

ABSTRACT

The term Mutual Exclusion when applied to computer systems means a way
to make sure that the shared variables are accessed by only one process at a
time.

Our aim has been to study the fundamental concepts relating to the need for
mutual exclusion and various techniques used to enforce it. The best way to
understand these algorithms is to implement them. We have implemented
solution to certain classical synchronization problems such as Producer
Consumer and the Dining Philosopher problem. These problems are used to
test any proposed techniques for enforcing mutual exclusion.

We have also made simulation programs in C++ to illustrate the working of
Ricart and Agrawala algorithm which was the first optimal synchronization
algorithm.We have implemented this algorithm for a totally connected
network as well as a ring network.

 1

ACKNOWLEDGEMENT

We feel honored in expressing our profound sense of
gratitude and indebtedness to Mrs. Rajni Jindal, Assistant
Professor & Project Head, Department of Computer
Engineering, Delhi College of Engineering for providing us
with the opportunity to work on such a prestigious project,
under her expert guidance.

Her confidence in our capabilities and constant appreciation
has been our strength throughout the project.

We would also like to thanks to Dr. D Roy Chaudhury, HOD,
Department of Computer Engineering and Dr. Goldi Gabrani
for their co-operation and help during the project.

Harmandeep Singh (2K1/COE/023)
Manan Chandra (2K1/COE/029)
Prasanjit Mandal (2K1/COE/040)

 2

CERTIFICATE

This is to certify that project entitled

STUDY & IMPLEMENTATION OF MUTUAL EXCLUSION ALGORITHM

 is a bonafide work of the following students of Delhi College of
Engineering

 Harmandeep Singh (2K1/COE/023)
 Manan Chandra (2K1/COE/029)
 Prasanjit Mandal (2K1/COE/040)

This project was completed under my direct supervision and
Guidance and forms a part of their Bachelor of Engineering(B.E.)

course curriculum.

They have completed their work with utmost sincerity, diligence and to
my satisfaction.

I wish them best of luck for their future endeavours.

Mrs. RAJNI JINDAL

Assistant Professor & Project Head
Department of Computer Engineering

Delhi College of Engineering
Delhi University

Delhi-11042

 3

Abstract …………………………………………………………1
Introduction ……………………………………………………..2
Inter process communication……………………………………3
Critical section…………………………………………………..5
Hardware solutions……………………………………………...7
Software solutions……………………………………………….9
Semaphores……………………………………………………..13
Monitors…………………………………………………………16
Distributed mutual exclusion……………………………………21
Ricart and Agrawala algorithm………………………………….28
Implementation of RA algorithm………………………………..44
Implementation in ring network ………………………………...52
Dining Philosophers problem……………………………………58
Producer Consumer problem…………………………………….68
Conclusion……………………………………………………….76
Java………………………………………………………………77
Bibliography……………………………………………………..78

 4

INTRODUCTION

Sometimes processes have to interact sharing the common buffer area this
interaction can lead to race conditions situations in which the exact timing
determines the result. To avoid race conditions we need Mutual Exclusion-
some way of making sure that if one process is using the shared variable or
file the other process will be excluded from doing the same thing. That part
of the program where the shared memory is accessed is called the Critical
Section. Critical sections provide mutual exclusion.
Processes can communicate with each other using interprocess
communication primitives. These primitives are used to ensure that no two
processes are ever in their critical sections at the same time, that is to ensure
mutual exclusion.
Various inter-process communication primitives are used among these are
semaphores, monitors, event counters and message passing.
Monitors and semaphores are designed for solving mutual exclusion
problem on one or more CPUs that all have access to a common memory. A
number of classical problems have been solved using these and other
primitives. The first test of any new proposed primitive is to see how well it
solves the classical problems. These include the Producer-consumer, Dining
Philosopher, Readers-Writers problems. Even with proper primitives care
has to be taken to avoid errors and deadlocks.
For distributed systems, consisting of multiple CPUs each with its own
private memory, connected by a local area network, message passing is
used. Timestamps are attached to each message. They are used for ordering
of events. The event with a lower timestamp occurs before an event with a
higher timestamp.

 5

INTERPROCESS COMMUNICATION

Processes frequently need to communicate with other processes. There is a need for
communication between processes, preferably in a well-structured way not using
interrupts. This situation calls for IPC or Inter-Process Communication.

There are basically three issues:

- How one process can pass information to another.

- Make sure two or more processes do not get into each other’s way when engaging
in critical activities(eg.- there are two processes, each try to grab the last 100K of
memory)

- Proper sequencing must be done when dependencies are present: eg.- if process A
produces data and process B prints it, B has to wait until A has produced some
data before starting to print.

Race Conditions
In some operating systems, processes that are working together may share some
common storage that each one can read and write. The shared storage may be in main
memory or it may be a shared file. The location of shared memory does not change
the nature of the communication or the problems that arise.

For example: a print spooler

When a process wants to print a file, it enters the file name in a special spooler
directory. Another process, the printer daemon, periodically checks to see if there are
any files to be printed, and if there are it prints them and then removes their names
from the directory.

If a spooler directory has a large number of slots, 0..1..2..3…each one capable of
holding a file name. Two shared variables are there:

 out - which points to the next file to be printed

 in - which points to the next free slot in the directory

 6

Working:

At a certain instant, slots 0 to 3 are empty and slots 4 to 6 are full. More or less
simultaneously, processes A & B decide they want to queue a file for printing.
Process A reads IN and stores the value, 7, in a local variable called next_free_slot.
Just then a clock interrupt occurs and the CPU decides that process A has run long
enough, so it switches to process B. Process B also reads IN and also gets a 7, so it
stores the name of its file in slot 7 and updates IN to be an 8. then it goes off and does
other things.

Eventually, process A runs again, starting from the place it left off. It looks at
next_free_slot, finds a 7 there, and writes its file name in slot 7, erasing the name that
process B just put there. Then it computes (next_free_slot + 1), which is 8, and sets it
to 8.

When two or more processes are reading or writing some shared data and the final
result depends on who runs precisely when, are called Race Condition.

 7

 CRITICAL SECTION

The question is how do we avoid race condition? The key to preventing trouble relating
to shared memory & shared files is to find some way to prohibit more than one process
from reading and writing the shared data at the same time. What we need is “Mutual
Exclusion”-some way of making sure that if one process is using a shared variable or
file, the other processes will be excluded from doing the same thing. The choice of
appropriate primitive operations for achieving mutual exclusion is a major design issue in
any operating system, and a subject that we will examine.

The problem of avoiding “race conditions” can also be formulated in an abstract way.
Part of the time, a process is busy doing internal computations and other things that don
not lead to race conditions. Sometimes a process may be accessing shared memory or
files, or doing other critical things that can lead to races. The part of the program where
the shared memory is accessed is called the “Critical Section”. If we could arrange
matters such that no two processes were ever in their critical sections at the same time,
we could avoid race conditions.

Conditions to avoid Race Conditions are:

1. Ensure mutual exclusion between processes accessing the protected shared
resource

2. Make no assumptions about relative speeds and priorities of contending processes
3. Guarantee that crashing or terminating of any process outside of its critical section

does not affect the ability of other contending processes to access the shared
resource

4. When more than one process wishes to enter the critical section, grant entrance to
one of them in finite time.

The simplest way to ensure mutual exclusion is to outlaw concurrency. This approach is
too drastic, as it also annihilates all performance improvements possible with concurrent
execution of programs. What we really want to do is to temporarily grant a process that
needs to complete a critical section exclusive access to a shared resource.

 8

In many approaches to Mutual Exclusion, each process observes the following basic
protocol:

(i) Negotiation Protocol; [winner proceeds]
(ii) Critical Section; [exclusive use of resources]
(iii) Release Protocol; [ownership relinquished]

Description:

- A process that wishes to enter a critical section first negotiates with all interested

with all interested parties to make conflicting activity is in progress

- Concerned processes are aware of the imminent temporary unavailability of the

resource.

- Once the consensus is reached, the winning process begins executing the critical

section of code

- Upon completion, the process informs other contenders that the resource is

available, and another round of negotiations may be started.

 9

HARDWARE SOLUTIONS TO THE CRITICAL SECTION
PROBLEM

1.DISABLING INTERRUPTS

The simplest way to achieve Mutual Exclusion is to have each process disable all
interrupts just after entering its critical section, and re-enable them just before leaving it.
With interrupts disabled, no clock interrupts can occur. The CPU is only switched from
process to process as a result of clock or other interrupts, and with interrupts turned off
the CPU will not be switched to another process.
This process is unattractive because it is unwise to give user processes the power to turn
off interrupts. Some common errors can be : if process does not re-enable it afterwards or
the system is multiprocessor, with two or more CPUs, then disabling interrupts affects
only the CPU that executed the disable instruction, so others access critical section and
access shared memory.
It is frequently convenient for the kernel itself to disable interrupts for a few instructions
while it is updating variables or lists. If an interrupt occurred while the list of ready
processes, for example-inconsistent state, race conditions could occur.

2.TEST AND SET LOCK (TSL)

Principle:
It reads the contents of the memory word into a register and then stores a nonzero value
at that memory address. The operations of reading the word and storing into it are
guaranteed to be indivisible-no other processor can access the memory word memory
until the instruction is finished. The CPU executing the TSL instruction locks the
memory bus to prohibit other CPUs from accessing memory until it is done.
There is a shared variable, lock, to coordinate the access to shared memory. When lock is
0, any process may set it to 1 using the TSL instruction and then read/write the shared
memory. When it is done, the process sets lock back to 0 using an ordinary MOVE
instruction.

 10

enter_region:
 Tsl register, lock
 Cmp register, #0
 Jne enter_region
 Ret
leave_region:
 move lock, #0
 ret

Case 1: the first instruction copies the old value of lock to the register and then sets lock
to 1. The old value is compared with 0. If it is nonzero, the lock was already set, so the
program just goes back to the beginning and tests it again.

Case 2: sooner or later it will become 0 and the subroutine returns, with the lock set.
When clearing the program just stores a 0 in lock

 11

SOFTWARE SOLUIONS TO THE CRITICAL SECTION PROBLEM

TWO PROCESS SOLUTIONS:

ALGORITHM 1

Do {
 while (turn!=i);
 CRITICAL SECTION
 turn = j;
 REMAINDER SECTION
 }while(1);

Key Points:

 Our first approach is to let the processes share a common integer variable turn
initialized to 1 or 0

 If turn==i, then Pi executes in critical section

 This does not satisfy the progress requirement, since it requires strict
alternation of processes.

 For example: if turn==0 & P1 is ready to enter its critical section, P1 cannot do
so, even though P0 may be in its remainder section.

 Problem is that it does not retain information about state of each process,
remembers only which is to enter critical section

 This solution ensures that only one process at a time can be in its critical
section

 12

ALGORITHM 2

Do{ Flag[i]=true;
 While (flag[j]);
 CRITICAL SECTION
 Flag[i]= false;
 REMAINDER SECTION
 }while(1);

Key Points:

 In this algorithm process Pi first sets flag[i] to True, signaling that is ready to
enter its critical section. Pi checks to verify that process Pj is not ready to enter
critical section.If Pj were ready Pi would wait until flag[j] was false.

 At this point Pi would enter its critical section. On exiting critical section Pi
would set flag[i] to False.

 Each process updates its own flags & strict turn taking is removed

 For example:

 An execution sequence

 T0: P0 sets flag[0] = TRUE

 T1: P1 sets flag[1] = TRUE
This algorithm is crucially dependent on the exact timing of the two processes. This
situation could have been derived in an environment where there are several
processors executing concurrently, or where an interrupt occurs immediately after
step T0 is executed, and the CPU is switched from one process to another.

 13

ALGORITHM 3

Do{
 Flag[I]=true;
 Turn=j;
 While(flag[j] && turn==j);
 CRITICAL SECTION
 Flag[I]=false;
 REMAINDER SECTION
 }while(1);

Key Points:

 The processes share 2 variables ‘Boolean flag[2]’ and ‘int turn’.

 Initially flag[0]=flag[1]=false.Value of turn is immaterial (0 or 1). To enter
critical section process Pi first sets flag[I] to be true and then sets turn to value
j. So that if other process wishes to enter critical section it can do so.

 If both process try to enter at same time, turn will be set to both i and j roughly the
same time. Only one of the assignments will last.

 When P1 wishes to enter the critical section sets flag[i] but if P2 wishes to enter
too then preempts P1 just before flag[i] is set, meanwhile P2 may set flag[j], start
looping until flag[i] is false

 So both loop forever waiting for other to go false

 14

MULTIPLE-PROCESS SOLUTIONS:

- Algorithm 3 solves the critical section problem for two processes, but for n
processes we need a different algorithm. This algorithm is called “Bakery
Algorithm” as it is based on the scheduling algorithm commonly used in
bakeries.

- This algorithm was developed for a distributed environment

 Do {
 Choosing [i] = true;
 Number[i] = max(number [0], number[1],…, number[n-1]) +1;
 Choosing[i]=false;

 for (j=0;j<n;j++) {
 while(choosing[j]);
 while ((number[j]!=0) && (number[j,j]<number[i,i]));
 }
 critical section;

 number[i] = 0;

 remainder section

 }while (1);

- On entering the store the customer receives a number, the customer with the

lowest no is served next.
- The common data structure are

>Boolean choosing[n];
>int number[n];

- The bakery algorithm cannot guarantee that two processes do not receive
the same number.

- In case of a tie, the process with the lowest name is served first.
- If Pi and Pj receive the same number and if I<j, then Pi is served first. Since

process names are unique and totally ordered, our algorithm is completely
deterministic.

- Initially, these data structures are initialized to false and 0, respectively.
• (a,b) <(c,d) if a < c or if a==c & b<d
• max(a0,…,an-1) is a number, k, such that k>=ai for

I=0,….,n-1

 15

SEMAPHORES

Semaphores is a variable type that ensure orderly access to shared regions of code. A
semaphore mechanism basically consist of the two major primitive operations SIGNAL
and WAIT(originally P and V) , which operate on semaphore variable s . The semaphore
variable can assume integer values and, except possibly for initialisation, may be
accessed and manipulated only by means of the SIGNAL and WAIT operations.
The two primitives take one argument each- the semaphore variable-may be defined as
follows:

WAIT (s): Decrements the value of its argument semaphore, s, as soon as it would
become nonnegative. Completion of the WAIT operation, once the decision is made to
decrement its argument semaphore, must be indivisible.

 while not (s>0) do {keeptesting};
 s:= s-1;

SIGNAL (s): increments the value of its argument semaphore, s, as an indivisible
operation.

 s:= s+1;

Binary Semaphore:
A semaphore whose variable is allowed to take on only the values of 0 (BUSY) and 1
(FREE) is called a Binary Semaphore.

In this the logic of WAIT(s) is interpreted as waiting until semaphore variable s becomes
equal to FREE, followed by its indivisible setting to BUSY before control is returned to
mutual-exclusion protocol.

SIGNAL(s) sets the semaphore variable to FREE and thus represents the release phase of
the mutual-exclusion sequence.
It is essential that signal(s) and wait(s) are implemented in an indivisible way. The
normal way to implement Wait(s) and Signal(s) as system calls, with the operating
system briefly disabling all interrupts while it is testing the semaphore, updating it and
putting the process to sleep, if necessary. As all of these actions take only a few
instructions no harm is done in disabling interrupts. If multiple CPUs are being used
these semaphores should be protected by a “lock variable” with the TSL instruction used
to make sure that only one CPU at a time examines the semaphore using TSL to prevent
several CPUs from accessing the semaphore at the same time is quite different from

 16

BUSY WAITING by the Producer-Consumer waiting for the other to empty or fill the
buffer.

 The semaphore operation will take only a few microseconds whereas the producer or
consumer might take arbitrarily long. Following program contain code of three processes
that share a resource accessed within a critical section. A binary semaphore MUTEX is
used to protect the shared resource by enforcing its use in a mutually exclusive manner.
Each process ensures the integrity of its critical section by opening it with a WAIT and
closing it with a SIGNAL on the related semaphore. An arbitrary number of concurrent
processes might join in.

Process p1;
 begin
 while true do
 begin
 wait(mutex);
 CRITICAL SECTION
 signal(mutex);
 other_p1
 end while
End p1;

Process p2;
 begin
 while true do
 begin
 wait(mutex);
 CRITICAL SECTION
 signal(mutex);
 other_p2
 end while
End p2;

Process p3;
 begin
 while true do
 begin
 wait(mutex);
 CRITICAL SECTION
 signal(mutex);
 other_p3
 end while

 17

End p3;

Table for above implementation:

P1,P3 0 waiting Other_P2 Critical M8
-;P3,P1 1 waiting Signal(m) waiting M7
P2;P3,P1 0 waiting Critical Wait(mutex

)
M6

P2;P3 0 waiting Critical Other_P1 M5
-;P2,P3 1 Waiting Waiting Signal(m) M4
P1;P2,P3 0 waiting waiting M3
- 0 Wait(mutex

Critical)
Wait(mutex
)

Wait(mutex
)

M2
 1 M1
Processes Mutex P3 P2 P1 Time

 18

MONITORS

monitor is an object with some built-in mutual exclusion and thread synchronization
 the programming language so the compiler can

onitors have condition variables on which a thread can wait if conditions are not right
for it to continue executing in the monitor. Some other thread can then get in the monitor

A
capabilities. They are an integral part of
generate the correct code to implement the monitor. Only one thread can be active at a
time in the monitor where ``active'' means executing a method of the monitor. Although
monitors provide an easy way to achieve mutual exclusion , but that is not enough. We
also need a way for the processes to block when they cannot proceed . IThe solution lies
in the intoducton of control variables.

M

and perhaps change the state of the monitor. If conditions are now right that thread can
signal a waiting thread moving the latter to the ready queue to get back into the monitor
when it becomes free.

ondition variables are not counters. They donot accumulate signals for later use the way
semaphores do . Thus if a conditional variable is signaled with no one waiting on it, the
C

signal is lost. The Wait must come before the Signal. This rule makes the implementation
much easier. In practice it is not a problem because it is easy to keep track of the state of
each process with variables , if need be. A process that might otherwise do a signal can
see that this operation is not necessary by looking at the variables.

 19

It is up to the compiler to implement the mutual exclusion on monitor entries, but a
ommon way is to use a binary semaphore. Because the compiler , not the programmer is

arranging for the mutual exclusion , it is much less likely that something will go wrong .

By making the mutual exclusion of crtical regions automatic , monitors make parallel
 error-prone than semaphores. Still they do have some

drawbacks. Monitors are programming language construct . The compliler must

ss to a common memory. By putting the semaphores
in the shared memory and protecting them with TSl instruction we can avoid races. When

c

In any event the person writing the monitor does not have to be aware of how the
compiler arranges for mutual exclusion. It is sufficient to know that by turning all the
critical region into monitor procedures. No process will ever execute their critical regions
at the same time.

Drawbacks of Monitors

programming much ,less

recognize them and arrange for mutual exclusion somehow. C.Pascal and most other
languages do not have monitors , so it is unreasonable to expect their compilers to
enforce any mutual exclusion rules.

Another problem with monitors is that they were designed to mutual exclsion problem on
one or more CPU’s that all have acce

we go to distributed system consisting of multiple CPUs each having it’s own memory,
these monitors become inapplicable .

The conclusion is that semaphores are not usable except in few programming languages.

 20

Using Semaphore to implement Monitors

 the operating system provides semaphores as a basic feature, any compliler writer can

ypedef int semaphore;

emaphore mutex=1; // to control access to the monitor

oid enter_monitor(void) // cod eto execute upon entry to monitor

own(mutex);

ally(void) // leave monitor without signaling

p(mutex); // allow other processes to enter

tor

p(); // release one process waiting on c

p(mutex); // allow another process to enter
dition

If
easily implement monitors in his language.

First a small runtime collection of procedures for managing monitors is constructed and
put in the library . They are shown in Fig.

T

S

V
{
 d
}

void leave_norm
{
 u
}

void leave_with_signal(semaphore c) //signal on c and leave moni
{
 u
}

void wait(semaphore c) // go to sleep
{
 u
down(); // go to sleep on con
}

 21

Whenever generating code involving monitors, calls are made to the appropriate runtime

rocedure to perform the necessary function.

phore , mutex , initially 1 , to control entry
 the monitor and additional semaphore,initially 0 per condition variable. When a

rocess eneters the monitor , the compliler generates a call to the runtime procedure

 any other processes ,
en it can , just Up mutex and exit the monitor . This case is shown as leave normally.

 a

bine signaling and exiting into library procedure
ave_with_signal. All it does is an Up on the condition variable.

p

Associated with each monitor is a binary sema
to
p
enter_monitor which does a down on the mutex associated with the monitor being
entered . If the monitor is currently in use , the process will block.

It might seem logical that the code for exiting a monitor simply do an Up on mutex, this
simple solution does not work . When the process has not signaled
th
 This complication comes from the condition variables, Wait on a condition
variable c is carried out as sequence of two semaphore operations . first comes an
operation UP on mutex, to allow other processes to enter the monitor. Then comes
down on the condition variable.

Signal must always be done as the last operation before leaving the monitor . This rule is
needed to be able to to com
le

 22

Java Monitors

va uses the synchronized keyword to indicate that only one thread at a time can be
executing in this or any other synchronized method of the object representing the

can call wait() to block and leave the monitor until a notify() or
notifyAll() places the thread back in the ready queue to resume execution inside the

s condition variable corresponds to a lock on the object that
must be obtained whenever a thread calls a synchronized method in the object. Only

Usually all the publicly accessible methods the service or access methods are

access and call the
synchronized methods which are private.

Ja

monitor. A thread

monitor when scheduled. A thread that has been sent a signal is not guaranteed to be the
next thread executing inside the monitor compared to one that is blocked on a call to one
of the monitor's synchronized methods. Also it is not guaranteed that the thread that has
been waiting the longest is the one woken up with a notify(); an arbitrary thead is chosen
by the JVM. Finally when a notifyAll() is called to move all waiting threads back into the
ready queue the first thread to get back into the monitor is not necessarily the one that
has been waiting the longest.

Each Java monitor has a single nameless anonymous condition variable on which a
thread can wait() or signal one waiting thread with notify() or signal all waiting threads
with notifyAll(). This nameles

inside a synchronized method may wait() notify() and notifyAll() be called.

Methods that are static can also be synchronized. There is a lock associated with the class
that must be obtained when a static synchronized method is called.

synchronized. But a Java monitor may be designed with some methods synchronized and
some not. The non-synchronized methods may form the public

 23

DISTRIBUTED MUTUAL EXCLUSION

Assumptions

 resides at a different processor.
tual exclusion.

ment
cal

ts

itical section.
o A process that hales in its non-critical section must do so without interfering with

ely: No deadlock or starvation.

ust be permitted to enter without delay.

finite time only.

Ce

o This scheme requires three messages per critical section entry: Request, reply,

in the system is chosen to coordinate the entry to the critical
section (control access to shared objects).

tor.

.

ecution.

1.The system consists of n processes; each process Pi
2. Each process has a critical section that requires mu

Basic Require
If Pi is executing in its critical section, then no other process Pj is executing in its criti
section.

General Requiremen

o Mutual exclusion must be enforced: only one process at a time is allowed in its
cr

other processes.
o It must not be possible for a process requiring access to a critical section to be

delayed indefinit
o When no process is in a critical section, any process that requests entry to its

critical section m
o No assumptions are made about relative process speeds or number of processors.
o A process remains inside its critical section for a

ntralized Approach

release.
o One of the processes

o A process that wants to enter its critical section sends a request message to the
coordina

o The coordinator decides which process can enter the critical section next, and its
sends that process a reply message.

o When the process receives a reply message from the coordinator, it enters its
critical section

o After exiting its critical section, the process sends a release message to the
coordinator and proceeds with its ex

 24

Limits of the Centralized approach

 the coordinator process crashes, the system becomes useless.
he several messages towards the coordinator process can create a bottleneck.

o No starvation possible for any process.
o Use of only three messages.

General requirements of distributed algorithms

 of information.
o Each node has only a partial picture of the total system and must make decisions

ion.
o All nodes expend equal effort, on average, in effecting a final decision.

 a total system collapse.

Tim
Sin
events.

plementation of happened-before relation
tamp with each system event. Require that for every pair of events A

each process Pi a logical clock, LCi is associated. The logical clock can be
plemented as a simple counter that is incremented between any two successive events

ounter)).

If
T

Benefits of the Centralized approach

o Ensures mutual exclusion.
o Ensures ordering of the access requests.

o All nodes have equal amount

based on this information.
o All nodes bear equal responsibility for the final decis

o Failure of a node, in general, does not result in
o There exits no system wide common clock with which to regulate the time of

events.

e Stamping
ce in a distributed system the clocks are not synchronized, we have to be able to order

Im
Associate a times
and B, if A is happened before B, then the timestamp of A is less than the timestamp of B.
Within
im
executed within a process.

A process advances its logical clock when it receives a message whose timestamp is
greater than the current value of its logical clock (when a message is received, the
receiving system sets its counter to one more than the maximum of its current value and
the incoming time-stamp (c

 25

If the timestamps of two events A and B are the same, then the events are concurrent. We
may use the process identity numbers to break ties and to create a total ordering. For this

ethod to work, each message is sent from one process to all other processes. m

Fully Distributed Approach

 When process Pi wants to enter its critical section, it generates a new timestamp, TS,
S) to all other processes in

e system.

mediately or it may defer
ply back

n

reply is based on three factors:

 Pj does not want to enter its critical section, then it sends a reply immediately to Pi

 Pj wants to enter its critical section but has not yet entered it, then it compares its own
TS,

en it sends a reply immediately to Pi (Pi asked first) Otherwise, the reply is deferred

o Freedom from Deadlock is ensured.
o Freedom from starvation is ensured, since entry to the critical section is scheduled

 the timestamp ordering.
t processes are served in a first-come, first

o ection entry is 2 x (n – 1) , (n - 1) requests

o mber of required messages per critical section entry when processes

1
and sends the message request (Pi, T
th

2 When process Pj receives a request message, it may reply im
sending a re

3 When process Pi receives a reply message from all other processes in the system, it can
enter its critical sectio

4 After exiting its critical section, the process sends reply messages to all its deferred
requests

The decision whether process Pj replies immediately to a request(Pi, TS) message or
defers its

If Pj is in its critical section, then it defers its reply to Pi

If

If
request timestamp with the timestamp TS, If its own request timestamp is greater than
th

Advantages

according to
o The timestamp ordering ensures tha

served order
The number of messages per critical-s
and (n- 1) replies.
This is the nu
act independently and concurrently

 26

TATE TRANSITION DIAGRAM FOR THE FULLY DISTRIBUTED

S
APPROACH

 27

 Undesirable Consequences of Fully Distributed Approach

o The processes need to know the identity of all other processes in the system,
which makes the dynamic addition and removal of processes more complex

o If one of the processes fails, then the entire scheme collapses. This can be dealt
esses in the system

o Processes that have not entered their critical section must pause frequently to

o s.

Tok n

 ex sts a logical ring where each process has an assigned position and know who is next
he token is an entity that at any time is held by one process. The process holding the
ken may enter its critical section without asking permission. Only this which has got

ction. When a process leaves its critical section, it passes
e token to another process. When a process wants enter its critical section and it hasn't

hen begin clock := clock + 1;
roadcast(Request, clock I);
ait(access, token);

nd

_held := False;
 i + 1 to n, 1 to i - 1 do

J)) [Symbol]^token_present

alse;

with by continuously monitoring the state of all the proc

assure other processes that they intend to enter the critical section.
 This protocol is therefore suited for small, stable sets of cooperating processe

e -Passing Approach

It i
T
to
the token can enter its critical se
th
got the token, it sends request messages to all the other processes, waiting since the
arrival of the token.

How to manage the use of the critical section

if not token_present t
b
w
token_present := True;
e
endif;
token_held := True:
<critical section>
token(i) := clock;
token
for j :=
if (request(j) > token(
then begin
token_present := F
send(access, token(j))
end

 28

endif;

How to do when a process receives a request

eceived (Request, k, j) do
quest(j) := max(request(j), k);

 token_present[Symbol] ^not token_held then
ken(i) := clock;

]^token_present

alse;

n :
, access, token) send message of type access, with token, by process j

st(request, clock, i) send message from process i of type request, with timestamp
lock, to all other processes
ceived(request, t, j) receive message from process j of type request,with timestamp t

generation of lost token

 Difficult detection
 Easy recover: if required acknowledgement from process when the token

is received, dead processes are detected by neighbor which can skip it over
tion).

Benefits

o Mutual
o At wor cess to enter and leave one

critical region

when r
re
if
to
token_held := False;
for j := i + 1 to n, 1 to i - 1 do
if (request(j) > token(J)) [Symbol
then begin
token_present := F
send(access, token(j))
end
endif;
endif
enddo;

Notatio
send(j
broadca
c
re

Troubles

o Difficult detection/re
o Process crash

(need to know the entire ring configura

 exclusion is achieved, there is no starvation.
st a process have to wait for every other pro

 29

COMPARISON

NOTE: None of the approaches is robust to system crashes

 30

he Ricart and Agrawala algorithm

his a gorithm creates mutual exclusion in a computer network whose nodes
share memory. The algorithm sends only

of nodes in the network per critical section
vocation. This number of messages is at a minimum if parallel, distributed, symmetric

ontrol is used; hence, the algorithm is optimal in this respect. The time needed to

 information

n algorithm is proposed that creates mutual exclusion in a computer network whose

hich transit times may vary and
essages may not be delivered in the order sent. Nodes are assumed to operate correctly;

 node failure are discussed later. The algorithm is symmetrical,

erived information and that they act symmetrically.

T

T l
communicate only by messages and do not
2*(N - 1) messages, where N is the number
in
c
achieve mutual exclusion is also minimal under some general assumptions.
As in s "bakery algorithm," unbounded sequence numbers are used to provide first-come
first-served priority into the critical section. It is shown that the number can be contained
in a fixed amount of memory by storing it as the residue of a modulus. The number of
messages required to implement the exclusion can be reduced by using sequential node-
by-node processing, by using broadcast message techniques, or by sending
through timing channels. The "readers and writers" problem is solved by a simple
modification of the algorithm and the modifications necessary to make the algorithm
robust are described.

Key Words and Phrases: concurrent programming, critical section, distributed
algorithm, mutual exclusion, network, synchronization.

1. Introduction
A
nodes communicate only by messages and do not share memory. It is assumed that there
is an error-free underlying communications network in w
m
the consequences of
exhibits fully distributed control, and is insensitive to the relative speeds of nodes and
communication links.
The algorithm uses only 2* (N - 1) messages between nodes, where N is the number of
nodes and is optimal in the sense that a symmetrical, distributed algorithm cannot use
fewer messages if requests are processed by each node concurrently. In addition, the time
required to obtain the mutual exclusion is minimal if it is assumed that the nodes do not
have access to timing-d
While many writers have considered implementation of mutual exclusion
[2,3,4,5,6,7,8,9], the only earlier algorithm for mutual exclusion in a computer network
was proposed by Lamport [10,11]. It requires approximately 3* (N - 1) messages to be
exchanged per critical section invocation. The algorithm presented here requires fewer
messages (2* (N - 1)).

 31

2

. Algorithm

.1 Description
 node enters its critical section after all other nodes have been notified of the request

reply granting their permission. A node making an attempt to invoke
utual exclusion sends a REQUEST message to all other nodes. Upon receipt of the

age, the other node either sends a REPLY immediately or defers a

 sequence numbers are equal, the node numbers are compared

ME is a pun on "mutual exclusion."

 processes to implement the mutual exclusion:

)The last receives and processes REPLY messages.

riables. A
bles when necessary.

 mutual exclusion, it must have a
ethod for serializing those requests. The algorithm is expressed below in an Algol-like

 in the network

2
A
and have sent a
m
REQUEST mess
response until after it leaves its own critical section.
The algorithm is based on the fact that a node receiving a REQUEST message can
immediately determine whether the requesting node or itself should be allowed to enter
its critical section first. The node origin- nating the REQUEST message is never told the
result of the comparison.
A REPLY message is returned immediately if the originator of the REQUEST message
has priority; otherwise, the REPLY is delayed.
The priority order decision is made by comparing a sequence number present in each
REQUEST message. If the
to determine which will enter first.

2.2 Specification
The network consists of N nodes. Each node executes an identical algorithm but refers to
its own unique node number as ME.

Each node has three
(1)One is awakened when mutual exclusion is invoked on behalf of this node.
(2)Another receives and processes REQUEST messages.
(3

The three processes run asynchronously but operate on a set of common va
semaphore is used to serialize access to the common varia
If a node can generate multiple internal requests for
m
language.

SHARED DATABASE
CONSTANT
me, ! This node's unique number

N; ! The number of nodes

INTEGER

ur_SequenceNumber, O

 32

! The sequence number chosen by a request
originating at this node !

HighestSequenceNumber initial (0),

The highest sequence number seen in any
REQUEST message sent or received

SE),
en this node is requesting access

to its critical section

 toj's REQUEST message

variables when necessary

VOKES MUTUAL EXCLUSION FOR

Section;
(Shared_vats)

ical_Section := TRUE;
umber + l;

e THEN

EQUEST message containing our sequence number
des;

e other nodes;

ode j;

!
!

Outstanding_Reply_Count;
! The number of REPLY messages still
! expected

BOOLEAN
Requesting Critical_Section initial (FAL
! TRUE wh
!

Reply_Deferred [I:N] initial (FALSE);
! Reply_Deferred [j] is TRUE when this node
! is deferring a REPLY

BINARY SEMAPHORE
Shared vars initial (1);
! Interlock access to the above shared
!

PROCESS WHICH IN
THIS NODE
Comment Request Entry to our Critical
P
Comment Choose a sequence number;
RequestingCrit
Our_Sequence_Number := Highest_Sequence_N
V (Shared_vars);
Outstanding_ReplyCount := N - l;
FORj := I STEP l UNTIL N DO IFj # m
Send_Message(REQUEST(Our_Sequence_Number, me),j);
Comment sent a R
and our node number to all other no
Comment Now wait for a REPLY from each of th
WAITFOR (Outstanding_Reply_Count = 0);
Comment Critical Section Processing can be performed at this point;
Comment Release the Critical Section;
RequestingCritical_Section := FALSE;
FOR j := l STEP 1 UNTIL N DO
IF Reply_Deferred[j] THEN
BEGIN
Reply_Deferred[j] := FALSE;
Send_Message (REPLY, j);
Comment send a REPLY to n

 33

END;

PROCESS WHICH RECEIVES REQUEST (k, j) MESSAGES

omment k is the sequence number begin requested,
is the node number making the request;

aximum (Highest_Sequence_Number, k);

ence_Number ANDj > me));
vars);

UE if we have priority over

LSE
PLY, j);

;

C
j

BOOLEAN Defer it ;
! TRUE when we cannot reply immediately
Highest_Sequence_Number :~
M
P (Shared_vars);
Defer it :=
Requesting_Critical_Section
AND ((k > Our_sequence_Number)
OR (k = Our_Sequ
V (Shared_
Comment Defer_it will be TR
node j's request;
IF Defer it THEN Reply_Deferred[j] := TRUE E
Send_Message (RE

PROCESS WHICH RECEIVES REPLY MESSAGES

utstanding_Reply_Count - 1Outstanding_Reply_Count := O

DECISION TABLE

 34

2.3 Example

e-node network using this algorithm.Initially the highest sequence number
t each node is zero. Solid lines show REQUEST messages; the number is the sequence
umber of the request. The dashed lines show REPLY messages. In Figure 1 (a), node 3

ure

Imagine a thre
a
n
is the first to attempt to invoke mutual exclusion. It chooses sequence number l and sends
REQUEST messages to nodes 1 and 2. Before either message can arrive, node 2 wishes
to enter its critical section. It also chooses sequence number 1 and sends REQUEST
messages to the other nodes (Figure l(b)). In Figure l(c) node 2's messages have arrived.
At node l, which has not yet made a request itself, a REPLY is immediately generated. At
node 3, 2's request is found to have an identical sequence number to 3's request; node 2
wins on the node number tie-breaking rule. A REPLY is sent. But at node 2, 3's request is
found to have an identical sequence number but loses the tiebreaker.A reply is deferred.
Figure l(d) shows node l making a request to enter its critical section. It uses sequence
number 2 since it has received a REQUEST message with a sequence number of 1 (from
node 2). Owing to an anomaly in the communications system, the REQUEST message to
node 2 overtakes the REPLY that is on its way there. No reply message is sent since the
message's sequence number is higher than node 2's sequence number. In Figure l(e), node
2 can now enter its critical section since it has received both of the necessary replies.

Node l's REQUEST has also arrived at node 3 but has been deferred since the request's
sequence number is higher than that selected by node 3. When node 2 has finished its
critical section processing, it sends REPLY messages back to both nodes 1 and 3 (Fig
l(f)). In Figure l(g), nodes 1 and 3 have received their REPLY messages from node 2 but
not yet from each other. Node 3's request has arrived at node 1. Since it bears a smaller
sequence number, a REPLY is immediately generated. Figure l(h) shows node 3 entering
its critical section after it received both replies. In Figure l(i), node 3 has finished its
critical section processing and is returning the deferred REPLY message to node 1.
Finally in Figure l(j), node 1 begins critical section processing. At the conclusion of its
critical section, node 1 does nothing since it knows of no other node wishing to invoke
mutual exclusion.

 35

 36

2.4 Discussion
The sequence numbers are similar to the numbers used by Lamport's "bakery algorithm."
The node with the lowest number is the next one to enter the critical section. Ties are
broken by comparing node numbers. A REPLY is generated when its sender agrees to
allow the node sending a REQUEST to enter its critical section first. The sequence
numbers prevent high numbered nodes from being "shut-out" by lower numbered nodes.
Once node A's REQUEST messages have been processed by all other nodes, no other
node may enter its critical section twice before node A has entered its critical section. The
sequence numbers and node numbers form a virtual ordering among requesting nodes.
No one of the nodes has any more information than a list of some or all of the other nodes
following it in the virtual order. Yet the system as a whole defines a unique virtual
ordering based on a first-come-first-served discipline.

3. Assertions
3.1 Mutual Exclusion
Mutual exclusion is achieved when no pair of nodes is ever simultaneously in its critical
section. For any pair of nodes, one must leave its critical section before the other may
enter.

ASSERTION. Mutual exclusion is achieved.

PROOF. Assume the contrary, that at some time two nodes (A and B) are both in their
critical sections at the same time. Examine the message traffic associated with the current
cycle of the algorithm that occurred in each node just prior to this condition. Each node
sent a REQUEST to the other and received a REPLY.

CASE 1: Node A sent a REPLY to Node B's REQUEST before choosing its own
sequence number. Therefore A will choose a sequence number higher than B's sequence
number. When B received A's REQUEST with a higher number, it must have found its
own Requesting_Critical_Section = TRUE since this is set to be TRUE before sending
REQUEST and A had received this request before sending its own REQUEST. The
algorithm then directs B to defer the REQUEST and not reply until it has left its critical
section. Then node A could not yet be in its critical section contrary to assumption.

CASE 2: Node B sent a REPLY to A's REQUEST before choosing its own sequence
number. This is the mirror image of Case 1.

ASE 3: Both nodes sent a REPLY to the other's REQUEST after choosing their own
quence numbers. Both nodes must have found their own Requesting_Critical_Section
 be TRUE when receiving the other's REQUEST message. Both nodes will compare the
quence number and node number in the REQUEST message to their own sequence and

The comparisons will develop opposite senses at each node and exactly

C
se
to
se
node numbers.

 37

one will defer the REQUEST until it has left its own critical section contradicting the
assumption.

Therefore, in all cases the algorithm will prevent both nodes from entering their critical
sections simultaneously and mutual exclusion is achieved.

3.2 Deadlock
The system of nodes is said to be deadlocked when no node is in its critical section and
no requesting node can ever proceed to its own critical section.

adlock is impossible.

ing. After a sufficient period of time, the only reason that the REPLY could not
ave been received is that the REQUEST is deferred by another node which itself is

erefore, there must exist a circuit of nodes,
ch of which has sent a REQUEST to its successor but has not received a REPLY. Since

ROOF. Assume the contrary, that starvation is possible. Nodes receiving REQUEST

ent by the starving node, a receiving node
annot issue any new requests of its own with the same or lower sequence number. After

ASSERTION. De

PROOF. Assume the contrary, that deadlock is possible. Then all requesting nodes must
be unable to proceed to their critical sections because one or more REPLYs are
outstand
h
waiting for REPLYs and cannot proceed. Th
ea
each node in the loop has deferred the REQUEST sent to it, it must be requesting the
critical section itself and have found that the sequence number node number pair in that
REQUEST was greater than its own. However, this cannot hold for all nodes in the
supposed circuit, and thus the assertion must be true.

3.3 Starvation
Starvation occurs when one node must wait indefinitely to enter its critical section even
though other nodes
are entering and exiting their own critical sections.

ASSERTION. Starvation is impossible.

P
messages will process them within finite time since the process which handles them does
not block. After processing the REQUEST s
c
some period of time the sequence number of the starving node will be the lowest of any
requesting node. Any REQUESTs received by the starving node will be deferred,
preventing any other node from entering its critical section. By the previous assertion,
deadlock cannot occur and some process must be able to enter its critical section.
Since it cannot be any other process, the starving process must be the one to enter its
critical section.

 38

4.Message Traffic
This algorithm requires one message to (REQUEST) and one message from (REPLY)

ical section. If the network consists of N nodes,
*(N - l) messages are exchanged. It will be shown that this number is the minimum

wo separate messages per node are
quired. The requesting node does not need to send and receive messages to itself,

o a total of 2*(N - 1) messages are needed. This number must be a

 the nodes do not act independently of each other, it is possible to reduce the number of
 processing. The first condition discussed earlier

ne message into and out of each node) still holds so a minimum of N messages are

lso grants mutual exclusion with minimum delay if some general
ssumptions are made.

.1 Definition of Delay
he delay involved in granting the critical section resource is the stretch of time
eginning with the requesting node asking for the critical section and ending when that
ode enters its critical section. The execution time of the instructions in the algorithm is
ssumed to be negligible compared to the message transmission times.

.2 Assumptions

each other node for each entry to a crit
2
required when nodes act independently and concurrently. Hence, the algorithm is optimal
with regard to the number of messages exchanged.

4.1 Concurrent Processing
For a symmetrical, fully distributed algorithm there must be at least one message into and
one message out of each node. If no message enters/leaves some node, that node must not
have been necessary to the algorithm; then the algorithm is not symmetrical or is not fully
distributed. Furthermore, to allow the algorithm to operate concurrently at all nodes, the
messages entering nodes must not wait for the message generated at the conclusion of
processing at other nodes. This would indicate that t
re
however, and s
minimum for any parallel, symmetric, distributed algorithm.

4.2 Serial Processing
If
messages by using serial node-by-node
(o
required. No parallelism can exist in such a structure since a message out of a node must
double as the message into some other node. If the algorithm presented here is modified
so that messages are sent from node to node sequentially, it achieves the theoretical
minimum number of messages in this case also. Parallel operation is necessarily
sacrificed.
The modifications required are considered in Section 6.3.

5. Delay in Granting Critical Sections
The algorithm a
a

5
T
b
n
a

5

 39

The following assumptions prevent the use of central control or extra information derived
from timing:

Assumption 1. No information is available bounding transmission time delays or giving
ctual transit times. Because of this assumption, it takes one round-trip time to determine

y adopting this assumption, sending information through

um delay time per request.

 2: Minimum delay time with conflict.
now which of them made their

quest first because of the absence of timing information. A tie-breaking scheme,
presenting a total ordering among requesting nodes, must be used. Since the tie-

ally made the earlier request, half of the

trip replies. Conflict may also occur with more than two nodes.
ne of them must be selected by the tiebreaker to be granted access to its critical section

stem throughput. Once a node has released the critical section

hen a critical section is released at least one node is eligible to enter its
ritical section based on Bounds 1 and 2 within a one-way trip time in the future, the
lgorithm will achieve the more ambitious Bound 3. If the next node to enter its critical
ction is eligible under Bounds 1 and 2 within a one-way trip time in the

a
the state of another node. B
timing channels becomes impossible.
Assumption 2. No node possesses the critical section resource when it has not been
requested. This assumption prevents a node or series of nodes from acting as a central
control because it retained the critical section resource.
Assumption 3. Nodes do not anticipate requests.

5.3 Bounds
Three conditions that put a lower bound on delay times are developed and the mutual
exclusion algorithm is shown to achieve these bounds.

5.3.1 Bound 1: Minim
Before a node enters its critical section, it must make sure that no other node is entering.
To do this it must determine the current status of any other node that could take
precedence if there is a time overlap and both nodes are said to be requesting
concurrently . By assumption 1 this will take at least one round-trip transmission time. By
assumptions 2 and 3 this process cannot start before the request arrives. Therefore, no
request can be serviced in less than one round-trip time.

5.3.2 Bound
When two nodes are requesting concurrently, they do not k
re
re
breaking rule does not know which node actu
time a critical section grant cannot be made until after the node making the later request
has received its round-
O
first. 5.3.3 Bound 3: Sy
resource, no other node can enter its critical section in less than a one-way trip
transmission time. This is the minimum amount of time needed to notify other nodes that
critical section processing has been completed and to transmit the new values of network-
wide information.

5.4 Compliance
The algorithm achieves these bounds:
CASE A: If w
c
a
se

 40

future, then at least one one-way trip time has elapsed already since that node made its

request. Since it is next, only the node currently releasing the critical section could be
delaying a REPLY message and this REPLY will be triggered by the release of the

t node in a one-way
ip time satisfying Bound 3.

se A does not hold. The algorithm achieves Bound 1 or Bound 2 depending

 by other nodes and, hence, will
nter its critical section in the minimum amount of time given by Bounds 1 and 2. In

an do so without violating Bounds 1

. Modifications

ion time which is not much larger than the average.

e
f successful transmission can be monitored. The broadcast medium enforces
rialization of the REQUESTs and a queueing order equivalent to the sequence numbers
ay be obtained by observing the order of REQUEST messages appearing on the

roadcast medium. The REPLY messages can also be broadcast, and only two messages

critical section. This final reply will reach the nex
tr
CASE B: Ca
upon interference. The node with lowest sequence number/node number pair among
requesting nodes will have none of its requests queued
e
short, the algorithm achieves Bound B whenever it c
and 2. The algorithm therefore has minimal delay times under assumptions 1, 2, and 3.
The delay time envelope when plotted against arrival rate is discussed further in .When a
particular network has closely bounded message delay times and either synchronized
docks or knowledge of transit times, this timing information can be used to reduce delay
times still further.

6
Several interesting modifications can be made to the algorithm to take advantage of
different environments.
6.1 Implicit Reply
The REPLY message carries only a single bit of information. When the message
transmission time between nodes has an upper bound, the sense of the response can be
changed so that no reply within that time period indicates an implicit reply. An explicit
message, called "DEFERRED", is sent when REPLY would ordinarily not be sere. The
number of messages required by the implicit reply scheme varies between l*(N - l) and
3*(N - l) depending on the number of DEFERRED messages sent. When there is little
contention for the critical section resource, the number of messages approaches I*(N- 1).
Since a requesting node must usually wait for the maximum round-trip time before
entering its critical section, the usefulness of this modification depends on an upper
bound for transmiss

6.2 Broadcast Messages
When the communications structure between nodes permits broadcast messages, the
initial REQUEST message can be sent using that mechanism. The message traffic is
reduced to N messages, one broadcast REQUEST and (N - 1) REPLYs. If combined with
the implicit reply modification discussed above, the message count can be as low as one.
6.2.1 Communications medium sequencing.
Broadcast REQUEST messages need not contain the usual sequence number if their tim
o
se
m
b

 41

per critical section invocation are required. REPLYs are only needed from those other
nodes which have themselves successfully broadcast a prior REQUEST but received no
corresponding REPLY.

6.2.2 No communications medium sequencing.
Even if the order of successful REQUEST broadcasts cannot be monitored, it is useful to
broadcast the REPLY messages following critical section processing. The size of the
audience depends on the degree of contention. A broadcast REPLY message must
contain a list of intended recipients because it is not sufficient for nodes waiting for a
REPLY to assume it applies to them. 2 2 Example: While node 1 is performing critical
section processing related to its request with sequence number 1, node 2 decides to issue
a REQUEST message with sequence number 2. Before the REQUEST message arrives at
node 1, node I completes its critical section processing and broadcasts the REPLY it

wes some other node(s). Without a list of intended recipients, node 2 might think that
o its REQUEST message and continue. In fact, node 1 may make a

e to node around
e circuit without pause but the notation "DEFERRED by node j" is added by each node

erring the request. The Outstanding_Reply_Count is then set

nnot be granted as long as a lower sequence number request is
utstanding. Therefore the numbers must fall within the range from X to X + N--1.

o
the REPLY applies t
new request with sequence number 2 and be entitled to enter its critical section first due
to the tie-breaking rule.

6.3 Ring Structure
The number of messages can be cut to N by processing the requests serially through a
logical circuit consisting of all nodes instead of allowing processing to proceed
concurrently. N is the minimum number of messages required for any distributed
symmetric algorithm when broadcasting is not available and information is not sent via
timing channels. 3 The algorithm must be modified by replacing the REPLY message
with an echo of the REQUEST message. As the REQUEST message travels around the
circuit of nodes, it may be deferred at several stops. When it is received at the initiating
node, mutual exclusion has been achieved and critical section processing may begin. A
further possible modification sends the REQUEST message from nod
th
j that is copying and def
according to the notations when it arrives back at the initiating node. The nodes which
have marked the REQUEST as deferred generate individual REPLYs in the usual way.
This technique comes close to N messages while eliminating the cumulative delays at
each stop.

6.4 Bounding Sequence Numbers
The sequence numbers in the algorithm increase at each critical section invocation and
are theoretically unbounded. The ticket numbers of the "bakery algorithm" suffer from
the same problem. A technique for limiting the amount of storage necessary to hold these
unbounded numbers can be borrowed from computer communications protocols.
Although the numbers themselves are unbounded, their range is bounded. The sequence
numbers increase by no more than one each time a node requests entry to its critical
section. That request ca
o

 42

The sequence numbers can be stored modulo M where M _> 2N - 1. When making a
comparison, the smaller number should be increased by M if the difference is N or more.
Thus only log2(2N - 1) bits of storage are needed regardless of the number of times the
critical section is entered.

6.5 Sequence Number Incrementation
Aside from this method for limiting the storage required to hold sequence numbers, there
is no reason for incrementing sequence numbers in unit steps. Two situations make larger
increments attractive:
(1) The algorithm tends to favor lower numbered nodes slightly, owing to the tie-
breaking rule. This favoritism can be reduced by incrementing the sequence number by a

ndom integer. The tie-breaking node number is still required in case the random

o solve the "Readers and Writers" problem where

. The

.2 Insertion of New Nodes
ew nodes may be added to the group participating in the mutual exclusion algorithm.

ust be assigned unique node numbers, obtain a list of participating nodes, be

ra
integers used were equal.
(2) Deliberate priority can be introduced by instructing high priority nodes to use small
increments and low priority nodes to use large increments. In addition, high priority
nodes may be allowed to monopolize critical section processing until forced to increment
their sequence numbers past the one chosen by a lower priority node. In doing so, the
process at a high priority node which receives and handles messages may choose to delay
acting on those received from low priority nodes in order to keep the
Highest_Sequence_Number from being prematurely incremented past the one chosen by
the low priority node.

a To involve all nodes, at least one message must be received and
one sent per node. The minimum number of messages that meet this
requirement is N.

6.6 Readers and Writers

The algorithm is easily modified t
writers are given priority. The modification is simply that "readers" never defer a
REQUEST for another "reader"; instead they always REPLY immediately. "Writers"
follow the original algorithm.

7. Considerations for Practical Networks

7.1 Node Numbers
It is more convenient to draw node numbers from a larger range than 1... N
algorithm may be changed to map the integers 1... N into the actual node numbers by
indexing a table NAMES [1... N]. The comparison of node numbers should then be
performed by comparing the values contained in NAMES.

7
N
They m

 43

placed on every other node's list of participants, and acquire an appropriate value for their
Highest_Sequence_Number variable.

7.2.1 Restart interval.
If the node could have been previously operational in the group (e.g., it failed and is
now restarting), it should first notify other nodes that it failed and then wait long enough

in a list of other participating nodes and have itself added to the

, initialize the new node's
 identity before releasing

. Each node receiving this notification adds the new node number to its
AMES array and increments N, the number of active nodes. An alternative is possible if

rk can deliver a message to all other nodes without the sender
aming all the other nodes in the network. In this case a new node obtains a list of

mber.
he Highest_Sequence_Number variable of a new node must not be set to any value

 message which would already have
 Until an appropriate value of

umber is obtained, mutual exclusion cannot be requested and

s have increased by N - 1.
s would have time to enter and leave their critical sections

delivered in the same order. The new node may
quest access to its critical section after any of the above methods has been used to

erify that its Highest_Sequence_Number variable is sufficiently high.

to be sure its old messages were delivered and the network processed its removal.
Usually the network will already be aware of the node's failure, but this cannot be
assumed. If this step was not followed, the failure may be detected at approximately the
same time as the node rejoins the group. This would result in conflicting bookkeeping at
different nodes.

7.2.2 Reconcile participant lists.
A new node must obta
others' lists. A new node should contact a "sponsor" node which is already participating
in the group. The sponsor should then invoke mutual exclusion

rom its own, and broadcast the new node'sparticipant list f
utual exclusionm

N
the communications netwo
n
participants from a nearby node and then sends a broadcast message asking all other
nodes to include it on their list of participating nodes.

7.2.3 Set highest sequence nu
T
lower than the sequence number of any REQUEST
een received had the new node been continuously active.b

Highest_Sequence_N
incoming REQUEST messages are processed normally. A new node can determine that
its Highest_Sequence_Number is high enough by several methods.
(1) Ask all other nodes for their Highest_Sequence_Number and use the largest.
(2) Wait until one REQUEST message has been received from every other node.
3) Wait until the sequence numbers on REQUEST message(

(4) Wait until all (N - 1) node
even if they all had outstanding requests. This requires the ability to bound message
transmission times and critical section times. If no REQUEST message is received during
this time, the value of Highest_Sequence_Number from any nearby node can be used.
(5) Wait until the fourth REQUEST message is received from a single node. This method
equires that messages are sent and r

re
v

 44

7.3 Removal of Nodes
A node wishing to leave the group may do so by notifying all other nodes of its intention.
The other nodes should acknowledge this message. While waiting for acknowledgement,

the departing node may not request mutual exclusion and must continue to send REPLY
messages to any REQUEST messages it receives. Each node checks to see if the
eparting node is listed in its NAMES array, and if so, removes it and decrements the

nodes, by one. If messages may be delivered out of

nds a response is the REQUEST
essage. A requesting node should start a timer when the REQUEST messages are sent.

EPLY is received and cancelled when the critical

E(me), should be sent
d, ~ the

T

es

 should be erased
om the NAMES array if present and N, the number of active nodes, decremented by

cognizes that it has failed and has been restarted, it may return to

essage and does not fred the node's name in its NAMES array may return a special
essage notifying the node that it should restart itself and use the insertion protocol.

d
value of N, the number of active
order, a node awaiting a REPLY message from a departing node should pretend the
REPLY was received.

7.4 Node Failures
In practice some nodes fail and will not respond to messages directed at them. To prevent
this situation from stopping the proposed mutual exclusion algorithm, a timeout-recovery
mechanism may be added. The timeout detection of a failed node relies on knowledge of
an upper bound on the time which may elapse before a working node responds to a
message and an estimate of the maximum processing time within a critical section. The
only message in the original algorithm which dema
m
The timer should be restarted when a R
section processing begins.
A bit map, Awaiting_Reply [1... N], can be used to identify which nodes have not yet
sent a REPLY message. The Awaiting_Reply array is set to all TRUE values before a
REQUEST message is issued. Individual bits are turned off when REPLY messages are
received. If the timer expires, 4 all nodes for which Awaiting_Reply is TRUE are
suspected of having failed. A probing message, ARE_YOU_THER
to each suspect node. If no answer is received during a second timeout perio
suspect node has failed. When an ARE_YOU_THERE(j) message is received,
Reply_Deferred[j] should be examined. If it is FALSE, it must be that the REQUES
was not received, the REPLY was lost, or the node has restarted; the correct response is
REPLY(me). If Reply_Deferred[j] is TRUE, a YES_I_AM_HERE message should be
sent to confirm that the node is alive. The timeout does not impose an upper limit on the
duration of a critical section. If critical section processing exceeds the timeout, all nod
will respond with YES I AM_HERE messages and a new timeout period may
begin. When it has been determined that node j has failed, this can be broadcast by the
node detecting the failure. Any node which is awaiting a REPLY message from the failed
node should pretend that a REPLY was received. In addition the node
fr
one. If the failed node re
the group through the mechanism for adding a new node. If it does not know that it has
failed and issues new REQUEST messages, any node which receives the REQUEST
m
m

 45

4 The appropriate value is worst-case round-trip message transmission
time plus worst-case processing time at the distant node plus
a reasonable estimate of maximum critical section time.
In this case just round-trip message time plus worst-case processing time at the distant node.

 The Effect of Message Ordering

quence number may be (N - 1) higher than the lowest outstanding

from the same node.

new
 the

equence number used by j. The reference node B (which is generating the four requests) can
nter its critical section at most twice before node j enters its critical section. Therefore, by the
me B enters its critical section the third time, no nodes like j exist which did not know about the

The algorithm presented in this paper does not depend on messages being delivered or
acted upon in the order in which they are sent. If such a condition does exist, there is a
stronger limit to the number of times other nodes can enter their critical sections before a
requesting node A can. Without delivery in order of transmission, the worst case anMysis
shows that N(N + 1)/2 - 1 nodes can enter their critical section before Node A may.

To determine this bound, assume that A has the highest node number and therefore the least
priority in breaking ties. A's se
sequence number. (See Section 6.4.) It is possible, by judiciously ordering the delivery of
messages, for each other node to enter its critical section with its sequence number taking on each
value between its current value and A's value. To get the worst case, assume that all nodes have
chosen a distinct sequence number with A's number the highest. Therefore, one node can enter its
critical section N times before A may, another (N - 1), another (N - 2) and so on down to the node
whose REQUEST message caused A's sequence number selection. This takes two critical section
entries at most. This sum, N + (N - 1) + (N - 2) +... + 3 + 2, is the number of times other nodes
may enter their critical section after A has made a request in the worst case.

If delivery is guaranteed to be in the order of transmission, no other node may enter its
critical section more
than twice between the time that A selects a sequence number and A is permitted to enter
its critical section. No more than 2*(N - 1) critical sections are possible before A may
enter.

To get this bound observe that after node .4 has done its "Node Requests Critical Section"
processing, it cannot receive more than one
REQUEST from another node (j) which contains a lower or equal sequence number. By the time
it gets the REPLY from this REQUEST, it must also have received A's REQUEST; it cannot
thereafter select a lower or equal sequence number. Each other nodej can enter its critical section
at most once because of an already approved REQUEST and once with the one REQUEST which
contains a lower or equal sequence number. If every other node follows this worst case pattern, at
most 2*(N - 1) critical section entries may preceed A's .

When delivery in order is used, a new node may assume its Highest_Sequence_Number

 message is synchronized when it has heard the fourth REQUEST

Assume that a nodej sent its REQUEST messages before the new node came on-line. The

ode is not synchronized until it holds a higher number in Highest_SequenceNumber thann
s
e
ti

 46

new node when they made their requests. Re
essages seen by the new node before entering its

ference node B may have issued three REQUEST
 critical section for the third time. The fourth m

REQUEST message guarantees that the critical section was entered for the third time.

Program no. 1

AIM
This program seeks to illustrate the working of Ricart and Agrawala algorithm in a totally
connected network i.e. where every node is directly connected to every other node.

PROPERTIES AND ASSUMPTIONS

 There are 3 independent processes a, b and c.

 A process can be in 3 possible states Idle, Requesting and Critical.

 A process has 2 queues- one is a list of processes which are waiting for an
acknowledgement and the other is a list of acknowledgements the process has
received

 A process cannot make a new request until its previous request has been serviced.

 A process requires 1 complete clock cycle to complete its critical section.

 A message generated by a source during clock cycle is delivered to the source at

the end of the same cycle i.e. communication delays are considered negligible.

INPUT

As input it accepts an ordered list of process names along with their time stamps.

OUTPUT
The output is a snapshot of the system at intervals of 1 clock period.

 47

//Pr r

#in d
#includ
#include<process.h>

stru r

 int t;
char name;

}
R[5];

lass proc

char st,name,curr;
req reqs[3];

cks[3];

 {
 j=-1;
 t=55;
 st='I';
 curr='I';
 }
 void rqst(req c){ reqs[++j]=c;}
 void acksend();
 void ckcl()
 { if((curr=='R')&&(acks[0]==1)&&(acks[1]==1)&&(acks[2]==1))
 { st='C';
 acks[0]=acks[1]=acks[2]=0;
 }
 }

og am showing the working of Ricart and Agrawala algorithm

clu e<iostream.h>

e<conio.h>

ct eq

{

c
{
 public:

 int t,j,f,v,a
 proc()

 48

}
[3]; P

void main()

[0].name='x';

out<<"Enter 5 processes along with time stamps \n";
;b<5;b++) cin>>R[b].name>>R[b].t;

ut<<endl;
;

 Process x Process y Process z \n"
<<" state reqs acks state reqs acks state reqs acks \n";

{
k for critical section condition

 for(b=0;b<3;b++) if(P[b].curr=='C') P[b].t=50;
cl();

;

ly check if acknowledgements need to be sent
cksend();

nd();

quests
(int q=0;q<5;q++)

.name)

.curr!='R')

 P[0].t=y; }
 else{ cout<<"Process x cannot request critical section again untill its

vious request has been serviced";
 getch();
 exit(0);
 }
 break;

{
 int q=0;
 P
 P[1].name='y';
 P[2].name='z';
 clrscr();
 c
 for(int b=0
 co
 int y=1
 cout<<"Time

 do

 //first chec

 P[0].ck
 P[1].ckcl();
 P[2].ckcl()

 //second
 P[0].a
 P[1].ackse
 P[2].acksend();

//thirdly send re
for
 { if(R[q].t==y)
 {
 switch(R[q]
 {
 case 'x': if(P[0]
 { P[0].st='R';

pre

 49

 case 'y': if(P[1].curr!='R')
 { P[1].st='R';

 P[1].t=y;

 }
t critical section again untill its

 getch();
 exit(0);

ase 'z': if(P[2].curr!='R')
 { P[2].st='R';

t critical section again untill its
t has been serviced";
 getch();

 exit(0);

;

u++) P[u].rqst(R[q]);
 //end if

(P[b].curr==P[b].st)&&(P[b].st=='C')) P[b].st='I';
st ;

1].curr=P[1].st ;

10)

 "<<P[0].st<<"
<<P[0].reqs[2].name<<"

 "<<P[1].st<<"
].reqs[1].name<<P[1].reqs[2].name<<"

s[1]<<P[1].acks[2];
out<< "<<P[2].st<<"

reqs[1].name<<P[2].reqs[2].name<<"
]<<P[2].acks[2];

etch();

lse

 else{ cout<<"Process y cannot reques
previous request has been serviced";

 }
 break;
 c

 P[2].t=y;
 }
 else{ cout<<"Process z cannot reques
previous reques

 }
 break
 }
 for(int u=0;u<3;
 }
 } //end for
 for(b=0;b<3;b++) if(
 P[0].curr=P[0].
 P[
 P[2].curr=P[2].st ;
if(y<
{
cout<<" "<<y<<"
"<<P[0].reqs[0].name<<P[0].reqs[1].name
"<<P[0].acks[0]<<P[0].acks[1]<<P[0].acks[2];
 cout<<"
"<<P[1].reqs[0].name<<P[1
"<<P[1].acks[0]<<P[1].ack
 c "
"<<P[2].reqs[0].name<<P[2].
"<<P[2].acks[0]<<P[2].acks[1
cout<<endl;
g
}
e

 50

{

c " "<<y<<" out<< "<<P[0].st<<"

e<<P[0].reqs[1].name<<P[0].reqs[2].name<<"
]<<P[0].acks[2];

 "<<P[1].st<<"
<P[1].reqs[2].name<<"

ks[2];
 "<<P[2].st<<"

].acks[2];
out<< dl;

((y<=R[4].t)||!((P[0].st=='I')&&(P[1].st=='I')&&(P[2].st=='I')));

ain

sndr]=1;break;
':P[1].acks[sndr]=1;break;

 case'z':P[2].acks[sndr]=1;break;

r=='R') f=t;
-1;

 int shift=0;
r(int g=0;g<=j;g++)

{ if((reqs[g].t<f)||((reqs[g].t==f)&&(name>=reqs[g].name)))
 { switch(name)
 { case'x':v=0;break;
 case'y':v=1;break;
 case'z':v=2;break;

"<<P[0].reqs[0].nam
"<<P[0].acks[0]<<P[0].acks[1
 cout<<"
"<<P[1].reqs[0].name<<P[1].reqs[1].name<
"<<P[1].acks[0]<<P[1].acks[1]<<P[1].ac
 cout<<"
"<<P[2].reqs[0].name<<P[2].reqs[1].name<<P[2].reqs[2].name<<"
"<<P[2].acks[0]<<P[2].acks[1]<<P[2
c en
getch();
}
y++;
}while
getch();
} //end of m

 void sendack(char rcvr,int sndr)
 { switch(rcvr)
 {
 case'x':P[0].acks[
 case'y

 default:cout<<"wrong process name"<<rcvr<<sndr;
 getch();
 exit(0);
 break;
 }
 }

 void proc::acksend()
 { if(curr=='I') f=55;
 else if(cur
 else f=

 fo

 51

 default:cout<<"wrong process name in acksend";
 getch();

 exit(0);
 break;
 }
 sendack(reqs[g].name,v);
 reqs[g].name='\0';

 reqs[g].t=50;
 shift++;
 }

c=0;ric<=j-shift;ric++) reqs[ric]=reqs[ric+shift];
agr<=j;agr++)

 {
].name='\0';

 reqs[agr].t=55;
 }

 }
 for(int ri
 for(int agr=ric;

 reqs[agr

 j=j-shift;
 }

 52

Example of a correct output

 53

Exam le of incorrect input leading to an error messagep

 54

Program no. 2

AIM
This program seeks to illustrate the working of Ricart and Agrawala algorithm in a ring
network where messages are passed in a predefined circular order.

PROPERTIES AND ASSUMPTIONS

 There are 4 independent processes 1,2,3 and 4.

 A process can be in 3 possible states Idle, Requesting and Critical.

 A process has one queue which is a list of processes which are waiting to be
passed on to the next node

 A process cannot make a new request until its previous request has been serviced.

 A process requires 1 complete clock cycle to complete its critical section.

 Communications delay is negligible

INPUT
As input it accepts an ordered list of process names along with their time stamps.

OUTPUT
The output is a snapshot of the system at intervals of 1 clock period.

 55

//implementation of ricart and agrawala algorithm for a ring network

include<iostream.h>
#in d
include<process.h>

ruct msg

{
 int no
int t;

};

clas o

 pu c
int t,j;
msg que[4],temp;

v,next;

 { t=50;
 j=-1;

='I';

que[0].t=55;
 que[1].t=55;

 que[3].t=55;
 }
 void rcv(msg);
 void cchek(int);
 void pass(int,int);
}
N[5];

void m
{
 msg in uff[3];
 clrscr();
 cout<<"Enter the order of requests along with time stamps \n";
for(int b=0;b<5;b++) cin>>in[b].no>>in[b].t;

#

clu e<conio.h>
#

st

;

s n de

{
bli :

 char pre
 node()

 prev
 next='I';

que[2].t=55;

ain()

[5],b

 56

 int y=1;
 do {

 //check for criticality

 for(int c=0;c<4;c++)
k(c);

 messages
=3;c>=0;c--)

f(N[c].prev!='C')
 N[c].pass(c+1,c);

ev!='C') N[4].pass(0,3);

uest
 h=0;h<5;h++)

-1].prev=='R')
 {

 cout<<"error";
 getch();

exit(0);
 }

(in[h]);
h]);

+)
'C')&&(N[h].next=='C'))

 N[h].t=50;
h].next='I';

 }
4;h++) N[h].prev=N[h].next;

ut<<"t="<<y;
s1="<<N[0].next<<"

0].que[0].no<<N[0].que[1].no<<N[0].que[2].no<<N[0].que[3].no;
s2="<<N[1].next<<"

.que[2].no<<N[1].que[3].no;
s3="<<N[2].next<<"

N[2].que[0].no<<N[2].que[1].no<<N[2].que[2].no<<N[2].que[3].no;
out<<" s4="<<N[3].next<<"
4="<<N[3].que[0].no<<N[3].que[1].no<<N[3].que[2].no<<N[3].que[3].no;
ut <<endl;

 N[c].cche

//passing
 for(c
 i

 if(N[3].pr

 //pass req
 for(int
 if(in[h].t==y)
 { if(N[in[h].no

 if(in[h].no==4) N[0].rcv
 else N[in[h].no].rcv(in[
 N[in[h].no-1].next='R';
 N[in[h].no-1].t=y;
 }
 for(h=0;h<4;h+
 if((N[h].prev==
 {

 N[

 for(h=0;h<
co
cout<<"
q1="<<N[
cout<<"
q2="<<N[1].que[0].no<<N[1].que[1].no<<N[1]
cout<<"
q3="<<
c
q
co

 57

getch();
y++;}

while((y<=in[4].t)||!((N[0].next=='I')&&(N[1].next=='I')&&(N[2].next=='I')&&(N[3].ne

end of main

==n))

i t l=0;l j;l++)que[l]=
 que[j].no=0;que[j].t=55;
 }

(int c=0;c<=j;c++)

o-1<i)))
{

rcv(que[c]);

}

<=j-shift;ric++) que[ric]=que[ric+shift];

;i<=j-1;i++)
nt k=i+1;k<=j;k++)

 if(que[i].t>=que[k].t)
 { temp=que[i];
 que[i]=que[k];
 que[k]=temp;

xt=='I')));
getch();
}
//

void node::cchek(int n)
{
 if((que[0].t==t)&&(que[0].no-1
 {
 next='C';
 for(n < que[l+1];

}

void node::pass(int nxt,int i)
{ int shift=0;
 for
 {
 if((que[c].t<t)||((que[c].t==t)&&(que[c].n

 N[nxt].
 shift++;

 }
 for(int ric=0;ric
 for(int agr=ric;agr<=j;agr++)
 {
 que[agr].no=0;

que[agr].t=55;
}

 j=j-shift;}
void node::rcv(msg m)
{ que[++j]=m;
 for(int i=0
 for(i

 58

 if(que[i].t==que[k].t)
 { if(que[i].no>que[k].no)

 { temp=que[i];

ue[k];
 que[k]=temp;

tput for a ring network

 que[i]=q

 } } } }
Correct ou

 59

Incorrect input where process 1 makes a request without the service of the first
request

 60

 Cla sic Problem - Dining Philosophers

The Dining Philosophers problem is a classic OS problem that’s usually stated in very
non-OS terms: There are N philosophers sitting around a circular table eating spaghetti
and discussing philosophy. The problem is that each philosopher needs 2 forks to eat, and
there are only N forks, one between each 2 philosophers. Philosopher can be in one of the
three states : Thinking, Hungry, Eating. Design an algorithm that the philosophers can
follow that ensures that none starves as long as each philosopher eventually stops eating,
and such that the maximum number of philosophers can eat at once.
 Why describe problems this way? Well, the analogous situations in computers are
sometimes so technical that they obscure creative thought. Thinking about philosophers
makes it easier to think abstractly. And many of the early students of this field were
theoreticians who like abstract problems.

A

s

 61

HERE’S AN APPROACH TO THE DINING PHILOSOPHER THAT IS SIMPLE AND
WRONG:

void philosopher()
{
while(1) {
sleep();
get_left_fork();
get_right_fork();
eat();
put_left_fork();
put_right_fork();

If every philosopher picks up the left fork at the same time, none gets to eat - ever.
Suppose all five Philosophers take their left fork simultaneously . None will be able to
take their right forks , and their will be deadlock.

Some other suboptimal alternatives:

 Pick up the left fork, if the right fork isn’t available for a given time, put the left
fork down, wait and try again. (Big problem if all philosophers wait the same
time - we get the same failure mode as before, but repeated.) Even if each
philosopher waits a different random time, an unlucky philosopher may starve (in
the literal or technical sense).

 Require all philosophers to acquire a binary semaphore before picking up any
forks. This guarantees that no philosopher starves (assuming that the semaphore
is fair) but limits parallelism dramatically.

}
}

 62

An optimal solution to Dining Philosopher Problem should have the following

at most one

ock free . It successfully avoids the situation in which 2 or more
phers are involved in a cyclic waiting: each philosopher is waiting for

y another philosopher while none of them can get enough

s . All philosophers should perform all required actions in
ge or discrimination is given to any of the 5

ORRECT SOLUTION

quire both the forks simultaneously by
alling function Test which tests that neither of the Philosopher’s neighbor are eating .

forks and enters the state Eating. Else if one of it’s
eighbor is eating the Philosopher blocks on a it’s semaphore. So when his neighbor stop

eatin
and
entry to

IMP

he above solution is implemented in Java using multithreading. Each Philosopher runs
s a separate thread. There is also one main thread which shows the sate of five
hilosophers at various points of time . The State 0 shows that the Philosopher is
hinking, State 1 shows that the Philosopher is Hungry and State 3 depicts Philosopher
ating. Initially all the Philosophers are in State 0 i.e. Thinking. Philosopher are
umbered from 0 to 4. The class Semaphore implements the Up() and Down() functions
sing Signal() and Notify(). Class Newthread is multithreaded to implement five
hilosophers.

characteristics:

• It enforces mutual exclusion. Each fork can only be held by
 person at a time.
• It is deadl

 philoso
 a fork that is held b

 forks to eat.
 It enforces fairnes•

sequence. No privile
 philosophers.

C

n correct solution , all the Philosophers try to acI
c

If it is true it returns with both the
n

g , he is signaled . The solution uses an array of semaphore one for each Philosopher
 an array to store the state of each Philosopher. It uses semaphore mutex to restrict

 the critical section.

LEMENTATION

T
a
P
T
E
n
u
P

 63

 Semaphore(int n) {
 this.count = n;

 }

 public Semaphore()
 {

 System.out.println("hello thread intercepted");
 }
 }

 public synchronized void up() {

/* SEMAPHORE CLASS*/

class Semaphore {
 private int count;
 public

 this.count=0;
 }
 public synchronized void down() {
 while(count == 0) {
 try {
 wait();
 } catch (InterruptedException e) {

 count--;

 }

 //System.out.println("inside up");
 count++;
 notify(); //alert a thread that's blocking on this semaphore

 }
 }

 64

 /* DINING PHILOSOPHER */

 implements Runnable

ew Semaphore(1);
e(0);

0);
 u =new Semaphore(0);

tatic private Semaphore v =new Semaphore(0);
maphore(0);

};

hread ;

ndom()*10);

 try
 {
 Thread.sleep(randy);
 }

rruptedException e)
 {
 System.out.println("hello thread intercepted");
 }

 takeforks(serial);
 try {
 Thread.sleep(1000); }

class Newthread
{
 static private Semaphore mutex=n
 static private Semaphore s =new Semaphor
 static private Semaphore t =new Semaphore(
 static private Semaphore
 s
 static private Semaphore w =new Se

 static int state[]= {0,0,0,0,0
 int serial;
 String name;
 T a
 static int i=1000;

 public Newthread(int i, String name)
 {
 serial=i;
 a=new Thread(this,name);
 a.start();
 }

 public void run()
 {
 while(i>=1)
 {
 int randy=(int)(Math.ra

 catch (Inte

 65

 catch (InterruptedException e){

);
;

 test(i);

ystem.out.println("inside fork");
();

.down();
 else if(i==1)

lse if(i==2)

se if(i==3)

lse if(i==4)
wn();

id putforks(int i)

utex.down();

st((i+5-1)%5);
 test((i+1)%5);

 void test(int i)
 {

f(state[i]==1 && state[(i+5-1)%5]!=2 && state[(i+1)%5]!=2) {

 System.out.println("bye thread intercepted");
 }
 i--;
 putforks(serial);
 }
 }

 void takeforks(int i)
 {
 mutex.down(
 state[i]=1

// S
 mutex.up

 if(i==0)
 s

 t.down();
 e
 u.down();
 el
 v.down();
 e
 w.do
}

 vo
 {
 m
 state[i]=0;
 te

 mutex.up();
 }

 i
 state[i]=2;

 66

 //System.out.println("inside test");

 if(i==0)
.up();

 else if(i==1)

se if(i==2)

)
.up();

==4)
.up();

er{

id main (String args[]){
b1=new Newthread(0,"one");

=new Newthread(1,"two");
b3=new Newthread(2,"three");

=new Newthread(3,"four");
=new Newthread(4,"five");

 ob1.start(); ob2.start(); ob3.start(); ob4.start(); ob5.start();*/

;i<8;i++)

);

intln("Philosopher"+ob1.serial+" "+ Newthread.state[ob1.serial]);
stem.out.println("Philosopher"+ob2.serial+" "+ Newthread.state[ob2.serial]);

 System.out.println("Philosopher"+ob3.serial+" "+ Newthread.state[ob3.serial]);
tln("Philosopher"+ob4.serial+" "+ Newthread.state[ob4.serial]);

stem.out.println("Philosopher"+ob5.serial+" "+ Newthread.state[ob5.serial]);

 catch (InterruptedException e){
 System.out.println("main thread intercepted");

 s

 t.up();
 el
 u.up();
 else if(i==3
 v
 else if(i
 w
 }
 }
 }

 class Philosoph

public static vo
 Newthread o
 Newthread ob2
 Newthread o
 Newthread ob4
 Newthread ob5

/*

 for(int i=0
 {
 try {
 Thread.sleep(1000

 System.out.pr
 Sy

 System.out.prin
 Sy
 System.out.println(" ");

}

 }}}}

 67

Microsoft Windows XP [Version 5.1.2600]

ight 1985-2001 Microsoft Corp.

ents and Settings\hunny>c:

.5.0_01

k1.5.0_01>cd bin

:\jdk1.5.0_01\bin>javac Philosopher.java

java Philosopher
ilosopher0 2

ilosopher1 2

hilosopher3 1

her0 2

osopher2 2

hilosopher3 0
ilosopher4 2

her1 1
hilosopher2 1
hilosopher3 2
hilosopher4 1

(C) Copyr

D:\Docum

C:\>cd jdk1

C:\jd

C

C:\jdk1.5.0_01\bin>
Ph
Philosopher1 1
Philosopher2 1
Philosopher3 2
Philosopher4 1

Philosopher0 1
Ph
Philosopher2 1
P
Philosopher4 2

Philosop
Philosopher1 1
Phil
Philosopher3 1
Philosopher4 1

Philosopher0 1
Philosopher1 0
Philosopher2 2
P
Ph

Philosopher0 2
Philosop
P
P
P

 68

Philosopher0 1

hilosopher2 1

hilosopher4 2

hilosopher0 2

hilosopher1 2

Philosopher1 2
P
Philosopher3 1
P

P
Philosopher1 1
Philosopher2 2
Philosopher3 1
Philosopher4 1

Philosopher0 1
P
Philosopher2 1
Philosopher3 2
Philosopher4 1

 69

OUTPUT

The output of the program shows the states of the five Philosopher at various instances

ION

generated we can see that program fulfills all characteristics of a good
g Philosopher problem with five Philosophers.

• None of the neighbors are eating simultaneously which ensures mutual exclusion.

• Only two Philosopher are eating at a time .

• All the Philosopher get their turn to eat . So it ensures fairness.

• The program is deadlock free.

of time.

VERIFICAT

From the output
solution to Dinin

 70

THE BOUNDED-BUFFER PRODUCER-CONSUMER PROBLEM

ed by several processes. The producer process adds items to the
uffer; the consumer process removes items from the buffer. Both processes must be

A si ple solution to this problem is to use a variable Count to keep the track of the
num s buffer can hold is N, the

rod e leep, if
t is t

he Consumer also first test Count to see if it 0. If it is , it goes to sleep , if nonzero,
move an item and decrement the counter. Each of the processes also tests to see if the

ther is sleeping, and if it is wakes it up.

oid producer(void)

while(true) {

 produce_item(item);

 if(count==N)sleep();

 enter_item(item);

 count=count+1;

 if(count==1)wakeup(consumer);

A buffer of size N is shar
b
synchronized so that the producer does not try to add to a full buffer, and the consumer
does not try to remove an item from an empty buffer.

m
ber of items in the buffer . If the maximum number of item

P uc r’s code will first test to see if Count is N. If it is , the Producer will go to s
no the Producer will add an item and increment Count. i

T
re
o

V

{

 }

}

 71

void consumer(void)

hile(true) {

onsume_item(item);

ccur. It can occur because access to count is
r. The buffer is empty and the consumer

st read Count to see if it is 0. At that instant , the scheduler decides to stop running
e consumer temporarily and start running the Producer. The Producer enters the item in
e buffer , increments Count and notice that it is now 1. Reasoning that Count was just 0,

nd thus the Consumer must be sleeping , the Producer calls wakeup to wake the
onsumer up.

 not yet logically sleep, so the wakeup signal is lost. When the
nsumer next runs , it will test the value of count previously read, find it to be 0 and go

fill up the buffer and go to sleepforever.

(item) and Remove(item) such that the

ive: At any time at most one process

) or remove (item).

cer process waits if the buffer is full).

er process waits if the buffer is empty).

4. No busy waiting.

{

 int item;

w

if(count==0) sleep();

remove_item(item);

count=count-1;

if(count==N-1) wakeup(producer);

c

}

In the above solution , race condition o
unconstrained . The following soulution can occu
has ju
th
th
a
c

 The consumer is
co
to sleep. Sooner or later the producer will

So the above solution does not solves the problem.

 In our optimal solution ,we want functions Add

 following conditions hold:

 1. Access to buffer is mutually exclus

 should be executing add (item

 2. No buffer overflow: (i.e., the produ

 3. No buffer underflow: (i.e. the consum

 72

 5. No producer starvation: A process does not wait forever at Add()

 provided the buffer repeatedly becomes non-full.

er starvation: A process does not wait forever at Remove()

 repeatedly becomes non-empty.

e correct solution to Producer Consumer can be implemented using Semaphore. It use

 running when the buffer is full and the consumer stop stops running when

 6. No consum

 provided the buffer

CORRECT SOLUTION

Th
three semaphores mutex, , full , empty . The semaphore are used in two different ways.

The mutex semaphore is used for mutual exclusion. It is used to guarantee that only one
process at a time will be reading and writing buffer and the associated variables.

The other semaphores are used for synchronization. The Full and Empty semaphores are
needed to guarantee that certain event sequences do not occur. They ensure that the
producer stops
it is empty.

 73

/* Producer_consumer */

public class Producer_C
{

onsumer implements Runnable

static private Semaphore mutex = new Semaphore(1);
static private Semaphore full = new Semaphore(0);

maphore(20);
static private int COUNT=0;

run ()
{
 do

{

 int randy = (int)(Math.random() * 100);
 if (((randy%2)==0) & current>0) // CONSUMER
 {
 full.WAIT();
 mutex.WAIT();
 // start of critical section
 COUNT++;
 current--;
 System.out.println(thread_name +" removing buffer["+current

"]="+buffer[current]);
 buffer[current]=-1;
 // end of critical section
 mutex.SIGNAL();
 empty.SIGNAL();
 try {
 Thread.currentThread().sleep((int)(Math.random() *

00));}
 catch
 (InterruptedException e){}

 static private Semaphore empty = new Se

 private String thread_name;
 static int buffer[] = new int[20];
 static private int current=0;

 public Producer_Consumer (String name)
 {
 thread_name=name;
 }

 public void

+

1

 74

 }
 else //PRODUCER

al section

ndy;
rintln(thread_name +" adding buffer["+current

 current++;
tion

 mutex.SIGNAL();
 full.SIGNAL();

 Thread.currentThread().sleep((int)(Math.random() *

catch
 (InterruptedException e){}

;
}

ring args [])
{

i++) buffer[i]=-1;

_Consumer("T1"));

 Thr d T2 oducer_Consumer("T2"));

T2.start();
} }

 private int count;
 public Semaphore(int n) {
 this.count = n; }

 {
 empty.WAIT();
 mutex.WAIT();
 // start of critic
 COUNT++;
 buffer[current]=ra
 System.out.p

+"]="+buffer[current]);

 // end of critical sec

 try {

100));}

 }
 } while (COUNT<20)

 public static void main (St

 for(int i=0;i<20;

 Thread T1 = new Thread(new Producer
 ea = new Thread(new Pr

 T1.start();

 class Semaphore {

 75

 lic synchronize pub d void WAIT() {

 {

 wait();
} catch (InterruptedException e) {
 System.out.println("hello thread intercepted");//keep

ying

count--;

ynchronized void SIGNAL() {

 count++;
otify(); //alert a thread that's blocking on this semaphore

 }
 }

 while(count == 0)
 try {

tr
 }
 }

 }

 public s
 //System.out.println("inside up");

 n

 76

C:\jdk1.5.0_01\bin>javac Producer_Consumer.java

C:\jdk1.5.0_01\bin>java Producer_Consumer

g buff

 buffer[1]=51

2 add uffer[2]=3

1 adding buffer[3]=63

1 adding buffer[4]=83

2 removing buffer[4]=83

2 adding buffer[4]=23

2 removing buffer[4]=23

1 removing buffer[3]=63

1 removing buffer[2]=3

2 adding buffer[2]=43

1 removing buffer[2]=43

1 removing buffer[1]=51

2 adding buffer[1]=79

1 removing buffer[1]=79

2 removing buffer[0]=14

T1 adding buffer[0]=14

T2 addin er[1]=81

T1 adding buffer[2]=13

T1 removing buffer[2]=13

T2 removing buffer[1]=81

T1 adding

T ing b

T

T

T

T

T

T

T

T

T

T

T

T

T

 77

OUTPUT

The output shows the two threads producing and consuming items of the buffer and its

ducer Consumer has all the characteristics of a good solution.

alues and hence ensures mutual exclusion.

index.

VERIFICATION

The above solution to Pro

• No buffer overflow

• No buffer underflow

• No over-writing of v

 78

CONCLUSION

The Ricart and Agrawala algorithm implements mutual exclusion in a
computer network.

 It uses 2*(N-1) messages per critical section in a totally connected
 N messages per critical section for a ring network.

 No algorithm uses fewer messages, operates faster, and exhibits

 The algorithm is safe and live and mechanisms exist to handle node
, and failure.

 be made to reduce the number of messages by
taking advantage of serial processing, through omitted responses.

 ory by keeping
them as residues of a modulus that is at least twice as large as the
number of nodes.

 The readers and writers problem is solved by the same algorithm with
a simple modification.

 We also implemented the Producer-Consumer problem using the
mutual exclusion algorithm, as these classical problems are test for
any new primitive.

network and

concurrent, symmetric, and distributed control.

insertion, removal
Modifications can

The sequence numbers can be stored in limited mem

 79

JAVA

Thread

Unl
progra
Each p ath of
exe
 g. It can be ready to run
as s
sus

Jav

•

•

ike many other computer languages, Java provides built-in support for multithreaded
mming. A multithreaded program contains two or more parts that run concurrently.
art of such a program is called a thread, and each thread defines a separate p

cution.
Thread can exist in several states. A thread can be runnin

oon as it gets CPU time. A running thread can be suspended, which temporarily
pends its activity.

a defines two ways of implementing threads:

Implement the Runnable interface.

Extend the Thread class.

Synchronization

Java provides unique , language-level
syn
time. A
until th onitor. These other threads are said to be waiting for the

 To enter an object’s monitor , just call a method that has been modified with the
nchronized keyword.

Interthread Communication

 support for synchronization. Key to
chronization is the concept of monitor. Only one thread can own a monitor at a given

ll oother threads attempting to enter to enter the locked monitor will be suspended
e first thread exists the m

monitor.

sy

va includes an elegant interprocess communication mechanism via the wait(), notify()
ethods. These methods are implemented as final methods in object , so all classes have
em.

• Wait() tells the calling thread to give up the monitor and go to sleep until some
other thread enters the same monitor and calls notify().

• Notify() wakes up a thread that called wait() on the same object.

Ja
m
th

 80

IB

B LIOGRAPHY

ovic, “Operating Systems- concepts and design”, second

cepts and design”, third edition
• S d Systems Workbench Ricart and

Agrawala's Algorithm Paper
• survey on software Mutual Exclusion Algorithms.htm
• A simple parameterized mutual exclusion algorithm.htm
• dt, The Complete Reference JAVA
• y, An Introduction to Object Oriented Programming

• OOPWeb_com - Operating Systems Lecture Notes by Martin C_

• urrent Programming using Java By Stephen J_

RIGINAL RESEARCH PAPERS REFERRED:

• 2003Dist
• r
• mutex_talk.pdf

BOOKS REFERRED:

• Silberschatz, Galvin, Gagne “Operating System Concepts”, sixth

edition
• Milan Milenk

edition
• Tanenbaum, “Operating Systems-con
 ynchronization in Distribute

 Herbert Schil
 Balaguruswam

with C++

WEB PAGES REFERRED:

• IPC semaphores.html
• OS.html

Rinard.htm
 OOPWeb_com - Conc

Hartley.htm
• Ut.htm

O

ribME.pdf
 icart.pdf

 81

 82

	
	ABSTRACT
	ACKNOWLEDGEMENT
	This is to certify that project entitled
	
	
	Mrs. RAJNI JINDAL
	Assistant Professor & Project Head
	Department of Computer Engineering
	Delhi College of Engineering
	Delhi University
	Delhi-11042

	INTRODUCTION
	INTERPROCESS COMMUNICATION
	 CRITICAL SECTION
	
	1.DISABLING INTERRUPTS

	SOFTWARE SOLUIONS TO THE CRITICAL SECTION PROBLEM

	ALGORITHM 1
	ALGORITHM 2
	ALGORITHM 3

	 Do {
	SEMAPHORES
	DISTRIBUTED MUTUAL EXCLUSION

	A Classic Problem - Dining Philosophers
	
	CORRECT SOLUTION
	IMPLEMENTATION

	OUTPUT
	VERIFICATION
	CORRECT SOLUTION
	OUTPUT
	VERIFICATION
	JAVA
	Thread
	Synchronization
	Interthread Communication
	BIBLIOGRAPHY

