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ABSTRACT—The main objective of this thesis is to study and implement two of 

the advanced and latest channel decoding algorithms and compare their 

performance. Although for implementing these decoding algorithm, the 

algorithms for channel encoder and AWGN channel (for adding noise) are 

developed as well. But our main objective is to study, analyze and compare the 

performance of decoding algorithms. The two decoding algorithms developed 

and implemented are (i) A Simplified Trellis-Based Decoder and (ii) Log-MAP-

Based Iterative Turbo Decoder with reduced storage requirements. 

 In “A Simplified Trellis-Based Decoder” a simplified branch metric and add-

compare-select (ACS) unit is presented for use in trellis-based decoding 

architecture. This simplification is based on a complementary property of some 

feed forward encoders. As a result, one adder is saved in every other ACS unit. 

Hence only half the branch metrics have to be calculated. 

 In “Log-MAP-Based Iterative Turbo Decoder” efforts are made to reduce the 

memory requirements for implementing the algorithm, although that is achieved 

at the cost of degraded speed performance. Also the odd-even symmetric 

interleaver structure used here for implementing turbo code is implemented with 

reduced storage memory requirements.  

 For implementing the above algorithms an intense study of various 

decoding algorithms is done, and then algorithms are developed. Afterwards 

these algorithms are implemented in C language. Results are produced in form 

of text files, after executing the programs for encoder, AWGN channel and 

decoder in the sequence.  

 After getting the results in form of text files, the decoded output is compared 

with the original file and bit error probability (PB) is calculated for different values 

of E

B

b/N0. Finally PB versus Eb/N0 is plotted for above algorithms and compared. 

At Eb/N0 of 2 dB PB for A simplified trellis based decoder is 2×10  and for Log-

MAP-Based turbo decoder P

-2

B of 6×10  is obtained for a text file containing 3000 

bit values. The error performance of Log-MAP-Based Turbo decoder is found to 

be better than the A simplified trellis based decoder but the speed of later is 

better than the former. 

-4
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CHAPTER 1 
INTRODUCTION 

 
1.1 INTRODUCTION 
The objective of this thesis is to study and implement two of the advanced and 

latest channel decoding algorithms and compare their performance. Although for 

implementing these decoding algorithm, the algorithms for channel encoder and 

AWGN channel (for adding noise) are developed as well. But our main objective 

is to study, analyze and compare the performance of decoding algorithms. The 

first algorithm implemented here is “A Simplified Trellis-Based Decoder” which is 

modified version of standard Viterbi Decoder. The Viterbi decoding algorithm was 

discovered and analyzed by Viterbi in 1967. The Viterbi algorithm essentially 

performs maximum likelihood decoding [chapter 3(3.4)]. The second algorithm 

implemented is “Log-MAP-Based Iterative Turbo Decoder” with reduced memory 

requirements which is based on standard MAP (maximum a posteriori) algorithm. 

The process of turbo code decoding starts with the formation of a posteriori 

probabilities (APP) for each data bit, which is followed by choosing the data bit 

value that corresponds to the maximum a posteriori (MAP) probability for that 

data bit. Upon reception of a corrupted code-bit sequence, the process of 

decision making with APPs, allows the MAP algorithm to determine the most 

likely information bit to have been transmitted at each bit time [chapter 5]. This is 

unlike the Viterbi algorithm (VA), where the APP for each data bit is not available. 

 

1.2 GOAL OF THESIS 
The goal of thesis is to implement some channel decoding algorithms that are 

saving some sort of resources or efforts. As will be clear from the text below, that 

we are saving some hardware/computations in case of first algorithm (Trellis-

Based) and we are saving memory in case of second algorithm (Turbo-Based).  

 In “A Simplified Trellis-Based Decoder” a simplified branch metric and add-

compare-select (ACS) unit is presented for use in trellis-based decoding 
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architecture. This simplification is based on a complementary property of some 

feed forward encoders [chapter 4]. As a result, one adder is saved in every other 

ACS unit. Hence only half the branch metrics have to be calculated. It is also 

shown that this simplification becomes especially beneficial for rate ½ 

convolutional codes. Consequently, area and power consumption will be reduced 

in a hardware implementation. 

 In “Log-MAP-Based Iterative Turbo Decoder” with reduced storage 

requirements efforts are made to reduce the memory requirements for 

implementing the algorithm [chapter 6]. But that is achieved at the cost of 

degraded speed performance. Also the odd-even symmetric interleaver is 

implemented with reduced storage requirements. The idea used here is that the 

text file, which we want to send, can be broken down into smaller files (typically 

3000 –5000 bits), which are then sent serially one by one. The time taken is 

increased but by doing so we are able to save huge amount of memory. 

  

1.3  PROCEDURE FOLLOWED 
For developing and implementing the above algorithms an intense study of 

various decoding algorithms and related topics is done from the various books 

and IEEE Transactions and IEEE communication letters. The three papers, 

which are used a lot in this thesis work [1], [2], [3], are given below: 

(i) VHDL Implementation of a Turbo Decoder With Log-MAP-Based 

Iterative Decoding; By Yanhui tong, Tet-Hin Yeap, Member, IEEE, and 

Jean-Yves Chouinard, Senior Member, IEEE; IEEE Transaction on 

Instrumentation and Measurement, Vol. 53, No. 4, August 2004. 

(ii) Interleaver Structure for Turbo Codes with Reduced Storage memory 

Requirement; By Johan Hokfelt, Ove Edfors and Torleiv Maseng; 

Department of Applied Electronics, Lund university, Lund, Sweeden. 

(iii) A Simplified computational Kernel for Trellis-Based Decoding; By 

Matthias Kamuf, Student Member, IEEE, John B. Anderson, Fellow, 

IEEE, and Viktor Owall, Member, IEEE; IEEE Communication Letters, 

Vol. 8,No. 3, March 2004. 
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After studying the material the algorithms are written, and then code is written in 

language C. The C code is written for the channel encoder, AWGN channel and 

the channel decoder for both of the algorithms. The efforts are being made to 

generate standard AWGN noise but due to limitation of C language we are able 

to generate noise, which is very much similar, as shown in Graph 1 (Chapter 7).  

The idea used here for plotting PB versus Eb/N0 is that we introduce more error in 

the channel if we want to plot for lower value of Eb/N0, and vice versa because as 

we know, if Eb/N0 decreases the noise increases and vice versa.  

 These C programs are then executed in a particular sequence and results 

are obtained in form of text files. Again a C program is executed for comparing 

these text files and results are obtained which are put in form of a table manually. 

The tabular results are then used for drawing the graph. The graphs thus 

obtained are found to be in close approximation to the graphs shown in books 

and published papers [4]. 

 

1.4 ORGANIZATION OF THESIS 
The whole thesis work is divided into 7 chapters. The first chapter is about the 

overview of the thesis work. It includes the thesis subject, thesis goals, procedure 

followed and organization of thesis. The second chapter is about introduction to 

digital communication system, channel coding that is what is channel coding? 

Why we use channel coding? Advantages of channel coding and types of 

channel coding. 

 The third chapter is about convolutional coding, convolutional decoding 

terminology and Viterbi decoding algorithm. This chapter forms the basis for next 

chapter. The fourth chapter is concerned with the first algorithm implemented 

here. It describes how we are able to save hardware if simulated on hardware kit 

and computation if implemented in C. it describes the complementary property of 

some of the feed forward encoders and its affect on BM and ACS unit. 

 The fifth chapter is concerned is about the turbo codes, its terminology and 

standard turbo decoder that is the MAP decoder. This chapter forms the basis for 

the next chapter. The chapter sixth is concerned with the second algorithm 
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implemented in this thesis. This chapter briefly describes the various SISO 

algorithms and compares their performance and chooses the optimum one i.e. 

Log-MAP Decoder, which is approximately as efficient as MAP but requires 

simpler and lesser no of computations. It also describes the interleaver structure 

with reduced storage requirements used for Log-MAP-Based Iterative Turbo 

Decoder. 

The chapter seven is about the results. The results are shown in three different 

formats. The first format of results is in the form of text files. It shows the original 

file, which is sent through the channel, the decoded file and the file, which would 

have been received if sent through the AWGN, channel without encoding. This 

form of result gives the user a visual look, how decoding algorithms are able to 

reduce the error. The second format of result is in form of tables. This form of 

results shows the no of errors present originally and after applying decoding 

algorithm. The third format of result is in form of graphs. This type of format is 

necessary for analysis of results. These graphical results are used for 

comparison purposes. The first graph shows the comparison of standard AWGN 

noise and the noise generated using C language. The second graph shows the 

performance of “Log-MAP-Based Iterative Turbo decoder” for two iterations, after 

iteration second no performance improvement is observed. The third graph 

shows the performance of  “ A Simplified Trellis-Based Decoder”. The fourth 

graph compares the performance of two decoders described above. 

 
 

 

 
 
 
 
 



CHAPTER 2 
CHANNEL CODING 

 
2. 1 DIGITAL COMMUNICATION SYSTEM 
To analyze a Digital Communication System let us observe the functional 

elements of the system, as shown in Fig (2.1). The overall purpose of the system 

is to transmit the message (or sequences of symbols) coming out of a source to 

a destination point at a high rate and accuracy.  
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Fig (2.1): Functional Block of a Digital Communication System 

 

The source and the destination point are physically separated in space and a 

communication channel of some sort connects the source to destination point. 

Then channel accepts electrical (electromagnetic) signals and the output of the 

channel is usually a smeared or distorted version of the input due to the non-

ideal nature of the communication channel. The smearing and noise introduce 
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errors in the information being transmitted and limits the rate at which information 

can be communicated from the source to destination. The probability of 

incorrecting decoding a message symbol at the receiver is often used as a 

measure of performance of digital communication system. The main function of 

the coder, the modulator, the demodulator and the decoder is to combat the 

degrading effects of the channel on the signal and maximize the information rate 

and accuracy in communication process. This thesis work is based on the 

function of three blocks shown above which are: channel encoder, 

communication channel, and channel decoder. 

 
2.2   WHAT IS CHANNEL CODING? 
Channel coding refers to the part of signal transformations designed to improve 

communications performance by enabling the transmitted signals to better 

withstand the effects of various channel impairments, such as noise, 

interference, and fading. These signal-processing techniques can be thought of 

as vehicles for accomplishing desirable system trade-offs (e.g., error-

performance versus bandwidth, power versus bandwidth). The channel coding 

has become a very popular way to bring these beneficial effects. The use of 

large-scale integrated circuits (LSI) and high-speed digital signal processing 

(DSP) techniques have made it possible to provide as much as 10 DB 

performance improvement through these methods, at much less cost than 

through the use of most other methods such as high power transmitters or large 

antennas. 

Channel coding can be partitioned into two study areas, waveform coding 

and structured sequences. Waveform coding deals with transforming waveforms 

into “better waveforms” to make the detection process less subject to errors. 

Structured sequences deals with transforming data sequences into “better 

sequences” having structured redundancy (redundant bits). The redundant bits 

can then be used for the detection and correction of errors. The encoding 

procedure provides the coded signal (whether waveforms or structured 
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sequences) with better distance properties than those of their un-coded 

counterparts. This thesis work is based on structured sequences. 

 

2.3 ADVANTAGES OF CHANNEL CODING 
 Error Performance Versus Bandwidth 

Using channel coding one can obtain the better error performance for the 

same value of Eb/N0 but the price paid is the increased bandwidth along 

with the new components (encodes and decoders). 

 Power Versus Bandwidth 
This is a trade-off in which the same quality of data is achieved, but the 

coding allows for a reduction in power or Eb/N0. The price paid is additional 

circuitry (encoders and decoders). 

 Data Rate Versus Bandwidth 
In uncoded system increasing the data rate leads to degraded quality of 

data because power requirement is inversely proportional to the rate. But 

the use of error-correction coding brings back the same quality at the 

same power level. The price paid is same as in first trade-off. 

 Capacity Versus Bandwidth 
In CDMA, where users simultaneously share the same cell or nearby cells, 

the capacity (maximum number of users) per cell is inversely proportional 

to Eb/N0. By using channel coding one can lower Eb/N0 for the same error 

performance hence more capacity; the code achieves a reduction in each 

user’s power, which in turn allows for an increase in the number of users. 

Price paid is same as in first trade-off. 

 

2.4   WAVEFORM CODING  
Waveform coding procedures transform a waveform set (representing a message 

set) into an improved waveform set. The improved waveform set can then be 

used to provide improved PB (probability of bit error) compared to the original set. 

The most popular of such waveform codes are referred to as orthogonal and bi-

orthogonal codes. The encoding procedure endeavors to make each of the 
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waveforms in the coded signal set as unlike as possible; the goal is to render the 

cross-correlation coefficient Zij among all pairs of signals as small as possible. 

The smallest possible value of cross correlation coefficient occurs when the 

signals are anti-correlated (Zij = -1); however this can be achieved only when 

number of symbols in the set is two and the symbols are antipodal. In general, it 

is possible to make all the cross-correlation coefficients equal to zero. The set is 

then said to be orthogonal.  

The cross-correlation between two signals is a measure of the distance between 

the signal vectors. The smaller the cross-correlation, the more distant are the 

vectors from each other. 

 

2.5   STRUCTURED SEQUENCES 
In case of orthogonal M-ary signaling, we can decrease PB by increasing M. The 

major disadvantage with such orthogonal coding techniques is the associated 

inefficient use of bandwidth. For an orthogonally coded set of M=2k waveforms, 

the required transmission bandwidth is M/k times that needed for the uncoded 

case. The structured sequence can be thought of as a process of inserting 

structured redundancy into the source data so that the presence of errors can be 

detected or the errors corrected. The structured sequences can be partitioned 

into various sub-categories; these are block, Cyclic, convolutional, and turbo. The 

block and cyclic codes were studied and implemented in minor project, now in 

thesis the objective is to study and implement latest and modified version of 

existing Trellis (Convolutional) and Turbo codes. 
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CHAPTER 3 
CONVOLUTIONAL CODING 

 
3.1 INTRODUCTION 
The linear block codes are described by two integers, n and k, and a generator 

matrix or polynomial. The integer k is the number of data bits that form an input 

to a block encoder. The integer n is the total number of bits in the associated 

codeword out of encoder. A characteristic of linear block code is that each 

codeword n-tuple is uniquely determined by the input message k-tuple. The ratio 

k/n is called the rate of the code - a measure of the amount of added 

redundancy. A convolutional code is described by three integers, n, k, K, where 

the ratio k/n has the same code rate significance (information per coded bit) that 

it has for block codes; however, n does not define a block or codeword length as 

it does for block codes. The integer K is a parameter known as the constraint 

length; it represents the number of k-tuple stages in the encoding shift register. 

An important characteristic of convolutional codes, different from block codes, is 

that the encoder has memory, the n – tuple emitted by the convolutional 

encoding procedure is not only a function of an input k – tuple but is also a 

function of the previous K – 1 input k-tuples. In practice, n and k are small 

integers and K is varied to control the capability and complexity of code.  

 

3.2 CONVOLUTIONAL ENCODING 
The input message source is denoted by the sequence m = m1, m2, ….., mi, ……, 

where each mi represents a binary digit (bit), and i is the time index. We shall 

assume that each mi is equally likely to be a one or zero, and independent from 

digit to digit. Being independent, the bit sequence lacks any redundancy; that is, 

knowledge about mi gives no information about mj (i ≠ j). The encoder transforms 

each sequence m into a unique codeword sequence U = G(m). Even though the 

sequence m uniquely defines the sequence U, a key feature of convolutional 

code is that a given k-tuple with in m does not uniquely define its associated n-



 17

tuple with in U since the encoding of each k-tuple is not only a function of that k-

tuple but is also a function of the K-1 input k-tuples that precede it. The sequence 

U can be partitioned into a sequence of branch words: U = U1, U2, …., Ui,….. 

Each branch word Ui is made up of binary code symbols, often called channel 

symbols, channel bits or code bits; unlike the input message bit the code 

symbols are not independent. 

 In typical communication application, the codeword sequence U 

modulates a waveform s(t). During transmission, the waveform s(t) is corrupted 

by noise, resulting in a received waveform s’(t) and a demodulated sequence Z = 

Z1, Z2, …., Zi, ….. The task of decoder is to produce an estimate m’ = m’1, m’2, 

…, m’i,….. of the original message sequence using the received sequence Z 

together with a priori knowledge of the encoding procedure. 

 A general convolutional encoder is shown in Fig (3.1) is 

mechanized with a kK- stage shift register and n modulo-2 adders, where K is the 

constraint length. The constraint length represents the number of k-bit shifts over 

which a single information bit can influence the encoder output. At each unit of 

time, k bits are shifted into the first k stages of the register; all bits in the register 

are shifted k stages to the right, and the outputs of the n adders are sequentially 

sampled to yield the binary code symbols or code bits. These code symbols are 

then used by the modulator to specify the waveforms to be transmitted over the 

channel. Since there are n code bits or each input group of k message bits, the 

code rate is k/n message per code bit, where k < n. 

 

 

 

 

 

 

 

 

 



 

 

                                                          1             2          3     . . . . . . . . .  kK 

                   m = m1, m2, …mi                                                         kK – stage 

                   input sequence    shift register 
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                                                                                …………….  

 

                      

  

 

 

                                                                        Codeword sequence U = U1, U2, …, Ui,.. 

        Where Ui  = u1i, ….., uji, …….uni

                          = ith codeword branch 

                    uji = jth binary code symbol of 

branch word Ui   

      

Fig (3.1): Convolutional encoder with constraint length K and rate k/n 

 

We shall consider the most commonly used binary convolutional encoders with  

 K =1 that is, those encoders in which the message bits are shifted into encoder 

one bit at a time, although generalization to higher order alphabets is 

straightforward. For the K = 1 encoder, at the ith unit of time, the message bit mi 

is shifted into the first shift register stage; all the previous bits in the register are 

shifted one stage to the right, and as in the more general case, the outputs of the 

n adders are sequentially sampled and transmitted. Since there are n code bits 

for each message bit, the code rate is 1/n. the n code symbols occurring at time ti 

comprise the ith branch word, Ui = u1i, u2i, ….., uni, where uji (j = 1,2 ,…n) is the 

jth code symbol belonging to the ith branch word. Note that for the rate 1/n 
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encoder, the kK stage shift register can be referred to simply as a K- stage 

register, and the constraint length K, which was expressed in units of k-tuple 

stages can be referred to as constraint length in units of bits. 

 
3.3 CONVOLUTIONAL ENCODER REPRESENTATION 
To describe a convolutional code, one needs to characterize the encoding 

function G(m), so that given an input sequence m, one can readily compute the 

output sequence U. several methods are used for representing a convolutional 

encoder [5], the most popular being the connectional pictorial as shown in Fig 

(3.1), connection vectors or polynomials, the state diagram, the tree diagram and 

the trellis diagram. We will discuss in detail the trellis diagram and others in brief. 

 
3.3.1 Connection Representation 
We shall use the convolutional encoder, shown below in Fig (3.2) as a model for 

discussing convolutional encoders. This figure illustrates a (2, 1) convolutional 

encoder with constraint length K = 3. There are n = 2 modulo – 2 adders; thus 

the code rate k/n is ½. At each input bit time, a bit is shifted into the leftmost 

stage and the bits in the register are shifted one position to the right. Next, the 

output switch samples the output of each modulo – 2 adders (i.e., first the upper 

adder, then the lower adder), thus forming the code symbol pair making up the 

branch word associated with the bit just inputted. The sampling is repeated for 

each inputted bit. The choice of connections between the adders and the stages 

of the register gives rise to the characteristics of the code. Any change in the 

choice of connections results in different code. The connections are of course, 

not chosen or changed arbitrarily. 
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Fig (3.2) Convolutional encoder (rate ½, K = 3). 

 

Unlike a block code that has a fixed word length n, a convolutional code has no 

particular block size, however, convolutional codes are often forced into a block 

structure by periodic truncation [21]. This requires a number of zero bits to be 

appended to the end of the input data sequence, for the purpose of clearing or 

flushing the encoding shift register of the data bits.  

     

3.3.2 Polynomial Representation 
Sometimes, the encoder connections are characterized by generator polynomial. 

We can represent a convolutional encoder with a set of n generator polynomial, 

one for each of the n modulo-2 adders. Each polynomial is of degree K-1 or less 

and describes the connection of the encoding shift register to that modulo-2 

adder, much the same way that a connection vector does. The coefficients of 

each term in the (K-1) degree polynomial are either 1 or 0, depending on whether 

a connection exists or does not exist between the shift register and modulo-2 

adder in question. For the encoder example in Fig (3.2), we can write the 



generator polynomial g1 (X) for the upper connection and g2 (X) for the lower 

connection as follows: 

  g1(X) = 1+X+X2

  g2(X) = 1+X2

 
3.3.3 State Representation and State Diagram 
A convolutional encoder belongs to a class of devices known as finite state 

machines, which is the general name given to machines that have a memory of 

past signals. In the most general sense, the state consists of the smallest amount 

of information that, together with a current input to the machine, can predict the 

output of the machine. A future state is restricted by the past state. For a rate 1/n 

convolutional encoder, the state is represented by the contents of the rightmost 

K-1 stages. Knowledge of the state together with knowledge of the next input is 

necessary and sufficient to determine the next output.  
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Fig (3.3): Encoder state diagram (rate ½, K=3) 
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The states of the register are designated a = 00, b  = 01, c = 10, d = 11; the 

diagram shown in the Fig (3.3) illustrates all the state transitions that are possible 

for the encoder in the Fig (3.2). There are only two transitions emanating from 

each state, corresponding to the two possible input bits. Next to each path 

between states is written the output branch word associated with the state 

transition. In drawing the path, we use the convention that a solid line denotes a 

path associated with an input bit, zero, and a dashed line denotes a path 

associated with an input bit, one.  

 
3.3.4 The Tree Diagram 
The tree diagram for the convolutional encoder shown in Fig (3.2) is shown in Fig 

(3.4) shown below. At each successive input bit time the encoding procedure can 

be described by traversing the diagram from left to right, each tree branch 

describing an output branch word. The branching rule for finding a codeword 

sequence is as follows: if the input bit is zero, its associated branch word is found 

by moving to the next rightmost branch in the upward direction. If the input bit is a 

one, its branch word is found by moving to the next rightmost branch in the 

downward direction. Assuming that the initials contents of the encoder is all 

zeros, the diagram shows that if the first input bit is zero, the output branch word 

is 00 and, if the input bit is a one, the output branch word is 11. Similarly, if the 

first input bit is one and the second input bit is zero, the second output branch 

word is 10. Or, if the first input bit is a one and the second input bit is also a one, 

the second output branch is 01. Following this procedure we see that the input 

sequence 1 1 0 1 1 traces the heavy line drawn on the tree diagram in Fig (3.4). 

This path corresponds to the output codeword sequence 1 1 0 1 0 1 0 0  0 1.   

 The added dimension of time in the tree diagram allows one to 

dynamically describe the encoder as a function of a particular input sequence. 

However we see a major problem in trying to use a tree diagram for describing a 

sequence of any length. The number of branches increases as a function of 2L, 

where L is the number of branch words in the sequence. We would quickly run  

out of paper and patience. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 
 
1 
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Fig (3.4) Tree representation of encoder  
(Rate ½, K = 3). 



3.3.5 The Trellis Diagram 
Observation of Fig (3.4), tree diagram shows that for this example, the structure 

repeats itself at time t4, after the third branching (in general, the tree structure 

repeats itself after K branching, where K is the constraint length). We label each 

node in the tree diagram of Fig (3.4) to correspond to the four possible states in 

the shift register, as follows: a = 00, b = 01, c = 10, d = 11. The first branching of 

the tree structure, at time t1, produces a pair of nodes. At each successive 

branching the number of nodes gets doubled. The second branching, at time t2, 

results in four nodes. After the third branching, there are total of eight nodes. We 

can see that all branches emanating from two nodes of the same state generate 

identical branch word sequences. From this point on, the upper and the lower 

halves of the tree are identical. The reason for this should be obvious from 

examination of the encoder in Fig (3.2). As the fourth input enters the encoder on 

the left, the first input bit is rejected on the right and no longer influences the 

output branch words. Consequently, the input sequences 1 0 0 x y ….. and 0 0 0 

x y ….., where the left most bit is the earliest bit, generate the same branch 

words after the (K = 3)rd branching. This means that any two nodes having the 

same state label at the same time ti can be merged, since all succeeding path 

will be indistinguishable. If we do this to the tree structure of Fig (3.4), we obtain 

another diagram, called the trellis diagram. The trellis diagram, by exploiting the 

repetitive structure, provides a more manageable encoder description than does 

the tree diagram. Te trellis diagram for the convolutional encoder of Fig (3.2) is 

shown in Fig (3.5). 

 In drawing the trellis diagram, we use the same convention that we 

introduced with the state diagram—a solid line denotes the output generated by 

the input bit zero, and a dashed line denotes the output generated by an input bit 

one. The nodes of trellis characterize the encoder states; the first row nodes 

correspond to the state a = 00, the second and subsequent rows correspond to 

the states b = 01, c = 10, and d = 11. At each unit of time, the trellis requires 2K-1 

nodes to represent the 2K-1 possible encoder states. The trellis in our example 

assumes a fixed periodic structure after trellis depth 3 is reached (at time t4). 

 24



 t1                   t2    t3  t4  t5               t6  

             00                   00                     00             00             00 

         11     11        11 11        11  11             11   11 

 

            00           00           00 

                                                    10     10      10      10 

           01         01          01 

                    01  01        01          01 

     

 a = 00 

 b = 01 

 c = 10 

 d = 11 

             10              10  10 

 

Legend 

 Input bit 0 

 Input bit 1 

   

  Fig (3.5): Encoder trellis diagram (rate = ½, K = 3) 

 

In the general case the fixed structure prevails after dept K is reached. At each 

point and thereafter, each of the state can be entered from either of two 

preceding states. Also, each of the state can transition to one of two states. Of 

the two outgoing branches, one corresponds to an input bit zero and other 

corresponds to an input bit one. On Fig (3.5) the output branch words 

corresponding to the state transitions appear as labels on trellis branches. 

  

3.4 FORMULATION OF THE CONVOLUTIONAL DECODING PROBLEM 
3.4.1 Maximum Likelihood Decoding 
If all input messages sequences are equally likely, a decoder that achieves the 

minimum probability of error is one that compares the conditional probabilities, 

also called the likelihood functions P (Z/U (m)), where Z is the received sequence 

and U (m) is one of the possible transmitted sequences and chooses the 

maximum. The decoder chooses U (m’) if 
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 P (Z/U (m’)) = max P (Z/U (m))        (3.1) 

  Over all U (m)

The maximum likelihood concept, as stated above is a fundamental development 

of decision theory; it is the formalization of a “common-sense” way to make 

decisions when there is statistical knowledge of the possibilities. In the binary 

demodulation treatment there are only two equally likely possible signals s1(t) or 

s2(t) that might have been transmitted. Therefore, to make the binary maximum 

likelihood decision, given a received signal meant only to decide that s1(t) was 

transmitted if  

  P (Z/s1) > P (Z/s2)        (3.2) 

Otherwise, to decode that s2(t) was transmitted. However, when applying 

maximum likelihood to the convolutional decoding problem, we observe that the 

convolutional code has memory (the received sequence represents the 

superposition of current bits and prior bits). Thus, applying maximum likelihood to 

the decoding of convolutional encoded bits is performed in the context of 

choosing the most likely sequence as shown in  (3.1). There are typically a 

multitude of possible codeword sequences that might have been transmitted. To 

be specific, for a binary code, a sequence of L branch word is a member of a set 

of 2L possible sequences. Therefore, in maximum likelihood context, we can say 

that the decoder chooses a particular U(m’) as the transmitted sequence if the 

likelihood P(Z/U(m’)) is greater than the likelihood of all the other possible 

transmitted sequences. Such an optimal decoder [12], which minimizes the error 

probability (for the case where all transmitted sequences are equally likely), is 

known as a maximum likelihood decoder. The likelihood functions are given or 

computed from the specifications of the channel. 

 

3.4.2 Channel Models: Hard Versus Soft Decisions 
Before specifying an algorithm that will determine the maximum likelihood 

decision, let us describe the channel. The channel over which the waveform is 

transmitted is assumed to corrupt the signal with Gaussian noise. When the 
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corrupted signal is received, it is first processed by the demodulator and then by 

the decoder. 

 The demodulator output can be configured in a variety of ways. It can be 

implemented to make a firm or hard decision at to whether a received signal 

represents a zero or one, and fed in to the decoder. Since the decoder operates 

on the hard decision made by the demodulator, the decoding is called hard-

decision decoding. The demodulator can also be configured to feed the decoder 

with a quantized value of received signal greater than two levels. When the 

quantization level of the demodulator output is greater than two, the decoding is 

called soft-decision decoding. Eight level (3-bits) of quantization are illustrated on 

the abscissa of Fig (3.6). When the demodulator sends a hard decision to the 

decoder, it sends a single binary symbol. When the demodulator sends a soft 

binary decision, quantized to eight levels, it sends the decoder a 3-bit word 

describing an interval shown in Fig (3.6). In effect, sending such a 3-bit word in 

place of a single binary symbol is equivalent to sending the decoder a measure 

of confidence along with code-symbol decision. It should be clear that ultimately, 

every message decision out of the decoder must be a hard decision.  

 

Fig (3.6): Hard and soft decoding decision 

                   0       1            2-level hard decision 

  000  001 010  011 100  101  110  111         8- level soft decision 
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For a Gaussian channel, eight level quantization results in a performance 

improvement of approximately 2 dB in the required signal-to-noise ratio 

compared to two-level quantization. This means that eight-level-soft decision 

decoding can provide the same probability of error as that of hard decision 

decoding, but requires 2 dB less Eb/N0 for the same performance.  

 

3.4.3 Binary Symmetric Channel 
A binary symmetric channel (BSC) is a discrete memory less channel that has 

binary input and output alphabets and symmetric transition probabilities. It can be 

described by the conditional probabilities 

  P(0|1) = P(1|0) = p 

  P(1|1) = P(0|0) = 1-p 

as illustrated in Fig(3.7) below. 

 

 

 

   Transition probabilities 

         1-p 

 

 

 

  Transmitted signals    Received signals 

        

         

           1-p      

         

 Fig (3.7): Binary symmetric channel (hard-decision channel) 

p 
p 

 

The probability that an output symbol will differ from the input symbol is p, and 

the probability that the output symbol will be identical to the input symbol is (1-p). 
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The BSC is an example of hard-decision channel, which means that, even 

though the demodulator may receive continuous-valued signals, a BSC allows 

only firm decision such that each demodulator output symbol consists of one of 

two binary values. 

 
3.5 THE VITERBI CONVOLUTIONAL DECODING ALGORITHM 
The Viterbi decoding algorithm was discovered and analyzed by Viterbi in 1967. 

The viterbi algorithm [13], [14], [22] essentially performs maximum likelihood 

decoding; however it reduces the computational load by taking the advantage of 

the special structure in the code trellis. The advantage of Viterbi decoding is that 

the complexity of a Viterbi decoder is not a function of the number of symbols in 

the codeword sequence. The algorithm involves calculating a measure of 

similarity, or distance, between the received signal at time ti and the entire trellis 

path entering each state at time ti. The Viterbi algorithm removes from 

consideration those trellis paths that could not possibly are the candidates for the 

maximum likelihood choice. When two paths enter the same state, the one 

having the best metric is chosen; this path is called the surviving path. This 

selection of surviving paths is performed for all the states. The decoder continues 

in this way to advance deeper into the trellis, making decisions by eliminating the 

least likely paths. The early rejection of the unlikely paths reduces the decoding 

complexity. Note that the goal of selecting the optimum path can be expressed, 

equivalently, as choosing the codeword with the maximum likelihood metric, or 

as choosing the codeword with the minimum distance metric.   

 

3.5.1 An Example of Viterbi Convolutional Decoding 
For simplicity, a BSC is assumed; thus Hamming distance is a proper distance 

measure. The encoder for this example is shown in Fig (3.2) and the encoder 

trellis diagram is shown in Fig (3.5). A similar trellis can be used to represent the 

decoder as shown in Fig (3.8). We start at time t1 in the 00 state. Since in this 

example, there are only two possible transitions leaving any state, not all 

branches need be shown initially. The full trellis structure evolves after time t3. 
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The basic idea behind the decoding procedure can best be understood by 

examining the Fig (3.5) encoder trellis in concert with Fig (3.8) decoder trellis. For 

the decoder trellis it is convenient at each time interval, to label each branch with 

the Hamming distance between the received code symbols and the branch word 

corresponding to the same branch from the encoder trellis. The example in Fig 

(3.8) shows a message sequence m, the corresponding codeword sequence U, 

and a noise corrupted sequence Z = 11 01 01 10 01 …… The branch words seen 

on the encoder trellis branches characterize the encoder in Fig (3.2) and are 

known a priori to both the encoder and decoder.  

 

Input data sequence     m: 1               1                      0                 1                  1 

   

Transmitted codeword U: 11              01                   01      00              01 

 

Received sequence      Z:  11              01           01      10              01 

 
       State 

t1                t2                  t3                      t4                  t5                   t6
                 2           1              1             1               1 

                0     1         1    1             1       1               1    1 

 

           1             1            1 

                                    2       2           0      2 

111111            0           2                      0 

             0           0   2  0 

              2   0  2  d = 11 

 c = 10 

 b = 01 

 a = 00 

 

 

Legend 

 Input bit 0 

 Input bit 1 

  Fig (3.8): Decoder trellis diagram (rate = ½, K = 3) 
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From the received sequence Z, shown in Fig (3.8), we see that the code symbols 

received at time t1 are 11. In order to label the decoder branches at (departing) 

time t1 with the appropriate Hamming distance metric, we look at the Fig (3.5) 

encoder trellis. Here we see that a state 00 -> 00 transition yields an output 

branch word of 00. But we receive 11. Therefore, on the decoder trellis we label 

the state 00 -> 00 transition with Hamming distance between them, namely 2. 

Looking at the encoder trellis again, we see that a state 00 -> 10 transition yields 

an output branch word of 11, which corresponds exactly with the code symbols 

we received at time t1. Therefore, on the decoder trellis, we label the state 00 -> 

10 with a Hamming distance of 0. In summary, the metric entered on a decoder 

trellis branch represents the difference (distance) between what was received 

and what “should have been” received had the branch word associated with that 

branch been transmitted. In effect, these metrics describe a correlation like 

measure between a received branch word and each of the candidate branch 

words. We continue labeling the decoder trellis branches in this way as the 

symbols are received at each time ti. The decoding algorithm uses these 

Hamming distance metrics to find the most likely (minimum distance) path 

through the trellis. 

 The basis of Viterbi decoding is the following observation: If any two 

paths in the trellis merge to a single state, one of them can always be eliminated 

in the search for an optimum path. For example, Fig (3.9) shows two paths 

merging at time t5 to state 00. Let us define the cumulative Hamming path metric 

of a given path at ti as the sum of the branch Hamming distance metrics along 

that path up to time ti. In Fig (3.9) the upper path has metric 4; the lower has 

metric 1. The upper path cannot be a portion of the optimum path because the 

lower path, which enters the same state, has a lower metric.  

 At each time ti there are 2K-1 states in the trellis, where K is the constraint 

length, and each state can be entered by means of two paths. Viterbi decoding 

consists of computing the metrics for the two paths entering each state and 

eliminating one of them. This computation is done for each of the 2K-1 states or 

nodes at time ti; then the decoder moves to time to ti+1 and repeats the process. 
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At a given time, the winning path metric for each state is designated as the state 

metric for that state at that time.  

 Path Metric = 4 
 

t1                    t2  t3    t4                    t5               t6
                    1  

        0    1  1 

 

          2 

                                                

              0 

                    0 

 

 

 d = 11 

 c = 10 

 b = 01 

 a = 00 

      State 

Path Metric = 1  

 

Legend 

 Input bit 0 

 Input bit 1 

       

   Fig (3.9): Path metrics for two merging paths. 

 

The first few steps in our decoding example are as follows (see Fig (3.10)). 

Assume that the input data sequence m, codeword U, and received sequence Z 

are as shown in Fig (3.8). Assume that the decoder knows the correct initial state 

of trellis. At time t1 the received code symbols are 11. From state 00 the only 

possible transitions are to state 00 or state 10, as shown in Fig (3.10a). State 00 

-> 10 transition has branch metric 0. At time t2 there are two possible branches 

leaving each state, as shown in Fig (3.10b). The cumulative metrics of these 

branches are labeled state metrics st_metric1, st_metric2, st_metric3 and 

st_metric4, corresponding to terminating state. At time t3 in Fig (3.10c) there are 
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again two branches diverging from each state. As a result, there are two paths 

entering each state at time t4. One path entering each state can be eliminated, 

namely, the one having the larger cumulative path metric. Should metrics of the 

two entering paths be of equal value, one path is chosen for elimination by using 

an arbitrary rule. The surviving path into each state is shown in Fig (3.10d). At 

this point in decoding process, there is only a single surviving path, termed the 

common stem, between times t1 and t2. Therefore, the decoder can now decide 

that the state transition which occurred between t1 and t2 was 00 -> 10. Since this 

transition is produced by an input bit one, the decoder outputs a one as the first 

decoded bit.  

 

t1       2        t2                     t1        2       t2     1       t3
                

 0         0        1    

       2                    

          

                 0 
st_metric3=2 

st metric1=2    a = 00 

c = 10 

   b = 01 

 st_metric4=0 

st_metric3=3 

st_metric2=2 

st_metric1=3 

 

d = 11 

 (a)          (b) 

 

 

t1           t2            t3          t4    t1             t2          t3         t4
       2 1           1 

     0            1              1    1                   0     1 

   2                  2           2          1 

             1        0  

    0   0          0   0     0                       
          2     

st_metric1=3 

st_metric3=3 

st_metric2=0 

st_metric4=2 

 
2

 (c)     (d) 
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Fig (3.10) Selection of survivor paths (a) survivors at t2. (b) Survivors at t3. (c) 

Metric comparison at t4. (d) Survivors at t4. (e) Metric comparisons at t5. (f) 

Survivors at t5. (g) Metric comparisons at t6. (h) Survivors at t6. 

 

Fig (3.10e) shows the next step in the decoding process. Again, at time t5 there 

are two paths entering each state, and one of each pair can be eliminated. Fig 

(3.10f) shows the survivors at time t5. Notice that in our example we cannot yet 

make a decision on the second input data bit because there still are two paths 

leaving the state 10 node at time t2. At time t6 in Fig (3.10g) we again see the 

pattern of remerging paths, and in Fig (3.10h) we see the survivors at time t6. 

Also in Fig (3.10h) the decoder outputs one as the second decoded bit, 

corresponding to the single surviving path between t2 and t3. The decoder 

continues in this way to advance deeper into the trellis and to make decisions on 

the input data bits by eliminating all paths but one. Pruning the trellis (as paths 

remerge) guarantees that there are never more paths than there are states. For 

this example, verify that after each pruning in Fig (3.10b, d, f, h), there are only 4 

paths. 

 

      t1         t2        t3         t4        t5                  t1        t2        t3        t4         t5
          1                                              

  0              1   1    1         0      1  

             

         2           1    1    2           1            

         0             0    1  

      0       0             2        0           0 

                                2 

             2        0 

St_metric1=1

St_metric2=3

St_metric3=1

St_metric4=2 

     (e)      (f) 
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      t2        t3       t4        t5    1    t6         t1         t2        t3         t4        t5    1   t6 t1

Sm=2     

0             1     1         1              1           1 

     0                              

   1         1  1  2              0            

0            1                                                    

  0 0             0       0         

   2 0 2    0      2          0      0 
   

0

2
Sm=2 

Sm=2 

Sm=1 
 
                  (g)      (h)  
 
3.5.2 Decoder Implementation 
In the context of the trellis diagram of Fig (3.8), transitions during any one time 

interval can be grouped into 2v-1 disjoint cells [5], each cell depicting four possible 

transitions, where v = K-1 is called the encoder memory. For the K = 3 example, 

v = 2 and 2v-1 = 2 cells. These cells are shown in Fig (3.11), where a, b, c and d 

refer to the states at time ti, and a’, b’, c’ and d’ refer to the state at time ti+1. 

Shown on each transition is the branch metric bmet. 

  

 cell1              cell2 

             ti                ti+1                          ti                       ti+1

   

         

         

         

         

         

         

        

a 

c’ 

a’ 

b 

c

b’ 

d d’ 

    

Fig (3.11): Example of decoder cells 
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3.5.3 Add-Compare-Select Computation 
Continuing with K = 3, 2-cell example, Fig (3.12) illustrates the logic unit that 

corresponds to cell1. The logic executes the special purpose computation called 

add-compare-select (ACS). The state metric of state a, st_metric(a’) is calculated 

by adding the previous time state metric of state a, st_metric(a), to the branch 

metric bmet and the previous time state metric of state c, st_metric(c), to the 

branch metric bmet. This results in two possible path metrics as candidates for 

the new state metric (a’). The two candidates are compared in logic unit of Fig 

(3.12). The largest likelihood (smallest distance) of the two path metrics is stored 

as the new state metric st_metric(a’) for state a. Also stored is the new path 

history m’(a’) for state a. 

 

         

         

                   

         

         

         

         
            m’(a) m’(b)              m’(a)  m’(b)

         

         

         

         

         

         

         

         

     To another logic unit                  To another logic unit 

 + Bmet

   Select 
    1 of 2  

   Select 
    1 of 2  

Compare 

 +  + Bmet

   Select 
    1 of 2  

   Select 
    1 of 2  

Compare 

St_metric(a) St_metric(b) 

 + Bmet Bmet

St_metric(a’)       m’(a’) St_metric(c’) St_metric(c’)

 

Fig (3.12) Logic unit that implements the add-compare-select functions 

corresponding to cell1 
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Also shown in Fig (3.12) is the cell1 ACS logic that yields the new state metric 

st_metric(c’) and new path history m’(c’). This ACS operation is similarly 

performed for the paths in other cells. The oldest bit on the path with the smallest 

state metric forms the decoder output. 

 

3.5.4 Add-Compare-Select as seen on the Trellis 
Consider the same example that was used for describing Viterbi decoding earlier. 

The message sequence was m = 1 1 0 1 1, the corresponding sequence was U = 

11 01 01 00 01, and the received sequence was Z = 11 01 01 10 01. Fig (3.13) 

depicts a decoding trellis diagram similar to Fig (3.8), as shown below.  

 

 

 

 

       Z:           11            01                  01                10          01 

 t1                t2                   t3                     t4                  t5                   t6
                2          1             1             1             1     

          0    1           1      1             1      1         1    1 

 

              1               1           1 

                                                    2      2       0           0    2     2        0 

 

            0             0   2  0 

                2              0              2 

 a = 00 

 b = 01 

 c = 10 

 d = 11 

    State 

 

Decoded output:         1              1             0                    1              1 

 

  

Fig (3.13): Add-compare-select computations in Viterbi decoding 
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A branch metric that labels each branch is the Hamming distance between the 

received code symbols and the corresponding branch word from the encoder 

trellis. We perform the add-compare-select (ACS) operation when there are two 

transitions entering a state, as there are for times t4 and later. For example at 

time t4, the value of state metric for state a is obtained by incrementing the state 

metric st_metric1 = 3 at time t3 with the branch metric bmet1 = 1 yielding a 

candidate value of 4. Simultaneously, the state metric st_metric2 = 2 at time t3 is 

incremented with the branch metric bmet3 = 1 yielding a candidate value of 3. 

The select operation of ACS process selects the largest-likelihood (minimum 

distance) path metric as the new state metric; hence, for state a at time t4, the 

new state metric is st_metric(a’) = 3. The winning path is shown with a heavy 

line. On the trellis of Fig (3.13), observe the state metrics from left to right. Verify 

that at each time, the value of each state metric is obtained by incrementing the 

connected state metric from the previous time along the winning path with the 

branch metric between them. At some point in trellis; the oldest bit can be 

decoded. As an example, looking at time t6 in Fig (3.13), we see that the 

minimum distance state metric has a value of 1. From this state d, the winning 

path can be traced back to time t1, and one can verify that the decoded message 

is the same as the original message, by the convention that dashed and solid line 

represent binary ones and zeros respectively.  
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CHAPTER 4 
A SIMPLIFIED TRELLIS-BASED DECODER 

 
4.1 INTRODUCTION 
Trellis-Based decoding is a popular method to recover convolutionally encoded 

information corrupted during transmission over a noisy channel. For example, the 

Viterbi algorithm [22] and Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [24] are 

two schemes that work on an underlying trellis description of encoded sequence. 

 Basic computations in either algorithm involve branch metric (BM) 

calculations and add-compare-select (ACS) operations. In case of the VA, an 

ACS operation successively discards branches that cannot be part of the survivor 

path. In case of the BCJR in the logarithmic domain (the Log-MAP algorithm), 

this operation corresponds to an add-max* operation which is basically an ACS 

operation with an added offset (ACSO) to correct for the Jacobian logarithm. 

Hence, the presented considerations for the ACS hold for the ACSO as well. 

  All most all-good rate 1/n convolutional codes, n an integer, have the 

property that the code symbol labels on the two branches into each trellis node 

are complementary. This results into simplifications of the BM and ACS units that 

present a simplified architecture with reduced complexity, thus saving hardware 

[3]. 

 

4.2 NOTATION 

The ACS operation is best described by equation (4.1) written below. Let Γ(s, 

k+1) be the updated metric of states at time k+1, based on the preceding state 

metric at time k and respected branch metric λ(): 

 

 Γ (s, k+1) = min{[Γ(s’, k)+λ(s’, s), Γ(s’’, k)+λ(s’’, s)]}     (4.1) 

 

A channel symbol received from a soft output demodulator is quantized with q 

bits and denoted yi. Clearly, there are 2q quantization levels and yi ∈ [0, 2q-1]. 
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This symbol is the output of a discrete memory less channel with binary input xj 

and transition probabilities P(yi|xj). The expected code symbol ci(s’, s) along the 

branch from state s’ to state s is derived by the mapping x0->0 and x1->2q-1. 

  In additive white Gaussian noise channel the optimal distance measure 

is the squared Euclidean distance 

  n-1 

  Σ |yi-ci(s’, s)|2.           (4.2) 
  i=0 
 
However, given the preceding symbol constraints, this measures simplifies to 

λi(s’, s) =  yi,  for ci(s’, s) = 0 

           =  (2q-1) - yi, for ci(s’, s)=2q – 1        (4.3) 

 

and the complete branch metric is then written as  

 

                    n-1 

 λ(s’, s)=     Σ λi(s’, s).         (4.4) 
                    i=0 
 

 

4.3 COMPLEMENTARY PROPERTY 
This discussion is restricted to rate ½ codes, that is n = 2, although the 

considerations can be generalized to 1/n codes. Rate ½ codes play by far the 

most important role in today’s communication systems since they are a good 

compromise between achievable coding gain, bandwidth efficiency, and 

implementation complexity. In practice, high-rate codes are usually obtained by 

puncturing a basic rate ½ code. However, we begin with a general notation that 

shows that the most beneficial simplification results for n = 2. 

 We consider both feed-forward encoders and some systematic 

feedback encoders. These encoders have one thing in common: The code 

symbols of merging branches are always complementary as shown in Fig (4.1).  

 

 40



          

  s’          c(s’, s)          s      

          

  k            k+1    

  s’’          c(s’’, s) = c(s’, s)            

 

             

 Fig (4.1): Complementary property of merging branches. 

 

The complementary operation on c is defined as the complementation of its 

elements, that is c = (c0 c1, ……cn-1), where ci + ci = 2q- 1. 

 From the considerations in section 4.2 it is clear that the branch metrics 

share this property since they linearly depend on the code symbols. Hence, one 

branch metric can be expressed by means of the other and we write 

 

 λ(s’’, s) = n(2q-1)-λ(s’, s) 

   = (n-1)λ(s’, s)+n[(2q-1)-λ(s’, s)].       (4.5) 

 

We define the modified branch metric 

 

 λ*(s’, s ) ≡ n[(2q-1)-λ(s’, s)]         (4.6) 

 

Which is a signed number, and (4.5) becomes 

 

 λ(s’’, s) = (n-1)λ(s’, s) + λ*(s’, s ).        (4.7) 

 

Substituting (4.7) into (4.1) becomes 

 

                   Γ(s, k+1) = min{Γ(s’, k)+λ(s’, s), Γ(s’’, k)+ (n-1)λ(s’, s) + λ*(s’, s )}(4.8) 
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Finally, the factor λ(s’, s) in the first argument of (4.8) can be taken out of the 

comparison and we get 

 

    Γ(s, k+1) = λ(s’, s) +min{Γ(s’, k), Γ(s’’, k)+ (n-2)λ(s’, s) + λ*(s’, s )}.            (4.9) 

 

Or, equivalently 

 

 Γ(s, k+1) = λ(s’, s) + Γ(s, k+1)                                   (4.10) 

 

Where Γ(s, k+1) is the new outcome of the min operation.                            

There are several things to be observed in (4.9) and (4.10). First, considering 

that the branch metrics are pre-calculated, there is one addition less needed to 

carry out the comparison since the first argument in the comparison remains 

unchanged. Second, for n = 2 the factor λ(s’, s) disappears in the second 

argument and the comparison solely depend on one (modified) branch metric. 

Third, in order to retain the numerical relation between interconnected state 

metrics with different λ() we have to add this factor after having determines Γ(s, 

k+1). However, one can subtract this factor from all state metrics and it will be 

shown that in that case half the ACS units do not need this correction, that is Γ(s, 

k+1) = Γ(s, k+1). Note that if the butterflies in a trellis were disjoint, this correction 

could be neglected in all ACS units. 

 
4.4 MODIFIED BM AND ACS UNITS FOR RATE ½ 
We start by noting that the branch metric λ(s’, s) can take four different values, 

namely λ(x0x1) for every possible combination of symbols xj ∈ {0, 1}. 

Fig (4.2) shows both the conventional and transformed ACS unit. Both units have 

the same complexity but the later needs one adder less to determine Γ(s, k+1).  
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sign 

Γ(s’, k) 

Γ(s, k+1) 

Γ(s’’,k) 

λ(s’', s)

         

         

           

               

                       -           

         

         

         

       

sign 
Γ(s, k+1) 

+
Γ(s, k+1)

Γ(s’, k) 

+

Γ(s’’,k) +

λ(s’, s) 

λ*(s', s) 

        (b) 

 

Fig (4.2) a: Conventional and (b) transformed ACS unit for a rate ½ code. Both 

units have the same complexity but the later needs one adder less to determine 

the outcome of comparison. 

 

The hardware savings now become apparent by looking at an example, an ACS 

unit setup for decoding a (7,5) code in Fig (4.3).  
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           - 

 

 

 

sign 

+

Γ(3, k+1)

Γ(3, k+1) 
Γ(3, k) 

+

Γ(2 ,k) +

λ*(10) 
 

Fig (4.3): Proposed ACS unit setup for decoding a (7, 5) code. 

 

In this picture, the factor λ(s’, s) of Fig 4.2(b) to be added in an ACS unit is either 

λ(00) or λ(10). However, we can subtract, for example λ(00) from all state 
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metrics. This factor belongs to the two ACS units on the left and, therefore, the 

state metric corrections in these units become unnecessary while 

                   Δλ = λ(10) - λ(00) 

has to be added to the other units. Hence, for rate ½ codes that has the 

complementary property half the ACS units save one adder compared to a 

conventional setup. If speed is an issue, Δλ could be stored in the BM unit and 

added in the next computation cycle instead, thus maintaining the original critical 

path of conventional ACS unit. However, the BM unit becomes slightly more 

complex in this case. 

 The calculation of the modified branch metric λ*(s’, s) based on (4.6) for 

n = 2 is shown in Fig (4.4). Normally, the expression in square brackets in (4.6) 

would be the bit-complement of λ(s’, s). However, since λ(s’, s) ∈ [0, 2(2q –1)] 

one has to exclude the most significant bit (MSB), which indicates the sign of the 

modified branch metric, from the negation. Since n = 2 the multiplication in (4.6) 

reduces to a left shift by one bit. Note that if n is not a power of two, this 

multiplication cannot reduce to bit-shift operations. 

 

 

    MSB 

         

         

         

   

λ(s’, s) 
λ*(s’, s) <<1 

Fig (4.4): Generation of λ*(), <<1 denotes a left shift by one bit. 

 
4.5 COMPARISON 
If there are 2n distinct code sequences, a conventional BM unit requires 2n(n-1) 

additions and n negations to calculate 2n branch metrics. Hence for a rate ½ 

code we need four adders and two negations to calculate four branch metrics, 

see Fig 4.5(a). The proposed BM unit shown in Fig 4.5(b) requires only three 
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additions, one negation of a channel symbol, and two negations of intermediate 

branch metrics to calculate two branch metrics.  
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+
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 λ(11) 

   y1

   y0

 λ(00) 

 λ(10) +

 λ(01) 

(a) 

 

    y0

 

 

                   _ 

 

 

 

 

 

 

 

(b) 

Fig 4.5(a): Conventional and (b): proposed BM unit for a rate ½ code. 

 

+

 λ(10) 

 λ*()  λ*(10) +

Δλ +

 λ*(00)  λ*() 

 λ(00) 

   y1
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Notice that a bit-shift operation comes at negligible cost in a hardware 

implementation. Furthermore, the difference between the two branch metrics, Δλ, 

needed to normalize half the state metrics becomes in this case simply (2q-1)-

2y0. This operation can be further simplified on the bit level into a bit-shift 

followed by a negation (MSB excluded) of y0 and is hence not considered an 

adder in Table I 

TABLE I 
Number of Additions for BM/ACS Unit Setup of a Rate ½ Code 

 Unit ACS BM 

 Conventional 3.2m 4 

 Proposed 5.2m-1 2 

 

   

This table shows that the number of additions for a BM/ACS unit setup for code 

rate ½ and memory m. The proposed scheme halves the additions in the BM unit 

and reduces the number of additions for the ACS unit by 17%. By software 

simulation of the hardware circuits, we have verified that decoder error 

performance stays the same. 

 
 

4.6 CONCLUSION 
We have shown that the implementation of BM and ACS units in trellis-based 

decoding architectures can be simplified for a certain class of convolutional 

codes. For a rate ½ code, half the ACS units save one adder compared to 

conventional implementation. Furthermore, only two branch metrics have to be 

calculated instead of four. These potential hardware savings will also lead to 

savings in power consumption. 

 

 

 

 

 48



4.7 ALGORITHM: A SIMPLIFIED TRELLIS-BASED DECODER 
1. Start 

2. Take a 2-D array of integers of size 4×2 named output with contents [(0,3), 

(3,0), (1,2), (2,1)] {for two code generators with coefficients 111 and 101}. 

3. Take a file pointer (ifp) and associate it with a text file containing bit values 

after encoding and passing through AWGN channel. 

4. Take a file pointer (ofp) and associate it with an empty output text file. 

5. Count the number of bits in input file and store it in variable n. 

6. Take an array (numoct) of integers of size n/2 for storing octal equivalent 

of bits taking two each time in input file. 

7. Take an array (decod) of integers of size n/2+1 for storing decoding bit 

values. 

8. Take a double array (st_metric) of integers of size (n/2+1×4) for storing 

state metric values for each value stored in numoct. 

9. Convert the bit values (a pair) from input file to equivalent octal values 

(i) Let i = 0 and count =0 

(ii) Let c = bit from input file at position ‘count’ 

(iii) c = c-‘0’ 

(iv) Let c1 = bit from input file at position ‘count+1’ 

(v) c1 = c1-‘0’ 

(vi) numoct [count/2] = 2*c+c1 

(vii) Is count >=n, if True go to step 10.  

(viii) count = count+2 

(ix) Repeat step (ii) to (vii) 

10. Equate state metric at time t = 1 to all zeros 

(i) for i = 0 to 3 

(ii) st_metric[0][i] = 0] 

(iii) end for 

11. Calculate state metric for time t = 2 using branch metric values bm1 and 

bm2 and function hammingdist described after main algorithm. 

(i) bm1 = hammingdist (numoct[0],output[0][0]) 
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(ii) st_metric[1][0] = st_metric[0][0]+bm1 

(iii) bm2 = hammingdist (numoct[0], output[0][1]) 

(iv) st_metric[1][2] = st_metric[0][0]+bm2 

12. Calculate state metric for time t =3 

(i) bm1 = hammingdist (numoct[1], output[0][0]) 

(ii) bm2 = hammingdist (numoct[1], output[0][1]) 

(iii) st_metric[2][0] = st_metric[1][0]+bm1 

(iv) st_metric[2][2] = st_metric[1][0]+bm2 

(v) bm1 = hammingdist (numoct[1],output[2][0]) 

(vi) bm2 = hammingdist (numoct[1],output[2][1]) 

(vii) st_metric[2][1] = st_metric[1][2]+bm1 

(viii) st_metric[2][3] = st_metric[1][2]+bm2 

13. Calculate state metric values for time t>=4 

(i) Let i = 2 

(ii) Let sym = numoct[i] 

(iii) Let bm1 = hammingdist (sym, output[0][0]) 

(iv) Let ‘modified branch metric value’ modbm1 = 2*(1-bm1) 

(v) Let bm2 = hammingdist (sym, output[2][0]) 

(vi) Let modbm2 = 2*(1-bm2) 

(vii) If st_metric[i][0] < = st_metric[i][1] + modbm1 then 

 st_metric[i+1][0] = st_metric[i][0] 

 else  

 st_metric[i+1][0]= st_metric[i][1]+modbm1 

 end if 

(viii) If st_metric[i][1] < = st_metric[i][0] + modbm1 then 

 st_metric[i+1][2] = st_metric[i][1] 

 else  

 st_metric[i+1][2]= st_metric[i][0]+modbm1 

 end if 

(ix) If st_metric[i][2] < = st_metric[i][3] + modbm2 then 

 st_metric[i+1][1] = st_metric[i][2] 
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 else  

 st_metric[i+1][1]= st_metric[i][3]+modbm2 

 end if 

(x) st_metric[i+1][1] = st_metric[i+1][1]+bm2-bm1 

(xi)  If st_metric[i][3] < = st_metric[i][2] + modbm2 then 

 st_metric[i+1][3] = st_metric[i][3] 

 else  

 st_metric[i+1][3]= st_metric[i][2]+modbm2 

 end if 

(xii) st_metric[i+1][3] = st_metric[i+1][3]+bm2-bm1 

(xiii) Is i >= n/2, if true then go to step 14 

(xiv) i =i + 2 

(xv) Repeat step (ii) to (xiii) 

14. Calculating minimum value of state metric at time t = n/2 

(i) Let min = st_metric[n/2][0] 

(ii) Let i = 1 

(iii) If st_metric[n/2][i] < min then 

min = st_metric[n/2][i]  

index =j 

end if 

(iv) Is j = 3 true then go to step 15 

(v) i = i+1 

(vi) Repeat step (iii) and (iv) 

15. Traversing back the path from t=n/2 to t =1 and get the decoded bits 

(i) Let i = n/2 

(ii) If index = 0 then 

If st_metric[i-1][0] < = st_metric[i-1][1] then 

index =0 

else 

index = 1 

end if 
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decod[i] = 0 

i= i-1 

end if 

(iii) If index = 1 then 

If st_metric[i-1][2] < = st_metric[i-1][3] then 

index =2 

else 

index = 3 

end if 

decod[i] = 0 

i= i-1 

end if 

(iv) If index = 2 then 

If st_metric[i-1][0] < = st_metric[i-1][1] then 

index =0 

else 

index = 1 

end if 

decod[i] = 1 

i= i-1 

end if 

(v) If index = 3 then 

If st_metric[i-1][2] < = st_metric[i-1][3] then 

index = 2 

else 

index = 3 

end if 

decod[i] = 1 

i= i-1 

end if 

(vi) Is i < = 0 if true then go to step 16 
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(vii) Repeat (ii) to (vi) 

16. Write the decoded bit values (decod array) to the output file. 

17.  Convert the byte string in output file to alphanumeric characters and write 

into another text file. 

18. The above file containing characters is the final result. Compare it with the 

original file, which was encoded and sent and with the file, which would 

have been received if sent uncoded. 

19. Stop 

 

Define below a function Hammingdist, which is used in main algorithm written 

above. It takes two integer values as inputs and calculates the hamming 

distance between them and then returns this value back to the main program. 

1. Take two integer input values x1 and x2 

2. Let x3=x1-x2 

3. if x3<0 then 

 x3=-x3 

4. if x3=0 then 

 return 0 

5. if x3=1 then 

if(x1=1 and x2=2)or(x1=2 and x2=3) then 

return 2 

else 

return 1 

end if 

end if 

6. if x3=2 then 

return 1 

7. if x3=3 then 

 return 2 

8. end hammingdist 
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CHAPTER 5 
TURBO CODES 

 
5.1 INTRODUCTION 
Concatenated coding schemes were first proposed by Forney as a method for 

achieving large coding gains by combining two or more relatively simple building-

block or component codes (sometimes called constituent codes). The resulting 

codes [18] had the error-correction capability of much longer codes, and they 

were endowed with a structure that permitted relatively easy to moderately 

complex decoding. A turbo code can be thought of as a refinement of the 

concatenated encoding structure plus an iterative algorithm [26] for decoding the 

associated code sequence. Because of its unique form, we choose to list turbo 

as a separate category under structured sequences. 

 Turbo codes were first introduced in 1993 by Berrou, Glavieux, and 

Thitimajshima [10], where a scheme is described that achieves a bit-error-

probability of 10-5, using a rate ½ code over an additive white Gaussian noise 

(AWGN) channel and BPSK modulation at an Eb/N0 0f 0.7 dB. The codes are 

constructed by using two or more component codes on different interleaved 

versions of the same information sequence. For a system with two components 

codes, the concept behind turbo decoding is to pass soft decisions from the 

output of one decoder to the input of the other decoder, and to iterate this 

process several times so as to produce more reliable decisions. 

 
5.2 TURBO CODE CONCEPTS 
5.2.1 Likelihood functions 
The mathematical foundation of hypothesis testing rests on Bayes’ theorem. For 

communication engineering, where application involving an AWGN channel are 

of great interest, the most useful form of Bayes’ theorem expresses the a 

posteriori probability (APP) of a decision in terms of a continuous-valued random 

variable x as 
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 P (d = i|x)  =  p(x|d = i) P(d = i) i = 1,….., M                     (5.1) 

              p(x) 

and   M 

           p(x)  =  Σ                       (5.2) 
p(x|d = i)P( d = i) 

  i=1 
 

Where P (d = i|x) is the APP, and d = i represents data d belonging to the ith 

signal class from a set of M classes. Further, p(x|d = i) represents the probability 

density function (pdf) of a received continuous-valued data-plus noise signal x, 

conditioned on the signal class d = i. Also, P(d = i), called the a priori probability, 

is the probability of occurrence of the ith signal class. Typically x is an 

“observable” random variable or a test statistic that is obtained at the output of a 

demodulator or some other signal processor. Therefore, p(x) is the pdf of the 

received signal x, yielding the test statistic over the entire space of signal 

classes. In (5.1), for a particular observation, p(x) is a scaling factor since it is 

obtained by averaging over all the classes in the space. Lower case p is used to 

designate the pdf of a continuous-valued random variable, and upper case P is 

used to designate probability (a priori and APP). Determining the APP of a 

received signal from equation (5.1) can be thought of as the result of an 

experiment. Before the experiment, there generally exists (or one can estimate) 

an a priori probability P(d = i). The experiment consists of using equation (5.1) for 

computing the APP, P (d = i|x), which can be thought of as a “refinement” of the 

prior knowledge about the data, brought about by examining the received signal 

x. 

5.2.2 The Two-Signal Class Case 
Let the binary logical elements 1 and 0 be represented electronically by voltages 

+1 and  –1, respectively. The variable d is used to represent the transmitted data 

bit, whether it appears as a voltage, or as a logical element. For signal 

transmission over an AWGN channel, Fig (5.1) shows the conditional pdfs, 

referred to as likelihood functions. The rightmost function p(x|d = +1) shows the 

pdf of random variable x conditioned on d = +1 being transmitted. The leftmost 

 55



function p(x|d = -1) illustrates a similar pdf conditioned on d = -1 being 

transmitted. The abscissa represents the full range of possible values of the test 

statistic x generated at receiver. 

 

 
 

 

 

l1

l2

-1   xk +1 

Fig (5.1): Likelihood function 

γ0

Likelihod of d = -1 
p(x|d = -1) 

Likelihod of d = +1 
p(x|d = +1) 

In Fig (5.1), one such arbitrary value xk is shown, where the index denotes an 

observation in the kth time interval. A line subtended from xk intercepts the two 

likelihood functions yielding two likelihood values l1 = p(xk|dk = +1) and l2 = p(xk|dk 

= -1). A well-known hard decision rule, known as maximum likelihood, is to 

choose the data dk = +1 or dk = -1 associated with the larger of two intercept 

values l1 and l2, respectively. For each data bit at time k, this is tantamount to 

deciding that dk = +1 if xk falls on the right hand side of the decision line labeled 

γ0, otherwise deciding that dk = -1. 

 A similar decision rule, known as maximum a posteriori (MAP) [17], 

which can be shown to be a minimum-probability-of-error rule, takes into account 

the a priori probabilities of the data. The general expression for the MAP rule in 

terms of APPs is 
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 H1

  P(d = +1|x)           P(d = -1|x)                            (5.3)  

 
H2

 

Equation (5.3) states that one should choose the hypothesis H1, (d = +1) if the 

APP, P(d = +1|x) is greater than the APP, P(d = -1|x). Otherwise, one should 

choose hypothesis H2, (d = -1). Using the Bayes’ theorem of equation (5.1), the 

APPs in equation (5.3) can be replaced by their equivalent expressions, yielding 

 

  

 p(x | d = +1)P(d = +1)              p(x | d = -1)P(d = -1)                     (5.4)          

   H1

 
H2

  

Where the pdfs p(x) appearing on both sides of the inequality in equation (5.1) 

has been cancelled. Equation (5.4) is generally expressed in terms of a ratio, 

yielding the so-called likelihood ratio test, as follows: 

 

 
 H1

 

p(x|d = +1)  P(d = -1) 

p(x|d  = -1)  P(d = +1) 

 

or 

 

 

p(x|d = +1) P(d = +1)                                (5.5) 

p(x|d  = -1) P(d = -1) 

     

 

  H2

1

H2

 H1
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5.2.3 Log-Likelihood Ratio 
By taking the logarithm of the likelihood ration developed in equation (5.3) 

through equation (5.5), we obtain a useful metric called the log-likelihood ratio 

(LLR). It is a real number representing a soft decision out of a detector, 

designated by 

 

   P(d = +1|x)         p(x|d=+1)P(d =+1) 

           P(d = -1|x)      p(x|d=-1)P(d = -1)        (5.6) 

 

 

So that 

      p(x | d = +1)     P(d =+1) 

      p(x | d = -1)         P(d= -1)                      (5.7) 

or 

 

  L(d | x) = L(x | d) + L(d)                                         (5.8) 

 

Where L(x|d) is the LLR of the test statistic x obtained by measurement of the 

channel output x under the alternate conditions that d = +1 or d = -1 may have 

been transmitted, and L(d) is the a priori LLR of the data bit d. To simplify the 

notation, equation (5.7) can be rewritten as 

 

  L’(d’) = Lc(x)  + L(d)                                           (5.9) 

Where the notation Lc(x) emphasizes that this LLR term is the result of a channel 

measurement made at the receiver. For a systematic code, it can be shown that 

the LLR (soft output) out of the decoder is equal to 

   

  L(d’) = L’(d’)  + Le(d’)                                       (5.10) 

Where L’(d’) is the LLR of a data bit out of demodulator (input to the decoder), 

and Le(d’), called the extrinsic LLR, represents the extra knowledge that is 

L(d | x) = log = log 

+ log log L(d | x) = 
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gleaned from the decoding process. The output sequence of a systematic 

decoder is made up of values representing data bits and parity bits. From 

equation (5.9) and (5.10), the output LLR of the decoder is now written as 

  

  L(d’) = Lc(x)  + L(d)  + Le(d’)                                       (5.11) 

 

Equation (5.11) shows that the output LLR of a systematic decoder can be 

represented as having three LLR elements-a channel measurement, a priori 

knowledge of the data, and an extrinsic LLR stemming solely from the decoder. 

To yield the final L(d’), each of the individual LLRs can be added as shown in 

equation (5.11), because the three terms are statistically independent. The soft 

decoder output L(d’) is a real number that provides a hard decision as well as the 

reliability of that decision. The sign of L(d’) denotes the hard decision-that is, for 

positive values of L(d’) decide that d = +1, and for negative values that d = -1. 

The magnitude of L(d’) denotes the reliability of that decision. Often the values of 

Le(d’) due to the decoder has the same sign a Lc(x) + L(d) and therefore acts to 

improve the reliability of L(d’). 

 
5.2.4 Principle of Iterative (Turbo) Decoding 
With turbo codes, where two or more component codes are used, and decoding 

involves feeding outputs from one decoder to the inputs of other decoders in an 

iterative fashion, hard-output decoder would not be suitable [7]. That is because 

hard decisions into a decoder degrade system performance (compared with soft 

decision). Hence what is needed for the decoding of turbo codes is a soft-

input/soft-output decoder. For the first decoding iteration of such a soft-input/soft-

output decoder illustrated in Fig (5.2), one generally assumes the binary data to 

be equally likely, yielding an initial a priori LLR value of L(d) = 0 for the third term 

in Equation (5.11). The channel LLR value Lc(x) is measured by forming the 

logarithm of the ratio of the values of l1 and l2 for a particular observation of x 

(see Fig (5.1)), which appears as the second term in equation (5.11). The output 

L(d’) of the decoder in Fig (5.2) is made up of the LLR from the detector L’(d’) 
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and the extrinsic LLR output Le(d’), representing knowledge gleaned from the 

decoding process. As illustrated in Fig (5.2), for iterative decoding, the extrinsic 

likelihood is fed back to the input (of another component decoder) to serve as a 

refinement of the a–priori probability of the data for the next iteration. 
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Fig (5.2): Soft input/soft output decoder (for a systematic code) 

 

5.3 LOG-LIKELIHOOD ALGEBRA 
To best explain the iterative feedback of soft decoder outputs, the concept of log-

Likelihood algebra is introduced. For statistically independent data d, the sum of 

two log likelihood ratios (LLRs) is defined as 

 

 L(d1) ⊗ L(d2) ≡ L( d1 ⊕ d2 ) = loge [(eL(d
1

)+eL(d
2

))/(1+eL(d
1

)eL(d
2

))] (5.12) 

 ≈ (-1) × sgn [L(d1)] × sgn[L(d2)] × min ( |L(d1)|, |L(d2)| )             (5.13) 

 

Where the natural logarithm is used, and the function sgn(.) represents the 

“polarity of”. There are three addition operations in equation (5.12). The + sign is 

used for ordinary addition. The ⊕ sign is used to denote the modulo-2 sum of 

data expressed as binary digits. The ⊗ sign denotes log-likelihood addition, or 

equivalently, the mathematical operation described by equation (5.12). The sum 
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of two LLRs denoted by the operator ⊗ is defined as the LLR of the modulo-2 

sum of the underlying statistically independent data bits. Equation (5.13) is an 

approximation of equation (5.12) that will prove useful later in a numerical 

example. The sum of LLRs, as described by equations (5.12) or (5.13), yields the 

following interesting results when one of the LLRs is very large and very small: 

  L(d) ⊗ ∝ = -L(d) 

And 

  L(d) ⊗ 0 = 0 

 

5.4 ENCODING WITH RECURSIVE SYSTEMATIC CODES 
The basic concepts of concatenation, iteration, and soft decision decoding are 

applied to the implementation of turbo codes that are formed by the parallel 

concatenation of component convolutional codes. 

 A short review of simple binary rate ½ convolutional encoders with 

constraint length K and memory K-1 is in order. The input to the encoder at time 

k is a bit dk, and the corresponding codeword is the bit pair (uk, vk), where 

  

 uk = ∑ g1idk-i       modulo-2,  g1i = 0,1 

K-1 

i=0 
and 

  

 vk = ∑ g2idk-i       modulo-2,  g2i = 0,1 

K-1 

i=0
 

Where G1 = {g1i} and G2 = {g2i} are the code generators, and dk is represented as 

a binary digit. This encoder can be visualized as a discrete-time finite impulse 

response (FIR) linear system, giving rise to the familiar nonsystematic 

convolutional (NSC) code, and example of which is shown in Fig (5.3). In this 

example, the constraint length is K = 3, and the two code generators are 

described by    G1 = {1 1 1}and G2 = {1 0 1}.  
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Fig (5.3): Nonsystematic convolutional (NSC) code 

 

It is well known that at large Eb/N0 values, it is generally the other way around. A 

class of infinite impulse response (IIR) convolutional codes has been proposed 

as building blocks for a turbo codes because previously encoded information bits 

are continually fed back to the encoder’s input. For high code rates, RSC codes 

result in better error performance than the best NSC code by using a feedback 

loop, and setting one of two outputs (uk or vk) equal to dk. Fig (5.4) illustrates an 

example of such an RSC code, with K=3, where ak is recursively calculated as  

 

 

 ak =  dk + ∑ g’iak-i modulo-2 

K=1

i=1 

 

and g’i is equal to g1i if uk=dk, and to g2i if vk=dk. 
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Fig (5.4): Recursive Systematic Convolutional (RSC) Code. 

 ak  ak-1  ak-2⊗ 

⊗

•   {uk} 

  {vk} 

  {dk} 

 

5.4.1 Concatenation of RSC Codes 
Consider the parallel concatenation of two RSC encoders [18] of the type shown 

in Fig (5.4). Good turbo codes have been constructed from the component codes 

having short constraint length (K = 3 to 5). An example of such a turbo encoder is 

shown in Fig (5.5), where the switch yielding vk provides puncturing, making the 

overall code rate ½. Without the switch, the code rate would be 1/3 [23]. The goal 

in designing turbo codes is to choose the best component codes by maximizing 

the effective free distance of the code [19]. At large values of Eb/N0, this is 

tantamount to maximizing the minimum weight codeword. However, at low 

values of Eb/N0, optimizing the weight distribution of the codewords is more 

important than maximizing the minimum weight codeword. 

 The turbo encoder in Fig (5.5) produces codewords from each of two 

component encoders. The weight distribution for the codewords out of this 

parallel concatenation depends on how the codewords from one of the 

component encoders are combined with codewords from other encoder. 
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 Intuitively, we should avoid pairing low-weight codewords from one 

encoder with low-weight codewords from the other encoder. Any such pairings 

can be avoided by proper design of the interleaver.  

 If the component encoders are not recursive, the unit weight input 

sequence (0 0 … 0 0 1 0 0 …. 0 0) will always generate a low weight codeword 

at the input of a second encoder for any interleaver design. In other words, the 

interleaver would not influence the output codeword weight distribution if the 

components codes were not recursive. However if the component codes are 

recursive, a weight-1 input sequence generates an infinite impulse response 

(infinite-weight output).  

{uk} 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

 ak  ak-1  ak-2
{d’k} 

⊗

⊗

Interleaver

 ak  ak-1

⊗

{v2k} 

 ak-2⊗

•{dk} 

{v1k} 

{vk} 

 

Fig (5.5): Parallel concatenation of two RSC encoders 
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The important aspect of the building blocks used in turbo codes is that they are 

recursive (the systematic aspect is merely incidental). It is the RSC code’s IIR 

property that protects against the generation of low-weight codewords that 

cannot be remedied by an interleaver. One can argue that turbo code 

performance is largely influenced by minimum weight codewords that result from 

the weight-2 input sequence. The argument is that weight-1 inputs can be 

ignored since they yield large codeword weights due to the IIR encoder structure. 

For input sequences having weight-3 and larger, a property-designed interleaver 

makes the occurrence of low weight output codewords relatively rare. 

 

5.5 A FEEDBACK DECODER 
The Viterbi algorithm (VA) is an optimal decoding method for minimizing the 

probability of sequence error. Unfortunately, the (hard decision output) VA is not 

suited to generate the a posteriori probability (APP) or soft-decision output for 

each decoded bit. A relevant algorithm for doing this has been proposed by Bahl 

et. al. The Bahl algorithm was modified by Berrou, et. al. for use in decoding RSC 

codes [10]. The APP that a decoded data bit dk = i can be derived from the joint 

probability  λk
i,m defined by 

 

  λk
i,m = P{dk = i, sk = m|R1

N}                        (5.14) 

 

where sk = m is the encoder state at time k, and R1
N is a received binary 

sequence from time k = 1 through some time N. 

 Thus, the APP that a decoded data bit dk = i, represented as a binary 

digit, is obtained by summing the joint probability over all states, as follows 

   

 P{dk = i|R1
N} = Σ                      i = 0,1                       (5.15) k

i,mλ

m
 

Next, the log-likelihood ratio (LLR) is written as the logarithm of the ratio of 

APPS, as 
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             Σ k
1,mλ

L(d’k)   =  log                        (5.16) 
m

         Σ      k
0,mλ

m
 

The decoder makes a decision, known as the maximum a posteriori (MAP) 

decision rule, by comparing L(d’k) to zero threshold,. That is 

  

 d’k = 1   if      L(d’k)   > 0                        (5.17) 

 d’k = 0   if      L(d’k)   < 0 

 

For a systematic code, the LLR L(d’k) associated with each bit d’k can be 

described as the sum of the LLR of d’k, out of the demodulator and of other LLRs 

generated by the decoder (extrinsic information), as was expressed in (5.12) and 

(5.13). Consider the detection of a noisy data sequence that stems from the 

encoder from the encoder of Fig (5.5), with the use of a decoder shown in Fig 

(5.6).  

 Assume binary modulation and a discrete memory-less Gaussian 

channel. The decoder input is made up of a set Rk of two random variables xk 

and yk. For the bits dk and vk at time k, expressed as binary numbers (1, 0), the 

conversion to received bipolar (+1, -1) pulses can be expressed as 

   

  xk = (2dk  - 1) + ik                                       (5.18) 

and   

  yk = (2vk  - 1) + qk                                   (5.19) 

 

Where ik and qk are two statistically independent random variables with the same 

variance σ2, accounting for noise distribution. The redundant information yk is 

demultiplexed and send to decoder DEC1 as y1k, when vk = v1k, and to decoder 
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DEC2 as y2k, when vk = v2k. When the redundant information of a given encoder 

(C1 or C2) is not emitted, the corresponding decoder input is set to zero.  
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Fig (5.6): Feedback decoder 

 

Notice that the output of DEC1 has an interleaver structure identical to the one 

used at the transmitter between the two component encoders. This is because 

the information processed by DEC1 is the no interleaved output of C1 (corrupted 

by channel noise). Conversely, the information processed by DEC2 is the noisy 

output of C2, whose input is the same data going into C1, however permuted by 

the interleaver. DEC2 makes use of the DEC1 output, provided this output is time 

ordered in the same way as the input of C2 (i.e., the two sequences into DEC2 

must appear “in step” with respect to the positional arrangements of the signals 

in each sequence). 
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5.5.1 Decoding with a Feedback Loop 
We rewrite equation (5.11) for the soft-decision output at time k, with the a priori 

LLR  L(d’k) initially set to zero. This follows from the assumption that the data bits 

are equally likely. Therefore 

  L(d’k) = Lc(xk)  + Le(d’k)                                       (5.20) 

   

   = log  p(xk|dk = 1)                       (5.21)  

             p(xk|dk = 0) 
+  Le(d’k)

 

 

where L(d’k) is the soft-decision output at the decoder, and Lc(xk) is the LLR 

channel measurement, stemming from the ratio of likelihood functions p(xk|dk = i) 

associated with the discrete memory-less channel model. Le(d’k) = L(d’k)|xk=0 is a 

function of the redundant information. It is the extrinsic information supplied by 

the decoder and does not depend on the decoder input xk. Ideally Lc(xk) and 

Le(d’k) are corrupted by uncorrelated noise, and thus Le(d’k) may be used as a 

new observation of dk by another decoder to form an iterative process. The 

fundamental principal for feeding back information to another decoder is that a 

decoder should never be supplied with information that stems from its own input 

(because the input and output corruption will be highly correlated). 

 For the Gaussian channel, the natural logarithm in equation (5.11) is used 

to describe the channel LLR Lc(xk) which can be further written as 

 

 
                        1   exp   -(xk-1)2) 
 Lc(xk)  =          Loge    σ√2Π          2σ2

          
                           1   exp   -(xk+1)2) 
                            σ√2Π          2σ2

 

        

            =       -1       (xk-1)2                 1        (xk+1)2

     2         σ2                       2          σ2
+
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  Lc(xk)  =          2  xk

              σ2

 

Both decoders, DEC1 and DEC2 use the modified Bahl algorithm. If the inputs 

L1(d’k) and y2k to decoder DEC2 are statistically independent, then the LLR L2(d’k) 

at the output of DEC2 can be written as 

  

 L2(d’k) = f[L1(d’k)] + Le2(d’k) 

with 

 L1(d’k) = 2  xk  + Le1(d’k)      

               σ2

 

Where f[.] indicates a functional relationship. The extrinsic information Le2(d’k) out 

of DEC2 is a function of the sequence {L1(d’k)}n≠k. Since L1(d’n) depends on the 

observation R1
N, then the extrinsic information Le2(d’k) is correlated with the 

observations xk and y1k. Nevertheless, the greater |n-k| is, the less correlated are 

L1(d’n) and the observations xk and yk. Thus due to the interleaving between 

DEC1 and DEC2, the extrinsic information Le2(d’k) and the observations xk and 

y1k are weakly correlated. Therefore, they can be jointly used for the decoding of 

bit dk. In Fig (5.6), the parameter zk = Le2(d’k) feeding into DEC1 acts as a 

diversity effect in an iterative process. In general, Le2(d’k) will have the same sign 

as dk. Therefore Le2(d’k) may increase the associated LLR and thereby improve 

the reliability of each decoded data bit.  
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CHAPTER 6 
LOG-MAP-BASED ITERATIVE TURBO DECODER 

 
6.1 INTRODUCTION 
In 1948, Claude E. Shannon proved that it is possible to transmit information with 

arbitrary high reliability provided that the rate of transmission R does not exceed 

a certain Value C known as Shannon capacity or Shannon limit. However, before 

the introduction of Turbo code, designing channel coding for practical 

communication system aimed at cut-off rate instead of the ultimate Shannon 

capacity: this is because previous attempts to exceed the cut-off rate usually 

result in inefficient channel coding schemes, where very large additional 

complexity is required to obtain little transmission improvement. 

 In 1993, a parallel-concatenated channel coding scheme, named Turbo 

code, was proposed by Berrou et al, Which achieves transmission performance a 

few tenths of a dB from Shannon limit when applied to a BPSK transmission over 

AWGN channel [10]. More importantly, by employing a sub-optimal iterative 

decoding structure and soft-in/soft-out (SISO) maximum a posteriori (MAP) 

decoding algorithm, the near-capacity performance is achieved with a feasible 

decoding complexity. Because of its excellence performance, turbo code has 

been employed in several transmission systems such as CDMA2000, WCDMA, 

and the next generation ADSL systems [8], [31], [32]. 

 With the application of turbo coding to more communication systems, low 

complexity implementation of turbo decoder becomes a more popular and 

challenging topic [1], [6], [9]. Although employing iterative decoding significantly 

reduces the decoding complexity, compared to a maximum-likelihood (ML) 

decoder, the MAP decoding algorithm is still very computation-intensive in 

comparison with the traditional Viterbi algorithm (VA). Besides, turbo codes with 

good performance normally introduce a long encoding/decoding delays because 

of the long interleaver length in both the encoder and the decoder. For delay 

sensitive applications, i.e., real-time applications, this delay must be kept very 

 70



low [27], [29]. However, the delay is usually reduced at the cost of performance 

degradation. 

 The considerations in implementing an efficient turbo decoder is to 

choose a proper SISO algorithm and interleaver design [11], [2], [20]. The 

original turbo decoder consists of SISO decoders based on MAP algorithm, 

which involves a large amount of multiplications, exponentials, and logarithm 

computations. Implementations of these mathematical operations are usually 

quite complex especially in VLSI design [6], [16]. Suboptimal, but much simpler, 

varieties of MAP algorithms, Max-log-MAP and Log-MAP, were proposed in 

order to reduce the computational complexity. Another Suboptimal SISO 

algorithm is the soft output Viterbi algorithm (SOVA) [7], which is derived from the 

traditional VA. Each of these Suboptimal SISO algorithms brings certain level of 

complexity reductions with some performance degradations. In a turbo decoder 

design, the SISO algorithm should be selected as a compromise between the 

decoding performance and implementation complexity.  

 

6.2 TURBO CODES 
A typical turbo code consists of two systematic convolutional codes separated by 

an interleaver [15]. A generic encoding structure of a binary turbo code with two 

identical rate-1/2 constituent codes (CCs) is shown in Fig (6.1). 

The turbo code encoder processes a block of K information bits each time. The 

first CC takes the block as input and produces K parity bits. The interleaved 

version of the same block is input to the second CC, which produces another 

block of K parity bits. Typically, the output of a turbo encoder is the multiplex of 

the information bit sequence and two parity bit sequences. Hence for every K 

information bits, there are 3K output bits, resulting in a code rate of 1/3. The 

parity bits from the two CCs can be punctured alternatively to obtain a code rate 

of ½ with some performance lost. Higher density puncturing schemes can be 

applied to further increase the code rate, at more performance degradation.  
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Fig (6.1): Typical structure of turbo encoder 
 
 
Theoretical performance analysis of turbo code always assumes using a 

maximum-likelihood decoder at the receiver. However, ML decoder is often too 

complex to be implemented for turbo decoding because of the very complex 

trellis structure caused by the interleaver between the two CCs. Iterative 

decoding is proposed in as a Suboptimal but feasible alternative for turbo 

decoding [11]. The basic iterative decoding structure corresponding to the turbo 

encoder shown in Fig (6.1) is depicted in Fig (6.2). The two constituent decoders 

are used to perform SISO decoding over the coded sequences generated by the 

two CCs respectively, where the reliability information is exchanged between 

them during the decoding iterations. 

 As shown in Fig (6.2), the received noisy sequence is demultiplexed into 

three sequences: the systematic sequence ys and two parity sequences y1p and 

y2p. One SISO decoder takes ys and y1p (or y2p) as inputs and computes the log-

likelihood ratio (LLR) of each information bit based on the trellis structure of the 

CC, which is defined for the kth information bit dk, as 

 

 L(dk) = log   Pr{dk = 1|Y}         (6.1) 

    Pr{dk = 0|Y} 
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Where Y is the received symbol block. The decision dk = 1 is made for a positive 

LLR and dk = 0 for a negative LLR. The absolute value of the LLR represents the 

reliability of this decision. The larger is the absolute value, the more reliable is the 

decision. 
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Fig (6.2): Block diagram of iterative (turbo) decoder (Π-interleaver) 

 

Several SISO decoding algorithms are proposed in the literature. MAP algorithm 

is an optimal SISO algorithm in the sense of minimizing the symbol error 

probability [12], but is computationally intensive. A simplified version of MAP, 

Max-Log-MAP algorithm, achieves a significant complexity reduction with small 

performance degradation [1]. A modified Max-Log-MAP algorithm, the log-MAP 

algorithm, provides nearly optimum performance while still keeping the low 

complexity [1]. Another SISO decoding algorithm, the SOVA, is obtained by 

making some modifications to the traditional VA to generate the soft reliability 

information. Using any of the above SISO decoding algorithms, with a proper 

interleaver, it has been shown that the output LLR of the SISO decoder can be 

divided into three approximately independent terms 
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 L(dk) = Lc(dk) + Lapri(dk) + Le(dk)        (6.2) 

 

Where Lc(dk) is the channel information, Lapri(dk) is the a priori information of dk, 

and Le(dk) is the extrinsic information, which is represented by Le
12  and Le

21 in 

Fig (6.2). The channel information depends only on the noise corrupted 

systematic symbol, while the extrinsic information is calculated based on the 

trellis structure together with the other systematic symbols and parity symbols. It 

is important that the extrinsic information Le(dk), be uncorrelated (or weakly 

correlated) of Lc(dk) and Lapri(dk), since it will be used as a priori information by 

the other SISO decoder. However, with the number of iterations increasing, the 

correlation increases and the performance gained form additional iteration 

becomes less. Until certain stage, further iteration brings little (if any) 

performance improvement: this is when the iterative decoding should stop. 

  Although iterative decoding is suboptimum in the sense of achieving the 

maximum likelihood decoding results, it has been shown by simulations to 

approach ML decoding performance provided the number of iterations is large 

enough. 

 

6.3 TURBO DECODING ALGORITHMS 
The complexity related to turbo coding mainly comes from the iterative turbo 

decoding process [6]. The turbo encoder basically consists of only two shift 

registers and an interleaver, whose complexity is negligible compared to any 

SISO decoding process. As aforementioned, there are several SISO algorithms 

that can be selected in turbo decoder implementation: they require different 

complexities and offer different decoding performances 

 

6.3.1 SISO Decoding Algorithms 
The first SISO algorithm used in turbo decoding is the MAP algorithm. The MAP 

algorithm is designed to produce the LLR of each information bit, as defined in 

(6.1). In MAP, the LLR is calculated as 
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  ΣΣγ1(yk, Sk-1, Sk).αk-1(Sk-1).βk(Sk)                (6.3) 
 L(dk) = ln    sk sk-1

  ΣΣγ0(yk, Sk-1, Sk).αk-1(Sk-1).βk(Sk) 
  sk sk-1        
           

 

Where α is the forward recursion path metrics, β is the backward recursion path 

metrics and γ is the branch metrics. The forward path metrics can be calculated 

recursively as 

 

    1 

  ΣΣγi(yk, Sk-1, Sk).αk-1(Sk-1)                    (6.4) 
                αk(Sk) =           sk-1 i=0 
       1 

  ΣΣγi(yk, Sk-1, Sk).αk-1(Sk-1) 
                   sk-1 i=0     
         

 

Where α0(S0) = 1 and α0(Si) = 0 for i ≠ 0, when both CCs in the turbo encoder are 

terminated. The backward path metric, β, is calculated in a similar manner, 

except in the reverse direction. The branch transition probabilities are calculated 

as 

  

 γi[(yk
s,yk

p), Sk-1, Sk)] = q(dk = i|Sk, Sk-1) 

     .p(yk
s|dk = i)        (6.5) 

      .p(yk
p|dk = i,Sk,Sk-1) 

     .Pr{Sk|Sk-1}. 

 

The value of q(dk = i|Sk, Sk-1) is either one or zero depending on whether there is 

a transition from state Sk-1 to Sk with input dk. The a priori information is used to 

calculate Pr{Sk|Sk-1}. 
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Calculation of the LLR requires both α that is calculated recursively from the 

beginning to the end of block, and β that is calculated from end to the beginning. 

The decoding process is, therefore, performed as follows: 

 The decoder starts calculating α in the sequential order of the input 

block. 

 When the decoder reaches the end of the block, i.e., all αs are 

calculated, it starts computing the value of β. 

 Whenever the β values for an information bit is computed, the LLR is 

calculated 
It is observed that the large amounts of complicated mathematical operations are 

required for MAP decoding, including multiplications, exponentials, and logarithm 

computations. To avoid these operations, MAP decoding can be performed in the 

logarithm domain, where the multiplication becomes addition. The logarithm and 

exponential computations can be avoided by using following approximation 

  

 ln(eδ1+eδ2+……….. ++eδn
) ≈ max δ        (6.6) 

       i∈(1,…,n) 

Equation (6.3)-(6.5) then becomes 

 L(dk) ≈ max   {γ’1(yk, Sk-1, Sk) + α’k-1(Sk-1) + β’k(Sk)} –  

           (sk,sk-1)           (6.7) 

              max    { γ’0(yk, Sk-1, Sk) + α’k-1(Sk-1) + β’k(Sk)} 

          (sk,sk-1)  

 

 α’k(Sk) =  max  {γ’i(yk, Sk-1, Sk) + αk-1(Sk-1)}       (6.8) 

                 (sk-1,i) 

and 

 γ’ = 2yk
sxk

s(i)  + 2yk
pxk

p(i, Sk, Sk-1) + lnPr[Sk | Sk-1] + K               (6.9) 

  N0      N0

Where α’, β’, γ’ are the logarithms of α, β, γ. The MAP algorithm performed in the 

logarithm domain with the approximation shown in (6.6) becomes Max-Log-MAP 
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algorithm. In General 0.5 dB performance degradation is observed because of 

this simplification. The inferior performance of the Max-Log-MAP algorithm 

comes from the simplification made in (6.6). The logarithm of the sum of two 

exponents can be accurately calculated as 

 

 ln(eδ1+eδ2) = max(δ1,δ2) + ln (1+e|δ1-δ2| )     (6.10) 

        = max(δ1,δ2) + f(|δ1-δ2|). 

 

The only difference between this equation and (6.6) is a modification factor fc = 

f(|δ1-δ2|). The Max-Log-MAP algorithm with this modification is called Log-MAP. A 

different SISO decoding algorithm, SOVA, was derived from the conventional VA. 

In SOVA, the difference between the path metrics entering the same trellis state 

node is used to generate the reliability of the information bits, i.e., the software 

decision. The complexity of SOVA is smaller than that of Max-Log-MAP; while 

the performance of turbo decoding using SOVA is inferior to that obtained using 

Max-Log-MAP. 

 

6.3.2 Comparison of  SISO Algorithms 
It is observed that turbo decoding with MAP algorithm provides the best 

performance out of all the decoding algorithms. Performance of Log-MAP 

algorithm at BER of 10-4 is very close from that obtained using the MAP algorithm 

and is approximately 0.6 dB better than that obtained using SOVA. The Max-Log-

MAP is only about 0.06 dB better than the SOVA at BER of 10-4. it is noticed that 

at a BER of 10-4 , the performance of turbo decoding with Max-Log-MAP is about 

0.4 dB better than with the SOVA algorithm. 

 It has been observed that in Max-Log-MAP and Log-MAP, the most 

frequently used mathematical operations include additions, inversion, max 

operation and table lookups. As per these operations Log-MAP is more 

computational intensive compared to Max-Log-MAP algorithm but it has good 

performance than Max-Log-MAP, so Log-MAP is a best compromise with 

reasonable complexity. 
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6.4 LOG-MAP-BASED TURBO DECODER IMPLEMENTATION 
6.4.1 Introduction 
During the turbo decoder, design there is a trade-off between the memory 

requirement and processing delay. The memory requirement can be reduced by 

reusing same memory modules as much as possible. However, since, at any 

time, a memory element can perform the function for one specific module only, 

different modules have to use it one after another, which results in longer 

decoding delay. Providing a separate copy of the same hardware component to 

any module can significantly reduce the delay but using same memory elements 

for reducing memory requirement slow down the speed. Hence saving memory 

requirement occurs at the expense of slower speed. 

 In this thesis, the turbo decoder is designed to minimize the memory 

requirements for algorithm implementation as well interleaver design, and the 

decoding speed being a second consideration. Therefore memory modules are 

shared as much as possible during execution.  

 

6.4.2 Interleaver Structure for Turbo Codes with Reduced Storage Memory 
Requirements 
6.4.2.1 Introduction 
A turbo code typically consists of two recursive encoders in parallel, separated by 

an interleaver as shown in Fig (6.1). The design parameters of a turbo code are 

primarily the generator polynomials of the constituent encoders, normally chosen 

to be identical, and the particular choice of interleaver mapping [30]. The 

interleaver structure used here is referred to as an odd-even symmetric structure, 

which reduces the memory requirement with much more than 50% compared to 

storing the entire interleaver vector [2]. 

 

6.4.2.2 Design 
Let the odd-even symmetric interleaver rule be represented by a vector of N 

integers, Π = {Π(1)  Π(2) ……..Π(N)}, where Π(i) = j indicates that input position i 

is interleaved to position j and N is the size of the interleaver. The interleaver 
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structures presented here impose certain restrictions on the permissible choices 

of the mappings Π(i). Consider an interleaver rule that swaps pairs of positions 

i.e. a symmetric interleaver. If all the pairs are known, the interleaver rule is 

known. Since there are only N/2 such pairs, if organized properly, the storage of 

these pairs requires less memory than storing an entire interleaver vector with N 

addresses. One possible organization strategy is to require every position in the 

first half of the input sequence to be swapped with a position in the second half. 

However, this restriction severely reduces the design freedom of the interleaver, 

notably deteriorating the error correcting performance of the code. There is 

however other sequence partitions that yield a simple organization of the 

swapping pairs, without degrading the interleaver performance. One such 

partition is to swap every odd position with even position, and vice versa. The 

interleaver structure, denoted odd-even symmetric, is thus achieved with the 

following two restrictions: 

1. i mod 2 ≠ Π(i) mod2, ∀i (odd to even) 

2. Π(i) = j ⇒ Π(j) = I (symmetry) 

 

With these restrictions, it is sufficient to store the interleaver rules for all the odd 

positions, since by performing swaps; the even positioned bits are automatically 

interleaved. 

 Assume that only the odd positions in the interleaver vector are stored. 

All the stored addresses are then even integers, implying that the least significant 

bit (LSB) in the binary representation of each address is always zero. Thus the 

LSB need not be stored, which offers additional memory savings if the interleaver 

rule is stored with custom made memory cells. This shift of the binary 

representation corresponds to dividing each number by 2, so that the stored 

vector consists of N/2 integers ranging from 1 to N/2. This vector will in the 

following be denoted Π’, and is given by Π’ = (2i-1)/2, i∈(1,2…..,N/2}. 

 As an example, the swapping pairs of an 8-bit odd-even symmetric 

interleaver are illustrated in Fig (6.3). The shown vector is Π = {6 3 2 7 8 1 4 5}. 

And reduced memory requirement vector is Π’ = {3 1 4 2}. The implementation of 

 79



the interleaving rule of an odd-even symmetric interleaver is straightforward: 

elements at even positions are interleaved by storing them sequentially and 

reading them in order specified by Π’; elements at odd positions are interleaved 

by storing them in the order specified by Π’ and reading them sequentially. 

 

Input positions  1  2  3 4 5 6 7 8 

Interleaved position  6  3 2 7 8 1 4 5 

 

Fig (6.3): Example of an 8-bit odd-even symmetric interleaver. Each odd position 

in the input sequence is mapped to an even position, and vice versa. Further, if 

input i is mapped to position j, then input j is mapped to position i (symmetry) 

 

As an example, we study the interleaving of the extrinsic outputs produced by the 

first constituent decoder. For illustrative purposes, it is suitable to partition the 

memory used to store the extrinsic information between the decoders into two 

logically separated memory areas. A and B. With these, odd extrinsic outputs of 

the form 2n-1, n ∈ {1,2,……,N/2} are stored at address Π’(n) in memory A, while 

even outputs, an, n ∈ {1,2,……,N/2} are stored at address n in memory B. the 

second constituent decoder performs a similar action when reading its extrinsic 

inputs: odd inputs are read from memory B at address Π’(n), and even inputs are 

read from memory A at address n. Such an interleaver implementation is 

illustrated in Fig (6.4). The deinterleaving implementation is identical, due to 

symmetric property. 

Note: The interleaved structure described above saves approximately 50% 

memory. If total no of bits are N then memory requirement is about N/2 bits. But 

in C implementation, the interleaver uses only 8 bytes (memory for saving 4 

integer values) memory; and these integers are used each time for implementing 

interleaving structure (iterations). This results into huge reduction of memory 

requirement, as these four integer values are used iteratively for interleaving any 

number of bits in input sequence. 
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Π’={3 1 4 2}  

 

           

           

           

           

   A      B      

           

           

           

           

           

     

  Input Sequence 

Memory 

  Interleaved Sequence

Fig (6.4): implementation example of an 8-bit odd-even symmetric interleaver. 

The interleaver rule is stored by the 4-element vector Π’ = {3 1 4 2}. 

 

6.4.3 Log-MAP Turbo Decoder 
The block diagram of the turbo decoder is shown in Fig (5.6) and is reproduced 

in Fig (6.5) below. The major components are two decoders (Log-MAP) and 

interleaver and deinterleaver blocks. As we have used odd-even symmetric 

interleaver, so the blocks named interleaver and deinterleaver could be replaced 

with same block named Interleaver/Deinterleaver [2].  

It is assumed that the received symbol sequence is first demultiplexed into three 

sequences: systematic sequence, and two parity sequences. After the Log-MAP 

decoder finished decoding over one block of data, it writes the result to LLR 

memory (Array in C), which will be used as the a priori information during the 

next SISO decoding process. The interleaving /deinterleaving processes are 

implemented implicitly by reading from the pattern stored in memory array.  
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Fig (6.5): Log-MAP Turbo Decoder 

 

The algorithm is as following. First of all, the received data for each constituent 

codes are divided into several contiguous non-overlapping sub-blocks; so called 

windows [25], [4], [28]. Then, each window is decoded serially using the Log-

MAP algorithm from the last window (here each window consists of 8 bits). 

However the values of alpha (first iteration) for each window is calculated each 

time starting from the first window. This is very time consuming process, but 

leads to huge reduction in memory requirements, because there is no need of 

storing the terminating alpha values of each window. However initial values of 

beta variables come from previous window. In the next iteration the branch metric 

is recalculated using a-priori information from the last iteration and then the alpha 
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and beta variables are recalculated using new branch metric values for that 

window. The block diagram of Log-MAP decoder used for this algorithm is shown 

below. 

 

 

  

                               
    

Fig (6.6): Log-MAP decoder structure 

 

The decoding of each window includes: a branch metric calculation module, 

forward and backward path metric calculation modules, a LLR calculation 

module, and some control logics. The Log-MAP decoding is performed as follows 

 

1. Starting from the beginning of each block, the SISO decoder calculates 

the forward path metrics and stores the values for the required window. 

2. After calculating the forward path metric, the decoder calculates the 

backward path metric in the backward direction, and stores the values for 

the required window 

3. After calculation of forward and backward path metric, the decoder 

calculates the LLR. 

4. It repeats the step from 1 to 3 some number of times (usually 4 to 5 times) 

and uses LLR value calculated in previous iteration o enhance the result. 

It writes the finally calculated LLR value to the output file. 
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The γ-calculation module calculates the path metric using the input systematic 

and parity symbols and the a priori information. The input systematic and parity 

symbols are already scaled by the SNR. Therefore this calculation only contains 

additions and inversions. Note that there are only four possible γ values 

corresponding to the four possible (x’ks(i) and x’kp(i, Sk, Sk-1)) combinations. 

Therefore the γ-calculation module is designed to calculate all the four values at 

the same time and saves them as four float values. This can greatly simplify the 

α/β/LLR calculations since they need to find the corresponding γ values instead 

of calculating in each step.  

 Calculation of the forward path metric α is performed according to (6.8), 

where the max is replaced by max* that includes the modification factor shown in 

(6.10). For Log-MAP algorithm and rate ½ CCs calculation of α(sk) at time k is 

performed as 

 

α(sk) = max{α(S0
k-1)+γ(Sk-1, Sk, dk = 0), α(S1

k-1)+γ(Sk-1, Sk, dk = 1)}+ 

            f |{(α(S0
k-1)+γ(Sk-1, Sk, dk = 0)) – (α(S1

k-1)+γ(Sk-1, Sk, dk = 1))}|   (6.11) 

 

Where si
k-1 is the trellis state at time (k-1) that has a transition to state sk at time 

k, caused by an input of i, i ∈ {0, 1}. It is observed that each α(Sk) is calculated 

by an add-compare-select-offset (ACSO) operation over two previous α values 

and two branch transition metrics. The ACSO unit performs the following 

calculation 

 r = max{a+b, c+d} + f(|(a+b)-(c+d)|)      (6.12)  

 

Where {a, b, c, d} are four inputs, r is the single output, and f(|x|) is the 

modification factor defined in (6.10). Given that the α metrics at time (k-1) are 

stored in 2M memory locations at the end of last α calculation operation and the 

four γ values have been saved in four memory locations, the implementation 

objective becomes to efficiently find the four inputs of the ACSO used to 

calculate each α from these saved values. This is implemented using 2M entry 
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LUTs, one for the transition caused by an input of “0” (LUT0) and for an input of 

“1” (LUT1), where the jth entry of the LUTi, i ∈ {0, 1}, contains the value of si
k-1 to 

calculate α(sk = j). These two LUTs actually contains all the information about the 

trellis structure of this CC. When the trellis structure is changed, the α-calulation 

operation can be updated by simply updating the content of the LUTs. 

 The backward path metric calculation module has exactly the same data 

structure as the α calculation module. However, the two LUTs are different from 

the LUTs used in α calculation module.  

 Calculation of LLR/Ext. values requires 2M α values, 2M β values, 

and all possible γ values. Combining (6.7) and (6.10), the LLR/Ext is calculated 

as 

 L(dk) = max*(γ’1(yk, Sk-1, Sk) + α’k-1(Sk-1) + β’k(Sk))- 

            (sk, sk-1) 

             max*( γ’0(yk, Sk-1, Sk) + α’k-1(Sk-1) + β’k(Sk))   (6.13) 

             (sk, sk-1) 

 

Where max* stands for multiple input ACSO operations. Each operand in the first 

max* corresponds to one trellis transition from a Sk-1 to a Sk caused by an input 

information bit 1, while each operand in the second max* corresponds to one 

trellis transition from a Sk-1 to a Sk caused by an input information bit ‘0’. Since 

there are only one transition coming out of a state caused by an input 1 or 0, both 

max* operations contain only 2M operands. 
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6.5 ALGORITM: LOG-MAP-BASED ITERATIVE TURBO DECODER 
 1. Start 

 2. Define a variable named infin with a very small negative value. 

 3. Define a 2-D array of integers of size 2×8 (LUTFS) that work as Look-up  

 table for implementing trellis structure for forward state metrics, with 

 contents {(0,2,5,7,1,3,4,6),(1,3,4,6,0,2,5,7)}. 

 4. Define a 2-D array of integers of size 2×8 (LUTBS) that work as Look-up    

   table for implementing trellis structure for reverse state metrics, with 

    contents {(0,4,1,5,6,2,7,3),(4,0,5,1,2,6,3,7)}. 

5. Take a file pointer (ifp) and associate it with a text file-containing float  

    values after encoding and passing through AWGN channel. 

     6. Take a file pointer (ofp) and associate it with an empty output text file. 

7. Take an array of integer (inleav) containing 4 integer values {3,1,4,2} for 

          implementing odd-even symmetric interleaver structure. 

8. Count the number of float values in the input text file and store in variable 

    n. 

9. Declare a reverse state metric rsmet of size 8×9 of type float and initialize 

rsmet[k][8] to infin with k varying from 1 to 7 and rsmet[0][8] to 0.0. 

10.  Let l=n/24 

11.  Initialize a priori information to 0.0 

(i) for k =0 to 7 

(ii) apri[k]=0.0  

(iii) end for 

12. Let big=0 

13. Point file pointer to the first character in input file 

14. Initialize the forward state metric 

(i) for k =0 to 7 

(ii) fsmet[k][0]=infin 

(iii) end for 

(iv) fsmet[0][0]=0.0 

 15. Let i =0   
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 16. Let j = 0 

 17. Read three consecutive values from the input file and store them in three 

variables ch, ch1, ch2 

 18. Calculate branch metric values 

(i) if i = l-1 is true then 

bmet[0][j/3]= -ch-ch1-apri[j/3] 

bmet[1][j/3]= -ch+ch1-apri[j/3] 

bmet[2][j/3]= ch-ch1+apri[j/3] 

bmet[3][j/3]= ch+ch1+apri[j/3] 

else 

bmet[0][j/3]= -ch-ch1 

bmet[1][j/3]= -ch+ch1 

bmet[2][j/3]= ch-ch1 

bmet[3][j/3]= ch+ch1 

end if 

19. If j>=24 is true then go to step 23. 

20. j = j+3 

21. Repeat step 17 to 20. 

22. Calculate forward state metric values  

(i) for k = 1 to 8 

(ii) for j = 0 to 8 

(iii) if j is divisible by 2 is true then 

fsmet[j][k]=max(bmet[0][k-1]+fsmet[LUTFS[0][j]][k-1],bmet[3][k-

1]+fsmet[LUTFS[1][j]][k-1]) 

else 

fsmet[j][k]=max(bmet[1][k-1]+fsmet[LUTFS[0][j]][k-1],bmet[2][k-

1]+fsmet[LUTFS[1][j]][k-1] 

end if 

(iv) end for (j) 

  (v)  end for (k) 

23. If i = l -1 is true then go to step no 30.  
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24. Find minimum value among 8 forward state metric values using 

min=minimum (fsmet, k-1) 

25. Normalize and assigning the forward state metric values to the next block  

(i) for k =0 to 7 

(ii) fsmet[k][0]=fsmet[k][8]-min  

(iii) end for 

26.  Is i > = l, if true then go to step 30.  

27. i = i + 1 

28. Repeat step 16 to 27. 

29. Assign the last calculated rs metric values to the first row of next block . (if 

not calculated till now than this will assign the initial values) 

30. Calculate the reverse state metric values 

(i) for k= 7 down to 0 

(ii) for j 0 to 7 

(iii) if (j=0) or (j=1) or (j=4) or (j=7) is true then 

rsmet[j][k]=max(bmet[0][k]+rsmet[LUTBS[0][j]][k+1],bmet[3][k]+ 

rsmet[LUTBS[1][j]][k+1]) 

else 

rsmet[j][k]=max(bmet[1][k]+rsmet[LUTBS[0][j]][k+1],bmet[2][k]+ 

rsmet[LUTBS[1][j]][k+1] 

 end if 

(iv) end for (j) 

(v) end for (k)  

31. Calculate Likelihood ratio 

(i) for k = 0 to 7 

(ii) Let num1=fsmet[0][k]+rsmet[4][k+1]+bmet[3][k] 

(iii) Let den1= fsmet[0][k]+rsmet[0][k+1]+bmet[0][k] 

(iv) For j = 1 to 7 

(v) If j=2 or j = 3 or j = 6 or j = 7 

  num = fsmet[j][k]+rsmet[LUTBS[1][j]][k+1]+bmet[2][k] 

  den = fsmet[j][k]+rsmet[LUTBS[0][j]][k+1]+bmet[1][k] 

 88



 else 

 num = fsmet[j][k]+rsmet[LUTBS[1][j]][k+1]+bmet[3][k] 

 den = fsmet[j][k]+rsmet[LUTBS[0][j]][k+1]+bmet[0][k] 

 end if 

(vi) maxnum = max(num, num1) 

(vii) maxden = max(den, den1) 

(viii) end for (j) 

(ix) app[k]=maxnum-maxden 

(x) end for (k) 

32. Calculate external LR ratio 

(i) for k = 0 to 7 

(ii) exlr[k]=app[k] - apri[k] 

(iii) end for 

33. Apply interleaving structure to the exlr array and to get apri information. 

34. Normalize and assign the reverse state metric values for the next iteration 

for decoder 1. 

35. Initialize the reverse state metric for decoder 2 

36.  Repeat step 14 to 17 

37.  Apply interleaving pattern to the input sequence read (24 bit at a time). 

38.  for j = 0 to 7 

39.  if i = l-1 is true then 

 bmet[0][j] = -in[j]-apri[j]-yp[j] 

 bmet[1][j] = -in[j]-apri[j]+yp[j] 

 bmet[2][j] = in[j]+apri[j]-yp[j] 

 bmet[3][j] = in[j]+apri[j]+yp[j] 

 else 

 bmet[0][j] = -in[j]-yp[j] 

 bmet[1][j] = -in[j]+yp[j] 

 bmet[2][j] = in[j]-yp[j] 

 bmet[3][j]= in[j]+yp[j] 

 end if (where in is interleaved sequence and yp is same as ch2) 
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40. end for(j) 

41.  Repeat step 21 to 32. 

42.  Apply interleaving structure to exlr to get apri information and to app to 

get lr ratio 

43.  Normalize and assign the reverse state metric values for the next iteration 

of decoder 2. 

44.  is big>= limit , if true then go to step 45 

45.  big = big+1 

46. Repeat step 13 to 45 

47. Calculate the decoded bit values 

(i) for k = 0 to 7 

(ii) if lr[k] > 0.0 then 

decod[k] = 1 

else 

decod[k] = 0  

   end if 

(iii) end for 

48. Write the decoded byte string to the output file. 

49.  Is l<=0 , if true then go to step 53. 

50.  l = l - 1 

51. Repeat step 11 to 50. 

52. Convert the byte file into alphanumeric file 

53.  Compare this file with the original and with the file, which would have 

been received if sent uncoded to find the probability of error. 

54.  Stop. 

Two function used in the above algorithms are given below  

 The first function is max() which accepts two float values and 

returns back the log(1+exp(|a-b|)) which is a float value. 

 The second function is minimum(), which accepts starting address 

of continuous 8 values and returns back the minimum out of these 

values. 
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CHAPTER  7 
RESULTS 

 
7.1 A SIMPLIFIED TRELLIS-BASED DECODING 
7.1.1 File, Which is Encoded and Sent 

read.txt

 
Every Sunday, Jessica went to see her father in the city and came home on the 

6:00 o'clock train. One day she told her driver, Jack, that she would be back an 

hour earlier and to pick her up at the station. Jack forgot and went to get her at 

the usual time. When Jessica arrived and did not find Jack there, she started 

walking home. Jack met her on the road and took her. 

 

7.1.2 File After Adding Noise 

WRITE8.TXT

 
Everù Sunday, Jewsica went"to!sgm hmò fathev mn the°kity ant caíe hïmå  

on the 6:±±!o'slock tvain.!One$da} óhå vold(yer driveò, Jáck, ôhat she ÷�uld jm 

rack cn houv earlier end ~o péck her wð qththe statkon. Jack forgo|$qnd went uo 

get jer at$the uwual timg.Whån Jessmca arrived ánd did îot¨find Jack uøere.(shm 

started waì{ing"home. Jack met her0on`the"rïad and took her.@ 
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7.1.3 File Received After Applying Algorithm  

WRITE4.TXT

 
Every Sunday, Jessica went to see her father in the city and came home on the 

6:00 o'clock train. One day she told her driver, Jack, that she would be back an 

hour earlier and to pick her up at the station. Jack forgot and went to get her at 

the usual time.When Jessica arrived and did not find Jack there, she started 

walking home. Jack met her on the road and took her. 

 

7.1.4 Trellis Based Code Efficiency 
Uncoded 
No of errors: 83/3000 

Trellis Based Code 
No of errors: 0/3000 
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7.2 TURBO DECODER WITH LOG-MAP BASED ITERATIVE DECODING 
7.2.1 File, Which is Encoded and Sent:  

read.txt

 
Every Sunday, Jessica went to see her father in the city and came home on the 

6:00 o'clock train. One day she told her driver, Jack, that she would be back an 

hour earlier and to pick her up at the station. Jack forgot and went to get her at 

the usual time. When Jessica arrived and did not find Jack there, she started 

walking home. Jack met her on the road and took her. 

 
 

7.2.2 File After Adding Noise 

WRITE8.TXT

 
Every Sujdã]. Bessica`÷enR vm$see`hdr¢g`tler a^ uhe`citù anL came$hkme°�o~ 

tje �:00 o'cl�ck tráI~. �n% dA9°rhe uold her driver, Jaãk, txat`sh-0 'M5lf `u 

bacc€!l lour!eazl)er and to!pick her up a4(thu stati�k& JasK f/FgoT aÊa went$to 

og< je0"at thq esucì téem.�hEn ÚessIca arrköEf�an` oy`"nod &ind Nack 

tîere,(Shm starded wAlking h�me: Back met hev mo the roá$(and took èeb. 

 
 
7.2.3 File Received After Applying Algorithm (iteration:1) 

WRITE6.TXT

 
Every Sunday, Jessica went to see her father in the city and came home on the 

6:00 o'clock train. One day she told her driver, Jack, that she would be back an 

hour earlier and to pick her up at the station. Jack forgot and went to get her at 

the usual time.When Jessica arrived and did not find Jack there, she started 

walking home. Jack met her on the road and took her. 
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7.2.4 File Received After Applying Algorithm (Iteration:2) 

WRITE6.TXT

 
Every Sunday, Jessica went to see her father in the city and came home on the 

6:00 o'clock train. One day she told her driver, Jack, that she would be back an 

hour earlier and to pick her up at the station. Jack forgot and went to get her at 

the usual time.When Jessica arrived and did not find Jack there, she started 

walking home. Jack met her on the road and took her. 

 

7.2.5 Log-MAP-Based Code Efficiency 
Uncoded 
No of errors: 161/3000 

Log-MAP Decoding 
No of errors:  

Iteration 1: 0/3000 

Iteration 2: 0/3000 
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7.3 TABULAR RESULTS 
7.3.1 Simplified Trellis Based Decoder 
Results for 3000 bits: 

 

Eb/N0 Coefficients for 

Generating AWGN 

Error 

(Uncoded) 

Error(Coded) 

-2 14, 13 308 302 

0 13,12 226 92 

2 12, 12 187 83 

4 12,11 137 17 

6 11, 11 83 0 

 

 
7.3.2 Log-MAP Turbo Decoder 
(a) Results for 3000 bits 

 

Eb/N0 Coefficients for 

Generating AWGN 

Error 

(Uncoded) 

Error(Coded) 

Iteration 1 

Error(Coded)

Iteration 2 

-6 16, 15, 15 487 53 38 

-4 15, 14, 14 383 31 15 

-2 15, 14, 11 307 25 9 

0 14, 13, 10 221 5 5 

2 13,12, 9 161 0 0 

4 12, 12, 9 112.5 0 0 

6 12, 10, 9 79 0 0 

8 11, 10, 9 31 0 0 
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(b) Results for 4000 bits 

 

Eb/N0 Coefficients for 

Generating AWGN 

Error 

(Uncoded) 

Error(Coded) 

Iteration 1 

Error(Coded)

Iteration 2 

-6 16, 15, 15 641 66 46 

-4 15, 14, 14 502 37 17 

-2 15, 14, 11 405 28 9 

0 14, 13, 10 303 4 4 

2 13,12, 9 216 0 0 

4 12, 12, 9 151 0 0 

6 12, 10, 9 89 0 0 

8 11, 10, 9 43 0 0 

 

 

(c) Results for 5000 bits 

 

Eb/N0 Coefficients for 

Generating AWGN 

Error 

(Uncoded) 

Error(Coded) 

Iteration 1 

Error(Coded)

Iteration 2 

-6 16, 15, 15 786 91 72 

-4 15, 14, 14 651 33 31 

-2 15, 14, 11 494 29 22 

0 14, 13, 10 346 1 1 

2 13,12, 9 257 0 0 

4 12, 12, 9 207 0 0 

6 12, 10, 9 107 0 0 

8 11, 10, 9 36 0 0 

 

 

 

 

 96



7.4 GRAPHICAL RESULTS 
7.4.1 Comparison of Bit Error Rate Between Gaussian Noise and Noise  
Generated Using C Language (FOR 4000 BITS) 
 

Eb/N0 Pb(C Generated) Pb(Gaussian) 
-6 0.16025 0.1584 
-4 0.1255 0.1306 
-2 0.10125 0.1038 
0 0.07575 0.0786 
2 0.054 0.0563 
4 0.0375 0.0375 
6 0.02225 0.0229 
8 0.01075 0.0125 

 

GRAPH 1 

Comparison of PB Between C 
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7.4.2 Performance of Simplified Trellis Based Decoder 
 

Eb/N0 Uncoded Coded 
0 0.075333 0.030667 
2 0.062333 0.027667 
4 0.045667 0.005667 
6 0.027667 0.00001 

 

GRAPH 2 
 

Performance of Trellis Decoder
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7.4.3 Performance of Log-MAP Turbo Decoder 
 

Eb/N0 Pb(Gen) Ieration1 iteration2 
-6 0.16025 0.0165 0.0115 
-4 0.1255 0.00925 0.00425 
-2 0.10125 0.007 0.00225 
0 0.07575 0.001 0.001 
2 0.054 0.00001 0.00001 
4 0.0375 0.00001 0.00001 
6 0.02225 0.00001 0.00001 
8 0.01075 0.00001 0.00001 

 

GRAPH 3 
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7.4.4 Comparison of Trellis and Turbo Code Performance 
 

Eb/N0 Trellis Turbo 
0 0.030667 0.001 
2 0.027667 0.00025 
4 0.005667 0.000001 
6 0.000001 0.000001 

 

 

GRAPH 4 
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CONCLUSIONS 
In this thesis two advanced and latest channel decoding algorithms are first 

developed and then implemented in language C. These two algorithms are 

modified version of some standard algorithms. The advantage of implementing 

these algorithms is that we are able to save some sort of resources/efforts as 

compared to standard ones and the efficiency is still approximately the same as 

that of the standard ones. 

 For implementing these decoding algorithms the C code is written for the 

channel encoder, AWGN channel and the channel decoder for both of the 

algorithms. The efforts are being made to generate standard AWGN noise but 

due to limitation of C language we are able to generate noise, which is very much 

similar, as shown in Graph 1. These C programs are then executed for both 

algorithms in a particular sequence (Encoder, Channel, Decoder) and results are 

obtained in form of text files. Again a C program is executed for comparing these 

text files and now numerical results are obtained which are put in form of a table 

manually. The tabular results are then used for drawing the graph. 

 The graph for the first algorithm “A Simplified Trellis-Based Decoder” is 

found to be in close approximation to the graph shown in [5]. But this algorithm is 

having a disadvantage that it cannot handle very large file. It can work with text 

file of maximum size 3500 bits only as it requires huge amount of memory, 

although speed of this algorithm is better than the second algorithm. 

 The graph for the second algorithm “Log-MAP-Based Iterative Turbo 

Decoder” is also found to be in close approximation to the standard Log-MAP 

algorithm [4], but with the limitation that there is no performance improvement 

after iteration 2, but in case of standard algorithm error PB reduces up to 4-5 

iterations, although with little performance improvement. This might be due to the 

effect of non-standard AWGN noise generated using C. 

 The error performance of Log-MAP-Based Turbo Decoder is found to be 

better than the A simplified trellis based decoder but the speed of later is better 

than the former. 
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FUTURE WORK AND RECOMMENDATIONS 
The two channel decoding algorithm “A Simplified Trellis-Based Decoder” and 

“Log-MAP-Based Iterative Turbo Decoder” has been developed and 

implemented in this thesis. The results for both are in close approximation to the 

corresponding standard algorithm, but with certain limitations. The limitation in 

first algorithm is that it requires huge amount of memory but time taken is less, so 

can’t handle large files. The limitation for second algorithm is that the time taken 

in decoding rises exponentially with the size of the file, although memory 

requirement is less.  

 The possible future work, which may be carried out, related to this thesis 

work could be as follows: 

1. In “A Simplified Trellis-Based Decoder” the memory requirement is very 

large. But the time required for executing the program is small. If possible 

some algorithm could be developed as a trade-off between memory and 

time requirement, such that memory requirement and time taken both are 

optimum. 

2. In “Log-MAP-Based Iterative Turbo Decoder”, the memory required is 

small enough that it may handle large file also, but time taken rises 

exponentially with the size of file. It is due to this time requirement that we 

are not able to process a large file. The future work in this regard could be 

to reduce the time taken in executing the algorithm. 

3. Out of these two algorithms the second one is having very good error 

performance as compared to first one. Given the outstanding performance 

of Turbo Code, the challenge could be to implement it into various 

communication systems at affordable decoding complexity, using current 

Very Large Scale Integration (VLSI) technologies.  
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HOW TO EXECUTE C PROGRAMS? 

 
Simplified Trellis Based Decoder 

 

1. First execute the C program ‘Trellis1.c’. This program first converts the 

text (c:\read.txt) into equivalent ACSII Values (c:\write.txt) and then 

encodes this bit values using ½ convolutional encoder (write1.txt). 

2. Execute the C program ‘Channel2.c’. This program adds random noise 

(Noise coefficients are entered by user to add varying amount of noise) to 

the encoded file and then apply threshold to get bit values again 

(c:\write2.txt). 

3. Execute the C program ‘Trmod1.c’. This program takes noise-corrupted 

file (c:\write2.txt) as input, and produces the output byte file (c:\write3.txt) 

and output text file (c:\write4.txt). 

4. Execute the C program ‘Effi.c’. This program compares the original file 

(c:\write.txt) and decoded file (c:\write3.txt) and displays the no of bit 

errors and total bits present. 
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5. Execute the C program ‘Uncoded.c’. This program adds random noise to 

the original file (c:\write.txt) to get the noise-corrupted file (c:\write7.txt). 

6. Again execute the C program ‘Effi.c’, and compare the original file 

(c:\write.txt) and the noise-corrupted file (c:\write7.txt). It displays no of bit 

errors, while total no of bits remains the same as in step 4. 

7. Now compare the efficiencies calculated in steps (4) and (6). 

 

LOG-MAP Based Turbo Decoder 

 
1. First execute the C program ‘Turboen1.c’. This program first converts the 

text (c:\read.txt) into equivalent ACSII Values (c:\write.txt) and then 

encodes this bit values using 1/3 convolutional encoder (write1.txt), and 

then rearranges them in proper order (c:\write2.txt). 

 

 

 

2. Execute the C program ‘Channel1.c’. This program adds random noise 

(Noise coefficients are entered by user to add varying amount of noise) to 

the encoded file to get a file containing floating values (c:\write3.txt). 

3. Execute the C program ‘Turbode4.c’ with iteration =1 (big loop). This 

program takes noise-corrupted file (c:\write3.txt) as input, and produces 

the output byte file (c:\write4.txt) and rearranged byte file (c:\write5.txt) and 

output text file (c:\write6.txt). 

4. Execute the C program ‘Effi.c’. This program compares the original file 

(c:\write.txt) and decoded file (c:\write5.txt) and displays the no of bit 

errors and total bits present. 

5. Execute the C program ‘Uncodest.c’. This program adds random noise to 

the original file (c:\write.txt) to get the noise-corrupted file (c:\write7.txt). 

6. Again execute the C program ‘Effi.c’, and compare the original file 

(c:\write.txt) and the noise-corrupted file (c:\write7.txt). It displays no of bit 

errors, while total no of bits remains the same as in step 4. 
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7. Now compare the efficiencies calculated in steps (4) and (6). 

8. Now change the no of iteration from 1 to 2 (big loop) in C program 

‘Turbode4.c’ and repeat step 4 to 7. 

 
Coding 
File-1 
 

// Program to add AWGN Noise to the bit stream received from the Turbo 

encoder 

# include<stdio.h> 

# include<conio.h> 

void main() 

{ 

int i,j,k,c,c1,c2,rndi,nt=11,nt1=11,nt2=11; 

double rndf,ch,ch1,ch2; 

unsigned long n=0; 

FILE *ifp,*ofp; 

//nt,nt1,nt2: variables used for generating AWGN Noise 

//*ifp: pointer to input file 

//*ofp: pointer to output file 

//i,j,k,c,c1,c2,n,ch,ch1,ch2: variables to store temporary values 

//rndi: random generated integer value 

//rndf: random generated float value 

clrscr(); 

printf("\n Enter noise coffs for Generating Noise"); 

scanf("%d%d%d",&nt,&nt1,&nt2); 

if((ifp=fopen("C:\\write2.txt","r"))==NULL) 

printf("\n ERROR:Input file could not be opened"); 

if((ofp=fopen("C:\\write3.txt","w"))==NULL) 
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printf("\n ERROR:Output file could not be opened"); 

//Counting no of inputs bits 

while((c=getc(ifp))!=EOF) 

n++; 

printf("\n count=%ld",n); 

//Logic for adding noise 

for(i=0;i<n;i+=3) 

{ 

fseek(ifp,i,0); 

if((c=getc(ifp))!=EOF) 

{ 

c=c-'0'; 

printf("%d",c); 

if(c==0) 

c=-1; 

rndi=(rand()%nt); 

rndf=(float)rndi/10; 

if(rndi%2==0) 

ch=c+rndf; 

else 

ch=c-rndf; 

} 

if((c1=getc(ifp))!=EOF) 

{ 

c1=c1-'0'; 

printf("%d",c1); 

if(c1==0) 

c1=-1; 

rndi=(rand()%nt1); 

rndf=(float)rndi/10; 

if(rndi%2==0) 
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ch1=c1+rndf; 

else 

ch1=c1-rndf; 

} 

if((c2=getc(ifp))!=EOF) 

{ 

c2=c2-'0'; 

printf("%d",c2); 

if(c2==0) 

c2=-1; 

rndi=(rand()%nt2); 

rndf=(float)rndi/10; 

if(rndi%2==0) 

ch2=c2+rndf; 

else 

ch2=c2-rndf; 

} 

fprintf(ofp,"%10.6f%10.6f%10.6f",ch,ch1,ch2); 

} 

fclose(ifp); 

fclose(ofp); 

} 
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File-2 
// Program to add AWGN Noise to the bit stream received from the trellis 

encoder 

# include<stdio.h> 

# include<conio.h> 

void main() 

{ 

int i,j,k,c,c1,rndi,nt=11,nt1=11; 

double rndf,ch,ch1; 

unsigned long n=0; 

FILE *ifp,*ofp; 

//nt,nt1: variables used for generating AWGN Noise 

//*ifp: pointer to input file 

//*ofp: pointer to output file 

//i,j,k,c,c1,n,ch,ch1: variables to store temporary values 

//rndi: random generated integer value 

//rndf: random generated float value 

clrscr(); 

if((ifp=fopen("C:\\write1.txt","r"))==NULL) 

printf("\n ERROR:Input file could not be opened"); 

if((ofp=fopen("C:\\write2.txt","w"))==NULL) 

printf("\n ERROR:Output file could not be opened"); 

printf("\n Enter noise coffs for Generating Noise"); 

scanf("%d%d",&nt,&nt1); 

//Counting no of inputs bits 

while((c=getc(ifp))!=EOF) 

n++; 

printf("\n count=%ld",n); 

//Logic for adding noise 

for(i=0;i<n;i+=2) 
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{ 

fseek(ifp,i,0); 

if((c=getc(ifp))!=EOF) 

{ 

c=c-'0'; 

printf("%d",c); 

if(c==0) 

c=-1; 

rndi=(rand()%nt); 

rndf=(float)rndi/10; 

if(rndi%2==0) 

ch=c+rndf; 

else 

ch=c-rndf; 

if(ch>0.0) 

putc(1+'0',ofp); 

else 

putc(0+'0',ofp); 

} 

if((c1=getc(ifp))!=EOF) 

{ 

c1=c1-'0'; 

printf("%d",c1); 

if(c1==0) 

c1=-1; 

rndi=(rand()%nt1); 

rndf=(float)rndi/10; 

if(rndi%2==0) 

ch1=c1+rndf; 

else 

ch1=c1-rndf; 
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if(ch1>0.0) 

putc(1+'0',ofp); 

else 

putc(0+'0',ofp); 

} 

} 

fclose(ifp); 

fclose(ofp); 

} 

 
File-3 
/*Program used for calculating efficiency by comparing bits in original file 

and decoded bit stream*/ 

# include<stdio.h> 

# include<conio.h> 

void main() 

{ 

int i,j,c,c1,disagree=0,n=0; 

FILE *fp1,*fp2; 

//i,j,c,c1,n:variables used for storing temporary values 

// disagree: variables used for storing no of bits in disagreement 

//*fp1: pointer to original file 

//*fp2: pointer to decoded file(after passing through channel) 

if((fp1=fopen("C:\\write.txt","r"))==NULL) 

printf("\n ERROR: Ist Input file could not be opened"); 

if((fp2=fopen("C:\\write5.txt","r"))==NULL) 

printf("\nERROR:2nd Input file could not be opened"); 

while((c=getc(fp1))!=EOF) 

n++; 

printf("\n count=%d",n); 
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fseek(fp1,0,0); 

fseek(fp2,0,0); 

printf("\n"); 

//Logic for comapring bit stream in two file bit by bit 

for(i=0;i<n;i++) 

{ 

if((c=getc(fp1))!=EOF) 

printf(" %d",c-'0'); 

if((c1=getc(fp2))!=EOF) 

printf(" %d",c1-'0'); 

printf("\n"); 

if(c1!=c) 

disagree++; 

} 

//displaying no of bits corrupted which could not be cottected by algorithm 

printf("\n disagree=%d",disagree); 

//displaying total no of bits  in decoded/original file 

printf("\n n=%d",n); 

fclose(fp2); 

fclose(fp1); 

}//end of main 

 

File-4 
/*Program to encode the bits using trellis diagram for constraint length K=3 

  and two code generators with cofficients 111 and 101 */ 

# include<stdio.h> 

# include<conio.h> 

void main() 

{ 

int i,j,k,c,ch,a,sym,state,n=0; 
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FILE *ifp,*ofp; 

//state:for storing state at any time t 

//output[]:for storing the output branch word for given state and input bits 0 and 

1 

//*ifp: pointer to input file 

//*ofp: Pointer to output file 

//i,j,c,ch,a,sym:variables to store temporary values 

int nextstate[4][2]={0,2, 

       0,2, 

       1,3, 

       1,3}; 

int output[4][2]={0,3, 

    3,0, 

    1,2, 

    2,1}; 

if((ifp=fopen("C:\\read.txt","r"))==NULL) 

printf("\nERROR:1st Input file could not be opened"); 

if((ofp=fopen("C:\\write.txt","w"))==NULL) 

printf("\nERROR:1st Output file could not be opened"); 

//Converting alphabetical file into byte file 

while((c=getc(ifp))!=EOF) 

{ 

ch=c; 

for(i=0;i<8;i++) 

{ 

a=ch%2; 

ch/=2; 

putc(a+'0',ofp); 

} 

} 

//Add 8 trailing bits 
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for(i=0;i<8;i++) 

putc(0+'0',ofp); 

fclose(ifp); 

fclose(ofp); 

if((ifp=fopen("C:\\write.txt","r"))==NULL) 

printf("\n ERROR:2nd Input file could not be opened"); 

if((ofp=fopen("C:\\write1.txt","w"))==NULL) 

printf("\n ERROR: 2nd Output file could not be opened"); 

//counting no of bits in byte file 

n=0; 

while((c=getc(ifp))!=EOF) 

n++; 

printf("\n count=%d",n); 

//intial state is 00 

state=0; 

//simulation of trellis diagram for calculating encoded bits 

fseek(ifp,0,0); 

for(i=0;i<n;i++) 

{ 

if((sym=getc(ifp))!=EOF) 

{ 

sym=sym-'0'; 

switch(state) 

{ 

case 0:if(sym==0) 

       { 

       putc(0+'0',ofp); 

       putc(0+'0',ofp); 

       state=nextstate[0][0]; 

       } 

       else 
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       { 

       putc(1+'0',ofp); 

       putc(1+'0',ofp); 

       state=nextstate[0][1]; 

       } 

       break; 

case 1:if(sym==0) 

 { 

 putc(1+'0',ofp); 

 putc(1+'0',ofp); 

 state=nextstate[1][0]; 

 } 

 else 

 { 

 putc(0+'0',ofp); 

 putc(0+'0',ofp); 

 state=nextstate[1][1]; 

 } 

 break; 

case 2: if(sym==0) 

 { 

 putc(0+'0',ofp); 

 putc(1+'0',ofp); 

 state=nextstate[2][0]; 

 } 

 else 

 { 

 putc(1+'0',ofp); 

 putc(0+'0',ofp); 

 state=nextstate[2][1]; 

 } 
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 break; 

case 3: if(sym==0) 

 { 

 putc(1+'0',ofp); 

 putc(0+'0',ofp); 

 state=nextstate[3][0]; 

 } 

 else 

 { 

 putc(0+'0',ofp); 

 putc(1+'0',ofp); 

 state=nextstate[3][1]; 

 } 

 break; 

 } 

     } 

} 

} 

 

 

File-5 
/*Program to decode encoded bits using A Simplified Computational Kernel for 

  Trellis Based Decoding(modified viterbi algorithm)for constraint length K=3 

  and code rate=1/2 with two code generators with coefficients 111 101*/ 

# include<stdio.h> 

# include<conio.h> 

int output[4][2]={0,3, 

    3,0, 

    1,2, 

    2,1}; 
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/*output matrix contains the output branch word corresponding to four 

  states (row wise) and input bits 1 and 0 (column wise)*/ 

void main() 

{ 

int hammingdist(int,int); 

//This function is used for calculating hamming distance between two arguments 

passed to it 

int 

n=0,c,c1,c2,bm1,bm2,modbm1,modbm2,i,j,k,sym,min,count,index=0,**st_metric

,*numoct,*decod; 

FILE *ifp,*ofp,*fp; 

//c,c1,c2: variables used for storing received bit values 

//bm1,bm2:variables for storing branch metric values 

//modbm1,modbm2:variables for storing modified branch metric values 

//min:for storing minimum value of state metric 

//index:for storing the index value of minimum state metric 

//**st_metric:pointer used for storing the state metric at each instant of time 

//*numoct:pointer used for storing octal value of binary bits received(pair wise) 

//*decod:pointer used for storing decoded bits 

//n:to store no of received symbols(bits) 

//Sym:variable to store octal value 

//i,j,k:local variables used for executing for loops 

//*ifp: pointer to input file (contains bits received form channel) 

//*ofp: Pointer to output file(contains decoded bits) 

clrscr(); 

fp=fopen("C:\\decoder.txt","w"); 

if((ifp=fopen("C:\\write2.txt","r"))==NULL) 

printf("\nERROR:1st Input file could not be opened"); 

if((ofp=fopen("C:\\write3.txt","w"))==NULL) 

printf("\nERROR:1st Output file could not be opened"); 

while((c=getc(ifp))!=EOF) 
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n++; 

//Dynamic memory allocation for storing octal equivalent values of received 

symbols (bits) 

numoct=(int*)calloc(n/2,sizeof(int)); 

//Dynamic memory allocation for storing decoded bit values 

decod=(int*)calloc(n/2+1,sizeof(int)); 

//Dynamic memory allocation for storing state metric values 

st_metric=(int**)calloc(n/2+1,sizeof(int)); 

for(i=0;i<n/2+1;i++) 

st_metric[i]=(int*)calloc(4,sizeof(int)); 

//Logic for calculating octal equivalent of received bits(taking two at a time 

fseek(ifp,0,0); 

for(i=0;i<n;i+=2) 

{ 

if((c=getc(ifp))!=EOF) 

c=c-'0'; 

if((c1=getc(ifp))!=EOF) 

c1=c1-'0'; 

numoct[i/2]=2*c+c1; 

} 

//Equating state metric at time t=0 and t=1 to zero 

for(j=0;j<2;j++) 

for(i=0;i<4;i++) 

st_metric[j][i]=0; 

//Calculating state metric at time t=2 

bm1=hammingdist(numoct[0],output[0][0]); 

st_metric[1][0]=st_metric[0][0]+bm1; 

bm2=hammingdist(numoct[0],output[0][1]); 

st_metric[1][2]=st_metric[0][0]+bm2; 

//Calculating state metric at time t=3 

bm1=hammingdist(numoct[1],output[0][0]); 
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bm2=hammingdist(numoct[1],output[0][1]); 

st_metric[2][0]=st_metric[1][0]+bm1; 

st_metric[2][2]=st_metric[1][0]+bm2; 

bm1=hammingdist(numoct[1],output[2][0]); 

bm2=hammingdist(numoct[1],output[2][1]); 

st_metric[2][1]=st_metric[1][2]+bm1; 

st_metric[2][3]=st_metric[1][2]+bm2; 

/*Calculating state metric for time t>=4 using previous state metrics and branch 

  metric values i.e Implementation of MODIFIED ADD COMPARE SELECT 

COMPUTATION Algorithm*/ 

for(i=2;i<n/2;i++) 

{ 

sym=numoct[i]; 

bm1=hammingdist(sym,output[0][0]); 

modbm1=2*(1-bm1); 

bm2=hammingdist(sym,output[2][0]); 

modbm2=2*(1-bm2); 

if(st_metric[i][0]<=st_metric[i][1]+modbm1) 

st_metric[i+1][0]=st_metric[i][0]; 

else 

st_metric[i+1][0]=st_metric[i][1]+modbm1; 

 

if(st_metric[i][1]<=st_metric[i][0]+modbm1) 

st_metric[i+1][2]=st_metric[i][1]; 

else 

st_metric[i+1][2]=st_metric[i][0]+modbm1; 

 

 

if(st_metric[i][2]<=st_metric[i][3]+modbm2) 

st_metric[i+1][1]=st_metric[i][2]; 

else 
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st_metric[i+1][1]=st_metric[i][3]+modbm2; 

st_metric[i+1][1]=st_metric[i+1][1]+bm2-bm1; 

 

if(st_metric[i][3]<=st_metric[i][2]+modbm2) 

st_metric[i+1][3]=st_metric[i][3]; 

else 

st_metric[i+1][3]=st_metric[i][2]+modbm2; 

st_metric[i+1][3]=st_metric[i+1][3]+bm2-bm1; 

} 

//Displaying the State Metric Values 

for(i=n/2;i>=0;i--) 

{ 

for(j=0;j<4;j++) 

{ 

printf("  %d", st_metric[i][j]); 

fprintf(fp," %d",st_metric[i][j]); 

} 

fprintf(fp,"\n"); 

printf("\n"); 

} 

//Calculating minimum value of state metric at time t=maximum time 

i=n/2; 

min=st_metric[i][0]; 

for(j=1;j<4;j++) 

{ 

if(st_metric[i][j]<min) 

{ 

min=st_metric[i][j]; 

index=j; 

} 

} 
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//logic for traversing back the path on trellis diagram from t=max to t=1 and 

getting decoded bits 

do 

{ 

switch(index) 

{ 

case 0:if(st_metric[i-1][0]<=st_metric[i-1][1]) 

       index=0; 

       else 

       index=1; 

       decod[i]=0; 

       i--; 

       break; 

case 1:if(st_metric[i-1][2]<=st_metric[i-1][3]) 

       index=2; 

       else 

       index=3; 

       decod[i]=0; 

       i--; 

       break; 

case 2:if(st_metric[i-1][0]<=st_metric[i-1][1]) 

       index=0; 

       else 

       index=1; 

       decod[i]=1; 

       i--; 

       break; 

case 3:if(st_metric[i-1][2]<=st_metric[i-1][3]) 

       index=2; 

       else 

       index=3; 
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       decod[i]=1; 

       i--; 

      break; 

  } 

}while(i>0); 

//Displaying decoded bits and writing to output file 

printf("\n The decoded bits are"); 

for(i=1;i<=n/2;i++) 

{ 

printf("%d",decod[i]); 

putc(decod[i]+'0',ofp); 

} 

fclose(ifp); 

fclose(ofp); 

//opening new output file to write alphabetical vales from binary values 

if((ifp=fopen("C:\\write3.txt","r"))==NULL) 

printf("\n ERROR:Input file could not be opened"); 

if((ofp=fopen("C:\\write4.txt","w"))==NULL) 

printf("\n ERROR:Output file could not be opened"); 

n=0; 

while((c=getc(ifp))!=EOF) 

n++; 

//Logic for Converting Binary values to alphabetical values 

for(i=0;i<n/8;i++) 

{ 

c1=0; 

for(j=0;j<8;j++) 

{ 

fseek(ifp,8*i+j,0); 

c=getc(ifp); 

c=c-'0'; 
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c2=c; 

for(k=0;k<j;k++) 

c2*=c*2; 

c1+=c2; 

} 

printf("%c",c1); 

putc(c1,ofp); 

} 

fclose(ifp); 

fclose(ofp); 

}//end of main 

int hammingdist(int x1,int x2)//function for calculating hamming distance 

{ 

int x3=x1-x2; 

if(x3<0) 

x3=-x3; 

if(x3==0) 

return 0; 

if(x3==1) 

{ 

if(((x1==1)&&(x2==2))||((x1==2)&&(x2==1))) 

return 2; 

else 

return 1; 

} 

if(x3==2) 

return 1; 

if(x3==3) 

return 2; 

} 
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File-6 
//program to decode systematic convolutionally encoded stream with one code 

// generator whose coefficients are entered by user using MAP Decoding 

Algorithm 

# include<stdio.h> 

# include<conio.h> 

#  include<math.h> 

# define infin -1.0e100 

double max(double,double); 

//Program to find minimum value 

double minimum(double f[][9], int i) 

{ 

int j,flag=0; 

double min=f[0][i]; 

for(j=0;j<8;j++) 

if(f[j][i]<0.0) 

break; 

if(j==8) 

flag=1; 

else 

flag=0; 

if(flag==1) 

{ 

for(j=1;j<8;j++) 

if(f[j][i]<min) 

min=f[j][i]; 

} 

else 

min=0.0; 
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return min; 

} 

void main() 

{ 

  FILE *fp,*ifp,*ofp; 

  int i,j,k,l,c,c1,c2,x,x1,big,rndi,decod[8],inleav[5]; 

//n: variable to store no of bits received 

//rndi= variable to store integer random number 

//decod:pointer used for storing decoded bit stream 

//inleav[5]:array for storing interleaver structure 

//output[][]: for storing the output values corresponding to different coefficients 

of code generator g1 

//i,j,k,c,c1,c2,x,x1,big: local variables used for calculation of other parameters 

//*fp:pointer to a file used for storing intermediate values(optional) 

//*ifp: pointer to input file 

//*ofp: pointer to output file 

 int LUTFS[2][8]={{0,2,5,7,1,3,4,6},{1,3,4,6,0,2,5,7}}; 

 int LUTBS[2][8]={{0,4,1,5,6,2,7,3},{4,0,5,1,2,6,3,7}}; 

//LUTFS[][]:look up table for simulating trellis structure for forward metrics 

//LUTBS[][]:look up table for simulat9ing trellis structure for reverse metrics 

 double 

maxnum,maxden,num,den,num1,den1,rndf,fsmet[8][9],rsmet[8][9],bmet[4][8],lr

[8],in[8],exlr[8],apri[8],app[8]; 

 double 

ch,ch1,ch2,yp[8],rstemp1[8],rstemp2[8],rstemp3[8],rstemp4[8],rstemp5[8],rstem

p6[8],rstemp7[8],rstemp8[8],min; 

  unsigned long n=0; 

 //maxnum,maxden,num,den,num1,den1: variables used for calculating other 

parameters 

 //rndf:v0ariable to store floating type random number 

//fsmet[][]:array used for storing forward state metric values 
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//rsmet[][]:array used for storing reverse state metric values 

//rstemp1[]-rstemp8[]:arrays used for storing and exchanging reverse state 

metric values 

//ch,ch1,ch2:variables used for calulating other parameters 

//yp[8]:array used for storing interleaved parity sequence 

//bmet[][]:array used for storing branch metric values 

//num:variable to store numerator for likelihood ratio 

//den:variable to store denominator for likelihood ratio 

//lr[8]: array for storing LR values 

//in[8]:array for storing interleaved data bit values 

//exlr[8]:array for storing external values 

//apri[8]:array for storing a priori values 

//app[8]: 

clrscr(); 

if((fp=fopen("C:\\decoder.txt","w"))==NULL) 

printf("\n ERROR: Could not open the file"); 

if((ifp=fopen("C:\\write3.txt","r"))==NULL) 

printf("\nERROR:1st Input file could not be opened"); 

if((ofp=fopen("C:\\write4.txt","w"))==NULL) 

printf("\nERROR:1st Output file could not be opened"); 

//assiging values for simulating interleaver structure 

inleav[0]=0; 

inleav[1]=3; 

inleav[2]=1; 

inleav[3]=4; 

inleav[4]=2; 

//calculating number of float values (transmitted sequence+noise) 

while((i=fscanf(ifp,"%lf %lf %lf",&ch,&ch1,&ch2))!=EOF) 

n+=3; 

printf("\n count=%d",n); 

printf("\n"); 
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fseek(ifp,0,0); 

//intializing reverse state metric values for decoder1 

for(k=1;k<8;k++) 

rstemp2[k]=infin; 

rstemp2[0]=0.0; 

//intializing reverse state metric values for decoder2 

for(k=1;k<8;k++) 

rsmet[k][8]=infin; 

rsmet[0][8]=0.0; 

//l loop: used for scanning whole file 

for(l=n/24;l>0;l--) 

{ 

//intializing a priori values to zeros 

for(k=0;k<8;k++) 

apri[k]=0.0; 

//big loop: used for number of iterations 

for(big=0;big<2;big++) 

{ 

fseek(ifp,0,0); 

//intializing forward state metrics 

for(k=1;k<8;k++) 

fsmet[k][0]=infin; 

fsmet[0][0]=0.0; 

//i loop:used for calculating forward state metric values for each block 

for(i=0;i<l;i++) 

{ 

//j loop: used for accessing 24 bits at a time 

for(j=0;j<24;j+=3) 

{ 

if((k=fscanf(ifp,"%lf %lf %lf",&ch,&ch1,&ch2))!=EOF) 

{ 
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//fprintf(fp,"\n %lf %lf %lf",ch,ch1,ch2); 

//printf("\n %f %f %f",ch,ch1,ch2); 

//adding a priori information to branch metric values if reached to the block 

which is being decoded 

if(i==l-1) 

{ 

bmet[0][j/3]=-ch-ch1-apri[j/3]; 

bmet[1][j/3]=-ch+ch1-apri[j/3]; 

bmet[2][j/3]=ch-ch1+apri[j/3]; 

bmet[3][j/3]=ch+ch1+apri[j/3]; 

} 

//calulating branch metric values 

else 

{ 

bmet[0][j/3]=-ch-ch1; 

bmet[1][j/3]=-ch+ch1; 

bmet[2][j/3]=ch-ch1; 

bmet[3][j/3]=ch+ch1; 

} 

} 

}// end of j loop 

/*fprintf(fp,"\n bmet"); 

//printf("\n bmet"); 

for(j=0;j<8;j++) 

{ 

for(k=0;k<4;k++) 

{ 

fprintf(fp,"  %f",bmet[k][j]); 

//printf(" %f",bmet[k][j]); 

} 

//printf("\n"); 
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fprintf(fp,"  \n"); 

}*/ 

//Logic for calculating forward state metric values 

for(k=1;k<=8;k++) 

{ 

for(j=0;j<8;j++) 

{ 

if(j%2==0) 

fsmet[j][k]=max(bmet[0][k-1]+fsmet[LUTFS[0][j]][k-1],bmet[3][k-

1]+fsmet[LUTFS[1][j]][k-1]); 

else 

fsmet[j][k]=max(bmet[1][k-1]+fsmet[LUTFS[0][j]][k-1],bmet[2][k-

1]+fsmet[LUTFS[1][j]][k-1]); 

} 

} 

/*fprintf(fp,"\n forward st metric is"); 

for(k=0;k<=8;k++) 

{ 

for(j=0;j<8;j++) 

fprintf(fp," %f",fsmet[j][k]); 

fprintf(fp,"  \n"); 

}*/ 

if(i==l-1) 

break; 

min=minimum(fsmet,k-1); 

fprintf(fp,"min=%f",min); 

//normalizing the forward state metric values 

for(k=0;k<8;k++) 

fsmet[k][0]=fsmet[k][8]-min; 

}//end of i loop 

//fprintf(fp,"For Comparing"); 
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//for(k=0;k<8;k++) 

//fprintf(fp," %f",fsmet[k][8]); 

//saving reverse state metric values for different no of iterations 

if((big==0)&&(l<n/24)) 

for(k=0;k<8;k++) 

{ 

rsmet[k][8]=rstemp3[k]; 

rstemp2[k]=rstemp4[k]; 

} 

if((big==1)&&(l<n/24)) 

for(k=0;k<8;k++) 

{ 

rsmet[k][8]=rstemp5[k]; 

rstemp2[k]=rstemp6[k]; 

} 

if((big==2)&&(l<n/24)) 

for(k=0;k<8;k++) 

{ 

rsmet[k][8]=rstemp7[k]; 

rstemp2[k]=rstemp8[k]; 

} 

//Logic for calculating reverse state metric values 

for(k=7;k>=0;k--) 

{ 

for(j=0;j<8;j++) 

{ 

if((j==0)||(j==1)||(j==4)||(j==5)) 

rsmet[j][k]=max(bmet[0][k]+rsmet[LUTBS[0][j]][k+1],bmet[3][k]+rsmet[LUTB

S[1][j]][k+1]); 

else 
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rsmet[j][k]=max(bmet[1][k]+rsmet[LUTBS[0][j]][k+1],bmet[2][k]+rsmet[LUTB

S[1][j]][k+1]); 

} 

} 

/*fprintf(fp,"\n reverse st metric is"); 

for(k=8;k>=0;k--) 

{ 

for(j=0;j<8;j++) 

fprintf(fp,"  %f",rsmet[j][k]); 

fprintf(fp,"  \n"); 

} 

 

fprintf(fp,"For Comparing"); 

for(k=0;k<8;k++) 

fprintf(fp," %f",rsmet[k][0]); 

 */ 

//Calculating likelihood ratio for each decoded bit 

for(k=0;k<8;k++) 

{ 

num1=fsmet[0][k]+rsmet[4][k+1]+bmet[3][k]; 

den1=fsmet[0][k]+rsmet[0][k+1]+bmet[0][k]; 

for(j=1;j<8;j++) 

{ 

if((j==2)||(j==3)||(j==6)||(j==7)) 

{ 

num=fsmet[j][k]+rsmet[LUTBS[1][j]][k+1]+bmet[2][k]; 

den=fsmet[j][k]+rsmet[LUTBS[0][j]][k+1]+bmet[1][k]; 

} 

else 

{ 

num=fsmet[j][k]+rsmet[LUTBS[1][j]][k+1]+bmet[3][k]; 
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den=fsmet[j][k]+rsmet[LUTBS[0][j]][k+1]+bmet[0][k]; 

} 

maxnum=max(num,num1); 

maxden=max(den,den1); 

//fprintf(fp,"\n 

num1=%f,den1=%f,num=%f,den=%f,naxnum=%f,maxden=%f",num1,den1,nu

m,den,maxnum,maxden); 

num1=maxnum; 

den1=maxden; 

} 

app[k]=maxnum-maxden; 

} 

//calculating external lr ratio 

for(k=0;k<8;k++) 

exlr[k]=app[k]-apri[k]; 

//deinterleaving/interleaving 

for(j=0;j<24;j+=3) 

{ 

printf("\n x1="); 

if(j%6==0) 

{ 

x1=2*inleav[j/6+1]; 

printf("%d",x1); 

} 

else 

{ 

for(k=1;k<=4;k++) 

{ 

if((j/3+1)==2*inleav[k]) 

{ 

x1=2*k-1; 
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break; 

} 

} 

printf("%d",x1); 

}//else 

apri[x1-1]=exlr[j/3]; 

}//end of j 

for(k=0;k<8;k++) 

rstemp1[k]=rsmet[k][8]; 

//Normalizing reverse state metric values for different number of iterations 

if(big==0) 

{ 

k=0; 

min=minimum(rsmet,k); 

fprintf(fp,"rsmin=%f",min); 

for(k=0;k<8;k++) 

rstemp3[k]=rsmet[k][0]-min; 

} 

if(big==1) 

{ 

k=0; 

min=minimum(rsmet,k); 

fprintf(fp,"rsmin=%f",min); 

for(k=0;k<8;k++) 

rstemp5[k]=rsmet[k][0]-min; 

} 

if(big==2) 

{ 

k=0; 

min=minimum(rsmet,k); 

fprintf(fp,"rsmin=%f",min); 
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for(k=0;k<8;k++) 

rstemp7[k]=rsmet[k][0]-min; 

} 

/*decoder2:All logics are same as that of decoder 1 except the the input sequence 

is 

the interleaved version of sequence which is sent to decoder 1 and the output is 

also 

deinterleaved before sent to decoder1*/ 

fseek(ifp,0,0); 

for(k=0;k<8;k++) 

rsmet[k][8]=rstemp2[k]; 

for(k=1;k<8;k++) 

fsmet[k][0]=infin; 

fsmet[0][0]=0.0; 

for(i=0;i<l;i++) 

{ 

for(j=0;j<24;j+=3) 

{ 

if((k=fscanf(ifp,"%lf %lf %lf",&ch,&ch1,&ch2))!=EOF) 

{ 

//fprintf(fp,"\n %lf %lf %lf",ch,ch1,ch2); 

//printf("\n %f %f %f",ch,ch1,ch2); 

yp[j/3]=ch2; 

if(j%6==0) 

{ 

x1=2*inleav[j/6+1]; 

printf("%d",x1); 

} 

else 

{ 

for(k=1;k<=4;k++) 
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{ 

if((j/3+1)==2*inleav[k]) 

{ 

x1=2*k-1; 

break; 

} 

} 

printf("%d",x1); 

}//else 

in[x1-1]=ch; 

} 

}// end of j loop 

 

for(j=0;j<8;j++) 

{ 

if(i!=l-1) 

{ 

bmet[0][j]=-in[j]-yp[j]; 

bmet[1][j]=-in[j]+yp[j]; 

bmet[2][j]=in[j]-yp[j]; 

bmet[3][j]=in[j]+yp[j]; 

} 

else 

{ 

bmet[0][j]=-in[j]-apri[j]-yp[j]; 

bmet[1][j]=-in[j]-apri[j]+yp[j]; 

bmet[2][j]=in[j]+apri[j]-yp[j]; 

bmet[3][j]=in[j]+apri[j]+yp[j]; 

} 

} 

/*fprintf(fp,"\n bmet"); 
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//printf("\n bmet"); 

for(j=0;j<8;j++) 

{ 

for(k=0;k<4;k++) 

{ 

fprintf(fp,"  %f",bmet[k][j]); 

//printf(" %f",bmet[k][j]); 

} 

//printf("\n"); 

fprintf(fp,"  \n"); 

}*/ 

for(k=1;k<=8;k++) 

{ 

for(j=0;j<8;j++) 

{ 

if(j%2==0) 

fsmet[j][k]=max(bmet[0][k-1]+fsmet[LUTFS[0][j]][k-1],bmet[3][k-

1]+fsmet[LUTFS[1][j]][k-1]); 

else 

fsmet[j][k]=max(bmet[1][k-1]+fsmet[LUTFS[0][j]][k-1],bmet[2][k-

1]+fsmet[LUTFS[1][j]][k-1]); 

} 

} 

/*fprintf(fp,"\n forward st metric is"); 

for(k=0;k<=8;k++) 

{ 

for(j=0;j<8;j++) 

fprintf(fp," %f",fsmet[j][k]); 

fprintf(fp,"  \n"); 

}*/ 

if(i==l-1) 
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break; 

min=minimum(fsmet,k-1); 

fprintf(fp,"min=%f",min); 

for(k=0;k<8;k++) 

fsmet[k][0]=fsmet[k][8]-min; 

}//end of i loop 

for(k=7;k>=0;k--) 

{ 

for(j=0;j<8;j++) 

{ 

if((j==0)||(j==1)||(j==4)||(j==5)) 

rsmet[j][k]=max(bmet[0][k]+rsmet[LUTBS[0][j]][k+1],bmet[3][k]+rsmet[LUTB

S[1][j]][k+1]); 

else 

rsmet[j][k]=max(bmet[1][k]+rsmet[LUTBS[0][j]][k+1],bmet[2][k]+rsmet[LUTB

S[1][j]][k+1]); 

} 

} 

/*fprintf(fp,"\n reverse st metric is"); 

for(k=8;k>=0;k--) 

{ 

for(j=0;j<8;j++) 

fprintf(fp,"  %f",rsmet[j][k]); 

fprintf(fp,"  \n"); 

}*/ 

//Calculating likelihood ratio for each decoded bit 

for(k=0;k<8;k++) 

{ 

num1=fsmet[0][k]+rsmet[4][k+1]+bmet[3][k]; 

den1=fsmet[0][k]+rsmet[0][k+1]+bmet[0][k]; 

for(j=1;j<8;j++) 
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{ 

if((j==2)||(j==3)||(j==6)||(j==7)) 

{ 

num=fsmet[j][k]+rsmet[LUTBS[1][j]][k+1]+bmet[3][k]; 

den=fsmet[j][k]+rsmet[LUTBS[0][j]][k+1]+bmet[0][k]; 

} 

else 

{ 

num=fsmet[j][k]+rsmet[LUTBS[1][j]][k+1]+bmet[2][k]; 

den=fsmet[j][k]+rsmet[LUTBS[0][j]][k+1]+bmet[1][k]; 

} 

maxnum=max(num,num1); 

maxden=max(den,den1); 

//fprintf(fp,"\n 

num1=%f,den1=%f,num=%f,den=%f,naxnum=%f,maxden=%f",num1,den1,nu

m,den,maxnum,maxden); 

num1=maxnum; 

den1=maxden; 

} 

app[k]=maxnum-maxden; 

//fprintf(fp,"\nlr=%f",app[k]); 

} 

for(k=0;k<8;k++) 

exlr[k]=app[k]-apri[k]; 

//Logic for hard decision 

//deinterleaving+interleaving 

for(j=0;j<24;j+=3) 

{ 

printf("\n x1="); 

if(j%6==0) 

{ 
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x1=2*inleav[j/6+1]; 

printf("%d",x1); 

} 

else 

{ 

for(k=1;k<=4;k++) 

{ 

if((j/3+1)==2*inleav[k]) 

{ 

x1=2*k-1; 

break; 

} 

} 

printf("%d",x1); 

}//else 

apri[x1-1]=exlr[j/3]; 

lr[x1-1]=app[j/3]; 

}//end of j 

for(k=0;k<8;k++) 

rsmet[k][8]=rstemp1[k]; 

if(big==0) 

{ 

k=0; 

min=minimum(rsmet,k); 

fprintf(fp,"rsmin=%f",min); 

for(k=0;k<8;k++) 

rstemp4[k]=rsmet[k][0]-min; 

} 

if(big==1) 

{ 

k=0; 
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min=minimum(rsmet,k); 

fprintf(fp,"rsmin=%f",min); 

 

for(k=0;k<8;k++) 

rstemp6[k]=rsmet[k][0]-min; 

} 

if(big==2) 

{ 

k=0; 

min=minimum(rsmet,k); 

fprintf(fp,"rsmin=%f",min); 

for(k=0;k<8;k++) 

rstemp8[k]=rsmet[k][0]-min; 

} 

}//end of big 

for(k=0;k<8;k++) 

{ 

if(lr[k]>0.0) 

decod[k]=1; 

else 

decod[k]=0; 

} 

//Displaying the decoded string with respective LLR values 

printf("decoded bits are:\n"); 

fprintf(fp,"decoded bits are:\n"); 

printf("Bit   LLR Value\n"); 

fprintf(fp,"Bit   LLR Value\n"); 

for(k=7;k>=0;k--) 

{ 

printf("%d   %f",decod[k],lr[k]); 

fprintf(fp,"%d  %f",decod[k],lr[k]); 
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putc(decod[k]+'0',ofp); 

printf("\n "); 

fprintf(fp,"\n"); 

} 

}//end of l loop 

// writing byte file in order into another file 

fclose(ifp); 

fclose(ofp); 

if((ifp=fopen("C:\\write4.txt","r"))==NULL) 

printf("\n ERROR:Input file could not be opened"); 

if((ofp=fopen("C:\\write5.txt","w"))==NULL) 

printf("\n ERROR:Output file could not be opened"); 

n=0; 

while((c=getc(ifp))!=EOF) 

n++; 

printf("\n count=%ld",n); 

for(i=n-1;i>=0;i--) 

{ 

fseek(ifp,i,0); 

if((c=getc(ifp))!=EOF) 

putc(c,ofp); 

} 

fclose(ifp); 

fclose(ofp); 

//converting binary file into alphanumeric file 

if((ifp=fopen("C:\\write5.txt","r"))==NULL) 

printf("\n ERROR:Input file could not be opened"); 

if((ofp=fopen("C:\\write6.txt","w"))==NULL) 

printf("\n ERROR:Output file could not be opened"); 

n=0; 

while((c=getc(ifp))!=EOF) 
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n++; 

printf("\n count=%d",n); 

for(i=0;i<n/8-1;i++) 

{ 

c1=0; 

for(j=0;j<8;j++) 

{ 

fseek(ifp,8*i+j,0); 

c=getc(ifp); 

c=c-'0'; 

c2=c; 

for(k=0;k<j;k++) 

c2*=c*2; 

c1+=c2; 

} 

printf("%c",c1); 

fseek(ofp,i,0); 

putc(c1,ofp); 

} 

fclose(ifp); 

fclose(ofp); 

} 

//function for calculating maximum value 

double max(double a,double b) 

{ 

double temp,sub; 

temp=(a>=b)?a:b; 

sub=(a>=b)?a-b:b-a; 

temp+=log(1+exp(-sub)); 

return temp; 

} 
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File-7 
//program to encode  input bit stream using Systematic Convolutional Encoding 

// and odd-even symmetrical interleaver with rate 1/3 

# include<stdio.h> 

# include<conio.h> 

void main() 

{ 

int a,c,ch,ch1,r1[3],r2[3],arr[8],inleav[5]; 

unsigned long i,j,k,n=0; 

FILE *ifp,*ofp; 

//r1[3]:shift register of0 CC1 to store three bits 

//r2[3]=shift register ogf CC2 to store three bits 

//a,c,ch,ch1,i,j.n: local variabls used for calculating other parameters 

//arr[]: aray to d 

//inleav[5]: array to conatin interleverpattern 

//*ifp: pointer to input file 

//*ofp: pointer to output file 

clrscr(); 

if((ifp=fopen("C:\\read.txt","r"))==NULL) 

printf("\nERROR:1st Input file could not be opened"); 

if((ofp=fopen("C:\\write.txt","w"))==NULL) 

printf("\nERROR:1st Output file could not be opened"); 

//converting alphabetick file into byte file 

while((c=getc(ifp))!=EOF) 

{ 

ch=c; 
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for(i=0;i<8;i++) 

{ 

a=ch%2; 

ch/=2; 

putc(a+'0',ofp); 

} 

} 

fclose(ifp); 

fclose(ofp); 

if((ifp=fopen("C:\\write.txt","r"))==NULL) 

printf("\n ERROR:2nd Input file could not be opened"); 

if((ofp=fopen("C:\\write1.txt","w"))==NULL) 

printf("\n ERROR: 2nd Output file could not be opened"); 

//counting no of bits in input file 

while((c=getc(ifp))!=EOF) 

n++; 

printf("\n count=%d",n); 

fseek(ifp,0,0); 

//assiging values to inetrleaver to simualte odd-even symmetric interleaver 

structure 

inleav[0]=0; 

inleav[1]=3; 

inleav[2]=1; 

inleav[3]=4; 

inleav[4]=2; 

for(i=0;i<3;i++) 

{ 

r1[i]=0; 

r2[i]=0; 

} 

//one bit of the 3 bit codeword is corresponding tranmitting bit 
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for(i=0;i<n;i++) 

{ 

if((c=getc(ifp))!=EOF) 

{ 

c=c-'0'; 

putc(c+'0',ofp); 

} 

} 

fseek(ifp,0L,SEEK_SET); 

//Logic for calculation of 2nd and 3rd bit of 3-bit codeword (parity bit) 

for(i=0;i<n;i++) 

{ 

if((c=getc(ifp))!=EOF) 

{ 

int temp; 

c=c-'0'; 

temp=r1[2]^r1[0]^c; 

ch=temp^r1[0]^r1[1]^r1[2]; 

putc(ch+'0',ofp); 

r1[2]=r1[1]; 

r1[1]=r1[0]; 

r1[0]=temp; 

} 

} 

fseek(ifp, 0L, SEEK_SET); 

for(i=0;i<n/8;i++) 

{ 

for(j=0;j<8;j++) 

{ 

if((c=getc(ifp))!=EOF) 

{ 
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int temp,x1; 

c=c-'0'; 

if(j%2==0) 

{ 

x1=2*inleav[j/2+1]; 

} 

else 

{ 

for(k=1;k<=4;k++) 

{ 

if((j+1)==2*inleav[k]) 

{ 

x1=2*k-1; 

break; 

} 

} 

} 

arr[x1-1]=c; 

} 

} 

for(j=0;j<8;j++) 

{ 

int temp=r2[2]^r2[0]^arr[j]; 

ch=temp^r2[0]^r2[1]^r2[2]; 

putc(ch+'0',ofp); 

r2[2]=r2[1]; 

r2[1]=r2[0]; 

r2[0]=temp; 

} 

} 

fclose(ifp); 
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fclose(ofp); 

if((ifp=fopen("C:\\write1.txt","r"))==NULL) 

printf("\n ERROR:3nd Input file could not be opened"); 

if((ofp=fopen("C:\\write2.txt","w"))==NULL) 

printf("\n ERROR: 3nd Output file could not be opened"); 

i=0; 

j=n; 

k=2*n; 

fseek(ifp,0L,0); 

//rearrranging bits in sequence as one data bits,one first parity bit and 

// one second parity bit and so on 

while(i<n) 

{ 

fseek(ifp,i,0); 

c=getc(ifp); 

putc(c,ofp); 

fseek(ifp,j,0); 

c=getc(ifp); 

putc(c,ofp); 

fseek(ifp,k,0); 

c=getc(ifp); 

putc(c,ofp); 

i+=1; 

j+=1; 

k+=1; 

} 

printf("i=%ld,j=%ld,k=%ld",i,j,k); 

for(i=0;i<24;i++) 

putc(0+'0',ofp); 

} 
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File-8 
//program to decode uncoded-noise corrupted bit stream(Turbo) 

# include<stdio.h> 

# include<conio.h> 

void main() 

{ 

int i,j,k,c,c1,c2,nt=11,nt1,nt2,nt3,rndi; 

unsigned long n=0; 

double ch,rndf; 

FILE *ifp,*ofp; 

//nt,nt1,nt2,nt3: variables used for generating AWGN Noise 

//*ifp: pointer to input file 

//*ofp: pointer to output file 

//i,j,k,c,c1,c2,n,ch: variables to store temporary values 

//rndi: random generated integer value 

//rndf: random generated float value 

clrscr(); 

printf("\n Enter the Random Noise Generator Coeff"); 

scanf("%d%d%d",&nt1,&nt2,&nt3); 

if((ifp=fopen("C:\\write.txt","r"))==NULL) 

printf("\n ERROR:2nd Input file could not be opened"); 

if((ofp=fopen("C:\\write7.txt","w"))==NULL) 

printf("\n ERROR: 2nd Output file could not be opened"); 

//Counting no of inputs bits 

while((c=getc(ifp))!=EOF) 

n++; 

//printf("\n count=%d",n); 

//Logic for adding noise 

for(i=0;i<n;i++) 

{ 
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fseek(ifp,i,0); 

if((c=getc(ifp))!=EOF) 

{ 

c=c-'0'; 

//printf("%d",c); 

//if(i%72==0) 

 

j=i%3; 

switch(j) 

{ 

case 0:nt=nt1; 

break; 

case 1:nt=nt2; 

break; 

case 2:nt=nt3; 

} 

if(c==0) 

c=-1; 

rndi=(rand()%nt); 

rndf=(float)rndi/10; 

if(rndi%2==0) 

ch=c+rndf; 

else 

ch=c-rndf; 

if(ch>0.0) 

putc(1+'0',ofp); 

if(ch<0.0) 

putc(0+'0',ofp); 

if(ch==0.0) 

putc(rand()%2+'0',ofp); 

} 
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} 

fclose(ifp); 

fclose(ofp); 

n=0; 

if((ifp=fopen("C:\\write7.txt","r"))==NULL) 

printf("\n ERROR:Input file could not be opened"); 

if((ofp=fopen("C:\\write8.txt","w"))==NULL) 

printf("\n ERROR:Output file could not be opened"); 

while((c=getc(ifp))!=EOF) 

n++; 

//printf("\n count=%d",n); 

//decoding noise corrupted bit stream 

for(i=0;i<n/8;i++) 

{ 

c1=0; 

for(j=0;j<8;j++) 

{ 

fseek(ifp,8*i+j,0); 

c=getc(ifp); 

c=c-'0'; 

c2=c; 

for(k=0;k<j;k++) 

c2*=c*2; 

c1+=c2; 

} 

putc(c1,ofp); 

} 

fclose(ifp); 

fclose(ofp); 

} 
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File-9 
//program to decode uncoded-noise corrupted bit stream(Trellis) 

# include<stdio.h> 

# include<conio.h> 

void main() 

{ 

int i,j,k,c,c1,c2,nt=11,nt1,nt2,rndi; 

unsigned long n=0; 

double ch,rndf; 

FILE *ifp,*ofp; 

clrscr(); 

//nt,nt1,nt2: variables used for generating AWGN Noise 

//*ifp: pointer to input file 

//*ofp: pointer to output file 

//i,j,k,c,c1,c2,n,ch: variables to store temporary values 

//rndi: random generated integer value 

//rndf: random generated float value 

printf("\n Enter the Random Noise Generator Coeff"); 

scanf("%d%d",&nt1,&nt2); 

if((ifp=fopen("C:\\write.txt","r"))==NULL) 

printf("\n ERROR:2nd Input file could not be opened"); 

if((ofp=fopen("C:\\write7.txt","w"))==NULL) 

printf("\n ERROR: 2nd Output file could not be opened"); 

//Counting no of inputs bits 

while((c=getc(ifp))!=EOF) 

n++; 

//printf("\n count=%d",n); 

//Logic for adding noise 

for(i=0;i<n;i++) 

{ 
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fseek(ifp,i,0); 

if((c=getc(ifp))!=EOF) 

{ 

c=c-'0'; 

//printf("%d",c); 

//if(i%72==0) 

 

j=i%2; 

switch(j) 

{ 

case 0:nt=nt1; 

break; 

case 1:nt=nt2; 

} 

if(c==0) 

c=-1; 

rndi=(rand()%nt); 

rndf=(float)rndi/10; 

if(rndi%2==0) 

ch=c+rndf; 

else 

ch=c-rndf; 

if(ch>0.0) 

putc(1+'0',ofp); 

if(ch<0.0) 

putc(0+'0',ofp); 

if(ch==0.0) 

putc(rand()%2+'0',ofp); 

} 

} 

fclose(ifp); 
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fclose(ofp); 

n=0; 

if((ifp=fopen("C:\\write7.txt","r"))==NULL) 

printf("\n ERROR:Input file could not be opened"); 

if((ofp=fopen("C:\\write8.txt","w"))==NULL) 

printf("\n ERROR:Output file could not be opened"); 

while((c=getc(ifp))!=EOF) 

n++; 

//printf("\n count=%d",n); 

//decoding noise corrupted bit stream 

for(i=0;i<n/8;i++) 

{ 

c1=0; 

for(j=0;j<8;j++) 

{ 

fseek(ifp,8*i+j,0); 

c=getc(ifp); 

c=c-'0'; 

c2=c; 

for(k=0;k<j;k++) 

c2*=c*2; 

c1+=c2; 

} 

putc(c1,ofp); 

} 

fclose(ifp); 

fclose(ofp); 

} 
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