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CHAPTER –II 

OPERATIONAL TRANSCONDUCTANCE AMPLIFIERS AND THEIR 

USES IN SIGNAL PROCESSING 

 

2.1 INTRODUCTION  

Operational transconductance amplifiers (OTA) have been attracting considerable attention in 

the literature in the context of various signal processing and signal generation applications. 

The main reason is the programmability of the transconductance gain by varying the bias 

current. Another factor responsible for its increasing popularity is the availability of current 

output instead of voltage output. Current output makes this active building block very 

attractive from the point of view of current mode circuits. The circuit of OTA being very 

simple and symmetrical is apt for integration. The major disadvantage being very limited 

linear range of the input differential voltage for commercially available bipolar OTA (CA 

3080 type). 

Many of the basic OTA based structures use only OTAs and capacitors and hence, are 

attractive for integration. Component count of these structures is often very low (e.g., second-

order bi-quadratic filters can be constructed with two OTAs and two capacitors) when 

compared to VCVS designs. Convenient internal or external voltage or current control of 

filter characteristics is attainable with these designs. They are attractive for frequency 

referenced (e.g., master/slave) applications.  

From a practical viewpoint, the high-frequency performance of discrete bipolar OTAs, such 

as the CA 3080, is quite good. The transconductance gain,𝑔𝑚 , can be varied over several 

decades by adjusting an external dc bias current, 𝐼𝐴𝐵𝐶 . The major limitation of existing OTAs 

is the restricted differential input voltage swing required to maintain linearity. For the CA 

3080, it is limited to about 30 mV p-p to maintain a reasonable degree of linearity. Although 

feedback structures in which the sensitivity of the filter parameters are reduced (as is the goal 

in op amp based filter design) will be discussed, major emphasis will be placed upon those 

structures in which the standard filter parameters of interest are directly proportional to 𝑔𝑚  of 

the OTA. Thus, the 𝑔𝑚  will be a design parameter much as are resistors and capacitors. Since 
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the transconductance gain of the OTA is assumed proportional to an external dc bias current, 

external control of the filter parameters via the bias current can be obtained. 

The present chapter is based on an excellent tutorial review
1
. In this review, starting from 

basic OTA model, the fundamental signal processing blocks have been presented. Some first 

and second order filter structures have also been reviewed.  

2.2 OTA MODEL 

The symbol used for the OTA is shown in Fig.2.1, along with the ideal small signal 

equivalent circuit. The transconductance gain, 𝑔𝑚 , is assumed proportional to 𝐼𝐴𝐵𝐶 . The 

proportionality constant h is dependent upon temperature, device geometry, and the process 

[2]. 

 

Fig. 2.1 OTA. (a) Symbol. (b) Equivalent circuit of ideal OTA. 

A linear dependence on bias current is typically obtained for bipolar OTAs and MOS 

configurations operating in weak inversion. MOS structures operating in the saturation region 

typically exhibit a quadratic dependence on 𝐼𝐴𝐵𝐶 . 

𝑔𝑚  = h 𝐼𝐴𝐵𝐶              (2.2.1) 

The output current is given by  

𝐼𝑜 = 𝑔𝑚  𝑉+ − 𝑉−            (2.2.2) 

                                                             

1 R.L.Geiger and E.Sánchez-Sinencio, "Active Filter Design Using Operational Transconductance Amplifiers: A 

Tutorial," IEEE Circuits and Devices Magazine, Vol. 1, pp.20-32, March 1985. 
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As shown in the model, the input and output impedances in the model assume ideal values of 

infinity. Current control of the transconductance gain can be directly obtained with control of 

𝐼𝐴𝐵𝐶 . Since techniques abound for creating a current proportional to a given voltage, voltage 

control of the OTA gain can also be attained through the 𝐼𝐴𝐵𝐶  input. Throughout this paper, 

when reference is made to either the current or voltage controllability of OTA based circuits 

it is assumed to be attained via control of 𝑔𝑚  by 𝐼𝐴𝐵𝐶 . 

2.3 BASIC OTA BUILDING BLOCKS 

Some of the basic OTA building blocks [6] are introduced in this section. A brief discussion 

about these circuits follows. 

Voltage amplifiers using OTAs are shown in Fig. 2.2, along with voltage gain and output 

impedance expressions. The basic inverting and non-inverting configurations of Figs. 2.2(a) 

and 2.2(b) have a voltage gain directly proportional to 𝑔𝑚 , which makes current (voltage) 

control of the gain via 𝐼𝐴𝐵𝐶  straightforward. Furthermore, observe that a differential amplifier 

can be easily obtained by using both input terminals of the OTA in Figs. 2.2(a) or 2.2(b). The 

major limitation of these circuits is the relatively high output impedance. 

A voltage buffer, such as used in Figs. 2.2(c) and 2.2(d), is often useful for reducing output 

impedance. Although the gain characteristics of these circuits are ideally identical, the 

performance of the two circuits is not the same. The performance differences are due to 

differences in the effects of parasitic in the circuits. Specifically, the parasitic output 

capacitance of the OTA in Fig. 2.2(c), along with instrumentation parasitic, parallel the 

resistor RL in discrete component structures, thus is causing a roll-off in the frequency 

response of the circuits. In the circuit of Fig. 2.2(d), the parasitic output capacitance of the 

OTA is connected across the null port of an op amp and thus has negligible effects when the 

op amp functions properly. Likewise, instrumentation parasitic will typically appear at the 

low impedance output of the op amp, and thus not have a major effect on the performance. 

As with conventional amplifier design using resistors and op amp's, the amplifier bandwidth 

of these structures warrants consideration. For the circuits of Figs. 2.2(c) and 2.2(d), the 

major factor limiting the bandwidth is generally the finite gain bandwidth product of the op 

amps. If the op amps are modelled by the popular single-pole roll-off model, A(s) = GB/s, 

and the OTAs are assumed ideal, it follows that the bandwidth of the circuits of Fig. 2.2(c) 

and Fig. 2.2(d) is GB, independent of the voltage gain of the amplifier. This can be contrasted 
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to the bandwidths of GB/K and GB/1 + K for the basic single op amp non-inverting and 

inverting amplifiers of gains K and - K, respectively. 

Note that the circuits of Figs. 2.2(a) and 2.2(b) differ only in the labelling of the “+” and “-” 

terminals. In all circuits presented in this paper, interchanging the “+” and “-” terminals of 

the OTA will result only in changing the sign of the 𝑔𝑚  coefficient in any equation derived 

for the original circuit. Henceforth, it will be the reader's responsibility to determine when 

such an interchange provides a useful circuit. 

The circuits of Figs. 2.2(e) and 2.2(f) are feedback structures. The circuit of Fig. 2.2(e) offers 

gains that can be continuously adjusted between positive and negative values with the 

parameter 𝑔𝑚 . By interchanging the + and - terminals of the OTA, very large gains can be 

obtained as 𝑔𝑚  𝑅1 approaches 1 (as Zo approaches infinity). Gain is nonlinearly related to 

𝑔𝑚 . Control range via gm is reduced in these structures when compared to the amplifiers of 

Figs. 2.2(a) and 2.2(b). If components are sized fitly, the gain of these structures can be made 

essentially independent of 𝑔𝑚  (as in the conventional op amp inverting and non-inverting 

configurations) and the output impedances can be made reasonably small. 
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Fig. 2.2  Voltage amplifiers. (a) Basic inverting. (b) Basic non-inverting. (c) Feedback amplifier. (d) 

Non-inverting feedback amplifier. (e) Buffered amplifier. (f) Buffered VCVC feedback. (g) All OTA 

amplifiers [6]. 

The amplifier of Fig. 2.2(g) is attractive since it contains no passive components. Gain 

adjustment can be attained with either 𝑔𝑚1or 𝑔𝑚2. The total adjustment range of the gain of 

this structure is double (in dB) that attainable with the single OTA structures considered in 

Figs. 2.2(a) and 2.2(b). Furthermore, if both OTAs are in the same chip, the variations with 

temperature of the 𝑔𝑚 ’s are cancelled. 

Several standard controlled impedance elements are shown in Fig. 2.3, along with the input 

impedance expression. These controlled impedances can be used in place of passive 

counterparts (when applicable) in active RC structures to attain voltage control of the filter 

characteristics or as building blocks in OTA structures. 

The circuit of Fig. 2.3(a) is a grounded Voltage Variable Resistor (VVR). The circuit of Fig. 

2.3(b) behaves as a floating VVR, provided 𝑔𝑚1and 𝑔𝑚2 are matched. If a mismatch occurs, 

the structure can be modelled with a floating VVR between terminals 1 and 2 of value 𝑔𝑚1, 

along with a voltage dependent current source of value (𝑔𝑚1 − 𝑔𝑚2) V1 driving node 2. 

The circuit of Fig. 2.3(c) acts as a scaled VVR. Higher impedances are possible than with the 

simple structure of Fig. 2.3(a), at the expense of the additional resistors. 
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A voltage variable impedance inverter is shown in Fig. 2.3(d). Note the doubling of the 

adjustment range of this circuit, as with the amplifier of Fig. 2.2(g). Of special interest is the 

case where this circuit is loaded with a capacitor. In this case, a synthetic inductor is 

obtained. The doubling of the adjustment range is particularly attractive for the synthetic 

inductor since cut-off frequencies in active filter structures generally involve inductor values 

raised to the 1/2 power. By making 𝑔𝑚1 = 𝑔𝑚2 and adjusting both simultaneously, first-order 

rather than quadratic control of cut-off frequencies is possible. 

A floating impedance inverter is shown in Fig. 2.3(e). Note that it is necessary to match 𝑔𝑚2 

and 𝑔𝑚3 for proper operation. The circuit of Fig. 2.3(f) serves as an impedance multiplier. 

That of Fig. 2.3(g) behaves as a super inductor and that of Fig. 2.3(h) as a FDNR. 

 

 

Fig. 2.3 Controlled impedance elements. (a) Single-ended voltage variable resistor (VVR). (b) 

Floating VVR. (c) Scaled VVR. (d) Voltage variable impedance inverter. (e) Voltage variable floating 

impedance. (f) Impedance multiplier. (g) Super inductor. (h) FDNR [6]. 
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2.4 FIRST-ORDER FILTER STRUCTURES 

A voltage variable integrator structure with a differential input is shown in Fig. 2.4(a). The 

integrator serves as the basic building block in many filter structures. Two different lossy 

integrators (first-order lowpass filters) are shown in Figs. 2.4(b) and 2.4(c).  

 

  Figure 2.4. Integrator structures. (a) Simple. (b) Lossy. (c) Adjustable. 

The circuit of Fig. 2.4(b) has a loss that is fixed by the RC product and a gain controllable by 

𝑔𝑚 . The circuit of Fig. 2.4(c) offers considerably more flexibility. The pole frequency can be 

adjusted by 𝑔𝑚2 (interchanging the input terminals of OTA 2 actually allows the pole to enter 

the right half plane), and the dc gain can be subsequently adjusted by 𝑔𝑚1. It should be noted 

that the structure of Fig. 2.4(c) contains no resistors and can be obtained from the circuit of 

Fig. 2.4(b) by replacing the resistor R with the controlled impedance of Fig. 2.3(a). Another 

lossy integrator without adjustable gain but with adjustable pole location and a very simple 

structure is shown in Fig. 2.5(a). 

When designing cascaded integrator-based filter structures, it may be the case that the input 

impedance to some stages is not infinite. If that be the case, a unity gain buffer would be 

required for coupling, since the output impedances of all integrators in Fig. 2.4 are nonzero. 

Note, however, that no buffer is needed for the cascade of any of the integrators of Fig. 2.4, 

since the input impedance to each circuit is ideally infinite. 
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Fig. 2.5 First-order voltage-controlled filters. (a) Low-pass, fixed dc gain pole adjustable. (b) Low-

pass fixed pole, adjustable dc gain. (c) High-pass, fixed high-frequency gain, adjustable pole. (d) 

Shelving equalizer, fixed high-frequency gain, fixed pole, adjustable zero. (e) Shelving equalizer, 

fixed high-frequency gain, fixed zero, adjustable pole. (f) Low-pass filter adjustable pole and zero, 

fixed ration. (g) Shelving equalizer, independently adjustable pole and zero. (h) Low-pass or high-

pass filter, adjustable zero and pole, fixed ratio or independent adjustment. (i) Phase shifter, adjustable 

with gm. 

First-order filters can be readily built using OTAs. Considerable flexibility in controlling 

those specific filter characteristics that are usually of interest is possible with these structures. 

Several first-order voltage-controlled filters are shown in Fig. 2.5, and a functional plot of the 

transfer characteristics as a function of the transconductance gains is shown in Fig. 2.6. 
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The 3dB cut-off frequency of the low-pass filter of Fig. 2.5(a) is given by the expression 

                                                                   𝑓3𝑑𝐵 =
𝑔𝑚

2𝜋𝐶
                                                       (2.4.1) 

Linear adjustment of 𝑓3𝑑𝐵  with gm is attainable with this circuit while maintaining a unity dc 

frequency gain. The structure of Fig. 2.5(b) has a fixed pole location and adjustable dc gain 

with the transconductance gain 𝑔𝑚 . If the resistor in this circuit is replaced with the 

controlled resistor of Fig. 2.3(a), the circuit would have independently adjustable gain and 

break frequency. The high-pass structure of Fig. 2.5(c) also has a 3dB cut-off frequency 

given by 

                                                                   𝑓3𝑑𝐵 =
𝑔𝑚

2𝜋𝐶
                                                       (2.4.2) 

It can be observed that the characteristic networks for the low-pass and high-pass structures 

of Figs. 2.5(a) and 2.5(c) are identical, and thus they have the same pole structures. They 

differ only in where the excitation is applied. 

The circuits of Figs. 2.5(d) and 2.5(e) act as shelving equalizers. The response of both circuits 

can be continuously changed from low-pass to all-pass to high-pass by adjusting gm as can 

be seen from Fig. 2.6. The basic difference in the two circuits is that the former has a fixed 

pole and adjustable zero, whereas the circuit of Fig. 2.5(e) has an adjustable pole and fixed 

zero. As for the circuit of Fig. 2.5(b), additional flexibility can be obtained if the grounded 

resistor in the circuit of Fig. 2.5(d) is replaced with the controlled resistor of Fig. 2.3(a). 

The circuit of Fig. 2.5(f) acts as a low-pass filter with high frequency gain determined by the 

𝐶1: 𝐶2 ratio. Both the pole and zero in this circuit are adjustable through the parameter 𝑔𝑚  but 

the ratio is held constant. This preserves the shape in the transfer characteristics and thus 

represents only a frequency shift in the response, as shown in Fig. 2.6(f). 

The circuit of Fig. 2.5(g) utilizes an additional OTA and offers considerable flexibility. If 

either 𝑔𝑚1or 𝑔𝑚2 fixed, the circuit behaves much like the shelving equalizers discussed 

above. If 𝑔𝑚1 and 𝑔𝑚2 are adjusted simultaneously, then a fixed pole-zero ratio and, hence, 

shape preserving response is possible. In this case, the circuit can be low-pass, all-pass, or 

high-pass, depending upon the 𝑔𝑚1: 𝑔𝑚2 ratio. If the “+” and “-” terminals of 𝑔𝑚1 are 
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interchanged and the transconductance gains are adjusted so that 𝑔𝑚1 = 𝑔𝑚2, the circuit 

behaves as a phase equalizer. 

 

 

Fig. 2.6 Transfer characteristics for first-order structures of Fig. 5. (a) Circuit of Fig. 5a. (b) Circuit of 

Fig. 5b. (c) Circuit of Fig. 5c. (d) Circuit of Fig. 5d. (e) Circuit of Fig. 5e. (f) Circuit of Fig. 5f. (g) 

Circuit of Fig. 5g. (h) Circuit of Fig. 5h. (i) Circuit of Fig. 5i. 

The circuit of Fig. 2.5(h) also preserves the shape of the transfer function, provided 𝑔𝑚1 and 

𝑔𝑚2 are adjusted in such a manner that their ratio remains constant. In this case, the shape of 

the response is determined by the 𝑔𝑚1: 𝑔𝑚2 and 𝐶1: 𝐶2 ratio. Depending upon these ratios, 

the response is either low-pass or high-pass in nature, as indicated in Fig. 2.6(h). 

If  𝑔𝑚2R = 1, the circuit of Fig. 2.5(i) behaves as a phase equalizer, 𝑔𝑚1 can be used to adjust 

the phase shift. For monolithic applications, the resistor R can be replaced with a third OTA, 

using the configuration of Fig. 2.3(a). 
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2.5 SECOND-ORDER STRUCTURES 

Second-order filter structures find widespread applications directly and in the design of 

higher-order filters. Although the emergence of practical voltage or current-controlled first-

order filters and amplifiers has been slow, even fewer techniques exist for the design of 

controlled second- and higher-order structures. Switched capacitor techniques have been 

successfully used to build voltage-controlled filter structures by building a voltage-controlled 

oscillator and using the output as the required clock for the switching of the capacitors. 

Although useful in some applications, these structures are not continuous time in nature, have 

limited dynamic range, and are limited to reasonably low-frequency applications. 

Concentration here will be on continuous-time voltage controlled structures. 

One common requirement in the design of voltage controlled filter structures is that the filter 

characteristics be adjusted in a manner that essentially results in frequency scaling. In all-pole 

applications, such as the low-pass Butterworth and Chebyschev case, as well as the band-pass 

and high-pass versions of these approximations, the frequency scaling is tantamount to 

moving all poles a prescribed distance in a constant-Q manner. Those familiar with active 

filter structures will recall that pole movement in second-order structures through the 

adjustment of a single component is always on a circular path (constant wo) or on a straight 

line (constant bandwidth) parallel to the imaginary axis in the s-plane. The challenges 

associated with constant-Q pole adjustment through the simultaneous tuning of two or more 

components should be obvious. 

A seemingly more difficult situation exists when considering the design of the popular 

elliptic filters. To maintain the elliptic characteristics as the cut-off frequencies changed, all 

poles and all zeros of the approximating function must be moved simultaneously and with the 

appropriate ratio in a constant-Q manner. 

A group of second-order voltage-controlled filter structures are discussed in this section. 

Circuits with constant-Q pole adjustment, circuits with constant bandwidth 𝜔o, adjustment, 

and circuits with independent pole and zero adjustment are presented. Some circuits with 

simultaneous constant-Q adjustment of both the poles and zeros are also presented along with 

a general bi-quadratic structure. These structures have immediate applications in voltage-

controlled Butterworth, Chebyschev, and Elliptic designs. 
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A simple second-order filter structure is shown in Fig. 2.7(a) [17], [19]. This structure is 

canonical in the sense that only four components are needed to obtain second-order transfer 

functions. The output voltage, Vo, is given by the expression 

                                               𝑉01 =
𝑆2𝐶1𝐶2𝑉𝑐+𝑆𝐶1𝑔𝑚2𝑉𝐵+𝑔𝑚1𝑔𝑚2𝑉𝐴

𝑆2𝐶1𝐶2+𝑆𝐶1𝑔𝑚2 +𝑔𝑚1𝑔𝑚2
                                    (2.5.1) 

The transfer function for the specific excitations at 𝑉𝐴 , 𝑉𝐵 , and 𝑉𝐶  are listed in the Table 2.1. 

Note that for 𝑔𝑚1 = 𝑔𝑚2 = 𝑔𝑚 , the low-pass, band-pass, high-pass, and notch versions of 

this circuit all behave as 𝜔𝑜  adjustable circuits with fixed pole Q's. The pole Q's are 

determined by the capacitor ratio, which can be accurately maintained in monolithic designs. 

It is interesting to note that the zeros of the notch circuit also move in a constant-Q (i.e. along 

the j𝜔 axis) manner with the poles, as 𝑔𝑚  is adjusted. 

Occasionally, it is desirable to have circuits in which 𝜔𝑜  and Q of the poles can be 

independently adjusted. Two circuits with these characteristics are shown in Fig. 2.7(b) [18], 

[19], [24] and Fig. 2.7(c) [18], [24]. The output voltages for these circuits are, respectively, 

                                               𝑉02 =
𝑆2𝐶1𝐶2𝑉𝑐+𝑆𝐶1𝑔𝑚2𝑉𝐵+𝑔𝑚1𝑔𝑚2𝑉𝐴

𝑆2𝐶1𝐶2 +𝑆𝐶1𝑔𝑚2𝑔𝑚3𝑅+𝑔𝑚1𝑔𝑚2
                                    (2.5.2) 

and   

                                               𝑉03 =
𝑆2𝐶1𝐶2𝑉𝑐+𝑆𝐶1𝑔𝑚2𝑉𝐵+𝑔𝑚1𝑔𝑚2𝑉𝐴

𝑆2𝐶1𝐶2+𝑆𝐶1𝑔𝑚3 +𝑔𝑚1𝑔𝑚2
                                    (2.5.3) 

The circuits of Figs. 2.7(b) and 2.7(c) can be also used to implement low-pass, band-pass, 

high-pass, and notch transfer functions through the proper selection of the inputs as for the 

circuit of Fig. 2.7(a). 

 

Fig. 2.7 Second-order filter structures [17],[19]. 



40 
 

In the circuit of Fig. 2.7(b), the expressions for 𝜔𝑜  and Q of the poles of the circuit are given 

by 

                                                           𝜔𝑜 =  
𝑔𝑚1𝑔𝑚2

𝐶2𝐶1
                                                        (2.5.4) 

and  

                                                           𝑄 =
1

𝑔𝑚3𝑅
 
𝐶2𝑔𝑚1

𝐶1𝑔𝑚2
                                                    (2.5.5) 

The poles can be moved in a constant-Q manner if 𝑔𝑚3 is fixed, and if 𝑔𝑚1 = 𝑔𝑚2 = 𝑔𝑚  is 

adjusted; whereas movement in a constant 𝜔𝑜  manner is attainable if 𝑔𝑚3 is adjusted when 

𝑔𝑚1and 𝑔𝑚2 remain constant. The independent adjustment of 𝜔𝑜 , and Q is apparent. 

For the circuit of Fig. 2.7(c), the expressions for 𝜔𝑜  and Q of the poles become 

                                                          𝜔𝑜 =  
𝑔𝑚1𝑔𝑚2

𝐶2𝐶1
                                                         (2.5.6) 

and  

                                                          𝑄 =   
𝐶2

𝐶1
 
 𝑔𝑚1𝑔𝑚2

𝑔𝑚3
                                                 (2.5.7) 

𝜔𝑜  can be adjusted linearly with 𝑔𝑚1 = 𝑔𝑚2 = 𝑔𝑚  and gm3 constant. Such movement is 

often termed constant bandwidth movement. If 𝑔𝑚1, 𝑔𝑚2, and 𝑔𝑚  are adjusted 

simultaneously, constant-Q pole movement is possible. Adjusting gm3 (for Q > 1/2) moves 

the poles along vertical lines parallel to the j𝜔 axis in the s-plane. 

The circuit of Fig. 2.7(d) has an output given by 

                                             𝑉04 =
𝑆2𝐶1𝐶2𝑉𝑐+𝑆𝐶1𝑔𝑚3𝑉𝐵+𝑔𝑚1𝑔𝑚2𝑉𝐴

𝑆2𝐶1𝐶2+𝑆𝐶1𝑔𝑚3 +𝑔𝑚1𝑔𝑚2
                                      (2.5.8) 

The wo and Q of the poles are, respectively, 

                                                         𝜔𝑜 =  
𝑔𝑚1𝑔𝑚2

𝐶2𝐶1
                                                          (2.5.9) 
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                                                        𝑄 =
1

𝑔𝑚3
 
𝐶2𝑔𝑚1𝑔2

𝐶1
                                                    (2.5.10) 

Although the transfer function is similar to that above, note that since the coefficient of the s  

term in the numerator equals that in the denominator, adjustment of the band-pass version of 

this circuit with 𝑔𝑚1 = 𝑔𝑚2 = 𝑔𝑚  will result in a constant bandwidth, constant gain response. 

For monolithic structures, it may prove useful to replace the resistor in Fig. 2.7(b) with the 

OTA structure of Fig. 2.3(a). Likewise, if the bandwidth adjustment with 𝑔𝑚3 is not needed, 

it may be desirable to replace the third OTA shown in Fig. 2.7(c) with a fixed resistor in some 

applications. 

 

  Circuit Type     Input Conditions            Transfer Function           If  𝑔𝑚1 = 𝑔𝑚2 = 𝑔𝑚  

                                                                                                                                          𝜔𝑜                              Q 

 

𝜔𝑜  Adjustable 

Low-pass 

 

𝑉1 = 𝑉𝐴 

𝑉𝐵  𝑎𝑛𝑑 𝑉𝐶  Grounded 

 

𝑔𝑚1𝑔𝑚2

𝑠2𝑐1𝑐2 + 𝑠𝑐1𝑔𝑚2 + 𝑔𝑚1𝑔𝑚2
 

 

𝑔𝑚

 𝐶1𝐶2

 

 

 

 
𝐶2

𝐶1
 

 

𝜔𝑜  Adjustable 

Band-pass 

 

𝑉1 = 𝑉𝐵  

𝑉𝐴  𝑎𝑛𝑑 𝑉𝐶  Grounded 

 

𝑠𝑐1𝑔𝑚2

𝑠2𝑐1𝑐2 + 𝑠𝑐1𝑔𝑚2 + 𝑔𝑚1𝑔𝑚2
 

 

𝑔𝑚

 𝐶1𝐶2

 

 

 

 
𝐶2

𝐶1
 

 

𝜔𝑜  Adjustable 

High-pass 

 

𝑉1 = 𝑉𝐶  

𝑉𝐵  𝑎𝑛𝑑 𝑉𝐴 Grounded 

 

𝑠2𝑐1𝑐2

𝑠2𝑐1𝑐2 + 𝑠𝑐1𝑔𝑚2 + 𝑔𝑚1𝑔𝑚2
 

 

𝑔𝑚

 𝐶1𝐶2

 

 

 

 
𝐶2

𝐶1
 

 

𝜔𝑜  Adjustable 

Notch 

 

𝑉1 = 𝑉𝐴 = 𝑉𝐶  

      𝑉𝐵   Grounded 

 

𝑠2𝑐1𝑐2 + 𝑔𝑚1𝑔𝑚2

𝑠2𝑐1𝑐2 + 𝑠𝑐1𝑔𝑚2 + 𝑔𝑚1𝑔𝑚2
 

 

𝑔𝑚

 𝐶1𝐶2

 

 

 

 
𝐶2

𝐶1
 

 

Table 2.1 Transfer functions for bi-quadratic structure of Fig. 2.7(a). 
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Phase equalizers are also possible with the structures shown in Fig. 2.7. For example, 

interchanging the “ + ” and “ - ” terminals of the first two OTAs in Fig. 2.7(c), setting 

𝑉𝐴 = 𝑉𝐵 = 𝑉𝐶  = 𝑉𝑖  ,and making 𝑔𝑚1 = 𝑔𝑚2 = 𝑔𝑚3 = 𝑔𝑚  results in a second-order 𝑔𝑚  

adjustable phase equalizer.  

The circuit of Fig. 2.8 has both poles and zeros that can be adjusted simultaneously in a 

constant-Q manner. The circuit is similar to those shown in Fig. 2.7(a) with the exception that 

the capacitor 𝐶2 in the previous circuits has been split to allow for adjusting the pole-zero 

ratios. The transfer function of the circuit is given by 

                                     
𝑉𝑜

𝑉𝑖
=  

𝐶2

𝐶2+𝐶3
  

𝑆2+
𝑔𝑚1

𝐶1𝐶2
 

𝑆2+𝑆
𝑔𝑚2

 𝐶2+𝐶3 
 +

𝑔𝑚1𝑔𝑚2
𝐶1 𝐶2+𝐶3 
 

                       (2.5.11)  

 

Fig. 2.8 Elliptic Filter structure. 

This circuit has applications in higher-order voltage controlled elliptic filters. For higher-

order structures obtained by cascading these second-order blocks, all 𝑔𝑚 's would be made 

equal and adjusted simultaneously. Buffering between stages using a standard unity gain 

buffer is required to prevent interstage loading. Modifications of the other circuits in Fig. 2.7 

to obtain wo and Q adjustable features is also possible. Although the ratio of the zero location 

to pole location can be controlled with the 𝐶2 𝐶3  ratio in discrete designs, this may pose 

some problems in monolithic structures. One convenient way to control the pole-zero ratio is 

to insert the voltage-controlled amplifier of Fig. 2.2(g) between the points x and x' in Fig. 2.8 

and use the transconductance gain of either of these additional OTAs as the control variable. 
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The final second-order structure considered here is the general biquad of Fig. 2.9. The output 

for this circuit is given by 

                                             𝑉0 =
𝑆2𝐶1𝐶2𝑉𝑐+𝑆𝐶1𝑔𝑚4𝑉𝐵+𝑔𝑚2𝑔𝑚5𝑉𝐴

𝑆2𝐶1𝐶2 +𝑆𝐶1𝑔𝑚3+𝑔𝑚1𝑔𝑚2
                                      (2.5.12) 

 

 

Fig. 2.9 General bi-quadratic structure. 

The potential for tuning the w. and Q for both the poles and zeros (when 𝑉𝐴 = 𝑉𝐵 = 𝑉𝐶  = 𝑉𝑖) 

to any desired value should be apparent. Although somewhat component intense, it can be 

argued that if there is to be capability for completely arbitrary location of a pair of poles and a 

pair of zeros via adjustment of the transconductance gain of the OTA, then at least 4 degrees 

of freedom and, hence, 4 OTAs are required. This circuit uses only one more than the 

minimum! The capability for various types of pole and/or zero movement through the 

simultaneous adjustment of two or more of the transconductance gains should also be 

apparent.  

Emphasis in this section has been placed entirely upon second-order structures in which the 

desired filter characteristics depend directly upon the transconductance gain of the OTA. 

Very simple structures in which the filter characteristics are adjustable through the parameter 

𝑔𝑚  resulted. As stated in the introduction, 𝑔𝑚  is readily controllable by a dc bias current over 

a wide range of values, thus making these circuits directly applicable to voltage controlled 

applications. Several of the more recent works on OTA applications [18]-[24] have followed 

this approach. Most of the earlier works [7]-[16] and the circuits presented in the 

manufacturer's application notes [3]-[5] concentrated upon topologies in which the filter 

characteristics are independent or only mildly dependent upon the transconductance gain. 

Most of these structures are very complicated, very component-intense, and require tuning 
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algorithms that are unwieldy. Alternatives to these earlier designs using conventional 

operational amplifiers have proven to be much better. 

 

 

Fig. 2.10 Signal conditioner for OTAs. 

 

2.6 PRACTICAL CONSIDERATIONS 

Although all circuits presented up to this point in this paper are practical with ideal 

operational transconductance amplifiers, existing discrete OTAs are far from ideal. As 

mentioned in the introduction, the major limiting factor with commercially available OTAs is 

the limited differential input voltage swing. Recent activity in the literature has concentrated 

upon designing OTAs with improved input characteristics [27]-[28]. Significant 

improvements in performance over what is currently available with discrete OTAs have been 

demonstrated. An alternative is to use voltage attenuators and buffers at the input of existing 

OTAS. This technique is often suggested in the manufacturer's application notes and is 

illustrated in Fig. 2.10. This technique can be used to obtain reasonable signal swings with all 

circuits discussed up to this point. Although such circuits are useful, a rather high price is 

paid for this modification. First, the circuit requires many more components. Second, the 

finite bandwidth of the op amps will limit the frequency response of the OTA structures. 

Finally, the attenuation of the input signal to the OTA causesa serious loss in dynamic range. 

From a topological point of view, some OTA based structures are inherently more susceptible 

to differential voltage limitations than others. This parallels the concern for op amp based 

active RC and switched-capacitor structures that the signal amplitudes at the output of 
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internal op amps assume acceptable values. These considerations become more serious for 

high Q and high dynamic range applications. 

 

Fig. 2.11 Macromodel of bias current port on bipolar OTA [27-28]. 

A macro model of the bias current (𝐼𝐴𝐵𝐶 ) input port of a typical bipolar OTA is shown in Fig. 

2.11. This actually forms part of an internal current mirror that is discussed later. Several 

schemes for controlling the current (𝐼𝐴𝐵𝐶 ) and, thus, the 𝑔𝑚  of the OTA by an external 

control voltage, Vc, are shown in Fig. 2.12.  

 

Fig. 2.12 Schemes for obtaining voltage control with the OTA. 

The first circuit is the simplest but is very sensitive to small changes of Vc as Vc approaches 

.6v + V-. In the second circuit, the control voltage is referenced to zero but the small Vc is 

sensitive to mismatches between the B-E voltage of the transistor and the forward diode 

voltage drop. In the circuit of Fig. 2.12(c), the control voltage is also referenced to ground 

and is not dependent upon the matching or cancellation of voltages across external forward 

biased pn junctions. The zener diode is used to maintain the common mode voltage at a 

reasonable level. The frequency response of the op amp is not of concern here since it is used 

only in the dc control path. It should be noted that the amplifier bias current is proportional to 

Vc for all schemes shown in Fig. 2.12. Since 𝐼𝐴𝐵𝐶  can typically be adjusted over several 

decades, all schemes will be very sensitive to small changes in Vc toward the low current end 
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of the 𝐼𝐴𝐵𝐶  range. Logarithmic amplifiers are often used to control 𝐼𝐴𝐵𝐶  with an external 

control voltage if the wide adjustment range of 𝐼𝐴𝐵𝐶  is to be effectively utilized.  

 

Fig. 2.13 Schemes for simultaneous gm adjustment. 

Many of the filter circuits discussed in the previous sections of this paper require the 

simultaneous adjustment of matched 𝑔𝑚 's. Several schemes for achieving this are shown in 

Fig. 2.13. In the first circuit, it is easy to adjust the 𝑔𝑚 's by trimming the resistors for a fixed 

𝑔𝑚 . The circuit is quite sensitive to the slight differences in the voltage 𝑉𝑑  of Fig. 2.11(a) for 

small values of 𝐼𝐴𝐵𝐶 . The circuit of Fig. 2.13(b) again has 𝑉𝐶  referenced to ground and is 

essentially independent of the matching of 𝑉𝑑  for the individual OTAs. The scheme of Fig. 

2.13(c) is useful if an external single package pnp current mirror with n outputs is available. 

A discrete component version of this mirror would not be practical. 

For integrated circuit applications, the amplifier bias currents of several OTAs are 

particularly easy to match and control. For monolithic applications, the simultaneous 

adjustment of the gain of a large number of OTAs with a single dc bias current can be easily 

attained by using a single input-multiple output current mirror such as is shown in Fig. 2.14. 

This structure actually replaces the bias current mirrors on each of the OTAS. The 

transconductance gains can be ratioed, if desired, by correspondingly ratioing the emitter 

areas (or width length ratio for MOS structures) in the outputs of the current mirror. 



47 
 

 

Fig. 2.14 Single input-multiple output bias current generator for monolithic applications. 

With conventional operational amplifiers, the slew rate, input impedance, output impedance, 

and maximum output current are essentially fixed at the design stage. For OTAS, it is 

generally the case that these parameters are either proportional or inversely proportional to 

𝐼𝐴𝐵𝐶 . Thus adjusting 𝑔𝑚  via 𝐼𝐴𝐵𝐶  causes all of these parasitic parameters to change 

accordingly. Although the user should be cognizant of the changes in these parameters, the 

problems they present are manageable. The output capacitance of an OTA does cause 

concern at low output currents and high frequencies. 

Much as in the design of conventional op amp based circuits, a dc bias current path must be 

provided for both input terminals of the OTA. Although the amplifier of Fig. 2.15 serves as 

an effective 𝑔𝑚  attenuator, which will prove useful in some applications, the circuit is useless 

since the required input bias current will cause an accumulation of charge on the capacitors 

and eventual saturation of the OTA. It may be mentioned here that more complicated circuits 

with the same problem are suggested in the literature [17].  

 

 

Fig. 2.15 gm attenuator [17]. 

 

Numerous nonlinear applications of OTA structures exist. Suffice it to say that since the 

amplifier bias current, 𝐼𝐴𝐵𝐶can be considered as a third signal input, simple multipliers, 
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modulators, and a host of other nonlinear circuits are possible. The reader is referred to the 

application notes for a discussion of some of the nonlinear applications. Some of the 

structures that use only OTAs and capacitors show promise for monolithic applications in 

MOS or bipolar processes. The circuits should offer high frequency continuous-time 

capabilities. Either external voltage-control or an internal reference circuit to compensate for 

process and temperature variations will be necessary to make these circuits practical in 

demanding applications.  

Finally, it should be noted that some of the filter structures presented earlier in this paper 

have a non-infinite input impedance, and that the output impedance is generally quite high. 

Cascading of such structures will require interstage buffer amplifiers, which will tend to 

degrade the bandwidth of the overall filter structures. Output buffers are also generally 

required to drive external loads. 

 

2.7 CONCLUSIONS 

In the present chapter, a detailed and comprehensive review of OTA based signal processing 

circuits has been presented. The characteristics of these circuits are adjusted with the 

externally accessible dc amplifier bias current. Most of these circuits utilize a very small 

number of components. Applications include amplifiers, controlled impedances, and filters. 

Higher-order continuous-time voltage-controlled filters such as the common Butterworth, 

Chebyschev, and Elliptic types can be obtained. In addition to the voltage control 

characteristics, the OTA based circuits show promise for high-frequency applications where 

conventional op amp based circuits become bandwidth limited. The major factor limiting the 

performance of OTA based filters using commercially available OTAs is the severely limited 

differential input voltage capability inherent with conventional differential amplifier input 

stages. Recent research results suggested significant improvements in the input characteristics 

of OTAs can be attained [27]-[28]. Several groups have utilised OTAs in continuous time 

monolithic filter structures [28-40]. With recent advancements in the semiconductor 

manufacturing technology and current mode signal processing OTAs have an important 

place. 
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