
SOME STUDIES ON TRELLIS AND TURBO CODES

(IMPLEMENTATION IN C)

A Dissertation
Submitted in partial fulfillment

of the requirement for the award of the Degree of

MASTER OF ENGINEERING

In

ELECTRONICS AND COMMUNICATION

Submitted by

PARMOD KUMAR
College Roll No. (19/E&C/03)
Delhi University Roll No. 3105

Under the guidance of

Dr. ASOK DE

Department of Electronics and Communication Engineering

Delhi College of Engineering,
University of Delhi

2003-2005

 1

DEPARTMENT OF ELECTRONICS & COMMUNICATION

DELHI COLLEGE OF ENGINEERING, DELHI-42

CERTIFICATE

This is to certify that the Thesis entitled

“Some Studies on Trellis and Turbo Codes (Implementation In C)”

is being submitted by Parmod Kumar, Class Roll no. 19/E&C/03, University Roll

no. 3105 in partial fulfillment for the award of “Master of Engineering Degree in

Electronics & Communication” in Delhi College of Engineering, Delhi University,

Delhi is the original work carried out by him under my guidance and supervision.

The matter contained in this thesis has not been submitted elsewhere for award

of any other degree.

 Dr. A. Bhattacharyya Dr. Asok De
 Prof. & Head Prof. & Head

 Deptt. of E&C Engg. Deptt. of IT Engg

 Delhi College of Engg. Delhi College of Engg.

 Delhi-110042 Delhi-110042

 2

 3

ACKNOWLEDGEMENT

Firstly, I would like to express my heartily gratitude and thanks to my project

guide Prof. Dr. Asok De, Head Deptt of IT Engineering, DCE Delhi for continuous

inspiration, encouragement and guidance in every stage of preparation of this

Thesis work.

I would also like to thank Prof. Asok Bhattacharyya, Head Deptt. of Electronics

and Communication Engineering, DCE Delhi, and Mrs. Rajesvari Pandey

Lecturer Deptt of Electronics and Communication Engineering, DCE Delhi for the

support provided by them during the entire duration of degree and especially in

this Thesis.

Lastly, I am thankful to all non-teaching staff, especially Mr. M.L Chandna, who

have helped me directly or indirectly in the completion of this Thesis report.

 Parmod Kumar

 ME (E&C)

 Univ. Roll no. 3105

 Class Roll no. 19/E&C/03

 4

ABSTRACT—The main objective of this thesis is to study and implement two of

the advanced and latest channel decoding algorithms and compare their

performance. Although for implementing these decoding algorithm, the

algorithms for channel encoder and AWGN channel (for adding noise) are

developed as well. But our main objective is to study, analyze and compare the

performance of decoding algorithms. The two decoding algorithms developed

and implemented are (i) A Simplified Trellis-Based Decoder and (ii) Log-MAP-

Based Iterative Turbo Decoder with reduced storage requirements.

 In “A Simplified Trellis-Based Decoder” a simplified branch metric and add-

compare-select (ACS) unit is presented for use in trellis-based decoding

architecture. This simplification is based on a complementary property of some

feed forward encoders. As a result, one adder is saved in every other ACS unit.

Hence only half the branch metrics have to be calculated.

 In “Log-MAP-Based Iterative Turbo Decoder” efforts are made to reduce the

memory requirements for implementing the algorithm, although that is achieved

at the cost of degraded speed performance. Also the odd-even symmetric

interleaver structure used here for implementing turbo code is implemented with

reduced storage memory requirements.

 For implementing the above algorithms an intense study of various

decoding algorithms is done, and then algorithms are developed. Afterwards

these algorithms are implemented in C language. Results are produced in form

of text files, after executing the programs for encoder, AWGN channel and

decoder in the sequence.

 After getting the results in form of text files, the decoded output is compared

with the original file and bit error probability (PB) is calculated for different values

of E

B

b/N0. Finally PB versus Eb/N0 is plotted for above algorithms and compared.

At Eb/N0 of 2 dB PB for A simplified trellis based decoder is 2×10 and for Log-

MAP-Based turbo decoder P

-2

B of 6×10 is obtained for a text file containing 3000

bit values. The error performance of Log-MAP-Based Turbo decoder is found to

be better than the A simplified trellis based decoder but the speed of later is

better than the former.

-4

 5

CONTENTS
1 INTRODUCTION…………………………………………………………. 1

1.1 Inroduction…...……………………………………………………….. 1

1.2 Goal Of Thesis……………………………………………………….. 1

1.3 Procedure Followed…………………………………………………. 2

1.4 Organization of Thesis……………………………………………… 3

2 CHANNEL CODING…………………………………………….………. 5
2.1 Digital Communication System……….…………………………… 5

2.2 What is Channel Coding?…………………………………………... 6

2.3 Advantages of Channel coding…………………………….. ……... 7

2.4 Waveform Coding……………………………………………. ……... 7

2.5 Structured Sequences………………………………………. …….. 8

3 CONVOLUTIONAL CODING………………………………………... 9

 3.1 Introduction…………………………………………………… ……... 9

 3.2 Convolutional Encoding…………………………………………….. 9

 3.3 Convolutional Encoder representation…………………….. …….. 12

 3.3.1 Connection Representation………………………………….. 12

 3.3.2 Polynomial Representation…………………………… …….. 13

 3.3.3 State Representation and State Diagram…………………... 14

 3.3.4 The Tree Diagram……………………………………... ……... 15

 3.3.5 The Trellis Diagram…………………………………………… 17

 3.4 Formulation of the Convolutional Decoding Problem……………. 18

 3.4.1 Maximum Likelihood Decoding………………………. ………18

 3.4.2 Channel Models: Hard Versus Soft Decision………. …….. 19

 3.4.3 Binary Symmetric Channel…………………………… …….. 21

 3.5 The Viterbi Convolutional Decoding Algorithm…………… …….. 22

 3.5.1 An Example of Viterbi Convolutional Decoding……………. 22

 3.5.2 Decoder Implementation……………………………… ……... 28

 3.5.3 Add-Compare-Select Computation………………….. ……... 29

 3.5.4 Add-Compare-Select as Seen on the Trellis……………….. 30

 6

4 A SIMPLIFIED TRELLIS-BASED DECODER………………… 32

 4.1 Introduction…………………………………………………………… 32

 4.2 Notation……………………………………………………………….. 32

 4.3 Complementary Property…………………………………………… 33

 4.4 Modified BM and ACS Units for Rate ½…………………………... 35

 4.5 Comparison………………………………………………………….. 39

 4.6 Conclusion…………………………………………………………… 41

 4.7 Algorithm: A Simplified Trellis-Based Decoder…………………… 42

5 TURBO CODES…………………………………………………………. 47

 5.1 Introduction…………………………………………………………… 47

 5.2 Turbo Code Concepts………………………………………………. 47

 5.2.1 Likelihood Function…………………………………………… 47

 5.2.2 The Two-Signal Class Case…………………………………. 48

 5.2.3 Log-Likelihood Ratio………………………………………….. 51

 5.2.4 Principle of Iterative (Turbo) Decoding……………………... 52

 5.3 Likelihood Algebra…………………………………………………… 53

 5.4 Encoding With Recursive Systematic Codes…………………….. 54

 5.4.1 Concatenation of RSC Codes………………………………... 56

 5.5 A Feedback Decoder……………………………………………….. 58

 5.5.1 Decoding With a Feedback Loop……………………………. 61

6 LOG-MAP BASED ITERATIVE TURBO DECODER……………….. 63

 6.1 Introduction…………………………………………………………… 63

 6.2 Turbo Codes…………………………………………………………. 64

 6.3 Turbo Decoding Algorithms………………………………………… 67

 6.3.1 SISO Decoding Algorithms……………………………………67

 6.3.2 Comparison of SISO Algorithms…………………………….. 70

 6.4 Log-MAP Based Turbo Decoder Implementation……………….. 71

 6.4.1 Introduction…………………………………………………….. 71

 6.4.2 Interleaver Structure for Turbo Codes with Reduced

 Storage Memory Requirements…………………………….. 71

 6.4.2.1 Introduction……………………………………………71

 7

 6.4.2.2 Design………………………………………………… 71

 6.4.3 Log-MAP Turbo Decoder……………………………………... 74

 6.5 Algorithm: Log-MAP-Based Iterative Turbo Decoder……………. 79

7 RESULTS………………………………………………………………… 84

 7.1 A Simplified Trellis-Based Decoding……………………………… 84

 7.1.1 File, Which is Encoded and Sent……………………………. 84

 7.1.2 File After Adding Noise……….………………………………. 84

 7.1.3 File Received After Applying Algorithm…………………… 85

 7.1.4 Trellis-Based Code Efficiency……………………………….. 85

 7.2 Turbo Decoder With Log-MAP Based Iterative Decoding………. 86

 7.2.1 File, Which is Encoded and Sent……………………………..86

 7.2.2 File After Adding Noise………. ……………………………… 86

 7.2.3 File Received After Applying Algorithm (Iteration 1)………. 86

 7.2.4 File Received After Applying Algorithm (Iteration 2)………. 87

 7.2.5 Log-MAP-Based Code Efficiency………………………….. 87

 7.3 Tabular results………………………………………………………. 88

 7.3.1 Simplified Trellis Based Decoder……………………………. 88

 7.3.2 Log-MAP Turbo Decoder……………………………………... 88

 7.4 Graphical Results…………………………………………………… 90

 7.4.1 Comparison of Bit Error Rate Between Gaussian

 Noise and Noise Generated Using C Language………….. 90

 7.4.2 Performance of Simplified Trellis Based Decoder…………. 91

 7.4.3 Performance of Log-MAP Turbo Decoder………………….. 92

 7.4.4 Comparison of Trellis and Turbo Code Performance ……... 93

Conclusions…………………………………………………………………….. 94

Future Work and Recommendations……………………………………….. 95
References……………………………………………………………………….. 96

Help……………………………………………………………………………..…106

Coding…………………………………………………………………………..…108

 8

CHAPTER 1
INTRODUCTION

1.1 INTRODUCTION
The objective of this thesis is to study and implement two of the advanced and

latest channel decoding algorithms and compare their performance. Although for

implementing these decoding algorithm, the algorithms for channel encoder and

AWGN channel (for adding noise) are developed as well. But our main objective

is to study, analyze and compare the performance of decoding algorithms. The

first algorithm implemented here is “A Simplified Trellis-Based Decoder” which is

modified version of standard Viterbi Decoder. The Viterbi decoding algorithm was

discovered and analyzed by Viterbi in 1967. The Viterbi algorithm essentially

performs maximum likelihood decoding [chapter 3(3.4)]. The second algorithm

implemented is “Log-MAP-Based Iterative Turbo Decoder” with reduced memory

requirements which is based on standard MAP (maximum a posteriori) algorithm.

The process of turbo code decoding starts with the formation of a posteriori

probabilities (APP) for each data bit, which is followed by choosing the data bit

value that corresponds to the maximum a posteriori (MAP) probability for that

data bit. Upon reception of a corrupted code-bit sequence, the process of

decision making with APPs, allows the MAP algorithm to determine the most

likely information bit to have been transmitted at each bit time [chapter 5]. This is

unlike the Viterbi algorithm (VA), where the APP for each data bit is not available.

1.2 GOAL OF THESIS
The goal of thesis is to implement some channel decoding algorithms that are

saving some sort of resources or efforts. As will be clear from the text below, that

we are saving some hardware/computations in case of first algorithm (Trellis-

Based) and we are saving memory in case of second algorithm (Turbo-Based).

 In “A Simplified Trellis-Based Decoder” a simplified branch metric and add-

compare-select (ACS) unit is presented for use in trellis-based decoding

 9

architecture. This simplification is based on a complementary property of some

feed forward encoders [chapter 4]. As a result, one adder is saved in every other

ACS unit. Hence only half the branch metrics have to be calculated. It is also

shown that this simplification becomes especially beneficial for rate ½

convolutional codes. Consequently, area and power consumption will be reduced

in a hardware implementation.

 In “Log-MAP-Based Iterative Turbo Decoder” with reduced storage

requirements efforts are made to reduce the memory requirements for

implementing the algorithm [chapter 6]. But that is achieved at the cost of

degraded speed performance. Also the odd-even symmetric interleaver is

implemented with reduced storage requirements. The idea used here is that the

text file, which we want to send, can be broken down into smaller files (typically

3000 –5000 bits), which are then sent serially one by one. The time taken is

increased but by doing so we are able to save huge amount of memory.

1.3 PROCEDURE FOLLOWED
For developing and implementing the above algorithms an intense study of

various decoding algorithms and related topics is done from the various books

and IEEE Transactions and IEEE communication letters. The three papers,

which are used a lot in this thesis work [1], [2], [3], are given below:

(i) VHDL Implementation of a Turbo Decoder With Log-MAP-Based

Iterative Decoding; By Yanhui tong, Tet-Hin Yeap, Member, IEEE, and

Jean-Yves Chouinard, Senior Member, IEEE; IEEE Transaction on

Instrumentation and Measurement, Vol. 53, No. 4, August 2004.

(ii) Interleaver Structure for Turbo Codes with Reduced Storage memory

Requirement; By Johan Hokfelt, Ove Edfors and Torleiv Maseng;

Department of Applied Electronics, Lund university, Lund, Sweeden.

(iii) A Simplified computational Kernel for Trellis-Based Decoding; By

Matthias Kamuf, Student Member, IEEE, John B. Anderson, Fellow,

IEEE, and Viktor Owall, Member, IEEE; IEEE Communication Letters,

Vol. 8,No. 3, March 2004.

 10

After studying the material the algorithms are written, and then code is written in

language C. The C code is written for the channel encoder, AWGN channel and

the channel decoder for both of the algorithms. The efforts are being made to

generate standard AWGN noise but due to limitation of C language we are able

to generate noise, which is very much similar, as shown in Graph 1 (Chapter 7).

The idea used here for plotting PB versus Eb/N0 is that we introduce more error in

the channel if we want to plot for lower value of Eb/N0, and vice versa because as

we know, if Eb/N0 decreases the noise increases and vice versa.

 These C programs are then executed in a particular sequence and results

are obtained in form of text files. Again a C program is executed for comparing

these text files and results are obtained which are put in form of a table manually.

The tabular results are then used for drawing the graph. The graphs thus

obtained are found to be in close approximation to the graphs shown in books

and published papers [4].

1.4 ORGANIZATION OF THESIS
The whole thesis work is divided into 7 chapters. The first chapter is about the

overview of the thesis work. It includes the thesis subject, thesis goals, procedure

followed and organization of thesis. The second chapter is about introduction to

digital communication system, channel coding that is what is channel coding?

Why we use channel coding? Advantages of channel coding and types of

channel coding.

 The third chapter is about convolutional coding, convolutional decoding

terminology and Viterbi decoding algorithm. This chapter forms the basis for next

chapter. The fourth chapter is concerned with the first algorithm implemented

here. It describes how we are able to save hardware if simulated on hardware kit

and computation if implemented in C. it describes the complementary property of

some of the feed forward encoders and its affect on BM and ACS unit.

 The fifth chapter is concerned is about the turbo codes, its terminology and

standard turbo decoder that is the MAP decoder. This chapter forms the basis for

the next chapter. The chapter sixth is concerned with the second algorithm

 11

implemented in this thesis. This chapter briefly describes the various SISO

algorithms and compares their performance and chooses the optimum one i.e.

Log-MAP Decoder, which is approximately as efficient as MAP but requires

simpler and lesser no of computations. It also describes the interleaver structure

with reduced storage requirements used for Log-MAP-Based Iterative Turbo

Decoder.

The chapter seven is about the results. The results are shown in three different

formats. The first format of results is in the form of text files. It shows the original

file, which is sent through the channel, the decoded file and the file, which would

have been received if sent through the AWGN, channel without encoding. This

form of result gives the user a visual look, how decoding algorithms are able to

reduce the error. The second format of result is in form of tables. This form of

results shows the no of errors present originally and after applying decoding

algorithm. The third format of result is in form of graphs. This type of format is

necessary for analysis of results. These graphical results are used for

comparison purposes. The first graph shows the comparison of standard AWGN

noise and the noise generated using C language. The second graph shows the

performance of “Log-MAP-Based Iterative Turbo decoder” for two iterations, after

iteration second no performance improvement is observed. The third graph

shows the performance of “ A Simplified Trellis-Based Decoder”. The fourth

graph compares the performance of two decoders described above.

CHAPTER 2
CHANNEL CODING

2. 1 DIGITAL COMMUNICATION SYSTEM
To analyze a Digital Communication System let us observe the functional

elements of the system, as shown in Fig (2.1). The overall purpose of the system

is to transmit the message (or sequences of symbols) coming out of a source to

a destination point at a high rate and accuracy.

 12

Sequence of symbols Binary Stream Analog

 Signal

 Noise + +

Discrete
Information
Source

Source
Decoder

Channel
Decoder

Destination Demodulator

Modulator Channel
Encoder

Electrical
Communicatio
n Channel

Source
Encoder

Fig (2.1): Functional Block of a Digital Communication System

The source and the destination point are physically separated in space and a

communication channel of some sort connects the source to destination point.

Then channel accepts electrical (electromagnetic) signals and the output of the

channel is usually a smeared or distorted version of the input due to the non-

ideal nature of the communication channel. The smearing and noise introduce

 13

errors in the information being transmitted and limits the rate at which information

can be communicated from the source to destination. The probability of

incorrecting decoding a message symbol at the receiver is often used as a

measure of performance of digital communication system. The main function of

the coder, the modulator, the demodulator and the decoder is to combat the

degrading effects of the channel on the signal and maximize the information rate

and accuracy in communication process. This thesis work is based on the

function of three blocks shown above which are: channel encoder,

communication channel, and channel decoder.

2.2 WHAT IS CHANNEL CODING?
Channel coding refers to the part of signal transformations designed to improve

communications performance by enabling the transmitted signals to better

withstand the effects of various channel impairments, such as noise,

interference, and fading. These signal-processing techniques can be thought of

as vehicles for accomplishing desirable system trade-offs (e.g., error-

performance versus bandwidth, power versus bandwidth). The channel coding

has become a very popular way to bring these beneficial effects. The use of

large-scale integrated circuits (LSI) and high-speed digital signal processing

(DSP) techniques have made it possible to provide as much as 10 DB

performance improvement through these methods, at much less cost than

through the use of most other methods such as high power transmitters or large

antennas.

Channel coding can be partitioned into two study areas, waveform coding

and structured sequences. Waveform coding deals with transforming waveforms

into “better waveforms” to make the detection process less subject to errors.

Structured sequences deals with transforming data sequences into “better

sequences” having structured redundancy (redundant bits). The redundant bits

can then be used for the detection and correction of errors. The encoding

procedure provides the coded signal (whether waveforms or structured

 14

sequences) with better distance properties than those of their un-coded

counterparts. This thesis work is based on structured sequences.

2.3 ADVANTAGES OF CHANNEL CODING
 Error Performance Versus Bandwidth

Using channel coding one can obtain the better error performance for the

same value of Eb/N0 but the price paid is the increased bandwidth along

with the new components (encodes and decoders).

 Power Versus Bandwidth
This is a trade-off in which the same quality of data is achieved, but the

coding allows for a reduction in power or Eb/N0. The price paid is additional

circuitry (encoders and decoders).

 Data Rate Versus Bandwidth
In uncoded system increasing the data rate leads to degraded quality of

data because power requirement is inversely proportional to the rate. But

the use of error-correction coding brings back the same quality at the

same power level. The price paid is same as in first trade-off.

 Capacity Versus Bandwidth
In CDMA, where users simultaneously share the same cell or nearby cells,

the capacity (maximum number of users) per cell is inversely proportional

to Eb/N0. By using channel coding one can lower Eb/N0 for the same error

performance hence more capacity; the code achieves a reduction in each

user’s power, which in turn allows for an increase in the number of users.

Price paid is same as in first trade-off.

2.4 WAVEFORM CODING
Waveform coding procedures transform a waveform set (representing a message

set) into an improved waveform set. The improved waveform set can then be

used to provide improved PB (probability of bit error) compared to the original set.

The most popular of such waveform codes are referred to as orthogonal and bi-

orthogonal codes. The encoding procedure endeavors to make each of the

 15

waveforms in the coded signal set as unlike as possible; the goal is to render the

cross-correlation coefficient Zij among all pairs of signals as small as possible.

The smallest possible value of cross correlation coefficient occurs when the

signals are anti-correlated (Zij = -1); however this can be achieved only when

number of symbols in the set is two and the symbols are antipodal. In general, it

is possible to make all the cross-correlation coefficients equal to zero. The set is

then said to be orthogonal.

The cross-correlation between two signals is a measure of the distance between

the signal vectors. The smaller the cross-correlation, the more distant are the

vectors from each other.

2.5 STRUCTURED SEQUENCES
In case of orthogonal M-ary signaling, we can decrease PB by increasing M. The

major disadvantage with such orthogonal coding techniques is the associated

inefficient use of bandwidth. For an orthogonally coded set of M=2k waveforms,

the required transmission bandwidth is M/k times that needed for the uncoded

case. The structured sequence can be thought of as a process of inserting

structured redundancy into the source data so that the presence of errors can be

detected or the errors corrected. The structured sequences can be partitioned

into various sub-categories; these are block, Cyclic, convolutional, and turbo. The

block and cyclic codes were studied and implemented in minor project, now in

thesis the objective is to study and implement latest and modified version of

existing Trellis (Convolutional) and Turbo codes.

 16

CHAPTER 3
CONVOLUTIONAL CODING

3.1 INTRODUCTION
The linear block codes are described by two integers, n and k, and a generator

matrix or polynomial. The integer k is the number of data bits that form an input

to a block encoder. The integer n is the total number of bits in the associated

codeword out of encoder. A characteristic of linear block code is that each

codeword n-tuple is uniquely determined by the input message k-tuple. The ratio

k/n is called the rate of the code - a measure of the amount of added

redundancy. A convolutional code is described by three integers, n, k, K, where

the ratio k/n has the same code rate significance (information per coded bit) that

it has for block codes; however, n does not define a block or codeword length as

it does for block codes. The integer K is a parameter known as the constraint

length; it represents the number of k-tuple stages in the encoding shift register.

An important characteristic of convolutional codes, different from block codes, is

that the encoder has memory, the n – tuple emitted by the convolutional

encoding procedure is not only a function of an input k – tuple but is also a

function of the previous K – 1 input k-tuples. In practice, n and k are small

integers and K is varied to control the capability and complexity of code.

3.2 CONVOLUTIONAL ENCODING
The input message source is denoted by the sequence m = m1, m2, ….., mi, ……,

where each mi represents a binary digit (bit), and i is the time index. We shall

assume that each mi is equally likely to be a one or zero, and independent from

digit to digit. Being independent, the bit sequence lacks any redundancy; that is,

knowledge about mi gives no information about mj (i ≠ j). The encoder transforms

each sequence m into a unique codeword sequence U = G(m). Even though the

sequence m uniquely defines the sequence U, a key feature of convolutional

code is that a given k-tuple with in m does not uniquely define its associated n-

 17

tuple with in U since the encoding of each k-tuple is not only a function of that k-

tuple but is also a function of the K-1 input k-tuples that precede it. The sequence

U can be partitioned into a sequence of branch words: U = U1, U2, …., Ui,…..

Each branch word Ui is made up of binary code symbols, often called channel

symbols, channel bits or code bits; unlike the input message bit the code

symbols are not independent.

 In typical communication application, the codeword sequence U

modulates a waveform s(t). During transmission, the waveform s(t) is corrupted

by noise, resulting in a received waveform s’(t) and a demodulated sequence Z =

Z1, Z2, …., Zi, ….. The task of decoder is to produce an estimate m’ = m’1, m’2,

…, m’i,….. of the original message sequence using the received sequence Z

together with a priori knowledge of the encoding procedure.

 A general convolutional encoder is shown in Fig (3.1) is

mechanized with a kK- stage shift register and n modulo-2 adders, where K is the

constraint length. The constraint length represents the number of k-bit shifts over

which a single information bit can influence the encoder output. At each unit of

time, k bits are shifted into the first k stages of the register; all bits in the register

are shifted k stages to the right, and the outputs of the n adders are sequentially

sampled to yield the binary code symbols or code bits. These code symbols are

then used by the modulator to specify the waveforms to be transmitted over the

channel. Since there are n code bits or each input group of k message bits, the

code rate is k/n message per code bit, where k < n.

 1 2 3 kK

 m = m1, m2, …mi kK – stage

 input sequence shift register

 18

 …………….

 Codeword sequence U = U1, U2, …, Ui,..

 Where Ui = u1i, ….., uji, …….uni

 = ith codeword branch

 uji = jth binary code symbol of

branch word Ui

Fig (3.1): Convolutional encoder with constraint length K and rate k/n

We shall consider the most commonly used binary convolutional encoders with

 K =1 that is, those encoders in which the message bits are shifted into encoder

one bit at a time, although generalization to higher order alphabets is

straightforward. For the K = 1 encoder, at the ith unit of time, the message bit mi

is shifted into the first shift register stage; all the previous bits in the register are

shifted one stage to the right, and as in the more general case, the outputs of the

n adders are sequentially sampled and transmitted. Since there are n code bits

for each message bit, the code rate is 1/n. the n code symbols occurring at time ti

comprise the ith branch word, Ui = u1i, u2i, ….., uni, where uji (j = 1,2 ,…n) is the

jth code symbol belonging to the ith branch word. Note that for the rate 1/n

 19

encoder, the kK stage shift register can be referred to simply as a K- stage

register, and the constraint length K, which was expressed in units of k-tuple

stages can be referred to as constraint length in units of bits.

3.3 CONVOLUTIONAL ENCODER REPRESENTATION
To describe a convolutional code, one needs to characterize the encoding

function G(m), so that given an input sequence m, one can readily compute the

output sequence U. several methods are used for representing a convolutional

encoder [5], the most popular being the connectional pictorial as shown in Fig

(3.1), connection vectors or polynomials, the state diagram, the tree diagram and

the trellis diagram. We will discuss in detail the trellis diagram and others in brief.

3.3.1 Connection Representation
We shall use the convolutional encoder, shown below in Fig (3.2) as a model for

discussing convolutional encoders. This figure illustrates a (2, 1) convolutional

encoder with constraint length K = 3. There are n = 2 modulo – 2 adders; thus

the code rate k/n is ½. At each input bit time, a bit is shifted into the leftmost

stage and the bits in the register are shifted one position to the right. Next, the

output switch samples the output of each modulo – 2 adders (i.e., first the upper

adder, then the lower adder), thus forming the code symbol pair making up the

branch word associated with the bit just inputted. The sampling is repeated for

each inputted bit. The choice of connections between the adders and the stages

of the register gives rise to the characteristics of the code. Any change in the

choice of connections results in different code. The connections are of course,

not chosen or changed arbitrarily.

 20

 u1

 u2

Input bit m

+

+

Output
branch
word

Fig (3.2) Convolutional encoder (rate ½, K = 3).

Unlike a block code that has a fixed word length n, a convolutional code has no

particular block size, however, convolutional codes are often forced into a block

structure by periodic truncation [21]. This requires a number of zero bits to be

appended to the end of the input data sequence, for the purpose of clearing or

flushing the encoding shift register of the data bits.

3.3.2 Polynomial Representation
Sometimes, the encoder connections are characterized by generator polynomial.

We can represent a convolutional encoder with a set of n generator polynomial,

one for each of the n modulo-2 adders. Each polynomial is of degree K-1 or less

and describes the connection of the encoding shift register to that modulo-2

adder, much the same way that a connection vector does. The coefficients of

each term in the (K-1) degree polynomial are either 1 or 0, depending on whether

a connection exists or does not exist between the shift register and modulo-2

adder in question. For the encoder example in Fig (3.2), we can write the

generator polynomial g1 (X) for the upper connection and g2 (X) for the lower

connection as follows:

 g1(X) = 1+X+X2

 g2(X) = 1+X2

3.3.3 State Representation and State Diagram
A convolutional encoder belongs to a class of devices known as finite state

machines, which is the general name given to machines that have a memory of

past signals. In the most general sense, the state consists of the smallest amount

of information that, together with a current input to the machine, can predict the

output of the machine. A future state is restricted by the past state. For a rate 1/n

convolutional encoder, the state is represented by the contents of the rightmost

K-1 stages. Knowledge of the state together with knowledge of the next input is

necessary and sufficient to determine the next output.

00

11
 a = 00

 c = 10

11

 d = 11 01
01

10

 b = 01

 00

10

Fig (3.3): Encoder state diagram (rate ½, K=3)

 21

 22

The states of the register are designated a = 00, b = 01, c = 10, d = 11; the

diagram shown in the Fig (3.3) illustrates all the state transitions that are possible

for the encoder in the Fig (3.2). There are only two transitions emanating from

each state, corresponding to the two possible input bits. Next to each path

between states is written the output branch word associated with the state

transition. In drawing the path, we use the convention that a solid line denotes a

path associated with an input bit, zero, and a dashed line denotes a path

associated with an input bit, one.

3.3.4 The Tree Diagram
The tree diagram for the convolutional encoder shown in Fig (3.2) is shown in Fig

(3.4) shown below. At each successive input bit time the encoding procedure can

be described by traversing the diagram from left to right, each tree branch

describing an output branch word. The branching rule for finding a codeword

sequence is as follows: if the input bit is zero, its associated branch word is found

by moving to the next rightmost branch in the upward direction. If the input bit is a

one, its branch word is found by moving to the next rightmost branch in the

downward direction. Assuming that the initials contents of the encoder is all

zeros, the diagram shows that if the first input bit is zero, the output branch word

is 00 and, if the input bit is a one, the output branch word is 11. Similarly, if the

first input bit is one and the second input bit is zero, the second output branch

word is 10. Or, if the first input bit is a one and the second input bit is also a one,

the second output branch is 01. Following this procedure we see that the input

sequence 1 1 0 1 1 traces the heavy line drawn on the tree diagram in Fig (3.4).

This path corresponds to the output codeword sequence 1 1 0 1 0 1 0 0 0 1.

 The added dimension of time in the tree diagram allows one to

dynamically describe the encoder as a function of a particular input sequence.

However we see a major problem in trying to use a tree diagram for describing a

sequence of any length. The number of branches increases as a function of 2L,

where L is the number of branch words in the sequence. We would quickly run

out of paper and patience.

0

1

 23

Fig (3.4) Tree representation of encoder
(Rate ½, K = 3).

3.3.5 The Trellis Diagram
Observation of Fig (3.4), tree diagram shows that for this example, the structure

repeats itself at time t4, after the third branching (in general, the tree structure

repeats itself after K branching, where K is the constraint length). We label each

node in the tree diagram of Fig (3.4) to correspond to the four possible states in

the shift register, as follows: a = 00, b = 01, c = 10, d = 11. The first branching of

the tree structure, at time t1, produces a pair of nodes. At each successive

branching the number of nodes gets doubled. The second branching, at time t2,

results in four nodes. After the third branching, there are total of eight nodes. We

can see that all branches emanating from two nodes of the same state generate

identical branch word sequences. From this point on, the upper and the lower

halves of the tree are identical. The reason for this should be obvious from

examination of the encoder in Fig (3.2). As the fourth input enters the encoder on

the left, the first input bit is rejected on the right and no longer influences the

output branch words. Consequently, the input sequences 1 0 0 x y ….. and 0 0 0

x y ….., where the left most bit is the earliest bit, generate the same branch

words after the (K = 3)rd branching. This means that any two nodes having the

same state label at the same time ti can be merged, since all succeeding path

will be indistinguishable. If we do this to the tree structure of Fig (3.4), we obtain

another diagram, called the trellis diagram. The trellis diagram, by exploiting the

repetitive structure, provides a more manageable encoder description than does

the tree diagram. Te trellis diagram for the convolutional encoder of Fig (3.2) is

shown in Fig (3.5).

 In drawing the trellis diagram, we use the same convention that we

introduced with the state diagram—a solid line denotes the output generated by

the input bit zero, and a dashed line denotes the output generated by an input bit

one. The nodes of trellis characterize the encoder states; the first row nodes

correspond to the state a = 00, the second and subsequent rows correspond to

the states b = 01, c = 10, and d = 11. At each unit of time, the trellis requires 2K-1

nodes to represent the 2K-1 possible encoder states. The trellis in our example

assumes a fixed periodic structure after trellis depth 3 is reached (at time t4).

 24

 t1 t2 t3 t4 t5 t6

 00 00 00 00 00

 11 11 11 11 11 11 11 11

 00 00 00

 10 10 10 10

 01 01 01

 01 01 01 01

 a = 00

 b = 01

 c = 10

 d = 11

 10 10 10

Legend

 Input bit 0

 Input bit 1

 Fig (3.5): Encoder trellis diagram (rate = ½, K = 3)

In the general case the fixed structure prevails after dept K is reached. At each

point and thereafter, each of the state can be entered from either of two

preceding states. Also, each of the state can transition to one of two states. Of

the two outgoing branches, one corresponds to an input bit zero and other

corresponds to an input bit one. On Fig (3.5) the output branch words

corresponding to the state transitions appear as labels on trellis branches.

3.4 FORMULATION OF THE CONVOLUTIONAL DECODING PROBLEM
3.4.1 Maximum Likelihood Decoding
If all input messages sequences are equally likely, a decoder that achieves the

minimum probability of error is one that compares the conditional probabilities,

also called the likelihood functions P (Z/U (m)), where Z is the received sequence

and U (m) is one of the possible transmitted sequences and chooses the

maximum. The decoder chooses U (m’) if

 25

 P (Z/U (m’)) = max P (Z/U (m)) (3.1)

 Over all U (m)

The maximum likelihood concept, as stated above is a fundamental development

of decision theory; it is the formalization of a “common-sense” way to make

decisions when there is statistical knowledge of the possibilities. In the binary

demodulation treatment there are only two equally likely possible signals s1(t) or

s2(t) that might have been transmitted. Therefore, to make the binary maximum

likelihood decision, given a received signal meant only to decide that s1(t) was

transmitted if

 P (Z/s1) > P (Z/s2) (3.2)

Otherwise, to decode that s2(t) was transmitted. However, when applying

maximum likelihood to the convolutional decoding problem, we observe that the

convolutional code has memory (the received sequence represents the

superposition of current bits and prior bits). Thus, applying maximum likelihood to

the decoding of convolutional encoded bits is performed in the context of

choosing the most likely sequence as shown in (3.1). There are typically a

multitude of possible codeword sequences that might have been transmitted. To

be specific, for a binary code, a sequence of L branch word is a member of a set

of 2L possible sequences. Therefore, in maximum likelihood context, we can say

that the decoder chooses a particular U(m’) as the transmitted sequence if the

likelihood P(Z/U(m’)) is greater than the likelihood of all the other possible

transmitted sequences. Such an optimal decoder [12], which minimizes the error

probability (for the case where all transmitted sequences are equally likely), is

known as a maximum likelihood decoder. The likelihood functions are given or

computed from the specifications of the channel.

3.4.2 Channel Models: Hard Versus Soft Decisions
Before specifying an algorithm that will determine the maximum likelihood

decision, let us describe the channel. The channel over which the waveform is

transmitted is assumed to corrupt the signal with Gaussian noise. When the

 26

corrupted signal is received, it is first processed by the demodulator and then by

the decoder.

 The demodulator output can be configured in a variety of ways. It can be

implemented to make a firm or hard decision at to whether a received signal

represents a zero or one, and fed in to the decoder. Since the decoder operates

on the hard decision made by the demodulator, the decoding is called hard-

decision decoding. The demodulator can also be configured to feed the decoder

with a quantized value of received signal greater than two levels. When the

quantization level of the demodulator output is greater than two, the decoding is

called soft-decision decoding. Eight level (3-bits) of quantization are illustrated on

the abscissa of Fig (3.6). When the demodulator sends a hard decision to the

decoder, it sends a single binary symbol. When the demodulator sends a soft

binary decision, quantized to eight levels, it sends the decoder a 3-bit word

describing an interval shown in Fig (3.6). In effect, sending such a 3-bit word in

place of a single binary symbol is equivalent to sending the decoder a measure

of confidence along with code-symbol decision. It should be clear that ultimately,

every message decision out of the decoder must be a hard decision.

Fig (3.6): Hard and soft decoding decision

 0 1 2-level hard decision

 000 001 010 011 100 101 110 111 8- level soft decision

 27

For a Gaussian channel, eight level quantization results in a performance

improvement of approximately 2 dB in the required signal-to-noise ratio

compared to two-level quantization. This means that eight-level-soft decision

decoding can provide the same probability of error as that of hard decision

decoding, but requires 2 dB less Eb/N0 for the same performance.

3.4.3 Binary Symmetric Channel
A binary symmetric channel (BSC) is a discrete memory less channel that has

binary input and output alphabets and symmetric transition probabilities. It can be

described by the conditional probabilities

 P(0|1) = P(1|0) = p

 P(1|1) = P(0|0) = 1-p

as illustrated in Fig(3.7) below.

 Transition probabilities

 1-p

 Transmitted signals Received signals

 1-p

 Fig (3.7): Binary symmetric channel (hard-decision channel)

p
p

The probability that an output symbol will differ from the input symbol is p, and

the probability that the output symbol will be identical to the input symbol is (1-p).

 28

The BSC is an example of hard-decision channel, which means that, even

though the demodulator may receive continuous-valued signals, a BSC allows

only firm decision such that each demodulator output symbol consists of one of

two binary values.

3.5 THE VITERBI CONVOLUTIONAL DECODING ALGORITHM
The Viterbi decoding algorithm was discovered and analyzed by Viterbi in 1967.

The viterbi algorithm [13], [14], [22] essentially performs maximum likelihood

decoding; however it reduces the computational load by taking the advantage of

the special structure in the code trellis. The advantage of Viterbi decoding is that

the complexity of a Viterbi decoder is not a function of the number of symbols in

the codeword sequence. The algorithm involves calculating a measure of

similarity, or distance, between the received signal at time ti and the entire trellis

path entering each state at time ti. The Viterbi algorithm removes from

consideration those trellis paths that could not possibly are the candidates for the

maximum likelihood choice. When two paths enter the same state, the one

having the best metric is chosen; this path is called the surviving path. This

selection of surviving paths is performed for all the states. The decoder continues

in this way to advance deeper into the trellis, making decisions by eliminating the

least likely paths. The early rejection of the unlikely paths reduces the decoding

complexity. Note that the goal of selecting the optimum path can be expressed,

equivalently, as choosing the codeword with the maximum likelihood metric, or

as choosing the codeword with the minimum distance metric.

3.5.1 An Example of Viterbi Convolutional Decoding
For simplicity, a BSC is assumed; thus Hamming distance is a proper distance

measure. The encoder for this example is shown in Fig (3.2) and the encoder

trellis diagram is shown in Fig (3.5). A similar trellis can be used to represent the

decoder as shown in Fig (3.8). We start at time t1 in the 00 state. Since in this

example, there are only two possible transitions leaving any state, not all

branches need be shown initially. The full trellis structure evolves after time t3.

 29

The basic idea behind the decoding procedure can best be understood by

examining the Fig (3.5) encoder trellis in concert with Fig (3.8) decoder trellis. For

the decoder trellis it is convenient at each time interval, to label each branch with

the Hamming distance between the received code symbols and the branch word

corresponding to the same branch from the encoder trellis. The example in Fig

(3.8) shows a message sequence m, the corresponding codeword sequence U,

and a noise corrupted sequence Z = 11 01 01 10 01 …… The branch words seen

on the encoder trellis branches characterize the encoder in Fig (3.2) and are

known a priori to both the encoder and decoder.

Input data sequence m: 1 1 0 1 1

Transmitted codeword U: 11 01 01 00 01

Received sequence Z: 11 01 01 10 01

 State

t1 t2 t3 t4 t5 t6
 2 1 1 1 1

 0 1 1 1 1 1 1 1

 1 1 1

 2 2 0 2

111111 0 2 0

 0 0 2 0

 2 0 2 d = 11

 c = 10

 b = 01

 a = 00

Legend

 Input bit 0

 Input bit 1

 Fig (3.8): Decoder trellis diagram (rate = ½, K = 3)

 30

From the received sequence Z, shown in Fig (3.8), we see that the code symbols

received at time t1 are 11. In order to label the decoder branches at (departing)

time t1 with the appropriate Hamming distance metric, we look at the Fig (3.5)

encoder trellis. Here we see that a state 00 -> 00 transition yields an output

branch word of 00. But we receive 11. Therefore, on the decoder trellis we label

the state 00 -> 00 transition with Hamming distance between them, namely 2.

Looking at the encoder trellis again, we see that a state 00 -> 10 transition yields

an output branch word of 11, which corresponds exactly with the code symbols

we received at time t1. Therefore, on the decoder trellis, we label the state 00 ->

10 with a Hamming distance of 0. In summary, the metric entered on a decoder

trellis branch represents the difference (distance) between what was received

and what “should have been” received had the branch word associated with that

branch been transmitted. In effect, these metrics describe a correlation like

measure between a received branch word and each of the candidate branch

words. We continue labeling the decoder trellis branches in this way as the

symbols are received at each time ti. The decoding algorithm uses these

Hamming distance metrics to find the most likely (minimum distance) path

through the trellis.

 The basis of Viterbi decoding is the following observation: If any two

paths in the trellis merge to a single state, one of them can always be eliminated

in the search for an optimum path. For example, Fig (3.9) shows two paths

merging at time t5 to state 00. Let us define the cumulative Hamming path metric

of a given path at ti as the sum of the branch Hamming distance metrics along

that path up to time ti. In Fig (3.9) the upper path has metric 4; the lower has

metric 1. The upper path cannot be a portion of the optimum path because the

lower path, which enters the same state, has a lower metric.

 At each time ti there are 2K-1 states in the trellis, where K is the constraint

length, and each state can be entered by means of two paths. Viterbi decoding

consists of computing the metrics for the two paths entering each state and

eliminating one of them. This computation is done for each of the 2K-1 states or

nodes at time ti; then the decoder moves to time to ti+1 and repeats the process.

 31

At a given time, the winning path metric for each state is designated as the state

metric for that state at that time.

 Path Metric = 4

t1 t2 t3 t4 t5 t6
 1

 0 1 1

 2

 0

 0

 d = 11

 c = 10

 b = 01

 a = 00

 State

Path Metric = 1

Legend

 Input bit 0

 Input bit 1

 Fig (3.9): Path metrics for two merging paths.

The first few steps in our decoding example are as follows (see Fig (3.10)).

Assume that the input data sequence m, codeword U, and received sequence Z

are as shown in Fig (3.8). Assume that the decoder knows the correct initial state

of trellis. At time t1 the received code symbols are 11. From state 00 the only

possible transitions are to state 00 or state 10, as shown in Fig (3.10a). State 00

-> 10 transition has branch metric 0. At time t2 there are two possible branches

leaving each state, as shown in Fig (3.10b). The cumulative metrics of these

branches are labeled state metrics st_metric1, st_metric2, st_metric3 and

st_metric4, corresponding to terminating state. At time t3 in Fig (3.10c) there are

 32

again two branches diverging from each state. As a result, there are two paths

entering each state at time t4. One path entering each state can be eliminated,

namely, the one having the larger cumulative path metric. Should metrics of the

two entering paths be of equal value, one path is chosen for elimination by using

an arbitrary rule. The surviving path into each state is shown in Fig (3.10d). At

this point in decoding process, there is only a single surviving path, termed the

common stem, between times t1 and t2. Therefore, the decoder can now decide

that the state transition which occurred between t1 and t2 was 00 -> 10. Since this

transition is produced by an input bit one, the decoder outputs a one as the first

decoded bit.

t1 2 t2 t1 2 t2 1 t3

 0 0 1

 2

 0
st_metric3=2

st metric1=2 a = 00

c = 10

 b = 01

 st_metric4=0

st_metric3=3

st_metric2=2

st_metric1=3

d = 11

 (a) (b)

t1 t2 t3 t4 t1 t2 t3 t4
 2 1 1

 0 1 1 1 0 1

 2 2 2 1

 1 0

 0 0 0 0 0
 2

st_metric1=3

st_metric3=3

st_metric2=0

st_metric4=2

2

 (c) (d)

 33

Fig (3.10) Selection of survivor paths (a) survivors at t2. (b) Survivors at t3. (c)

Metric comparison at t4. (d) Survivors at t4. (e) Metric comparisons at t5. (f)

Survivors at t5. (g) Metric comparisons at t6. (h) Survivors at t6.

Fig (3.10e) shows the next step in the decoding process. Again, at time t5 there

are two paths entering each state, and one of each pair can be eliminated. Fig

(3.10f) shows the survivors at time t5. Notice that in our example we cannot yet

make a decision on the second input data bit because there still are two paths

leaving the state 10 node at time t2. At time t6 in Fig (3.10g) we again see the

pattern of remerging paths, and in Fig (3.10h) we see the survivors at time t6.

Also in Fig (3.10h) the decoder outputs one as the second decoded bit,

corresponding to the single surviving path between t2 and t3. The decoder

continues in this way to advance deeper into the trellis and to make decisions on

the input data bits by eliminating all paths but one. Pruning the trellis (as paths

remerge) guarantees that there are never more paths than there are states. For

this example, verify that after each pruning in Fig (3.10b, d, f, h), there are only 4

paths.

 t1 t2 t3 t4 t5 t1 t2 t3 t4 t5
 1

 0 1 1 1 0 1

 2 1 1 2 1

 0 0 1

 0 0 2 0 0

 2

 2 0

St_metric1=1

St_metric2=3

St_metric3=1

St_metric4=2

 (e) (f)

 34

 t2 t3 t4 t5 1 t6 t1 t2 t3 t4 t5 1 t6 t1

Sm=2

0 1 1 1 1 1

 0

 1 1 1 2 0

0 1

 0 0 0 0

 2 0 2 0 2 0 0

0

2
Sm=2

Sm=2

Sm=1

 (g) (h)

3.5.2 Decoder Implementation
In the context of the trellis diagram of Fig (3.8), transitions during any one time

interval can be grouped into 2v-1 disjoint cells [5], each cell depicting four possible

transitions, where v = K-1 is called the encoder memory. For the K = 3 example,

v = 2 and 2v-1 = 2 cells. These cells are shown in Fig (3.11), where a, b, c and d

refer to the states at time ti, and a’, b’, c’ and d’ refer to the state at time ti+1.

Shown on each transition is the branch metric bmet.

 cell1 cell2

 ti ti+1 ti ti+1

a

c’

a’

b

c

b’

d d’

Fig (3.11): Example of decoder cells

 35

3.5.3 Add-Compare-Select Computation
Continuing with K = 3, 2-cell example, Fig (3.12) illustrates the logic unit that

corresponds to cell1. The logic executes the special purpose computation called

add-compare-select (ACS). The state metric of state a, st_metric(a’) is calculated

by adding the previous time state metric of state a, st_metric(a), to the branch

metric bmet and the previous time state metric of state c, st_metric(c), to the

branch metric bmet. This results in two possible path metrics as candidates for

the new state metric (a’). The two candidates are compared in logic unit of Fig

(3.12). The largest likelihood (smallest distance) of the two path metrics is stored

as the new state metric st_metric(a’) for state a. Also stored is the new path

history m’(a’) for state a.

 m’(a) m’(b) m’(a) m’(b)

 To another logic unit To another logic unit

 + Bmet

 Select
 1 of 2

 Select
 1 of 2

Compare

 + + Bmet

 Select
 1 of 2

 Select
 1 of 2

Compare

St_metric(a) St_metric(b)

 + Bmet Bmet

St_metric(a’) m’(a’) St_metric(c’) St_metric(c’)

Fig (3.12) Logic unit that implements the add-compare-select functions

corresponding to cell1

 36

Also shown in Fig (3.12) is the cell1 ACS logic that yields the new state metric

st_metric(c’) and new path history m’(c’). This ACS operation is similarly

performed for the paths in other cells. The oldest bit on the path with the smallest

state metric forms the decoder output.

3.5.4 Add-Compare-Select as seen on the Trellis
Consider the same example that was used for describing Viterbi decoding earlier.

The message sequence was m = 1 1 0 1 1, the corresponding sequence was U =

11 01 01 00 01, and the received sequence was Z = 11 01 01 10 01. Fig (3.13)

depicts a decoding trellis diagram similar to Fig (3.8), as shown below.

 Z: 11 01 01 10 01

 t1 t2 t3 t4 t5 t6
 2 1 1 1 1

 0 1 1 1 1 1 1 1

 1 1 1

 2 2 0 0 2 2 0

 0 0 2 0

 2 0 2

 a = 00

 b = 01

 c = 10

 d = 11

 State

Decoded output: 1 1 0 1 1

Fig (3.13): Add-compare-select computations in Viterbi decoding

 37

A branch metric that labels each branch is the Hamming distance between the

received code symbols and the corresponding branch word from the encoder

trellis. We perform the add-compare-select (ACS) operation when there are two

transitions entering a state, as there are for times t4 and later. For example at

time t4, the value of state metric for state a is obtained by incrementing the state

metric st_metric1 = 3 at time t3 with the branch metric bmet1 = 1 yielding a

candidate value of 4. Simultaneously, the state metric st_metric2 = 2 at time t3 is

incremented with the branch metric bmet3 = 1 yielding a candidate value of 3.

The select operation of ACS process selects the largest-likelihood (minimum

distance) path metric as the new state metric; hence, for state a at time t4, the

new state metric is st_metric(a’) = 3. The winning path is shown with a heavy

line. On the trellis of Fig (3.13), observe the state metrics from left to right. Verify

that at each time, the value of each state metric is obtained by incrementing the

connected state metric from the previous time along the winning path with the

branch metric between them. At some point in trellis; the oldest bit can be

decoded. As an example, looking at time t6 in Fig (3.13), we see that the

minimum distance state metric has a value of 1. From this state d, the winning

path can be traced back to time t1, and one can verify that the decoded message

is the same as the original message, by the convention that dashed and solid line

represent binary ones and zeros respectively.

 38

CHAPTER 4
A SIMPLIFIED TRELLIS-BASED DECODER

4.1 INTRODUCTION
Trellis-Based decoding is a popular method to recover convolutionally encoded

information corrupted during transmission over a noisy channel. For example, the

Viterbi algorithm [22] and Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [24] are

two schemes that work on an underlying trellis description of encoded sequence.

 Basic computations in either algorithm involve branch metric (BM)

calculations and add-compare-select (ACS) operations. In case of the VA, an

ACS operation successively discards branches that cannot be part of the survivor

path. In case of the BCJR in the logarithmic domain (the Log-MAP algorithm),

this operation corresponds to an add-max* operation which is basically an ACS

operation with an added offset (ACSO) to correct for the Jacobian logarithm.

Hence, the presented considerations for the ACS hold for the ACSO as well.

 All most all-good rate 1/n convolutional codes, n an integer, have the

property that the code symbol labels on the two branches into each trellis node

are complementary. This results into simplifications of the BM and ACS units that

present a simplified architecture with reduced complexity, thus saving hardware

[3].

4.2 NOTATION

The ACS operation is best described by equation (4.1) written below. Let Γ(s,

k+1) be the updated metric of states at time k+1, based on the preceding state

metric at time k and respected branch metric λ():

 Γ (s, k+1) = min{[Γ(s’, k)+λ(s’, s), Γ(s’’, k)+λ(s’’, s)]} (4.1)

A channel symbol received from a soft output demodulator is quantized with q

bits and denoted yi. Clearly, there are 2q quantization levels and yi ∈ [0, 2q-1].

 39

This symbol is the output of a discrete memory less channel with binary input xj

and transition probabilities P(yi|xj). The expected code symbol ci(s’, s) along the

branch from state s’ to state s is derived by the mapping x0->0 and x1->2q-1.

 In additive white Gaussian noise channel the optimal distance measure

is the squared Euclidean distance

 n-1

 Σ |yi-ci(s’, s)|2. (4.2)
 i=0

However, given the preceding symbol constraints, this measures simplifies to

λi(s’, s) = yi, for ci(s’, s) = 0

 = (2q-1) - yi, for ci(s’, s)=2q – 1 (4.3)

and the complete branch metric is then written as

 n-1

 λ(s’, s)= Σ λi(s’, s). (4.4)
 i=0

4.3 COMPLEMENTARY PROPERTY
This discussion is restricted to rate ½ codes, that is n = 2, although the

considerations can be generalized to 1/n codes. Rate ½ codes play by far the

most important role in today’s communication systems since they are a good

compromise between achievable coding gain, bandwidth efficiency, and

implementation complexity. In practice, high-rate codes are usually obtained by

puncturing a basic rate ½ code. However, we begin with a general notation that

shows that the most beneficial simplification results for n = 2.

 We consider both feed-forward encoders and some systematic

feedback encoders. These encoders have one thing in common: The code

symbols of merging branches are always complementary as shown in Fig (4.1).

 40

 s’ c(s’, s) s

 k k+1

 s’’ c(s’’, s) = c(s’, s)

 Fig (4.1): Complementary property of merging branches.

The complementary operation on c is defined as the complementation of its

elements, that is c = (c0 c1, ……cn-1), where ci + ci = 2q- 1.

 From the considerations in section 4.2 it is clear that the branch metrics

share this property since they linearly depend on the code symbols. Hence, one

branch metric can be expressed by means of the other and we write

 λ(s’’, s) = n(2q-1)-λ(s’, s)

 = (n-1)λ(s’, s)+n[(2q-1)-λ(s’, s)]. (4.5)

We define the modified branch metric

 λ*(s’, s) ≡ n[(2q-1)-λ(s’, s)] (4.6)

Which is a signed number, and (4.5) becomes

 λ(s’’, s) = (n-1)λ(s’, s) + λ*(s’, s). (4.7)

Substituting (4.7) into (4.1) becomes

 Γ(s, k+1) = min{Γ(s’, k)+λ(s’, s), Γ(s’’, k)+ (n-1)λ(s’, s) + λ*(s’, s)}(4.8)

 41

Finally, the factor λ(s’, s) in the first argument of (4.8) can be taken out of the

comparison and we get

 Γ(s, k+1) = λ(s’, s) +min{Γ(s’, k), Γ(s’’, k)+ (n-2)λ(s’, s) + λ*(s’, s)}. (4.9)

Or, equivalently

 Γ(s, k+1) = λ(s’, s) + Γ(s, k+1) (4.10)

Where Γ(s, k+1) is the new outcome of the min operation.

There are several things to be observed in (4.9) and (4.10). First, considering

that the branch metrics are pre-calculated, there is one addition less needed to

carry out the comparison since the first argument in the comparison remains

unchanged. Second, for n = 2 the factor λ(s’, s) disappears in the second

argument and the comparison solely depend on one (modified) branch metric.

Third, in order to retain the numerical relation between interconnected state

metrics with different λ() we have to add this factor after having determines Γ(s,

k+1). However, one can subtract this factor from all state metrics and it will be

shown that in that case half the ACS units do not need this correction, that is Γ(s,

k+1) = Γ(s, k+1). Note that if the butterflies in a trellis were disjoint, this correction

could be neglected in all ACS units.

4.4 MODIFIED BM AND ACS UNITS FOR RATE ½
We start by noting that the branch metric λ(s’, s) can take four different values,

namely λ(x0x1) for every possible combination of symbols xj ∈ {0, 1}.

Fig (4.2) shows both the conventional and transformed ACS unit. Both units have

the same complexity but the later needs one adder less to determine Γ(s, k+1).

 42

λ(s’, s)

 -

 (a)

+

+

+

sign

Γ(s’, k)

Γ(s, k+1)

Γ(s’’,k)

λ(s’', s)

 -

sign
Γ(s, k+1)

+
Γ(s, k+1)

Γ(s’, k)

+

Γ(s’’,k) +

λ(s’, s)

λ*(s', s)

 (b)

Fig (4.2) a: Conventional and (b) transformed ACS unit for a rate ½ code. Both

units have the same complexity but the later needs one adder less to determine

the outcome of comparison.

The hardware savings now become apparent by looking at an example, an ACS

unit setup for decoding a (7,5) code in Fig (4.3).

 43

1111

0

1
00

3

2

00
0

1

2

3

 -

 -

+

+

λ*(00)

Γ(0, k+1)
Γ(0, k)

Γ(1, k)
sign

sign

Γ(2, k+1)
Γ(1, k)

+Γ(0, k)

+

λ*(00)

 44

3

2

1

2

3

1

0101

10

0 0

10

 -

sign

Γ(1, k+1)

+
Γ(1, k+1)

Γ(2, k)

+

Γ(3, k) +

 Δλ

λ*(10)

 Δλ

 -

sign

+

Γ(3, k+1)

Γ(3, k+1)
Γ(3, k)

+

Γ(2 ,k) +

λ*(10)

Fig (4.3): Proposed ACS unit setup for decoding a (7, 5) code.

In this picture, the factor λ(s’, s) of Fig 4.2(b) to be added in an ACS unit is either

λ(00) or λ(10). However, we can subtract, for example λ(00) from all state

 45

metrics. This factor belongs to the two ACS units on the left and, therefore, the

state metric corrections in these units become unnecessary while

 Δλ = λ(10) - λ(00)

has to be added to the other units. Hence, for rate ½ codes that has the

complementary property half the ACS units save one adder compared to a

conventional setup. If speed is an issue, Δλ could be stored in the BM unit and

added in the next computation cycle instead, thus maintaining the original critical

path of conventional ACS unit. However, the BM unit becomes slightly more

complex in this case.

 The calculation of the modified branch metric λ*(s’, s) based on (4.6) for

n = 2 is shown in Fig (4.4). Normally, the expression in square brackets in (4.6)

would be the bit-complement of λ(s’, s). However, since λ(s’, s) ∈ [0, 2(2q –1)]

one has to exclude the most significant bit (MSB), which indicates the sign of the

modified branch metric, from the negation. Since n = 2 the multiplication in (4.6)

reduces to a left shift by one bit. Note that if n is not a power of two, this

multiplication cannot reduce to bit-shift operations.

 MSB

λ(s’, s)
λ*(s’, s) <<1

Fig (4.4): Generation of λ*(), <<1 denotes a left shift by one bit.

4.5 COMPARISON
If there are 2n distinct code sequences, a conventional BM unit requires 2n(n-1)

additions and n negations to calculate 2n branch metrics. Hence for a rate ½

code we need four adders and two negations to calculate four branch metrics,

see Fig 4.5(a). The proposed BM unit shown in Fig 4.5(b) requires only three

 46

additions, one negation of a channel symbol, and two negations of intermediate

branch metrics to calculate two branch metrics.

+

+

+

 λ(11)

 y1

 y0

 λ(00)

 λ(10) +

 λ(01)

(a)

 y0

 _

(b)

Fig 4.5(a): Conventional and (b): proposed BM unit for a rate ½ code.

+

 λ(10)

 λ*() λ*(10) +

Δλ +

 λ*(00) λ*()

 λ(00)

 y1

 47

Notice that a bit-shift operation comes at negligible cost in a hardware

implementation. Furthermore, the difference between the two branch metrics, Δλ,

needed to normalize half the state metrics becomes in this case simply (2q-1)-

2y0. This operation can be further simplified on the bit level into a bit-shift

followed by a negation (MSB excluded) of y0 and is hence not considered an

adder in Table I

TABLE I
Number of Additions for BM/ACS Unit Setup of a Rate ½ Code

 Unit ACS BM

 Conventional 3.2m 4

 Proposed 5.2m-1 2

This table shows that the number of additions for a BM/ACS unit setup for code

rate ½ and memory m. The proposed scheme halves the additions in the BM unit

and reduces the number of additions for the ACS unit by 17%. By software

simulation of the hardware circuits, we have verified that decoder error

performance stays the same.

4.6 CONCLUSION
We have shown that the implementation of BM and ACS units in trellis-based

decoding architectures can be simplified for a certain class of convolutional

codes. For a rate ½ code, half the ACS units save one adder compared to

conventional implementation. Furthermore, only two branch metrics have to be

calculated instead of four. These potential hardware savings will also lead to

savings in power consumption.

 48

4.7 ALGORITHM: A SIMPLIFIED TRELLIS-BASED DECODER
1. Start

2. Take a 2-D array of integers of size 4×2 named output with contents [(0,3),

(3,0), (1,2), (2,1)] {for two code generators with coefficients 111 and 101}.

3. Take a file pointer (ifp) and associate it with a text file containing bit values

after encoding and passing through AWGN channel.

4. Take a file pointer (ofp) and associate it with an empty output text file.

5. Count the number of bits in input file and store it in variable n.

6. Take an array (numoct) of integers of size n/2 for storing octal equivalent

of bits taking two each time in input file.

7. Take an array (decod) of integers of size n/2+1 for storing decoding bit

values.

8. Take a double array (st_metric) of integers of size (n/2+1×4) for storing

state metric values for each value stored in numoct.

9. Convert the bit values (a pair) from input file to equivalent octal values

(i) Let i = 0 and count =0

(ii) Let c = bit from input file at position ‘count’

(iii) c = c-‘0’

(iv) Let c1 = bit from input file at position ‘count+1’

(v) c1 = c1-‘0’

(vi) numoct [count/2] = 2*c+c1

(vii) Is count >=n, if True go to step 10.

(viii) count = count+2

(ix) Repeat step (ii) to (vii)

10. Equate state metric at time t = 1 to all zeros

(i) for i = 0 to 3

(ii) st_metric[0][i] = 0]

(iii) end for

11. Calculate state metric for time t = 2 using branch metric values bm1 and

bm2 and function hammingdist described after main algorithm.

(i) bm1 = hammingdist (numoct[0],output[0][0])

 49

(ii) st_metric[1][0] = st_metric[0][0]+bm1

(iii) bm2 = hammingdist (numoct[0], output[0][1])

(iv) st_metric[1][2] = st_metric[0][0]+bm2

12. Calculate state metric for time t =3

(i) bm1 = hammingdist (numoct[1], output[0][0])

(ii) bm2 = hammingdist (numoct[1], output[0][1])

(iii) st_metric[2][0] = st_metric[1][0]+bm1

(iv) st_metric[2][2] = st_metric[1][0]+bm2

(v) bm1 = hammingdist (numoct[1],output[2][0])

(vi) bm2 = hammingdist (numoct[1],output[2][1])

(vii) st_metric[2][1] = st_metric[1][2]+bm1

(viii) st_metric[2][3] = st_metric[1][2]+bm2

13. Calculate state metric values for time t>=4

(i) Let i = 2

(ii) Let sym = numoct[i]

(iii) Let bm1 = hammingdist (sym, output[0][0])

(iv) Let ‘modified branch metric value’ modbm1 = 2*(1-bm1)

(v) Let bm2 = hammingdist (sym, output[2][0])

(vi) Let modbm2 = 2*(1-bm2)

(vii) If st_metric[i][0] < = st_metric[i][1] + modbm1 then

 st_metric[i+1][0] = st_metric[i][0]

 else

 st_metric[i+1][0]= st_metric[i][1]+modbm1

 end if

(viii) If st_metric[i][1] < = st_metric[i][0] + modbm1 then

 st_metric[i+1][2] = st_metric[i][1]

 else

 st_metric[i+1][2]= st_metric[i][0]+modbm1

 end if

(ix) If st_metric[i][2] < = st_metric[i][3] + modbm2 then

 st_metric[i+1][1] = st_metric[i][2]

 50

 else

 st_metric[i+1][1]= st_metric[i][3]+modbm2

 end if

(x) st_metric[i+1][1] = st_metric[i+1][1]+bm2-bm1

(xi) If st_metric[i][3] < = st_metric[i][2] + modbm2 then

 st_metric[i+1][3] = st_metric[i][3]

 else

 st_metric[i+1][3]= st_metric[i][2]+modbm2

 end if

(xii) st_metric[i+1][3] = st_metric[i+1][3]+bm2-bm1

(xiii) Is i >= n/2, if true then go to step 14

(xiv) i =i + 2

(xv) Repeat step (ii) to (xiii)

14. Calculating minimum value of state metric at time t = n/2

(i) Let min = st_metric[n/2][0]

(ii) Let i = 1

(iii) If st_metric[n/2][i] < min then

min = st_metric[n/2][i]

index =j

end if

(iv) Is j = 3 true then go to step 15

(v) i = i+1

(vi) Repeat step (iii) and (iv)

15. Traversing back the path from t=n/2 to t =1 and get the decoded bits

(i) Let i = n/2

(ii) If index = 0 then

If st_metric[i-1][0] < = st_metric[i-1][1] then

index =0

else

index = 1

end if

 51

decod[i] = 0

i= i-1

end if

(iii) If index = 1 then

If st_metric[i-1][2] < = st_metric[i-1][3] then

index =2

else

index = 3

end if

decod[i] = 0

i= i-1

end if

(iv) If index = 2 then

If st_metric[i-1][0] < = st_metric[i-1][1] then

index =0

else

index = 1

end if

decod[i] = 1

i= i-1

end if

(v) If index = 3 then

If st_metric[i-1][2] < = st_metric[i-1][3] then

index = 2

else

index = 3

end if

decod[i] = 1

i= i-1

end if

(vi) Is i < = 0 if true then go to step 16

 52

(vii) Repeat (ii) to (vi)

16. Write the decoded bit values (decod array) to the output file.

17. Convert the byte string in output file to alphanumeric characters and write

into another text file.

18. The above file containing characters is the final result. Compare it with the

original file, which was encoded and sent and with the file, which would

have been received if sent uncoded.

19. Stop

Define below a function Hammingdist, which is used in main algorithm written

above. It takes two integer values as inputs and calculates the hamming

distance between them and then returns this value back to the main program.

1. Take two integer input values x1 and x2

2. Let x3=x1-x2

3. if x3<0 then

 x3=-x3

4. if x3=0 then

 return 0

5. if x3=1 then

if(x1=1 and x2=2)or(x1=2 and x2=3) then

return 2

else

return 1

end if

end if

6. if x3=2 then

return 1

7. if x3=3 then

 return 2

8. end hammingdist

 53

CHAPTER 5
TURBO CODES

5.1 INTRODUCTION
Concatenated coding schemes were first proposed by Forney as a method for

achieving large coding gains by combining two or more relatively simple building-

block or component codes (sometimes called constituent codes). The resulting

codes [18] had the error-correction capability of much longer codes, and they

were endowed with a structure that permitted relatively easy to moderately

complex decoding. A turbo code can be thought of as a refinement of the

concatenated encoding structure plus an iterative algorithm [26] for decoding the

associated code sequence. Because of its unique form, we choose to list turbo

as a separate category under structured sequences.

 Turbo codes were first introduced in 1993 by Berrou, Glavieux, and

Thitimajshima [10], where a scheme is described that achieves a bit-error-

probability of 10-5, using a rate ½ code over an additive white Gaussian noise

(AWGN) channel and BPSK modulation at an Eb/N0 0f 0.7 dB. The codes are

constructed by using two or more component codes on different interleaved

versions of the same information sequence. For a system with two components

codes, the concept behind turbo decoding is to pass soft decisions from the

output of one decoder to the input of the other decoder, and to iterate this

process several times so as to produce more reliable decisions.

5.2 TURBO CODE CONCEPTS
5.2.1 Likelihood functions
The mathematical foundation of hypothesis testing rests on Bayes’ theorem. For

communication engineering, where application involving an AWGN channel are

of great interest, the most useful form of Bayes’ theorem expresses the a

posteriori probability (APP) of a decision in terms of a continuous-valued random

variable x as

 54

 P (d = i|x) = p(x|d = i) P(d = i) i = 1,….., M (5.1)

 p(x)

and M

 p(x) = Σ (5.2)
p(x|d = i)P(d = i)

 i=1

Where P (d = i|x) is the APP, and d = i represents data d belonging to the ith

signal class from a set of M classes. Further, p(x|d = i) represents the probability

density function (pdf) of a received continuous-valued data-plus noise signal x,

conditioned on the signal class d = i. Also, P(d = i), called the a priori probability,

is the probability of occurrence of the ith signal class. Typically x is an

“observable” random variable or a test statistic that is obtained at the output of a

demodulator or some other signal processor. Therefore, p(x) is the pdf of the

received signal x, yielding the test statistic over the entire space of signal

classes. In (5.1), for a particular observation, p(x) is a scaling factor since it is

obtained by averaging over all the classes in the space. Lower case p is used to

designate the pdf of a continuous-valued random variable, and upper case P is

used to designate probability (a priori and APP). Determining the APP of a

received signal from equation (5.1) can be thought of as the result of an

experiment. Before the experiment, there generally exists (or one can estimate)

an a priori probability P(d = i). The experiment consists of using equation (5.1) for

computing the APP, P (d = i|x), which can be thought of as a “refinement” of the

prior knowledge about the data, brought about by examining the received signal

x.

5.2.2 The Two-Signal Class Case
Let the binary logical elements 1 and 0 be represented electronically by voltages

+1 and –1, respectively. The variable d is used to represent the transmitted data

bit, whether it appears as a voltage, or as a logical element. For signal

transmission over an AWGN channel, Fig (5.1) shows the conditional pdfs,

referred to as likelihood functions. The rightmost function p(x|d = +1) shows the

pdf of random variable x conditioned on d = +1 being transmitted. The leftmost

 55

function p(x|d = -1) illustrates a similar pdf conditioned on d = -1 being

transmitted. The abscissa represents the full range of possible values of the test

statistic x generated at receiver.

l1

l2

-1 xk +1

Fig (5.1): Likelihood function

γ0

Likelihod of d = -1
p(x|d = -1)

Likelihod of d = +1
p(x|d = +1)

In Fig (5.1), one such arbitrary value xk is shown, where the index denotes an

observation in the kth time interval. A line subtended from xk intercepts the two

likelihood functions yielding two likelihood values l1 = p(xk|dk = +1) and l2 = p(xk|dk

= -1). A well-known hard decision rule, known as maximum likelihood, is to

choose the data dk = +1 or dk = -1 associated with the larger of two intercept

values l1 and l2, respectively. For each data bit at time k, this is tantamount to

deciding that dk = +1 if xk falls on the right hand side of the decision line labeled

γ0, otherwise deciding that dk = -1.

 A similar decision rule, known as maximum a posteriori (MAP) [17],

which can be shown to be a minimum-probability-of-error rule, takes into account

the a priori probabilities of the data. The general expression for the MAP rule in

terms of APPs is

 56

 H1

 P(d = +1|x) P(d = -1|x) (5.3)

H2

Equation (5.3) states that one should choose the hypothesis H1, (d = +1) if the

APP, P(d = +1|x) is greater than the APP, P(d = -1|x). Otherwise, one should

choose hypothesis H2, (d = -1). Using the Bayes’ theorem of equation (5.1), the

APPs in equation (5.3) can be replaced by their equivalent expressions, yielding

 p(x | d = +1)P(d = +1) p(x | d = -1)P(d = -1) (5.4)

 H1

H2

Where the pdfs p(x) appearing on both sides of the inequality in equation (5.1)

has been cancelled. Equation (5.4) is generally expressed in terms of a ratio,

yielding the so-called likelihood ratio test, as follows:

 H1

p(x|d = +1) P(d = -1)

p(x|d = -1) P(d = +1)

or

p(x|d = +1) P(d = +1) (5.5)

p(x|d = -1) P(d = -1)

 H2

1

H2

 H1

 57

5.2.3 Log-Likelihood Ratio
By taking the logarithm of the likelihood ration developed in equation (5.3)

through equation (5.5), we obtain a useful metric called the log-likelihood ratio

(LLR). It is a real number representing a soft decision out of a detector,

designated by

 P(d = +1|x) p(x|d=+1)P(d =+1)

 P(d = -1|x) p(x|d=-1)P(d = -1) (5.6)

So that

 p(x | d = +1) P(d =+1)

 p(x | d = -1) P(d= -1) (5.7)

or

 L(d | x) = L(x | d) + L(d) (5.8)

Where L(x|d) is the LLR of the test statistic x obtained by measurement of the

channel output x under the alternate conditions that d = +1 or d = -1 may have

been transmitted, and L(d) is the a priori LLR of the data bit d. To simplify the

notation, equation (5.7) can be rewritten as

 L’(d’) = Lc(x) + L(d) (5.9)

Where the notation Lc(x) emphasizes that this LLR term is the result of a channel

measurement made at the receiver. For a systematic code, it can be shown that

the LLR (soft output) out of the decoder is equal to

 L(d’) = L’(d’) + Le(d’) (5.10)

Where L’(d’) is the LLR of a data bit out of demodulator (input to the decoder),

and Le(d’), called the extrinsic LLR, represents the extra knowledge that is

L(d | x) = log = log

+ log log L(d | x) =

 58

gleaned from the decoding process. The output sequence of a systematic

decoder is made up of values representing data bits and parity bits. From

equation (5.9) and (5.10), the output LLR of the decoder is now written as

 L(d’) = Lc(x) + L(d) + Le(d’) (5.11)

Equation (5.11) shows that the output LLR of a systematic decoder can be

represented as having three LLR elements-a channel measurement, a priori

knowledge of the data, and an extrinsic LLR stemming solely from the decoder.

To yield the final L(d’), each of the individual LLRs can be added as shown in

equation (5.11), because the three terms are statistically independent. The soft

decoder output L(d’) is a real number that provides a hard decision as well as the

reliability of that decision. The sign of L(d’) denotes the hard decision-that is, for

positive values of L(d’) decide that d = +1, and for negative values that d = -1.

The magnitude of L(d’) denotes the reliability of that decision. Often the values of

Le(d’) due to the decoder has the same sign a Lc(x) + L(d) and therefore acts to

improve the reliability of L(d’).

5.2.4 Principle of Iterative (Turbo) Decoding
With turbo codes, where two or more component codes are used, and decoding

involves feeding outputs from one decoder to the inputs of other decoders in an

iterative fashion, hard-output decoder would not be suitable [7]. That is because

hard decisions into a decoder degrade system performance (compared with soft

decision). Hence what is needed for the decoding of turbo codes is a soft-

input/soft-output decoder. For the first decoding iteration of such a soft-input/soft-

output decoder illustrated in Fig (5.2), one generally assumes the binary data to

be equally likely, yielding an initial a priori LLR value of L(d) = 0 for the third term

in Equation (5.11). The channel LLR value Lc(x) is measured by forming the

logarithm of the ratio of the values of l1 and l2 for a particular observation of x

(see Fig (5.1)), which appears as the second term in equation (5.11). The output

L(d’) of the decoder in Fig (5.2) is made up of the LLR from the detector L’(d’)

 59

and the extrinsic LLR output Le(d’), representing knowledge gleaned from the

decoding process. As illustrated in Fig (5.2), for iterative decoding, the extrinsic

likelihood is fed back to the input (of another component decoder) to serve as a

refinement of the a–priori probability of the data for the next iteration.

L(d)
a priori
value in

Le(d)
extrinsic
value out

L’(d’)
a posteriori
value out

Lc(x)
channel
value in

Soft-in
soft-out
decoder

Fig (5.2): Soft input/soft output decoder (for a systematic code)

5.3 LOG-LIKELIHOOD ALGEBRA
To best explain the iterative feedback of soft decoder outputs, the concept of log-

Likelihood algebra is introduced. For statistically independent data d, the sum of

two log likelihood ratios (LLRs) is defined as

 L(d1) ⊗ L(d2) ≡ L(d1 ⊕ d2) = loge [(eL(d
1

)+eL(d
2

))/(1+eL(d
1

)eL(d
2

))] (5.12)

 ≈ (-1) × sgn [L(d1)] × sgn[L(d2)] × min (|L(d1)|, |L(d2)|) (5.13)

Where the natural logarithm is used, and the function sgn(.) represents the

“polarity of”. There are three addition operations in equation (5.12). The + sign is

used for ordinary addition. The ⊕ sign is used to denote the modulo-2 sum of

data expressed as binary digits. The ⊗ sign denotes log-likelihood addition, or

equivalently, the mathematical operation described by equation (5.12). The sum

 60

of two LLRs denoted by the operator ⊗ is defined as the LLR of the modulo-2

sum of the underlying statistically independent data bits. Equation (5.13) is an

approximation of equation (5.12) that will prove useful later in a numerical

example. The sum of LLRs, as described by equations (5.12) or (5.13), yields the

following interesting results when one of the LLRs is very large and very small:

 L(d) ⊗ ∝ = -L(d)

And

 L(d) ⊗ 0 = 0

5.4 ENCODING WITH RECURSIVE SYSTEMATIC CODES
The basic concepts of concatenation, iteration, and soft decision decoding are

applied to the implementation of turbo codes that are formed by the parallel

concatenation of component convolutional codes.

 A short review of simple binary rate ½ convolutional encoders with

constraint length K and memory K-1 is in order. The input to the encoder at time

k is a bit dk, and the corresponding codeword is the bit pair (uk, vk), where

 uk = ∑ g1idk-i modulo-2, g1i = 0,1

K-1

i=0
and

 vk = ∑ g2idk-i modulo-2, g2i = 0,1

K-1

i=0

Where G1 = {g1i} and G2 = {g2i} are the code generators, and dk is represented as

a binary digit. This encoder can be visualized as a discrete-time finite impulse

response (FIR) linear system, giving rise to the familiar nonsystematic

convolutional (NSC) code, and example of which is shown in Fig (5.3). In this

example, the constraint length is K = 3, and the two code generators are

described by G1 = {1 1 1}and G2 = {1 0 1}.

 61

 {dk} dk dk-1

⊗
 {vk}

⊗

 {uk}

 dk-2

Fig (5.3): Nonsystematic convolutional (NSC) code

It is well known that at large Eb/N0 values, it is generally the other way around. A

class of infinite impulse response (IIR) convolutional codes has been proposed

as building blocks for a turbo codes because previously encoded information bits

are continually fed back to the encoder’s input. For high code rates, RSC codes

result in better error performance than the best NSC code by using a feedback

loop, and setting one of two outputs (uk or vk) equal to dk. Fig (5.4) illustrates an

example of such an RSC code, with K=3, where ak is recursively calculated as

 ak = dk + ∑ g’iak-i modulo-2

K=1

i=1

and g’i is equal to g1i if uk=dk, and to g2i if vk=dk.

 62

Fig (5.4): Recursive Systematic Convolutional (RSC) Code.

 ak ak-1 ak-2⊗

⊗

• {uk}

 {vk}

 {dk}

5.4.1 Concatenation of RSC Codes
Consider the parallel concatenation of two RSC encoders [18] of the type shown

in Fig (5.4). Good turbo codes have been constructed from the component codes

having short constraint length (K = 3 to 5). An example of such a turbo encoder is

shown in Fig (5.5), where the switch yielding vk provides puncturing, making the

overall code rate ½. Without the switch, the code rate would be 1/3 [23]. The goal

in designing turbo codes is to choose the best component codes by maximizing

the effective free distance of the code [19]. At large values of Eb/N0, this is

tantamount to maximizing the minimum weight codeword. However, at low

values of Eb/N0, optimizing the weight distribution of the codewords is more

important than maximizing the minimum weight codeword.

 The turbo encoder in Fig (5.5) produces codewords from each of two

component encoders. The weight distribution for the codewords out of this

parallel concatenation depends on how the codewords from one of the

component encoders are combined with codewords from other encoder.

 63

 Intuitively, we should avoid pairing low-weight codewords from one

encoder with low-weight codewords from the other encoder. Any such pairings

can be avoided by proper design of the interleaver.

 If the component encoders are not recursive, the unit weight input

sequence (0 0 … 0 0 1 0 0 …. 0 0) will always generate a low weight codeword

at the input of a second encoder for any interleaver design. In other words, the

interleaver would not influence the output codeword weight distribution if the

components codes were not recursive. However if the component codes are

recursive, a weight-1 input sequence generates an infinite impulse response

(infinite-weight output).

{uk}

 ak ak-1 ak-2
{d’k}

⊗

⊗

Interleaver

 ak ak-1

⊗

{v2k}

 ak-2⊗

•{dk}

{v1k}

{vk}

Fig (5.5): Parallel concatenation of two RSC encoders

 64

The important aspect of the building blocks used in turbo codes is that they are

recursive (the systematic aspect is merely incidental). It is the RSC code’s IIR

property that protects against the generation of low-weight codewords that

cannot be remedied by an interleaver. One can argue that turbo code

performance is largely influenced by minimum weight codewords that result from

the weight-2 input sequence. The argument is that weight-1 inputs can be

ignored since they yield large codeword weights due to the IIR encoder structure.

For input sequences having weight-3 and larger, a property-designed interleaver

makes the occurrence of low weight output codewords relatively rare.

5.5 A FEEDBACK DECODER
The Viterbi algorithm (VA) is an optimal decoding method for minimizing the

probability of sequence error. Unfortunately, the (hard decision output) VA is not

suited to generate the a posteriori probability (APP) or soft-decision output for

each decoded bit. A relevant algorithm for doing this has been proposed by Bahl

et. al. The Bahl algorithm was modified by Berrou, et. al. for use in decoding RSC

codes [10]. The APP that a decoded data bit dk = i can be derived from the joint

probability λk
i,m defined by

 λk
i,m = P{dk = i, sk = m|R1

N} (5.14)

where sk = m is the encoder state at time k, and R1
N is a received binary

sequence from time k = 1 through some time N.

 Thus, the APP that a decoded data bit dk = i, represented as a binary

digit, is obtained by summing the joint probability over all states, as follows

 P{dk = i|R1
N} = Σ i = 0,1 (5.15) k

i,mλ

m

Next, the log-likelihood ratio (LLR) is written as the logarithm of the ratio of

APPS, as

 65

 Σ k
1,mλ

L(d’k) = log (5.16)
m

 Σ k
0,mλ

m

The decoder makes a decision, known as the maximum a posteriori (MAP)

decision rule, by comparing L(d’k) to zero threshold,. That is

 d’k = 1 if L(d’k) > 0 (5.17)

 d’k = 0 if L(d’k) < 0

For a systematic code, the LLR L(d’k) associated with each bit d’k can be

described as the sum of the LLR of d’k, out of the demodulator and of other LLRs

generated by the decoder (extrinsic information), as was expressed in (5.12) and

(5.13). Consider the detection of a noisy data sequence that stems from the

encoder from the encoder of Fig (5.5), with the use of a decoder shown in Fig

(5.6).

 Assume binary modulation and a discrete memory-less Gaussian

channel. The decoder input is made up of a set Rk of two random variables xk

and yk. For the bits dk and vk at time k, expressed as binary numbers (1, 0), the

conversion to received bipolar (+1, -1) pulses can be expressed as

 xk = (2dk - 1) + ik (5.18)

and

 yk = (2vk - 1) + qk (5.19)

Where ik and qk are two statistically independent random variables with the same

variance σ2, accounting for noise distribution. The redundant information yk is

demultiplexed and send to decoder DEC1 as y1k, when vk = v1k, and to decoder

 66

DEC2 as y2k, when vk = v2k. When the redundant information of a given encoder

(C1 or C2) is not emitted, the corresponding decoder input is set to zero.

Le2(d’k)

Decoder
DEC1

Inter-
leaving

Deinter-
leaving

Deinter-
leaving

Decoder
DEC2

L1(d’n) L1(d’k)

yk

 y2k y1k

L2(d’k)

Decoded
output d’k

 zk

xk

Fig (5.6): Feedback decoder

Notice that the output of DEC1 has an interleaver structure identical to the one

used at the transmitter between the two component encoders. This is because

the information processed by DEC1 is the no interleaved output of C1 (corrupted

by channel noise). Conversely, the information processed by DEC2 is the noisy

output of C2, whose input is the same data going into C1, however permuted by

the interleaver. DEC2 makes use of the DEC1 output, provided this output is time

ordered in the same way as the input of C2 (i.e., the two sequences into DEC2

must appear “in step” with respect to the positional arrangements of the signals

in each sequence).

 67

5.5.1 Decoding with a Feedback Loop
We rewrite equation (5.11) for the soft-decision output at time k, with the a priori

LLR L(d’k) initially set to zero. This follows from the assumption that the data bits

are equally likely. Therefore

 L(d’k) = Lc(xk) + Le(d’k) (5.20)

 = log p(xk|dk = 1) (5.21)

 p(xk|dk = 0)
+ Le(d’k)

where L(d’k) is the soft-decision output at the decoder, and Lc(xk) is the LLR

channel measurement, stemming from the ratio of likelihood functions p(xk|dk = i)

associated with the discrete memory-less channel model. Le(d’k) = L(d’k)|xk=0 is a

function of the redundant information. It is the extrinsic information supplied by

the decoder and does not depend on the decoder input xk. Ideally Lc(xk) and

Le(d’k) are corrupted by uncorrelated noise, and thus Le(d’k) may be used as a

new observation of dk by another decoder to form an iterative process. The

fundamental principal for feeding back information to another decoder is that a

decoder should never be supplied with information that stems from its own input

(because the input and output corruption will be highly correlated).

 For the Gaussian channel, the natural logarithm in equation (5.11) is used

to describe the channel LLR Lc(xk) which can be further written as

 1 exp -(xk-1)2)
 Lc(xk) = Loge σ√2Π 2σ2

 1 exp -(xk+1)2)
 σ√2Π 2σ2

 = -1 (xk-1)2 1 (xk+1)2

 2 σ2 2 σ2
+

 68

 Lc(xk) = 2 xk

 σ2

Both decoders, DEC1 and DEC2 use the modified Bahl algorithm. If the inputs

L1(d’k) and y2k to decoder DEC2 are statistically independent, then the LLR L2(d’k)

at the output of DEC2 can be written as

 L2(d’k) = f[L1(d’k)] + Le2(d’k)

with

 L1(d’k) = 2 xk + Le1(d’k)

 σ2

Where f[.] indicates a functional relationship. The extrinsic information Le2(d’k) out

of DEC2 is a function of the sequence {L1(d’k)}n≠k. Since L1(d’n) depends on the

observation R1
N, then the extrinsic information Le2(d’k) is correlated with the

observations xk and y1k. Nevertheless, the greater |n-k| is, the less correlated are

L1(d’n) and the observations xk and yk. Thus due to the interleaving between

DEC1 and DEC2, the extrinsic information Le2(d’k) and the observations xk and

y1k are weakly correlated. Therefore, they can be jointly used for the decoding of

bit dk. In Fig (5.6), the parameter zk = Le2(d’k) feeding into DEC1 acts as a

diversity effect in an iterative process. In general, Le2(d’k) will have the same sign

as dk. Therefore Le2(d’k) may increase the associated LLR and thereby improve

the reliability of each decoded data bit.

 69

CHAPTER 6
LOG-MAP-BASED ITERATIVE TURBO DECODER

6.1 INTRODUCTION
In 1948, Claude E. Shannon proved that it is possible to transmit information with

arbitrary high reliability provided that the rate of transmission R does not exceed

a certain Value C known as Shannon capacity or Shannon limit. However, before

the introduction of Turbo code, designing channel coding for practical

communication system aimed at cut-off rate instead of the ultimate Shannon

capacity: this is because previous attempts to exceed the cut-off rate usually

result in inefficient channel coding schemes, where very large additional

complexity is required to obtain little transmission improvement.

 In 1993, a parallel-concatenated channel coding scheme, named Turbo

code, was proposed by Berrou et al, Which achieves transmission performance a

few tenths of a dB from Shannon limit when applied to a BPSK transmission over

AWGN channel [10]. More importantly, by employing a sub-optimal iterative

decoding structure and soft-in/soft-out (SISO) maximum a posteriori (MAP)

decoding algorithm, the near-capacity performance is achieved with a feasible

decoding complexity. Because of its excellence performance, turbo code has

been employed in several transmission systems such as CDMA2000, WCDMA,

and the next generation ADSL systems [8], [31], [32].

 With the application of turbo coding to more communication systems, low

complexity implementation of turbo decoder becomes a more popular and

challenging topic [1], [6], [9]. Although employing iterative decoding significantly

reduces the decoding complexity, compared to a maximum-likelihood (ML)

decoder, the MAP decoding algorithm is still very computation-intensive in

comparison with the traditional Viterbi algorithm (VA). Besides, turbo codes with

good performance normally introduce a long encoding/decoding delays because

of the long interleaver length in both the encoder and the decoder. For delay

sensitive applications, i.e., real-time applications, this delay must be kept very

 70

low [27], [29]. However, the delay is usually reduced at the cost of performance

degradation.

 The considerations in implementing an efficient turbo decoder is to

choose a proper SISO algorithm and interleaver design [11], [2], [20]. The

original turbo decoder consists of SISO decoders based on MAP algorithm,

which involves a large amount of multiplications, exponentials, and logarithm

computations. Implementations of these mathematical operations are usually

quite complex especially in VLSI design [6], [16]. Suboptimal, but much simpler,

varieties of MAP algorithms, Max-log-MAP and Log-MAP, were proposed in

order to reduce the computational complexity. Another Suboptimal SISO

algorithm is the soft output Viterbi algorithm (SOVA) [7], which is derived from the

traditional VA. Each of these Suboptimal SISO algorithms brings certain level of

complexity reductions with some performance degradations. In a turbo decoder

design, the SISO algorithm should be selected as a compromise between the

decoding performance and implementation complexity.

6.2 TURBO CODES
A typical turbo code consists of two systematic convolutional codes separated by

an interleaver [15]. A generic encoding structure of a binary turbo code with two

identical rate-1/2 constituent codes (CCs) is shown in Fig (6.1).

The turbo code encoder processes a block of K information bits each time. The

first CC takes the block as input and produces K parity bits. The interleaved

version of the same block is input to the second CC, which produces another

block of K parity bits. Typically, the output of a turbo encoder is the multiplex of

the information bit sequence and two parity bit sequences. Hence for every K

information bits, there are 3K output bits, resulting in a code rate of 1/3. The

parity bits from the two CCs can be punctured alternatively to obtain a code rate

of ½ with some performance lost. Higher density puncturing schemes can be

applied to further increase the code rate, at more performance degradation.

 71

 Π

 g2(D)
 g1(D)

Puncturing
Mechanism

 g2(D)
 g1(D)

Data d

 RSC1

x1p

 x1p or x2p

x2p

 RSC2

Fig (6.1): Typical structure of turbo encoder

Theoretical performance analysis of turbo code always assumes using a

maximum-likelihood decoder at the receiver. However, ML decoder is often too

complex to be implemented for turbo decoding because of the very complex

trellis structure caused by the interleaver between the two CCs. Iterative

decoding is proposed in as a Suboptimal but feasible alternative for turbo

decoding [11]. The basic iterative decoding structure corresponding to the turbo

encoder shown in Fig (6.1) is depicted in Fig (6.2). The two constituent decoders

are used to perform SISO decoding over the coded sequences generated by the

two CCs respectively, where the reliability information is exchanged between

them during the decoding iterations.

 As shown in Fig (6.2), the received noisy sequence is demultiplexed into

three sequences: the systematic sequence ys and two parity sequences y1p and

y2p. One SISO decoder takes ys and y1p (or y2p) as inputs and computes the log-

likelihood ratio (LLR) of each information bit based on the trellis structure of the

CC, which is defined for the kth information bit dk, as

 L(dk) = log Pr{dk = 1|Y} (6.1)

 Pr{dk = 0|Y}

 72

Where Y is the received symbol block. The decision dk = 1 is made for a positive

LLR and dk = 0 for a negative LLR. The absolute value of the LLR represents the

reliability of this decision. The larger is the absolute value, the more reliable is the

decision.

SISO Decoder 1 SISO Decoder 2

 Π

 Π

 Π

 ys

Le
12

Le
21

 y1p

y2p

Fig (6.2): Block diagram of iterative (turbo) decoder (Π-interleaver)

Several SISO decoding algorithms are proposed in the literature. MAP algorithm

is an optimal SISO algorithm in the sense of minimizing the symbol error

probability [12], but is computationally intensive. A simplified version of MAP,

Max-Log-MAP algorithm, achieves a significant complexity reduction with small

performance degradation [1]. A modified Max-Log-MAP algorithm, the log-MAP

algorithm, provides nearly optimum performance while still keeping the low

complexity [1]. Another SISO decoding algorithm, the SOVA, is obtained by

making some modifications to the traditional VA to generate the soft reliability

information. Using any of the above SISO decoding algorithms, with a proper

interleaver, it has been shown that the output LLR of the SISO decoder can be

divided into three approximately independent terms

 73

 L(dk) = Lc(dk) + Lapri(dk) + Le(dk) (6.2)

Where Lc(dk) is the channel information, Lapri(dk) is the a priori information of dk,

and Le(dk) is the extrinsic information, which is represented by Le
12 and Le

21 in

Fig (6.2). The channel information depends only on the noise corrupted

systematic symbol, while the extrinsic information is calculated based on the

trellis structure together with the other systematic symbols and parity symbols. It

is important that the extrinsic information Le(dk), be uncorrelated (or weakly

correlated) of Lc(dk) and Lapri(dk), since it will be used as a priori information by

the other SISO decoder. However, with the number of iterations increasing, the

correlation increases and the performance gained form additional iteration

becomes less. Until certain stage, further iteration brings little (if any)

performance improvement: this is when the iterative decoding should stop.

 Although iterative decoding is suboptimum in the sense of achieving the

maximum likelihood decoding results, it has been shown by simulations to

approach ML decoding performance provided the number of iterations is large

enough.

6.3 TURBO DECODING ALGORITHMS
The complexity related to turbo coding mainly comes from the iterative turbo

decoding process [6]. The turbo encoder basically consists of only two shift

registers and an interleaver, whose complexity is negligible compared to any

SISO decoding process. As aforementioned, there are several SISO algorithms

that can be selected in turbo decoder implementation: they require different

complexities and offer different decoding performances

6.3.1 SISO Decoding Algorithms
The first SISO algorithm used in turbo decoding is the MAP algorithm. The MAP

algorithm is designed to produce the LLR of each information bit, as defined in

(6.1). In MAP, the LLR is calculated as

 74

 ΣΣγ1(yk, Sk-1, Sk).αk-1(Sk-1).βk(Sk) (6.3)
 L(dk) = ln sk sk-1

 ΣΣγ0(yk, Sk-1, Sk).αk-1(Sk-1).βk(Sk)
 sk sk-1

Where α is the forward recursion path metrics, β is the backward recursion path

metrics and γ is the branch metrics. The forward path metrics can be calculated

recursively as

 1

 ΣΣγi(yk, Sk-1, Sk).αk-1(Sk-1) (6.4)
 αk(Sk) = sk-1 i=0
 1

 ΣΣγi(yk, Sk-1, Sk).αk-1(Sk-1)
 sk-1 i=0

Where α0(S0) = 1 and α0(Si) = 0 for i ≠ 0, when both CCs in the turbo encoder are

terminated. The backward path metric, β, is calculated in a similar manner,

except in the reverse direction. The branch transition probabilities are calculated

as

 γi[(yk
s,yk

p), Sk-1, Sk)] = q(dk = i|Sk, Sk-1)

 .p(yk
s|dk = i) (6.5)

 .p(yk
p|dk = i,Sk,Sk-1)

 .Pr{Sk|Sk-1}.

The value of q(dk = i|Sk, Sk-1) is either one or zero depending on whether there is

a transition from state Sk-1 to Sk with input dk. The a priori information is used to

calculate Pr{Sk|Sk-1}.

 75

Calculation of the LLR requires both α that is calculated recursively from the

beginning to the end of block, and β that is calculated from end to the beginning.

The decoding process is, therefore, performed as follows:

 The decoder starts calculating α in the sequential order of the input

block.

 When the decoder reaches the end of the block, i.e., all αs are

calculated, it starts computing the value of β.

 Whenever the β values for an information bit is computed, the LLR is

calculated
It is observed that the large amounts of complicated mathematical operations are

required for MAP decoding, including multiplications, exponentials, and logarithm

computations. To avoid these operations, MAP decoding can be performed in the

logarithm domain, where the multiplication becomes addition. The logarithm and

exponential computations can be avoided by using following approximation

 ln(eδ1+eδ2+……….. ++eδn
) ≈ max δ (6.6)

 i∈(1,…,n)

Equation (6.3)-(6.5) then becomes

 L(dk) ≈ max {γ’1(yk, Sk-1, Sk) + α’k-1(Sk-1) + β’k(Sk)} –

 (sk,sk-1) (6.7)

 max { γ’0(yk, Sk-1, Sk) + α’k-1(Sk-1) + β’k(Sk)}

 (sk,sk-1)

 α’k(Sk) = max {γ’i(yk, Sk-1, Sk) + αk-1(Sk-1)} (6.8)

 (sk-1,i)

and

 γ’ = 2yk
sxk

s(i) + 2yk
pxk

p(i, Sk, Sk-1) + lnPr[Sk | Sk-1] + K (6.9)

 N0 N0

Where α’, β’, γ’ are the logarithms of α, β, γ. The MAP algorithm performed in the

logarithm domain with the approximation shown in (6.6) becomes Max-Log-MAP

 76

algorithm. In General 0.5 dB performance degradation is observed because of

this simplification. The inferior performance of the Max-Log-MAP algorithm

comes from the simplification made in (6.6). The logarithm of the sum of two

exponents can be accurately calculated as

 ln(eδ1+eδ2) = max(δ1,δ2) + ln (1+e|δ1-δ2|) (6.10)

 = max(δ1,δ2) + f(|δ1-δ2|).

The only difference between this equation and (6.6) is a modification factor fc =

f(|δ1-δ2|). The Max-Log-MAP algorithm with this modification is called Log-MAP. A

different SISO decoding algorithm, SOVA, was derived from the conventional VA.

In SOVA, the difference between the path metrics entering the same trellis state

node is used to generate the reliability of the information bits, i.e., the software

decision. The complexity of SOVA is smaller than that of Max-Log-MAP; while

the performance of turbo decoding using SOVA is inferior to that obtained using

Max-Log-MAP.

6.3.2 Comparison of SISO Algorithms
It is observed that turbo decoding with MAP algorithm provides the best

performance out of all the decoding algorithms. Performance of Log-MAP

algorithm at BER of 10-4 is very close from that obtained using the MAP algorithm

and is approximately 0.6 dB better than that obtained using SOVA. The Max-Log-

MAP is only about 0.06 dB better than the SOVA at BER of 10-4. it is noticed that

at a BER of 10-4 , the performance of turbo decoding with Max-Log-MAP is about

0.4 dB better than with the SOVA algorithm.

 It has been observed that in Max-Log-MAP and Log-MAP, the most

frequently used mathematical operations include additions, inversion, max

operation and table lookups. As per these operations Log-MAP is more

computational intensive compared to Max-Log-MAP algorithm but it has good

performance than Max-Log-MAP, so Log-MAP is a best compromise with

reasonable complexity.

 77

6.4 LOG-MAP-BASED TURBO DECODER IMPLEMENTATION
6.4.1 Introduction
During the turbo decoder, design there is a trade-off between the memory

requirement and processing delay. The memory requirement can be reduced by

reusing same memory modules as much as possible. However, since, at any

time, a memory element can perform the function for one specific module only,

different modules have to use it one after another, which results in longer

decoding delay. Providing a separate copy of the same hardware component to

any module can significantly reduce the delay but using same memory elements

for reducing memory requirement slow down the speed. Hence saving memory

requirement occurs at the expense of slower speed.

 In this thesis, the turbo decoder is designed to minimize the memory

requirements for algorithm implementation as well interleaver design, and the

decoding speed being a second consideration. Therefore memory modules are

shared as much as possible during execution.

6.4.2 Interleaver Structure for Turbo Codes with Reduced Storage Memory
Requirements
6.4.2.1 Introduction
A turbo code typically consists of two recursive encoders in parallel, separated by

an interleaver as shown in Fig (6.1). The design parameters of a turbo code are

primarily the generator polynomials of the constituent encoders, normally chosen

to be identical, and the particular choice of interleaver mapping [30]. The

interleaver structure used here is referred to as an odd-even symmetric structure,

which reduces the memory requirement with much more than 50% compared to

storing the entire interleaver vector [2].

6.4.2.2 Design
Let the odd-even symmetric interleaver rule be represented by a vector of N

integers, Π = {Π(1) Π(2) ……..Π(N)}, where Π(i) = j indicates that input position i

is interleaved to position j and N is the size of the interleaver. The interleaver

 78

structures presented here impose certain restrictions on the permissible choices

of the mappings Π(i). Consider an interleaver rule that swaps pairs of positions

i.e. a symmetric interleaver. If all the pairs are known, the interleaver rule is

known. Since there are only N/2 such pairs, if organized properly, the storage of

these pairs requires less memory than storing an entire interleaver vector with N

addresses. One possible organization strategy is to require every position in the

first half of the input sequence to be swapped with a position in the second half.

However, this restriction severely reduces the design freedom of the interleaver,

notably deteriorating the error correcting performance of the code. There is

however other sequence partitions that yield a simple organization of the

swapping pairs, without degrading the interleaver performance. One such

partition is to swap every odd position with even position, and vice versa. The

interleaver structure, denoted odd-even symmetric, is thus achieved with the

following two restrictions:

1. i mod 2 ≠ Π(i) mod2, ∀i (odd to even)

2. Π(i) = j ⇒ Π(j) = I (symmetry)

With these restrictions, it is sufficient to store the interleaver rules for all the odd

positions, since by performing swaps; the even positioned bits are automatically

interleaved.

 Assume that only the odd positions in the interleaver vector are stored.

All the stored addresses are then even integers, implying that the least significant

bit (LSB) in the binary representation of each address is always zero. Thus the

LSB need not be stored, which offers additional memory savings if the interleaver

rule is stored with custom made memory cells. This shift of the binary

representation corresponds to dividing each number by 2, so that the stored

vector consists of N/2 integers ranging from 1 to N/2. This vector will in the

following be denoted Π’, and is given by Π’ = (2i-1)/2, i∈(1,2…..,N/2}.

 As an example, the swapping pairs of an 8-bit odd-even symmetric

interleaver are illustrated in Fig (6.3). The shown vector is Π = {6 3 2 7 8 1 4 5}.

And reduced memory requirement vector is Π’ = {3 1 4 2}. The implementation of

 79

the interleaving rule of an odd-even symmetric interleaver is straightforward:

elements at even positions are interleaved by storing them sequentially and

reading them in order specified by Π’; elements at odd positions are interleaved

by storing them in the order specified by Π’ and reading them sequentially.

Input positions 1 2 3 4 5 6 7 8

Interleaved position 6 3 2 7 8 1 4 5

Fig (6.3): Example of an 8-bit odd-even symmetric interleaver. Each odd position

in the input sequence is mapped to an even position, and vice versa. Further, if

input i is mapped to position j, then input j is mapped to position i (symmetry)

As an example, we study the interleaving of the extrinsic outputs produced by the

first constituent decoder. For illustrative purposes, it is suitable to partition the

memory used to store the extrinsic information between the decoders into two

logically separated memory areas. A and B. With these, odd extrinsic outputs of

the form 2n-1, n ∈ {1,2,……,N/2} are stored at address Π’(n) in memory A, while

even outputs, an, n ∈ {1,2,……,N/2} are stored at address n in memory B. the

second constituent decoder performs a similar action when reading its extrinsic

inputs: odd inputs are read from memory B at address Π’(n), and even inputs are

read from memory A at address n. Such an interleaver implementation is

illustrated in Fig (6.4). The deinterleaving implementation is identical, due to

symmetric property.

Note: The interleaved structure described above saves approximately 50%

memory. If total no of bits are N then memory requirement is about N/2 bits. But

in C implementation, the interleaver uses only 8 bytes (memory for saving 4

integer values) memory; and these integers are used each time for implementing

interleaving structure (iterations). This results into huge reduction of memory

requirement, as these four integer values are used iteratively for interleaving any

number of bits in input sequence.

 80

Π’={3 1 4 2}

 A B

 Input Sequence

Memory

 Interleaved Sequence

Fig (6.4): implementation example of an 8-bit odd-even symmetric interleaver.

The interleaver rule is stored by the 4-element vector Π’ = {3 1 4 2}.

6.4.3 Log-MAP Turbo Decoder
The block diagram of the turbo decoder is shown in Fig (5.6) and is reproduced

in Fig (6.5) below. The major components are two decoders (Log-MAP) and

interleaver and deinterleaver blocks. As we have used odd-even symmetric

interleaver, so the blocks named interleaver and deinterleaver could be replaced

with same block named Interleaver/Deinterleaver [2].

It is assumed that the received symbol sequence is first demultiplexed into three

sequences: systematic sequence, and two parity sequences. After the Log-MAP

decoder finished decoding over one block of data, it writes the result to LLR

memory (Array in C), which will be used as the a priori information during the

next SISO decoding process. The interleaving /deinterleaving processes are

implemented implicitly by reading from the pattern stored in memory array.

 81

Le2(d’k)

Decoder
DEC1

Inter-
leaving

Deinter-
leaving

Deinter-
leaving

Decoder
DEC2

L1(d’n) L1(d’k)

yk

 y2k y1k

L2(d’k)

Decoded
output d’k

 zk

xk

Fig (6.5): Log-MAP Turbo Decoder

The algorithm is as following. First of all, the received data for each constituent

codes are divided into several contiguous non-overlapping sub-blocks; so called

windows [25], [4], [28]. Then, each window is decoded serially using the Log-

MAP algorithm from the last window (here each window consists of 8 bits).

However the values of alpha (first iteration) for each window is calculated each

time starting from the first window. This is very time consuming process, but

leads to huge reduction in memory requirements, because there is no need of

storing the terminating alpha values of each window. However initial values of

beta variables come from previous window. In the next iteration the branch metric

is recalculated using a-priori information from the last iteration and then the alpha

 82

and beta variables are recalculated using new branch metric values for that

window. The block diagram of Log-MAP decoder used for this algorithm is shown

below.

Fig (6.6): Log-MAP decoder structure

The decoding of each window includes: a branch metric calculation module,

forward and backward path metric calculation modules, a LLR calculation

module, and some control logics. The Log-MAP decoding is performed as follows

1. Starting from the beginning of each block, the SISO decoder calculates

the forward path metrics and stores the values for the required window.

2. After calculating the forward path metric, the decoder calculates the

backward path metric in the backward direction, and stores the values for

the required window

3. After calculation of forward and backward path metric, the decoder

calculates the LLR.

4. It repeats the step from 1 to 3 some number of times (usually 4 to 5 times)

and uses LLR value calculated in previous iteration o enhance the result.

It writes the finally calculated LLR value to the output file.

 83

The γ-calculation module calculates the path metric using the input systematic

and parity symbols and the a priori information. The input systematic and parity

symbols are already scaled by the SNR. Therefore this calculation only contains

additions and inversions. Note that there are only four possible γ values

corresponding to the four possible (x’ks(i) and x’kp(i, Sk, Sk-1)) combinations.

Therefore the γ-calculation module is designed to calculate all the four values at

the same time and saves them as four float values. This can greatly simplify the

α/β/LLR calculations since they need to find the corresponding γ values instead

of calculating in each step.

 Calculation of the forward path metric α is performed according to (6.8),

where the max is replaced by max* that includes the modification factor shown in

(6.10). For Log-MAP algorithm and rate ½ CCs calculation of α(sk) at time k is

performed as

α(sk) = max{α(S0
k-1)+γ(Sk-1, Sk, dk = 0), α(S1

k-1)+γ(Sk-1, Sk, dk = 1)}+

 f |{(α(S0
k-1)+γ(Sk-1, Sk, dk = 0)) – (α(S1

k-1)+γ(Sk-1, Sk, dk = 1))}| (6.11)

Where si
k-1 is the trellis state at time (k-1) that has a transition to state sk at time

k, caused by an input of i, i ∈ {0, 1}. It is observed that each α(Sk) is calculated

by an add-compare-select-offset (ACSO) operation over two previous α values

and two branch transition metrics. The ACSO unit performs the following

calculation

 r = max{a+b, c+d} + f(|(a+b)-(c+d)|) (6.12)

Where {a, b, c, d} are four inputs, r is the single output, and f(|x|) is the

modification factor defined in (6.10). Given that the α metrics at time (k-1) are

stored in 2M memory locations at the end of last α calculation operation and the

four γ values have been saved in four memory locations, the implementation

objective becomes to efficiently find the four inputs of the ACSO used to

calculate each α from these saved values. This is implemented using 2M entry

 84

LUTs, one for the transition caused by an input of “0” (LUT0) and for an input of

“1” (LUT1), where the jth entry of the LUTi, i ∈ {0, 1}, contains the value of si
k-1 to

calculate α(sk = j). These two LUTs actually contains all the information about the

trellis structure of this CC. When the trellis structure is changed, the α-calulation

operation can be updated by simply updating the content of the LUTs.

 The backward path metric calculation module has exactly the same data

structure as the α calculation module. However, the two LUTs are different from

the LUTs used in α calculation module.

 Calculation of LLR/Ext. values requires 2M α values, 2M β values,

and all possible γ values. Combining (6.7) and (6.10), the LLR/Ext is calculated

as

 L(dk) = max*(γ’1(yk, Sk-1, Sk) + α’k-1(Sk-1) + β’k(Sk))-

 (sk, sk-1)

 max*(γ’0(yk, Sk-1, Sk) + α’k-1(Sk-1) + β’k(Sk)) (6.13)

 (sk, sk-1)

Where max* stands for multiple input ACSO operations. Each operand in the first

max* corresponds to one trellis transition from a Sk-1 to a Sk caused by an input

information bit 1, while each operand in the second max* corresponds to one

trellis transition from a Sk-1 to a Sk caused by an input information bit ‘0’. Since

there are only one transition coming out of a state caused by an input 1 or 0, both

max* operations contain only 2M operands.

 85

6.5 ALGORITM: LOG-MAP-BASED ITERATIVE TURBO DECODER
 1. Start

 2. Define a variable named infin with a very small negative value.

 3. Define a 2-D array of integers of size 2×8 (LUTFS) that work as Look-up

 table for implementing trellis structure for forward state metrics, with

 contents {(0,2,5,7,1,3,4,6),(1,3,4,6,0,2,5,7)}.

 4. Define a 2-D array of integers of size 2×8 (LUTBS) that work as Look-up

 table for implementing trellis structure for reverse state metrics, with

 contents {(0,4,1,5,6,2,7,3),(4,0,5,1,2,6,3,7)}.

5. Take a file pointer (ifp) and associate it with a text file-containing float

 values after encoding and passing through AWGN channel.

 6. Take a file pointer (ofp) and associate it with an empty output text file.

7. Take an array of integer (inleav) containing 4 integer values {3,1,4,2} for

 implementing odd-even symmetric interleaver structure.

8. Count the number of float values in the input text file and store in variable

 n.

9. Declare a reverse state metric rsmet of size 8×9 of type float and initialize

rsmet[k][8] to infin with k varying from 1 to 7 and rsmet[0][8] to 0.0.

10. Let l=n/24

11. Initialize a priori information to 0.0

(i) for k =0 to 7

(ii) apri[k]=0.0

(iii) end for

12. Let big=0

13. Point file pointer to the first character in input file

14. Initialize the forward state metric

(i) for k =0 to 7

(ii) fsmet[k][0]=infin

(iii) end for

(iv) fsmet[0][0]=0.0

 15. Let i =0

 86

 16. Let j = 0

 17. Read three consecutive values from the input file and store them in three

variables ch, ch1, ch2

 18. Calculate branch metric values

(i) if i = l-1 is true then

bmet[0][j/3]= -ch-ch1-apri[j/3]

bmet[1][j/3]= -ch+ch1-apri[j/3]

bmet[2][j/3]= ch-ch1+apri[j/3]

bmet[3][j/3]= ch+ch1+apri[j/3]

else

bmet[0][j/3]= -ch-ch1

bmet[1][j/3]= -ch+ch1

bmet[2][j/3]= ch-ch1

bmet[3][j/3]= ch+ch1

end if

19. If j>=24 is true then go to step 23.

20. j = j+3

21. Repeat step 17 to 20.

22. Calculate forward state metric values

(i) for k = 1 to 8

(ii) for j = 0 to 8

(iii) if j is divisible by 2 is true then

fsmet[j][k]=max(bmet[0][k-1]+fsmet[LUTFS[0][j]][k-1],bmet[3][k-

1]+fsmet[LUTFS[1][j]][k-1])

else

fsmet[j][k]=max(bmet[1][k-1]+fsmet[LUTFS[0][j]][k-1],bmet[2][k-

1]+fsmet[LUTFS[1][j]][k-1]

end if

(iv) end for (j)

 (v) end for (k)

23. If i = l -1 is true then go to step no 30.

 87

24. Find minimum value among 8 forward state metric values using

min=minimum (fsmet, k-1)

25. Normalize and assigning the forward state metric values to the next block

(i) for k =0 to 7

(ii) fsmet[k][0]=fsmet[k][8]-min

(iii) end for

26. Is i > = l, if true then go to step 30.

27. i = i + 1

28. Repeat step 16 to 27.

29. Assign the last calculated rs metric values to the first row of next block . (if

not calculated till now than this will assign the initial values)

30. Calculate the reverse state metric values

(i) for k= 7 down to 0

(ii) for j 0 to 7

(iii) if (j=0) or (j=1) or (j=4) or (j=7) is true then

rsmet[j][k]=max(bmet[0][k]+rsmet[LUTBS[0][j]][k+1],bmet[3][k]+

rsmet[LUTBS[1][j]][k+1])

else

rsmet[j][k]=max(bmet[1][k]+rsmet[LUTBS[0][j]][k+1],bmet[2][k]+

rsmet[LUTBS[1][j]][k+1]

 end if

(iv) end for (j)

(v) end for (k)

31. Calculate Likelihood ratio

(i) for k = 0 to 7

(ii) Let num1=fsmet[0][k]+rsmet[4][k+1]+bmet[3][k]

(iii) Let den1= fsmet[0][k]+rsmet[0][k+1]+bmet[0][k]

(iv) For j = 1 to 7

(v) If j=2 or j = 3 or j = 6 or j = 7

 num = fsmet[j][k]+rsmet[LUTBS[1][j]][k+1]+bmet[2][k]

 den = fsmet[j][k]+rsmet[LUTBS[0][j]][k+1]+bmet[1][k]

 88

 else

 num = fsmet[j][k]+rsmet[LUTBS[1][j]][k+1]+bmet[3][k]

 den = fsmet[j][k]+rsmet[LUTBS[0][j]][k+1]+bmet[0][k]

 end if

(vi) maxnum = max(num, num1)

(vii) maxden = max(den, den1)

(viii) end for (j)

(ix) app[k]=maxnum-maxden

(x) end for (k)

32. Calculate external LR ratio

(i) for k = 0 to 7

(ii) exlr[k]=app[k] - apri[k]

(iii) end for

33. Apply interleaving structure to the exlr array and to get apri information.

34. Normalize and assign the reverse state metric values for the next iteration

for decoder 1.

35. Initialize the reverse state metric for decoder 2

36. Repeat step 14 to 17

37. Apply interleaving pattern to the input sequence read (24 bit at a time).

38. for j = 0 to 7

39. if i = l-1 is true then

 bmet[0][j] = -in[j]-apri[j]-yp[j]

 bmet[1][j] = -in[j]-apri[j]+yp[j]

 bmet[2][j] = in[j]+apri[j]-yp[j]

 bmet[3][j] = in[j]+apri[j]+yp[j]

 else

 bmet[0][j] = -in[j]-yp[j]

 bmet[1][j] = -in[j]+yp[j]

 bmet[2][j] = in[j]-yp[j]

 bmet[3][j]= in[j]+yp[j]

 end if (where in is interleaved sequence and yp is same as ch2)

 89

40. end for(j)

41. Repeat step 21 to 32.

42. Apply interleaving structure to exlr to get apri information and to app to

get lr ratio

43. Normalize and assign the reverse state metric values for the next iteration

of decoder 2.

44. is big>= limit , if true then go to step 45

45. big = big+1

46. Repeat step 13 to 45

47. Calculate the decoded bit values

(i) for k = 0 to 7

(ii) if lr[k] > 0.0 then

decod[k] = 1

else

decod[k] = 0

 end if

(iii) end for

48. Write the decoded byte string to the output file.

49. Is l<=0 , if true then go to step 53.

50. l = l - 1

51. Repeat step 11 to 50.

52. Convert the byte file into alphanumeric file

53. Compare this file with the original and with the file, which would have

been received if sent uncoded to find the probability of error.

54. Stop.

Two function used in the above algorithms are given below

 The first function is max() which accepts two float values and

returns back the log(1+exp(|a-b|)) which is a float value.

 The second function is minimum(), which accepts starting address

of continuous 8 values and returns back the minimum out of these

values.

 90

CHAPTER 7
RESULTS

7.1 A SIMPLIFIED TRELLIS-BASED DECODING
7.1.1 File, Which is Encoded and Sent

read.txt

Every Sunday, Jessica went to see her father in the city and came home on the

6:00 o'clock train. One day she told her driver, Jack, that she would be back an

hour earlier and to pick her up at the station. Jack forgot and went to get her at

the usual time. When Jessica arrived and did not find Jack there, she started

walking home. Jack met her on the road and took her.

7.1.2 File After Adding Noise

WRITE8.TXT

Everù Sunday, Jewsica went"to!sgm hmò fathev mn the°kity ant caíe hïmå

on the 6:±±!o'slock tvain.!One$da} óhå vold(yer driveò, Jáck, ôhat she ÷�uld jm

rack cn houv earlier end ~o péck her wð qththe statkon. Jack forgo|$qnd went uo

get jer at$the uwual timg.Whån Jessmca arrived ánd did îot¨find Jack uøere.(shm

started waì{ing"home. Jack met her0on`the"rïad and took her.@

 91

7.1.3 File Received After Applying Algorithm

WRITE4.TXT

Every Sunday, Jessica went to see her father in the city and came home on the

6:00 o'clock train. One day she told her driver, Jack, that she would be back an

hour earlier and to pick her up at the station. Jack forgot and went to get her at

the usual time.When Jessica arrived and did not find Jack there, she started

walking home. Jack met her on the road and took her.

7.1.4 Trellis Based Code Efficiency
Uncoded
No of errors: 83/3000

Trellis Based Code
No of errors: 0/3000

 92

7.2 TURBO DECODER WITH LOG-MAP BASED ITERATIVE DECODING
7.2.1 File, Which is Encoded and Sent:

read.txt

Every Sunday, Jessica went to see her father in the city and came home on the

6:00 o'clock train. One day she told her driver, Jack, that she would be back an

hour earlier and to pick her up at the station. Jack forgot and went to get her at

the usual time. When Jessica arrived and did not find Jack there, she started

walking home. Jack met her on the road and took her.

7.2.2 File After Adding Noise

WRITE8.TXT

Every Sujdã]. Bessica`÷enR vm$see`hdr¢g`tler a^ uhe`citù anL came$hkme°�o~

tje �:00 o'cl�ck tráI~. �n% dA9°rhe uold her driver, Jaãk, txat`sh-0 'M5lf `u

bacc€!l lour!eazl)er and to!pick her up a4(thu stati�k& JasK f/FgoT aÊa went$to

og< je0"at thq esucì téem.�hEn ÚessIca arrköEf�an` oy`"nod &ind Nack

tîere,(Shm starded wAlking h�me: Back met hev mo the roá$(and took èeb.

7.2.3 File Received After Applying Algorithm (iteration:1)

WRITE6.TXT

Every Sunday, Jessica went to see her father in the city and came home on the

6:00 o'clock train. One day she told her driver, Jack, that she would be back an

hour earlier and to pick her up at the station. Jack forgot and went to get her at

the usual time.When Jessica arrived and did not find Jack there, she started

walking home. Jack met her on the road and took her.

 93

7.2.4 File Received After Applying Algorithm (Iteration:2)

WRITE6.TXT

Every Sunday, Jessica went to see her father in the city and came home on the

6:00 o'clock train. One day she told her driver, Jack, that she would be back an

hour earlier and to pick her up at the station. Jack forgot and went to get her at

the usual time.When Jessica arrived and did not find Jack there, she started

walking home. Jack met her on the road and took her.

7.2.5 Log-MAP-Based Code Efficiency
Uncoded
No of errors: 161/3000

Log-MAP Decoding
No of errors:

Iteration 1: 0/3000

Iteration 2: 0/3000

 94

7.3 TABULAR RESULTS
7.3.1 Simplified Trellis Based Decoder
Results for 3000 bits:

Eb/N0 Coefficients for

Generating AWGN

Error

(Uncoded)

Error(Coded)

-2 14, 13 308 302

0 13,12 226 92

2 12, 12 187 83

4 12,11 137 17

6 11, 11 83 0

7.3.2 Log-MAP Turbo Decoder
(a) Results for 3000 bits

Eb/N0 Coefficients for

Generating AWGN

Error

(Uncoded)

Error(Coded)

Iteration 1

Error(Coded)

Iteration 2

-6 16, 15, 15 487 53 38

-4 15, 14, 14 383 31 15

-2 15, 14, 11 307 25 9

0 14, 13, 10 221 5 5

2 13,12, 9 161 0 0

4 12, 12, 9 112.5 0 0

6 12, 10, 9 79 0 0

8 11, 10, 9 31 0 0

 95

(b) Results for 4000 bits

Eb/N0 Coefficients for

Generating AWGN

Error

(Uncoded)

Error(Coded)

Iteration 1

Error(Coded)

Iteration 2

-6 16, 15, 15 641 66 46

-4 15, 14, 14 502 37 17

-2 15, 14, 11 405 28 9

0 14, 13, 10 303 4 4

2 13,12, 9 216 0 0

4 12, 12, 9 151 0 0

6 12, 10, 9 89 0 0

8 11, 10, 9 43 0 0

(c) Results for 5000 bits

Eb/N0 Coefficients for

Generating AWGN

Error

(Uncoded)

Error(Coded)

Iteration 1

Error(Coded)

Iteration 2

-6 16, 15, 15 786 91 72

-4 15, 14, 14 651 33 31

-2 15, 14, 11 494 29 22

0 14, 13, 10 346 1 1

2 13,12, 9 257 0 0

4 12, 12, 9 207 0 0

6 12, 10, 9 107 0 0

8 11, 10, 9 36 0 0

 96

7.4 GRAPHICAL RESULTS
7.4.1 Comparison of Bit Error Rate Between Gaussian Noise and Noise
Generated Using C Language (FOR 4000 BITS)

Eb/N0 Pb(C Generated) Pb(Gaussian)
-6 0.16025 0.1584
-4 0.1255 0.1306
-2 0.10125 0.1038
0 0.07575 0.0786
2 0.054 0.0563
4 0.0375 0.0375
6 0.02225 0.0229
8 0.01075 0.0125

GRAPH 1

Comparison of PB Between C
Generated Noise and Gaussian Noise

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 2 3 4 5 6 7 8
Eb/N0

PB

Pb(Gen)
Pb(Gaussian)

 97

7.4.2 Performance of Simplified Trellis Based Decoder

Eb/N0 Uncoded Coded
0 0.075333 0.030667
2 0.062333 0.027667
4 0.045667 0.005667
6 0.027667 0.00001

GRAPH 2

Performance of Trellis Decoder

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 2 3 4

Eb/N0

PB

Uncoded
Coded

 98

7.4.3 Performance of Log-MAP Turbo Decoder

Eb/N0 Pb(Gen) Ieration1 iteration2
-6 0.16025 0.0165 0.0115
-4 0.1255 0.00925 0.00425
-2 0.10125 0.007 0.00225
0 0.07575 0.001 0.001
2 0.054 0.00001 0.00001
4 0.0375 0.00001 0.00001
6 0.02225 0.00001 0.00001
8 0.01075 0.00001 0.00001

GRAPH 3

Performance of Turbo Decoder

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 2 3 4 5 6 7 8

Eb/N0(dB)

PB

Pb(Gen)
Ieration1
iteration2

 99

7.4.4 Comparison of Trellis and Turbo Code Performance

Eb/N0 Trellis Turbo
0 0.030667 0.001
2 0.027667 0.00025
4 0.005667 0.000001
6 0.000001 0.000001

GRAPH 4

Comparison of Trellis and Turbo

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 2 3 4
Eb/N0

PB

Trellis
Turbo

 100

CONCLUSIONS
In this thesis two advanced and latest channel decoding algorithms are first

developed and then implemented in language C. These two algorithms are

modified version of some standard algorithms. The advantage of implementing

these algorithms is that we are able to save some sort of resources/efforts as

compared to standard ones and the efficiency is still approximately the same as

that of the standard ones.

 For implementing these decoding algorithms the C code is written for the

channel encoder, AWGN channel and the channel decoder for both of the

algorithms. The efforts are being made to generate standard AWGN noise but

due to limitation of C language we are able to generate noise, which is very much

similar, as shown in Graph 1. These C programs are then executed for both

algorithms in a particular sequence (Encoder, Channel, Decoder) and results are

obtained in form of text files. Again a C program is executed for comparing these

text files and now numerical results are obtained which are put in form of a table

manually. The tabular results are then used for drawing the graph.

 The graph for the first algorithm “A Simplified Trellis-Based Decoder” is

found to be in close approximation to the graph shown in [5]. But this algorithm is

having a disadvantage that it cannot handle very large file. It can work with text

file of maximum size 3500 bits only as it requires huge amount of memory,

although speed of this algorithm is better than the second algorithm.

 The graph for the second algorithm “Log-MAP-Based Iterative Turbo

Decoder” is also found to be in close approximation to the standard Log-MAP

algorithm [4], but with the limitation that there is no performance improvement

after iteration 2, but in case of standard algorithm error PB reduces up to 4-5

iterations, although with little performance improvement. This might be due to the

effect of non-standard AWGN noise generated using C.

 The error performance of Log-MAP-Based Turbo Decoder is found to be

better than the A simplified trellis based decoder but the speed of later is better

than the former.

 101

FUTURE WORK AND RECOMMENDATIONS
The two channel decoding algorithm “A Simplified Trellis-Based Decoder” and

“Log-MAP-Based Iterative Turbo Decoder” has been developed and

implemented in this thesis. The results for both are in close approximation to the

corresponding standard algorithm, but with certain limitations. The limitation in

first algorithm is that it requires huge amount of memory but time taken is less, so

can’t handle large files. The limitation for second algorithm is that the time taken

in decoding rises exponentially with the size of the file, although memory

requirement is less.

 The possible future work, which may be carried out, related to this thesis

work could be as follows:

1. In “A Simplified Trellis-Based Decoder” the memory requirement is very

large. But the time required for executing the program is small. If possible

some algorithm could be developed as a trade-off between memory and

time requirement, such that memory requirement and time taken both are

optimum.

2. In “Log-MAP-Based Iterative Turbo Decoder”, the memory required is

small enough that it may handle large file also, but time taken rises

exponentially with the size of file. It is due to this time requirement that we

are not able to process a large file. The future work in this regard could be

to reduce the time taken in executing the algorithm.

3. Out of these two algorithms the second one is having very good error

performance as compared to first one. Given the outstanding performance

of Turbo Code, the challenge could be to implement it into various

communication systems at affordable decoding complexity, using current

Very Large Scale Integration (VLSI) technologies.

 102

REFERENCES

1. VHDL Implementation of a Turbo Decoder With Log-MAP-Based Iterative

Decoding; Yanhui Tong, Tet-Hin Yeap, Member, IEEE, and Jean-Yves

Chouinard, Senior Member, IEEE; IEEE Transactions on Instrumentation

and Measurement, VOL 53, No. 4, AUGUST 2004

2. Interleaver Structures for Turbo Codes with Reduced Storage Memory

Requirement; Johan Hokfelt, Ove Edfors and Torleiv Maseng, Department

of Applied Electronics, Lund University, Lund, Sweden

3. A Simplified Computational Kernel for Trellis-Based Decoding; Matthias

Kamuf, Student Member, IEEE, John B. Anderson, Fellow, IEEE, and

Viktor Owall, Member, IEEE; IEEE Communication Letters, VOL. 8, No. 3,

March 2004.

4. Implementation of High Rate Turbo Decoders for Third Generation Mobile

Communication; Dr. Jason P Woodard.

5. Digital Communications Fundamentals and Applications (Second Edition)

by Bernard Sklar; Communication Engineering Services, Tarzana,

California and University of California, Los Angeles.

6. VLSI Architecture for the MAP Algorithm; Emmanuel Boutillon, Warren J.

Gross, Student Member, IEEE, and P. Glenn Gulak, Senior Member,

IEEE; IEEE Transactions on Communications VOL. 51, No. 2, February

2003.

7. High Performance, High Throughput Turbo/SOVA Decoder Design;

Zhongfeng Wang, Member, IEEE, and Keshab K. Parhi, Fellow, IEEE;

IEEE Transactions on Communications, VOL. 51, No. 4, April 2003

8. An Efficient and Practical Architecture for High Speed Turbo Decoders;

Aliazam Abbasfar and Kung Yao Dept. of Electrical Engineering University

of California, Los Angeles, USA

 103

9. FPGA Implementation of Parallel Turbo decoders; Michael J. Thul,

Norbert When, University of Kaiserslautern Erwin-Schrodinger-StraBe,

67663 Kaiserslautern, Germany {Thul, Wehn} @ eit.uni-kl.de

10. Near Shannon limit error correcting coding and decoding: Turbo-Codes;

C. Berrou, A. Glavieux, and P. Thitimajshima, in Proc. ICC’93, pp. 1064-

1070.

11. A Comparison of optimal and sub-optimal MAP decoding algorithm

operating in log domain; P. Robertson, E. Villebrun, and P. Hoeher, in

Proc. ICC’95, pp. 1009-1013.

12. Optimal decoding of linear codes for minimizing symbol error rate; R.

Bahl, J. Cocke, F. Jelinek, and J. Raviv, IEEE Trans. Inform. Theory, VOL.

IT-13, pp. 284-287, Nar. 1974.

13. A Viterbi algorithm with soft-decision outputs and its applications; J.

Hagenauer and P. Hoeher, in Proc. IEEE Globecom Conf., Dallas, TX,

Nov. 1989, pp. 1680-1686

14. A low complexity soft-output viterbi decoder architecture; C. Berrou, P.

Adde, E. Angui, and S. Faudeil, in Proc. IEEE ICC 1993, Geneva,

Switzerland, May 1993, pp. 737-740.

15. Design of fixed-point iterative decoders for concatenated codes with

interleavers; G. Montorsi and S. Benedetto, “,” IEEE J. Select Areas

Communication, VOL. 49, Nov. 2001.

16. VLSI architectures for the forward backward algorithm; B. Emmanuel, J.

G. Warren, and G. Glenn.

17. An intuitive justification and simplified implementation of MAP decoder for

convolutional codes; A.J Viterbi, IEEE J.Select. Areas Communication,

VOL. 16, pp. 260-264, Feb 1998

18. Design of parallel concatenated convolutional codes; S.Benedetto and G.

Montorsi, IEEE Transactions on Communications, Vol. 44, pp. 591-600,

May 1996.

19. Effective free distance of Turbo codes; D. Divsalar and R.J. McEliece, “,”

Electronic Letters, Vol. 32, Feb 1996.

 104

20. On the design of prunable interleavers for turbo codes; M. Eroz and A.R.

Hammons, in Vehicular Technology Conference, Houston, USA, May

1999.

21. Terminating the treillis of turbo-codes in the same state; A. S. Barbulescu

and S.S Pietrobon, Electronics Letters, Vol. 31, pp. 22-23, January 1995.

22. Implementing the Viterbi algorithm; H-L. Lou, IEEE Signal Processing

Mag., Vol. 12, no. 5, pp. 42-52, sept 1995.

23. Best Short Rate ½ Tailbiting Codes for the Bit-Error rate Criterion; John

B. Anderson, Fellow, IEEE; IEEE Transaction on Communications Vol. 48,

No. 4, April 2000.

24. Concatenated Decoding With a Reduced-Search BCJR Algorithm; Volker

Franz and John B. Anderson, Fellow, IEEE; IEEE Journal on Selected

Areas in Communications Vol. 16, No. 2, February 1998.

25. A Parallel Decoding Scheme For Turbo Codes; Jah-Ming HSU and chin-

Liang Wang, Department of Electrical Enginering, National Tsing Hua

university, Hsinchu, Taiwan 30043, Republic of China.

26. Iterative Decoding of Binary Block and Convolutional Codes; Joachim

Hagenauer, Fellow, IEEE, Elke Offer, and Lutz Papke; IEEE Transaction

on Information Theory, Vol. 42, No. 2, March 1996.

27. Real-Time Algorithms and VLSI Architectures for Soft Output MAP

Convolutional Decoding; Herbert Dawid and Heinrich Meyr, Aachen Univ.

of Technology (RWTH), Integrated Systems for Signal Processing ISS-

611810, Templergraben 55, D-52056 Aachen, Germany.

28. A parallel MAP Algorithm for Low Latency Turbo Decoding; Seokhyun

Yoon, Student Member, IEEE and Yeheskel Bar-Ness, Fellow IEEE; IEEE

Communications Letters, Vol. 6, No. 7, July 2002.

29. A Real-Time Embedded Software Implementation of a Turbo Encoder

and Soft Output Viterbi Algorithm Based Turbo Decoder; M. Farooq Sabir,

Rashmi Tripathi, Brian L. Evans and Alan C. Bovik Dept. of Electrical and

Comp. Eng., The University of Texas at Austin, Austin, TX, 78712-1084

USA {mfsabir, rashmi, bevans, bovik} @ece.utexas.edu.

 105

30. Combined Turbo Codes and Interleaver Design; Jinhong Yuan, Branka

Vucetic, and Wen Feng; IEEE Transactions on Communications, Vol. 47,

No. 4, April 1999.

31. A Memory Efficient Scheme for Hardware Implementation of Log-Map

Turbo Decoder; Chunlong Bai Jun Jiang Ping Zhang, Wireless Tech

Innovation Lab, Beijing University of Posts and Telecommunications, P.O.

Box 92, BUPT, Beijing, 100876, P.R. China.

32. VLSI Design of Dual-Mode VITERBI/TURBO decoder for 3GPP; Kai

Huang, Fan-Min Li, Pei-Ling Shen and An-Yeu Wu, Graduate Institute of

Electronics Engineering, and Department of Electrical Engineering,

National Taiwan University, Taipei, 106, Taiwan, R.O.C.

HOW TO EXECUTE C PROGRAMS?

Simplified Trellis Based Decoder

1. First execute the C program ‘Trellis1.c’. This program first converts the

text (c:\read.txt) into equivalent ACSII Values (c:\write.txt) and then

encodes this bit values using ½ convolutional encoder (write1.txt).

2. Execute the C program ‘Channel2.c’. This program adds random noise

(Noise coefficients are entered by user to add varying amount of noise) to

the encoded file and then apply threshold to get bit values again

(c:\write2.txt).

3. Execute the C program ‘Trmod1.c’. This program takes noise-corrupted

file (c:\write2.txt) as input, and produces the output byte file (c:\write3.txt)

and output text file (c:\write4.txt).

4. Execute the C program ‘Effi.c’. This program compares the original file

(c:\write.txt) and decoded file (c:\write3.txt) and displays the no of bit

errors and total bits present.

 106

5. Execute the C program ‘Uncoded.c’. This program adds random noise to

the original file (c:\write.txt) to get the noise-corrupted file (c:\write7.txt).

6. Again execute the C program ‘Effi.c’, and compare the original file

(c:\write.txt) and the noise-corrupted file (c:\write7.txt). It displays no of bit

errors, while total no of bits remains the same as in step 4.

7. Now compare the efficiencies calculated in steps (4) and (6).

LOG-MAP Based Turbo Decoder

1. First execute the C program ‘Turboen1.c’. This program first converts the

text (c:\read.txt) into equivalent ACSII Values (c:\write.txt) and then

encodes this bit values using 1/3 convolutional encoder (write1.txt), and

then rearranges them in proper order (c:\write2.txt).

2. Execute the C program ‘Channel1.c’. This program adds random noise

(Noise coefficients are entered by user to add varying amount of noise) to

the encoded file to get a file containing floating values (c:\write3.txt).

3. Execute the C program ‘Turbode4.c’ with iteration =1 (big loop). This

program takes noise-corrupted file (c:\write3.txt) as input, and produces

the output byte file (c:\write4.txt) and rearranged byte file (c:\write5.txt) and

output text file (c:\write6.txt).

4. Execute the C program ‘Effi.c’. This program compares the original file

(c:\write.txt) and decoded file (c:\write5.txt) and displays the no of bit

errors and total bits present.

5. Execute the C program ‘Uncodest.c’. This program adds random noise to

the original file (c:\write.txt) to get the noise-corrupted file (c:\write7.txt).

6. Again execute the C program ‘Effi.c’, and compare the original file

(c:\write.txt) and the noise-corrupted file (c:\write7.txt). It displays no of bit

errors, while total no of bits remains the same as in step 4.

 107

7. Now compare the efficiencies calculated in steps (4) and (6).

8. Now change the no of iteration from 1 to 2 (big loop) in C program

‘Turbode4.c’ and repeat step 4 to 7.

Coding
File-1

// Program to add AWGN Noise to the bit stream received from the Turbo

encoder

include<stdio.h>

include<conio.h>

void main()

{

int i,j,k,c,c1,c2,rndi,nt=11,nt1=11,nt2=11;

double rndf,ch,ch1,ch2;

unsigned long n=0;

FILE *ifp,*ofp;

//nt,nt1,nt2: variables used for generating AWGN Noise

//*ifp: pointer to input file

//*ofp: pointer to output file

//i,j,k,c,c1,c2,n,ch,ch1,ch2: variables to store temporary values

//rndi: random generated integer value

//rndf: random generated float value

clrscr();

printf("\n Enter noise coffs for Generating Noise");

scanf("%d%d%d",&nt,&nt1,&nt2);

if((ifp=fopen("C:\\write2.txt","r"))==NULL)

printf("\n ERROR:Input file could not be opened");

if((ofp=fopen("C:\\write3.txt","w"))==NULL)

 108

printf("\n ERROR:Output file could not be opened");

//Counting no of inputs bits

while((c=getc(ifp))!=EOF)

n++;

printf("\n count=%ld",n);

//Logic for adding noise

for(i=0;i<n;i+=3)

{

fseek(ifp,i,0);

if((c=getc(ifp))!=EOF)

{

c=c-'0';

printf("%d",c);

if(c==0)

c=-1;

rndi=(rand()%nt);

rndf=(float)rndi/10;

if(rndi%2==0)

ch=c+rndf;

else

ch=c-rndf;

}

if((c1=getc(ifp))!=EOF)

{

c1=c1-'0';

printf("%d",c1);

if(c1==0)

c1=-1;

rndi=(rand()%nt1);

rndf=(float)rndi/10;

if(rndi%2==0)

 109

ch1=c1+rndf;

else

ch1=c1-rndf;

}

if((c2=getc(ifp))!=EOF)

{

c2=c2-'0';

printf("%d",c2);

if(c2==0)

c2=-1;

rndi=(rand()%nt2);

rndf=(float)rndi/10;

if(rndi%2==0)

ch2=c2+rndf;

else

ch2=c2-rndf;

}

fprintf(ofp,"%10.6f%10.6f%10.6f",ch,ch1,ch2);

}

fclose(ifp);

fclose(ofp);

}

 110

File-2
// Program to add AWGN Noise to the bit stream received from the trellis

encoder

include<stdio.h>

include<conio.h>

void main()

{

int i,j,k,c,c1,rndi,nt=11,nt1=11;

double rndf,ch,ch1;

unsigned long n=0;

FILE *ifp,*ofp;

//nt,nt1: variables used for generating AWGN Noise

//*ifp: pointer to input file

//*ofp: pointer to output file

//i,j,k,c,c1,n,ch,ch1: variables to store temporary values

//rndi: random generated integer value

//rndf: random generated float value

clrscr();

if((ifp=fopen("C:\\write1.txt","r"))==NULL)

printf("\n ERROR:Input file could not be opened");

if((ofp=fopen("C:\\write2.txt","w"))==NULL)

printf("\n ERROR:Output file could not be opened");

printf("\n Enter noise coffs for Generating Noise");

scanf("%d%d",&nt,&nt1);

//Counting no of inputs bits

while((c=getc(ifp))!=EOF)

n++;

printf("\n count=%ld",n);

//Logic for adding noise

for(i=0;i<n;i+=2)

 111

{

fseek(ifp,i,0);

if((c=getc(ifp))!=EOF)

{

c=c-'0';

printf("%d",c);

if(c==0)

c=-1;

rndi=(rand()%nt);

rndf=(float)rndi/10;

if(rndi%2==0)

ch=c+rndf;

else

ch=c-rndf;

if(ch>0.0)

putc(1+'0',ofp);

else

putc(0+'0',ofp);

}

if((c1=getc(ifp))!=EOF)

{

c1=c1-'0';

printf("%d",c1);

if(c1==0)

c1=-1;

rndi=(rand()%nt1);

rndf=(float)rndi/10;

if(rndi%2==0)

ch1=c1+rndf;

else

ch1=c1-rndf;

 112

if(ch1>0.0)

putc(1+'0',ofp);

else

putc(0+'0',ofp);

}

}

fclose(ifp);

fclose(ofp);

}

File-3
/*Program used for calculating efficiency by comparing bits in original file

and decoded bit stream*/

include<stdio.h>

include<conio.h>

void main()

{

int i,j,c,c1,disagree=0,n=0;

FILE *fp1,*fp2;

//i,j,c,c1,n:variables used for storing temporary values

// disagree: variables used for storing no of bits in disagreement

//*fp1: pointer to original file

//*fp2: pointer to decoded file(after passing through channel)

if((fp1=fopen("C:\\write.txt","r"))==NULL)

printf("\n ERROR: Ist Input file could not be opened");

if((fp2=fopen("C:\\write5.txt","r"))==NULL)

printf("\nERROR:2nd Input file could not be opened");

while((c=getc(fp1))!=EOF)

n++;

printf("\n count=%d",n);

 113

fseek(fp1,0,0);

fseek(fp2,0,0);

printf("\n");

//Logic for comapring bit stream in two file bit by bit

for(i=0;i<n;i++)

{

if((c=getc(fp1))!=EOF)

printf(" %d",c-'0');

if((c1=getc(fp2))!=EOF)

printf(" %d",c1-'0');

printf("\n");

if(c1!=c)

disagree++;

}

//displaying no of bits corrupted which could not be cottected by algorithm

printf("\n disagree=%d",disagree);

//displaying total no of bits in decoded/original file

printf("\n n=%d",n);

fclose(fp2);

fclose(fp1);

}//end of main

File-4
/*Program to encode the bits using trellis diagram for constraint length K=3

 and two code generators with cofficients 111 and 101 */

include<stdio.h>

include<conio.h>

void main()

{

int i,j,k,c,ch,a,sym,state,n=0;

 114

FILE *ifp,*ofp;

//state:for storing state at any time t

//output[]:for storing the output branch word for given state and input bits 0 and

1

//*ifp: pointer to input file

//*ofp: Pointer to output file

//i,j,c,ch,a,sym:variables to store temporary values

int nextstate[4][2]={0,2,

 0,2,

 1,3,

 1,3};

int output[4][2]={0,3,

 3,0,

 1,2,

 2,1};

if((ifp=fopen("C:\\read.txt","r"))==NULL)

printf("\nERROR:1st Input file could not be opened");

if((ofp=fopen("C:\\write.txt","w"))==NULL)

printf("\nERROR:1st Output file could not be opened");

//Converting alphabetical file into byte file

while((c=getc(ifp))!=EOF)

{

ch=c;

for(i=0;i<8;i++)

{

a=ch%2;

ch/=2;

putc(a+'0',ofp);

}

}

//Add 8 trailing bits

 115

for(i=0;i<8;i++)

putc(0+'0',ofp);

fclose(ifp);

fclose(ofp);

if((ifp=fopen("C:\\write.txt","r"))==NULL)

printf("\n ERROR:2nd Input file could not be opened");

if((ofp=fopen("C:\\write1.txt","w"))==NULL)

printf("\n ERROR: 2nd Output file could not be opened");

//counting no of bits in byte file

n=0;

while((c=getc(ifp))!=EOF)

n++;

printf("\n count=%d",n);

//intial state is 00

state=0;

//simulation of trellis diagram for calculating encoded bits

fseek(ifp,0,0);

for(i=0;i<n;i++)

{

if((sym=getc(ifp))!=EOF)

{

sym=sym-'0';

switch(state)

{

case 0:if(sym==0)

 {

 putc(0+'0',ofp);

 putc(0+'0',ofp);

 state=nextstate[0][0];

 }

 else

 116

 {

 putc(1+'0',ofp);

 putc(1+'0',ofp);

 state=nextstate[0][1];

 }

 break;

case 1:if(sym==0)

 {

 putc(1+'0',ofp);

 putc(1+'0',ofp);

 state=nextstate[1][0];

 }

 else

 {

 putc(0+'0',ofp);

 putc(0+'0',ofp);

 state=nextstate[1][1];

 }

 break;

case 2: if(sym==0)

 {

 putc(0+'0',ofp);

 putc(1+'0',ofp);

 state=nextstate[2][0];

 }

 else

 {

 putc(1+'0',ofp);

 putc(0+'0',ofp);

 state=nextstate[2][1];

 }

 117

 break;

case 3: if(sym==0)

 {

 putc(1+'0',ofp);

 putc(0+'0',ofp);

 state=nextstate[3][0];

 }

 else

 {

 putc(0+'0',ofp);

 putc(1+'0',ofp);

 state=nextstate[3][1];

 }

 break;

 }

 }

}

}

File-5
/*Program to decode encoded bits using A Simplified Computational Kernel for

 Trellis Based Decoding(modified viterbi algorithm)for constraint length K=3

 and code rate=1/2 with two code generators with coefficients 111 101*/

include<stdio.h>

include<conio.h>

int output[4][2]={0,3,

 3,0,

 1,2,

 2,1};

 118

/*output matrix contains the output branch word corresponding to four

 states (row wise) and input bits 1 and 0 (column wise)*/

void main()

{

int hammingdist(int,int);

//This function is used for calculating hamming distance between two arguments

passed to it

int

n=0,c,c1,c2,bm1,bm2,modbm1,modbm2,i,j,k,sym,min,count,index=0,**st_metric

,*numoct,*decod;

FILE *ifp,*ofp,*fp;

//c,c1,c2: variables used for storing received bit values

//bm1,bm2:variables for storing branch metric values

//modbm1,modbm2:variables for storing modified branch metric values

//min:for storing minimum value of state metric

//index:for storing the index value of minimum state metric

//**st_metric:pointer used for storing the state metric at each instant of time

//*numoct:pointer used for storing octal value of binary bits received(pair wise)

//*decod:pointer used for storing decoded bits

//n:to store no of received symbols(bits)

//Sym:variable to store octal value

//i,j,k:local variables used for executing for loops

//*ifp: pointer to input file (contains bits received form channel)

//*ofp: Pointer to output file(contains decoded bits)

clrscr();

fp=fopen("C:\\decoder.txt","w");

if((ifp=fopen("C:\\write2.txt","r"))==NULL)

printf("\nERROR:1st Input file could not be opened");

if((ofp=fopen("C:\\write3.txt","w"))==NULL)

printf("\nERROR:1st Output file could not be opened");

while((c=getc(ifp))!=EOF)

 119

n++;

//Dynamic memory allocation for storing octal equivalent values of received

symbols (bits)

numoct=(int*)calloc(n/2,sizeof(int));

//Dynamic memory allocation for storing decoded bit values

decod=(int*)calloc(n/2+1,sizeof(int));

//Dynamic memory allocation for storing state metric values

st_metric=(int**)calloc(n/2+1,sizeof(int));

for(i=0;i<n/2+1;i++)

st_metric[i]=(int*)calloc(4,sizeof(int));

//Logic for calculating octal equivalent of received bits(taking two at a time

fseek(ifp,0,0);

for(i=0;i<n;i+=2)

{

if((c=getc(ifp))!=EOF)

c=c-'0';

if((c1=getc(ifp))!=EOF)

c1=c1-'0';

numoct[i/2]=2*c+c1;

}

//Equating state metric at time t=0 and t=1 to zero

for(j=0;j<2;j++)

for(i=0;i<4;i++)

st_metric[j][i]=0;

//Calculating state metric at time t=2

bm1=hammingdist(numoct[0],output[0][0]);

st_metric[1][0]=st_metric[0][0]+bm1;

bm2=hammingdist(numoct[0],output[0][1]);

st_metric[1][2]=st_metric[0][0]+bm2;

//Calculating state metric at time t=3

bm1=hammingdist(numoct[1],output[0][0]);

 120

bm2=hammingdist(numoct[1],output[0][1]);

st_metric[2][0]=st_metric[1][0]+bm1;

st_metric[2][2]=st_metric[1][0]+bm2;

bm1=hammingdist(numoct[1],output[2][0]);

bm2=hammingdist(numoct[1],output[2][1]);

st_metric[2][1]=st_metric[1][2]+bm1;

st_metric[2][3]=st_metric[1][2]+bm2;

/*Calculating state metric for time t>=4 using previous state metrics and branch

 metric values i.e Implementation of MODIFIED ADD COMPARE SELECT

COMPUTATION Algorithm*/

for(i=2;i<n/2;i++)

{

sym=numoct[i];

bm1=hammingdist(sym,output[0][0]);

modbm1=2*(1-bm1);

bm2=hammingdist(sym,output[2][0]);

modbm2=2*(1-bm2);

if(st_metric[i][0]<=st_metric[i][1]+modbm1)

st_metric[i+1][0]=st_metric[i][0];

else

st_metric[i+1][0]=st_metric[i][1]+modbm1;

if(st_metric[i][1]<=st_metric[i][0]+modbm1)

st_metric[i+1][2]=st_metric[i][1];

else

st_metric[i+1][2]=st_metric[i][0]+modbm1;

if(st_metric[i][2]<=st_metric[i][3]+modbm2)

st_metric[i+1][1]=st_metric[i][2];

else

 121

st_metric[i+1][1]=st_metric[i][3]+modbm2;

st_metric[i+1][1]=st_metric[i+1][1]+bm2-bm1;

if(st_metric[i][3]<=st_metric[i][2]+modbm2)

st_metric[i+1][3]=st_metric[i][3];

else

st_metric[i+1][3]=st_metric[i][2]+modbm2;

st_metric[i+1][3]=st_metric[i+1][3]+bm2-bm1;

}

//Displaying the State Metric Values

for(i=n/2;i>=0;i--)

{

for(j=0;j<4;j++)

{

printf(" %d", st_metric[i][j]);

fprintf(fp," %d",st_metric[i][j]);

}

fprintf(fp,"\n");

printf("\n");

}

//Calculating minimum value of state metric at time t=maximum time

i=n/2;

min=st_metric[i][0];

for(j=1;j<4;j++)

{

if(st_metric[i][j]<min)

{

min=st_metric[i][j];

index=j;

}

}

 122

//logic for traversing back the path on trellis diagram from t=max to t=1 and

getting decoded bits

do

{

switch(index)

{

case 0:if(st_metric[i-1][0]<=st_metric[i-1][1])

 index=0;

 else

 index=1;

 decod[i]=0;

 i--;

 break;

case 1:if(st_metric[i-1][2]<=st_metric[i-1][3])

 index=2;

 else

 index=3;

 decod[i]=0;

 i--;

 break;

case 2:if(st_metric[i-1][0]<=st_metric[i-1][1])

 index=0;

 else

 index=1;

 decod[i]=1;

 i--;

 break;

case 3:if(st_metric[i-1][2]<=st_metric[i-1][3])

 index=2;

 else

 index=3;

 123

 decod[i]=1;

 i--;

 break;

 }

}while(i>0);

//Displaying decoded bits and writing to output file

printf("\n The decoded bits are");

for(i=1;i<=n/2;i++)

{

printf("%d",decod[i]);

putc(decod[i]+'0',ofp);

}

fclose(ifp);

fclose(ofp);

//opening new output file to write alphabetical vales from binary values

if((ifp=fopen("C:\\write3.txt","r"))==NULL)

printf("\n ERROR:Input file could not be opened");

if((ofp=fopen("C:\\write4.txt","w"))==NULL)

printf("\n ERROR:Output file could not be opened");

n=0;

while((c=getc(ifp))!=EOF)

n++;

//Logic for Converting Binary values to alphabetical values

for(i=0;i<n/8;i++)

{

c1=0;

for(j=0;j<8;j++)

{

fseek(ifp,8*i+j,0);

c=getc(ifp);

c=c-'0';

 124

c2=c;

for(k=0;k<j;k++)

c2*=c*2;

c1+=c2;

}

printf("%c",c1);

putc(c1,ofp);

}

fclose(ifp);

fclose(ofp);

}//end of main

int hammingdist(int x1,int x2)//function for calculating hamming distance

{

int x3=x1-x2;

if(x3<0)

x3=-x3;

if(x3==0)

return 0;

if(x3==1)

{

if(((x1==1)&&(x2==2))||((x1==2)&&(x2==1)))

return 2;

else

return 1;

}

if(x3==2)

return 1;

if(x3==3)

return 2;

}

 125

File-6
//program to decode systematic convolutionally encoded stream with one code

// generator whose coefficients are entered by user using MAP Decoding

Algorithm

include<stdio.h>

include<conio.h>

include<math.h>

define infin -1.0e100

double max(double,double);

//Program to find minimum value

double minimum(double f[][9], int i)

{

int j,flag=0;

double min=f[0][i];

for(j=0;j<8;j++)

if(f[j][i]<0.0)

break;

if(j==8)

flag=1;

else

flag=0;

if(flag==1)

{

for(j=1;j<8;j++)

if(f[j][i]<min)

min=f[j][i];

}

else

min=0.0;

 126

return min;

}

void main()

{

 FILE *fp,*ifp,*ofp;

 int i,j,k,l,c,c1,c2,x,x1,big,rndi,decod[8],inleav[5];

//n: variable to store no of bits received

//rndi= variable to store integer random number

//decod:pointer used for storing decoded bit stream

//inleav[5]:array for storing interleaver structure

//output[][]: for storing the output values corresponding to different coefficients

of code generator g1

//i,j,k,c,c1,c2,x,x1,big: local variables used for calculation of other parameters

//*fp:pointer to a file used for storing intermediate values(optional)

//*ifp: pointer to input file

//*ofp: pointer to output file

 int LUTFS[2][8]={{0,2,5,7,1,3,4,6},{1,3,4,6,0,2,5,7}};

 int LUTBS[2][8]={{0,4,1,5,6,2,7,3},{4,0,5,1,2,6,3,7}};

//LUTFS[][]:look up table for simulating trellis structure for forward metrics

//LUTBS[][]:look up table for simulat9ing trellis structure for reverse metrics

 double

maxnum,maxden,num,den,num1,den1,rndf,fsmet[8][9],rsmet[8][9],bmet[4][8],lr

[8],in[8],exlr[8],apri[8],app[8];

 double

ch,ch1,ch2,yp[8],rstemp1[8],rstemp2[8],rstemp3[8],rstemp4[8],rstemp5[8],rstem

p6[8],rstemp7[8],rstemp8[8],min;

 unsigned long n=0;

 //maxnum,maxden,num,den,num1,den1: variables used for calculating other

parameters

 //rndf:v0ariable to store floating type random number

//fsmet[][]:array used for storing forward state metric values

 127

//rsmet[][]:array used for storing reverse state metric values

//rstemp1[]-rstemp8[]:arrays used for storing and exchanging reverse state

metric values

//ch,ch1,ch2:variables used for calulating other parameters

//yp[8]:array used for storing interleaved parity sequence

//bmet[][]:array used for storing branch metric values

//num:variable to store numerator for likelihood ratio

//den:variable to store denominator for likelihood ratio

//lr[8]: array for storing LR values

//in[8]:array for storing interleaved data bit values

//exlr[8]:array for storing external values

//apri[8]:array for storing a priori values

//app[8]:

clrscr();

if((fp=fopen("C:\\decoder.txt","w"))==NULL)

printf("\n ERROR: Could not open the file");

if((ifp=fopen("C:\\write3.txt","r"))==NULL)

printf("\nERROR:1st Input file could not be opened");

if((ofp=fopen("C:\\write4.txt","w"))==NULL)

printf("\nERROR:1st Output file could not be opened");

//assiging values for simulating interleaver structure

inleav[0]=0;

inleav[1]=3;

inleav[2]=1;

inleav[3]=4;

inleav[4]=2;

//calculating number of float values (transmitted sequence+noise)

while((i=fscanf(ifp,"%lf %lf %lf",&ch,&ch1,&ch2))!=EOF)

n+=3;

printf("\n count=%d",n);

printf("\n");

 128

fseek(ifp,0,0);

//intializing reverse state metric values for decoder1

for(k=1;k<8;k++)

rstemp2[k]=infin;

rstemp2[0]=0.0;

//intializing reverse state metric values for decoder2

for(k=1;k<8;k++)

rsmet[k][8]=infin;

rsmet[0][8]=0.0;

//l loop: used for scanning whole file

for(l=n/24;l>0;l--)

{

//intializing a priori values to zeros

for(k=0;k<8;k++)

apri[k]=0.0;

//big loop: used for number of iterations

for(big=0;big<2;big++)

{

fseek(ifp,0,0);

//intializing forward state metrics

for(k=1;k<8;k++)

fsmet[k][0]=infin;

fsmet[0][0]=0.0;

//i loop:used for calculating forward state metric values for each block

for(i=0;i<l;i++)

{

//j loop: used for accessing 24 bits at a time

for(j=0;j<24;j+=3)

{

if((k=fscanf(ifp,"%lf %lf %lf",&ch,&ch1,&ch2))!=EOF)

{

 129

//fprintf(fp,"\n %lf %lf %lf",ch,ch1,ch2);

//printf("\n %f %f %f",ch,ch1,ch2);

//adding a priori information to branch metric values if reached to the block

which is being decoded

if(i==l-1)

{

bmet[0][j/3]=-ch-ch1-apri[j/3];

bmet[1][j/3]=-ch+ch1-apri[j/3];

bmet[2][j/3]=ch-ch1+apri[j/3];

bmet[3][j/3]=ch+ch1+apri[j/3];

}

//calulating branch metric values

else

{

bmet[0][j/3]=-ch-ch1;

bmet[1][j/3]=-ch+ch1;

bmet[2][j/3]=ch-ch1;

bmet[3][j/3]=ch+ch1;

}

}

}// end of j loop

/*fprintf(fp,"\n bmet");

//printf("\n bmet");

for(j=0;j<8;j++)

{

for(k=0;k<4;k++)

{

fprintf(fp," %f",bmet[k][j]);

//printf(" %f",bmet[k][j]);

}

//printf("\n");

 130

fprintf(fp," \n");

}*/

//Logic for calculating forward state metric values

for(k=1;k<=8;k++)

{

for(j=0;j<8;j++)

{

if(j%2==0)

fsmet[j][k]=max(bmet[0][k-1]+fsmet[LUTFS[0][j]][k-1],bmet[3][k-

1]+fsmet[LUTFS[1][j]][k-1]);

else

fsmet[j][k]=max(bmet[1][k-1]+fsmet[LUTFS[0][j]][k-1],bmet[2][k-

1]+fsmet[LUTFS[1][j]][k-1]);

}

}

/*fprintf(fp,"\n forward st metric is");

for(k=0;k<=8;k++)

{

for(j=0;j<8;j++)

fprintf(fp," %f",fsmet[j][k]);

fprintf(fp," \n");

}*/

if(i==l-1)

break;

min=minimum(fsmet,k-1);

fprintf(fp,"min=%f",min);

//normalizing the forward state metric values

for(k=0;k<8;k++)

fsmet[k][0]=fsmet[k][8]-min;

}//end of i loop

//fprintf(fp,"For Comparing");

 131

//for(k=0;k<8;k++)

//fprintf(fp," %f",fsmet[k][8]);

//saving reverse state metric values for different no of iterations

if((big==0)&&(l<n/24))

for(k=0;k<8;k++)

{

rsmet[k][8]=rstemp3[k];

rstemp2[k]=rstemp4[k];

}

if((big==1)&&(l<n/24))

for(k=0;k<8;k++)

{

rsmet[k][8]=rstemp5[k];

rstemp2[k]=rstemp6[k];

}

if((big==2)&&(l<n/24))

for(k=0;k<8;k++)

{

rsmet[k][8]=rstemp7[k];

rstemp2[k]=rstemp8[k];

}

//Logic for calculating reverse state metric values

for(k=7;k>=0;k--)

{

for(j=0;j<8;j++)

{

if((j==0)||(j==1)||(j==4)||(j==5))

rsmet[j][k]=max(bmet[0][k]+rsmet[LUTBS[0][j]][k+1],bmet[3][k]+rsmet[LUTB

S[1][j]][k+1]);

else

 132

rsmet[j][k]=max(bmet[1][k]+rsmet[LUTBS[0][j]][k+1],bmet[2][k]+rsmet[LUTB

S[1][j]][k+1]);

}

}

/*fprintf(fp,"\n reverse st metric is");

for(k=8;k>=0;k--)

{

for(j=0;j<8;j++)

fprintf(fp," %f",rsmet[j][k]);

fprintf(fp," \n");

}

fprintf(fp,"For Comparing");

for(k=0;k<8;k++)

fprintf(fp," %f",rsmet[k][0]);

 */

//Calculating likelihood ratio for each decoded bit

for(k=0;k<8;k++)

{

num1=fsmet[0][k]+rsmet[4][k+1]+bmet[3][k];

den1=fsmet[0][k]+rsmet[0][k+1]+bmet[0][k];

for(j=1;j<8;j++)

{

if((j==2)||(j==3)||(j==6)||(j==7))

{

num=fsmet[j][k]+rsmet[LUTBS[1][j]][k+1]+bmet[2][k];

den=fsmet[j][k]+rsmet[LUTBS[0][j]][k+1]+bmet[1][k];

}

else

{

num=fsmet[j][k]+rsmet[LUTBS[1][j]][k+1]+bmet[3][k];

 133

den=fsmet[j][k]+rsmet[LUTBS[0][j]][k+1]+bmet[0][k];

}

maxnum=max(num,num1);

maxden=max(den,den1);

//fprintf(fp,"\n

num1=%f,den1=%f,num=%f,den=%f,naxnum=%f,maxden=%f",num1,den1,nu

m,den,maxnum,maxden);

num1=maxnum;

den1=maxden;

}

app[k]=maxnum-maxden;

}

//calculating external lr ratio

for(k=0;k<8;k++)

exlr[k]=app[k]-apri[k];

//deinterleaving/interleaving

for(j=0;j<24;j+=3)

{

printf("\n x1=");

if(j%6==0)

{

x1=2*inleav[j/6+1];

printf("%d",x1);

}

else

{

for(k=1;k<=4;k++)

{

if((j/3+1)==2*inleav[k])

{

x1=2*k-1;

 134

break;

}

}

printf("%d",x1);

}//else

apri[x1-1]=exlr[j/3];

}//end of j

for(k=0;k<8;k++)

rstemp1[k]=rsmet[k][8];

//Normalizing reverse state metric values for different number of iterations

if(big==0)

{

k=0;

min=minimum(rsmet,k);

fprintf(fp,"rsmin=%f",min);

for(k=0;k<8;k++)

rstemp3[k]=rsmet[k][0]-min;

}

if(big==1)

{

k=0;

min=minimum(rsmet,k);

fprintf(fp,"rsmin=%f",min);

for(k=0;k<8;k++)

rstemp5[k]=rsmet[k][0]-min;

}

if(big==2)

{

k=0;

min=minimum(rsmet,k);

fprintf(fp,"rsmin=%f",min);

 135

for(k=0;k<8;k++)

rstemp7[k]=rsmet[k][0]-min;

}

/*decoder2:All logics are same as that of decoder 1 except the the input sequence

is

the interleaved version of sequence which is sent to decoder 1 and the output is

also

deinterleaved before sent to decoder1*/

fseek(ifp,0,0);

for(k=0;k<8;k++)

rsmet[k][8]=rstemp2[k];

for(k=1;k<8;k++)

fsmet[k][0]=infin;

fsmet[0][0]=0.0;

for(i=0;i<l;i++)

{

for(j=0;j<24;j+=3)

{

if((k=fscanf(ifp,"%lf %lf %lf",&ch,&ch1,&ch2))!=EOF)

{

//fprintf(fp,"\n %lf %lf %lf",ch,ch1,ch2);

//printf("\n %f %f %f",ch,ch1,ch2);

yp[j/3]=ch2;

if(j%6==0)

{

x1=2*inleav[j/6+1];

printf("%d",x1);

}

else

{

for(k=1;k<=4;k++)

 136

{

if((j/3+1)==2*inleav[k])

{

x1=2*k-1;

break;

}

}

printf("%d",x1);

}//else

in[x1-1]=ch;

}

}// end of j loop

for(j=0;j<8;j++)

{

if(i!=l-1)

{

bmet[0][j]=-in[j]-yp[j];

bmet[1][j]=-in[j]+yp[j];

bmet[2][j]=in[j]-yp[j];

bmet[3][j]=in[j]+yp[j];

}

else

{

bmet[0][j]=-in[j]-apri[j]-yp[j];

bmet[1][j]=-in[j]-apri[j]+yp[j];

bmet[2][j]=in[j]+apri[j]-yp[j];

bmet[3][j]=in[j]+apri[j]+yp[j];

}

}

/*fprintf(fp,"\n bmet");

 137

//printf("\n bmet");

for(j=0;j<8;j++)

{

for(k=0;k<4;k++)

{

fprintf(fp," %f",bmet[k][j]);

//printf(" %f",bmet[k][j]);

}

//printf("\n");

fprintf(fp," \n");

}*/

for(k=1;k<=8;k++)

{

for(j=0;j<8;j++)

{

if(j%2==0)

fsmet[j][k]=max(bmet[0][k-1]+fsmet[LUTFS[0][j]][k-1],bmet[3][k-

1]+fsmet[LUTFS[1][j]][k-1]);

else

fsmet[j][k]=max(bmet[1][k-1]+fsmet[LUTFS[0][j]][k-1],bmet[2][k-

1]+fsmet[LUTFS[1][j]][k-1]);

}

}

/*fprintf(fp,"\n forward st metric is");

for(k=0;k<=8;k++)

{

for(j=0;j<8;j++)

fprintf(fp," %f",fsmet[j][k]);

fprintf(fp," \n");

}*/

if(i==l-1)

 138

break;

min=minimum(fsmet,k-1);

fprintf(fp,"min=%f",min);

for(k=0;k<8;k++)

fsmet[k][0]=fsmet[k][8]-min;

}//end of i loop

for(k=7;k>=0;k--)

{

for(j=0;j<8;j++)

{

if((j==0)||(j==1)||(j==4)||(j==5))

rsmet[j][k]=max(bmet[0][k]+rsmet[LUTBS[0][j]][k+1],bmet[3][k]+rsmet[LUTB

S[1][j]][k+1]);

else

rsmet[j][k]=max(bmet[1][k]+rsmet[LUTBS[0][j]][k+1],bmet[2][k]+rsmet[LUTB

S[1][j]][k+1]);

}

}

/*fprintf(fp,"\n reverse st metric is");

for(k=8;k>=0;k--)

{

for(j=0;j<8;j++)

fprintf(fp," %f",rsmet[j][k]);

fprintf(fp," \n");

}*/

//Calculating likelihood ratio for each decoded bit

for(k=0;k<8;k++)

{

num1=fsmet[0][k]+rsmet[4][k+1]+bmet[3][k];

den1=fsmet[0][k]+rsmet[0][k+1]+bmet[0][k];

for(j=1;j<8;j++)

 139

{

if((j==2)||(j==3)||(j==6)||(j==7))

{

num=fsmet[j][k]+rsmet[LUTBS[1][j]][k+1]+bmet[3][k];

den=fsmet[j][k]+rsmet[LUTBS[0][j]][k+1]+bmet[0][k];

}

else

{

num=fsmet[j][k]+rsmet[LUTBS[1][j]][k+1]+bmet[2][k];

den=fsmet[j][k]+rsmet[LUTBS[0][j]][k+1]+bmet[1][k];

}

maxnum=max(num,num1);

maxden=max(den,den1);

//fprintf(fp,"\n

num1=%f,den1=%f,num=%f,den=%f,naxnum=%f,maxden=%f",num1,den1,nu

m,den,maxnum,maxden);

num1=maxnum;

den1=maxden;

}

app[k]=maxnum-maxden;

//fprintf(fp,"\nlr=%f",app[k]);

}

for(k=0;k<8;k++)

exlr[k]=app[k]-apri[k];

//Logic for hard decision

//deinterleaving+interleaving

for(j=0;j<24;j+=3)

{

printf("\n x1=");

if(j%6==0)

{

 140

x1=2*inleav[j/6+1];

printf("%d",x1);

}

else

{

for(k=1;k<=4;k++)

{

if((j/3+1)==2*inleav[k])

{

x1=2*k-1;

break;

}

}

printf("%d",x1);

}//else

apri[x1-1]=exlr[j/3];

lr[x1-1]=app[j/3];

}//end of j

for(k=0;k<8;k++)

rsmet[k][8]=rstemp1[k];

if(big==0)

{

k=0;

min=minimum(rsmet,k);

fprintf(fp,"rsmin=%f",min);

for(k=0;k<8;k++)

rstemp4[k]=rsmet[k][0]-min;

}

if(big==1)

{

k=0;

 141

min=minimum(rsmet,k);

fprintf(fp,"rsmin=%f",min);

for(k=0;k<8;k++)

rstemp6[k]=rsmet[k][0]-min;

}

if(big==2)

{

k=0;

min=minimum(rsmet,k);

fprintf(fp,"rsmin=%f",min);

for(k=0;k<8;k++)

rstemp8[k]=rsmet[k][0]-min;

}

}//end of big

for(k=0;k<8;k++)

{

if(lr[k]>0.0)

decod[k]=1;

else

decod[k]=0;

}

//Displaying the decoded string with respective LLR values

printf("decoded bits are:\n");

fprintf(fp,"decoded bits are:\n");

printf("Bit LLR Value\n");

fprintf(fp,"Bit LLR Value\n");

for(k=7;k>=0;k--)

{

printf("%d %f",decod[k],lr[k]);

fprintf(fp,"%d %f",decod[k],lr[k]);

 142

putc(decod[k]+'0',ofp);

printf("\n ");

fprintf(fp,"\n");

}

}//end of l loop

// writing byte file in order into another file

fclose(ifp);

fclose(ofp);

if((ifp=fopen("C:\\write4.txt","r"))==NULL)

printf("\n ERROR:Input file could not be opened");

if((ofp=fopen("C:\\write5.txt","w"))==NULL)

printf("\n ERROR:Output file could not be opened");

n=0;

while((c=getc(ifp))!=EOF)

n++;

printf("\n count=%ld",n);

for(i=n-1;i>=0;i--)

{

fseek(ifp,i,0);

if((c=getc(ifp))!=EOF)

putc(c,ofp);

}

fclose(ifp);

fclose(ofp);

//converting binary file into alphanumeric file

if((ifp=fopen("C:\\write5.txt","r"))==NULL)

printf("\n ERROR:Input file could not be opened");

if((ofp=fopen("C:\\write6.txt","w"))==NULL)

printf("\n ERROR:Output file could not be opened");

n=0;

while((c=getc(ifp))!=EOF)

 143

n++;

printf("\n count=%d",n);

for(i=0;i<n/8-1;i++)

{

c1=0;

for(j=0;j<8;j++)

{

fseek(ifp,8*i+j,0);

c=getc(ifp);

c=c-'0';

c2=c;

for(k=0;k<j;k++)

c2*=c*2;

c1+=c2;

}

printf("%c",c1);

fseek(ofp,i,0);

putc(c1,ofp);

}

fclose(ifp);

fclose(ofp);

}

//function for calculating maximum value

double max(double a,double b)

{

double temp,sub;

temp=(a>=b)?a:b;

sub=(a>=b)?a-b:b-a;

temp+=log(1+exp(-sub));

return temp;

}

 144

File-7
//program to encode input bit stream using Systematic Convolutional Encoding

// and odd-even symmetrical interleaver with rate 1/3

include<stdio.h>

include<conio.h>

void main()

{

int a,c,ch,ch1,r1[3],r2[3],arr[8],inleav[5];

unsigned long i,j,k,n=0;

FILE *ifp,*ofp;

//r1[3]:shift register of0 CC1 to store three bits

//r2[3]=shift register ogf CC2 to store three bits

//a,c,ch,ch1,i,j.n: local variabls used for calculating other parameters

//arr[]: aray to d

//inleav[5]: array to conatin interleverpattern

//*ifp: pointer to input file

//*ofp: pointer to output file

clrscr();

if((ifp=fopen("C:\\read.txt","r"))==NULL)

printf("\nERROR:1st Input file could not be opened");

if((ofp=fopen("C:\\write.txt","w"))==NULL)

printf("\nERROR:1st Output file could not be opened");

//converting alphabetick file into byte file

while((c=getc(ifp))!=EOF)

{

ch=c;

 145

for(i=0;i<8;i++)

{

a=ch%2;

ch/=2;

putc(a+'0',ofp);

}

}

fclose(ifp);

fclose(ofp);

if((ifp=fopen("C:\\write.txt","r"))==NULL)

printf("\n ERROR:2nd Input file could not be opened");

if((ofp=fopen("C:\\write1.txt","w"))==NULL)

printf("\n ERROR: 2nd Output file could not be opened");

//counting no of bits in input file

while((c=getc(ifp))!=EOF)

n++;

printf("\n count=%d",n);

fseek(ifp,0,0);

//assiging values to inetrleaver to simualte odd-even symmetric interleaver

structure

inleav[0]=0;

inleav[1]=3;

inleav[2]=1;

inleav[3]=4;

inleav[4]=2;

for(i=0;i<3;i++)

{

r1[i]=0;

r2[i]=0;

}

//one bit of the 3 bit codeword is corresponding tranmitting bit

 146

for(i=0;i<n;i++)

{

if((c=getc(ifp))!=EOF)

{

c=c-'0';

putc(c+'0',ofp);

}

}

fseek(ifp,0L,SEEK_SET);

//Logic for calculation of 2nd and 3rd bit of 3-bit codeword (parity bit)

for(i=0;i<n;i++)

{

if((c=getc(ifp))!=EOF)

{

int temp;

c=c-'0';

temp=r1[2]^r1[0]^c;

ch=temp^r1[0]^r1[1]^r1[2];

putc(ch+'0',ofp);

r1[2]=r1[1];

r1[1]=r1[0];

r1[0]=temp;

}

}

fseek(ifp, 0L, SEEK_SET);

for(i=0;i<n/8;i++)

{

for(j=0;j<8;j++)

{

if((c=getc(ifp))!=EOF)

{

 147

int temp,x1;

c=c-'0';

if(j%2==0)

{

x1=2*inleav[j/2+1];

}

else

{

for(k=1;k<=4;k++)

{

if((j+1)==2*inleav[k])

{

x1=2*k-1;

break;

}

}

}

arr[x1-1]=c;

}

}

for(j=0;j<8;j++)

{

int temp=r2[2]^r2[0]^arr[j];

ch=temp^r2[0]^r2[1]^r2[2];

putc(ch+'0',ofp);

r2[2]=r2[1];

r2[1]=r2[0];

r2[0]=temp;

}

}

fclose(ifp);

 148

fclose(ofp);

if((ifp=fopen("C:\\write1.txt","r"))==NULL)

printf("\n ERROR:3nd Input file could not be opened");

if((ofp=fopen("C:\\write2.txt","w"))==NULL)

printf("\n ERROR: 3nd Output file could not be opened");

i=0;

j=n;

k=2*n;

fseek(ifp,0L,0);

//rearrranging bits in sequence as one data bits,one first parity bit and

// one second parity bit and so on

while(i<n)

{

fseek(ifp,i,0);

c=getc(ifp);

putc(c,ofp);

fseek(ifp,j,0);

c=getc(ifp);

putc(c,ofp);

fseek(ifp,k,0);

c=getc(ifp);

putc(c,ofp);

i+=1;

j+=1;

k+=1;

}

printf("i=%ld,j=%ld,k=%ld",i,j,k);

for(i=0;i<24;i++)

putc(0+'0',ofp);

}

 149

File-8
//program to decode uncoded-noise corrupted bit stream(Turbo)

include<stdio.h>

include<conio.h>

void main()

{

int i,j,k,c,c1,c2,nt=11,nt1,nt2,nt3,rndi;

unsigned long n=0;

double ch,rndf;

FILE *ifp,*ofp;

//nt,nt1,nt2,nt3: variables used for generating AWGN Noise

//*ifp: pointer to input file

//*ofp: pointer to output file

//i,j,k,c,c1,c2,n,ch: variables to store temporary values

//rndi: random generated integer value

//rndf: random generated float value

clrscr();

printf("\n Enter the Random Noise Generator Coeff");

scanf("%d%d%d",&nt1,&nt2,&nt3);

if((ifp=fopen("C:\\write.txt","r"))==NULL)

printf("\n ERROR:2nd Input file could not be opened");

if((ofp=fopen("C:\\write7.txt","w"))==NULL)

printf("\n ERROR: 2nd Output file could not be opened");

//Counting no of inputs bits

while((c=getc(ifp))!=EOF)

n++;

//printf("\n count=%d",n);

//Logic for adding noise

for(i=0;i<n;i++)

{

 150

fseek(ifp,i,0);

if((c=getc(ifp))!=EOF)

{

c=c-'0';

//printf("%d",c);

//if(i%72==0)

j=i%3;

switch(j)

{

case 0:nt=nt1;

break;

case 1:nt=nt2;

break;

case 2:nt=nt3;

}

if(c==0)

c=-1;

rndi=(rand()%nt);

rndf=(float)rndi/10;

if(rndi%2==0)

ch=c+rndf;

else

ch=c-rndf;

if(ch>0.0)

putc(1+'0',ofp);

if(ch<0.0)

putc(0+'0',ofp);

if(ch==0.0)

putc(rand()%2+'0',ofp);

}

 151

}

fclose(ifp);

fclose(ofp);

n=0;

if((ifp=fopen("C:\\write7.txt","r"))==NULL)

printf("\n ERROR:Input file could not be opened");

if((ofp=fopen("C:\\write8.txt","w"))==NULL)

printf("\n ERROR:Output file could not be opened");

while((c=getc(ifp))!=EOF)

n++;

//printf("\n count=%d",n);

//decoding noise corrupted bit stream

for(i=0;i<n/8;i++)

{

c1=0;

for(j=0;j<8;j++)

{

fseek(ifp,8*i+j,0);

c=getc(ifp);

c=c-'0';

c2=c;

for(k=0;k<j;k++)

c2*=c*2;

c1+=c2;

}

putc(c1,ofp);

}

fclose(ifp);

fclose(ofp);

}

 152

File-9
//program to decode uncoded-noise corrupted bit stream(Trellis)

include<stdio.h>

include<conio.h>

void main()

{

int i,j,k,c,c1,c2,nt=11,nt1,nt2,rndi;

unsigned long n=0;

double ch,rndf;

FILE *ifp,*ofp;

clrscr();

//nt,nt1,nt2: variables used for generating AWGN Noise

//*ifp: pointer to input file

//*ofp: pointer to output file

//i,j,k,c,c1,c2,n,ch: variables to store temporary values

//rndi: random generated integer value

//rndf: random generated float value

printf("\n Enter the Random Noise Generator Coeff");

scanf("%d%d",&nt1,&nt2);

if((ifp=fopen("C:\\write.txt","r"))==NULL)

printf("\n ERROR:2nd Input file could not be opened");

if((ofp=fopen("C:\\write7.txt","w"))==NULL)

printf("\n ERROR: 2nd Output file could not be opened");

//Counting no of inputs bits

while((c=getc(ifp))!=EOF)

n++;

//printf("\n count=%d",n);

//Logic for adding noise

for(i=0;i<n;i++)

{

 153

fseek(ifp,i,0);

if((c=getc(ifp))!=EOF)

{

c=c-'0';

//printf("%d",c);

//if(i%72==0)

j=i%2;

switch(j)

{

case 0:nt=nt1;

break;

case 1:nt=nt2;

}

if(c==0)

c=-1;

rndi=(rand()%nt);

rndf=(float)rndi/10;

if(rndi%2==0)

ch=c+rndf;

else

ch=c-rndf;

if(ch>0.0)

putc(1+'0',ofp);

if(ch<0.0)

putc(0+'0',ofp);

if(ch==0.0)

putc(rand()%2+'0',ofp);

}

}

fclose(ifp);

 154

fclose(ofp);

n=0;

if((ifp=fopen("C:\\write7.txt","r"))==NULL)

printf("\n ERROR:Input file could not be opened");

if((ofp=fopen("C:\\write8.txt","w"))==NULL)

printf("\n ERROR:Output file could not be opened");

while((c=getc(ifp))!=EOF)

n++;

//printf("\n count=%d",n);

//decoding noise corrupted bit stream

for(i=0;i<n/8;i++)

{

c1=0;

for(j=0;j<8;j++)

{

fseek(ifp,8*i+j,0);

c=getc(ifp);

c=c-'0';

c2=c;

for(k=0;k<j;k++)

c2*=c*2;

c1+=c2;

}

putc(c1,ofp);

}

fclose(ifp);

fclose(ofp);

}

 155

	Under the guidance of
	Delhi College of Engineering,
	University of Delhi
	3 CONVOLUTIONAL CODING………………………………………... 9
	5 TURBO CODES…………………………………………………………. 47
	 5.1 Introduction…………………………………………………………… 47
	 5.2 Turbo Code Concepts………………………………………………. 47
	 5.2.1 Likelihood Function…………………………………………… 47
	 5.2.2 The Two-Signal Class Case…………………………………. 48
	 5.2.3 Log-Likelihood Ratio………………………………………….. 51
	 5.2.4 Principle of Iterative (Turbo) Decoding……………………... 52
	 5.3 Likelihood Algebra…………………………………………………… 53
	 5.4 Encoding With Recursive Systematic Codes…………………….. 54
	 5.4.1 Concatenation of RSC Codes………………………………... 56
	 5.5 A Feedback Decoder……………………………………………….. 58
	 5.5.1 Decoding With a Feedback Loop……………………………. 61
	6 LOG-MAP BASED ITERATIVE TURBO DECODER……………….. 63

	7 RESULTS………………………………………………………………… 84
	Conclusions…………………………………………………………………….. 94
	References……………………………………………………………………….. 96
	Help……………………………………………………………………………..…106
	Coding…………………………………………………………………………..…108
	2.4 WAVEFORM CODING
	2.5 STRUCTURED SEQUENCES
	
	 CHAPTER 3
	CONVOLUTIONAL CODING

	
	3.1 INTRODUCTION
	3.2 CONVOLUTIONAL ENCODING

	3.3.5 The Trellis Diagram
	4.7 ALGORITHM: A SIMPLIFIED TRELLIS-BASED DECODER
	6.5 ALGORITM: LOG-MAP-BASED ITERATIVE TURBO DECODER
	CHAPTER 7
	RESULTS
	

	Everù Sunday, Jewsica went"to!sgm hmò fathev mn the°kity ant caíe hïmå on the 6:±±!o'slock tvain.!One$da} óhå vold(yer driveò, Jáck, ôhat she ÷�uld jm rack cn houv earlier end ~o péck her wð qththe statkon. Jack forgo|$qnd went uo get jer at$the uwual timg.Whån Jessmca arrived ánd did îot¨find Jack uøere.(shm started waì{ing"home. Jack met her0on`the"rïad and took her.@
	7.1.4 Trellis Based Code Efficiency
	Uncoded
	Log-MAP Decoding

	HOW TO EXECUTE C PROGRAMS?
	Simplified Trellis Based Decoder
	LOG-MAP Based Turbo Decoder

	

