
3

Stability Analysis of
Dynamic Fuzzy System

 A Dissertation

 Submitted in partial fulfillment of the requirements for the award of

Degree of
MASTERS OF ENGINEERING IN

 ELECTRICAL ENGINEERING (Control & Instrumentation)

Under the Guidance of

Dr. Narendra Kumar
Assistant Professor

Submitted By

Siba Brata Panda

Department of Electrical Engineering,

Delhi College of Engineering, University of Delhi

 2

 CERTIFICATE

This is to certify that the dissertation entitled " STABILITY
ANALYSIS OF DYNAMIC FUZZY SYSTEM " , which is
being submitted by Siba Brata Panda in partial fulfillment of the
award of ME Degree in Electrical Engineering with specialization
in Control and instrumentation of Delhi College of Engineering,
Delhi, is a record of students own work carried out by him under
my guidance and supervision. The matter embodied in this
dissertation has not been submitted for the award of any degree to
the best of my knowledge and belief.

 Dr. Narender Kumar
 Assistant Professor
 Electrical Engineering Department
 Delhi College of Engineering, Delhi

 3

ACKNOWLEDGEMENT

I express my foremost and deepest gratitude to Dr. Narendra

kumar,Professor, Department of Electrical Engineering, Delhi College of

Engineering, Delhi-42,University of Delhi for his guidance, support &

encouragement throughout my dissertation . I consider myself fortunate for

having the opportunity to learn and work under his valuable guidance over the

entire period of association with him. I have deep sense of admiration for his

innate goodness. I can offer my profound indebtedness to him for his deep

concern for my academics. My sincere thanks to Dr. Pramod Kumar for his

support and encouragement.

Lastly my deepest gratitude is due to Almightily God whose divine light

provided me the perseverance, guidance, inspiration and strength to complete

this work.

Siba Brata Panda

 4

ABSTRACT

 Fuzzy control system can be described as a real-time expert system, implementing

a part of a human operator's or process engineer’s expertise. A representation theorem

mainly due to Kosko, states that any continuous nonlinear function can be

approximated as exactly as needed with a finite set of fuzzy variables, values, and rules.
In general the Lyapunov approach reveals only the existence of stable points, not their

number or nature [Kosko'92].There are a few stability test methods in the linguistic

fuzzy dynamic models represented by ‘if-then’ rules that can be used for modeling real

plants. Tanaka and Sugeno [Tanaka'92] suggested an effective method for determining

stability. Another method, which has been suggested by Kim et al. [Kim'95] treats the

fuzzy model as a linear system having modeling uncertainties. It suggests a new

Lyapunov method for determining stability that is less restrictive than the previous one..

 The second chapter is followed by theorems giving a sufficient condition of

stability for fuzzy systems in the sense of Lyapunov. An example follows which shows

that the overall system may be unstable even if all the subsystems are stable. Following

this is a MATLAB program which plots the behaviour of the subsystems and the

overall system as given in the example. The chapter ends with giving a necessary

condition for the existence of a common positive definite matrix satisfying Lyapunov

equations for all the subsystem matrices.The third chapter starts with presenting a fuzzy

state space model, which can approximate non-linear systems. A theorem follows

concerning the stability of this model, which again uses Lyapunov's direct method. This

way of testing the stability has been termed negative bounds approach as suggested by

the procedure involved. This is followed by an example, which shows that the overall

system may be stable even if some of them are unstable. Following this is a MATLAB

program, which simplifies some related calculations. A MATLAB program is given at

the end of the chapter whose sample run shows how a stable system is identified to be

stable after the sixth iteration.The fourth chapter,

 5

in the beginning, discusses how linear feedback control affects the equations given in

chapter 3. This is followed by a MATLAB program giving values of the control gain,

K, which can be used for stabilizing a fuzzy system having nine rules.

 The following important conclusions can be drawn from the discussions: If all

the subsystem matrices are stable, the overall fuzzy system may or may not be stable.

Even if some of the subsystem matrices are unstable, the overall fuzzy system may be

stable. The existence of a common positive definite matrix satisfying Lyapunov

equation for all the subsystem matrices shows that the fuzzy system is stable. If all the

subsystem matrices are stable, but the product of any two subsystem matrices is

unstable, there can't be any common positive definite matrix satisfying Lyapunov

equation for all the satisfying Lyapunov equation for all the subsystem matrices.

Negative bounds approach used to test the stability of fuzzy systems is better than

common positive definite matrix approach in the sense that it does not fail even if some

of the subsystem matrices are unstable. Though the negative bounds approach gives

only a sufficient condition of stability like common positive definite matrix approach,

an algorithm based on this approach can be used to identify some stable systems as

stable.In case of stabilization using linear feedback control, negative bounds approach

can be used for the determination of control gains, which can stabilize the system.

 6

Literature Review

Centre for Computational Intelligence, School of Computer Engineering,

Nanyang Technological University, Singapore 639798.Existing Takagi-Sugeno-Kang

(TSK) fuzzy models proposed in the literature attempt to optimize the global learning

accuracy as well as to maintain the interpretability of the local models. Most of the

proposed methods suffer from the use of offline learning algorithms to globally

optimize this multi-criteria problem. Despite the ability to reach an optimal solution in

terms of accuracy and interpretability, these offline methods are not suitably applicable

to learning in adaptive or incremental systems. Furthermore, most of the learning

methods in TSK-model are susceptible to the limitation of the curse-of-dimensionality.

This work attempts to study the criteria in the design of TSK-models. They are: 1) the

interpretability of the local model; 2) the global accuracy; and 3) the system

dimensionality issues. A generic framework is proposed to handle the different

scenarios in this design problem. The framework is termed the generic fuzzy input

Takagi-Sugeno-Kang fuzzy framework (FITSK) their performances are encouraging

when benchmarked against other popular fuzzy systems

Electrical Engineering Department, University of Nevada, Reno, NV 89512,

USA propose a new approach for the stability analysis of continuous Sugeno Types II

and III dynamic fuzzy systems. They introduce the concept of fuzzy positive definite

and fuzzy negative definite systems and use them in arguments similar to those of

traditional Lyapunov stability theory to derive new conditions for stability and

asymptotic stability for continuous Type II/III dynamic fuzzy systems. To demonstrate

the new approach, they apply it to numerical examples.

The stability analysis of a generalized class of continuous fuzzy systems in terms

of Lyapunov stability theory is presented. Firstly, the stability problem of fuzzy systems

 7

described by Takagi-Sugeno's continuous model is stated. Secondly, new stability

conditions which guarantee the stability of the fuzzy system are derived. The new

stability conditions can be regarded as a general solution for Takagi-Sugeno fuzzy

system, in which the offset term is not equal to zero. Finally, the suggested stability

theorems are verified by some illustrative examples. Fuzzy Sets and Systems

Volume 129 , Issue 3 (August 2002).

This paper presents a stability analysis method for discrete-time Takagi-Sugeno fuzzy

dynamic systems based on a piecewise smooth Lyapunov function. It is shown that the

stability of the fuzzy dynamic system can be established if a piecewise Lyapunov

function can be constructed, and moreover, the function can be obtained by solving a

set of linear matrix inequalities that is numerically feasible with commercially available

software. It is also demonstrated via numerical examples that the stability result based

on the piecewise quadratic Lyapunov functions is less conservative than that based on

the common quadratic Lyapunov functions. This paper appears in: Fuzzy

Systems,IEEE,Transactions,on.PublicationDate:Feb.2004Volume:12,Issue:1On

page(s):22-28ISSN:1063-6706

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=91
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=91

 8

CONTENTS

Page No.

List of Figures 4

List of Programs 5

Chapter 1. 6

Introduction 6

1.11 Fuzzy Control Systems 7

1.2 Stability Issues 9

1.3 Organization and Out-line of the Chapters 10

Chapter 2. 11

Stability Test Method-1

(Common Positive Definite Matrix Approach)

2.1 Introduction 12

2.2 Eigen Value Conditions for the Stability of Dynamical 12

 Systems

2.3 Lyaponov Stability Criteria 13

2.4 Takagi and Sugeno’s Fuzzy Model 15

2.5 Stability of Fuzzy Systems in the Sense of Lyapunov 16

 Common Positive Definite Matrix Approach

2.6 Necessary Condition for the Existence of a Common 24

 Positive Definite Matrix

2.7 Conclusion 25

Chapter 3. Stability Test Method – 2 26

(Negative Bounds Approach)

3.1 Introduction 27

3.3 Stability of Fuzzy Systems in the Sense of Lyapunov: 27

 9

 Negative Bounds Approach

3.4 Identification of Stable Systems as Stable 27

3.5 Conclusion 41

Chapter 4 Stabilizing Control 42

 4.1 Introduction 43

 4.2 Stabilization Using linear Feedback Control 43

 4.3 Conclusion 85

Chapter 5 Conclusions, Limitations, and Suggestion for 86

 Further Work

 5.1 Conclusions 87

 5.2 Limitations of the Given Methods 89

 5.3 Suggestions for Further Work 90

 10

List of Figures

Figure No. Comment Page No

Figure 2.1 Behavior of the first Subsystem, 23
 Which is stable.
Figure 2.2 Behavior of the second subsystem, 23
 Which is stable.
Figure 2.3 Behavior of the second subsystem, 23
 Which is unstable.
Figure 3.1 Member ship functions for example 3.1 30
Figure 4.1 First Eigenvalue of the Dc matrix 64
 Ploted against K.
Figure 4.2 Second Eigenvalue of the Dc matrix 64
 Ploted against K.
Figure 4.3 Logarithmic plot for the absolute value 84
 Of the first state variable, which does
 not converge.
Figure 4.4 Logarithmic plot for the absolute value 84
 Of the Second state variable, which does
 not converge.

 11

List of Programs

Program No. Comment Page No.

Program 2.1 To plot the behavior of the sub system 21
 and the overall fuzzy system.

Program 3.1 To find and diagonalize the D matrices 34
 for any number of sub system matrices

Program 3.2 To decrease the maximum eigen values 38
 Of Di’s by updating Q.

Program 4.1 To decrease the maximum eigenvalues of Dc 44
 Matrices for a range of K, taking a
 Fuzzy system having 9 rules.

Program 4.2 To inspect and plot the behavior of a 65
 Fuzzy system having 9 rules, for a given
 K.

 12

Chapter 1
Introduction

 13

1.1 Fuzzy Control Systems

 A fuzzy control system can be described as a real-time expert system, implementing

a part of a human operator's or process engineer’s expertise, which does not lend itself to

being easily expressed in PID-parameters or differential equations but rather in situation

or action rules [Driankov'93].

Fuzzy control differs from mainstream expert system technology in several aspects.

Fuzzy control systems exist at two distinct levels: there are symbolic if-then rules and,

qualitative fuzzy variables and values such as:

if temperature is high and slightly increasing then energy supply is medium

negative.

 The above rule is nothing but an informal ‘nonlinear PD-element’. A collection of

such rules can be used and, in fact, results in the definition of a nonlinear transition

function, without the need for defining each entry of the table individually, and without

necessarily knowing the closed form representation of that function. One way to combine

fuzzy and PID-control then is to use a linear PID-system around the set point, where it

does its job, and to ‘delinearize’ the system in other areas by describing the desired

behaviour or control strategy with fuzzy rules.

A representation theorem mainly due to Kosko, states that any continuous nonlinear

function can be approximated as exactly as needed with a finite set of fuzzy variables,

values, and rules. This theorem describes the representational power of fuzzy control in

principle, but it does not answer the questions, how many rules are needed and how they

can be found, which. are of course essential to the real world problems and solutions. In

many cases, relatively small and simple systems will do, and that is why already several

hundreds of real, industrial applications of fuzzy control exist.

The fuzzy values such as ‘slightly increasing’ and fuzzy operators such as ‘and’ are

 14

compiled into very elementary numerical objects and algorithms: function tables,

interpolations, comparators, etc. The existence of this compiled level is the basis for fast

real-time implementations, as well as for embedding fuzzy control into the essentially

numerical environment of conventional control.

 Fuzzy control has right from the beginning been considered as an extension to

existing technology, seeking hybrid solutions by enhancing control engineering where it

is needed and where it makes sense. In fact, most of the inventors of fuzzy control have a

strong control engineering or systems theory background. From their perspective, fuzzy

control can be seen as a heuristic and modular way for defining nonlinear, table-based

control systems.

 The industrial interest in fuzzy control, which hitherto has not been recognized as a

serious discipline, has been dramatically increasing since 1990. There are still, however,

two predominant, extreme positions as to the benefits of fuzzy control. On one hand,

many proponents of this technology claim that fuzzy control will revolutionize control

engineering, promises major breakthroughs, and will be able to solve complex

engineering problems with very little effort. On the other, many representatives of the

control engineering community still proclaim the philosophy that "everything that can be

done in fuzzy control can be done conventionally as well," and announce a breakdown of

the ‘fuzzy hype’ in the near future.

The insight that neither of the two positions accounts for the real

potential of fuzzy control is only gradually increasing. In many cases, fuzzy control leads

to a higher degree of automation for complex, ill structured processes, but only if there is

relevant knowledge about the process and its

control available that can be well expressed in terms of fuzzy logic. There are processes

for which that kind of knowledge simply is not at all or not to the necessary extent

available. Secondly, fuzzy controllers are more robust than conventional controllers in

many applications. But, there are other cases, too. We know of two attempts to control air

conditioning systems with fuzzy logic, with only minor differences in structure and

knowledge base: one turned out to be highly robust even in the presence of major

disturbances, the other one was unstable. It is not yet fully understood for which kinds of

 15

control engineering problems fuzzy control really leads to improved robustness and

stability, and which are the relevant design choices that affect these properties.

1.2 Stability Issues

How do we prove stability for a system defined with arbitrarily many interlocked

differential or difference equations? The first, or direct, approach ‘simply’ solves the

equations and then studies how the system evolves with time. This is seldom feasible in

the high-dimensional nonlinear case.

The second approach finds a Lyapunov function. The Lyapunov approach offers a

shortcut to proving a global stability of a dynamical system. If we cannot find a

Lyapunov function, nothing follows. The dynamical system mayor may not be stable.

 But if we can find a Lyapunov function, stability holds. Often, though, we cannot

establish anything else. In general the Lyapunov approach reveals only the existence of

stable points, not their number or nature [Kosko'92].

There are a few stability test methods in the linguistic fuzzy dynamic models

represented by ‘if-then’ rules that can be used for modeling real plants. Tanaka and

Sugeno [Tanaka'92] suggested an effective method for determining stability. They dealt

with a model that can be well identified with input-output data. It is suggested that if

there exist a common solution matrix of the Lyapunov equations for all rules, then the

model is stable. This method, however, does not provide a systematic way to find a

Lyapunov function, and it requires heavy computational load as a result. Furthermore,

some of the stable models may not be identified as stable. Another method, which has

been suggested by Kim et al. [Kim'95] treats the fuzzy model as a linear system having

modeling uncertainties. It suggests a new Lyapunov method for determining stability that

is less restrictive than the previous one. It has been shown with the help of an example

that the stability of a model, which is not determined by the former method, can be

determined by the latter one. We shall investigate both the methods in the forthcoming

chapters.

It is not true as opponents of fuzzy control often argue that there are no stability

 16

criteria available for fuzzy control systems.

We have to realize that in this respect, fuzzy control competes with nonlinear

conventional control, where stability issues are not as easy to handle as for simple linear

systems.

1.3 Organization and Outline of the Chapters

The next chapter begins with discussing a special case concerning continuous systems,

which shows that Hermitian matrices as subsystem matrices are easier to deal with when

stability of the overall system is to be determined using eigenvalue conditions. This is

followed by theorems giving a sufficient condition of stability for fuzzy systems in the

sense of Lyapunov. An example follows which shows that the overall system may be

unstable even if all the subsystems are stable. Following this is a MATLAB program

which plots the behaviour of the subsystems and the overall system as given in the

example. The chapter ends with giving a necessary condition for the existence of a

common positive definite matrix satisfying Lyapunov equations for all the subsystem

matrices.

The third chapter starts with presenting a fuzzy state space model, which can

approximate non-linear systems. A theorem follows concerning the stability of this

model, which again uses Lyapunov's direct method. This way of testing the stability has

been termed negative bounds approach as suggested by the procedure involved. This is

followed by an example, which shows that the overall system may be stable even if some

of them are unstable. Following this is a MATLAB program, which simplifies some

related calculations. An iterative procedure follows to identify a stable system as stable,

as the stability condition given in this chapter is again not a necessary condition. A

MATLAB program is given at the end of the chapter whose sample run shows how a

stable system is identified to be stable after the sixth iteration.

The fourth chapter, in the beginning, discusses how linear feedback control affects the

equations given in chapter 3. This is followed by a MATLAB program giving values of

the control gain, K, which can be used for stabilizing a fuzzy system having nine rules.

Another MATLAB program follows which plots the behaviour of the same systems for

any given value of K.

 17

 Chapter 5 presents concluding remarks. Limitations of the proposed methods and

suggestions for future research are also given in this chapter.

Chapter 2
Stability Test Method-1

(Common Positive Definite Matrix Approach)

 18

2.1 Introduction

For a given control system, stability is usually the most important attribute to be

determined. The Lyapunov's method of stability analysis is, in principle, the most

general method for the determination of the stability of non-linear and/or time-varying

systems. Fuzzy systems are basically non-linear in nature. Theorems are derived in this

chapter for the stability of a fuzzy system in accordance with the definition of stability in

the sense of Lyapunov. A sufficient condition which guarantees the stability of a fuzzy

system is obtained in terms of Lyapunov's direct method.

2.2 Eigenvalue Conditions for the Stability of Dynamical Systems

How a system evolves with time is very closely attached to the nature of the

eigenvalues of the system matrix. For continuous case, all the eigenvalues having

negative real parts show a stable system; and for discrete case, all the eigenvalues must

lie within the unit circle in the z-plane for the system to be stable. But prediction about

the behaviour of the overall system is very difficult by just looking at the eigenvalues of

the subsystem matrices. As a simple example,

Let

⎥
⎦

⎤
⎢
⎣

⎡
−
−−

=
42
11

A1

⎥
⎦

⎤
⎢
⎣

⎡
−−

−
=

4102
05

A2

The eigenvalues of A1 are -2, -3 and those of A2 are –4, -5. But the eigenvalues of

A1+A2 are 3.0499, -17.0499. We see that one eigenvalue of A1+A2 has a positive real

part. It is also interesting to note that the eigenvalues of A1+A2 are 122.0165, 0.9835.

 19

 Now we shall discuss a special case concerning continuous systems. From matrix

algebra [Horn and Johnson] it comes out that if A1 and A2 are Hermitian matrices of order

n (Hermitian matrices are conjugates of their own transposes.), and if the eigenvalues of

A1+A2 and A1+A2 are arranged in algebraically decreasing order, then

∑∑
==

+≤+
k

1i
2i1i

k

1i
21i)]A()A([)AA(λλλ (2.1)

for k = 1, 2,, n. Where iλ denotes its eigenvalue of the given matrix.

From the above inequality we get the following inequalities:

)A()A()A()A()AA()AA(
)A()A()AA(

22122111212211

2111211

λλλλλλ
λλλ

+++≤+++
+≤+

From inequality 2.1.1, if 1λ (A1) and 1λ (A2) are both negative, 1λ (A1+A2) will obviously

be more negative. From inequalities 2.1.1 and 2.1.2, it follows that 1λ (A1+A2) will also

be negative if 1λ (A1) and 1λ (A2) are both negative too. Thus we see that Hermitian

matrices as subsystem matrices are easier to deal with than others.

2.3 Lyapunov Stability Criteria

Following is the well-known Lyapunov theorem:

Theorem 2.1:

Consider a discrete system described by x(k+1) =ƒ(x(k)),

Where x(k) ∈ Rn, ƒ(x(k)) is an n×1 ƒunction vector with the property that ƒ(0) = 0 ƒor all

k. Suppose that there exists a scalar ƒunction V(x(k)) continuous in x(k) such that

(a) V(0) = 0,

(b) V(x(k)) >0 ƒor x(k) ≠ 0,

(c) V(x(k)) approaches infinity as ,∞→x(k)

(d) ΔV(x(k)) < 0 ƒor x(k)≠ 0.

Then the equilibrium state x(k) = 0 ƒor all k is asymptotically stable in the large and

V(x(k)) is Lyapunov ƒunction.

(2.1.1)

(2.1.2)

 20

The following theorem gives Lyapunov equation for discrete case [Kuo’80]:

Theorem 2.2:

 For a linear system, a necessary and sufficient condition that the equilibrium state x= 0

be asymptotically stable in the large is that, given any positive definite Hermitian (or real

symmetric) matrix Q, there exists a positive definite Hermitian (or real symmetric) matrix

P, such that

ATPA –P= – Q

Proof:

 If P is a positive definite matrix,

V(x(k)) = xT(k) P x(k) is also positive definite. (Sylvester’s theorem)

ΔV(x(k)) = V(x(k+1)) – V(x(k))

 =xT(k+1) P x(k+1) –xT(k) P x(k)

But, x(k+1) =A x(k),

Therefore,

 ΔV(x(k)) =xT(k)AT P A x(k) – xT(k) P x(k)

 =xT(k) [AT P A – P] x(k)

 = - xT(k) Q x(k),

which shows that,

AT P A – P = – Q.

 Asymptotic stability often corresponds to an eigenvalue condition in engineering

settings, a practice we shall follow. In particular, a dynamical system (continuous case) is

asymptotically stable if and only if the Jacobian matrix of the dynamical system has

eigenvalues with negative real parts. A general theorem in dynamical systems theory

relates convergence rate to eigenvalues sign.

 A nonlinear dynamical system converges exponentially quickly if its system Jacobian

has eigenvalues with negative real parts. Locally such nonlinear systems behave linearly.

 21

For discrete case, this corresponds to the eigenvalues lying inside the unit circle in the z-

plane.

2.4 Takagi and Sugeno’s Fuzzy Model

 The fuzzy model suggested by Takagi & Sugeno is of the following form:

Li: IF x(k) is A1
i and … and x(k–n+1) is An

i and

 u(k) is B1
i and … and u(k–m+1) is Bm

i

THEN xi(k+1) = ao
i + a1

i x(k) + … + an
i x(k–n+1) + b1

i u(k) +.....

 +bm
i u(k–m+1) (2.2)

where Li (i = 1, 2, … , l) denotes the i-th implication; l is the number of i-th implications;

xi(k+1) is the output from the i-th implication, ap
i (p = 0,1,,n) and aq

i (q = 0,1,....., m)

are consequent parameters; x(k), … , x(k- n+1) are state variables; u(k),,u(k–m+1)

are input variables and Ap
i and Bq

i are fuzzy sets whose membership functions denoted by

the same symbol are continuous piecewise-polynomial functions.

 Given an input (x(k), x(k-1), … ,x(k-n+1), u(k), u(k–1), ...,u(k-m+1)) the final output

of a fuzzy model is inferred by taking the weighted average of the xi(k+1)’s:

x(k+1) = i

1i

ii

1i

w/)1k(xw ∑∑
==

+
11

 (2.2)

where ∑
=

1

1i
wi >0, and xi(k+1) is calculated for the input by the consequence equation of

the i-th implication, and the weight wi implies the over all truth value of the premise of

the I-th implication for the input, calculated as

A set of fuzzy implications shown in eq. (2.2) can express a highly nonlinear functional

relation in spite of a small number of fuzzy implications.

∏ ∏
= =

+−+−=
n

1p

m

1q

i
q

i
p

i)),1qk(u(Bx))1pk(x(Aw (2.4)

 22

2.5 Stability of Fuzzy Systems in the Sense of Lyapunov: Common Positive Definite

Matrix Approach

We derive theorems for the stability of a fuzzy system in accordance with the

definition of stability in the sense of Lyapunov. A sufficient condition, which guarantees

the stability of fuzzy system, is obtained in terms of Lyapunov’s direct method.

 Let us consider the following fuzzy free system:

Li: IF x(k) is A1
i and … and x(k–n+1) is An

i

THEN xi(k+1) = a1
i (k) + … an

i x(k–n+1),

Where i = 1,2 …, l. The linear subsystems in the consequent part of the i-th implication

can be written in the matrix form Aix(k),

Where x(k) ∈ Rn × Rn,

x(k) = [x(k), x(k-1),…..x(k-n+1)] T , and

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅
⋅

⋅
⋅

⋅
⋅

⋅
⋅

=

−

0
0

1
0

0
0

0
0

00
00

00
10

00
aa

01
aa

A

i
n

i
1n

i
2

i
1

i
L

L

L

L

The output of the fuzzy system is inferred as follows:

x(k+1) = ∑ ∑
= =

l

i

l

i

i
i

i wkxAw
1 1

,/)(

where l is the number of fuzzy implications.

 23

Using previous theorems and lemma 2.3.1, we derive theorem 2.3, which is an important

theorem concerning the stability of a fuzzy system.

Theorem 2.3:

The equilibrium of a fuzzy system is globally asymptotically stable if there exists a

common positive definite matrix P for all the subsystems such that

Ai
T PAi – P < 0 for I ∈ {1,2,…, l}

Proof:

Let V(x(k)) = xT(k)Px(k) be a scalar function where P is a positive definite matrix such

that

(a) V(0) = 0,

(b) V(x(k)) > 0 for x(k) ≠ 0,

(c) V(x(k)) ∞→ as ∞→)k(x .

Now Δ V(x(k)) = V(x(k+1)) – V(x(k))

 = xT(k+1) Px(k+1) –xT(k)Px(k)

=

∑

∑ ∑

∑ ∑

∑ ∑ ∑∑

∑ ∑∑∑

=

= =

= =

= = ==

= ===

−+

+−=

−=

−⎟
⎠

⎞
⎜
⎝

⎛
=

−
=

l

1i

ji
i

T
j

l

1i

l

1i
j

T
i

Tji
j

T
i

T2i

l

1i

l

1i

ji
j

T
i

Tji

l

1i

l

1i

l

1i

i
l

1i

iiT
i

iT

l

1i

l

1i

Ti

i

l

1i

iTi

i

l

1i

i

ww/)]k(x}P2PAA

PAA){k(xww)k(xx}PPAA{)k(x)w(

ww/)k(x}PPAA{)k(xww

)k(x}Pw/AwP)w/Aw){k(x

)k(Px)k(x)w
/))k(xAw(Pw/)k(xAw

From lemma 2.3.1, the statement of the theorem, and the conditions that

wi ≥ 0 and ∑
=

>
l

1i

i ,0w

it follows that

 24

ΔV(x(k)) <0.

Lemma 2.3.1:

If P is a positive definite matrix such that

ATPA – P < 0

BTPB – P < 0,

Where A, B, P ∈ Rnxn, then

ATPB + BTPA – 2P <0.

Proof:

– (A– B)TP(A– B) – 2P = – (AT– BT)P (A– B) – 2P

 = – ATPA + ATPB + BTPA – BTPB –2P

or

ATPB +BTPA– 2P = (A– B)TP(A– B) + ATPA+BTPB– 2P

 = –(A– B)T P(A– B)+ ATPA – P+BTPB –P

As P is positive definite,

 - (A-BTP(A-B) ≤0.
Thus, the conclusion of the lemma follows.
 V(x(k)) is a Lyapunov function and the fuzzy system is globally asymptotically

stable. This theorem is reduced to the Lyapunov stability theorem for linear discrete

systems when l = 1.

 This theorem can be applied to the stability analysis of a nonlinear system which is

approximated by a piecewise linear function if the given conditions are satisfied.

We can point out that a piecewise linear function can be described as a special case of

eq.(2.2) if we use crisp sets instead of fuzzy sets in the premise parts of a fuzzy system. It

is easy to divide a nonlinear system into some linearized subsystems on an input state

space. This means that the system is approximated by a piecewise linear system. Since

 25

many nonlinear systems can be approximated by piecewise linear functions, this theorem

can be widely applied not only to a fuzzy system, but also to nonlinear systems.

 Theorem 2.3 is, of course, a sufficient condition for ensuring the stability of system

(2.2). We may intuitively guess that an approximated nonlinear system is stable if all

locally approximating nonlinear systems are stable. However, it is not the case in general.

Here we notice the following fact.

 All the Ai's are stable matrices if there exists a common positive definite matrix P.

There does not always exist a common positive definite matrix P even if all the Ai's are

stable matrices. Of course, a fuzzy system may be globally asymptotically stable even if

there does not exist a common positive definite matrix P. However, we must notice that a

fuzzy system is not always globally asymptotically stable even if all the Ai's are stable

matrices as shown in the forthcoming example.

Example: 2.1:

Let us consider the following fuzzy system

L1: IF x(x-1) is

 -1 1

THEN x (k+1) = x(k) – 0.5 x(k-1)

L2:IF x(x-1) is

 -1 1

THEN x (k+1) = x(k) – 0.5 x(k-1)

Initial conditions are given by

X(0) = - 0.7

X(1) = 0.9

Membership values are calculated as follows:

W1 = (1-x(k-1)) /2 for –1 ≤ x (k-1) ≤ 1

= 1 for x (k-1) ≤ 1

 26

= 0 otherwise

W2 = (1+x(k-1)) /2 for –1 ≤ x (k-1) ≤ 1

= 1 for x (k-1) > 1

= 0 otherwise

For the linear subsystems, we obtain

⎥
⎦

⎤
⎢
⎣

⎡ −
=

01
5.01

A1

⎥
⎦

⎤
⎢
⎣

⎡−
=

01
5.01

A2

With the help of the problem specific program the near system obtain plots 2.1, 2.2 and

2.3. It can be seen that both the stable but the overall fuzzy system is not stable.

 27

Program 2.1 : To plot the behavior of the Subsystems

 And the overall fuzzy system

% A mat lab program written by Siba Brata Panda

 x1(1)=-0.7;

x1(2)=0.9;

x2(1)=-0.7;

x2(2)=0.9;

x(1)=-0.7;

x(2)=0.9;

i=1;

k1=2;

while k1~=25

x1(k1+1)=x1(k1)-0.5*x1(k1-1);

x2(k1+1)=-x2(k1)-0.5*x2(k1-1);

if x(k1-1)>1

 wl(i)=0;

elseif x(k1-1)<-1

wl(i)=1;

else

wl(i)=(1-x(k1-1))/2;

wl(i)=1;

else

 wl(i)=(1-x(k1-1))/2;

end

if x(k1-1)<-1

 28

 w2(i)=0;

elseif x(k1-1)>1

 w2(i)=1;

else

 w2(i)=(1+x(k1-1))/2;

end

x(k1+1)=(wl(i)*(x(k1)-0.5*x(k1-1))+w2(i)*(-x(k1)-0.5*x(k1-1)))/(wl(i)+w2(i));

k1=k1+1;

i=i+1;

end

k=0:24;

subplot(2,1,1)

plot(k,x1(k+1),'-r.')

xlabel('k')

ylabel('x(k)')

title('1. Behaviour Of the first subsystem')

subplot(2,1,2)

plot(k,x2(k+1),'-r.')

xlabel('k')

ylabel('x(k)')

title('2. Behaviourof the second subsystem')

ans=input('Enter 1 for the next plot.')

if ans==1

 plot(k,x(k+1),'-r.')

 title ('Behaviour of the fuzzy system')

 29

 hold on

 k=2:24;

 plot(k,(1-w2(k-1)),'-b.')

 plot(k,w2(k-1),'-g.')

 legend('x(k)','w1','w2',-1)

 hold off

else

 exit

end

end

 30

 Figures 2.1, 2.2 and 2.3

 31

The linear systems are stable since A1 and A2 are stable matrices. However, the fuzzy

system, which consists of the linear systems is unstable as shown, where w1and w2 denote

the weights of L1 and L2, respectively.

Obviously, in this example, there does not exist a common P since the fuzzy ststem is

unstable. Next, a necessary condition for ensuring the existence of a common P is given.

2.6 Necessary Condition for the Existence of a Common Positive Definite Matrix

Theorem 2.4:

Assume that Ai is a stable and nonsingular matrix for I = 1,2…,l. AiAj is a stable matrix

for I, j = 1,2 …, l if there exists a common positive definite matrix P such that.

Ai
TPAi – P < 0

(The above expression means that Ai
TPAi–P is negative definite.)

Proof:

 Ai
TPAi – P < 0

or Ai
TPAi < P

Also Aj
TPAj – P < 0 (a)

or (Aj
-1)T(Aj

T PAj -P) Aj
-1< 0

or (Aj
T)-1(Aj

T PAj
-1 – (Aj

-1)TPAj
-1< 0

or P 1 (Aj -1)TPAj
-l < 0

or P < (Aj
-1)TPAj

-l (b)

From (a) & (b)

Ai
TPAj < (Aj

-l)TPAj
-l

Ai
TPAj – (Aj)TPAj

-l < 0

or Aj(Ai
TPAi – (Aj

-l)TPAj
-1)Aj <0

or Aj
T Ai PAiAj –P < 0

or (AiAj)TP(AiAj) –P < 0

 32

In the example given, eigenvalues of Al are {0.5::t 0.5i}, eigenvalues of A2 {-0.5 ± 0.5i},

and eigenvalues of A1A2 are {-0.134, -1.866}.Obviously, Al and A2 are stable as their

eigenvalues lie within the unit circle; but A1A2 is unstable, as one of its eigenvalues is

outside the unit circle. From theorem 2.4, it can be inferred that there does not exist a

common P in this example.

2.7 Conclusion
In general, existence of a common positive definite matrix satisfying Lyapunov equation

for all the. subsystem matrices shows that the overall system is stable. Even if all the

subsystem matrices are stable, the overall system may be unstable. If the product of any

two subsystem matrices is unstable, no common positive definite matrix exists. However,

such a condition does not prove the system to be unstable.

 33

Chapter 3
Stability Test Method-2

(Negative Bounds Approach)

 34

3.1 Introduction

 Stability test method given in chapter 2 fails to recognize a stable system in

situations. Even if one or more subsystem matrices are unstable , the overall system

may stable. A common positive definite matrix can not exist in such case and there

fore the method discussed in this chapter 2 fails completely . A new stability test

method is discussed in this chapter, which again gives a sufficient condition of

stability, but which works even if some of subsystem matrices are un stable.

 3.2 Stability of Fuzzy Systems in the Sense of Lyapunov: Negative

 Bounds Approach

Let P be the solution of the following Lyapunov equation for a positive definite and

symmetric matrix Q:

QPPAA 0
T

0 −=− (3.9)

and let

 P)AA(P)AA(D i0
T

i0i −δ+δ+= (3.10)

from eq.(3.9), Di becomes

 QAPAAPAAPAD i
T

00
T

ii
T

ii −δδ+δδ+δδ= (3.11)

We define x∈Supp(Li) to mean that the state x is in the supports of the premise part

fuzzy sets of the ith rule. That is

 xj∈Supp(Lij), j=1,2,…, n

Theorem 3.1:

The model in eq.(3.2) with u = 0 is stable if for some stable A0, there exists a

positive definite matrix Q such that for any rule of i, xTDix ≤ 0, for all x∈{x|x∈

Supp(Li)}, where the equality holds only when x=0.

 35

Proof:

For a positive definite Q, the solution P of the Lyapunov equation is also positive

definite when A0 is stable. Thus, V(k) = x(k)TPx(k) is always positive, and

)k(V)1k(V)k(V −+=Δ

)k(Px)k(x)1k(Px)1k(x TT −++=

)k(Px)k(x)k(x)AA(P)AA()k(x T
ii0

T
ii0

T −δαΣ+δαΣ+=

)k(x]P)AA(P)AA[()k(x ii0
T

ii0
T −δαΣ+δαΣ+=

)k(x]P)AA(P)AA)[(k(x ii0
T

ii
T

0 −δαΣ+δαΣ+=

 ii
T

00
T

ii0
T

0
T APAPAAPAA[)k(x δαΣ+δαΣ+=

)k(x]PAPA ii
T

ii −δαΣδαΣ+ (3.12)

 Using the property 2|ab| ≤ 22 ba +

 ∑ ∑∑∑
= = ==

δαδα=δαδα
m

1i

m

1i

m

1j
jj

T
ii

T
ii

m

1i

T
ii

T)k(xAPA)k(x)k(xAPA)k(x

∑∑∑
= ≠=

δδαα+δδαα=
m

1i

m

1j
j

T
iji

T
i

m

1i

T
iii

T)k(xAPA)k(x)k(xAPA)k(x

∑∑∑
= ≠=

δδαα+δδαα≤
m

1i

m

1j
i

T
iji

T
i

m

1i

T
iii

T APA()k(x)2/1()k(xAPA)k(x

)k(x)APA j
T

j δδ+

)k(x)APAAPA()k(x)2/1(j
T

j

m

1i

m

1j
i

T
iji

T δδ+δδαα= ∑ ∑
= =

∑
=

δδα=
m

1i
i

T
i

T
i)k(xAPA)k(x

 36

(Using 1
m

1i
i =α∑

=

)

By applying this inequality to eq.(3.12)

 ∑
=

−δ+δ+δδα≤Δ
m

1i
i

T
ii

T
00

T
i

T
i)k(x)QPAAAPAAPA()k(x)k(V

 ∑
=

α=
m

1i
i

T
i)k(xD)k(x

The iα ’s are zero for all i∈ {j | x∉ Supp(Lj)}.thus for each rule, if xTDix ≤ 0 for all

x∈ {x | x∈ Supp(Li)}, then)k(VΔ ≤ 0. this means that V(k) is a Lyapunov function.

Therefore the system is stable at the origin.

This theorem gives only a sufficient condition of stability. Even if the system is

stable, sometimes there does not exist such a Q. it is due to three reasons:

(1) xTPx is used as a Lyapunov function.

(2) The inequality 2|ab| ≤ 22 ba + is used during the proof, and

(3) iα ’s are treated as uncertain for x∈ Supp(Li).

First, xTPx is a necessary and sufficient condition only for linear systems. In case of

a linear system, it is only sufficient. Thus, if a nonlinear system is proved as stable

using xTPx, then the system is stable. Second, we use the inequality 2|ab| ≤ 22 ba +

during the proofwhose equality holds only when |a| = |b|. Third, in this proof we

assume that iα ’s are uncertain parameters. Strictly speaking, the third reason does

not describe the characteristics of this theorem well. Here, we assume that they are

uncertain only when the corresponding rule affects the results. In other words, they

are uncertain only when x∈ Supp(Li). in case of the model having uncertainty

problems, iα ’s are entirely uncertain parameters regardless x∈ Supp(Li) or not. In

that case the condition xTDix ≤ 0 is equivalent to the negative definiteness of Di. if

all Di’s are negative definite, then the system is stable.

 37

The system is found to be stable if xTDix ≤ 0 for x∈ Supp(Li)., even when Di is not

negative definite. Fuzzy model stability can be determined more adequately by

theorem 3.1 than by the negative definiteness od Di’s. as mentioned, the method

suggested by Tanaka and Sugeno [Tanaka’92] assumes that the parameters are

entirely uncertain. Thus, their stability test sometimes does not work correctly. The

example illustrates one such case.

The use of ii A)x(α∑ when x ≡ 0 is recommended for an A0, since we are primarily

interested in stability at the origin. For the system to be stable at the origin, A0

should be a stable matrix at the origin.

In order to apply the theorem we need to know the maximum bound of xTDix for all

x∈ Supp(Li). it is not difficult to find the bounds since all Di’s are symmetric. The

lower and upper bounds of xTDix can readily be calculated after diagonalizing Di

with its eigen vectors, though they are not tight bounds.

Example 3.1:)x(μ

 NB NM ZO PM PB

 -10 -5 0 5 10 x
 Figure 3.1: Membership Functions

Consider a system modeled by the following rules:

Rule 1: IF x1 is ZO and x2 is ZO, THEN x(k+1) =A1x(k)

Rule 2: IF x1 is NM, THEN x(k+1) = A1x(k)

Rule 3: IF x1 is PM, THEN x(k+1) =A1x(k)

 38

Rule 4: IF x1 is ZO and x2 is NB, THEN x(k+1) =A2x(k)

Rule 5: IF x1 is ZO and x2 is PB, THEN x(k+1) =A2x(k)

Rule 6: IF x1 is NB and x2 is ZO, THEN x(k+1) =A3x(k)

Rule 7: IF x1 is PB and x2 is ZO, THEN x(k+1) =A3x(k)

Let the subsystem matrices be

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
9.013.0
1.095.0

A1

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
6.011.0
1.01.1

A2

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
2.115.0
12.06.0

A3

The eigenvalues of A1 are {0.9429, -0.8929},

The eigenvalues of A2 are {1.0935, -0.5935},

The eigenvalues of A3 are {0.5899, -1.1899}.

The subsystem matrix at the origin, A1 is stable, while A2 and A3 are unstable

matrices. So, there is no positive definite matrix P that makes Ai
TPAi-P; i = 2,3

negative definite. Thus this system seems not to be stable. We use theorem 3.1 for

this model.

As A1 is stable, let A0 = A1.

Let us also assume that Q = I, then the solution of the equation

A0
TPA0 – P = -Q gives

 39

 ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

0068.57790.0
7790.01509.9

P

Now Di = Ai
TPAi – P then

 ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

10
01

D1

 ⎥
⎦

⎤
⎢
⎣

⎡
−−
−

=
2063.30354.0
0354.07937.1

D2

 ⎥
⎦

⎤
⎢
⎣

⎡
−

−−
=

1104.22062.0
2062.08841.5

D3

After diagonalizing with the corresaponding eigenvectors, bounds of)k(VΔ comes

out to be

[-200, 0] for rules 1, 2, 3;

[-322.9, -32.9] for rules 4, 5; and

[-603.8, -81.2] for rules 6, 7.

The procedure adopted for calculating the bounds is given as follows:

Let us consider rules 4 & 5. the eigenvectors of D2 give its diagonalizing matrix,

say, M. we get the following values:

 ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

0071.00000.1
0000.10071.0

M

 ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=−

0071.00000.1
0000.10071.0

M 1

 ⎥
⎦

⎤
⎢
⎣

⎡−
=

7940.10
02066.3

MDM 2
T

 40

Let y = M-1x

 = M-1 ⎥
⎦

⎤
⎢
⎣

⎡

2

1

x
x

Therefore,

 xTD2x = (My)TD2(My)

 = yT(MTD2M)y

 = -3.2066(0.0071x1+x2)2+1.7940(-x1+0.0071x2)2

For rules 4 & 5,

x1 ranges from -5 to 5,

x2 ranges from -10 to -5 and from 5 to 10.

For finding the lower bound we put x1 = 5, and x2 = 10, in the first term, and x1 =

0.0355, x2 = 5, in the second term 9as these values make the second term zero) of

the expression for xTD2x. Whereby, the value of the lower bound is found to be -

322.9.

For finding the upper bound: we put x1 = -5, x2 = 5, in the first term, and x1 = -5,

x2 = 10, in the second term of the expression for xTD2x. Which gives the value of the

upper bound as -32.9.

obviously, the above procedure can only give loose bounds.

 41

Program 3.1: To find and diagonalize the D matrices
 For any number of subsystem matrices

% A matlab program written by Siba Brata Panda
disp('the order of all the subsystem matrices should be 2.')
n=input('Enterthe number of subsystem matrices.');
if n<=0
 error('Improper input.')
end
A(:,:,1) =input('Enter the first subsystem matrix.');
for i=2:n
A(:,:,i)=input('Enter the next subsystem matrix. ');
end
disp('The respective eigenvalues are:')
fori=1:n
disp(eig(A(:,:,i)))

A0=input('Enter a stable matrix,A0. ');
Q=[1 0;0 1];
P=[0 0;0 0];
for i=0:1000
 P=P+(A0')^i*Q*(A0^i);
end
disp('P equals')
disp(P)
disp('forQ=')
disp(Q)
fori=1:n
 disp('The D matrices corresponding to the subsystem matrices are respectively:')
for i=1:n
 end
 for i=1:n
 disp('**')
 no=sprintf('For D matrix no. %g,',i);
 disp(no)
 disp('the diagonalizing matrix, M is')

 disp('the inverse of the diagonalizing matrix is')

 disp('the matrix after diagonalization')

end
 disp('**')

 42

Sample Run of Program 3.1

The order of all the subsystem matrices should be 2.
Enterthe number of subsystem matrices.3
Enter the first subsystem matrix.[0.95 -0.1;013 -0.9]
Enter the next subsystem matrix. [1.1 -0.1;0.11 -0.6]
Enter the next subsystem matrix. [0.6 -0.12;0.15 -1.2]
The respective eigenvalues are:

fori =
 1 2 3
 0.5899
 -1.1899

Enter a stable matrix,A0. [0.95 -0.1;013 -0.9]
P equals
 213.3198 -14.9730
 -14.9730 2.3055

forQ=
 1 0
 0 1

fori =

 1 2 3

The D matrices corresponding to the subsystem matrices are respectively:
**
For D matrix no. 1,
the diagonalizing matrix, M is
the inverse of the diagonalizing matrix is
the matrix after diagonalization
**
For D matrix no. 2,
the diagonalizing matrix, M is
the inverse of the diagonalizing matrix is
the matrix after diagonalization
**
For D matrix no. 3,
the diagonalizing matrix, M is
the inverse of the diagonalizing matrix is
the matrix after diagonalization
**

 43

3.3 Identification of Stable System as Stable:

Some Q’s give all values of xTDix less than zero; and for other Q’s all values are not

less than zero. Theorem 3.1 states that if there exists atleast one Q which satisfies

the stability condition, the system is stable. Thus we need an algorithm with which

we can identify such a Q. unfortunately, it is difficult to form a generalized

algorithm. However if we can make the eigenvalues of Di more negative (i.e. if we

can make the maximum eigenvalue of Di smaller) the probability that xTDix ≤ 0 is

increased. Thus if we can adjust Q such that the maximum eigenvalue of the matrix

Di is smaller, the probability that a stable system is identified as stable is increased.

Using a gradient based algorithm, we can systematically decrease the maximum

eigenvalue of Di. let function Ji be given by

Ji = λM(Di) (14)

This makes Ji a function of Q, where λM(.) represents the maximum eigenvalue. Q

being a positive definite matrix, it can be decomposed into Q = LTL where L is a full

rank matrix. Ji can be minimized by an iterative adjustment of L using the gradient

based algorithm. The gradient can be described by the following theorem. Note that

subscript i has been omitted for notational convenience.

Theorem 3.2

Let J be defined as in eq.(14). Then

∂J/∂L = 2L(W – gM gM
T), (3.15)

where W satisfies

A0W A0
T – W = -(A0+δA) gM gM

T(A0+δA)T+ A0 gM gM
T A0

T (3.16)

And gM is an eigenvector corresponding to λM(D).

Proof:

D may be diagonalized using eigenvectors as it is a symmetric matrix. In other

words, GTDG is a diagonal matrix, where G is an orthogonal matrix whose columns

are eigenvectors. That is, G = [g1… g2] where gi is the ith eigenvector.

 44

 Then ΔJ

resulting from ΔQ is

ΔJ = gM
TΔgM

 = Tr{gM
T(δATΔPA0+ A0

TΔPδA+ δATΔPδA – ΔQ) gM} (3.17)

where gM is an eigenvector corresponding to λM(D), and ΔD and ΔP are the

increment resulting from ΔQ. Tr{.} means matrix trace. We know that

Tr(AB) = Tr(BA) = Tr(BTAT) (3.18)

and

Tr(A+B) = Tr(A) + Tr(B). (3.19)

Using eqs.(3.18) and (3.19),

Tr(gM
TΔQgM) = Tr(gMgM

TΔQ)

 = Tr(gMgM
T(ΔLTL + LTΔL))

 = 2Tr(gMgM
T LTΔL) (3.20)

The solution of the lyapunov equation (3.9) is given by

∑
∞

=

=
0i

i
0

iT
0 QA)A(P , (3.21)

and ΔP is given by,

∑
∞

−

Δ+Δ=Δ
0

00))(()(
i

iTTiT ALLLLAP . (3.22)

Using eqs.(3.20) and (3.22), eq.(3.17) becomes

ΔJ = 2Tr{﴾∑A0
i ﴾δA gM gM

T A0
T + A0 gM gM

T δAT

+δA gM gM
T δAT ﴿﴾ A0

T﴿i- gM gM
T ﴿LTΔL}

 45

Program 3.2: To decrease the maximum eigenvalues of
 Di’s by updating Q

% A matlab program written by Siba Brata Panda
disp('The order of all the subsystem matrices should be 2.')
n=input('Enter the number of subsystem matrices. ');
if n<=0
 error('Improper input.')
end
A(:,:,1)=input('Enter the first subsystem matrix.');
for i=2:n
 A(:,:,i)=input('Enter the next subsystem matrix.');
end
disp('The respective eigen values are:')
for i=1:n
 disp(eig(A(:,:,i)))
end
A0=input('Enter a stable m,atrix,A0.');
L=[1 0;0 1];
answer=1;
iteration=0;
while answer==1
Q=L'*L
P=[0 0;0 0]
 fori=0:100
 P=(P+(A0')^i)*Q*(A0)^i;
end
disp('P equals')
disp(p)
for i=1:n
 D(:,:,i)=A(:,:,i)'*P*A(:,:,i)-P;
end
disp('The D matrices corresponding to the subsystem matrices are respectively:')
for i=1:n
 disp(D(:,:,i))
end
disp('The respective eigenvalues are:')
for i=1:n
 disp(eig(D(:,:,i)))
end
for i=1:n
 [M(:,:,i),eig_D(:,:,i)]=eig(D(:,:,i));
end
answer=input('Does any eigenvalues need to be update? Enter 1 for yes. ');

 46

if answer==1
n1=input('The eigen value of which D matrix is to be updated? Enter no. ');
delA=A(:,:,n1)-A0;
M1=M(:,:,n1);
n2=input('Which eigenvalue is to be updated? Enter no. ');
gm=M1(:,n2)
W=[0 0;0 0];
for i=0:1000

W=W+(A0^i)*(delA*gm*gm'*A0'+A0*gm*gm'*delA'+delA*gm*gm'*delA')*(A0'
)^i;
end
disp('W equals')
disp(W)
L=L-2*L*(W-gm*gm')
end
iteration=iteration+1;
iteration1=sprintf('This was iteration no. %g',iteration);
disp(iteration1)

 47

Sample Run of Program 3.2

The order of all the subsystem matrices should be 2.

Enter the number of subsystem matrices. 2

Enter the first subsystem matrix.[0.9997 0.009899;-0.05939 0.9799]

Enter the next subsystem matrix.[0.9998 0.009949;-0.02985 0.9899]

The respective eigen values are:

 0.9898 + 0.0221i

 0.9898 - 0.0221i

 0.9949 + 0.0165i

 0.9949 - 0.0165i

Enter a stable m,atrix,A0.[0.9998 0.0099;-0.0446 0.9849]

 48

3.4 Conclusion

 It is found tahat negative definiteness of XTDix for all the rules is a sufficient

condition of stability for the fuzzy systems discussed in this chapter. Maximum

bound of XTDix can be found easily as Di’s are symmetric . Some times the method

fails to identify a stable system as stable. Using a gradient based algorithm , the

maximum eigenvalue of Di is systematically decreased, which increases the

probability of XT Dix being less than zero and thereby increases the probability that

a stable system is identified as stable.

 49

Chapter 4

Stabilizing Control

 Stability is the ultimate goal.

 50

4.1 Introduction

 It is shown in the first sample run of program 4.2 that the fuzzy free system

taken there is highly unstable. Linear feedback control can be used to stabilize the

system. A particular value of K, which is not necessarily unique , can make the

system stable as shown in second sample run of program 4.2. An algorithm is given

to determine this particular value of K.

4.2 Stabilizing using Linear Feedback Control

 Since Ao in the theorem 3.1 has to be substituted with Ao+boK as shown

in equation 4.1 , we first find a range of K for which Ao+boK is stable; then we

check the eigen values of Dc matrices given by equation 4.2 . Let us consider the

linear feedback control u=Kx. Then the subsystem is described by

 X(K+1) =(A0+boK+ ∑ά ﴾δAi +δbiK))X(K) .

After substituting Ao and δAi in the theorem 3.1 with Ao+boK and

δAo+δbiK respectively , we can determine the stability of the feed back system. The

model in eq.(3.2) with control

u = Kx is stable if for given rule i, XT Dic x ≤ 0 for all

 Dic = ﴾δAi + δbiK﴿ T P ﴾δAi + δbiK ﴿+ ﴾δAi + δbiK﴿ T P﴾A0 +boK﴿

 +﴾Ao+boK﴿T P ﴾δAi + δbiK ﴿ - Q

and P is the solution of Lyapunov equation :

﴾Ao+boK﴿T P ﴾Ao + boK ﴿ - P = -Q

To find the stabilizing control, we have to find a control gain K that satisfies represents

XT Dic x ≤ 0 . Since Dic represents Di in eq.(3.10), we can increase the probability that

XT Dic x ≤ 0 if we can decrease the maximum eigenvalue of Dic

 51

Program 4.1 : To find and plot the eigenvalues of Dic
Matrices for a range of K, taking aFuzzy system

 having 9 rules
n=9;
disp('Enter the subsystemmatrix for rule 1,i.e.,')
A(:,:,1)=input('when x1 is low and x2is low.(2x2)');
eigenvalues=eig(A(:,:,1))
b(:,1)=input('Enter the cooresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 2, i.e.,')
A(:,:,2)=input('when x1 is LOW and x2 is MED.(2x2)');
eigenvalues=eig(A(:,:,2))
b(:,2)=input('Enter the cooresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 3, i.e.,')
A(:,:,3)=input('when x1 is LOW and x2 is HIGH.(2x2)');
eigenvalues=eig(A(:,:,3))
b(:,3)=input('Enter the cooresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 4, i.e.,')
A(:,:,4)=input('when x1 is MED and x2 is LOW.(2x2)');
eigenvalues=eig(A(:,:,4))
b(:,4)=input('Enter the cooresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 5, i.e.,')
A(:,:,5)=input('when x1 is MED and x2 is MED.(2x2)');
eigenvalues=eig(A(:,:,5))
b(:,5)=input('Enter the cooresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 6, i.e.,')
A(:,:,6)=input('when x1 is MED and x2 is HIGH.(2x2)');
eigenvalues=eig(A(:,:,6))
b(:,6)=input('Enter the cooresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 7, i.e.,')
A(:,:,7)=input('when x1 is HIGH and x2 is LOW.(2x2)');
eigenvalues=eig(A(:,:,7))
b(:,7)=input('Enter the cooresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 8, i.e.,')
A(:,:,8)=input('when x1 is HIGH and x2 is MED.(2x2)');
eigenvalues=eig(A(:,:,8))
b(:,8)=input('Enter the cooresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 9, i.e.,')
A(:,:,9)=input ('when x1 is HIGH and x2 is HIGH. (2x2) ');
eigenvalues=eig(A(:,:,9))
b(:,9)=input('Enter the corresponding input matrix.(2x1)
');
disp('A0+b0*k should be stable.')
A0=input('Enter A0.(2x2)');
b0=input('Enter b0. (2x1)');
ans=1;
while ans==1
disp('Suggest a range for k.')
high1=input('Enter the higher limit for k(1).');
low1=input('Enter the lower limit for k(1).');
high2=input('Enter the higher limit for k(2).');

 52

low2=input('Enter the lower limit for k(2).');
incr=input ('Enter the increment.');
disp('The eigenvalues of A0+b0*k and the corresponding k''s
are listed below.')
for p=low2:incr:high2
 forq=low1:incr:high1
 k(1)=q;
 k(2)=p;
 res=A0+b0*k;
 disp(eig(res))
 disp('For k=')
 disp(k)
 disp('-----------')
end
end
ans=input('Do you want to change the range of k? Enter 1
for yes .');
end
ans=input('Should the program be terminated? Enter 1 for
yes.');
if ans1==1
 break
end
disp('the eigenvalues of the Dc matrices ofand the
cooresponding k''s are listed below.')
ii=0;
for p=low2:incr:high2
 for q=low1:incr:high1
 k(1)=q;
 k(2)=p;
 ii=ii+1;
 k1(ii)=k(1);
 k2(ii)=k(2);
 for i=1:n
 delA(:,:,i)-A0;
 delb(:,i)-b0;
 end
 Q=[1 0;0 1];
 p=[0 0;0 0];
 for i=0:1000
 p=p+((A0+b0*k)')^i*Q*(A0+bo*k)^i;
 end
 for i=1:n

Dc(:,:,i)=(delA(:,:,i)+delb(:,i)*k)'*p*(delA(:,:,i)+de
lb(:,I)*k)+...

 (deiA(:,:,i)+delb(:,i)*k)'*p*(A0+b0*k)+...
 (A0+b0*k)'*p*(delA(:,:,i)+delb(:,i)*k)-q;
 end
 for i=1:n
 disp(eig(dc(:,:,i)))

 53

 end
 disp('For k=')
 disp(k)
 disp('-----')
 for i=1:n
 e(:,i)=eig(Dc(:,:,i));
 eig1(ii,i)=e(1,i);
 eig2(ii,i)=e(2,i);
 end
 end
end
total=((high1-low1)/incr+1)*((high2-low2)/incr+1);
ans2=1;
while ans2==1
 ans2=input('Entering 1will plot the eigenvalues ofa Dc
matrix against k.');
 if ans2~=1
 break
 end
 n1=input ('which Dc matrix do you select.Enter no.');
 if low<low2
 lowlim=low1;
 else
 lowlim=low2;
 end
 if high1>high2
 highlim=high1;
 else
 highlim=high2;
 end
 ti = lowlim:incr*0.1:highlim;
 [XI,YI] = meshgrid(ti,ti);
 ii=i:total==0.5
 ZI1 = griddata (k1(ii),k2(ii),eig1(ii,n1),XI,YI);
 ZI2 = griddata (k1(ii),k2(ii),eig2(ii,n1),XI,YI);
 subplot(2,1,1);
 mesh(XI,YI,ZT1),hold

plot3(k1(ii),k2(ii),eig1(ii,n1),':wo','MarkerFaceColor
','k','MarkerSize',8)

 axis([low1 high1 low2 high2])
 xlabel('k(1)','fontsize',8)
 ylabel('k(2)','fontsize',8)
 zlabel('First Eigenvalue','fontsize',8)
 title('Eigenvalues of the Dc matrix against k')
 colorbar
 hold off
 subplot(2,1,2);
 mesh(XI,YI,ZT2),hold

 54

plot3(k1(ii),k2(ii),eig2(ii,n1),'two','MarkFaceColor',
'k','markersize',8)

 axis([low1 high1 low2 high2])
 xlabel('k(1)','Fontsize',8)
 ylabel('k(2)','Fontsize',8)
 zlabel('Second Eigenvalue','fontsize',8)
 colorbar
 hold off
 end

 55

Sample Run of Program 4.1

>> Enter the subsystemmatrix for rule 1,i.e.,
when x1 is low and x2is low.(2x2) [1.2 0.75;-4.8 -1.3]

eigenvalues =

 -0.0500 + 1.4274i
 -0.0500 - 1.4274i

Enter the cooresponding input matrix.(2x1) [-1;3]
Enter the subsystem matrix for rule 2, i.e.,
when x1 is LOW and x2 is MED.(2x2)[-1.8 -1.125;5.6 2]

eigenvalues =

 0.1000 + 1.6401i
 0.1000 - 1.6401i

Enter the cooresponding input matrix.(2x1)[1.5;-3.5]
Enter the subsystem matrix for rule 3, i.e.,
when x1 is LOW and x2 is HIGH.(2x2) [-4 -2.25;-6.4 -2.4]

eigenvalues =

 -7.0781
 0.6781

Enter the cooresponding input matrix.(2x1) [3;4]
Enter the subsystem matrix for rule 4, i.e.,
when x1 is MED and x2 is LOW.(2x2) [-0.8 -0.675;-2.88 -0.7]

eigenvalues =

 -2.1452
 0.6452

Enter the cooresponding input matrix.(2x1) [0.9;1.8]
Enter the subsystem matrix for rule 5, i.e.,
when x1 is MED and x2 is MED.(2x2)[7.4 3.75;-9.6 -3.8]

 56

eigenvalues =

 1.8000 + 2.1541i
 1.8000 - 2.1541i

Enter the cooresponding input matrix.(2x1) [-5;6]
Enter the subsystem matrix for rule 6, i.e.,
when x1 is MED and x2 is HIGH.(2x2) [-2.5 -1.5;6.4 2.3]

eigenvalues =

 -0.1000 + 1.9596i
 -0.1000 - 1.9596i

Enter the cooresponding input matrix.(2x1) [2;-4]
Enter the subsystem matrix for rule 7, i.e.,
when x1 is HIGH and x2 is LOW.(2x2) [0.1 -0.375;2.4 0.5]

eigenvalues =

 0.3000 + 0.9274i
 0.3000 - 0.9274i

Enter the cooresponding input matrix.(2x1) [0.5;-1.5]
Enter the subsystem matrix for rule 8, i.e.,
when x1 is HIGH and x2 is MED.(2x2)[-2.5 -1.5;9.6 5]

eigenvalues =

 1.2500 + 0.5809i
 1.2500 - 0.5809i

Enter the cooresponding input matrix.(2x1) [2;-6]
Enter the subsystem matrix for rule 9, i.e.,
when x1 is HIGH and x2 is HIGH. (2x2) [7 3;-2 0.01]

eigenvalues =

 5.9980
 1.0120

 57

Enter the corresponding input matrix.(2x1) [-4;1.25]
A0+b0*k should be stable.
Enter A0.(2x2)[0.1 -0.375;2.4 0.5]
Enter b0. (2x1)[0.5;-1.5]
Suggest a range for k.
Enter the higher limit for k(1).2
Enter the lower limit for k(1).1
Enter the higher limit for k(2).1
Enter the lower limit for k(2).0
Enter the increment.0.2
The eigenvalues of A0+b0*k and the corresponding k's are listed below.
 0.5500 + 0.5788i
 0.5500 - 0.5788i

For k=
 1 0

 0.6000 + 0.4637i
 0.6000 - 0.4637i

For k=
 1.2000 0

 0.6500 + 0.3000i
 0.6500 - 0.3000i

For k=
 1.4000 0

 0.9000
 0.5000

For k=
 1.6000 0

 1.1683

 58

 0.3317

For k=
 1.8000 0

 1.3612
 0.2388

For k=
 2 0

 0.4000 + 0.4555i
 0.4000 - 0.4555i

For k=
 1.0000 0.2000

 0.4500 + 0.3202i
 0.4500 - 0.3202i

For k=
 1.2000 0.2000

 0.5866
 0.4134

For k=
 1.4000 0.2000

 0.9000
 0.2000

For k=
 1.6000 0.2000

 1.0924
 0.1076

For k=

 59

 1.8000 0.2000

 1.2562
 0.0438

For k=
 2.0000 0.2000

 0.2500 + 0.1871i
 0.2500 - 0.1871i

 1.0000 0.4000

 0.5345
 0.0655

For k=
 1.2000 0.4000

 0.7373
 -0.0373

For k=
 1.4000 0.4000

 0.9000
 -0.1000

For k=
 1.6000 0.4000

 1.0458
 -0.1458

For k=
 1.8000 0.4000

 1.1819
 -0.1819

 60

For k=
 2.0000 0.4000

 0.5272
 -0.3272

For k=
 1.0000 0.6000

 0.6574
 -0.3574

For k=
 1.2000 0.6000

 0.7809
 -0.3809

For k=
 1.4000 0.6000

 0.9000
 -0.4000

For k=
 1.6000 0.6000

 1.0159
 -0.4159

For k=
 1.8000 0.6000

 1.1294
 -0.4294

For k=
 2.0000 0.6000

 61

 0.6171
 -0.7171

For k=
 1.0000 0.8000

 0.7106
 -0.7106

For k=
 1.2000 0.8000

 0.8050
 -0.7050

For k=
 1.4000 0.8000

 0.9000
 -0.7000

For k=
 1.6000 0.8000

 0.9956
 -0.6956

For k=
 1.8000 0.8000

 1.0916
 -0.6916

For k=
 2.0000 0.8000

 0.6675
 -1.0675

For k=

 62

 1 1

 0.7430
 -1.0430

For k=
 1.2000 1.0000

 0.8206
 -1.0206

For k=
 1.4000 1.0000

 0.9000
 -1.0000

For k=
 1.6000 1.0000

 0.9811
 -0.9811

For k=
 1.8000 1.0000

 1.0637
 -0.9637

For k=
 2 1

Do you want to change the range of k? Enter 1 for yes .1
Suggest a range for k.
Enter the higher limit for k(1).1.6
Enter the lower limit for k(1).1.5
Enter the higher limit for k(2)..7
Enter the lower limit for k(2)..6
Enter the increment..05

 63

The eigenvalues of A0+b0*k and the corresponding k's are listed below.
 0.8409
 -0.3909

For k=
 1.5000 0.6000

 0.8706
 -0.3956

For k=
 1.5500 0.6000

 0.9000
 -0.4000

For k=
 1.6000 0.6000

 0.8443
 -0.4693

For k=
 1.5000 0.6500

 0.8722
 -0.4722

For k=
 1.5500 0.6500

 0.9000
 -0.4750

 64

For k=
 1.6000 0.6500

 0.8473
 -0.5473

For k=
 1.5000 0.7000

 0.8737
 -0.5487

For k=

 1.5500 0.7000

 0.9000
 -0.5500

For k=
 1.6000 0.7000

Do you want to change the range of k? Enter 1 for yes .0
Should the program be terminated? Enter 1 for yes.0
the eigenvalues of the Dc matrices and the cooresponding k's are listed below.
 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 65

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

For k=
 1.5000 0.7000

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

For k=
 1.5500 0.7000

 66

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

For k=
 1.6000 0.7000

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 67

 -1

 -1

 -1
 -1

 -1
 -1

 -1
 -1

For k=
 1.5000 0.7000

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

For k=

 68

 1.5500 0.7000

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

For k=
 1.6000 0.7000

 -1
 -1

 -1
 -1

 -1
 -1

 -1

 69

 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

For k=
 1.5000 0.7000

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 70

For k=
 1.5500 0.7000

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

 -1
 -1

For k=
 1.6000 0.7000

Entering 1 will plot the eigenvalues of a Dc matrix against k. 1
which Dc matrix Do you select. Enter no. 3

ii =

 1 2 3 4 5 6 7 8 9

Current plot held
Entering 1 will plot the eigenvalues of a Dc matrix against k. 0
>> 1

 71

ans =

 1

 72

Figures 4.1 and 4.2

 73

Program 4.2 : To inspect and plot the behavior of a
 Fuzzy system having 9 rules, for a
 Given value K
x=input(“Enter the initial state. (2 1)’);
low=input(‘Enter parameters for triangular LOW .(1 2)’);
med=input(‘Enter parameters for triangular MED .(13)’);
high=input(‘Enter parameters for triangular HIGH .(1 2)’);
k=input(“Enter the gain k.. (2 1)’);
iteration=input(‘Enter the no of iterations.’);
disp('Enter the subsystem matrix for rule 1, i.e.,')
A(:,:,1)=input('when x1 is LOWand x2 is LOW. (2x2)');
b(:,1)=input('Enter the corresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 2, i.e.,')
A(:,:,2)=input('when x1 is LOW and x2 is MED. (2x2)');
b(:,2)=input('Enter the corresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 3, i.e.,')
A(:,:,3)=input('when x1 is LOW and x2 is HIGH. (2x2)');
b(:,3)=input('Enter the corresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 4, i.e.,')
A(:,:,4)=input('when x1 is MED and x2 isLOW. (2x2)');
b(:,4)=input('Enter the corresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 5, i.e.,')
A(:,:,5)=input('when x1 is MED and x2 is MED. (2x2)');
b(:,5)=input('Enter the corresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 6, i.e.,')
A(:,:,6)=input('when x1 is MED and x2 is HIGH. (2x2)');
b(:,6)=input('Enter the corresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 7, i.e.,')
A(:,:,7)=input('when x1 is HIGH and x2 is LOW. (2x2)');
b(:,7)=input('Enter the corresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 8, i.e.,')
A(:,:,8)=input('when x1 is HIGH and x2 is MED. (2x2)');
b(:,8)=input('Enter the corresponding input matrix.(2x1)');
disp('Enter the subsystem matrix for rule 9, i.e.,')
A(:,:,9)=input('when x1 is HIGH and x2 is HIGH. (2x2)');
b(:,9)=input('Enter the corresponding input matrix.(2x1)');
ii=1;
x1(ii)=x(1);
x2(ii)=x(2);

 74

k=0;
response=input('Entering 1 will display the state vector after each iteration. ');
while k<iteration
for j=1:2

if x(j)<=low(1)
 LOW(j)=1;
elseif x(j)>low(1)&x(j)<low(2)
 LOW(j)=(x(j)-low(2))/(low(1)-low(2));
else
 HIGH(j)=0
elseif x(j)>high(1)&x(j)<high(2)
 HIGH(j)=(x(j)-high(1))/(high(2)-high(1));
else
 HIGH(j)=1;
end
end
fs(1)=min(LOW(1),LOW(2));
fs(2)=min(LOW(1),MED(2));
fs(3)=min(LOW(1),HIGH(2));
fs(4)=min(MED(1),LOW(2));
fs(5)=min(MED(1),MED(2));
fs(6)=min(MED(1),HIGH(2));
fs(7)=min(HIGH(1),LOW(2));
fs(8)=min(HIGH(1),MED(2));
fs(9)=min(HIGH(1),HIGH(2));
 sum=[0;0];
for i=1:9
 fire(ii,i)=fs(i);
end
for i=1:9
 sum=sum+fs(i);
end
sumfs=0;
for i=1:9
 sumfs=sumfs+fs(i);
end
x=sum/sumfs;
k=k+1;
next_state=mat2str(x);
ii=ii+1;

 75

x1(ii)=x(1);
x2(ii)=x(2);
state= sprintf(‘State vector after iteration % 3g is %50s’, ii-1,next_state);
disp(state)
end
end
disp(The final state is’)
disp(x)
disp(‘Entering 1 will display the firing strength bof various rule for’)
for ii=1:iterations
fi=sprint f(‘itration %3g:%9.2g%9.2g9.2g9.2g9.2g9.2g9.2g9.2g9.2g9.2g9.2g9.2g
9.2g’,ii,fire(ii,1)…..
 fire(ii,2) fire(ii,3) fire(ii,4) fire(ii,5) fire(ii,6) fire(ii,7) fire(ii,8) fire(ii,9));
disp(fi)
end
end
answer=input('Entering 1 will plot the trajectory for the second state variable. ');
if answer==1
 ii=1:1:iteration
 plot(ii,x2(ii),'r','linewidth',2)
 xlabel('Iterations','color','b')
 ylabel('Second state variable','color','m')
 title(['Plot for k=',mat2str(k)])
 grid on
end
answer=input('Entering 1 will plot the trajectory for the second state variable. ');
if answer==1
 ii=1:1:iteration
 plot(ii,x2(ii),'r','linewidth',2)
 xlabel('Iterations','color','b')
 ylabel('Second state variable','color','m')
 title(['Plot for k=',mat2str(k)])
 grid on
end
answer=input('Enter 1 for logarithmic plots. ');
if answer==1
answer=input('Entering 1 will plot the trajectory for the first state variable. ');
if answer==1
 ii=1:1:iteration
 semilogy(ii,abs(x1(ii)),'r','linewidth',2)
 xlabel('Iterations','color','b')
 ylabel('Absolute value of the second state variable on logarithmic scale.',...
 'color','m','fontsize',8)

 76

title(['Plot for k=',mat2str(k)])
 grid on
end
answer=input('Entering 1 will plot the trajectory for the second state variable. ');
if answer==1
 ii=1:1:iteration
 semilogy(ii,abs(x2(ii)),'r','linewidth',2)
 xlabel('Iterations','color','b')
 ylabel('Absolute value of the second state variable on logarithmic scale.',...
 'color','m','fontsize',8)
title(['Plot for k=',mat2str(k)])
grid on
end
end
disp('The program ends here.')

 77

First Sample Run of Program 4.2

Enter the initial state.(2x1)[-10;15]
Enter parameters for triangular LOW .(1x2) [-1 0]
Enter parameters for triangular MED .(1x3) [-1 0 1]
Enter parameters for triangular HIGH .(1x2) [0 1]
Enter the gain k.(1x2)[0 0]
Enter the no of iterations. 50
Enter the sub system matrix for rule 1, i.e.,
when x1 is LOW and x2 is LOW. (2x2) [1.2 0.75;-4.8 -1.3]
Enter the corresponding input matrix.(2x1)[-1;3]
Enter the subsystem matrix for rule 2, i.e.,
when x1 is LOW and x2 is MED. (2x2) [--1.8 -1.125;5.6 2]
Enter the corresponding input matrix.(2x1) [1.5;-3.5]
Enter the subsystem matrix for rule3, i.e.,
when x1 is LOW and x2 is HIGH. (2x2)[-4 -2.25;-6.4 -2.4]
Enter the corresponding input matrix.(2x1)[3;4]
Enter the subsystem matrix for rule 4, i.e.,
when x1 is MED and x2 is LOW (2x2)[-0.8 -0.675;-2.88 -0.7]
Enter the corresponding input matrix.(2x1)[0.9;1.8]
Enter the subsystem matrix for rule 5, i.e.,
when x1 is MED and x2 is MED. (2x2)[7.4 3.75;-9.6 -3.8]
Enter the corresponding input matrix.(2x1)[-5;6]
Enter the subsystem matrix for rule 6, i.e.,
when x1 is MED and x2 is HIGH. (2x2)[-2.5 -1.5;6.4 2.3]
Enter the corresponding input matrix.(2x1)[2;-4]
Enter the subsystem matrix for rule 7, i.e.,
when x1 is HIGH and x2 is LOW. (2x2) [0.1 -0.375;2.4 0.5]
Enter the corresponding input matrix.(2x1)[0.5;-1.5]
Enter the subsystem matrix for rule 8, i.e.,
when x1 is HIGH and x2 is MED. (2x2) [-2.5 -1.5;9.6 5]
Enter the corresponding input matrix.(2x1) [2;-6]
Enter the subsystem matrix for rule 9, i.e.,
when x1 is HIGH and x2 is HIGH. (2x2)[7 3;-2 0.01]
Enter the corresponding input matrix.(2x1) [-4;1.25]
Entering 1 will display the state vector after each iteration. 1

MED =
 1

HIGH =

 0 1

 78

MED =

 1 1

State vector after iteration 1 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 2 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 3 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 4 is [1;1]

MED =

 1 1

MED =

 79

 1 1

State vector after iteration 5 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 6 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 7 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 8 is [1;1]

MED =

 1 1

MED =

 80

 1 1

State vector after iteration 9 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 10 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 11 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 12 is [1;1]

MED =

 1 1

MED =

 81

 1 1

State vector after iteration 13 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 14 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 15 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 16 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 17 is [1;1]

 82

MED =

 1 1

MED =

 1 1

State vector after iteration 18 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 19 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 20 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 21 is [1;1]

 83

MED =

 1 1

MED =

 1 1

State vector after iteration 22 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 23 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 24 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 25 is [1;1]

 84

MED =

 1 1

MED =

 1 1

State vector after iteration 26 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 27 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 28 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 29 is [1;1]

MED =

 85

 1 1

MED =

 1 1

State vector after iteration 30 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 31 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 32 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 33 is [1;1]

MED =

 1 1

 86

MED =

 1 1

State vector after iteration 34 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 35 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 36 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 37 is [1;1]

MED =

 1 1

MED =

 87

 1 1

State vector after iteration 38 is [1;1]

MED =

 1 1

MED =

 1 1
State vector after iteration 39 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 40 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 41 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 42 is [1;1]

 88

MED =

 1 1

MED =

 1 1

State vector after iteration 43 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 44 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 45 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 46 is [1;1]

MED =

 89

 1 1

MED =

 1 1

State vector after iteration 47 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 48 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 49 is [1;1]

MED =

 1 1

MED =

 1 1

State vector after iteration 50 is [1;1]
The final state is
 1
 1

 90

Entering 1 will display the firing strengths of various rules for
all the iterations.1
Iteration 1: 0 1 1 0 1 1 0 0 0
Iteration 2: 0 0 0 0 1 1 0 1 1
Iteration 3: 0 0 0 0 1 1 0 1 1
Iteration 4: 0 0 0 0 1 1 0 1 1
Iteration 5: 0 0 0 0 1 1 0 1 1
Iteration 6: 0 0 0 0 1 1 0 1 1
Iteration 7: 0 0 0 0 1 1 0 1 1
Iteration 8: 0 0 0 0 1 1 0 1 1
Iteration 9: 0 0 0 0 1 1 0 1 1
Iteration 10: 0 0 0 0 1 1 0 1 1
Iteration 11: 0 0 0 0 1 1 0 1 1
Iteration 12: 0 0 0 0 1 1 0 1 1
Iteration 13: 0 0 0 0 1 1 0 1 1
Iteration 14: 0 0 0 0 1 1 0 1 1
Iteration 15: 0 0 0 0 1 1 0 1 1
Iteration 16: 0 0 0 0 1 1 0 1 1
Iteration 17: 0 0 0 0 1 1 0 1 1
Iteration 18: 0 0 0 0 1 1 0 1 1
Iteration 19: 0 0 0 0 1 1 0 1 1
Iteration 20: 0 0 0 0 1 1 0 1 1
Iteration 21: 0 0 0 0 1 1 0 1 1
Iteration 22: 0 0 0 0 1 1 0 1 1
Iteration 23: 0 0 0 0 1 1 0 1 1
Iteration 24: 0 0 0 0 1 1 0 1 1
Iteration 25: 0 0 0 0 1 1 0 1 1
Iteration 26: 0 0 0 0 1 1 0 1 1
Iteration 27: 0 0 0 0 1 1 0 1 1
Iteration 28: 0 0 0 0 1 1 0 1 1
Iteration 29: 0 0 0 0 1 1 0 1 1
Iteration 30: 0 0 0 0 1 1 0 1 1
Iteration 31: 0 0 0 0 1 1 0 1 1
Iteration 32: 0 0 0 0 1 1 0 1 1
Iteration 33: 0 0 0 0 1 1 0 1 1
Iteration 34: 0 0 0 0 1 1 0 1 1
Iteration 35: 0 0 0 0 1 1 0 1 1
Iteration 36: 0 0 0 0 1 1 0 1 1
Iteration 37: 0 0 0 0 1 1 0 1 1
Iteration 38: 0 0 0 0 1 1 0 1 1
Iteration 39: 0 0 0 0 1 1 0 1 1
Iteration 40: 0 0 0 0 1 1 0 1 1
Iteration 41: 0 0 0 0 1 1 0 1 1
Iteration 42: 0 0 0 0 1 1 0 1 1
Iteration 43: 0 0 0 0 1 1 0 1 1
Iteration 44: 0 0 0 0 1 1 0 1 1

 91

Iteration 45: 0 0 0 0 1 1 0 1 1
Iteration 46: 0 0 0 0 1 1 0 1 1
Iteration 47: 0 0 0 0 1 1 0 1 1
Iteration 48: 0 0 0 0 1 1 0 1 1
Iteration 49: 0 0 0 0 1 1 0 1 1
Iteration 50: 0 0 0 0 1 1 0 1 1
Entering 1 will plot the trajectory for the first state variable. 1

ii =

 Columns 1 through 10

 1 2 3 4 5 6 7 8 9 10

 Columns 11 through 20

 11 12 13 14 15 16 17 18 19 20

 Columns 21 through 30

 21 22 23 24 25 26 27 28 29 30

Columns 31 through 40

 31 32 33 34 35 36 37 38 39 40

 Columns 41 through 50

 41 42 43 44 45 46 47 48 49 50

Entering 1 will plot the trajectory for the second state variable.

 92

Figures 4.5 and 4.6

 93

4.3 Conclusion

A new matrix Dic, which involves the control gain, K represents Dic Discussed in

chapter 3. Thus, for stabilizing control, a control gain, K needsTo be found such

that XtDicX is negative definite. This condition is achivedIf all the eigenvalues of

Dic are negative. Solution of the new LyapunovEquation is needed in order to find

Dic. The new Lyapunov equation can be solved only if Ao+boK is stable. First a

discrete range of K satisfying thisCondition is found, and then eigen values of Dic

are calculated for differentK’s. A value of K is choosen for which either all the

eigenvalues of Dic areNegative or the negative eigenvalues are much larger in

magnitude as compared to the positive ones.

 94

Chapter 5
Conclusions, Limitations, and

Suggestions
For Further Work

From causes which appear similar, we expect similar effects.
This is the sum total of all our experimental conclusions.

 95

5.1 Conclusions

Lyapunov’s approach offers a shortcut to proving the global stability of a

dynamical system. A Lyapunov function summarizes total system behaviour. At

each moment a single real number represents the entire system. This is somewhat

similar to the case in statistical mechanics, where a single numerical temperature

summarizes the interactions of arbitrarily many molecules.

A dynamical system is stable if some Lyapunov function L decreases along

trajectories: L ≤ 0. A dynamical system is asymptotically stable if it strictly

decreases along trajectories: L < 0. Monotonicity of a Lyapunov function provides

a sufficient not necessary condition for stability and asymptotic stability. Inability

to produce a Lyapunov function proves nothing. The system mayor may not be

stable. Demonstration of any Lyapunov function proves stability.

The two stability test methods discussed in the previous chapters give a

sufficient condition, which guarantees the stability of fuzzy systems in terms of

Lyapunov's direct method. The following important conclusions can be drawn

from the discussions:

(1) If all the subsystem matrices are stable, the overall fuzzy system may or may

not be stable.

(2) Even if some of the subsystem matrices are unstable, the overall fuzzy

system may be stable.

(3) The existence of a common positive definite matrix satisfying Lyapunov

equation for all the subsystem matrices shows that the fuzzy system is stable.

(4) If all the subsystem matrices are stable, but the product of any two subsystem

matrices is unstable, there can't be any common positive definite matrix

satisfying Lyapunov equation for all the satisfying Lyapunov equation for all

the subsystem matrices.

(5) Negative bounds approach used to test the stability of fuzzy systems is better

than common positive definite matrix approach in the sense that it does not

 96

fail even if some of the subsystem matrices are unstable.

(6) Though the negative bounds approach gives only a sufficient condition of

stability like common positive definite matrix approach, an algorithm based

on this approach can be used to identify some stable systems as stable.

(7) In case of stabilization using linear feedback control, negative bounds

approach can be used for the determination of control gains, which can

stabilize the system.

 97

5.2 Limitations of the Given Methods

 Both the stability test methods give sufficient but not necessary conditions of

stability. This means that a system proved to be stable using any of these methods

is actually stable, but those systems, which cannot be proved to be stable, may also

be stable.

In order to check the stability of a fuzzy system using the method given in

chapter 2, we must find a common positive definite matrix. No procedure has been

suggested for finding this matrix.

In negative bounds approach, the procedure given for the determination of

bounds cannot always be adopted. This procedure does not give tight bounds and

therefore desirable results may not be obtained in some cases.

 98

5.3 Suggestions for Further Work

1. An effective algorithm for finding common positive definite matrix needs

to be developed. This will considerably improve the stability test method

given in chapter 2.

2. Attempts should be made to discover sufficient as well as necessary

conditions of stability for fuzzy systems.

 99

References

[Junhong’s98] Junhong Nie and Derek Linkens., “ Fuzzu and
Neural Control, PHI, 1998

[Driankov’93] Driankov, D.,Hellendoom, H., and Rinfank, M., “An
introduction to Fuzzy Control,” Narosa,1993

[Kim’95] Kim, W. C.,Ahn,S.C., and Kwon, W.H., “ Stability

Analysis and Stabilization of Fuzzy State Space
Models,” Elsvier, Fuzzy Sets and Systms, 71(1995)
131-142

[Kosko’92] Kosko, B., “Neural Networks and Fuzzy Systems: A

Dynamical Sustems Approach to Machine
Intelligence,” Englewood Cliffs, NJ: Prentice –
Hall,1992

[Kuo’80] Kuo, B. C., “ Digital Control Systems,” Holt-

Saunders,1980

[Takagi’85] Takagi, T., and Sugeno, M., “ Fuzzy Identification of

Systems and its Applications to Modelling and
control,” IEEE Trans. On Systems, Man, and
Cybernetics,15(1985)116-132.

[Tanaka’92] Tanaka, K., and Sugeno, M., “Stability Analysis and

Design of Fuzzy Control Systems,” Elsevier, Fuzzy
Sets and systems , 45(1992) 135 -156.

	Sample Run of Program 3.1
	Sample Run of Program 3.2

