro in this project. The
primary objective of Rational RequisitePro is to manage requirements so that the system developers
provide quality software, on time, and on budget to the users.

13

2. Overview of Rational Rose

When Rational Rose is started, some editions display a Framework dialog box. From this dialog

box, a model can be loaded with predefined model elements, allow focusing the modeling efforts on

the parts that are unique to the system.

Independent of Frameworks, Rational Rose’s graphical user interface can be used to display,

create, modify, manipulate, and document the elements in a model using these windows:

>

YV V. V V V

>

Application window
Browser window
Documentation window
Diagram window
Overview window
Specification window

Log window

Rational Rose displays the diagram, specification, and documentation windows within the

application window. The log window is a dockable window can be moved, docked or undocked, or

closed.

2.1 Application Window

An application window contains a title bar, menu bar, toolbar, and a work area where the toolbox,

browser, documentation window, diagram window, and specification window appear.

14

Title bar % Datipnal Rose - JU

| EleFdit Yiew Format Browse Report Query Tools Add-Ins Window Help

Menubar— |ow@ » »0 & ®O BREBBB &+« a0
TOOI bar @i[‘% Lse Case View W s & Use Case Diagram: Use Case View / JU E||§|FZ| Use Case Specification for JU
::% EE?;;Z::::\‘WEW Ea | = Gerersl |Diag|ams| Helalionsl Files i
}. Deplopment iew El [Nare: ’JLI— Package: Use Case View
Model Properties
< % |—) Stereotype: ,ﬁ
/ 2 _p Rank: ,— I~ Abstract
/ Drocumentation:
B
rr
=0
Browser /=
)
~ KO O \
= =
g/ i % I Cancel | L&.I\' I BmwsEVI Help |
Documentation
Window (
x|
£
Toolbox
'ﬂ/ \
For Helpﬁss Fi I |Default Language: Snalysis ‘\\ [NOM ﬂ
/
/ Diagram Icon for . \ .
Lo Window Overview window Specification
9 Window
Window
Figure 2.1 Applications Window
Title Bar

The title bar always displays the diagram type. Additional information (like the view or diagram

name) is often displayed depending on the diagram/model being viewed. The title bar includes a

Control Menu box, Minimize button, Restore button, and Close button.

Control-Menu Box

Clicking the Control-Menu box (on the application or diagram window) displays a menu with

the following commands:

Restore

Restores focus to that diagram window.

15

Move

Size

Minimize

Maximize

Close

Highlights the border of the window. Move the pointer to the Title Bar, click
and drag the window to the desired location.

Highlights the border of the window. Move the pointer to the border
and resize the window as desired.

Reduces the window to an icon placing it in the bottom of the application
window.

Enlarges the window to fit the entire screen.

Closes the window.

Minimize, Restore, and Close Buttons

These buttons allows minimizing, restoring, or closing the diagram or application window.

Menu Bar

The menu bar changes depending on which diagram is opened.

Toolbar

The standard toolbar is displayed directly under the menu bar, along the top of the application

window. This toolbar is independent of the open diagram window.

The following icons are available for use on the standard toolbar.

DR +2@& P00 EREREE B+ AaOO

D New Model

Figure 2.2. Standard toolbar

Clicking the New Model icon creates a new model.

=

Open Model

Clicking the Open Model icon opens the Load Model dialog box. Open a model from

anywhere within the design.

16

= | Save Model or Log
Clicking the Save Model icon opens the Save Model to dialog box. Enter a new file name. After

the model is named and saved, clicking this icon automatically saves changes to the current

model without displaying the dialog box. This will also save the log if the log window is open.

i Cut

Clicking the Cut icon removes icons from the model. Element(s) must be selected to activate the
icon. Cutting an element will also cut associated relationships. Cutting multiple selected items is

possible.

—— Copy
Clicking the Copy icon copies an element to a new location on the same model, or to a new

model, without affecting the original model.

@ Paste
Clicking the Paste icon pastes a previously cut or copied element on the Clipboard onto another

location.

=1 Print Diagrams
Clicking the Print icon prints diagrams to the default printer.

L

Context Sensitive Help
Clicking the Context Sensitive Help icon makes all topics covered in the online Help available.

Click this icon and then click the item with which help is needed.

@View Documentation
Clicking the View Documentation icon displays the documentation window on the diagram.

Browse Class Diagram
Clicking the Browse Class Diagram icon opens the Select Class Diagram dialog box.

Browse Interaction Diagram
Clicking the Browse Interaction Diagram icon opens the Select Interaction Diagram dialog box.

17

Browse Component Diagram

Clicking the Browse Component Diagram icon opens the Select Component Diagram dialog box.

= Browse State Machine Diagram
Clicking the Browse State Machine Diagram icon opens the Select Statechart Diagram or

Activity Diagram dialog box.

|Browse Deployment Diagram
Clicking the Browse Deployment Diagram icon opens the Deployment Diagram dialog box.

|

7" Browse Parent
Clicking the Browse Parent icon displays the “parent” of the selected diagram or specification.

If a specification is selected, the specification for the parent of the “named” item is displayed.

¢ | Browse Previous Diagram

Clicking the Browse Previous Diagram icon displays the last displayed diagram.

&

L~ 7ZoomIn

Clicking the Zoom In icon magnifies the current diagram to view an area in detail.

=2 Zoom Out

Clicking the Zoom Out icon minimizes the current diagram allow to view more information.

a Fit in Window

Clicking the Fit in Window icon centers and displays a diagram within the limits of the window.

This command changes the zoom factor so that the entire diagram appears.

Undo Fit in Window
Clicking the Undo Fit in Window icon undoes the actions performed on the previous Fit In

Window command.

18

Toolbox
The diagram toolbox consists of tools that are appropriate for the current diagram. Changing diagrams
automatically displays the appropriate toolbox.
When a modifiable diagram window is active, a toolbox with tools appropriate for the current diagram
is displayed. If the current diagram is contained by a controlled unit or the model is write protected,
the toolbox is not displayed. While each diagram has a set of tools applicable for the current diagram,
all toolboxes have the Selector, Separator, and Lock icons.
The selector icon is used to select icons on the diagram. This icon cannot be removed from the
toolbox.
The separator icon is used to put a small space between icons on the toolbox. There can be as many
separators as wanted, but there must be at least one.
The lock icon can be set to locked or unlocked. In the locked mode, any tool icon stays in the selected
state until the diagram loses focus or another tool button is selected. This option facilitates the rapid
placement of several identical icons without repeatedly returning to the diagram toolbox.
To access the Customize Toolbar dialog box in order to modify the displayed toolbox:

» Right-click anywhere on the toolbox and then click Customize from the shortcut menu.

» Double-click anywhere on the toolbox not occupied by a button.

» Click View: Toolbars: Configure.

» Click Tools: Options. On the Option dialog box, click the Toolbars tab. This approach

gives the ability to modify all the diagram toolboxes without first displaying a specific

diagram type.

Browser

The browser is a hierarchical navigational tool that allows to view the names and icons of interaction,
class, use case, statechart, activity, and deployment diagrams as well as many other model elements.
When a class or interface is assigned to a component, the browser displays the assigned component

name in an extended name.

19

Documentation Window

The documentation window is used to describe model elements or relationships. The description can
include information such as the roles, keys, constraints, purpose, and essential behavior of the
element. Information can be typed either here or through the documentation field of a specification.
To view the documentation window, click View: Documentation. A check mark next to
documentation indicates the window is open. Only one documentation window can be open at a time,

but if different items are selected, the window will be updated accordingly.

Log Window

Rose uses the log window to report progress, results, and errors that occur as a result of a command or
action in the model. The messages posted to the log are prefixed with a time stamp, enabling to track
when an event or action occurred.

Like the documentation window, the log window can be docked or floated. This window can be dock
or undock by right-clicking anywhere in the window and toggling Allow Docking. When docked, the
log window is positioned along the border of the application window. If docking is not enabled or if
the window dragged outside of the application frame, the window is floating. A floating window is
always on top.

In addition, the log window can be hide by right clicking anywhere in the window and clicking Hide.

To redisplay the window, click View: Log.

Diagram Window

Diagram window allows creating and modifying graphical views of the current model. Each icon in a
diagram represents an element in the model. Since diagrams are used to illustrate multiple views of a
model, each model element can appear in none, one, or several of a model’s diagrams. This means it

can be possible to control which elements and properties appear on each diagram.

Overview Window

The overview window is a navigational tool that helps to move to any location on all Rational Rose
diagrams. When a diagram is larger than the viewable area within the diagram window, it is not
possible to see the whole diagram without scrolling. The overview window provides a scaled-down

view of the current diagram so the entire diagram can be seen.

20

To move to an exact area of the diagram, the following steps should be used:

» Move the pointer over the hand Jem located in the lower, right side of the diagram
window. Notice that the pointer appears as a + when the pointer is located over the active
hand.

» Click on the hand icon so the overview window appears.

Specification Window
A specification enables to display and modify the properties and relationships of a model element,
such as a class, a relationship, an operation, or an activity. The information in a specification is
presented textually; some of this information can also be displayed inside icons representing the
model element in diagrams.
Properties or relationships can be changed by editing the specification or modifying the icon on the
diagram. The associated diagram or specification is automatically updated.
To display a specification:
» Right-click the icon in either the diagram or browser, and then click Open Specification
from the shortcut menu.
» Click the icon in either the diagram or browser, and then click Browse: Specification.

» Double-click on the icon in either the diagram or browser.
Printing diagrams and Specifications
The Print dialog box allows to print diagrams and specifications. Table 1 describes the tabs in the

Print dialog box.

Table 1 Print Dialog Tabs

Tab Description
General Allows to specify a printer, a selection of diagrams and
specifications, and the number of copies to be printed.
Diagrams Allows selecting and viewing a list of diagrams to be printed.
Specification Allows selecting and viewing a list of specifications to be printed.
Layout Allows to select layout settings for printing diagrams and

specifications.

21

Print Preview

The print preview option allows to see how a diagram will appear when printed. Also, print
preview displays the total number of pages the diagram will take to print on the status bar.
Zoom In

To view a diagram at different magnified sizes, click either Zoom In or Zoom Out. Clicking
on any part of the diagram is also used to get a magnified view.

Close

Click Close to return to an active window.

Apply Filter Dialog Box

The Apply Filter dialog box allows searching for diagrams and specifications within the
model. The filter is especially useful when diagrams are printed from large models.

To print a specific diagram in a model, type in the name, type, or path of the diagram to be

printed.

Name Provides a list of all diagram names depending on search criteria.
Type Provides a list of all diagram types depending on search criteria.
Path Provides a list of each path for diagrams displayed.

22

3. Use Case Diagrams and Specifications
3.1 System behavior

The behavior of the system under development (i.e. what functionality must be provided by the
system) is documented in a use case model that illustrates the systems intended functions (use case),

its surroundings (actors), and relationships between the use cases and actors (use case diagram).

3.1.1 Actors
Actors represent system users (i.e. anyone or any thing that must interact with the system). They
help define the system and give a clear picture of what the system should do. An actor may:
» Only input information to the system.
» Only receive information from the system.
» Input and receive information to and from the system.
Actors are discovered by examining:
» Who directly uses the system?
» Who is responsible for maintaining the system?
» External hardware used by the system.
» Other systems that need to interact with the system.

Figure 3.1 UML notation for an actor

3.1.2 Use Case

A use case is a sequence of events (transaction) performed by a system in response to a trigger
initiated by an actor. A use case contains all the events that can occur between an actor-use case pair.
They represent the functionality provided by the system, that is, what capabilities will be provided to
an actor by the system.

In its simplest form, a use case can be described as a specific way of using the system from a user’s
(actor’s) perspective. Use cases provide a means to:

> Capture system requirements.

23

» Communicate with the end users and domain experts.
» Test system.
Use cases are best discovered by examining what the actor’s needs and defining what the actor is
able to do with the system, this helps ensure that the system is what the user expects. Use case names

often start with a verb.

Figure 3.2 UML notations for a use case

Actors in JU course registration system
InJU:
» Students want to register for courses.
» Professors want to select courses to teach.
» The registrar must create the curriculum and generate a catalog for the semester.
» The Billing system must receive billing information from the system.
Based on this the following actors have been identified: student, professor, registrar, and the
Billing system.

Use cases in JU course registration system
The following needs must be addressed by the system under development:

» The student actor needs to use the system to register for course.

» The professor actor needs to use the system to select courses to teach for a semester, and
must be able to receive a course roster from the system.

» After the course selection process is completed, the Billing system must be supplied with
billing information.

» The registrar is responsible for the generation of the course catalog for a semester, and
for the maintenance of all information about the curriculum, the students, and the
professors needed by the system.

Based on these needs, the following use cases have been identified:

» Register for Courses

24

Select Courses to Teach
Request Course Roster
Maintain Course Information
Maintain Professor Information

Maintain Student Information

YV V. V V V V

Create Course Catalog.

3.2 Creating and documenting actors and use cases
3.2.1 Creating actors
To create an actor:
» Right-click on the use case view packages in the browser to make the shortcut menu
visible.
» Select the New: Actor menu option. A new actor called NewClass is placed in the
browser.

> With the actor called NewClass selected, enter the desired name of the actor.

3.2.2 Actor documentation
A brief description for each actor should be added to the model. The description should identify the
role the actor plays while interacting with the system.
The actor’s descriptions for the JU Course Registration system are:
» Student: - a person who is registered to take classes at University.
» Professor: - a person who is certified to teach classes at University.
» Registrar: - the person who is responsible for the maintenance of the University Course
Registration system.
» Billing system: - the external system responsible for student billing.
To document an actor:
» Open the documentation window by clicking the documentation menu choice from the
view menu if it is not already opened.
» Click to select the actor in the browser.

> Position the cursor in the documentation window and enter the documentation.

25

3.2.3 Creating Use Cases
To create a use case:
» Right-Click on the use case view in the browser to make the shortcut menu visible.

» Select the New: Use Case menu option. A new unnamed use case is placed in the
browser.

> With the use case selected, enter the name of the use case.

Browser

b Project
—-CJ Use Casze Wiew

=

Student

£ Professor

£ Registrar

% Billing System

<> Reqister for Course

<> Select Courzes to Teach
<> Maintain Courze [nformation
<> Maintain Profeszor Information
2> Maintain Student [nformation
<> Create Courge Catalogue

<> Request Courze Roster

(3 Logical Wiew

3 Component Wiew

Deplayment Yiew
(ed

todel Properties

Figure 3.3 JU Actors and Use Cases

3.2.4 Use Case documentation
The brief description of a use case states the purpose of the use case in a few sentences, providing a
high level definition of the functionality provided by the use case.
The brief description of the Register for Courses use case is:
This use case is started by the student. It provides the capability to create, modify, and/or
review a student schedule for a specified semester.

To document a use cases:

> Click to select the use case in the browser.

26

» Position the cursor in the documentation window and enter the brief description for the
use case.

Use Case Register for courses Documentation

Thiz uze case iz started by the student. |t provide the
capability to create, delete, modify, andd/or review a
gtudent schedule for a zpecified zemester.

Figure 3.4. Register for Course use case description

3.3 Flow of Events

A flow of events is a sequence of transactions (or events) performed by the system. They typically
contain very detailed information, written in terms of what the system should do, not how the system
accomplishes the task. Flow of events are created as a separate file of documents in any text editor and
then attached or linked to a use case. The flow of events for a use case is a description of the events
needed to accomplish the required behavior of the use case.

A flow of event should include:

» When and how the use case starts and ends.

» What interaction the use case has with the actors.
» Data needed by the use case.

» Normal sequence of events for the use case.

» An alternate or exceptional flow.

The flow of events for a use case is contained in a document called use case specification. Each
project should use a standard template for the creation of the use case specification. We used the
template from the rational unified process.

1.0 Use case Name

1.1 Brief Description

2.0 Flow of Events

2.1 Basic Flow

2.2 Alternate Flows

2.2. X < Alternate Flow X >

3.0 Special Requirements

27

3. X <Special Requirement X >

4.0 Preconditions

4. X < Precondition X >

5.0 Post condition

5. X <Post condition X >

6.0 Extension Points

6. X < Extension Point X >
Use case specification for the Select Courses to Teach use case
1.0 Use case name
Select Courses to Teach
1.1 Brief Description
This use case is started by professor. It provides the capability for the professor to select up to three
courses to teach for a selected semester.
2.0 Flow of Events
2.1 Basic Flow
This use case begins when the professor logs onto the Registration system and enters his/her
password. The system verifies that the pass word is valid (if the password is invalid, Alternate Flow
2.2.1 is executed) and prompts the professor to select for the future semester (if an invalid semester is
entered, Alternate Flow 2.2.2 is executed).The professor enters the desired semester. The system
prompts the professor to select the desired activity: ADD and DELETE.

If the activity selected is ADD, the systems display the course screen containing a field of course
name and number. The professor enters the name and number of courses (If an invalid name/number
combination is entered, Alternate Flow 2.2.3 is executed).

If the activity selected is DELETE, the system displays the course offering screen containing a field
for a course offering name and number. The professor selects the name and number of course offering
(if an invalid name/number combination is entered, Alternate Flow 2.2.3 is executed). The use case
then begins again.

2.2 Alternate Flows
2.2.1 Invalid Password
An invalid password is entered. The user can re-enter a password or terminate the use case.

2.2.2 Invalid Semester

28

The system informs the user that the semester is invalid. The user can re-enter the semester or
terminate the use case.

3.3 Special Requirements.

There is no special requirement for this use case.

4.0 Pre-condition

There is no precondition.

5.0 Post-condition

There is no post-condition.

6.0 Extension point

There is no extension point.

3.3.1 Linking flow of Events Document to use cases

To link flow of events document to use case:

» Right-click on the use case in the browser to make the shortcut menu visible.

Select the open specification menu option.
Select the Files tab.
Right-click to make the shortcut menu visible.
Select the Inset file menu option.
Browse to the appropriate directory and select the desired file

Click the open button.

YV V V V V V VY

Click the OK button to close the specification.

29

Use Case Specification for, Select course... @@

General] Diagrams] Felations Files

| Filenarne | Path |
project C:hDocumentz and SettingzhTOWFIE

ok | Cancel Browze - Help

Figure 3.5 Linked Flow of events Document.

3.4 Use case Relationships

An association relationship exists between an actor and a use case. This type of association is often
referred to as a communicate association since it represents communication between an actor and a
use case. An association can be navigable in both direction (actor to use case and use case to actor) or
it can be navigable in only one direction. The navigation direction of an association represents who is
initiating the communication. An association is represented as a line connecting the related elements.
There are two types of relationships that exist between use cases: include and extend. Multiple use
case may share pieces of the same functionality. This functionality is placed in a separate use case
rather than documenting it in every use case that needs it. Include relationships are created between
the new use case and any other use case that “uses” its functionality. An extend relationship is used to
show optional behavior, behavior that may be run based on actor.

A dependency is a relationship between two model elements in which a change to one model
element will affect the other model element. Use a dependency relationship to connect model

elements with the same level of meaning.

30

A generalization relationship is a relationship between a more general class or use case and a more
specific class or use case. A generalization is shown as a solid line path from the more specific
element to a more general element. The tip of a generalization is a large hollow triangle pointing to

the more general element.

3.5 Use case diagram

Use case diagrams presents a high-level view of how a system is used as seen from an outsider’s
(or actor’s) perspective. These diagrams graphically depict system behavior. A use case diagram may
depict all or some of the use cases of a system.

A use case diagram can contain:

» Actors (things outside the system).
» Use case (system boundary identifying what the system should do).
» Interactions or relationships between actors and use cases in the system.

Use case diagrams can be used during analysis to capture the system requirements and understand
how the system should work. During the design phase, use case diagrams can be used to specify the

behavior of the system as implemented.

3.5.1 Use Case Tool Box
The graphic below shows all the tools that can be placed on the use case diagram toolbox. The
application window displays the following toolbox when the current window contains a use case

diagram and As Unified is selected from the View menu.

Note Package ACtOr Dependency

Selector — T BEC (5 [¥ A
i | —] 5 = ‘:I:’ r : —If E—— I ock Selection

Generalization

Text Note Use Case
Anchore
Unidirectional
Association

Figure 3.6 Use Case diagram tool Box

31

3.5.2 Creating the main use case diagram

To create main use case diagram:

>

A\

Double-click on the main diagram in the use case view in the browser to open the
diagram.

Click to select an actor in the browser and drag the actor on to the diagram.

Repeat the above step for each additional actor needed in the diagram.

Click to select a use case in the browser and drag the use case onto the diagram. Repeat

for each additional use case needed in the diagram.

To Create Include Relationships:

>
>
>
>

>

Click to select the dependency icon from the toolbar.

Click on the base use case and drag the Dependency icon the used use case.

Double-click on the dependency arrow to make the specification visible.

Click the arrow in the stereotype field to make the drop-down menu visible, and select
include.

Click the OK button to close the specification.

To Create extend relationships:

» Click to select the Dependency icon from the toolbar.

» Click on the use case containing the extended functionality and drag the
dependency icon to the base use case.

» Double-click on the dependency arrow to make the specification visible.

» Click the arrow in the stereotype field to make dropdown menu visible and select
extend.

» Click the OK button to close specification

32

The main use case diagram for the JU course Registration system is:

2 Use Case Diagram: Use Case View / Main/JU |Z||E|[Z|

x Select courses tateach
Student
%// Register for courses é_/_-——'—’/ %

Professar

Fequest course roster
Billing System

ap O 7

Maintain course infarmation mMaintain professor information

N o

O X O

Maintain student information Registrar Create course catalogue

Figure 3.7 Main JU course Registration use case diagram

3.6 Use Case Specification

A Use Case Specification allows to display and modify the properties and relationships of a use
case in the current model. The Use Case Specification contains the following tabs: General, Diagram,

Relations, and Files.

33

Use Case Specification-General Tab

Use Case Specification for, Register for c... @E|

General l Diagrams] Helatiu:uns] Files l

I arne; |F|egister for courzes FPackage: Use Case View
Stereotppe: | j
Rank: | | Abstract

D ocumentation:;

Thiz uze caze iz started by the student. It provide the
capability bo create, delete, modify, and/or review a student
gchedule for a specified zemester.

ak | Cancel Browse Help

Figure 3.8 Use Case Specification-General Tab

Name

A use case name is often written as an informal text description of the external actors and the
sequences of events between elements that make up the transaction. Use case names often start
with a verb. The name can be entered or changed on the specification or directly on the
diagram.

Package

This static field identifies the package to which the components belong.

Rank

The Rank field prioritizes use cases. For example, the rank field can be used to plan the
iteration in the development cycle at which a use case should be implemented.

Abstract

An abstract notation indicates a use case that exists to capture common functionality between

use cases (uses) and to describe extensions to a use case (extends).

34

Use Case Specification-Diagram Tab

Lse Case Specification for, Register for c... E|E|

General Diagrams l Helatiuns] Files]

| Title |
Hegustration

ok | Cancel | |Ernwse*| Help |

Figure 3.9 Use Case Specification-Diagram Tab

Diagram List

The diagram list contains all the diagrams owned by the use case. The diagram list consists of
two columns. The first (unlabeled) column displays the diagram icon type for the diagram. The
second column displays the diagram name. To insert a new diagram in the list, click one of the

Insert choices in the shortcut menu that corresponds to the diagram type.

Use Case Specification-Relation Tab
The Relations tab lists all the association relationships that correspond to the selected use case. The

client and supplier names and type icons are displayed to the right of the relation name. Double-

clicking on any column in a row displays the element’s specification.

35

Lse Case Specification for, Register for c... |E|[Z|

General] Diagrams Relations lFiIes]

t ame | Clignt | Supplier |
<no ralenames © Student in assc ¥ Student <sRegister for ¢
<no ralenames : Billing System i<2>Register far £ Billing Syster

(] | Cancel Browse = Help

Figure 3.10 Use Case Specification-Relation Tab

36

4. Class diagram and Specification

4.1. Overview

A class is a description of a group of objects with common properties (attributes), common
behavior (operation’s), common relationships to other objects. Each object is an instance of some
class and objects can not be instances of more than one class.

An object is a representation of an entity, either real word or conceptual. An object is a concept,
abstraction, or thing with well defined boundaries and meaning for application. Each object in a
system has three characteristics: state, behavior, and identity.

The state of an object is one of the possible conditions in which it may exist. The state of an object
typically change over time, and is defined by a set of properties (called attributes), with the values of
the properties, plus the relationships the object have with other object. Behavior determines how an
object responds to requests from other objects and typifies everything the object can do. Behavior is
implemented by the set of operations for the object. Identity means that each object is unique, even if
its state is identical to that of another object.

In the UML, objects are represented as rectangles and the name of the object is underlined and

classes are represented as a compartmentalized rectangles as shown in figure 4.1

Microprocessor101

Figure 4.1 UML Notation for an object

To create classes:
» Right-click to select the Logical view in the browser.
» Select the New: class menu choice, a class called Newclass is placed in the browser.

> While the new class is still selected, enter the name of the class.

37

B Project
+-[[J Use Case View
=7 Logical View
b ain Al
= Associations
=B Courselffering
+-[_J Component Yiew
+ Deployment 4w
[#8 Model Froperties

Figure 4.2 Class created in the Browser
A stereotype provides the capability to create a new kind of modeling element. The uses of
stereotype are:
» Allow for customization of the development process.
» Provides mnemonic help and visualization aids.
» Allows making presentation with greater detail.
Classes have stereotypes. That is, new kind of classes can be created; some common stereotypes

for a class are entity, boundary, control, and exception. These stereotypes are shown in figure 4.3.

Ei Class Diagram: Logical View ! Main/JU

==gKception==
RegistrationErrar

CourzeQffering RegistrationForm FegistrationManager

Entity Boundary Control

Figure 4.3 Classes with stereotypes

38

An entity class models information and associated behavior that is generally long lived. This type
of class reflects a real-world entity or needed to perform tasks internal to the system. They are
typically independent of their surroundings, that is, they are not sensitive to how the surrounding
communicates with the system.

Boundary classes handle the communication between the system surroundings and the inside of the
system. They provide the interface to a user or another system (i.e. the interface to an actor). They
constitute the surroundings dependent part of the system. Boundary classes are used to model the
system interfaces.

Control classes model sequencing behavior specific to one or more use cases. Control classes
coordinate the events needed to realize the behavior specified in the use case. Control classes typically
are application dependent classes.

To create stereotypes for classes:

» Right-click to select the class in the browser.

» Select the open specification menu choice.

» Select the General tab.

» Click the arrow in the stereotype filed to make the drop down menu visible and select the
desired stereotype.

» Click the OK button to close specification.

As classes are created, they should also be documented. The documentation should state the
purpose of the class and not the structure of the class. For example, a student class could be
documented as follows:

Information needed to register and bill students. A student is some one
Currently registered to take classed at the university.
To document a class:
» Click to select the class in the browser.
» Position the cursor in the documentation window and enter the documentation for the
class.

Most systems are composed of many classes, and thus there should be a mechanism to group them
together for ease of use, maintainability, and reusability. This is where the concept of package is
useful. A package in the logical view of the model is a collection of related packages and /or classes.
By grouping classes into packages, looking at the “higher” level view of the model is possible. Each

39

package contains an interface that is realizable by its set of public classes, those classes to which

classes in other packages talk. The rest of the classes in a package are implementation classes, classes

do not communicate with classes in other packages.

1]

Interface

Figure 4.4 UML Notation for a package

To create packages:

» Right-click to select the Logical view in the browser.

» Select the New package menu choice.

» While the package is still selected, enter the name of the package.

To relocate classes:

» Click to select the class in the browser.

» Drag the class to the desired package.

> Repeat the steps for each class that is to be relocated.

F& Project
+-CJ Usze Caze View
—-CJ Logical View
M ain AL
B Courzelifering
= Aszociations
H_) ReqistrationF arm
"1 Registrationtd anager
Bl Student
+-[_J Peoplelnfo
+-[_J Component Yiew
+ Deployment Yigw
[#8 Model Properties

B Project
+-[[7 Use Caze View
=-[C7 Logical Yiew
b ain AL
B CouwseOfferng
_:33, Aszsociations
H) ReqgistrationF arm
" Registrationt anager
=-[[7 Peoplelnfo
B Student
—}>} Agzociations
+-J Comporent Wiew
+ Deployment Yiew
{28 Model Properties

(@)

(b)

Figure 4.5 a) Creating package b) relocated classes

40

4.2. Class Diagrams

A class diagram is a picture for describing generic description of possible systems. Class diagrams
contain classes and object diagrams contain objects, but it is possible to mix classes and objects when
dealing with various kinds of metadata, so the separation is not rigid.

Class diagrams contain icons representing classes, interfaces, and their relationships. It is possible
to create one or more class diagrams to depict the classes at the top level of the current model. It is
also possible to create one or more class diagrams to depict class contained by each package in the
model. Properties and relationship of a class can be changed by editing the specification or modifying

the icon in the diagram. The associated diagrams or specification are automatically updated.

4.2.1. Class Diagram Tool box
The graphic below shows all the tools that can be placed on the class diagram toolbox. The
application window displays the following toolbox when the current window contains a class diagram.

It is possible to customize the toolbox to display all the tool options.

Note Association
Anhchor Generalization Relationship
Interface Package Aggregation
Text g gareq Lock

(%]
=D B D OO0 G

Selector Note Class Dependency Entity Boundary

Unidirectional Control
Association

Figure 4.6 Class diagram toolbox

41

To create and display class diagram:
» Click Browse: Class Diagram.
» On the toolbar, click the class diagram icon.
» On the browser, double-click the class diagram icon.
To add packages to class diagram:
» Double-click on the main diagram in the browser to open the diagram.
» Click to select the package in the browser.
» Drag the package onto the diagram.
» Repeat the proceeding steps for each package that is to be added to the diagram.

4.2.2. Adding and Hiding Classes and Filtering Class Relationships
The commands on the Query menu allow to control which model elements are represented by icons
in the current diagram.
On the Query menu, clicking:
» Add Classes adds classes to the diagram by name.
» Add Use Cases adds use cases to the diagram by name.
» Expand Selected Elements adds classes to the diagram based on their relationships to
selected classes.
» Hide Selected Elements removes selected classes from the diagram and optionally
removes their clients or suppliers from the diagram.

» Filter Relationships controls which kinds of relationships appear in the diagram.

4.3. Class Specification

A Class Specification displays and modifies class properties and relationships. Some of the
information in the specification can also be displayed inside class icons. If a field does not apply to a
particular class type, the field is unavailable and cannot add or change information in the field.

To display a Class Specification, click an icon representing the class in a class diagram and click
Browse: Specification.

The Class Specification consists of the following tabs: General, Detail, Operations, Attributes,

Relations, Component, Nested, and Files.

42

Class Specification - General Tab

Class Specification for CourseOffering E]E|

Relationz] Components] Mested] Files]
General l Dretail] Operations] Attributes]
M amne: |Enursefoering Parent: Universzityértifa
Type: |Elass ﬂ

Stereotype: |Er'||:i|:_'.-' j

E wport Cantral

(+ Public ¢ Pratected © Private © Implementation

Documentation:

ak. | Cancel | | Browse v| Help |

Figure 4.7 Class Specifications, General Tab

Type

Type choices include: Class, Parameterized Class, Instantiated Class, Class Utility,
Parameterized Class Utility, Instantiated Class Utility, and Metaclass.

Parent

The parent to which the class belongs (its package) is displayed in this static field.

Stereotype

A stereotype represents the sub classification of an element. It represents a class within the
UML metamodel itself; that is, a type of modeling element. Some stereotypes are already
predefined. Stereotypes can be shown in the browser and on diagrams. The name of the
stereotype may appear in angle brackets <<>>, depending on the settings found in either the

Diagram or Browser tabs of the Options dialog box.

43

Export Control
The Export Control field specifies how a class and its elements are viewed outside of the defined

package.

Class Specification - Detail Tab

Class Specification for CourseOffering E]E|

Relations] Compaonents] M ested] Filez]

General Dretail l O perations] Aftributes]
Multiplici: ~— {0..1 |
Space: |

Perzistence Concurency

(¢ Persistent {* Sequential

" Transient " Guarded

" Active
[Abstract " Synchronous

Formal Arguments;

Mame Type Default ' alue

] | Cancel | Apply | Browse v| Help |

Figure 4.8 Class Specifications, Detail Tab

Multiplicity

The Cardinality field specifies the number of expected instances of the class. In the case of
relationships, this field indicates the number of links between each instance of the client class
and the instance of the supplier. A specific cardinality value can be set for the client class,
supplier class, or both.

Space

The Space field is used to document the amount of storage required by objects of the class

during execution.

44

Persistence

Persistence defines the lifetime of the instances of a class. A persistent element is expected to
have a life span beyond that of the program or one that is shared with other threads of control
or other processes. This field is used to identify the persistence for elements of this class.
Concurrency

A class concurrency defines its semantics in the presence of multiple threads of control.
Abstract

The Abstract check box identifies a class that serves as a base class. An abstract class defines
operations and states that will be inherited by subclasses. This field corresponds to the abstract
class adornment displayed inside the class icon.

Formal Arguments

In the Parameterized Class or Parameterized Class Utility Specification, the formal, generic
parameters declared by the class or class utility are listed. In the Instantiated Class or
Instantiated Class Utility Specification, the actual arguments that match the generic parameters

of the class being instantiated are listed.

Class Specification - Operations Tab

Operations denote services provided by the class. Operations are methods for accessing and modifying
Class fields or methods that implement characteristic behaviors of a class. The Operations tab lists the
operations that are members of this class. Rational Rose stores operation information in an Operation
Specification. Operation Specifications can be accessed from the Class Specification or from the

Browser.

45

Show Inherited

Class Specification for CourseOffering |E|rz|

Relations] Compaonents] MHested] Filez]
General] Detail Operations l SttribLites]
[v Shaow inkerited
| Ster... | Operation Return type | Parent
getdffering Offerlist Coursedfferin
% addFrofeszor Boolean Courze0fferin
< IE:
] | Cancel | Apply | Eruwsev| Help |

Figure 4.9 Class Specifications, Operation Tab

Selecting the Show Inherited check box will show the operations inherited from other classes.

If there is no check mark in this field, operations only associated with the selected class are

viewed.

46

Class Specification - Attribute Tab

Class Specification for CourseOffering E|E|

Relations] Components] Mested] Files]
Gereral] Detail] Operations Attributes
v Show inherited
| Ster... | M ame | Par... | Tupe | [ritial
£ b3
ITI Cancel | Apply | Browse - | Help |

Figure 4.10 Class Specifications, Attribute tab

The Rational Unified Process asserts that attributes are data values (string or integer) held by objects
in a class. Thus, the Attributes tab lists attributes defined for the class through the Class Attribute

Specification.

Class Specification - Relations Tab
Classes collaborate with other classes in a variety of ways. The Relations tab identifies the
relationships in which this class is the client (class) and the corresponding supplier (end) class. If the

relationship is labeled, Rational Rose displays its name after the kind of relationship.

47

Class Specification for CourseOffering |E|[Z|

General] Dretaill] Operationz] Attrbutes]
Relations l Components] Mested] Files l

v Show inherited

t ame | Parent | End Clazs |
<no rolenames : Courze in azzo Course Courze0ffening
<no rolenames : Student in azzc CourseQffering Student

Teacher : Profeszor in aszzociatl Professor Courze0ffening

k. | Canicel | Apply | Eruwsev| Help |

Figure 4.11 Class Specifications, Relation tab

Class Specification - Component Tab

Class Specification for CourseQffering @E|

General] Dretail] Operationz] Attributes] A elations]
Companents l Mested] Files] Yisual B asic]

[v Show all components

Component Mame | Fackage Hame | Language |
& |Courze Component View Visual Basic
&Courzelffeing Component View Visual Basic
& Registrationlzer Component View Visual Basic

& |Professor Component View Visual Basic
& | Student Component View Visual Basic
& |Profeszor Options Component View Visual Basic
& |Courzes Component View Visual Basic
& |Perzsistence Component View Visual Basic

] 4 | Cancel | Apply | Emwsev| Help |

Figure 4.12 Class Specifications, component tab

Show All Components

To get a list of all components in a model, this option should be selected. If this option is not
selected, the component to which only this class is assigned is listed.

Component Name

The component list identifies the components to which this class is assigned (with a check
mark). A class can be assigned to a note or to several components with the same
implementation language assigned. Class can be assigned to a component through Assign on
the shortcut menu or by dragging a component from the browser and dropping it in the list.
Package Name

This field displays the package that the component belongs to.

Language

The Language field identifies the implementation language assigned to this element.

49

Class Specification - Nested Tab
A nested class is a class that is enclosed within another class. Classes may contain instances of, inherit
from, or use a nested class. Enclosing classes are referred to as parent classes, and a class that lies

underneath the parent class is called a nested class.

Class Specification for, CourseDffering |E|rz|

General] Detal] Operations] Attributes] Relahons]
Components Nested l Files] Wizual B azic]

Stereotype | Name |

ak. | Cancel | Apply | Browse v| Help |

Figure 4.13 Class Specifications, Nested tab

50

5. Interaction Diagram and Specifications

5.1. Interaction Diagram Overview

An interaction is an important sequence of interactions between objects. Rational Rose provides
two alternate views or representations of each interaction, a collaboration and sequence diagram.
These are collectively referred to as interaction diagrams. The main difference between sequence and
collaboration diagrams is that sequence diagrams show time-based object interaction while
collaboration diagrams show how objects associate with each other.

It is possible to specify and modify an interaction with either kind of diagram, or with both.
Rational Rose automatically reflects all changes made either to a sequence or collaboration diagram in

the corresponding collaboration or sequence diagram, if one has been created.

5.2. Use case realization

The use case diagram presents an outside view of the system. The functionality of the use case is
captured in the flow of events. Scenarios are used to describe how use cases are realized as
interactions among societies of objects. A scenario is an instance of a use case; it is one path through
the flow of events for the use case. Scenarios are developed to help identify the objects, the classes,
and the object interactions needed to carry out a piece of the functionality specified by the use case.
Scenarios document decisions about how the responsibilities specified in the use cases are distributed
among the objects and classes in the system. They also provide an excellent communication medium
to be used in the discussion of the system requirements with customers.

In the Rational Unified Process, use case realizations are captured in the Logical View of the
model. The concept of a stereotype is used to show that the use cases that are created in the Logical
View of the model are the realization of the use cases contained in the Use Case View along with a
stereotype realization. In UML, use case realizations are drawn as dashed ovals.

~
‘—-—’

Figure 5.1. UML Notation for Use Case Realization

51

To create use case realizations:

» Double-click on the realizations use case diagram in the browser.
Click to select the use case icon from the toolbar.
Click the use case diagram window to place the use case.
Double-click on the use case to open the Use Case Specification.

YV V VYV V

Enter the name of the use case (same name as the use case in the use case view) in the

name field.

Y

Click the arrow in the stereotype field to make the dropdown menu visible.

Y

Select use-case realization.

» Click the OK button to close the use case specification.

5.3. Collaboration Diagram

A collaboration diagram is an interaction diagram which shows object interactions organized
around the objects and their links to each other. These diagrams show objects, their links, and their
messages. They can also contain simple class instances and class utility instances. Each collaboration
diagram provides a view of the interactions or structural relationships that occur between objects and
object-like entities in the current model.

Collaboration diagrams are used as the primary vehicle to describe interactions that express
decisions about the behavior of the system. They can also be used to trace the execution of a scenario
by capturing the sequential and parallel interaction of a cooperating set of objects. ~ Collaboration

diagrams may also depict interactions that illustrate system behavior.

: ProfessorCourseManager

\fdd professor (Professor)

Math 101-Sectionl: CourseOffering

Figure 5.2 UML notations for objects, Links, and Message in
collaboration diagram

52

To create and display collaboration diagram:
» Click Browse: Interaction Diagram.
The Select Interaction Diagram dialog box is displayed.

» Select a package to “own” the diagram.

Y

On the right side of the dialog box, click the diagram name, and then click OK.
» From the New Interaction Diagram dialog box, enter the diagram title and click the

diagram type. The choice is Collaboration.

5.4. Sequence Diagram

A sequence diagram is a graphical view of a scenario that shows object interaction in a time-based
sequence, what happens first, what happens next. Sequence diagrams establish the roles of objects and
help provide essential information to determine class responsibilities and interfaces. Sequence
diagrams are normally associated with use cases.

This type of diagram is best used during early analysis phases because they are simple and easy to
comprehend. A sequence diagram has two dimensions: typically, vertical placement represents time
and horizontal placement represents different objects.

Sequence diagrams are closely related to collaboration diagrams and each are alternate
representations of an interaction.

A sequence diagram traces the execution of a scenario in time.

: Professor Math 101- Section
CourseManager 1 CourseIOfferinq

-y .

! Add professor (Professor)

Figure 5.3. UML Notations for Objects and Messages in a Sequence diagram

To create and display sequence diagram:

» Click Browse: Interaction Diagram.
The Select Interaction Diagram dialog box is displayed.

» Select a package to “own” the diagram.

53

» On the right side of the dialog box, click the diagram name, and then click OK.
» From the New Interaction Diagram dialog box, enter the diagram title and click the
diagram type. The choice is Sequence.
To Create Objects and message in sequence or collaboration diagram:
» Double-click on the sequence or collation diagram in the browser to open the diagram.
Click to select the actor in the browser.
Drag the actor onto the sequence or collaboration diagram.
Click to select the object icon from the toolbar.
Click to the sequence or collaboration window to place the object.
While the object is still selected, enter the name of the object.
Repeat the preceding steps for each object and actor in the scenario.

Click to select the object message icon from the toolbar.

YV V V V V V VYV VY

Click on the actor or object sending the message and drag the message line to the actor or
object receiving the message.

A\

While the message line is still selected, enter the name of the message.

A\

Repeat the above steps for each message in the scenario.

5.5. Toolboxes

Each diagram type has its own unique toolbox. The collaboration and sequence diagram toolboxes

are illustrated below.

5.5.1. Collaboration Diagram Toolbox
The graphic below shows some of the tools that can be placed on the collaboration diagram
toolbox. The application window displays the following toolbox when the current window contains a

collaboration diagram. View: As Unified should be selected.

54

_ Object Link Data
Selector Object Link Message Flow

Nnfe Lock

e BHE 07 S

Text Note Class Link to RLM RDF
Anchor Instance Self

Figure 5.4 Collaboration Diagram Toolbox

5.5.2. Sequence Diagram Toolbox
The graphic below shows all the tools that can be placed on the sequence diagram toolbox. The
application window displays the following toolbox when the current window contains a sequence

diagram. View: As Unified should be selected.

Destruction
Marker

Message

Object {4 self

Selector Note Svnchronization

Text Note Object Return Procedure Lock
Anchor Message call

Figure 5.5 Sequence Diagram Toolbox

5.6. Specifications
5.6.1. Object Specification

An object specification allows to display and modify the properties and relationships of an object

in the current model.

55

To display an Object Specification, double-click any icon representing an object, or click Browse:

Specifications. The Object Specification consists of the General tab.

Object Specification for JU

General l

M arne: |J 1

Clazz: | Reqgistration ﬂ

Documentation:

Persistence

" Persiztent " Static (* Tranzient

[Multiple instances

0K | Cancel | &pply | Ernwse*| Help |

Figure 5.6 Object specifications, General tab

Name
If the name of the object's class specified in the Object Specification, the name must identify a
class defined in the model.
Class
The Class field displays the name of the object’s parent class. The default class for a newly
created object is Unspecified. The object will accept messages conveying the operations of its
parent class, and the operations of the superclasses of its parent class.
Persistence Field
These options specify the object’s persistence.
Persistent: - This option will make the object exists after the termination of the program in
which it was created.

Static: - This option will make the object exist during the entire execution of a program.

56

Transient: - This option will make the object is created and destroyed dynamically during the
execution of a program.

Multiple Instances Check Box

Multiple Instances check box is selected to indicate that this object represents multiple
instances of the same class. When this field is selected, the icon changes from one object to
three staggered objects. The object group is considered as one entity, but this icon indicates

that several objects are involved.

5.6.2. Class Instance Specification
A class instance places a representation of a class on a collaboration diagram. To display a Class
Instance Specification, double-click any icon representing a class instance, or click Browse:

Specifications. The Class Instance Specification consists of the General tab.

Class Instance Specification for JU

General l

M arne: |J]

Class: |[.JL|] j

Documentation:

(] | Cancel Browse = Help

Figure 5.7 Class instance specifications, General tab

57

Class

The class the element belongs to is displayed here. The default class for a newly created element

is (Unspecified). If an object’s class in the Object Specification is specified, the class name must

identify a class defined in the model, or create a new class.

To create a new class through the Object Specification, click the scroll arrow to the right of the

Class field. A list box will display all the possible class selections, including New. Double-click

New display a Class Specification dialog box. Enter the information regarding the new class.

5.6.3. Link Specification

A link is the path of communication between two objects. A link can exist between two objects,

between an object and a class instance, or between an object and itself.

To display a Link Specification, double-click any icon representing a link, or click Browse:

Specifications. The Link Specification consists of the following tabs: General and Messages.

Link Specification for entiry

General l Mesgagesl
M arne: |entr_l,l
Azsoc; |unspecified ﬂ
Supplier wizibility Clignt wigibility
* |Unzpecified * |Unspecified
" Field " Field
" Parameters " Parameters
" Local " Local
" Glabal " Global
[Shared [Shared
Rale: Fole:
] | Cancel Apply Browse - Help

Figure 5.8 Link specifications, General tab

58

Assoc
The Assoc field lists any valid role(s) or association(s) tied to the classes belonging to the two
objects. Association is selected from the drop-down list. The name of the role tied to the
association is displayed beside the link on the diagram.
Supplier and Client Visibility
Visibility is the ability of one object to see another object.
Unspecified: - indicate that object visibility has not been specified.
Field: - indicate that the supplier object is visible because it is a field of client.
Parameters: - indicate that the supplier object is visible to the client because it is a parameter
for one of the client’s operation.
Local: - indicate that the supplier is local to an operation of the client object.
Global: -indicate that the supplier object is global to the client.
Shared
Shared visibility indicates structural sharing of the given object; that is, the shared object’s state
can be altered through more than one path. Unshared visibility represents unique access given to
the client object. When a link is created, unshared visibility is the default.
Role
This field lists the role names tied to the selected associations. This is especially useful since
many associations are not named. This field cannot be edited.

59

Link Specification for addition

General Meszages]
| Sequence | tezzage Mame Recever Object
P -5 get affenings : Courze
2013 add professor : Course
< >
Ok | Cancel Browse - Help

Figure 5.9 Link specifications, Message tab

Icon
This left-most unlabeled field contains a small version of the link message icon indicating the

direction of the message.

Sequence

This is a system assigned, sequential message number.

Message Name

The Pick list box showing all available operations on the class can be seen by clicking the item.

This is the only editable column on this tab.
Receiver

This is the object receiving the message.

60

5.6.4. Message Specification

A message conveys an operation through a link between objects. A message’s specification
identifies the operation it conveys, its synchronization, its frequency, and its associated
documentation.

To display a Message Specification, double-click any icon representing a message, or click

Browse: Specifications. The Message Specification consists of the following tabs: General and Detail.

Message Specification for get offerings E|E|

General l Detail]

M ame: |get offerings ﬂ Clazs: ProfeszorCoursebd:

Documentation:;

] | Cancel | | Browse v| Help |

Figure 5.10 Message specifications, General tab

Class

The Class field displays the name of the class to which the element belongs.

61

Message Specification for, get offerings

General Detail
Synchronization
* Simple
" Synchronous
" Balking
" Timeout
" Procedure Call
" Aznchronous

" Return

Frequency
+ Aperiodic

" Periodic

ak. | Cancel | |ﬁrnwse*| Help |

Figure 5.11 Message specifications, Detail tab

Synchronization
These options are used to specify concurrency semantics for the operation named in the
Synchronization field.
Simple: - indicate that the message has a single thread of control.
Synchronous: - indicate that the operation proceeds only when the client sends a
message to the supplier and the supplier accepts the message.
Balking: - indicate that the client passes a message only if the supplier is immediately
ready to accept the message; the client abandons the message if the supplier is not
ready.
Timeout: - indicate that the client abandons a message if the supplier cannot handle the
message within a specified amount of time.
Asynchronous: - indicate that the client sends a message to the supplier for processing
and continues to execute its code without waiting for or relying on the supplier’s
receipt of the message.

62

Procedure Call: - indicate that the entire nested sequence is completed before the
outer level sequence resumes. This can be used with ordinary procedure calls as well as
with concurrently active objects when one of them sends a signal and waits for a nested
sequence of behavior to complete.
Return: - Return from a procedure call. The return arrow may be suppressed since it is
implicit at the end of activation.

Frequency

These options are used to indicate whether the message is sent periodically or aperiodically.
Aperiodic: - indicate that the message is sent at irregular intervals, or does not have a
regular interval.

Periodic: - indicate that the message is sent at regular intervals.

63

Sequence Diagram for JU course registration system

5.7.

==Kl | gl
— m s
[u]] = £
— M m
l- (] S O o U o SR
o e e 1 1
i i
2 = w = —
O =2} w
T & = o
- = e
o o
= =
=3 =
—
T} =]
E=)
" o = ™
i &
3 S| s R — R P m— T
o [
ul =
= w
- = o
= a
Z z £
I am =
: =
H (T - =
m k)
= . b= =
ol i s
a
2 = R L B B e e e e s
—
o B =
o 2
(= = w
ol = . =] =
b b= = =
- =] = =
== — T a
= o = L] =
o =3 =1
(X} fag o c =
=] k= o o Jai]
el = o =) £ w
s £ .
=L [n] 0 =
- L] DR e, PRSI 5 e mmmmee— - it [B i T
= E = 1 I ol I | e I F+---—F
(%] S =
- 2]
[2 =
£=] T -a
2R B =
e P
I i
=
= 5 T {7
o B = H =
N Oy “ a, fadl
- E o o m =
TN o = =
[-T] = = e o
-l o w = = cw
F - g e e LR E RO SRR E LR LR LR EEEEEEED
R = [[[y
=
= W = ol o i
£ @ 5 = = = T
(= = fak] = [ix] = [75)
) o = n =
-y = = &
= nr i % =}
b=l
g . -] T 3
4 = 5 & £ ©
o W - &
= S B o
= = e 1------- S0 I |G 0 [0o s 0 ety i
g 5 I b I b 1
v o —
muum . -

64

Figure 5.12 Sequence Diagram for the Add a course offering scenario

To create collaboration diagram from Sequence diagram or sequence diagram from collaboration
diagram:
» Double-click on the sequence diagram in the browser to open the diagram.
» Choose the Browse: Crate collaboration diagram menu choice or press the F5 key.

» Rearrange the objects and messages on the diagram as needed.

65

6. Relationship Specification

All systems are made up of many classes and objects. System behavior is achieved through the
collaborations of the objects in the system. Relationships provide the conduit for object interaction;

two types of relationships discovered are associations and aggregations.

6.1. Association Relationships
An association is a bidirectional semantic connection between classes. An association between
classes means that there is a link between objects in the association classes. The number of objects

connected depends upon the multiplicity of the association.

ProfessorCourseManager Course

Figure 6.1. UML Notation for association relationship

To create an association relationship:
» Click to select the association icon from the toolbar.
» Click on one of the associated classes in a class diagram.
» Drag the association line to the other associated class.

6.2. Aggregation Relationship

An aggregation Relationship is a specialized form of association in which a whole is related to its
part (s). Aggregation is known as a “part-of” or containment relationship. The UML notation for an
aggregation relationship is an association with a diamond next to the class denoting the aggregate
(whole) as shown in figure 6.2.

Course CourseOffering

Figure 6.2. UML notion for an aggregation relationship

To create an aggregation relationship:

» Select the aggregation icon from the toolbar.

66

» Click on the class playing the role of the “whole” in a class diagram and drag the

aggregation line to the class playing the role of the “part”.

6.3. Naming Relationships

An association may be named; usually the name is an active verb or verb phrase that communicates
the meaning of the relationship. Since the verb phrase typically implies a reading direction, it is
desirable to name the association so it reads correctly from left to right or top to bottom. It is
important to note that the name of the association is optional. Aggregation relationships typically are
not named since they are read using the words “has” or “contains”.

To name relationships:

» Click to select the relationship line on a class diagram.

» Enter the name of the relationship.

6.4. Role Name
The end of an association where it connects to a class is called an association role. Role names can
be used instead of association names. A role name is a noun that denotes the purpose or capacity
where in one class associates with another. The role name is placed on the association near the class
that it modifies, and may placed on one or both ends of an association line. It is not necessary to have
both a role name and an association name.
To create Role Name:
» Right-click on the relationship line near the class that it modifies to make the shortcut
menu visible.
» Select the Role Name menu choice.
» Enter the Name of the Role.

6.5. Multiplicity Indicators

Multiplicity is specified for classes, it defines the number of objects that participate in a
relationship. Multiplicity defines the number of objects that are linked to one another. There are two
multiplicity indictors for each association or aggregation, one of each end of the line. Some common

multiplicity indicators are:

67

0.*
1“*
0.1
5.8
4.7,9

Exactly one

Zero or more

One or more

Zero or one

Specific range (5, 6, 7, or 8)
Combination (4, 5, 6, 7, or 9)

68

7. State Machine Diagrams and Specifications

7.1. Overview

The state/activity model icon that appears in the browser can be thought of as a “container” for
statechart and activity diagrams and all of their model elements. A state/activity model owns
statecharts and activity diagrams and is represented semantically with a state machine. A state
machine can be defined as a behavior that specifies the valid sequences of activities that an object or
interaction goes through during its life in response to events, together with its responses and actions.
Rational Rose automatically creates one state/activity model when a statechart or activity diagram is
created. A state/activity model can be relocated to a new owner, such as a class operation or a use
case, by dragging it to a new location in the browser. Rational Rose limits to only one state/activity
model per owner.

To Create and display a State Machine Diagram:

» Click Browse: State Machine Diagram.

Double-click New.
Name the diagram.
Specify the type of diagram that is wanted to be created: Activity or Statechart.
Click OK.

YV V V VY

7.2. State Machine Specification

A State Machine Specification allows to display and modify the properties and relationships of a
state/activity model. A state/activity model contains statechart and activity diagrams.

To view the State Machine Specification, double click the state/activity model in the browser.
Changes made either through the specification or directly on the icon are automatically updated

throughout the model.

7.3. Statechart Diagram
Statechart diagrams model the dynamic behavior of individual classes or any other kind of object.
They show the sequences of states that an object goes through, the events that cause a transition from

one state or activity to another and the actions that result from a state or activity change.

69

Statechart diagrams are closely related to activity diagrams. The main difference between the two
diagrams is statechart diagrams are state centric, while activity diagrams are activity centric. A
statechart diagram is typically used to model the discrete stages of an object’s lifetime, whereas an
activity diagram is better suited to model the sequence of activities in a process.

Each state represents a named condition during the life of an object during which it satisfies some
condition or waits for some event. A statechart diagram typically contains one start state and multiple

end states. Transitions connect the various states on the diagram.

7.3.1. States
A state is a condition during the life cycle of an object during which it satisfies some conditions,
performs some action, or waits for an event. The state of an object can be characterized by the value

of one or more of the attributes of the class.

]

Figure 7.1 UML Notations for a State

To create states:
» Click to select the State icon from the toolbar.
» Click to place the state on the statechart diagram.

> With the state still selected, enter the name of the state.

7.3.2. States Transitions
A State Transition represents a change from an originating state to a successor state. An action can
accompany a state transition.
To create a State Transition:
» Click to select the State Transition icon from the toolbar.
» Click to select the originating state on the statechart diagram.
» Drag the state transition to the successor state.
» If the state transition is named transition, enter the name while the state transition arrow

is still selected.

70

7.3.3. Special States
There are two special states that are added to the statechart diagram. The first is a start state. Each
diagram must have one and only one start state since the object must be in a consistent state when it is

created. The second special state is a stop state. An object may have multiple stop states.

O @

Start State Stop State
Figure 7.2 UML Notation for start and stop states

i Statechart Diagram: CourseOffering / CourseOffering States

Initialization

dof Initialize course offering data

add studentf setjcount=0 “CourseRoster.create

Cpen Close
[count=10]
entryf Register student daf Finalize course
exitl *CourseRoster Add Student{Student) J L

ancel cancel

add student] count = 10]

Cancel

*CourseRoster.delete
®

1 | v |

Figure 7.3 State chart diagram for courseOffering class

71

7.4. Activity Diagram

Activity diagrams provide a way to model the workflow of a business process. Activity diagrams
can also be used to model code-specific information, such as a class operation. Activity diagrams are
very similar to a flowchart because of modeling a workflow from activity to activity. An activity
diagram is basically a special case of a state machine in which most of the states are activities and
most of the transitions are implicitly triggered by completion of the actions in the source activities.

Each activity represents the performance of a group of actions in a workflow. Once the activity is
complete, the flow of control moves to the next activity or state through a transition. If an outgoing
transition is not clearly triggered by an event, then it is triggered by the completion of the contained
actions inside the activity. A unique activity diagram feature is a swimlane that defines who or what is
responsible for carrying out the activity or state. It is also possible to place objects on activity
diagrams. The workflow stops when a transition reaches an end state. It is possible to attach activity
diagrams to most model elements in the use case or logical views. Activity diagrams cannot reside
within the component view. The following tools on the activity diagram toolbox can be used to model

activity diagrams:

—><>

Activity Transition Decision Synchronization
Bars

Figure 7.4 UML Notations for Activity Diagram Elements

7.4.1. Activities
An activity represents the performance of some behavior in the workflow.
To create Activity:
» Click to select the Activity icon from the toolbar.
» Click on the activity diagram window to place the activity.

» While the activity is still selected, enter the name of the activity.

72

7.4.2. Transitions

Transitions are used to show the passing of the flow of control from activity to activity. They are

typically triggered by the completion of the behavior in the originating activity or by events.

To create Transitions:

>
>

Click to select the State transition icon from the toolbar.

Click on the originating activity and drag the transition arrow to the successor activity.

To create guarded transition:

>

YV V. V V V

Click to select the State transition icon from the toolbar.

Click on the decision and drag the transition to the successor activity.
Double-Click on the transition arrow to make the specification visible.
Select the Detail tab.

Enter the guard condition in the guard condition field.

Click OK button to close the specification.

7.4.3. Decision Points

When modeling the workflow of a system it is often necessary to show where the flow of control

branches based on a decision point. The transitions from a decision point contain a guard condition,

which is used to determine which path from the decision point is taken. Decisions along with their

guard conditions allow to show alternate paths through the workflow.

To create decision point:

>

Y V V V

Click to select the Decision icon from the toolbar.

Click on the activity diagram window to place the decision.
While the decision is still selected, enter the name of decision.
Click to select the Transition icon on the toolbar.

Click on the originating activity and drag the transition to the decision icon.

7.4.4. Synchronization Bars

In a workflow there are typically some activities that may be done in parallel. A synchronization

bar allows to specify what activities may be done concurrently. Synchronization bars also used to

show joins in the workflow, that is, what activities must complete before processing may continue.

73

To create synchronization bars:

>

Click to select the Horizontal synchronization or Vertical synchronization icon from the
toolbar.

Click on the activity diagram window to place the synchronization bar.

Click to select the State transition icon on the toolbar and add any needed incoming and

out going transitions to the synchronization bar.

7.45. Swimlanes

Swimlanes are used to partition an activity diagram. This typically is done to show what person or

organization is responsible for the activities contained in the swimlane.

To create Swimlanes:

>
>

YV V V VY

Click to select the Swimlane icon from the toolbar.

Click on the activity diagram window to place swimlane.

Double-click on the new swimlane to open the specification.

Enter the name of the swimlane in the Name field.

Click the OK button to close the specification.

To resize the swimlane, click on the swimlane border and drag the swimlane to the
desired location.

7.4.6. Initial and final Activities

There are special symbols that are used to show the starting and final activities in the workflow.

The starting activity is shown using a solid filled circle and the final activities are shown using a bull’s

eye. Typically there is one starting activity for the workflow and there may be more than one ending

activity.

To create starting and ending activities:

>
>
>

Click to select the start state or the end state icon from the toolbar.

Click on the activity diagram window to place the start or end state.

If a start state is added, click on the state transition icon, click on the start state, and drag
the transition to the first activity in the workflow.

If an end state is added, click on the state transition icon, click on the successor activity,

and drag the transition to end state

74

7.4.7. Object Flow

An object flow on an activity diagram represents the relationship between an activity and the object
that creates it (as an output) or uses it (as an input). Rational Rose draws object flows as dashed
arrows rather than solid arrows to distinguish them from ordinary transitions. Object flows look
identical to dependencies that appear on other diagram types.

Ed Activity Diagram: Use Case View / Catalogue Creation/JU

Registrar Frofessar

Create (Select course =
curriculum L to teach

Assign professor
to course J

[Mo] Al professaors

assigned?

[Yes]

Create
catalogue

Fost on the FPlace catalogue in
notice board hook store

Cpen
registration

Figure 7.5 Activity diagram for catalogue creation use case
7.5. Swimlane Specification

A Swimlane Specification allows to display and modify the properties and relationships of a

swimlane on an activity diagram.

75

To display a Swimlane Specification, select the swimlane header on an activity diagram and
double-click. Double-click on the swimlane icon in the browser. The Swimlane Specification consists

of the General tab.

Swimlane Specification for, Registrar,

General l

M arne: |Hegi$trar

Class: |(Unspecified) |
Owner: Uze Caze View

Contest:

D ocumentation:

k. | Cancel | |Ernwsev| Help |

Figure 7.6 Swimlane specifications, General tab

7.6. State and Activity Specification

A State and Activity Specification allows to display and modify the properties and relationships of
a state or activity on a statechart diagram or activity diagram. Although a state and activity have
almost identical features, they are used for different purposes. Start states and end states use the same
specifications as states because they are a type of state. However, they appear as circles on statechart
and activity diagrams.

The State, Activity, Start State, and End State Specifications consist of the following tabs: General,

Action, Transitions, and Swimlanes.

76

State and Activity specification-General Tab

Information about the name, stereotype, owner, context, documentation, state/activity history, and sub
state/activity history is entered or displayed on this tab.

State Specification for Intialization

General l.-’-‘-.n:tiu:uns] Transitiuns] Swimlanes]

Mame: |Intiali2ati|:|n
Stereotppe: | j
Cwner: Courzelffering

Context: Logical Wiew:: Universitpértifacts
Documentation:

[Statelactivity histary |

k. | Cancel | | ﬂrnwsev| Help |

Figure 7.7 State and activity specifications, General tab

State/Activity History

History provides a mechanism to return to the most recently visited state when transitioning

directly to a state with substates. History applies to the level in which it appears. It may also be
applied to the lowest depth of nested states.

State and Activity specification-Action Tab

Information about the type and action expression is entered or displayed on this tab.

77

State Specification for Intialization E'E'

General Actions l Transitinns] Swimlanes]

Type | Action Expreszsion |
Do/t Initialize course offering data

(] | Cancel Browse = Help

Figure 7.8 State and activity specifications, Action tab

Type

The Type field identifier bar lists the kind of action specified in the Action Specification.
Action Expression

The Action Expression field identifier bar lists the four possible timing options that specify

when to carry out an action, and it specifies the types of actions that are carried out.

78

State and Activity specification-Transition Tab

Information about the icon, event, and end is displayed on this tab.

State Specification for Intialization

General] Actions T ransitions lSwimIanes]
| Ewent | End
a = Intializaticr
A =10pen
£ ¥
k. | Catricel | | Browse = | Help |

Figure 7.9 State and activity specifications, Transition tab

7.7. Action Specification
An Action Specification allows to display and modify the action properties in a statechart diagram
or activity diagram.
State and Activity Actions
Each state and activity on a statechart or activity diagram may contain any number of internal
actions. An action is best described as a “task” that takes place while inside a state or activity.

There are four possible actions within a state or activity:

= On Entry
= On Exit
= Do

= OnEvent

79

7.8. State Transition Specification

A State Transition Specification allows to display and modify the properties and relationships of a

transition on a statechart diagram or activity diagram. The State Transition Specification lists the

events and actions that are comprised by the transition. The State Transition Specification consists of

General and Detail tabs.

State Transition Specification-Detail tab

State Transition 5pecification

General Detai l

Guard Conditian;

Action;:

Send arguments:

|
|
Send event: |
|
Send target; |

Tranzition between zubstates

From |

Ta | Create curnculum

KN EN

2k | Cancel

Browze

Help

Figure 7.10 State Transition Specification, Detalil tab

Guard Condition

Conditional state transitions are triggered only when the conditional expression evaluates to

true. Conditions are denoted by surrounding brackets:

Event (args) [condition] / Action ~target.someEvent (args)

Transition Between Substates

Transition between sub-states is useful when a transition is placed to or from a sub-state that

has been hidden from view. The From field displays the state name from which the transition

80

is initiated. The To field displays the state name to which the transition is pointing. Both fields

are active at all times.

7.9. Decision Specification
A Decision Specification allows to display and modify the properties and relationships of a
decision on a statechart diagram or activity diagram. The Decision Specification consists of the

following tabs: General, Transitions, and Swimlanes.

7.10. Synchronization Specification
A Synchronization Specification display and modify the properties and relationships of
synchronization on a statechart diagram or activity diagram. The Synchronization Specification

consists of the following tabs: General and Transitions.
7.11. Object Flow Specification

An Object Flow Specification display and modify the properties and relationships of an object flow

on an activity diagram. The Object Flow Specification consists of the General tab.

81

8. Component Diagram and Specifications

8.1. Component Diagram Overview

A component diagram shows the physical dependency relationships (mapping to a file system)
between components such as main programs, subprograms, packages, and tasks, and the arrangement
of components into component packages. The modeling elements in the component view of
architecture are packages and components along with their connections. Component diagrams are
contained (owned) either at the top level of the model or by a package. This means the diagram will
depict the components and packages in which the diagram is contained.

To create and display component diagram:

» Click Browse: Component Diagram.
» On the toolbar, click the component diagram icon.
» On the browser, double-click the component diagram icon.

Every component is assigned to a package. When a component is created using a creation tool from
the component diagram toolbox, the component is assigned to the package containing the component
diagram.

To reassign a component from one package to another:

» Select a component icon in a diagram directly contained by the package to which the
component should be assigned.
» Click Edit: Relocate.

8.2. Source Code Component

In the component view of the model, a source code component represents a software file that is
contained by the package. The type of file is language dependent (e.g. in C++, software components
represent .h and .cpp files, in Java they represent .java files, and Power Builder a software component
is a .pbl). Each component is assigned a language. Classes in the logical view are mapped to
components in the component view. In C++, the mapping is typically one-to-one; that is, one class
maps to one component. However, there are times that more than one class will be mapped to a

component. This is usually done when there is a very tight coupling between the classes.

82

Component
Name

Figure 8.1. UML notation for a Component

8.3. Component Diagram Toolbox

The application window displays the following toolbox when the current window contains a

component diagram and View: As Unified is selected.

Package
Dependency Specification Lock
Subprogram Task
Selector Note Component Body Specification

%rscm,»i’ajq'jflﬁEﬁ%lﬁé?é? (-

Text Note Package Main Task
Anchor Program Body
Subprogram Package
Specification Body

Figure 8.2. Component diagram toolbox

8.4. Component Specification

A Component Specification displays and modifies the properties and relationships of each
component in the current model. The same specification is used for all kinds of components. Some of
the information on this specification can also be displayed inside icons representing the component in
a component diagram.

To display a Component Specification, double-click any icon representing the component, or click
Browse: Specifications. The Component Specification consists of General, Detail, Realizes, and Files
tabs.

83

Component Specification-General tab

Component Specification for Course EJE|

General l Detail] Healizes] Files] UisualBasic]

Marme: |Eu:uurse

Sterentype: » | Language: [Vizual Bazic -

Dacumentation:

] | Cancel | | Browse v| Help |

Figure 8.3. Component specification, General tab

Stereotype (Component)

A component stereotype represents the sub classification of an element. The most common
type of components are already predefined as stereotypes, including Main Program, Package
Body, Package Specification, Subprogram Body, Subprogram Specification, Task Body, and
Task Specification.

Language

This field identifies the implementation language that is assigned to this component. Note that
when changing the implementation language of a component, the data types that are used in
the specification of operations and attributes of the assigned classes are not automatically
converted to data types in the new implementation language. Also, if the implementation
language for a component with classes that are assigned to other components is changed, a

dialog box that specifies how to handle those classes appears.

84

Component Specification-Detail tab

Component Specification for Course E|FE|

General Detail lFieaIizes] Files]"-.r"isuaIEasi-:]

Declarations:

ok | Cancel | |ﬁrnwse*| Help |

Figure 8.4. Component specification, Detail tab

Declarations
The Declarations field contains a list of declarations, such as class names, variables, and other
language-specific features (such as #includes or similar constructs). Declarations can include

classes, objects, and any other language-specific declarations.

Component Specification-Realize tab
Show All Classes
A list of all classes in the model will be seen, if this check box is selected. If this check box is

cleared, only classes that are assigned to this component will be seen.

85

Classes

The list identifies the classes and interfaces that are assigned to this component (indicated with
check marks). The Logical Package column shows to which package a class belongs, and the
Language column shows the programming language that is assigned to a specific class. A class
or interface can be assigned to a component through Assign on the shortcut menu in the list, or
by dragging a class or interface from the browser and dropping it in this list. Classes that are
unassigned or classes that are assigned to components with the same implementation language

as this component can be assigned.

Component Specification for Course @E|

General] Detsil Realizes l Filez] Yizual Easic]

[Show all clazzes

Clazs Mame | Logical Fackage.. | Language
B AddCourzelfferivn Interfaces Wizual Bazic
B Professor Peoplelnfa Wizual Bazic
Ef Courze Universitpdrtifacts Visual Basic
Ef ProfezzoCoursel Interfaces Wizual Bazic

B ProfeszorCoursed Universitpdrtifacts Yisual Basic

|] | Cancel | Apply | Emwsev| Help |

Figure 8.5. Component specification, Realize tab

Language

This field identifies the implementation language that is assigned to this component. When
changing the implementation language of a component, the data types that are used in the
specification of operations and attributes of the assigned classes are not automatically

converted to data types in the new implementation language.

86

8.5. Package Specification

A Package Specification displays and modifies the properties and relationships of a package in the

current model. To display a Package Specification, double-click any icon representing the package, or

click Browse: Specifications. The Package Specification consists of General, Detail, and Files tabs.

Package Specification-General tab

Package

The package the component belongs to is displayed in this static field.

Package 5pecification for, Database E|E|

General | Detail | Files | Adaf3 | Adads |

M arne: |Datal:nase Package: Compaonent
Wi

Sterentype: | j

Documentation:

0k, | Cancel | | Browse v| Help |

Figure 8.6. Package specification, General tab

87

Package Specification-Detail tab
Component Diagrams
This field lists the component diagrams contained in the package. A new component diagram
in the package can be created through Insert on the shortcut menu, or click Browse:
Component Diagram. Component diagrams can be renamed or deleted from this field. To
display a specific component diagram listed in this field, double-click its entry.

Package Specification for Interfaces E'E'

General Detall | Files | Ada83 | Adads |

[Component] Dliagrans

Title
[ET

ak. | Cancel | | Browse 'r| Help |

Figure 8.7. Package specification, Detail tab

88

8.6. Software components in the JU Course Registration Problem

This is a relatively simple system and the decision was made to provide a many-to-one mapping

between classes and component.

Bl Component Diagram: Component View / Main/DCE Z

B

%5 Course CourseOffering RegistrationlUser
% Professor SR

Figure 8.8. Component (Software) diagram

89

9. Deployment Diagram and Specifications

9.1. Deployment Diagram Overview
A deployment diagram shows processors, devices, and connections. Each model contains a single
deployment diagram that shows the connections between processors and devices, and the allocation of
its processes to processors.
To create and display deployment diagram:
» Click Browse: Deployment Diagram.
» On the toolbar, click the deployment diagram icon.

» In the browser, double-click the deployment diagram icon.

9.2. Deployment Diagram Toolbox

The application window displays the following toolbox when the current window contains a

deployment diagram and View: As Unified is selected.

Note
Text ANChOr ~annection

Toolbos:

| ABC TI @ Ve l@ E—— Lock

1 Device
Note ProcCessor

Selector

Figure 9.1. Deployment diagram toolbox

9.3. Processor Specification

A Processor Specification displays and modifies the properties and relationships of a processor in
the current model. Some of the information on the specification can also be displayed inside icons
representing the processor in a model’s deployment diagram. To display a Processor Specification,
double-click any icon representing a processor, or click Browse: Specifications. The Processor

Specification consists of General and Detail.

90

Processor Specification-Detail Tab

Processor Specification for Registration @@

General Detail l

Characteristics:

Processes:
M ame Pricirity
Scheduling:
* Preemptive " Mon preemptive " Cuclic
(" Executive " Manual

oK | Cancel | |Ernwse"| Help |

Figure 9.2. Processor Specification, Detail tab

Characteristics

Characteristics field is used to specify a physical description of an element. For example, it can
describe the kind and bandwidth of a connection; the manufacturer, model, memory, and disks
of a machine; or the kind and size of a device. This field can be set only through the
specification. This information is not displayed in the deployment diagram. To update this
field, click the Characteristics field and enter the information.

Processes

This field is used to identify the processes assigned to this processor. Processes denote either
the root of a main program from a component diagram or the name of an active object from a
collaboration diagram. To create a process, right-click in the processes area and click Insert
from the shortcut menu. A new process entry is created. To change the name or priority, click
the item and type the changes. A list of the processes can be displayed by selecting the

processor icon and clicking Show Processes from the shortcut menu.

91

Scheduling
The Scheduling field specifies the type of process scheduling used by the processor. These
options are used to specify the appropriate scheduling.
Preemptive (Default)
Higher-priority processes that are ready to execute can preempt lower-priority
processes that are currently executing. Processes with equal priority are given a time
slice in which to execute, allowing computation resources to be fairly distributed.
Non preemptive
The current process continues to execute until it relinquishes control.
Cyclic
Control passes from one process to another; each process is given a fixed amount of
processing time.
Executive
An algorithm controls process scheduling.
Manual

Processes are scheduled by a user outside of the system.

9.4. Device Specification

A Device Specification displays and modifies the properties and relationships of a device in the
current model. Some of the information on this specification can also be displayed inside icons
representing the device in a deployment diagram. To display a Device Specification, double-click any
icon representing a device, or click Browse: Specifications. The Device Specification consists of

General and Detail tab.

9.5. Process Specification

Processes are threads of control that execute on a processor. One process specification documents
one thread of control. The Process Specification can be accessed through the Processes field of a
Processor Specification. None of the information contained in the Process Specification is displayed
in a diagram; thus, process properties can only be viewed and modified through a Process
Specification. The Process Specification consists of the General tab.

92

9.6. Deployment Diagram for the JU Course Registration System

After studying the component packages defined for the problem, examining existing hardware, and
estimating the load on the system during the course registration period, it is required to have five
processors for the system, one to handle the professor executable, one for the database, and three for

student registration.

& Deployment Diagram |:”E|E|

Database
Semver

Fegistration

Libirany

main
Building

! | A

Figure 9.3 Deployment diagram for the JU course registration problem

93

10. Code Generation and Reverse Engineering with
Visual Basic

10.1 Code Generation
This portion contains a step-by-step guide to Visual Basic code generation and reverse engineering.

The following steps should be followed to generate code:

Step 1: Assign the Visual Basic Language to the components.
Components must be assigned a language. The language of a component is set for all classes assigned

to the component.

Step 2: Assign classes to components.
Once components have been created, classes are assigned to the components. The components

represent a Visual Basic project.

Step 3: Use the Model Assistant Tool to set code generation properties.
The Model Assistant Tool maps modeling elements in Rational Rose to visual Basic constructs. In
Visual Basic, the Model Assistant Tool may be used to create and specify constants, declare
statements, event statements, enum and type declarations, properties, methods, and method
parameters. It also allows to set procedures for class properties and association roles, and to define and
create a user-defined collection class for the class.
To start the Model Assistant tool:
» Right-Click on the class in the Browser or on the class diagram.
» Select the Model Assistant menu choice.

The Model Assistant Tool for a class assigned the Visual Basic language is shown in figure 10.1.

94

#%- Visual Basic Model Assistant - [Course]

w Clazs letiDnsl Template]

= [Z1 Properties
+ - B creditHours v Should be generated
EE dezcription
EH name [v Should be updated from code
B Major
B Minar r
EE Pre_requisit

=[] Methods Stereotype: entiby -

=% getlifering

= zet(ffering :‘
Collection Clags: Colection -

Documentation:

][] [~ [[

Help ak.

Figure 10.1 Visual Basic Model Assistant

Step 4: Select the components and use the Code Update Tool to generate the code.
The code Update Tool is used to generate the Visual Basic code. Code may be generated for all
components in a package, a single component, or a set of components.
To start the Code Update tool:
» Right-Click on the component in the Browser or on a component diagram.
» Select the Update Code menu choice.

95

% Code Update Tool - Select Components and Classes

Some aof the clazzes in the model are not aszigned to a component. [F you wank ko
generate code for theze classes, you must first azsign them to a Yisual Studio
Component.
What would you like to do?
Azzign unaszigned clazzes to the Course component - Chil+4
Create a Yisual Bazic component and assign classesz to it - Chrl+RB
Learn more about components - Chrl+l
Components in model; Components:
M amne Stereotype Package
&% Course ExE Compone
2 _ [538 Courseffering Standard EXE Compore
58 Eugrseﬂfferlng [538 Projectt Standard EXE Interface:
Eg E“:'!E':t:: [538 Projectt Standard EXE Compane
o]z | % Student Com
poneE
+ D% Student
< = I >
Microszoft Yisual Basic
Cancel < Back Ment » Einizgh

Figure 10.2. Code Update Tool

Step 5: Evaluate the code generation errors.
When the code generation process is completed, the summary window is displayed in the Code
Update tool. The summary tab contains information about the generated code and all code generation

errors are written to the Log, which can be viewed by selecting the Log tab of the summary window.

10.2 Reverse Engineering

Once the coding in visual basic is completed it is needed to update the model to reflect any
changes. This can be accomplished by using the Model Update tool. This tool can also be used to
create an initial model for existing code.

To update (create) a model from code using the model update tool:

96

» Select the Tools: Visual Basic: Update Model from code menu command.

» Follow the steps of the wizard.

When the reverse engineering process is completed, the summary window is displayed in the

model Update tool.

10.3 Visual Basic code for Select Course To Teach Use Case

The task here is to build an application that allow the professor to access the system and select

course to teach. The professor is also able to delete any course from the system. The user of the

application is the professor or instructor. After strictly following the above procedure, visual basic

application provide the necessary component specified by Rational Rose during analysis and design

phase. The following figures shows the code and the out put for the Select to Teach Course use case.

P DCE - frmPass (Code)

ttPass _:J |Change

B[=/e9

[

Option Explicit

Private Jub cmdPCancel Click()
End
End Suhb

F

Private Zub cmdPOk Click()
Dim Pasz Az 23tring

If [(txtPazs=s.Text = Mpasswordf™) Then
frmZem.Visikble = True
frwPass.Visible = False
El=e
Pasz = MsgBox ("Invalid password®, vbOoEOnly,
End If
End Sub

"Error™)

Private Jub txtPass Change ()

End Sub

y

(@)

97

. Password Window

Enter Password:

EE R R T]

Cancel ‘

EBX]

(b)

Figure10.3 a) Code for password entry b) Out put for the code

M DCE - frmSem (Code)

cmid50k

j |Clicl-a

Option Explicit

=J=

Private Jub cmd3Cancel Click()

End

End 3Suhb

Priwvate Sub cmd3Ck Clicki()

Dim Sew Lz String

If (txt3em.Text = "2") Then
frmoption.Visible = True
frmfem.Visible = False

Else
SJem = MsgBox("Invalid Semester™, vhOEOnly, "Error™)

End If

End Sub

o

(@)

98

. Semester Selection Window E@

Enter Semester: | 2

Ok Cancel

(b)
Figure 10.4 a) Code for semester entry b) Out put for the code

P DCE - frmOption (Code)

cmdCDelete j |Clit:l-i ﬂ

Private Sub cmwdCidd Clicki) -
Datal.PFecordset. AddiNew
End Suhk

Private Sub cmwdCCancel Clicki()
End
End Zuhk
Private Sub cmdCDhelete Click()
On Error EBEesume MNext
Dim £ bLs String
Datal.Recordset.Delete
If Not ([(Datal.Recordset.EOF) Then
Iatal.PRecordset. Hovellext
Elzself Mot (Datal.Recordset.BOF) Then
Iatal.Recordset. HovePrevious
Else
T = MsgBox("Thizs was the last Course in the table™)
End If
End 3Suhb
Private Sub cmdCOk _Click()
On Error GoTo CancellUpdate
Datal.Recordset. Update
Exit Sub
Cancellpdate:
MagEBox Err.Description
Datal.PRecordset. Cancellpdate

(@)

& Course Addition and Deletion Window Z E| E'

Cowrse Name: |Arliﬁcial Intelegency

Prerequsit: |-

Comrse Number: |cc.:43

Credit Hom: |3

Professor Name: |Dr.]nlm

Professor ID: |1234

&dd Course Delete Course
Ok LCancel

4| 4 | Click on the arrows to navigate through courses P | M

(b)
Figure 10.5 a) Code for course Addition and Deletion b) Out put of the code

100

11. Rational RequisitePro

11.1 Overview

Studies have shown that managing requirements is the most significant factor in delivering projects
on time, on budget, and on target. RequisitePro helps projects succeed by giving teams the ability to
manage all project requirements comprehensively and facilitating team collaboration and
communication. Moving beyond conventional requirements management, RequisitePro combines
both document-centric and database-centric approaches. By deeply integrating Microsoft Word with a
multi-user database, RequisitePro allows to organize, prioritize, trace relationships, and easily track
changes to requirements. The program’s unique architecture and dynamic links make it possible to
move easily between the requirements in the database and their presentation in Word documents.
Requirements drive the entire project. RequisitePro’s integration with other industry-leading tools
optimizes the flow of requirements data throughout the project, promoting consistency and ensuring
that what is designed, tested, documented, and delivered meets the users’ needs. RequisitePro’s deep
integration with other lifecycle tools promotes artifact reusability and eases the sharing of information,

further enhancing team collaboration.

Requirements

RequisitePro organizes requirements and provides traceability and change management throughout the
project lifecycle. A requirement describes a condition or capability that a system must provide.
Requirements contain a name and text, and they can be qualified with attributes to provide specific
details. Requirements can be created in a document or in a view. All requirements information is

stored in the database.

Requirements Type
A requirement type is an outline for requirements. Requirement types are used to classify similar
requirements so they can be efficiently managed. When a requirement type is defined, common set of

attributes, display style, and tag numbering are also defined.

101

Menu Requirements
Bar Package Document

\Views

EBIX]

Toolbar— T3 || & lEEIES
7@5; g a ||| Requirements: / Pricrity Status Difficuly & |
/ i -1 CE1: Securty in the Courze. .. High Approved High
Project CE1.1: Dizplay password... | High Walidated M edium
CE1.2: Ability to check... b edium W alidated High
LAl CE1.3: Ability to display... b edium Froposzed b edium
7 CET: Secu"t-'"_ int.. CE1.4: Dizplay semester... |High Y alidated b edium
L] CE1.1: Displa... CE1.5: Ability to check... | Medium Validated |High
LI CE12:8biy .. |l CE1.6: Ability to display... | Medium Proposed | Medium
[[IQCE 1.5 """"'l't'r' —| CE2: Editing Courzes in the Courze.. | High Approved Medum —
[CE1.4: D'S_F'la--- CE2.1: Dizplay place._. High Proposed b edium
(] CE1.5 Abilty .. CE2.2: Ability to add. .. Medium Validated | Medium
(] CE1.6: &bilty .. CE2.3: Ability to defete._. | Medium | Validated | Medium
= [CJ] CE2: Editing Cour.. e <Click here to create a... Medium Approved M edium
[C7] CE21: Displa... j
[£7] CE2.2: Ability . 4 | ﬂ
Eil Bemssieullges) CE1.6: Ability to dizplay meszage to signal emar if semester is invalid
j Ahility to dizplay meszage to zignal emar f semester iz invalid
Ability to Hizplay mezszage to =ignal
eror if password iz not valid
Feady I 11 requirementz
. Status
Explorer Description Bar

Figure 11.1 RequisitePro application window.

Requirements Attributes
In RequisitePro, requirements are classified by their type and their attributes. An attribute provides
information to manage a requirement. Attributes can provide crucial information to help a team plan,
communicate, and monitor project activities from the analysis and design phases through the release
phase.

Attribute information may include the following:

= The relative benefit of the requirement.

= The cost of implementing the requirement.

= The priority of the requirement.

102

= The difficulty or risk associated with the requirement.
= The relationship of the requirement to another requirement.
RequisitePro provides several default requirement attributes, such as Priority (high, medium, low),

Status (proposed, approved, incorporated, validated), Cost, and Difficulty.

Project

A RequisitePro project includes a requirements database and its related documents. A project is
usually created by a project administrator, who determines the project structure and sets up security
permissions for the project’s users. Although all project users are encouraged to view and query
requirements and to participate in discussions, only a limited group of users create and manage

requirements within a project.

Project Database

The project database is the requirements database managed by RequisitePro. In RequisitePro, use one
of three physical databases to store requirements: Microsoft Access, Oracle, or Microsoft SQL Server.
Each RequisitePro project has its own database, where all the requirements for a project are stored
(With the exception of Microsoft Access, all of these databases may contain more than one project.).
In the project database, requirements can be added, modified, or deleted. When requirements are

changed in a document, the changes are updated in the database.

Project Version Control
RequisitePro’s version control allows to trace change by archiving projects. It can be possible to
manage multiple versions of the projects, retrieving, modifying, and returning revisions to the archive

in an organized and consistent manner. From RequisitePro, use RequisitePro’s Archive command.

Project List

A RequisitePro project list is a personal library of accessible RequisitePro projects. Each user’s list is
unique. For example, a project administrator who monitors the progress of all the projects scheduled
for completion this quarter could have an extensive list of projects, whereas some users might have
just one project in their list at a time. Project administrators store new projects in their file systems

typically in the RequisitePro Project directory.

103

Explorer

The Explorer is RequisitePro’s primary navigation window. In this window, project artifacts
(documents, requirements, views, and packages) are displayed hierarchically in a tree browser. Project
information is organized in packages, which are units of related artifacts. The project’s root package is

displayed as the project node, and the contents of each root package are displayed beneath it.

11.2 RequisitePro Project

A Rational RequisitePro project provides the framework within which project artifacts are
organized and managed. Each project includes the following: a database, documents, packages,
document types, requirements, requirement types, attributes, attribute values, discussions, traceability
relationships, saved personal and project wide views, revision histories, and security information.
Each project resides in a separate directory. This storage method simplifies the process of organizing,
archiving, and managing project files.

When a project is created in RequisitePro, there are choices of basing the project on a blank
template, on one of three templates included with RequisitePro, or on a template created from an
existing project. When a project is created based on a template, the document and requirement types,
attributes, security information, package structure, and data of the selected template are copied to the
new project. If a project template created with the Include project data option selected is used, the
template also copies the following project data from the existing project: packages, requirements,
documents, views, and history. If there is a baseline of a RequisitePro project, the baseline can be used
to create new projects in RequisitePro.

Three project templates are shipped with RequisitePro;

= Use-Case Template: - The Use-Case Template is ideal for implementing the Rational Unified
Process. This template is designed for RequisitePro projects that use the RequisitePro
integration with Rational Rose use cases and ClearQuest enhancement requests. Use cases are
particularly applicable to object-oriented software design using the Unified Modeling
Language and for applications that are user intensive.

= Traditional Template: - The Traditional Template is best suited for projects that use
declarative requirements specifications. This template includes a traditional Software

Requirements Specification outline rather than use cases.

104

= Composite Template: - The Composite Template allows to combine the best qualities of both

use-case modeling and traditional requirements specification techniques. This template

provides an outline for a modern software requirements specification package applying both

traditional document-based technigques and use-case modeling.

Before creating a RequisitePro project, decide which database to use to store the requirements

information. The currently supported databases are Microsoft Access and the enterprise databases
Oracle and Microsoft SQL Server.

To create RequisitePro project:

>

Open the Create Project dialog box by doing one of the following:

= From RequisitePro, click File: New: Project.

= From Rational Administrator, in the Configure Project dialog box, click Create in
the Requirement Asset area.

One of the following project templates should be selected:

= Blank template, and set each project parameter.

= One of the default templates provided with RequisitePro.

= A template from an existing project, using the Project Template Wizard.

The Rational RequisitePro Project Properties dialog box opens when OK button is

clicked.

Type general information about the new project.

= Type a project name (up to 64 characters).

= Type the path for the project directory, or click Browse and select the directory. After
the project is created, this field cannot be changed.

= A database in which to store the project should be selected. Projects can be created in
Microsoft Access, SQL Server, or Oracle. If a database other than Microsoft Access
is selected, click Properties to configure the database.

= Type a description of the project.

Click OK.

Click Yes to create the project directory, and then click Close when the directory has

been successfully created.

105

11.2.1 Project Template

Creating a template based on an existing RequisitePro project copies the existing project’s

structure and security, including document types, requirement types, attributes, and user and group

permissions. There is also an option to include project data (packages, requirements, documents,

views, and history). An icon for the new template appears in the Create Project dialog box, and can be

selected when creating new projects. Note that after creating a project template, it cannot be modified.

» Open the Create Project dialog box by doing one of the following:

From RequisitePro, click File: Project: New.
From Rational Administrator, in the Configure Project dialog box, click the Create
button in the Requirement Asset area.

» Double-click the Make New Template icon. The Project Template Wizard opens.

» At the Enter Template Information screen, the following information should be typed:

Template Name: A name for the new template.

Template Location: A location for the new template.

RequisitePro Project: RequisitePro project on which to base the template structure.
Include Project Data: This check box is selected if the template needed to include
data from the selected project in addition to the project structure.

Documentation File (optional): It selects an existing .rtf file that contains details
about the template.

Icon File: Selects an icon for the template that will appear in the Create Project

dialog box.

> The Next button is clicked to continue.

> The information is checked at the Confirm screen and Finish button is clicked to create

the template. The new template appears in the Create Project dialog box.

106

11.3 Working in view
Rational RequisitePro views use tables or outline trees to display requirements and their attributes
or the traceability relationships between different requirement types. RequisitePro includes powerful
query functions for filtering and sorting the requirements and their attributes in views. A view is an
environment for analyzing and printing requirements. Multiple views can be opened at one time, and
scroll can be used to view all requirements and attributes in the table or tree. The number of
requirements in the current view appears in the lower right corner of the views window.
It can be possible to create three kinds of views:
= The Attribute Matrix view displays all requirements and their attributes within a
specified type.
= The Traceability Matrix view displays the relationships between requirements of two
types.
= The Traceability Tree view displays the chain of traceability through the project
requirements. A Traceability Tree can be set up in one of two directions: traced out
of requirements of a specified type or traced into requirements of a specified type.
All views commands are located in the toolbar. To navigate in a view quickly, use the arrow keys,
the PAGE UP or PAGE DOWN keys, and the HOME and END keys. Use the right button on the
mouse as a shortcut to commands that are specific to requirements and attributes. Move the mouse
over the requirements and attribute labels and click the right button to access these shortcut menus.
While a view is open, other users may add, delete, or modify requirements that are displayed in the
view. These changes are not automatically reflected in the opened view or in the Explorer. To update
the data displayed in the opened view and in the Explorer for requirements that were modified by
other users, click in the view or in the Explorer and then click View: Refresh (or the Refresh the view

button). The Refresh command updates the displayed content.

11.3.1 The Attribute Matrix

The Attribute Matrix is a spreadsheet-like display that lists requirements of a specific requirement
type and their attributes. Requirements are arranged in rows, listed by tag number and followed by
requirement name (or requirement text, if the requirement has not been assigned a name). Attributes
are arranged in columns. The Attribute Matrix displays all requirements, and requirements can be

created in the database from this view.

107

& Rational RequisitePro - Final project - [CE: course selection{Attribute Matrix]] E@E|
- O X

I Fil= Edit Wiew Reguirement Traceability Tools Window Help
D= & OKals ==y = #HOEe
- é:} Final project a ||| Requirements: Pricrity Status Difficuly & |
= 429 courze selection T
Course SE|ECt_i':'” —| CE1: Security in the Course. . High Approved High
B course SE|ECt!':'”[--- CE1.1: Dizplay password._. | High Y alidated b edium
f course selection]... CE1.2: Ability to check... | Medium Validated | High
2 Course selection... CE1.3: Ability to display... | Medium Proposed | Medium
- {E]] CET: Secu"t-'"_ int.. CE1.4: Dizplay semester... |High Y alidated b edium
L] CE1.1: Displa... CE1.5: Ability to check... | Medium Validated |High
LI CE12:8biy .. |l CE1.6: Ability to display... | Medium Proposed | Medium
[[IQCE 1.5 """"'l't'r' —| CE2: Editing Courzes in the Courze.. | High Approved Medum —
[CJ CE.4: D'S_F'la--- CE2.1: Dizplay place. .. High Propazed Medium
(] CE1.5 Abilty .. CE2.2: Ability to add... Medium Validated | Medium
(] CE1.6: &bilty .. CE2.3: Ability to delete._. | Medium Validated | Medium
=1 [L] CE2: Editing Cour... . <Click here to create a.. tedium Approved Medium
[C7] CE21: Displa... j
9 cE2.2: sbiity . || « | |
Eil Bemssieullges) CE1.6: Ability to dizplay meszage to signal emar if semester is invalid
j Ability to dizplay messzage to zsignal emor if semester iz invalid
Ability to dizplay mezsage to zignal
eror if pazsword iz not valid
Feady 11 requirementz

Figure 11.2 Attribute Matrix for JU Registration system

Requirements

In an Attribute Matrix, a requirement is displayed in a single row, showing the requirement tag
followed by the requirement name (or requirement text if the requirement has not been
assigned a name). An * marks the beginning of the empty row at the bottom of the matrix,
where a new requirement is inserted. A pencil icon at the beginning of a row indicates that the
entered requirement information has not yet been saved.

Attributes

Attribute labels are listed at the top of each column. Corresponding attribute values are listed
beneath the attribute labels. Query information is displayed here as well. Clicking View:
Displayed Attributes selects attributes that are displayed in the view. The Attribute Matrix
displays all internal and external traceability relationships in the Traced-to and Traced-from

columns; suspect traceability relationships are denoted with an (s) in the relevant column.

108

Text Pane

The text pane, located at the bottom of the Attribute Matrix, displays a requirement's tag,
name, and text, and it reads “Multiple requirements selected” if more than one requirement
have been selected. This field is read-only. Graphics and OLE objects included in requirement
text are displayed as small rectangular symbols. For Word-linked files included in the
requirement text, the path and time stamp of the linked file are presented. The default size of

the text pane is two lines, but the size can be increased by dragging the border.

11.3.2 The Traceability Matrix

The Traceability Matrix displays and manipulates the relationships between two requirement types.
The requirements can be of the same type or of different types, and they include all internally and
externally mapped requirements. This view is used to create, modify, and delete traceability
relationships and to view indirect relationships. The Traceability Matrix also shows traceability
relationships that are marked as suspect. If a Traceability Matrix of requirements of the same type is
displayed, it shows hierarchical relationships that are marked as suspect.

In this view, a requirement is traced to or traced from another requirement. For example,
Requirement B is traced from Requirement A if it was directly or indirectly derived from Requirement
A. If Requirement A is the basis of several other requirements, Requirement A is traced to these
requirements. An arrow pointing from one requirement to another indicates that a direct traceability
relationship exists between the requirements. A dotted line arrow indicates an indirect relationship.
Rows and columns can be resized. The intersection of a row and column is called a cell.

To change the number of lines of requirement name and/or requirement text displayed, click View:

Row/Column Sizing and then select a different value for the row or column size.

Cell

o,

% If the cell is blank, no relationship exists.

% If an arrow points upward a row requirement, the row &
requirement is traced to the column requirement. Traced to arrow
« If an arrow points down toward a row requirement, the row <JJ

Traced from arrow

109

K/
L4

requirement is traced from the column requirement.

If a dotted line arrow is displayed, an indirect relationship EmA
exist. Indirect relationship
If an arrow with a red diagonal line through it is displayed, &

- . . Suspect relationshi
the traceability relationship is suspect. Hspect retationship

If a triangle with a red diagonal line through it is displayed, b=
the hierarchical relationship is suspect. Suspect relationship
Text Panes

The Traceability Matrix displays two text panes at the bottom of the window. These panes are
used to review the requirements in each area, so that traceability relationships can easily be
created, modified, and deleted. The default size of each pane is set to one line and can be
resized. The top text pane displays the name (or text) of the currently selected row
requirement, and the bottom pane displays the name (or text) of the currently selected column
requirement. These fields are read-only. If the selected requirement has been assigned a name,
that name appears in the text pane. Otherwise, the requirement text appears in the text pane.
When more than one row or column is selected, the corresponding text pane displays the
message “Multiple requirements selected.” Graphics and OLE objects included in requirement
text appear as small rectangular symbols. For Word-linked files included in requirement text,

the path and time stamp of the linked file are presented.

110

& Rational RequisitePro - Final project - [CE-CE: course selection(Traceability M... g@g|

I File Edit Wiew Reguirement Traceabilty Tools Window Help -8 x
0|2 |8] & Quale =Y = B0 ¢
- %Final project J Relationzhips:) g s 8 s gl g =
= g - direct anly = I = =
5 course selection = I ™
Course selaction = = E E = E ;; ol - E E
BE course selection... Hodgowws0wx
T course selection... --'- | | | | | E - |
{2 Course selection]... | | | | | | |
. oo () [I R O |
-1 [C7] CE1: Security int... = |
CET.1: Dizpla...
E% CE1.2- .-'-‘-.I:ui:?t_l,l B CE1: Security in the Course... | | [z
- CE1.1: Display. .. £
[C3] CE1.3: Ability ... -H
. CE1.2: Ability to check. i
[C3] CE1.4: Displa... ———
[£9] CE1.5: Abilty .. CE1.3: Ability to... L=
7] EETE BB CE1.4: Display... |
- [F9] CE2: Editing Cour... CE1.5: Ability to check..)
5] CE2.1: Displa.. CIEU-E2 e T8 (3
9] CE22: abily . - CE2: Edltl_ng Coursesin the... rara) el
Eil CE2.2: Ability .. CE21: Dls_PIay place___
CE2 2: Ability to add. ..
CE2_3: Ability to delete_ J
Ability to dizplay message to signal |EE'I: Securty in the Courge Beqistration sugtem
if ter iz invealid
SITOrIT SEMEEISr s Inval |EE'I: Securty in the Courze Beaistration sustem
Feady 11 reguirements

Figure 11.3 Traceability Matrix for JU Registration system

11.3.3 The Traceability Tree
The Traceability Tree provides a graphical view of relationships to or from (internal and external)

requirements of one specific requirement type, including direct, indirect, and suspect traceability

relationships. Although direct and suspect relationships are modified in this view, RequisitePro

permits read-only access to indirect relationships.
In addition, the Traceability Tree displays hierarchical relationships and shows parent-child

relationships that have been marked as suspect. The tag, name, and attributes of the selected

requirement are displayed in the attribute pane.

111

& Rational RequisitePro - Final project - [CE: Course selection{Traceability Tree)] g@g|

B File Edit View Requirement Traceabilty Tools Window Help - 8 X
D8] 8 uale 3% B B 0E ¢
= @ Final project J = = CE1: Security in the Course. .. _* || Bequirement: EE.‘I._2
=459 courze selection [z~ CE1.1: Display... Mame Ahility to check. |
Courze selection = CE1_2: Ability to check. E{:’JS—S"' ﬂ;ﬂggd
B cowrse selection] [CE1.3: Ability to._ Cost
course selection]... [= CE1.4: Display._. Diifficulty High
i% Courze zelection]... == CE1.5: Ability to check.. Stability b edium
= [£9] CET: Security int... [= CE1.6: Ability to... ESS_'EI”EF'DTD 4
e e . higue
[£9) cE1.1: Dlgpla... —| [z= CEZ: Editing E_u:uurses if the... Location Course selectior
[[7] CE1.2: ability .. 1% CE1.1: Display. .. Package courze selection
Eﬂ CET.3: Ahbility .. 1% CE1.2: Ability to check.. .-'-‘-.uthu:u_r kowaafile,
[L9] CE1.4: Displa... % CE1.5: Ability to check.. Rlevision 10007
[£7] CE1.5: Abiliy .. [CE2.1: Display place... paE TNy
[L7] CE1.6: Ability ... [= CE2.2: Ability to add._. TrereeH e '
—-[£7] CE2: Editing Cour... [= CE2.3: Ability to delete.. Traced-to CEZ
[[9 CE21: Displa... FootT ag 1
[[7] CE2.2: Ability ... [
[[7] CE2.3: Ability ...
- 4] I E ¥
— - - CE1.2: ahility to check pagsward is walid or not
"i'"t':"t-'f' to check pazsword iz walid or &hility to check password is walid ar not
no
Ready 14 requirements
Figure 11.4 Traceability Tree for JU Registration system
Tree Pane

m < Traceability relationships for root-level requirements are indented and preceded by

= an arrow. Child requirements are indented below their parents and preceded by a triangle.

The text pane below the tree provides the name and text of the selected requirement in the tree; the

pane on the right side of the view displays requirement attributes of the highlighted requirement.

If the arrow leading from a root requirement points toward a branch requirement, the
branch requirement is traced from the root requirement.

If the arrow leading from a branch requirement points toward a root

&

requirement, the branch requirement is traced to the root requirement.

112

If an arrow with a red diagonal line is displayed, the traceability relationship is
suspect.
Fﬁ' If a triangle with a red diagonal line is displayed, the hierarchical relationship is
suspect.
Attribute Pane
The attribute pane, located on the right side of the Traceability Tree, displays the tag, name, and
attributes associated with the currently selected requirement. To display the attributes of a
particular requirement, click the requirement in the tree pane. This is a read-only text box and
cannot be edited. If more than one requirement is selected, the pane displays the attributes for
the first requirement selected.

11.3.4 Creating Views
» Select the package in which the new view appear and click File: New: View. The View
Properties dialog box opens.
» Do the following:
» |In the Name box, type the name under which the view is to be listed in the Explorer.
Filling in the Description box is optional.
= Select the view and requirement types. Note that user-defined requirement types are
also displayed. The Traceability Matrix displays two requirement types (one type for
the row and another for the column), the Attribute Matrix displays a single
requirement type, and the Traceability Tree displays a single requirement type at the
root level. Only requirements associated with the selected requirement types appear
in the view.
= Selecting the Private check box makes the view to be opened by the creator only.
» Click OK. The view opens and appears in the Explorer, in the package selected, listed
alphabetically by name.

113

11.4 Querying and Searching

11.4.1 Querying overview

Filtering restricts the information being displayed, and sorting determines the order in which the
information is displayed. For example, in an Attribute Matrix, ordering requirements information from
highest to lowest priority (sort criteria) and view only those requirements assigned (filter criteria).
Filter and sort requirements by applying query criteria to the attributes. These criteria limit the values
of the attributes and the traceability relationships. It can be possible to create an attribute-by-attribute
query, so that the results can be seen in each query criterion, or create a query that filters and sorts
several attributes at the same time. Saving a view, save the query criteria. Sort requirements
temporarily by attribute value in an Attribute Matrix by right-clicking the attribute label and clicking

Sort Ascending or Sort Descending on the shortcut menu.

11.4.2 Creating and modifying Queries

Requirements can be filtered in views by limiting the values of one or more attributes or by
limiting traceability. It can be possible to query row, column, root requirements, and external
requirement types.

» Select a view in the Explorer and click File: Properties. The View Properties dialog box
opens.

» Click the Query button.

The Query [Row/Column/Root] Requirements dialog box opens. If any query criteria is
not added, the Select Attribute dialog box opens.

» Select the attribute value to query, and click OK.

The Query Requirements dialog box opens. The dialog box displayed depends on
whether the attribute is a list-type or an entry-type attribute.

» For list-type attributes, select one or more attribute values to filter an attribute; the
logical operator OR is assumed for list-type attributes. For entry-type attributes, select an
operator (that is, includes, equal to) and specify the value.

» Select a sort order (None, Ascending, or Descending). If querying is on the Location
attribute, select the Sort by document position check box to sort the requirements in the

view in the same order as in the document that contains them.

114

» Type When Traced criteria, if applicable. The When Traced option is available only
when trace to or trace from attributes are queried. For hierarchical requirements,
traceability queries automatically include the parent if the child participates in a
traceability relationship. Cannot query for suspect hierarchical relationships, and cannot
create a traceability query between two external requirements.

» Click OK. The Query [Row/Column/Root] Requirements dialog box opens again.

A\

To add other query criteria, click Add and repeat the above steps.
» Select the Retain Hierarchical Display check box to include the parents of filtered child
requirements in the view, even if the parent requirements do not match the filter criteria

specified in the query. And finally click OK.

11.4.3 Navigating to a Requirement Using the Go To Command
The Go to command is used to find a requirement location in a project. Using that command in an
open document allows jumping quickly to a requirement in the document.
» Select a requirement in a view or in the Explorer.
» Click Requirement: Go To.
If the requirement is located in a document, the document containing the requirement opens, with
the requirement selected. If the requirement is located in a view, the Requirement Properties dialog
box opens, showing the name, text, attribute values, relationships, and discussions for the selected

requirement.

11.4.4 Reviewing a Project with Cross-Project Traceability

When a project is opened, RequisitePro may connect to an external project and display
requirements from both projects. In this case, the projects have been connected to one another, and
cross-project traceability relationships may exist. It can be possible to review the requirements in both
projects and their change-managed relationships in a view. Cross-project traceability creates
traceability relationships between requirements that reside in different projects. This feature
establishes connectivity among projects that were divided into subprojects or projects that relate to
each other or share a set of requirements, thereby making it easy for team members to reuse common
requirements across projects.

When cross-project traceability relationships are established, the following can occur:

115

External requirement types can be queried for display in views.

If a requirement that is traced to requirements in other projects is deleted,
RequisitePro updates the other projects to reflect the change. If the traceability
relationship in the external project cannot be deleted, the relationship is updated
when connectivity is established between the projects.

If a requirement modification causes the relationship to become suspect, and the
requirement is traced to or traced from requirements in other projects, RequisitePro
updates the projects to reflect the suspect link. If the traceability relationship in the
external project cannot be modified, the relationship is updated when connectivity is
established between the projects.

If a link between an internal and external requirement is marked as suspect, cleared
as suspect, or created or removed by the user, RequisitePro updates both the internal

and external projects to reflect the change.

11.4.5 Requirement Metrics

Requirement Metrics provides RequisitePro project administrators and product analysts with the

capability of reporting statistics on requirement names, text, attributes, relationships, and revisions.

These report results are displayed in Microsoft Excel and can be manipulated using Excel’s charting

capabilities. It begins by creating one or more filters. A filter creates criteria for retrieving requirement

information. For example, use an Attribute Count Filter to determine how many requirements in the

project have a priority with the value “High.” then combine one or more filters to produce a query. A

query combines the criteria from multiple filters to analyze requirements. The filters that compose a

query are joined with the AND statement. Finally, combine one or more queries to produce a report.

Two types of reports are available in Requirement Metrics:

A static report, which uses static filters and shows results about the project at the
present time.

A trend analysis report, which uses time-sensitive filters that analyze changes in
requirement text, attributes, traceability, and hierarchical relationships. Trend

analysis reports require specifying an increment for displaying revisions.

The Requirement Metrics main window is the primary user interface for the application. This

window allows selecting a requirement type for the report, choosing filters and filtering criteria,

116

building queries, and adding them to the report. As filters are added to queries, limit the requirements
in the report to those requirements that match filter criteria.

To access Requirement Metrics, click Tools: Metrics or the Metrics button on the toolbar.

11.5 Discussions in RequisitePro

Discussions address comments, issues, and questions to a group of participants that are defined.
Discussions can be associated with one or more specific requirements, or they can refer to the project
in general. A discussion item is either the initial discussion topic or a response. A participant can
respond to either the initial discussion text or to another response.

11.5.1 Viewing Discussions

All users of a Rational RequisitePro project can read discussion items, whether or not they are
discussion participants. Participants in discussion groups can create and reply to discussions. Those
who have an e-mail address specified in their user information can receive discussion items by e-mail.
When a user opens a project that has unread discussions or responses associated with it, the
discussions icon on the toolbar appears highlighted, and the ToolTip on the Show all discussion
button informs the user. In views, an icon is placed next to requirements that are associated with

discussions.

11.5.2 Configuring E-mail for Discussions
RequisitePro offers the capability of communicating with a group of discussion participants
regarding comments, issues, and questions related to one or more requirements or to the project in
general. When e-mail is enabled, this feature automatically generates an e-mail copy of any discussion
item entered (a new discussion or a reply) and sends it to all discussion participants with valid e-mail
addresses. Otherwise, users are notified through RequisitePro only.
Discussion e-mail is enabled and configured in several ways:
= Type an e-mail address in the Project Security dialog box (click File: Project
Administration: Security). This entry supplies the user information for each user in
RequisitePro.

= Configure a notification e-mail service (click Tools: E-mail Setup).

117

= Configure participation and notification mail for all users with e-mail addresses using
the Rational E-mail Reader application.

All RequisitePro users can add or edit their own e-mail addresses within RequisitePro; however,

only project administrators (who have administrator permissions) can add or edit other user’s

information.

11.5.3 Creating Discussions

To create a discussion at any time:

>

Y

>

If e-mail

Do one of the following:

= Click Tools: Discussions (or the Show all discussions button).

= In the Explorer or in a view, select one or more requirements and click
Requirement: Discussion.

= Select a requirement in a document and click RequisitePro: Requirement:
Discussions. The Discussions dialog box opens.

Click Create. The Discussion Properties dialog box opens.

Click the General tab, and type a subject (required) and text. The subject should be brief,

but it should also be descriptive enough to inform other users of the discussion’s

contents. The text typed in the Text box becomes the first item in the discussion. Open

the discussion by raising an issue, making a comment, or asking a question.

Click the Participants tab. Add users and groups.

Click the Requirements tab and add requirements.

Click OK to close the Select Requirements dialog box, and click OK to close the

Discussion Properties dialog box.

Click Close to close the Discussions dialog box.

is configured for discussions, the discussion is opened and the message is sent to all

participants who have an e-mail address specified in their user information. An icon on the toolbar

also notifies users that there is a new discussion associated with that project and its requirements. The

highlighted icon appears for all users who open the project (whether or not they are participants of the

discussion).

118

As with e-mail, discussion messages cannot be modified after they have been sent. This restriction
prevents conflicts when the original text is included in a discussion reply. To add an explanation

regarding to initial message, do so by creating a reply to the discussion.

11.5.4 Reading Discussions
The Discussions dialog box helps to keep track of which discussion items have been read and
which have not been. Unread discussion items are shown as bold text. Read discussion items are
shown as regular text.
» Click Tools: Discussions (or the Show all discussions button). The Discussions dialog
box opens.
» In the discussions list, click a discussion.
An expand indicator is displayed to the left of discussions with responses.
» Click an item to read it. The item’s text is displayed in the lower portion of the dialog
box.

» Click Close to close the Discussions dialog box.

11.5.5 Responding to Discussions
Discussion can be responded either in RequisitePro or in e-mail application. For those who are not
discussion participant, they can respond to the discussion only if the Restrict To Participants check
box is cleared in the Discussion Properties dialog box at the Participants tab. Only the discussion
author and members of the Administrators group can modify this option.
To respond to a discussion in RequisitePro using the Discussions dialog box:
» Click Tools: Discussions (or the Show all discussions button). The Discussions dialog
box opens.
» In the discussions list, click a discussion or response to a discussion. The discussion text
appears in the lower portion of the Discussions dialog box.
» Click Reply. The Discussion Response dialog box opens.
» Type the response.
The text automatically wraps at the end of each line. Use CTRL-C to copy selected text

from another application or document and CTRL-V to paste it into the response text box.

119

Text formatting, such as bold and underline, is not available in the Discussion Response
dialog box. Attaching files to the response is not possible.

» Click OK. The Discussions dialog box opens again. RequisitePro updates the associated
project and discussion and then sends the response to all participants who have an e-mail
address specified in their user information.

It can be possible to open the Discussions dialog box to display only the discussions associated
with a specific requirement, or open the Discussions dialog box to display all open discussions.
Specify which discussions to view in the Discussions dialog box, based on text, requirement, users,
priority, and status. In the Discussions dialog box, the sort order in which discussions appear can be
changed. Discussion items can be printed. The printout shows the discussion item’s subject, text,
author, and creation date and time. The printout also shows information about the associated
discussion, including the discussion’s priority, status, requirements, and participants.

The Attributes tab in the Discussion Properties dialog box shows the discussion’s author, the date
and time the discussion was created, and its current priority and status. These properties can be
modified only by the discussion author and project administrators.

The Discussion Properties dialog box, Participants tab determines which users and groups are
included in the discussion and whether the discussion is restricted to participants. Any user can view
the Participants tab, but only the discussion author and project administrators can modify its options,
with the following two exceptions:

= Any user can add herself/himself to the Users list if the Restrict To Participants check
box is cleared.
= Any user can always remove herself/himself from the Users list.

It can be possible to use the Discussion Properties dialog box, Requirements tab to associate
specific requirements with a discussion. Note that a discussion does not need to address any
requirement specifically. However, if it is wanted to address a specific requirement, use this tab to

associate it with the discussion.

11.6 Documents in RequisitePro

A Rational RequisitePro requirements document is a Microsoft Word file created in RequisitePro
and integrated with the project database. Requirements created outside of a project document can be

imported or copied into the document. If a new project document is created, RequisitePro associates

120

the document with the project that is open. This association is used to update the database and

synchronize the revision numbering of the project and document. The document’s name, location,

document type, and revision information are stored in the project database. The document

requirements, their attribute values, and their traceability relationships are also stored in the project

database.

11.6.1 Creating RequisitePro Document

To create a document in a RequisitePro project:

>

>
>
>

Open the project with which to associate the new document, and in the Explorer select

the package in which to store the new document.

Do one of the following:

= Click File: New: Document.

= In Word, click RequisitePro: Document: New. The Document Properties dialog box
opens.

In the General tab, type the name of the document in the Name box (64 characters

maximum) and a brief description (up to 255 characters) of the document’s purpose or

contents in the Description box.

In the Filename box, type, modify, or view the name of the document. The file name

defaults to the name typed in the Name box. The file name is limited to eight characters

unless long file names are supported by operating system.

Click the Show Tags check box to display requirement tags in the new document. Clear

this box to hide the tag text. Selecting this check box sets options in Microsoft Word to

ensure that the requirement tags are visible both on the display and in the printed

document.

Type a location for the file in the Directory box, or click Browse to select a directory.

Select a document type to assign to the new document.

Click OK. The new document is open and ready to be edited.

When a document is saved, RequisitePro saves to the project database all document modifications,

such as the document’s name, revision number, label, and change description. RequisitePro

automatically creates backup files for each document file in the document directory and updates them

when the document is saved. In addition, RequisitePro commits all new and modified requirements in

121

the document to the database, and it deletes from the database all requirements that are deleted from
the document. Requirements with pending tag numbers are assigned requirement tags. Save the active
requirements document by clicking RequisitePro: Document: Save.

Remove command is used to remove requirements formatting in the document and remove the
requirements and the document itself from the project database. To use this command, exclusive
access to the project is required. This command does not delete the document or any text that are
highlighted as requirements. RequisitePro saves the document as a Microsoft Word document in the
project directory.

New documents are stored in the project directory by default. Documents can be created in or
moved to any directory on the file system. All documents associated with the project are included in

the project list regardless of where they are stored.

11.6.2 Microsoft Word

RequisitePro includes an option to save a project document as a Microsoft Word document that is
independent of the project. This allows attaching the document to e-mail or share the document with
someone outside of working group. When this option is chosen, RequisitePro makes a copy of the
active requirements document and saves it as a Word file. The resulting Word document retains the
look and feel of the original requirements document and even includes bookmarks and tags used by
RequisitePro to identify requirements.

While working in RequisitePro, create, open, modify, save, and close Word documents that are
independent from RequisitePro. Use the standard File menu commands to manage these Word
documents. (The Save As and Exit commands are unavailable in order to prevent conflicts in handling
RequisitePro documents.)

The presentation style of one or more aspects of the document can be changed. RequisitePro uses
formatting features in Word to highlight requirements within a document. If different formatting to a
requirement is applied, either by directly formatting the requirement or by changing the template style
on which it is based, requirement text may be modified or entirely lost. Correct this problem by using

the Refresh Requirements command.

122

11.7 Requirements

A requirement describes a condition or capability that a system must provide; it is either derived
directly from user needs or is stated in a contract, standard, specification, or other formally imposed
document. Examples of requirements include inputs to the system, outputs from the system, and
functions and attributes of the system and the system environment.

In Rational RequisitePro, requirements contain a name and text, and they can be qualified with
attributes. Attributes describe a requirement in terms of user defined characteristics or properties, such
as cost, priority, and status.

Requirements are created in a view or in a requirements document. All requirements created in
RequisitePro are stored in the project database. After a requirement is created, do the following:

= Move or copy the requirement to a document or a view.
= Qualify the requirement by assigning attributes.
= Trace the requirement to and from other requirements.

Use hierarchical relationships to subdivide a general requirement into more explicit requirements.
Child requirements provide additional detail about their parent requirement.

A requirement’s name, text, attributes, and relationships can be modified in a view or a document.
It can be possible to read information in context and add information that supports and justifies the

requirements.

11.7.1 Creating Requirements
All requirements that are created in RequisitePro are stored in the project’s database. After a
requirement has been created, it can be modified, moved, and copied within the project and traced to
and from other requirements in the same project or across projects.
When a requirement is created, RequisitePro stores the following information in the database:
= The requirement name. A user defined title for a requirement; it must not exceed 128
characters. Like tag and text attributes, the name can be used to reference
requirements. The name is displayed by default in all RequisitePro views. All
requirements must have either a name or text (or both), but requirements located in
documents must have text. A name is not required to be unique, and change it at any

time if the requirement is created or belong to a group that has update permissions.

123

= The requirement text. Requirement text is the full textual content of a requirement; it
must not exceed 16,000 characters. If the requirement is located in a document, the
requirement text may include embedded and linked objects, such as graphics, tables,
and Microsoft Word files.
= Attribute values.
To create requirement:

» In the document, select the information (text, graphics, and OLE objects) that are become
part of the requirement. (If text is not selected, prompted to enter text for the
requirement.)

» Click RequisitePro: Requirement: New or the Create Requirement button. The
Requirement Properties dialog box opens.

» Click the General tab.
= In the Type box, select a requirement type with which to associate the requirement.
= In the Name box, type the requirement name (up to 128 characters).
= Click the Browse button next to the Package box to select a different package in

which to place the new requirement.

» Click OK.

» To save the changes, click RequisitePro: Document: Save.

11.7.2 Inserting Microsoft Word-linked Files in Requirements

Microsoft Word-linked files can be included as part of requirement text. If there is a change in the
linked file, any traceability or hierarchical relationships, the requirements are marked as suspect.
Microsoft PowerPoint files, Word documents, Excel spreadsheets, bitmap files, and other types of
files can be linked.

Microsoft Word’s Insert commands are used to link files to RequisitePro requirement text; Word’s
Paste Special and Field commands (available through the Edit and Insert menus respectively) are also
used. If Insert: Field is clicked, the following types of Microsoft Word Links and References are
supported:

= Link
* Include Text

= Include Picture

124

11.7.3 Creating requirements in View
Requirements are created in any view. In a Traceability Matrix or a Traceability Tree, enter data in
the Requirement Properties dialog box. In an Attribute Matrix, insert a new requirement directly into

the matrix and set requirement name, text, and attributes before saving it.

11.8 Hierarchy

Hierarchical requirement relationships are parent-child relationships that reflect direct
dependencies between requirements of the same type. In addition, these associations provide powerful
tools for change management. With hierarchical requirements, a requirement with a number of sub-
requirements is supported by establishing a parent requirement and creating child requirements of that
parent. Like traceability relationships, hierarchical relationships are a type of change managed
relationship in Rational RequisitePro. If a requirement’s name, text, requirement type, or attribute is
changed, the relationships with its children become suspect. Suspect relationships can be viewed and
managed using a Traceability Matrix or a Traceability Tree view.

11.8.1 Child Requirements

A child requirement is any requirement that has a parent. Each child requirement can have only one
parent, but a requirement can be both a parent and a child. Hierarchical relationships are created in a
requirements document or in a view. If the parent requirement resides in a document, the child
requirement must reside in the same document. The parent requirement and all of its children must be
of the same requirement type. These relationships are created in one of the following ways: use the
Hierarchy tab in the Requirement Properties dialog box; create them directly in a requirements
document by clicking RequisitePro: Requirement: New; or click Requirement: New to insert them in
an Attribute Matrix.

11.8.2 Peer Requirements

Requirements have a peer relationship when they are at the same level in the requirement
hierarchy. For example, two requirements are peer requirements when they are children of the same
parent. All requirements at the root level are peer requirements of one another. When a requirement is

created in a document, it is automatically placed at the same level as the requirement above it.

125

11.8.3 Suspect Relationship

A relationship between requirements becomes questionable or suspect if RequisitePro detects a
requirement’s name, text, requirement type, or attributes have been modified. In a view, manually
hierarchical relationships are marked as suspect or cleared from suspect relationship.

= If a parent requirement is modified, RequisitePro marks the relationship between the
parent and all its immediate children as suspect.

= |If a child requirement is modified, RequisitePro does not mark the relationship
between the child and its parent as suspect, although the child’s relationship with
other requirements is marked as suspect.

= When children are reassigned to another parent, all hierarchical relationships between
the new parent and its immediate children are automatically marked as suspect. The
relationships between the children and their children are not marked as suspect.

Suspect hierarchical relationships are displayed using the Traceability Matrix and the Traceability
Tree views. In a view, the suspect relationship is identified by a red diagonal line through the
requirement icon. The Auto Suspect command monitors a requirement’s change history and displays a
suspect signal when requirements are changed. Click Tools: Auto Suspect to enable or disable
automatic checking for changes that affect the traceability or hierarchical relationships between
requirements in the project.

Parent-child relationship that has been marked suspect can be reset by manually clearing it in the
Traceability Matrix or Traceability Tree. In a Traceability Matrix, select one or more intersection
points in the matrix where a traceability link has been created. Then either click Traceability: Clear
Suspect, or click Edit: Set Value, and select Clear Suspect from the list. In the Traceability Tree,

select one or more requirements to modify. Then click Traceability: Clear Suspect.

11.9 Traceability

In Rational RequisitePro, traceability is a dependency relationship between two requirements.
Traceability is a methodical approach to managing change by linking requirements that are related to
each other.

Like hierarchical relationships, traceability relationships are change managed relationships in
RequisitePro. If either end-point of the connection is changed, the relationship becomes suspect.

RequisitePro makes it easy to track changes to a requirement throughout the development cycle, so it

126

IS not necessary to review all documents individually to determine which elements need updating.
Suspect relationships can be viewed and managed using a Traceability Matrix or a Traceability Tree

view.

11.9.1 Traceability in View
Traceability relationships can be created and deleted in an Attribute Matrix, a Traceability Matrix,
and a Traceability Tree.
To create a traceability relationship:
» Open an Attribute Matrix and select a requirement. Then click Requirement:
Properties. The Requirement Properties dialog box opens.
» Click the Traceability tab.
» Click the Add button adjacent to the To or From box. The Trace To Requirement or the
Trace From Requirement(s) dialog box opens.
» From the Requirements of type list, select the requirement type with which the
requirement is associated.
» Select the location (document or database) of the requirement from the Located in list. If
the location is not known, select All locations.
» Select a requirement to trace to or trace from in the list and click OK. RequisitePro adds
this requirement to the To or From box on the Traceability tab.
» Click OK.

11.9.2 Suspect Relationship

A relationship between requirements becomes questionable or suspect if RequisitePro detects that a
requirement’s name, text, requirement type, or attribute has been modified.

The suspect state is reflected in the Requirement Properties dialog box as well as in views. In the
Traceability Tree and Traceability Matrix views, suspect traceability relationships are marked as lines
through the arrows. In an Attribute Matrix, an (s) appears after the requirement tag in the Traced-to or
Traced-from column. On the Traceability tab of the Requirement Properties dialog box, an (s)
displayed after the requirement tag in the To and From boxes represents a suspect relationship. In a

view, the suspect relationship is identified by a red diagonal line through the traceability arrow.

127

11.10 Importing Requirements and Documents

Requirements are imported from a Microsoft Word document file into a Rational RequisitePro

project use the import wizard.

The import process is recommended for:

= Importing nonproject documents into the active project.
» Importing new requirements into an existing project.

= Updating existing requirement attributes with new information.

The Import Wizard can import requirements and attributes into project from several sources:

= Requirement documents created in other RequisitePro projects.
= Microsoft Word documents created outside of RequisitePro.
» Any database that supports export of data in CSV format, such as Microsoft SQL

Server, Oracle, Microsoft Excel, or Microsoft Access.

To use the Import Wizard to import Word documents:

>
>

Open the project into which Word document is imported.

Select the project in the Explorer and click File: Import. The Import Wizard opens, and
the Select a Source screen opens.

Select the Microsoft Word Document option.

Type the path and name of the Word document to be imported, or click Browse to select
a file.

Click Next to continue. The Select Import Content screen opens.

Designate the import content by selecting the appropriate option (Requirements and

document, Requirements only, or Document only).

11.10.1 Preparing to Import

An external document or a CSV file can be imported into a RequisitePro project and placed in the

package of choice. If the project administrator has not already set up a project, it should be create

before proceeding with the import.

RequisitePro creates a log file each time a file is imported. The log file is a written record of the

import process. The log file records these operations: requirement types matching, conflict

resolutions, attribute mappings, the success or failure of search criteria, canceled operations, value

errors, and the success or failure of the import. The log file is saved in the directory where the project

128

is stored, and it is named import#.log, where # is a number representing sequential order of creation. If
a log file is deleted, the next one created receives the old number to fill in the gap.
If all the documents are wanted to import from one project into another, they can all be converted
to Microsoft Word format at once.
To convert all documents to Word at once:
» Open the project.
» In the Explorer, select the project and click File: Properties. The Project Properties
dialog box opens.
» On the Documents tab, clear the Save documents in RequisitePro Format check box.
» Click OK. When the project is closed, all documents are converted to Word format but
remain in the RequisitePro system. The documents retain their RequisitePro extensions.
Requirements are exported from RequisitePro in views.
= Attribute Matrixes and Traceability Trees can be exported as CSV files or as
Microsoft Word documents.
= Traceability Matrixes can be exported as CSV files only.
Setting view properties for requirement text and name affects what is exported. If the requirement
text and name are not displayed in the view, they are not exported. If a view is queried, only the

filtered requirements are exported.

129

12. Conclusions

Rational Rose is the visual modeling tool that is part of a comprehensive set of tools embodies
software practices and spans the entire software development life cycle. We have studied that Rational
Rose helps improve communication both within teams and across team boundaries, reduce
development time and improving software quality. Rational Rose provides a way to describe a system
being developed thoroughly using different diagrams. It also helps to figure out system requirements.
So that we have concluded that any project done with rational rose is delivered on time and quality.

The add-in feature allows to quickly and accurately customize the Rational Rose environment
depending on the development needs. Using the add-in tool, language (such as Visual Basic, Visual
Java) tools can be installed in Rational Rose.

We have seen that notation plays an important part in any application development activity; it is
glue that holds the process together. UML is a language used to specify, visualize, and document the
artifacts of an object-oriented system under development. It provides a very robust notation, which
grows from analysis into design.

RequisitePro is a requirement management tool that integrates a powerful multi-user requirements
database utility with the familiar environment of Microsoft word for windows. We have studied that
the program allows working simultaneously with a requirement database and requirements
documents. Requirement management is the most significant factor in delivering projects on time, on
budget, and on target. RequisitePro helps project succeed by giving teams the ability to manage all
project requirements comprehensively and facilitating team collaboration and communication. It
combines both document centric and database-centric approaches. By deeply integrating Microsoft
word with multiuser database, RequisitePro organize, prioritize, trace relationships, and easily track
changes to requirements. The integration of RequisitePro and Rational Rose improve system

development process.

130

N oo g &~ w

REFERENCES

Rational the e-development company, “RATIONAL ROSE MANUAL”, Version:2001A.04.00
Rational Software corporation, “RATIONAL REQUISITEPRO USER’S GUIDE”, Version:
2003.06.00

Terry Quatrani, “VISUAL MODELING WITH RATIONAL ROSE AND UML".
http://www.rational.com

Evangelos Petroutsos, “MASTERING VISUAL BASIC 6”

Roger S. Pressman, “SOFTWARE ENGINEERING”, Fifth edition.

K.K. Aggarwal & Yogesh Singh, “SOFTWARE ENGINEERING (programs, documentation

and operating procedures)”.

131

	
	DECLARATION BY THE CANDIDATE
	
	CERTIFICATE

