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ABSTRACT 

 

         Fuzzy control system can be described as a real-time expert system, implementing 

a part of a human operator's or process engineer’s expertise. A representation theorem 

mainly due to Kosko, states that any continuous nonlinear function can be 

approximated as exactly as needed with a finite set of fuzzy variables, values, and rules. 
In general the Lyapunov approach reveals only the existence of stable points, not their 

number or nature [Kosko'92].There are a few stability test methods in the linguistic 

fuzzy dynamic models represented by ‘if-then’ rules that can be used for modeling real 

plants. Tanaka and Sugeno [Tanaka'92] suggested an effective method for determining 

stability. Another method, which has been suggested by Kim et al. [Kim'95] treats the 

fuzzy model as a linear system having modeling uncertainties. It suggests a new 

Lyapunov method for determining stability that is less restrictive than the previous one..  

          The second chapter is followed by theorems giving a sufficient condition of 

stability for fuzzy systems in the sense of Lyapunov. An example follows which shows 

that the overall system may be unstable even if all the subsystems are stable. Following 

this is a MATLAB program which plots the behaviour of the subsystems and the 

overall system as given in the example. The chapter ends with giving a necessary 

condition for the existence of a common positive definite matrix satisfying Lyapunov 

equations for all the subsystem matrices.The third chapter starts with presenting a fuzzy 

state space model, which can approximate non-linear systems. A theorem follows 

concerning the stability of this model, which again uses Lyapunov's direct method. This 

way of testing the stability has been termed negative bounds approach as suggested by 

the procedure involved. This is followed by an example, which shows that the overall 

system may be stable even if some of them are unstable. Following this is a MATLAB 

program, which simplifies some related calculations. A MATLAB program is given at 

the end of the chapter whose sample run shows how a stable system is identified to be 

stable after the sixth iteration.The fourth chapter,  
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in the beginning, discusses how linear feedback control affects the equations given in 

chapter 3. This is followed by a MATLAB program giving values of the control gain, 

K, which can be used for stabilizing a fuzzy system having nine rules.            

          The following important conclusions can be drawn from the discussions: If all 

the subsystem matrices are stable, the overall fuzzy system may or may not be stable. 

Even if some of the subsystem matrices are unstable, the overall fuzzy system may be 

stable. The existence of a common positive definite matrix satisfying Lyapunov 

equation for all the subsystem matrices shows that the fuzzy system is stable. If all the 

subsystem matrices are stable, but the product of any two subsystem matrices is 

unstable, there can't be any common positive definite matrix satisfying Lyapunov 

equation for all the satisfying Lyapunov  equation for all the subsystem matrices. 

Negative bounds approach used to test the stability of fuzzy systems is better than 

common positive definite matrix approach in the sense that it does not fail even if some 

of the subsystem matrices are unstable. Though the negative bounds approach gives 

only a sufficient condition of stability like common positive definite matrix approach, 

an algorithm based on this approach can be used to identify some stable systems as 

stable.In case of stabilization using linear feedback control, negative bounds approach 

can be used for the determination of control gains, which can stabilize the system. 
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Literature Review 
 

 

Centre for Computational Intelligence, School of Computer Engineering, 

Nanyang Technological University, Singapore 639798.Existing Takagi-Sugeno-Kang 

(TSK) fuzzy models proposed in the literature attempt to optimize the global learning 

accuracy as well as to maintain the interpretability of the local models. Most of the 

proposed methods suffer from the use of offline learning algorithms to globally 

optimize this multi-criteria problem. Despite the ability to reach an optimal solution in 

terms of accuracy and interpretability, these offline methods are not suitably applicable 

to learning in adaptive or incremental systems. Furthermore, most of the learning 

methods in TSK-model are susceptible to the limitation of the curse-of-dimensionality. 

This work attempts to study the criteria in the design of TSK-models. They are: 1) the 

interpretability of the local model; 2) the global accuracy; and 3) the system 

dimensionality issues. A generic framework is proposed to handle the different 

scenarios in this design problem. The framework is termed the generic fuzzy input 

Takagi-Sugeno-Kang fuzzy framework (FITSK) their performances are encouraging 

when benchmarked against other popular fuzzy systems 

 

 

Electrical Engineering Department, University of Nevada, Reno, NV 89512, 

USA propose a new approach for the stability analysis of continuous Sugeno Types II 

and III dynamic fuzzy systems. They introduce the concept of fuzzy positive definite 

and fuzzy negative definite systems and use them in arguments similar to those of 

traditional Lyapunov stability theory to derive new conditions for stability and 

asymptotic stability for continuous Type II/III dynamic fuzzy systems. To demonstrate 

the new approach, they apply it to numerical examples. 

 

The stability analysis of a generalized class of continuous fuzzy systems in terms 

of Lyapunov stability theory is presented. Firstly, the stability problem of fuzzy systems 
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described by Takagi-Sugeno's continuous model is stated. Secondly, new stability 

conditions which guarantee the stability of the fuzzy system are derived. The new 

stability conditions can be regarded as a general solution for Takagi-Sugeno fuzzy 

system, in which the offset term is not equal to zero. Finally, the suggested stability 

theorems are verified by some illustrative examples. Fuzzy Sets and Systems 

Volume 129 ,  Issue 3  (August 2002). 

 

This paper presents a stability analysis method for discrete-time Takagi-Sugeno fuzzy 

dynamic systems based on a piecewise smooth Lyapunov function. It is shown that the 

stability of the fuzzy dynamic system can be established if a piecewise Lyapunov 

function can be constructed, and moreover, the function can be obtained by solving a 

set of linear matrix inequalities that is numerically feasible with commercially available 

software. It is also demonstrated via numerical examples that the stability result based 

on the piecewise quadratic Lyapunov functions is less conservative than that based on 

the common quadratic Lyapunov functions. This paper appears in: Fuzzy 

Systems,IEEE,Transactions,on.PublicationDate:Feb.2004Volume:12,Issue:1On 

page(s):22-28ISSN:1063-6706  
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1.1 Fuzzy Control Systems 

 A fuzzy control system can be described as a real-time expert system, implementing 

a part of a human operator's or process engineer’s expertise, which does not lend itself to 

being easily expressed in PID-parameters or differential equations but rather in situation 

or action rules [Driankov'93].  

 

Fuzzy control differs from mainstream expert system technology in several aspects. 

Fuzzy control systems exist at two distinct levels: there are symbolic if-then rules and, 

qualitative fuzzy variables and values such as: 

if temperature is high and slightly increasing then energy supply is medium 

negative. 

 The above rule is nothing but an informal ‘nonlinear PD-element’. A collection of 

such rules can be used and, in fact, results in the definition of a nonlinear transition 

function, without the need for defining each entry of the table individually, and without 

necessarily knowing the closed form representation of that function. One way to combine 

fuzzy and PID-control then is to use a linear PID-system around the set point, where it 

does its job, and to ‘delinearize’ the system in other areas by describing the desired 

behaviour or control strategy with fuzzy rules. 

A representation theorem mainly due to Kosko, states that any continuous nonlinear 

function can be approximated as exactly as needed with a finite set of fuzzy variables, 

values, and rules. This theorem describes the representational power of fuzzy control in 

principle, but it does not answer the questions, how many rules are needed and how they 

can be found, which. are of course essential to the real world problems and solutions. In 

many cases, relatively small and simple systems will do, and that is why already several 

hundreds of real, industrial applications of fuzzy control exist. 

The fuzzy values such as ‘slightly increasing’ and fuzzy operators such as ‘and’ are 
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compiled into very elementary numerical objects and algorithms: function tables, 

interpolations, comparators, etc. The existence of this compiled level is the basis for fast 

real-time implementations, as well as for embedding fuzzy control into the essentially 

numerical environment of conventional control. 

 Fuzzy control has right from the beginning been considered as an extension to 

existing technology, seeking hybrid solutions by enhancing control engineering where it 

is needed and where it makes sense. In fact, most of the inventors of fuzzy control have a 

strong control engineering or systems theory background. From their perspective, fuzzy 

control can be seen as a heuristic and modular way for defining nonlinear, table-based 

control systems. 

 The industrial interest in fuzzy control, which hitherto has not been recognized as a 

serious discipline, has been dramatically increasing since 1990. There are still, however, 

two predominant, extreme positions as to the benefits of fuzzy control. On one hand, 

many proponents of this technology claim that fuzzy control will revolutionize control 

engineering, promises major breakthroughs, and will be able to solve complex 

engineering problems with very little effort. On the other, many representatives of the 

control engineering community still proclaim the philosophy that "everything that can be 

done in fuzzy control can be done conventionally as well," and announce a breakdown of 

the ‘fuzzy hype’ in the near future. 

The insight that neither of the two positions accounts for the real  

potential of fuzzy control is only gradually increasing. In many cases, fuzzy control leads 

to a higher degree of automation for complex, ill structured processes, but only if there is 

relevant knowledge about the process and its  

control available that can be well expressed in terms of fuzzy logic. There are processes 

for which that kind of knowledge simply is not at all or not to the necessary extent 

available. Secondly, fuzzy controllers are more robust than conventional controllers in 

many applications. But, there are other cases, too. We know of two attempts to control air 

conditioning systems with fuzzy logic, with only minor differences in structure and 

knowledge base: one turned out to be highly robust even in the presence of major 

disturbances, the other one was unstable. It is not yet fully understood for which kinds of 
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control engineering problems fuzzy control really leads to improved robustness and 

stability, and which are the relevant design choices that affect these properties. 

 

1.2 Stability Issues               

How do we prove stability for a system defined with arbitrarily many interlocked 

differential or difference equations? The first, or direct, approach ‘simply’ solves the 

equations and then studies how the system evolves with time. This is seldom feasible in 

the high-dimensional nonlinear case. 

The second approach finds a Lyapunov function. The Lyapunov approach offers a 

shortcut to proving a global stability of a dynamical system. If we cannot find a 

Lyapunov function, nothing follows. The dynamical system mayor may not be stable. 

 But if we can find a Lyapunov function, stability holds. Often, though, we cannot 

establish anything else. In general the Lyapunov approach reveals only the existence of 

stable points, not their number or nature [Kosko'92]. 

There are a few stability test methods in the linguistic fuzzy dynamic models 

represented by ‘if-then’ rules that can be used for modeling real plants. Tanaka and 

Sugeno [Tanaka'92] suggested an effective method for determining stability. They dealt 

with a model that can be well identified with input-output data. It is suggested that if 

there exist a common solution matrix of the Lyapunov equations for all rules, then the 

model is stable. This method, however, does not provide a systematic way to find a 

Lyapunov function, and it requires heavy computational load as a result. Furthermore, 

some of the stable models may not be identified as stable. Another method, which has 

been suggested by Kim et al. [Kim'95] treats the fuzzy model as a linear system having 

modeling uncertainties. It suggests a new Lyapunov method for determining stability that 

is less restrictive than the previous one. It has been shown with the help of an example 

that the stability of a model, which is not determined by the former method, can be 

determined by the latter one. We shall investigate both the methods in the forthcoming 

chapters. 

It is not true as opponents of fuzzy control often argue that there are no stability 
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criteria available for fuzzy control systems.  

We have to realize that in this respect, fuzzy control competes with nonlinear 

conventional control, where stability issues are not as easy to handle as for simple linear 

systems. 

1.3 Organization and Outline of the Chapters 

The next chapter begins with discussing a special case concerning continuous systems, 

which shows that Hermitian matrices as subsystem matrices are easier to deal with when 

stability of the overall system is to be determined using eigenvalue conditions. This is 

followed by theorems giving a sufficient condition of stability for fuzzy systems in the 

sense of Lyapunov. An example follows which shows that the overall system may be 

unstable even if all the subsystems are stable. Following this is a MATLAB program 

which plots the behaviour of the subsystems and the overall system as given in the 

example. The chapter ends with giving a necessary condition for the existence of a 

common positive definite matrix satisfying Lyapunov equations for all the subsystem 

matrices. 

The third chapter starts with presenting a fuzzy state space model, which can 

approximate non-linear systems. A theorem follows concerning the stability of this 

model, which again uses Lyapunov's direct method. This way of testing the stability has 

been termed negative bounds approach as suggested by the procedure involved. This is 

followed by an example, which shows that the overall system may be stable even if some 

of them are unstable. Following this is a MATLAB program, which simplifies some 

related calculations. An iterative procedure follows to identify a stable system as stable, 

as the stability condition given in this chapter is again not a necessary condition. A 

MATLAB program is given at the end of the chapter whose sample run shows how a 

stable system is identified to be stable after the sixth iteration. 

The fourth chapter, in the beginning, discusses how linear feedback control affects the 

equations given in chapter 3. This is followed by a MATLAB program giving values of 

the control gain, K, which can be used for stabilizing a fuzzy system having nine rules. 

Another MATLAB program follows which plots the behaviour of the same systems for 

any given value of K. 
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 Chapter 5 presents concluding remarks. Limitations of the proposed methods and 

suggestions for future research are also given in this chapter. 

 

 
 
 

Chapter 2 
Stability Test Method-1 

(Common Positive Definite Matrix Approach) 
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2.1 Introduction 

For a given control system, stability is usually the most important attribute to be 

determined. The Lyapunov's method of stability analysis is, in principle, the most 

general method for the determination of the stability of non-linear and/or time-varying 

systems. Fuzzy systems are basically non-linear in nature. Theorems are derived in this 

chapter for the stability of a fuzzy system in accordance with the definition of stability in 

the sense of Lyapunov. A sufficient condition which guarantees the stability of a fuzzy 

system is obtained in terms of Lyapunov's direct method. 

2.2 Eigenvalue Conditions for the Stability of Dynamical Systems 

How a system evolves with time is very closely attached to the nature of the 

eigenvalues of the system matrix. For continuous case, all the eigenvalues having 

negative real parts show a stable system; and for discrete case, all the eigenvalues must 

lie within the unit circle in the z-plane for the system to be stable. But prediction about 

the behaviour of the overall system is very difficult by just looking at the eigenvalues of 

the subsystem matrices. As a simple example, 

Let 

⎥
⎦

⎤
⎢
⎣

⎡
−
−−

=
42
11

A1  

⎥
⎦

⎤
⎢
⎣

⎡
−−

−
=

4102
05

A2  

 

The eigenvalues of A1 are  -2, -3 and those of A2 are –4, -5. But the eigenvalues of 

A1+A2 are 3.0499, -17.0499. We see that one eigenvalue of  A1+A2 has a positive real 

part. It is also interesting to note that the eigenvalues of  A1+A2 are 122.0165, 0.9835. 
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 Now we shall discuss a special case concerning continuous systems. From matrix 

algebra [Horn and Johnson] it comes out that if A1 and A2 are Hermitian matrices of order 

n (Hermitian matrices are conjugates of their own transposes.), and if the eigenvalues of  

A1+A2 and  A1+A2  are arranged in algebraically decreasing order, then 

∑∑
==

+≤+
k

1i
2i1i

k

1i
21i )]A()A([)AA( λλλ      (2.1) 

for k = 1, 2, . . . . ., n. Where iλ denotes its eigenvalue of the given matrix.  

From the above inequality we get the following inequalities: 
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From inequality 2.1.1, if 1λ (A1) and 1λ (A2) are both negative, 1λ (A1+A2) will obviously 

be more negative. From inequalities 2.1.1 and 2.1.2, it follows that 1λ (A1+A2) will also 

be negative if 1λ (A1) and 1λ (A2) are both negative too. Thus we see that Hermitian 

matrices as subsystem matrices are easier to deal with than others. 

 

2.3 Lyapunov Stability Criteria 

 

Following is the well-known Lyapunov theorem: 

 

Theorem 2.1: 

Consider a discrete system described by x(k+1) =ƒ(x(k)), 

Where x(k) ∈  Rn, ƒ(x(k)) is an n×1 ƒunction vector with the property that ƒ(0) = 0 ƒor all 

k. Suppose that there exists a scalar ƒunction V(x(k)) continuous in x(k) such that 

(a) V(0) = 0, 

(b) V(x(k)) >0 ƒor x(k) ≠ 0, 

(c) V(x(k)) approaches infinity as ,∞→x(k)  

(d) ΔV(x(k)) < 0 ƒor x(k)≠ 0. 

Then the equilibrium state x(k) = 0 ƒor all k is asymptotically stable in the large and 

V(x(k)) is Lyapunov ƒunction. 

(2.1.1) 

(2.1.2) 
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The following theorem gives Lyapunov equation for discrete case [Kuo’80]: 

 

 

Theorem 2.2: 

 For a linear system, a necessary and sufficient condition that the equilibrium state x= 0 

be asymptotically stable in the large is that, given any positive definite Hermitian (or real 

symmetric) matrix Q, there exists a positive definite Hermitian (or real symmetric) matrix 

P, such that 

ATPA –P= – Q 

 

Proof: 

 If P is a positive definite matrix,  

V(x(k)) = xT(k) P x(k) is also positive definite.            (Sylvester’s theorem) 

ΔV(x(k)) = V(x(k+1)) – V(x(k)) 

  =xT(k+1) P x(k+1) –xT(k) P x(k) 

 

But, x(k+1) =A x(k), 

Therefore, 

 ΔV(x(k)) =xT(k)AT P A x(k) – xT(k) P x(k) 

  =xT(k) [AT P A – P] x(k) 

  = - xT(k) Q x(k), 

which shows that, 

AT P A – P = – Q. 

 Asymptotic stability often corresponds to an eigenvalue condition in engineering 

settings, a practice we shall follow. In particular, a dynamical system (continuous case) is 

asymptotically stable if and only if the Jacobian matrix of the dynamical system has 

eigenvalues with negative real parts. A general theorem in dynamical systems theory 

relates convergence rate to eigenvalues sign. 

 

 A nonlinear dynamical system converges exponentially quickly if its system Jacobian 

has eigenvalues with negative real parts. Locally such nonlinear systems behave linearly. 
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For discrete case, this corresponds to the eigenvalues lying inside the unit circle in the z-

plane. 

 

2.4 Takagi and Sugeno’s Fuzzy Model 

 The fuzzy model suggested by Takagi & Sugeno is of the following form:  

Li: IF x(k) is A1
i and … and x(k–n+1) is An

i and  

 u(k) is B1
i and … and u(k–m+1) is Bm

i 

 

THEN xi(k+1)  = ao
i  + a1

i x(k) + … + an
i x(k–n+1) + b1

i u(k) +..... 

   +bm
i u(k–m+1)         (2.2) 

  

where Li (i = 1, 2, … , l) denotes the i-th implication; l is the number of i-th implications; 

xi(k+1) is the output from the i-th implication,  ap
i (p = 0,1, .....,n) and aq

i (q = 0,1,....., m) 

are consequent parameters; x(k), … , x(k- n+1) are state variables; u(k), .......,u(k–m+1) 

are input variables and Ap
i and Bq

i are fuzzy sets whose membership functions denoted by 

the same symbol are continuous piecewise-polynomial functions. 

 Given an input (x(k), x(k-1), … ,x(k-n+1), u(k), u(k–1), ...,u(k-m+1))  the final output 

of a fuzzy model is inferred by taking the weighted average of the xi(k+1)’s: 

x(k+1) = i

1i

ii

1i

w/)1k(xw ∑∑
==

+
11

       (2.2) 

where ∑
=

1

1i
wi >0, and xi(k+1) is calculated for the input by the consequence equation of  

the i-th implication, and the weight wi implies the over all truth value of the premise of 

the I-th implication for the input, calculated as  

     

A set of fuzzy implications shown in eq. (2.2) can express a highly nonlinear functional 

relation in spite of a small number of fuzzy implications.  
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= =

+−+−=
n
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m

1q

i
q

i
p

i )),1qk(u(Bx))1pk(x(Aw (2.4) 
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2.5 Stability of Fuzzy Systems in the Sense of Lyapunov: Common Positive Definite 

Matrix Approach 

We derive theorems for the stability of a fuzzy system in accordance with the 

definition of stability in the sense of Lyapunov. A sufficient condition, which guarantees 

the stability of fuzzy system, is obtained in terms of Lyapunov’s direct method. 

 Let us consider the following fuzzy free system: 

Li: IF x(k) is A1
i and … and x(k–n+1) is An

i 

THEN xi(k+1) = a1
i (k) + … an

i x(k–n+1), 

Where i = 1,2 …, l. The linear subsystems in the consequent part of the i-th implication 

can be written in the matrix form Aix(k), 

Where x(k) ∈  Rn ×  Rn, 

x(k) = [x(k), x(k-1),…..x(k-n+1)] T , and 
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The output of the fuzzy system is inferred as follows: 

x(k+1) = ∑ ∑
= =

l

i

l

i

i
i

i wkxAw
1 1

,/)(  

where l is the number of fuzzy implications. 
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Using previous theorems and lemma 2.3.1, we derive theorem 2.3, which is an important 

theorem concerning the stability of a fuzzy system. 

 

Theorem 2.3: 

The equilibrium of a fuzzy system is globally asymptotically stable if there exists a 

common positive definite matrix P for all the subsystems such that 

Ai
T PAi – P < 0 for I ∈  {1,2,…, l} 

Proof: 

Let V(x(k)) = xT(k)Px(k) be a scalar function where P is a positive definite matrix such 

that  

(a) V(0) = 0, 

(b) V(x(k)) > 0 for x(k) ≠ 0, 

(c) V(x(k)) ∞→  as ∞→)k(x . 

Now Δ V(x(k)) = V(x(k+1)) – V(x(k)) 

  = xT(k+1) Px(k+1) –xT(k)Px(k) 
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From lemma 2.3.1, the statement of the theorem, and the conditions that  

wi ≥ 0 and ∑
=

>
l

1i

i ,0w  

it follows that 
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ΔV(x(k)) <0. 

 

 

Lemma 2.3.1: 

If P is a positive definite matrix such that 

ATPA – P < 0 

BTPB – P < 0,  

Where A, B, P ∈  Rnxn, then 

ATPB + BTPA – 2P <0. 

Proof: 

– (A– B)TP(A– B) –  2P = – (AT– BT)P (A– B) – 2P 

      = –  ATPA + ATPB + BTPA –  BTPB –2P 

or 

ATPB +BTPA– 2P = (A– B)TP(A– B) + ATPA+BTPB– 2P 

    = –(A– B)T P(A– B)+ ATPA – P+BTPB –P 

As P is positive definite, 

 - (A-BTP(A-B) ≤0. 
Thus, the conclusion of the lemma follows. 
 V(x(k)) is a Lyapunov function and the fuzzy system is globally asymptotically 

stable. This theorem is reduced to the Lyapunov stability theorem for linear discrete 

systems when l = 1. 

 This theorem can be applied to the stability analysis of a nonlinear system which is 

approximated by a piecewise linear function if the given conditions are satisfied.  

We can point out that a piecewise linear function can be described as a special case of 

eq.(2.2) if we use crisp sets instead of fuzzy sets in the premise parts of a fuzzy system. It 

is easy to divide a nonlinear system into some linearized subsystems on an input state 

space. This means that the system is approximated by a piecewise linear system. Since 
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many nonlinear systems can be approximated by piecewise linear functions, this theorem 

can be widely applied not only to a fuzzy system, but also to nonlinear systems. 

   

   Theorem 2.3 is, of course, a sufficient condition for ensuring the stability of system 

(2.2). We may intuitively guess that an approximated nonlinear system is stable if all 

locally approximating nonlinear systems are stable. However, it is not the case in general. 

Here we notice the following fact. 

 All the Ai's are stable matrices if there exists a common positive definite matrix P. 

There does not always exist a common positive definite matrix P even if all the Ai's are 

stable matrices. Of course, a fuzzy system may be globally asymptotically stable even if 

there does not exist a common positive definite matrix P. However, we must notice that a 

fuzzy system is not always globally asymptotically stable even if all the Ai's are stable 

matrices as shown in the forthcoming example. 

Example: 2.1: 

Let us consider the following fuzzy system 

L1: IF x(x-1) is  

   -1           1 

THEN x (k+1) = x(k) – 0.5 x(k-1) 

L2:IF x(x-1) is 

         -1          1 

THEN x (k+1) = x(k) – 0.5 x(k-1) 

Initial conditions are given by 

X(0) = - 0.7 

X(1) = 0.9 

Membership values are calculated as follows: 

W1 = (1-x(k-1)) /2  for –1 ≤ x (k-1) ≤ 1 

= 1     for  x (k-1) ≤ 1 



 26

= 0    otherwise 

W2  =  (1+x(k-1)) /2  for –1 ≤ x (k-1) ≤ 1 

 

= 1     for  x (k-1) > 1 

= 0    otherwise 

 

For the linear subsystems, we obtain 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

01
5.01

A1  

⎥
⎦

⎤
⎢
⎣

⎡−
=

01
5.01

A2  

 

With the help of the problem specific program the near system obtain plots 2.1, 2.2 and 

2.3. It can be seen that both the stable but the overall fuzzy system is not stable. 
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Program 2.1 : To plot the behavior of the Subsystems 

                       And the overall fuzzy system  

% A mat lab program written by Siba Brata Panda 

 x1(1)=-0.7; 

x1(2)=0.9; 

x2(1)=-0.7; 

x2(2)=0.9; 

x(1)=-0.7; 

x(2)=0.9; 

i=1; 

k1=2; 

while k1~=25 

x1(k1+1)=x1(k1)-0.5*x1(k1-1); 

x2(k1+1)=-x2(k1)-0.5*x2(k1-1); 

if      x(k1-1)>1 

    wl(i)=0; 

elseif x(k1-1)<-1 

wl(i)=1; 

else 

wl(i)=(1-x(k1-1))/2; 

wl(i)=1;    

else     

    wl(i)=(1-x(k1-1))/2; 

end 

if    x(k1-1)<-1 
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    w2(i)=0; 

elseif    x(k1-1)>1 

    w2(i)=1; 

else     

    w2(i)=(1+x(k1-1))/2; 

end 

x(k1+1)=(wl(i)*(x(k1)-0.5*x(k1-1))+w2(i)*(-x(k1)-0.5*x(k1-1)))/(wl(i)+w2(i)); 

k1=k1+1; 

i=i+1; 

end 

k=0:24; 

subplot(2,1,1) 

plot(k,x1(k+1),'-r.') 

xlabel('k') 

ylabel('x(k)') 

title('1. Behaviour Of the first subsystem') 

subplot(2,1,2) 

plot(k,x2(k+1),'-r.') 

xlabel('k') 

ylabel('x(k)') 

title('2. Behaviourof the second subsystem') 

ans=input('Enter 1 for the next plot.' ) 

if     ans==1 

    plot(k,x(k+1),'-r.') 

    title ('Behaviour of the fuzzy system') 
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     hold on  

    k=2:24; 

    plot(k,(1-w2(k-1)),'-b.') 

     plot(k,w2(k-1),'-g.') 

    legend('x(k)','w1','w2',-1) 

   hold off 

else  

    exit 

end 

end 
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   Figures 2.1, 2.2 and 2.3 
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The linear systems are stable since A1 and A2 are stable matrices. However, the fuzzy 

system, which consists of the linear systems is unstable as shown, where w1and w2 denote 

the weights of L1 and L2, respectively. 

Obviously, in this example, there does not exist a common P since the fuzzy ststem is 

unstable. Next, a necessary condition for ensuring the existence of a common P is given. 

2.6 Necessary Condition for the Existence of a Common Positive Definite Matrix 

Theorem 2.4: 

Assume that Ai is a stable and nonsingular matrix for I = 1,2…,l. AiAj is a stable matrix 

for I, j = 1,2 …, l  if there exists a common positive definite matrix P such that. 

Ai
TPAi – P < 0 

(The above expression means that Ai
TPAi–P is negative definite.) 

Proof: 

  Ai
TPAi – P < 0 

or    Ai
TPAi < P 

Also  Aj
TPAj – P < 0       (a) 

or  (Aj
-1)T(Aj

T PAj -P ) Aj
-1< 0 

or  (Aj
T)-1(Aj

T PAj
-1 – (Aj

-1)TPAj
-1< 0 

or P 1 (Aj -1)TPAj
-l < 0 

or  P < (Aj
-1)TPAj

-l       (b) 

From (a) & (b) 

Ai
TPAj < (Aj

-l)TPAj
-l 

Ai
TPAj – (Aj)TPAj

-l < 0 

or  Aj(Ai
TPAi – (Aj

-l)TPAj
-1)Aj <0 

or  Aj
T Ai PAiAj –P < 0 

or  (AiAj)TP(AiAj) –P < 0 
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In the example given, eigenvalues of Al are {0.5::t 0.5i}, eigenvalues of A2 {-0.5 ± 0.5i}, 

and eigenvalues of A1A2 are {-0.134, -1.866}.Obviously, Al and A2 are stable as their 

eigenvalues lie within the unit circle; but A1A2 is unstable, as one of its eigenvalues is 

outside the unit circle. From theorem 2.4, it can be inferred that there does not exist a 

common P in this example. 

 

 

2.7 Conclusion 
In general, existence of a common positive definite matrix satisfying Lyapunov equation 

for all the. subsystem matrices shows that the overall system is stable. Even if all the 

subsystem matrices are stable, the overall system may be unstable. If the product of any 

two subsystem matrices is unstable, no common positive definite matrix exists. However, 

such a condition does not prove the system to be unstable. 
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Chapter 3 
Stability Test Method-2 

(Negative Bounds  Approach) 
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3.1 Introduction 

 

        Stability test method given in chapter 2 fails to recognize a  stable system in 

situations. Even if one or more subsystem matrices are unstable , the overall system 

may stable. A common positive definite matrix can not exist in such case and there 

fore the method discussed in this chapter 2 fails completely . A new stability test 

method is discussed in this chapter, which again gives a sufficient condition of 

stability, but which works  even if some of subsystem matrices are un stable.  

    3.2 Stability of Fuzzy Systems in the Sense of Lyapunov: Negative     

       Bounds Approach 

Let P be the solution of the following Lyapunov equation for a positive definite and 

symmetric matrix Q: 

QPPAA 0
T

0 −=−        (3.9) 

and let 

 P)AA(P)AA(D i0
T

i0i −δ+δ+=      (3.10) 

from eq.(3.9), Di becomes 

 QAPAAPAAPAD i
T

00
T

ii
T

ii −δδ+δδ+δδ=    (3.11) 

We define x∈Supp(Li) to mean that the state x is in the supports of the premise part 

fuzzy sets of the ith rule. That is 

          xj∈Supp(Lij), j=1,2,…, n 

  

Theorem 3.1: 

The model in eq.(3.2) with u = 0 is stable if for some stable A0, there exists a 

positive definite matrix Q such that for any rule of i, xTDix ≤ 0, for all x∈{x|x∈  

Supp(Li)}, where the equality holds only when x=0. 
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Proof: 

For a positive definite Q, the solution P of the Lyapunov equation is also positive 

definite when A0 is stable. Thus, V(k) = x(k)TPx(k) is always positive, and 

)k(V)1k(V)k(V −+=Δ  

           )k(Px)k(x)1k(Px)1k(x TT −++=  

           )k(Px)k(x)k(x)AA(P)AA()k(x T
ii0

T
ii0

T −δαΣ+δαΣ+=  

           )k(x]P)AA(P)AA[()k(x ii0
T

ii0
T −δαΣ+δαΣ+=  

         )k(x]P)AA(P)AA)[(k(x ii0
T

ii
T

0 −δαΣ+δαΣ+=  

         ii
T

00
T

ii0
T

0
T APAPAAPAA[)k(x δαΣ+δαΣ+=  

                                     )k(x]PAPA ii
T

ii −δαΣδαΣ+   (3.12) 

 Using the property 2|ab| ≤ 22 ba +  

 ∑ ∑∑∑
= = ==

δαδα=δαδα
m

1i

m

1i

m

1j
jj

T
ii

T
ii

m

1i

T
ii

T )k(xAPA)k(x)k(xAPA)k(x  

∑∑∑
= ≠=

δδαα+δδαα=
m

1i

m

1j
j

T
iji

T
i

m

1i

T
iii

T )k(xAPA)k(x)k(xAPA)k(x  

∑∑∑
= ≠=

δδαα+δδαα≤
m

1i

m

1j
i

T
iji

T
i

m

1i

T
iii

T APA()k(x)2/1()k(xAPA)k(x  

   )k(x)APA j
T

j δδ+  

 )k(x)APAAPA()k(x)2/1( j
T

j

m

1i

m

1j
i

T
iji

T δδ+δδαα= ∑ ∑
= =

 

∑
=

δδα=
m

1i
i

T
i

T
i )k(xAPA)k(x  
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(Using 1
m

1i
i =α∑

=

) 

By applying this inequality to eq.(3.12) 

 ∑
=

−δ+δ+δδα≤Δ
m

1i
i

T
ii

T
00

T
i

T
i )k(x)QPAAAPAAPA()k(x)k(V  

 ∑
=

α=
m

1i
i

T
i )k(xD)k(x  

The iα ’s are zero for all i∈ {j | x∉ Supp(Lj)}.thus for each rule, if xTDix ≤ 0 for all 

x∈ {x | x∈ Supp(Li)}, then )k(VΔ ≤ 0. this means that V(k) is a Lyapunov function. 

Therefore the system is stable at the origin. 

This theorem gives only a sufficient condition of stability. Even if the system is 

stable, sometimes there does not exist such a Q. it is due to three reasons: 

(1) xTPx is used as a Lyapunov function. 

(2) The inequality 2|ab| ≤ 22 ba +  is used during the proof, and 

(3) iα ’s are treated as uncertain for x∈ Supp(Li). 

First, xTPx is a necessary and sufficient condition only for linear systems. In case of 

a linear system, it is only sufficient. Thus, if a nonlinear system is proved as stable 

using xTPx, then the system is stable. Second, we use the inequality 2|ab| ≤ 22 ba +  

during the proofwhose equality holds only when |a| = |b|. Third, in this proof we 

assume that iα ’s are uncertain parameters. Strictly speaking, the third reason does 

not describe the characteristics of this theorem well. Here, we assume that they are 

uncertain only when the corresponding rule affects the results. In other words, they 

are uncertain only when x∈  Supp(Li). in case of the model having uncertainty 

problems, iα ’s are entirely uncertain parameters regardless x∈ Supp(Li) or not. In 

that case the condition xTDix ≤ 0 is equivalent to the negative definiteness of Di. if 

all Di’s are negative definite, then the system is stable. 
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The system is found to be stable if xTDix ≤ 0 for x∈  Supp(Li)., even when Di is not 

negative definite. Fuzzy model stability can be determined more adequately by 

theorem 3.1 than by the negative definiteness od Di’s. as mentioned, the method 

suggested by Tanaka and Sugeno [Tanaka’92] assumes that the parameters are 

entirely uncertain. Thus, their stability test sometimes does not work correctly. The 

example illustrates one such case. 

The use of ii A)x(α∑  when x ≡ 0 is recommended for an A0, since we are primarily 

interested in stability at the origin. For the system to be stable at the origin, A0 

should be a stable matrix at the origin. 

In order to apply the theorem we need to know the maximum bound of xTDix for all 

x∈ Supp(Li). it is not difficult to find the bounds since all Di’s are symmetric. The 

lower and upper bounds of xTDix can readily be calculated after diagonalizing Di 

with its eigen vectors, though they are not tight bounds. 

 

Example 3.1:        )x(μ  

     

         NB     NM        ZO    PM     PB   

 

 
         -10      -5         0          5        10               x 
   Figure 3.1: Membership Functions 

 

Consider a system modeled by the following rules: 

Rule 1: IF x1 is ZO and x2 is ZO, THEN x(k+1) =A1x(k) 

Rule 2: IF x1 is NM, THEN x(k+1) = A1x(k) 

Rule 3: IF x1 is PM, THEN x(k+1) =A1x(k) 
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Rule 4: IF x1 is ZO and x2 is NB, THEN x(k+1) =A2x(k) 

Rule 5: IF x1 is ZO and x2 is PB, THEN x(k+1) =A2x(k) 

Rule 6: IF x1 is NB and x2 is ZO, THEN x(k+1) =A3x(k) 

Rule 7: IF x1 is PB and x2 is ZO, THEN x(k+1) =A3x(k) 

 

Let the subsystem matrices be  

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
9.013.0
1.095.0

A1  

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
6.011.0
1.01.1

A2  

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
2.115.0
12.06.0

A3  

 

 

The eigenvalues of A1 are {0.9429, -0.8929}, 

The eigenvalues of A2 are {1.0935, -0.5935}, 

The eigenvalues of A3 are {0.5899, -1.1899}. 

The subsystem matrix at the origin, A1 is stable, while A2 and A3 are unstable 

matrices. So, there is no positive definite matrix P that makes Ai
TPAi-P; i = 2,3 

negative definite. Thus this system seems not to be stable. We use theorem 3.1 for 

this model. 

As A1 is stable, let A0 = A1. 

Let us also assume that Q = I, then the solution of the equation  

A0
TPA0 – P = -Q gives 
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 ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

0068.57790.0
7790.01509.9

P  

Now Di = Ai
TPAi – P then 

 

  ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

10
01

D1  

  ⎥
⎦

⎤
⎢
⎣

⎡
−−
−

=
2063.30354.0
0354.07937.1

D2  

  ⎥
⎦

⎤
⎢
⎣

⎡
−

−−
=

1104.22062.0
2062.08841.5

D3  

 

After diagonalizing with the corresaponding eigenvectors, bounds of )k(VΔ  comes 

out to be 

[-200, 0] for rules 1, 2, 3; 

[-322.9, -32.9] for rules 4, 5; and 

[-603.8, -81.2] for rules 6, 7. 

 

The procedure adopted for calculating the bounds is given as follows: 

Let us consider rules 4 & 5. the eigenvectors of D2 give its diagonalizing matrix, 

say, M. we get the following values: 

  ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

0071.00000.1
0000.10071.0

M  

  ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=−

0071.00000.1
0000.10071.0

M 1  

 ⎥
⎦

⎤
⎢
⎣

⎡−
=

7940.10
02066.3

MDM 2
T  
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Let      y = M-1x 

        = M-1 ⎥
⎦

⎤
⎢
⎣

⎡

2

1

x
x

 

Therefore, 

 xTD2x = (My)TD2(My) 

    = yT(MTD2M)y 

    = -3.2066(0.0071x1+x2)2+1.7940(-x1+0.0071x2)2 

For rules 4 & 5, 

x1 ranges from -5 to 5, 

x2 ranges from -10 to -5 and from 5 to 10. 

For finding the lower bound we put x1 = 5, and x2 = 10, in the first term, and x1 = 

0.0355, x2 = 5, in the second term 9as these values make the second term zero) of 

the expression for xTD2x. Whereby, the value of the lower bound is found to be -

322.9. 

For finding the upper bound: we put x1 = -5, x2 = 5, in the first term, and x1 = -5,  

x2 = 10, in the second term of the expression for xTD2x. Which gives the value of the 

upper bound as -32.9. 

obviously, the above procedure can only give loose bounds. 
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Program 3.1: To find and diagonalize the D matrices 
      For any number of subsystem matrices 

 
% A matlab program written by Siba Brata Panda 
disp('the order of all the subsystem matrices should be 2.') 
n=input('Enterthe number of subsystem matrices.'); 
if n<=0 
    error('Improper input.') 
end 
A(:,:,1) =input('Enter the first subsystem matrix.'); 
for i=2:n 
A(:,:,i)=input('Enter the next subsystem matrix. '); 
end 
disp('The respective eigenvalues are:') 
fori=1:n 
disp(eig(A(:,:,i)))                                              
  
A0=input('Enter a stable matrix,A0. '); 
Q=[1 0;0 1]; 
P=[0 0;0 0]; 
for i=0:1000 
   P=P+(A0')^i*Q*(A0^i); 
end 
disp('P equals') 
disp(P) 
disp('forQ=') 
disp(Q) 
fori=1:n 
 disp('The D matrices corresponding to the subsystem matrices are respectively:') 
for i=1:n 
   end 
 for i=1:n 
    disp('**************************************************') 
    no=sprintf('For D matrix no. %g,',i); 
    disp(no) 
    disp('the diagonalizing matrix, M is') 
    
    disp('the inverse of the diagonalizing matrix is') 
     
    disp('the matrix after diagonalization') 
     
end 
    disp('************************************************') 
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Sample Run of Program 3.1 

The order of all the subsystem matrices should be 2. 
Enterthe number of subsystem matrices.3 
Enter the first subsystem matrix.[0.95 -0.1;013 -0.9] 
Enter the next subsystem matrix. [1.1 -0.1;0.11 -0.6] 
Enter the next subsystem matrix. [0.6 -0.12;0.15 -1.2] 
The respective eigenvalues are: 
 
fori = 
     1     2     3 
    0.5899 
   -1.1899 
 
Enter a stable matrix,A0. [0.95 -0.1;013 -0.9] 
P equals 
  213.3198  -14.9730 
  -14.9730    2.3055 
 
forQ= 
     1     0 
     0     1 
 
fori = 
 
     1     2     3 
 
The D matrices corresponding to the subsystem matrices are respectively: 
************************************************** 
For D matrix no. 1, 
the diagonalizing matrix, M is 
the inverse of the diagonalizing matrix is 
the matrix after diagonalization 
************************************************** 
For D matrix no. 2, 
the diagonalizing matrix, M is 
the inverse of the diagonalizing matrix is 
the matrix after diagonalization 
************************************************** 
For D matrix no. 3, 
the diagonalizing matrix, M is 
the inverse of the diagonalizing matrix is 
the matrix after diagonalization 
************************************************ 
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3.3 Identification of Stable System as Stable: 

Some Q’s give all values of xTDix less than zero; and for other Q’s all values are not 

less than zero. Theorem 3.1 states that if there exists atleast one Q which satisfies 

the stability condition, the system is stable. Thus we need an algorithm with which 

we can identify such a Q. unfortunately, it is difficult to form a generalized 

algorithm. However if we can make the eigenvalues of Di more negative (i.e. if we 

can make the maximum eigenvalue of Di smaller) the probability that xTDix ≤ 0 is 

increased. Thus if we can adjust Q such that the maximum eigenvalue of the matrix 

Di is smaller, the probability that a stable system is identified as stable is increased. 

Using a gradient based algorithm, we can systematically decrease the maximum 

eigenvalue of Di. let function Ji be given by 

Ji = λM(Di)          (14) 

This makes Ji a function of Q, where λM(.) represents the maximum eigenvalue. Q 

being a positive definite matrix, it can be decomposed into Q = LTL where L is a full 

rank matrix. Ji can be minimized by an iterative adjustment of L using the gradient 

based algorithm. The gradient can be described by the following theorem. Note that 

subscript i has been omitted for notational convenience. 

Theorem 3.2 

Let J be defined as in eq.(14). Then 

∂J/∂L = 2L(W – gM gM
T),        (3.15) 

where W satisfies 

A0W A0
T – W = -( A0+δA) gM gM

T( A0+δA)T+ A0 gM gM
T A0

T   (3.16) 

And gM is an eigenvector corresponding to λM(D). 

Proof: 

D may be diagonalized using eigenvectors as it is a symmetric matrix. In other 

words, GTDG is a diagonal matrix, where G is an orthogonal matrix whose columns 

are eigenvectors. That is, G = [g1… g2] where gi is the ith eigenvector. 
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 Then ΔJ  

resulting from ΔQ is 

ΔJ = gM
TΔgM 

     = Tr{gM
T(δATΔPA0+ A0

TΔPδA+ δATΔPδA – ΔQ) gM}   (3.17) 

where gM is an eigenvector corresponding to λM(D), and ΔD and ΔP are the 

increment resulting from ΔQ. Tr{.} means matrix trace. We know that 

Tr(AB) = Tr(BA) = Tr(BTAT)       (3.18) 

and 

Tr(A+B) = Tr(A) + Tr(B).        (3.19) 

Using eqs.(3.18) and (3.19), 

Tr(gM
TΔQgM) = Tr(gMgM

TΔQ) 

   = Tr(gMgM
T(ΔLTL + LTΔL)) 

   = 2Tr(gMgM
T LTΔL)       (3.20) 

The solution of the lyapunov equation (3.9) is given by 

∑
∞

=

=
0i

i
0

iT
0 QA)A(P ,         (3.21) 

and ΔP is given by, 

∑
∞

−

Δ+Δ=Δ
0

00 ))(()(
i

iTTiT ALLLLAP .       (3.22) 

 

Using eqs.(3.20) and (3.22), eq.(3.17) becomes 

ΔJ = 2Tr{﴾∑A0
i ﴾δA  gM gM

T A0
T + A0 gM gM

T δAT 

+δA gM gM
T δAT ﴿﴾ A0

T﴿i- gM gM
T ﴿LTΔL}  
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Program 3.2: To decrease the maximum eigenvalues of  
   Di’s by updating Q 

 
% A matlab program written by Siba Brata Panda 
disp('The order of all the subsystem matrices should be 2.') 
n=input('Enter the number of subsystem matrices. '); 
if n<=0 
    error('Improper input.') 
end 
A(:,:,1)=input('Enter the first subsystem matrix.'); 
for i=2:n 
     A(:,:,i)=input('Enter the next subsystem matrix.'); 
end 
disp('The respective eigen values are:') 
for i=1:n 
    disp(eig(A(:,:,i))) 
end 
A0=input('Enter a stable m,atrix,A0.'); 
L=[1 0;0 1]; 
answer=1; 
iteration=0; 
while answer==1 
Q=L'*L 
P=[0 0;0 0] 
 fori=0:100 
    P=(P+(A0')^i)*Q*(A0)^i; 
end 
disp('P equals') 
disp(p) 
for i=1:n 
    D(:,:,i)=A(:,:,i)'*P*A(:,:,i)-P; 
end 
disp('The D matrices corresponding to the subsystem matrices are respectively:') 
for i=1:n 
    disp(D(:,:,i)) 
end 
disp('The respective eigenvalues are:') 
for i=1:n 
    disp(eig(D(:,:,i))) 
end 
for i=1:n 
    [M(:,:,i),eig_D(:,:,i)]=eig(D(:,:,i)); 
end 
answer=input('Does any eigenvalues need to be update? Enter 1 for yes. '); 
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if answer==1 
n1=input('The eigen value of which D matrix is to be updated? Enter no. '); 
delA=A(:,:,n1)-A0; 
M1=M(:,:,n1); 
n2=input('Which eigenvalue is to be updated? Enter no. '); 
gm=M1(:,n2) 
W=[0 0;0 0]; 
for i=0:1000 
 
W=W+(A0^i)*(delA*gm*gm'*A0'+A0*gm*gm'*delA'+delA*gm*gm'*delA')*(A0'
)^i; 
end 
disp('W equals') 
disp(W) 
L=L-2*L*(W-gm*gm') 
end 
iteration=iteration+1; 
iteration1=sprintf('This was iteration no. %g',iteration); 
disp(iteration1) 
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Sample Run of Program   3.2 
 
 
The order of all the subsystem matrices should be 2. 
 
Enter the number of subsystem matrices. 2 
 
Enter the first subsystem matrix.[0.9997 0.009899;-0.05939 0.9799] 
 
Enter the next subsystem matrix.[0.9998 0.009949;-0.02985 0.9899] 
 
The respective eigen values are: 
   
 0.9898 + 0.0221i 
   
 0.9898 - 0.0221i 
 
   
 0.9949 + 0.0165i 
   
 0.9949 - 0.0165i 
 
 
Enter a stable m,atrix,A0.[0.9998 0.0099;-0.0446 0.9849] 
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3.4 Conclusion 
 
     It is found tahat negative definiteness of XTDix for all the rules is a sufficient 

condition of stability for the fuzzy systems discussed in this chapter. Maximum 

bound of XTDix can be found easily as Di’s are symmetric . Some times the method 

fails to identify a stable system as stable. Using a gradient based algorithm , the 

maximum eigenvalue  of  Di is systematically decreased, which increases the 

probability of  XT Dix being less than zero and thereby increases the probability that 

a stable system is identified as stable. 
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Chapter 4 
 

Stabilizing Control 
 
    Stability is the ultimate goal. 
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4.1 Introduction 

 It is shown in the  first sample run of program 4.2 that the fuzzy free system 

taken there is highly unstable. Linear feedback control can be used to stabilize the 

system. A particular value of K, which is not necessarily unique , can make  the 

system stable as shown in second sample run of program 4.2. An algorithm is given 

to determine this particular value of K. 

4.2 Stabilizing using Linear  Feedback Control      

 Since Ao in the theorem 3.1 has to be substituted with    Ao+boK as shown 

in equation 4.1 , we first find a range of K for which  Ao+boK is stable; then we 

check the eigen values of Dc matrices given by equation 4.2 . Let us  consider the 

linear feedback  control u=Kx. Then  the subsystem is described by 

 X(K+1) =(A0+boK+  ∑ά ﴾δAi +δbiK))X(K) . 

 

After substituting Ao and  δAi in the theorem 3.1 with  Ao+boK and 

δAo+δbiK respectively , we can determine the stability of the feed back system. The 

model in eq.(3.2) with control 

u = Kx is stable if for given rule i, XT  Dic  x ≤ 0 for all       

            

            Dic   =  ﴾δAi + δbiK﴿ T P ﴾δAi + δbiK ﴿+ ﴾δAi + δbiK﴿ T P﴾A0 +boK﴿ 

           +﴾Ao+boK﴿T  P ﴾δAi + δbiK ﴿ -  Q 

and P is the solution of  Lyapunov equation : 

﴾Ao+boK﴿T  P ﴾Ao + boK ﴿ - P = -Q 

To find the stabilizing control,  we have to  find a control gain K that satisfies represents 

XT  Dic  x ≤ 0 . Since Dic  represents Di in eq.(3.10), we can increase the probability that   

XT  Dic  x ≤ 0 if we can decrease the maximum eigenvalue of Dic   
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Program 4.1 :    To find and plot the eigenvalues of Dic                        
Matrices for a range of K, taking aFuzzy system                                      

 having 9 rules 
n=9; 
disp('Enter the subsystemmatrix for rule 1,i.e.,') 
A(:,:,1)=input('when x1 is low and x2is low.(2x2)'); 
eigenvalues=eig(A(:,:,1)) 
b(:,1)=input('Enter the cooresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 2, i.e.,') 
A(:,:,2)=input('when x1 is LOW and x2 is MED.(2x2)'); 
eigenvalues=eig(A(:,:,2)) 
b(:,2)=input('Enter the cooresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 3, i.e.,') 
A(:,:,3)=input('when x1 is LOW and x2 is HIGH.(2x2)'); 
eigenvalues=eig(A(:,:,3)) 
b(:,3)=input('Enter the cooresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 4, i.e.,') 
A(:,:,4)=input('when x1 is MED and x2 is LOW.(2x2)'); 
eigenvalues=eig(A(:,:,4)) 
b(:,4)=input('Enter the cooresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 5, i.e.,') 
A(:,:,5)=input('when x1 is MED and x2 is MED.(2x2)'); 
eigenvalues=eig(A(:,:,5)) 
b(:,5)=input('Enter the cooresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 6, i.e.,') 
A(:,:,6)=input('when x1 is MED and x2 is HIGH.(2x2)'); 
eigenvalues=eig(A(:,:,6)) 
b(:,6)=input('Enter the cooresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 7, i.e.,') 
A(:,:,7)=input('when x1 is HIGH and x2 is LOW.(2x2)'); 
eigenvalues=eig(A(:,:,7)) 
b(:,7)=input('Enter the cooresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 8, i.e.,') 
A(:,:,8)=input('when x1 is HIGH and x2 is MED.(2x2)'); 
eigenvalues=eig(A(:,:,8)) 
b(:,8)=input('Enter the cooresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 9, i.e.,') 
A(:,:,9)=input ('when x1 is HIGH and x2 is HIGH. (2x2) ' ); 
eigenvalues=eig(A(:,:,9)) 
b(:,9)=input('Enter the corresponding input matrix.(2x1) 
'); 
disp('A0+b0*k should be stable.') 
A0=input('Enter A0.(2x2 )'); 
b0=input('Enter b0. (2x1)'); 
ans=1; 
while ans==1 
disp('Suggest a range for k.') 
high1=input('Enter the higher limit for k(1).'); 
low1=input('Enter the lower limit for k(1).'); 
high2=input('Enter the higher limit for k(2).'); 
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low2=input('Enter the lower limit for k(2).'); 
incr=input ('Enter the increment.'); 
disp('The eigenvalues of A0+b0*k and the corresponding k''s 
are listed below.') 
for p=low2:incr:high2 
    forq=low1:incr:high1 
    k(1)=q; 
    k(2)=p; 
    res=A0+b0*k; 
    disp(eig(res)) 
    disp('For k=') 
    disp(k) 
    disp('-----------') 
end 
end 
ans=input('Do you want to change the range of k? Enter 1 
for yes .'); 
end 
ans=input('Should the program be terminated? Enter 1 for 
yes.'); 
if ans1==1 
    break 
end 
disp('the eigenvalues of the Dc matrices ofand the 
cooresponding k''s are listed below.') 
ii=0; 
for p=low2:incr:high2 
    for q=low1:incr:high1 
        k(1)=q; 
        k(2)=p; 
        ii=ii+1; 
        k1(ii)=k(1); 
        k2(ii)=k(2); 
        for i=1:n 
            delA(:,:,i)-A0; 
            delb(:,i)-b0; 
        end 
        Q=[1 0;0 1]; 
        p=[0 0;0 0]; 
        for i=0:1000 
            p=p+((A0+b0*k)')^i*Q*(A0+bo*k)^i; 
        end 
  for i=1:n 

            
Dc(:,:,i)=(delA(:,:,i)+delb(:,i)*k)'*p*(delA(:,:,i)+de
lb(:,I)*k)+... 

                (deiA(:,:,i)+delb(:,i)*k)'*p*(A0+b0*k)+... 
                (A0+b0*k)'*p*(delA(:,:,i)+delb(:,i)*k)-q; 
        end 
        for i=1:n 
            disp(eig(dc(:,:,i))) 
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        end 
        disp('For k=') 
        disp(k) 
        disp('-----') 
        for i=1:n 
            e(:,i)=eig(Dc(:,:,i)); 
            eig1(ii,i)=e(1,i); 
            eig2(ii,i)=e(2,i); 
        end 
    end 
end 
total=((high1-low1)/incr+1)*((high2-low2)/incr+1); 
ans2=1; 
while ans2==1 
    ans2=input('Entering 1will plot the eigenvalues ofa Dc 
matrix against k.'); 
    if ans2~=1 
        break 
    end 
    n1=input ('which Dc matrix do you select.Enter no.'); 
    if low<low2 
        lowlim=low1; 
    else 
        lowlim=low2; 
    end 
    if high1>high2 
        highlim=high1; 
    else 
        highlim=high2; 
    end 
    ti = lowlim:incr*0.1:highlim; 
    [XI,YI] = meshgrid(ti,ti); 
    ii=i:total==0.5 
    ZI1 = griddata (k1(ii),k2(ii),eig1(ii,n1),XI,YI); 
    ZI2 = griddata (k1(ii),k2(ii),eig2(ii,n1),XI,YI); 
    subplot(2,1,1); 
    mesh(XI,YI,ZT1),hold 

    
plot3(k1(ii),k2(ii),eig1(ii,n1),':wo','MarkerFaceColor
','k','MarkerSize',8) 

    axis([low1 high1 low2 high2]) 
    xlabel('k(1)','fontsize',8) 
    ylabel('k(2)','fontsize',8) 
    zlabel('First Eigenvalue','fontsize',8) 
    title('Eigenvalues of the Dc matrix against k') 
    colorbar 
    hold off  
    subplot(2,1,2); 
    mesh(XI,YI,ZT2),hold 
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plot3(k1(ii),k2(ii),eig2(ii,n1),'two','MarkFaceColor',
'k','markersize',8) 

    axis([low1 high1 low2 high2]) 
    xlabel('k(1)','Fontsize',8) 
    ylabel('k(2)','Fontsize',8) 
    zlabel('Second Eigenvalue','fontsize',8) 
    colorbar 
    hold off 
    end 
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Sample Run of  Program  4.1 

 
>> Enter the subsystemmatrix for rule 1,i.e., 
when x1 is low and x2is low.(2x2) [1.2 0.75;-4.8 -1.3] 
 
eigenvalues = 
 
  -0.0500 + 1.4274i 
  -0.0500 - 1.4274i 
 
Enter the cooresponding input matrix.(2x1) [-1;3] 
Enter the subsystem matrix for rule 2, i.e., 
when x1 is LOW and x2 is MED.(2x2)[-1.8 -1.125;5.6 2] 
 
 
eigenvalues = 
 
   0.1000 + 1.6401i 
   0.1000 - 1.6401i 
 
Enter the cooresponding input matrix.(2x1)[1.5;-3.5] 
Enter the subsystem matrix for rule 3, i.e., 
when x1 is LOW and x2 is HIGH.(2x2) [-4 -2.25;-6.4 -2.4] 
 
eigenvalues = 
 
   -7.0781 
    0.6781 
 
Enter the cooresponding input matrix.(2x1) [3;4] 
Enter the subsystem matrix for rule 4, i.e., 
when x1 is MED and x2 is LOW.(2x2) [-0.8 -0.675;-2.88 -0.7] 
 
eigenvalues = 
 
   -2.1452 
    0.6452 
 
Enter the cooresponding input matrix.(2x1) [0.9;1.8] 
Enter the subsystem matrix for rule 5, i.e., 
when x1 is MED and x2 is MED.(2x2)[7.4 3.75;-9.6 -3.8] 
 



 56

 
 
 
 
eigenvalues = 
 
   1.8000 + 2.1541i 
   1.8000 - 2.1541i 
 
Enter the cooresponding input matrix.(2x1) [-5;6] 
Enter the subsystem matrix for rule 6, i.e., 
when x1 is MED and x2 is HIGH.(2x2) [-2.5 -1.5;6.4 2.3] 
 
eigenvalues = 
 
  -0.1000 + 1.9596i 
  -0.1000 - 1.9596i 
 
Enter the cooresponding input matrix.(2x1) [2;-4] 
Enter the subsystem matrix for rule 7, i.e., 
when x1 is HIGH and x2 is LOW.(2x2) [0.1 -0.375;2.4 0.5] 
 
eigenvalues = 
 
  
  0.3000 + 0.9274i 
   0.3000 - 0.9274i 
 
Enter the cooresponding input matrix.(2x1) [0.5;-1.5] 
Enter the subsystem matrix for rule 8, i.e., 
when x1 is HIGH and x2 is MED.(2x2)[-2.5 -1.5;9.6 5] 
 
eigenvalues = 
 
   1.2500 + 0.5809i 
   1.2500 - 0.5809i 
 
Enter the cooresponding input matrix.(2x1) [2;-6] 
Enter the subsystem matrix for rule 9, i.e., 
when x1 is HIGH and x2 is HIGH. (2x2) [7 3;-2 0.01] 
 
eigenvalues = 
 
    5.9980 
    1.0120 
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Enter the corresponding input matrix.(2x1)  [-4;1.25] 
A0+b0*k should be stable. 
Enter A0.(2x2 )[0.1 -0.375;2.4 0.5] 
Enter b0. (2x1)[0.5;-1.5] 
Suggest a range for k. 
Enter the higher limit for k(1).2 
Enter the lower limit for k(1).1 
Enter the higher limit for k(2).1 
Enter the lower limit for k(2).0 
Enter the increment.0.2 
The eigenvalues of A0+b0*k and the corresponding k's are listed below. 
   0.5500 + 0.5788i 
   0.5500 - 0.5788i 
 
For k= 
     1     0 
 
----------- 
   0.6000 + 0.4637i 
   0.6000 - 0.4637i 
 
For k= 
    1.2000         0 
 
----------- 
   0.6500 + 0.3000i 
   0.6500 - 0.3000i 
 
For k= 
    1.4000         0 
 
----------- 
    0.9000 
    0.5000 
 
 
 
 
 
For k= 
    1.6000         0 
 
----------- 
 
   1.1683 
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    0.3317 
 
 
 
For k= 
    1.8000         0 
 
----------- 
    1.3612 
    0.2388 
 
For k= 
     2     0 
 
----------- 
   0.4000 + 0.4555i 
   0.4000 - 0.4555i 
 
For k= 
    1.0000    0.2000 
 
----------- 
   0.4500 + 0.3202i 
   0.4500 - 0.3202i 
 
For k= 
    1.2000    0.2000 
 
----------- 
    0.5866 
    0.4134 
 
For k= 
    1.4000    0.2000 
 
----------- 
    0.9000 
    0.2000 
 
For k= 
    1.6000    0.2000 
 
----------- 
    1.0924 
    0.1076 
 
For k= 
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    1.8000    0.2000 
 
----------- 
    1.2562 
    0.0438 
 
 
For k= 
    2.0000    0.2000 
 
----------- 
   0.2500 + 0.1871i 
   0.2500 - 0.1871i 
 
    1.0000    0.4000 
 
----------- 
    0.5345 
    0.0655 
 
For k= 
    1.2000    0.4000 
 
----------- 
    0.7373 
   -0.0373 
 
For k= 
    1.4000    0.4000 
 
----------- 
    0.9000 
   -0.1000 
 
For k= 
    1.6000    0.4000 
 
----------- 
    1.0458 
   -0.1458 
 
For k= 
    1.8000    0.4000 
 
----------- 
    1.1819 
   -0.1819 
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For k= 
    2.0000    0.4000 
 
----------- 
    0.5272 
   -0.3272 
 
For k= 
    1.0000    0.6000 
 
----------- 
    0.6574 
   -0.3574 
 
 
For k= 
    1.2000    0.6000 
 
----------- 
    0.7809 
   -0.3809 
 
For k= 
    1.4000    0.6000 
 
----------- 
    0.9000 
   -0.4000 
 
For k= 
    1.6000    0.6000 
 
----------- 
    1.0159 
   -0.4159 
 
For k= 
    1.8000    0.6000 
 
----------- 
    1.1294 
   -0.4294 
 
For k= 
    2.0000    0.6000 
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----------- 
    0.6171 
   -0.7171 
 
For k= 
    1.0000    0.8000 
 
----------- 
    0.7106 
   -0.7106 
 
For k= 
    1.2000    0.8000 
 
----------- 
    0.8050 
   -0.7050 
 
For k= 
    1.4000    0.8000 
 
----------- 
    0.9000 
   -0.7000 
 
For k= 
    1.6000    0.8000 
 
----------- 
    0.9956 
   -0.6956 
 
For k= 
    1.8000    0.8000 
 
----------- 
    1.0916 
   -0.6916 
 
For k= 
    2.0000    0.8000 
 
----------- 
    0.6675 
   -1.0675 
 
For k= 
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     1     1 
 
----------- 
    0.7430 
   -1.0430 
 
For k= 
    1.2000    1.0000 
 
----------- 
    0.8206 
   -1.0206 
 
For k= 
    1.4000    1.0000 
 
----------- 
    0.9000 
   -1.0000 
 
For k= 
    1.6000    1.0000 
 
----------- 
    0.9811 
   -0.9811 
 
For k= 
    1.8000    1.0000 
 
----------- 
    1.0637 
   -0.9637 
 
For k= 
     2     1 
 
----------- 
 
Do you want to change the range of k? Enter 1 for yes .1 
Suggest a range for k. 
Enter the higher limit for k(1).1.6 
Enter the lower limit for k(1).1.5 
Enter the higher limit for k(2)..7 
Enter the lower limit for k(2)..6 
Enter the increment..05 
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The eigenvalues of A0+b0*k and the corresponding k's are listed below. 
    0.8409 
   -0.3909 
 
For k= 
    1.5000    0.6000 
 
----------- 
    0.8706 
   -0.3956 
 
 
 
 
 
For k= 
    1.5500    0.6000 
 
----------- 
    0.9000 
   -0.4000 
 
For k= 
    1.6000    0.6000 
 
----------- 
    0.8443 
   -0.4693 
 
For k= 
    1.5000    0.6500 
 
----------- 
    0.8722 
   -0.4722 
 
For k= 
    1.5500    0.6500 
 
----------- 
    0.9000 
   -0.4750 
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For k= 
    1.6000    0.6500 
 
----------- 
    0.8473 
   -0.5473 
 
For k= 
    1.5000    0.7000 
 
----------- 
    0.8737 
   -0.5487 
 
For k= 
  
   1.5500    0.7000 
 
 
 
 
----------- 
    0.9000 
   -0.5500 
 
For k= 
    1.6000    0.7000 
 
----------- 
Do you want to change the range of k? Enter 1 for yes .0 
Should the program be terminated? Enter 1 for yes.0 
the eigenvalues of the Dc matrices and the cooresponding k's are listed below. 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
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    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
For k= 
    1.5000    0.7000 
 
----- 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
   
  -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
For k= 
    1.5500    0.7000 



 66

 
----- 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
For k= 
    1.6000    0.7000 
 
----- 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
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    -1 
  
 
   -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
For k= 
    1.5000    0.7000 
 
----- 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
For k= 
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    1.5500    0.7000 
 
----- 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
   
 
 
  -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
For k= 
    1.6000    0.7000 
 
----- 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
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    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
For k= 
    1.5000    0.7000 
 
----- 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
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For k= 
    1.5500    0.7000 
 
----- 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
    -1 
    -1 
 
For k= 
    1.6000    0.7000 
 
----- 
Entering 1 will plot the eigenvalues of a Dc matrix against k. 1 
which Dc matrix Do you select. Enter no. 3 
 
ii = 
 
     1     2     3     4     5     6     7     8     9 
 
Current plot held 
Entering 1 will plot the eigenvalues of a Dc matrix against k. 0 
>> 1 
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ans = 
 
     1 
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Figures 4.1 and 4.2 
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Program  4.2 :  To inspect and plot the behavior of a 
       Fuzzy system having 9 rules, for a 
        Given value K  
x=input(“Enter the initial state. (2 1)’ ); 
low=input(‘Enter parameters for triangular LOW .(1 2)’); 
med=input(‘Enter parameters for triangular MED .(13)’); 
high=input(‘Enter parameters for triangular HIGH .(1 2)’); 
k=input(“Enter the gain k.. (2 1)’ ); 
iteration=input(‘Enter the no of iterations.’); 
disp('Enter the subsystem matrix for rule 1, i.e.,') 
A(:,:,1)=input('when x1 is  LOWand x2 is LOW. (2x2)'); 
b(:,1)=input('Enter the corresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 2, i.e.,') 
A(:,:,2)=input('when x1 is  LOW and x2 is MED. (2x2)'); 
b(:,2)=input('Enter the corresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 3, i.e.,') 
A(:,:,3)=input('when x1 is  LOW and x2 is HIGH. (2x2)'); 
b(:,3)=input('Enter the corresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 4, i.e.,') 
A(:,:,4)=input('when x1 is  MED and x2 isLOW. (2x2)'); 
b(:,4)=input('Enter the corresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 5, i.e.,') 
A(:,:,5)=input('when x1 is  MED and x2 is MED. (2x2)'); 
b(:,5)=input('Enter the corresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 6, i.e.,') 
A(:,:,6)=input('when x1 is  MED and x2 is HIGH. (2x2)'); 
b(:,6)=input('Enter the corresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 7, i.e.,') 
A(:,:,7)=input('when x1 is  HIGH and x2 is LOW. (2x2)'); 
b(:,7)=input('Enter the corresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 8, i.e.,') 
A(:,:,8)=input('when x1 is  HIGH and x2 is MED. (2x2)'); 
b(:,8)=input('Enter the corresponding input matrix.(2x1)'); 
disp('Enter the subsystem matrix for rule 9, i.e.,') 
A(:,:,9)=input('when x1 is  HIGH and x2 is HIGH. (2x2)'); 
b(:,9)=input('Enter the corresponding input matrix.(2x1)'); 
ii=1; 
x1(ii)=x(1); 
x2(ii)=x(2); 
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k=0; 
response=input('Entering 1 will display the state vector after each iteration. '); 
while k<iteration 
for j=1:2 
 
if x(j)<=low(1) 
   LOW(j)=1; 
elseif x(j)>low(1)&x(j)<low(2) 
   LOW(j)=(x(j)-low(2))/(low(1)-low(2)); 
else 
   HIGH(j)=0 
elseif x(j)>high(1)&x(j)<high(2) 
   HIGH(j)=(x(j)-high(1))/(high(2)-high(1)); 
else 
   HIGH(j)=1; 
end 
end 
fs(1)=min(LOW(1),LOW(2)); 
fs(2)=min(LOW(1),MED(2)); 
fs(3)=min(LOW(1),HIGH(2)); 
fs(4)=min(MED(1),LOW(2)); 
fs(5)=min(MED(1),MED(2)); 
fs(6)=min(MED(1),HIGH(2)); 
fs(7)=min(HIGH(1),LOW(2)); 
fs(8)=min(HIGH(1),MED(2)); 
fs(9)=min(HIGH(1),HIGH(2)); 
   sum=[0;0]; 
for i=1:9 
    fire(ii,i)=fs(i); 
end 
for i=1:9 
   sum=sum+fs(i); 
end 
sumfs=0; 
for i=1:9 
   sumfs=sumfs+fs(i); 
end 
x=sum/sumfs; 
k=k+1; 
next_state=mat2str(x); 
ii=ii+1; 
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x1(ii)=x(1); 
x2(ii)=x(2); 
state= sprintf(‘State vector after iteration % 3g is %50s’, ii-1,next_state); 
disp(state) 
end 
end 
disp(The final state is’) 
disp(x) 
disp(‘Entering 1 will display the firing strength bof various rule for’) 
for ii=1:iterations 
fi=sprint f(‘itration %3g:%9.2g%9.2g9.2g9.2g9.2g9.2g9.2g9.2g9.2g9.2g9.2g9.2g 
9.2g’,ii,fire(ii,1)….. 
 fire(ii,2) fire(ii,3) fire(ii,4) fire(ii,5) fire(ii,6) fire(ii,7) fire(ii,8) fire(ii,9)); 
disp(fi) 
end 
end 
answer=input('Entering 1 will plot the trajectory for the second state variable. '); 
if answer==1 
   ii=1:1:iteration 
   plot(ii,x2(ii),'r','linewidth',2) 
   xlabel('Iterations','color','b') 
   ylabel('Second state variable','color','m') 
   title(['Plot for k=',mat2str(k)]) 
   grid on  
end 
answer=input('Entering 1 will plot the trajectory for the second state variable. '); 
if answer==1 
   ii=1:1:iteration 
   plot(ii,x2(ii),'r','linewidth',2) 
   xlabel('Iterations','color','b') 
   ylabel('Second state variable','color','m') 
   title(['Plot for k=',mat2str(k)]) 
   grid on  
end 
answer=input('Enter 1 for logarithmic plots. '); 
if answer==1 
answer=input('Entering 1 will plot the trajectory for the first state variable. '); 
if answer==1 
   ii=1:1:iteration 
   semilogy(ii,abs(x1(ii)),'r','linewidth',2) 
   xlabel('Iterations','color','b') 
   ylabel('Absolute value of the second state variable on logarithmic scale.',... 
       'color','m','fontsize',8) 
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title(['Plot for k=',mat2str(k)]) 
   grid on 
end 
answer=input('Entering 1 will plot the trajectory for the second state variable. '); 
if answer==1 
   ii=1:1:iteration 
   semilogy(ii,abs(x2(ii)),'r','linewidth',2) 
   xlabel('Iterations','color','b') 
   ylabel('Absolute value of the second state variable on logarithmic scale.',... 
       'color','m','fontsize',8) 
title(['Plot for k=',mat2str(k)]) 
grid on 
end 
end 
disp('The program ends here.') 
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First Sample Run of  Program  4.2 

Enter the initial state.(2x1)[-10;15] 
Enter parameters for triangular LOW .(1x2) [-1 0] 
Enter parameters for triangular MED .(1x3) [-1 0 1] 
Enter parameters for triangular HIGH .(1x2) [0 1] 
Enter the gain k.(1x2)[0 0] 
Enter the no of iterations. 50 
Enter the sub system matrix for rule 1, i.e., 
when x1 is  LOW and x2 is LOW. (2x2) [1.2 0.75;-4.8 -1.3] 
Enter the corresponding input matrix.(2x1)[-1;3] 
Enter the subsystem matrix for rule 2, i.e., 
when x1 is  LOW and x2 is MED. (2x2) [--1.8 -1.125;5.6 2] 
Enter the corresponding input matrix.(2x1) [1.5;-3.5] 
Enter the subsystem matrix for rule3, i.e., 
when x1 is  LOW and x2 is HIGH. (2x2)[-4 -2.25;-6.4 -2.4] 
Enter the corresponding input matrix.(2x1)[3;4] 
Enter the subsystem matrix for rule 4, i.e., 
when x1 is  MED and x2 is LOW (2x2)[-0.8 -0.675;-2.88 -0.7] 
Enter the corresponding input matrix.(2x1)[0.9;1.8] 
Enter the subsystem matrix for rule 5, i.e., 
when x1 is  MED and x2 is MED. (2x2)[7.4 3.75;-9.6 -3.8] 
Enter the corresponding input matrix.(2x1)[-5;6] 
Enter the subsystem matrix for rule 6, i.e., 
when x1 is  MED and x2 is HIGH. (2x2)[-2.5 -1.5;6.4 2.3] 
Enter the corresponding input matrix.(2x1)[2;-4] 
Enter the subsystem matrix for rule 7, i.e., 
when x1 is  HIGH and x2 is LOW. (2x2) [0.1 -0.375;2.4 0.5] 
Enter the corresponding input matrix.(2x1)[0.5;-1.5] 
Enter the subsystem matrix for rule 8, i.e., 
when x1 is  HIGH and x2 is MED. (2x2) [-2.5 -1.5;9.6 5] 
Enter the corresponding input matrix.(2x1) [2;-6] 
Enter the subsystem matrix for rule 9, i.e., 
when x1 is  HIGH and x2 is HIGH. (2x2)[7 3;-2 0.01] 
Enter the corresponding input matrix.(2x1) [-4;1.25] 
Entering 1 will display the state vector after each iteration. 1 
 
MED = 
     1 
 
HIGH = 
 
     0     1 
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MED = 
 
     1     1 
 
 
State vector after iteration   1 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration   2 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration   3 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration   4 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
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     1     1 
 
State vector after iteration   5 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration   6 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
 
 
State vector after iteration   7 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration   8 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
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     1     1 
 
 
 
 
State vector after iteration   9 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  10 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  11 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  12 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
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     1     1 
 
State vector after iteration  13 is                                              [1;1] 
 
MED = 
 
     1     1 
 
MED = 
 
     1     1 
 
State vector after iteration  14 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  15 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  16 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  17 is                                              [1;1] 
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MED = 
 
     1     1 
 
 
 
 
 
 
MED = 
 
     1     1 
 
State vector after iteration  18 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  19 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  20 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  21 is                                              [1;1] 
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MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
 
State vector after iteration  22 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
 
State vector after iteration  23 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  24 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  25 is                                              [1;1] 
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MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  26 is                                              [1;1] 
 
 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  27 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  28 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  29 is                                              [1;1] 
 
MED = 
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     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  30 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  31 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  32 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  33 is                                              [1;1] 
 
MED = 
 
     1     1 
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MED = 
 
     1     1 
 
State vector after iteration  34 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
 
 
State vector after iteration  35 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  36 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  37 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
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     1     1 
 
State vector after iteration  38 is                                              [1;1] 
 
MED = 
 
     1     1 
 
MED = 
 
     1     1 
State vector after iteration  39 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  40 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  41 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  42 is                                              [1;1] 
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MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  43 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
 
 
State vector after iteration  44 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  45 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  46 is                                              [1;1] 
 
MED = 
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     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  47 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  48 is                                              [1;1] 
 
 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  49 is                                              [1;1] 
 
MED = 
 
     1     1 
 
 
MED = 
 
     1     1 
 
State vector after iteration  50 is                                              [1;1] 
The final state is 
     1 
     1 
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Entering 1 will display the firing strengths of various rules for 
all the iterations.1 
Iteration   1:         0         1         1         0         1         1         0         0         0 
Iteration   2:         0         0         0         0         1         1         0         1         1 
Iteration   3:         0         0         0         0         1         1         0         1         1 
Iteration   4:         0         0         0         0         1         1         0         1         1 
Iteration   5:         0         0         0         0         1         1         0         1         1 
Iteration   6:         0         0         0         0         1         1         0         1         1 
Iteration   7:         0         0         0         0         1         1         0         1         1 
Iteration   8:         0         0         0         0         1         1         0         1         1 
Iteration   9:         0         0         0         0         1         1         0         1         1 
Iteration  10:         0         0         0         0         1         1         0         1         1 
Iteration  11:         0         0         0         0         1         1         0         1         1 
Iteration  12:         0         0         0         0         1         1         0         1         1 
Iteration  13:         0         0         0         0         1         1         0         1         1 
Iteration  14:         0         0         0         0         1         1         0         1         1 
Iteration  15:         0         0         0         0         1         1         0         1         1 
Iteration  16:         0         0         0         0         1         1         0         1         1 
Iteration  17:         0         0         0         0         1         1         0         1         1 
Iteration  18:         0         0         0         0         1         1         0         1         1 
Iteration  19:         0         0         0         0         1         1         0         1         1 
Iteration  20:         0         0         0         0         1         1         0         1         1 
Iteration  21:         0         0         0         0         1         1         0         1         1 
Iteration  22:         0         0         0         0         1         1         0         1         1 
Iteration  23:         0         0         0         0         1         1         0         1         1 
Iteration  24:         0         0         0         0         1         1         0         1         1 
Iteration  25:         0         0         0         0         1         1         0         1         1 
Iteration  26:         0         0         0         0         1         1         0         1         1 
Iteration  27:         0         0         0         0         1         1         0         1         1 
Iteration  28:         0         0         0         0         1         1         0         1         1 
Iteration  29:         0         0         0         0         1         1         0         1         1 
Iteration  30:         0         0         0         0         1         1         0         1         1 
Iteration  31:         0         0         0         0         1         1         0         1         1 
Iteration  32:         0         0         0         0         1         1         0         1         1 
Iteration  33:         0         0         0         0         1         1         0         1         1 
Iteration  34:         0         0         0         0         1         1         0         1         1 
Iteration  35:         0         0         0         0         1         1         0         1         1 
Iteration  36:         0         0         0         0         1         1         0         1         1 
Iteration  37:         0         0         0         0         1         1         0         1         1 
Iteration  38:         0         0         0         0         1         1         0         1         1 
Iteration  39:         0         0         0         0         1         1         0         1         1 
Iteration  40:         0         0         0         0         1         1         0         1         1 
Iteration  41:         0         0         0         0         1         1         0         1         1 
Iteration  42:         0         0         0         0         1         1         0         1         1 
Iteration  43:         0         0         0         0         1         1         0         1         1 
Iteration  44:         0         0         0         0         1         1         0         1         1 
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Iteration  45:         0         0         0         0         1         1         0         1         1 
Iteration  46:         0         0         0         0         1         1         0         1         1 
Iteration  47:         0         0         0         0         1         1         0         1         1 
Iteration  48:         0         0         0         0         1         1         0         1         1 
Iteration  49:         0         0         0         0         1         1         0         1         1 
Iteration  50:         0         0         0         0         1         1         0         1         1 
Entering 1 will plot the  trajectory for the first state variable. 1 
 
ii = 
 
  Columns 1 through 10  
 
     1     2     3     4     5     6     7     8     9    10 
 
  Columns 11 through 20  
 
    11    12    13    14    15    16    17    18    19    20 
 
  Columns 21 through 30  
 
    21    22    23    24    25    26    27    28    29    30 
 
   
 
Columns 31 through 40  
 
    31    32    33    34    35    36    37    38    39    40 
 
  Columns 41 through 50  
 
    41    42    43    44    45    46    47    48    49    50 
 
Entering 1 will plot the trajectory for the second state variable.  
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Figures 4.5 and 4.6 
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4.3 Conclusion 

A new matrix Dic, which involves the control gain, K represents Dic Discussed in 

chapter 3. Thus, for stabilizing control, a control gain, K needsTo be found such 

that XtDicX is  negative definite. This condition is achivedIf all the eigenvalues of 

Dic are negative. Solution of the new LyapunovEquation is needed in order to find 

Dic. The new Lyapunov equation can be solved only if Ao+boK is stable. First a 

discrete range of K satisfying thisCondition  is found, and then eigen values of Dic 

are calculated for differentK’s. A value of K is choosen for which either all the 

eigenvalues of Dic areNegative or the negative eigenvalues are much larger in 

magnitude as compared to the positive ones. 
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Chapter 5 
Conclusions, Limitations, and 

Suggestions 
For Further Work 

 
From causes which appear similar, we expect similar effects.  
This is the sum total of all our experimental conclusions. 
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5.1  Conclusions 

Lyapunov’s approach offers a shortcut to proving the global stability of a 

dynamical system. A Lyapunov function summarizes total system behaviour. At 

each moment a single real number represents the entire system. This is somewhat 

similar to the case in statistical mechanics, where a single numerical temperature 

summarizes the interactions of arbitrarily many molecules. 

A dynamical system is stable if some Lyapunov function L decreases along 

trajectories: L ≤ 0. A dynamical system is asymptotically stable if it strictly 

decreases along trajectories: L < 0. Monotonicity of a Lyapunov function provides 

a sufficient not necessary condition for stability and asymptotic stability. Inability 

to produce a Lyapunov function proves nothing. The system mayor may not be 

stable. Demonstration of any Lyapunov function proves stability. 

The two stability test methods discussed in the previous chapters give a 

sufficient condition, which guarantees the stability of fuzzy systems in terms of 

Lyapunov's direct method. The following important conclusions can be drawn 

from the discussions: 

(1) If all the subsystem matrices are stable, the overall fuzzy system may or may 

not be stable. 

(2) Even if some of the subsystem matrices are unstable, the overall fuzzy 

system may be stable. 

(3) The existence of a common positive definite matrix satisfying Lyapunov 

equation for all the subsystem matrices shows that the fuzzy system is stable. 

(4) If all the subsystem matrices are stable, but the product of any two subsystem 

matrices is unstable, there can't be any common positive definite matrix 

satisfying Lyapunov equation for all the satisfying Lyapunov  equation for all 

the subsystem matrices. 

(5) Negative bounds approach used to test the stability of fuzzy systems is better 

than common positive definite matrix approach in the sense that it does not 



 96

fail even if some of the subsystem matrices are unstable. 

(6) Though the negative bounds approach gives only a sufficient condition of 

stability like common positive definite matrix approach, an algorithm based 

on this approach can be used to identify some stable systems as stable. 

(7) In case of stabilization using linear feedback control, negative bounds 

approach can be used for the determination of control gains, which can 

stabilize the system. 
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5.2 Limitations of the Given Methods 

 

    Both the stability test methods give sufficient but not necessary conditions of 

stability. This means that a system proved to be stable using any of these methods 

is actually stable, but those systems, which cannot be proved to be stable, may also 

be stable. 

In order to check the stability of a fuzzy system using the method given in 

chapter 2, we must find a common positive definite matrix. No procedure has been 

suggested for finding this matrix. 

In negative bounds approach, the procedure given for the determination of 

bounds cannot always be adopted. This procedure does not give tight bounds and 

therefore desirable results may not be obtained in some cases. 
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5.3 Suggestions for Further Work 

1. An effective algorithm for finding common positive definite matrix needs 

to be developed. This will considerably improve the stability test method 

given in chapter 2. 

2. Attempts should be made to discover sufficient as well as necessary 

conditions of stability for fuzzy systems. 
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