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CHAPTER -III 

HARMONIC OSCILLATORS REALISED WITH OTAs 

 

3.1 INTRODUCTION  

OTA-C oscillators offer many attractive features as compared to conventional op-amp based 

oscillators. They have now become increasingly important in view of their adaptability for 

implementing high frequency digitally programmable sinusoidal oscillators in CMOS 

technology [1]. 

The current interest towards searching for more and more efficient OTA-based sinusoidal 

oscillator circuits is motivated by the following possible advantages of OTA-based oscillators 

over conventional op-amp-based oscillators [2]:  

(a) Linear electronic tunability of oscillation frequency Since the transconductance  𝑔𝑚 , of an 

OTA is linearly controllable through an external amplifier bias current  𝐼𝐴𝐵𝐶  , i.e. 

                                                    𝑔𝑚 =
𝐼𝐴𝐵𝐶

2𝑉𝑇
                                                             (3.1.1) 

the oscillation frequency 𝑓𝑜  of OTA-based oscillators is normally given by an expression of the 

form 

                                                                 𝑓𝑜 =
𝑔𝑚

2𝜋𝐶
                                                               (3.1.2) 

and thus, providing 𝑓𝑜 ∝ 𝐼𝐴𝐵𝐶 ; 

(b) Relatively higher operating frequency range; and 

(c) Suitability for IC implementation: Since the internal circuit of an OTA may be designed 

with a very small number of resistors (or none at all), OTA oscillators are more suitable for IC 

implementation in any of the contemporary technologies used for fabricating analogue ICs 

(with bipolar OTAs in bipolar technology and with CMOS OTAs in MOS technology).  

In the present chapter a brief review of some of the important works done on OTA-C 

oscillators has been present. Some of these oscillator circuits have been realised in hardware 

and the corresponding results have been presented.  
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3.2 LINEARLY TUNABLE WIEN BRIDGE OSCILLATOR REALISED WITH  

OPERATIONAL TRANSCONDUCTANCE AMPLIFIERS [2] 

Senani and  Kumar  [2]  presented an OTA-C sinusoidal oscillator which has been evolved 

from the classic Wien bridge oscillator (WBO). This circuit provides linear control of 

oscillation  frequency   through  an  external  current signal. The circuit and its development 

methodology is described below. 

The derivation of the present circuit starts from the op-amp-based Wien bridge oscillator 

(WBO) of Fig. 3.1(a), for which the conditions of oscillation and frequency of oscillation are 

known to be 

              𝐾 ≥ 3           With       𝐶1 = 𝐶2 = 𝐶                𝑅1 = 𝑅2 = 𝑅 

                                                           𝑓𝑜 =
𝑔𝑚

2𝜋𝑅𝐶
                                                                   (3.2.1) 

 

A direct element-to-element OTA analogue is then obtained by simulating the grounded  

resistor 𝑅1, floating resistor 𝑅2, and the K-gain VCVS by appropriate OTA circuits. The 

resulting oscillator is shown in Fig.3.1 (c), and is characterised by 

                                                          

                                                                𝑔𝑚3𝑅𝑜 = 3  

                                       

                                                                  𝑓𝑜 =
𝑔𝑚

2𝜋𝐶
  

                           

                           With    𝐶1 = 𝐶2 = 𝐶          𝑔𝑚1 = 𝑔𝑚2 = 𝑔𝑚4 = 𝑔𝑚                                  (3.2.2) 

 

 

 

 

                                 (a)                                                        (b) 
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                  (c) 

Fig. 3.1 Derivation of new OTA-based oscillator circuit (a) Conventional Wien bridge oscillator (WBO) 

(b)  Final simplified OTA-based WBO (c) Direct analogue of WBO in terms of OTAs [2]. 

 

3.3 GENERATION, DESIGN AND TUNING OF OTA-C HIGH-FREQUENCY 

SINUSOIDAL OSCILLATORS [3] 

In [3]  Linaress-Barranco,  Rodriguez-Vazquez, Huertas and Sanchez-Sinencio have proposed 

a method described below generation, design and tuning of OTA-C high-frequency sinusoidal 

oscillators. Development of the circuit and its working is described below. 

3.3.1 General TACO topology  

The generation of TACOs is a particular example of the general circuit theoretical problem of 

synthesising a mathematical specification from a given reduced set of circuit components. In 

particular, the primitives for TACOS are capacitors and voltage controlled current sources 

(VCCSs), these latter components arising when modelling the OTA by circuit elements, as is 

shown in Fig. 3.2  for an ideal OTA model. Hence, the problem of synthesising a TACO 

reduces to that of approximately connecting such primitives to get a characteristic equation 

having a pair of complex roots on the imaginary axis and all the remaining roots on the left-half 

of the complex frequency plane.  

Fig. 3.3 shows the general topology for an N-node TACO. The current sources in this Figure 

are multiple input VCCS described by 
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                                                   𝑖𝑘 =  𝑔𝑘𝑗 𝑣𝑗 ,                       1 ≤ 𝐾 ≤ 𝑁𝑁
𝑗=1                        (3.3.1) 

where 𝑔𝑖𝑗  is an arbitrary real-valued number and 𝑣𝑗  is the voltage at the jth node. These multi-

inputs grounded current sources can be readily implemented by connecting several OTA 

outputs in parallel.  

 

Fig. 3.2  Symbol and ideal model for OTA [3] 

Nodal analysis allows us to write the following matrix equation for Fig. 3.3: 

                                                              𝐺 − 𝑠𝐶 𝑉𝑛 𝑠 = 0                                             (3.3.2) 

where  𝑉𝑛
𝑇 =  𝑣1, 𝑣2, 𝑣3, …… , 𝑣𝑁 , G is an N x N matrix containing the admittance description 

for the VCCSs and C is the N x N capacitance matrix for the network. 

For the circuit of Fig. 3.3 to generate oscillations, eqn. 3.3.2 must exhibit a solution different 

from the trivial one, Vn(s) = 0. This yields the following characteristic equation for the general 

topology: 

                                                                 𝐺 − 𝑠𝐶 = 0                                                      (3.3.3) 

In the most general case, an Nth-order equation in the   complex frequency s results after 

calculating the matrix determinant in eqn. 3.3.3. 

  

Fig. 3.3 General topology for generation of TACOS [3] 
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However, the order of the characteristic equation can be controlled by eliminating some of the 

current sources. As a matter of fact, matrix analysis allows us to conclude that the maximum 

order of the characteristic equation for a given topology coincides with the number of nonzero-

valued current sources in Fig. 3.3.  

The corresponding general expression for the characteristic equation of a second order 

oscillator is given by  

                                                             𝑠2 − 𝑏𝑠 + 𝛺𝑜
2 = 0                                                (3.3.4) 

Ideally, for oscillation b = 0. However, in practical oscillators and due to the influence of 

parasitics, the poles are displaced from their nominal positions at 𝑠𝑝 = ±𝑗𝛺𝑜  to either the right-

hand or the left-hand side of the complex frequency plane. For this reason, the oscillator must 

be designed to have its poles initially located inside the right-half complex frequency plane to 

assure a self starting operation, i.e. b ≥ 𝜖, where E is a small positive number. Besides, 

nonlinearities have to be considered to explain the existence of stable oscillations [3]. 

In practical structures, b and 𝛺𝑜
2: in eqn. 3.3.4 are given as functions of the OTA 

transconductance gains and capacitor values. The basic TACO design goal is to achieve a 

separate control of these parameters with a minimum component count. For second-order 

oscillators, which need only two current sources in Fig. 3.3, several cases can be distinguished 

depending on the number of nodes in the circuit.  

3.3.2 Two-node TACO topology [3] 

Fig. 3.4  shows the conceptual circuit diagram for a two node TACO topology along with the 

expression for the VCCSs. 

 

(a) 
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(b) 

Fig. 3.4 (a) General topology for the generation of second-order OTA-C oscillators  

(b) Conceptual circuit diagram for two-nodes TACO [3]. 

In this circuit, the Characteristic equation can be expressed as 

   𝐶𝑒𝑞
2 𝑠2 − 𝑠 𝑔11 𝐶2 + 𝐶3 + 𝑔22 𝐶1 + 𝐶3 +  𝑔12 + 𝑔21 𝐶3 + 𝑔11𝑔22 − 𝑔12𝑔21 = 0  (3.3.5a) 

where we define 

                                              𝐶𝑒𝑞
2 = 𝐶1𝐶2 + 𝐶1𝐶3 + 𝐶2𝐶3                                                  (3.3.5b) 

(a) Two degrees of freedom:  

Let us make  𝑔11 = 𝑔22  = 0 in eqn. 3.3.5. The following condition must apply for the 

characteristic equation to be appropriate for the generation of self starting sinusoidal oscillation 

(𝛺𝑜
2 > 0, b > 0): 

                          𝑠𝑔𝑛 𝑔12 ≠ 𝑠𝑔𝑛 𝑔21 ;         𝑔12 + 𝑔21 > 0                                 (3.3.6) 

Consider  𝑔12 = 𝑔𝑚1  > 0,   𝑔21 = −𝑔𝑚2 < 0. Fig. 3.3.7 shows the corresponding TACO 

structure. Henceforth, we will refer to this structure as 2-OTA-3C. The characteristic equation 

for the 2-OTA-3C-TACO becomes 

                                       𝑠2 − 𝑠
𝐶3

𝐶𝑒𝑞
2
 𝑔𝑚1 − 𝑔𝑚2 +

𝑔𝑚 1𝑔𝑚 2

𝐶𝑒𝑞
2 = 0                                          (3.3.7) 

Parameter b depends on the difference between both transconductance gains whereas 

parameter 𝛺𝑜
2 depends on their product. Both design parameters can be trimmed by 

appropriately setting 𝑔𝑚1 and 𝑔𝑚2. In this sense, we say that the circuit of Fig. 3.5 exlubits two 

degrees of freedom. 
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Fig. 3.5 2-OTA-3C  oscillator structure[3] 

(b) Three degrees of freedom:  

The circuit of Fig. 3.3.7 is the simplest TACO that can be obtained by using an ideal OTA 

model. However, it exhibits a limitation in the interdependence between both design 

parameters b and  𝛺𝑜
2. Having independent control of these parameters would allow us to adjust 

the frequency of operation without affecting the oscillation condition, which is an appealing 

feature for VCO operation. Additional OTAs are required to achieve this. From eqn. 3.3.5 it 

can be seen that the simplest possibility is to make 𝑔11 = 𝑔𝑚3 > 0, 𝑔22 =  0 and 𝐶3 = 0, 

thereby resulting in the TACO structure of Fig. 3.6, henceforth called 3-OTA-2C. The 

characteristic equation for Fig. 3.6 is given by 

                                       𝑠2 − 𝑠
𝑔𝑚 3

𝐶1
+

𝑔𝑚 1𝑔𝑚 2

𝐶1𝐶2
= 0                                                   (3.3.8) 

 

Fig 3.6  3-OTA-2C TAC oscillator structure [3] 

 

It may be noted  that parameter b is a linear function of the transconductance gain  𝑔𝑚3, while 

being independent of 𝑔𝑚1 and 𝑔𝑚2 . Thus, separate control of b and  𝛺𝑜
2: is achieved. 

 

(c) Four degrees of freedom [3]:  

There is a limitation of Fig. 3.6 in that b is proportional to 𝑔𝑚3 and cannot be controlled by any 

other parameter. Because in practical designs b has to be made small enough to reduce 
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distortion, very small values of 𝑔𝑚3 are required, which may cause the different OTAs in this 

TACO to work under very different bias conditions and voltage swings.  

This problem is overcome by the structure shown in Fig. 3.7 (a), called 4-OTA-2C. Here we 

obtain 

                                            𝑏 =
𝑔𝑚 3

𝐶1
−

𝑔𝑚 4

𝐶2
;            𝛺𝑜

2 =
𝑔𝑚 1𝑔𝑚 2−𝑔𝑚 3𝑔𝑚 4

𝐶1𝐶2
                          (3.3.9a) 

where the possibility of independently adjusting b and  𝛺𝑜
2: can be observed. 

 
 

Fig. 3.7 TACO structures (a) 4-OTA-2C TACO structure (b) Alternative 4-OTA-2C TACO structure 

[3] 

However, there is still a coupling between 𝛺𝑜
2: and b through  𝑔𝑚3 ,𝑔𝑚4. This can be avoided 

by connecting 𝑔𝑚4 to the same node as 𝑔𝑚3 as shown in Fig. 3.7(b). In this case we get 

                                            𝑏 =
𝑔𝑚 3

𝐶1
−

𝑔𝑚 4

𝐶1
;            𝛺𝑜

2 =
𝑔𝑚 1𝑔𝑚 2

𝐶1𝐶2
                                       (3.3.9b) 

3.3.3 More than two node TACOS [3] 

A lot of alternatives arise when trying to obtain new TACO structures from the general 

topology of Fig. 3.3. Our main purpose here is only reporting a reduced set of structures that 

can be practical. Consider, for this purpose, the four-node TACO of Fig. 3.8 (4-OTA-4C), 

Which yields a second-order characteristic equation is given  

𝑏 =
𝑔𝑚3

𝐶3
−

𝑔𝑚4

𝐶4
; 

                    𝛺𝑜
2 =  

𝑔𝑚 1𝑔𝑚 2

𝐶1𝐶2
−

𝑔𝑚 3𝑔𝑚 4

 𝐶1+𝐶3  𝐶2+𝐶4 
 ×  

 𝐶1 +𝐶3  𝐶2+𝐶4 

𝐶3𝐶4
                             (3.3.10) 
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Fig. 3.8 4-OTA-4C TACO structure [3] 

A difference between this new structure and both the 4-OTA-2C and quadrature can be 

observed in the way of controlling the design parameters via capacitor values. Here we can 

separately adjust both b and 𝛺𝑜
2 by using the capacitors 𝐶1, 𝐶2, 𝐶3 and𝐶4. Specifically, note that 

decreasing the values of 𝐶1 , and 𝐶2,  results in an increased value of 𝛺𝑜
2: without affecting the 

value of b. It may be an appealing feature for low distortion high-frequency operation. Besides, 

in monolithic implementation, choosing (𝐶3 ,𝐶4) > (𝐶1, 𝐶2) means that the parasitic capacitor at 

the bottom plates of both 𝐶1 and 𝐶2 are negligible as compared to 𝐶3 , 𝐶4 .  

 

TABLE 3.1 

Ideal Expression of bc and 𝛺0
2 for Different TACO Structure 

 𝑔
𝑚1

−𝑔
𝑚2

 𝐶3 𝑏𝑐  

 

2-OTA-3C 
𝑔

𝑚1
𝑔

𝑚2

 𝐶1 + 𝐶3  𝐶2 + 𝐶3 − 𝐶3
2 

 

            𝛺0𝑐
2

 

 𝑔
𝑚3

𝐶2 −𝑔
𝑚4

𝐶1  𝑏𝑐  

 

4-OTA-2C 
𝑔

𝑚1
𝑔

𝑚2
−𝑔

𝑚3
𝑔

𝑚4

𝐶1𝐶2
 

 

            𝛺0𝑐
2

 

 𝑔
𝑚3

−𝑔
𝑚4

 𝐶2 𝑏𝑐  

 

Quadrature 
𝑔

𝑚1
𝑔

𝑚2

𝐶1𝐶2
 

           

            𝛺0𝑐
2

 

 𝑔
3
− 𝑔

4
 

𝐶1𝐶2𝐶3

 𝐶1 + 𝐶3  𝐶2 + 𝐶3 
 

 

            𝑏𝑐 
 

 

 

4-OTA-4C 𝑔
𝑚1

𝑔
𝑚2

 1 +
𝐶1
𝐶3

  1 +
𝐶2
𝐶3

 − 𝑔
𝑚3

𝑔
𝑚4

𝐶1𝐶2

𝐶3
2

𝐶1𝐶2
 

 

            𝛺0𝑐
2
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3.4 GENERATION OF NEW OTA-C OSCILLATOR STRUCTURES USING                         

NETWORK TRANSPOSITION [4] 

A simple but very useful approach based on network transposition principle has been presented 

by Swamy, Raut and Tang in [4] and is described below to derive new CMOS sinusoidal 

oscillators using operational transconductance amplifiers and capacitors (OTA-C). The 

principle of mirroring to convert a three-terminal two-port network to a four-terminal fully 

differential network is utilized to generate fully differential OTA-C oscillator structures. The 

theoretical work is verified by using discrete resistors, capacitors and OTA devices. 

3.4.1 A brief review of network transposition 

It is known that given a linear network N, its transposed network 𝑁𝑇 can be directly obtained 

by simply replacing the nonreciprocal elements by their corresponding transposes and leaving 

the reciprocal elements unchanged. In such a case, the voltage transfer function (VTF) of N in 

the forward direction is the same as the current transfer function (CTF) of 𝑁𝑇 in the reverse 

direction and vice versa . In terms of practical application, using network transposition a 

current mode OTA-C filter structure can be obtained in a straightforward manner from a 

voltage mode OTA-C filter by simply interchanging the input and output terminals of each 

OTA and reversing the input and output ports of the filter . It is also known that the original 

and the transposed network would have identical transfer functions and sensitivities with 

respect to the corresponding parameters. 

3.4.2 Transposition and  OTA-C oscillators [4] 

Let N and 𝑁𝑇 be two second-order three-terminal active networks as shown in Fig. 3.9 with 

transfer functions is 

                              𝑉𝑜 𝑉𝑖  =  𝐼𝑜 𝐼𝑖  = 𝑎  𝑠2 − 𝑑𝑠 + 𝑒  𝑠2 − 𝑏𝑠 + 𝑐                              (3.4.1) 

The characteristic equation (CE) of N is the same as that of 𝑁𝑇,  

                                                            𝑠2 − 𝑏𝑠 + 𝑐 = 0                                                       (3.4.2)      

For network N, if 𝑉𝑖  =O and the voltage source 𝑉𝑖  is replaced, by its zero internal impedance 

leaving the output terminals open, N assumes the basic structure of an oscillator (say, oscillator 

A) as shown in Fig. 3.10(a). Similarly, for the network 𝑁𝑇 if 𝐼𝑖=O and the current source 𝐼𝑖 ,is 
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replaced by its infinite internal impedance, 𝑁𝑇 assumes the basic structure of the transposed 

oscillator (say oscillator B) as shown in Fig. 3.10(b). The CE in either of the cases is the same 

and is given by (1). Thus, another oscillator structure B can  be derived from the original 

oscillator by network transposition. To ensure that oscillation exists, be stable and unique, the 

condition of oscillation b=O should be satisfied and c that determines the frequency of 

oscillation must be greater than 0. The original oscillator A and the transposed one, oscillator 

B, have the same CE as well as the same condition and frequency of oscillation. Also, the 

various sensitivities with respect to the corresponding parameters are identical. Thus, the two 

oscillators are expected to have similar performances.     

3.4.3 Single output oscillator structures [4] 

Several OTA-C oscillator architectures employing single output OTAs and capacitors have 

been proposed in the past. Based on these architectures, new transposed OTA-C oscillator 

architectures can be obtained by the application of network transposition. For example, 

consider the OTA-C oscillator  shown in Fig. 3.11(a) . At first, it is treated as a VM filter, 

whose VTF  𝑉𝑜 𝑉𝑖   is given by  

                                      𝑠2𝐶1𝐶2  𝑠2𝐶1𝐶2 − 𝑠 𝑔𝑚1𝐶2 − 𝑔𝑚2𝐶1 + 𝑔𝑚1𝑔𝑚2                     (3.4.3) 

By applying network transposition, we can derive the corresponding CM filter, as shown in 

Fig. 3.11(b) with its CTF  𝐼𝑜 𝐼𝑖   given by  

                                      𝑠2𝐶1𝐶2  𝑠2𝐶1𝐶2 − 𝑠 𝑔𝑚1𝐶2 − 𝑔𝑚2𝐶1 + 𝑔𝑚1𝑔𝑚2                     (3.4.4) 

 As expected, both the filters have the same CE, namely,  

                                           𝑠2𝐶1𝐶2 − 𝑠 𝑔𝑚1𝐶2 − 𝑔𝑚2𝐶1 + 𝑔𝑚1𝑔𝑚2 = 0                          (3.4.5) 

 Now if 𝑉𝑖=O for the VM filter and 𝐼𝑖=O for the CM filter then both the networks function as 

oscillators as long as the condition of oscillation is satisfied: b=O, that is  𝑔𝑚1𝐶2 = 𝑔𝑚2𝐶1. 

also the frequency of oscillation for either of the oscillators is given by  𝑔𝑚1𝑔𝑚2 𝐶1𝐶2  
1

2  .  

3.4.4 Fully Differential Oscillator Structure [4] 

Differential structures are widely used in OTA-C based designs because of improved common-

mode rejection ratio, elimination of even-order harmonic distortion components, reduction of 
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the effects of power supply noise and increase in the output swing. Differential structures can 

be obtained from single-ended structures using the principle of mirroring. As an example, the 

differential oscillator configuration obtained from table s.no. 1 by using the principle of 

“mirroring” is shown in Fig. 12.  

 

Fig. 3.9 Second-order three-terminal active networks [4] 

   

     (a)                                (b) 

Fig. 3.10 (a) Oscillator A  (b) Oscillator B [4] 

                         

                                         (a)                                                         (b) 

Fig. 3.11 (a) Oscillator structure (b) Its transpose same as the (a) [4] 

 

Fig. 3.12 Differential OTA-C oscillator [4] 
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3.5 NEW ELECTRONICALLY TUNABLE OTA-C SINUSOIDAL OSCILLATOR [5] 

A new transconductance-amplifier-capacitor sinusoidal oscillator configuration was introduced 

in [5]  by Senani which requires only three OTAs  to facilitate generation of linearly tunable 

(through an external current or voltage) variable frequency oscillations. The circuit and its 

operation is described below. 

 

Fig. 3.13 TAC sinusoidal oscillator [5] 

The circuit is shown in Fig. 3.13. By routine analysis, the condition of oscillation is found to be  

                                        𝑔𝑚3 − 𝑔𝑚2 = 0     with      𝐶1 = 𝐶2 = 𝐶                                     (3.5.1) 

Where as the frequency of oscillation is given by 

                                                         𝑓𝑜 =
1

2𝜋𝐶
  𝑔𝑚1𝑔𝑚2                                                    (3.5.2) 

If the transconductances of the three OTAs are varied simultaneously through a single external 

current 𝐼𝐵 ,  then 

                                                    𝑔𝑚1 = 𝑔𝑚2 = 𝑔𝑚3 = 𝑔𝑚                                                  (3.5.3) 

and consequently, eqn. 3.5.2 reduces to 

                                                                  𝑓𝑜 =
𝑔𝑚

2𝜋𝐶
                                                              (3.5.4) 

Since 

                                                                 𝑔𝑚𝑖 =
𝐼𝐵𝑖

2𝑉𝑇
       i=1-3                                                   

eqn. 3.5.4 becomes 



66 

 

                                                                𝑓𝑜 =
𝐼𝐵

4𝜋𝐶𝑉𝑇
                                                             (3.5.5) 

Thus, fo is linearly controllable through an external current signal  𝐼𝐵 , without disturbing the 

condition of oscillation  which always remains satisfied in view of eqn. 3.5.3. 

3.6 DIGITALLY PROGRAMMABLE ACTIVE-C OTA-BASED OSCILLATOR [6] 

In [6] Abuelma’atti and Almaskati have presented a novel active-C OTA-based oscillator 

circuit. The circuit enjoys noninteractive electronic tunability, uses the minimum number of 

active and passive components, and enjoys low sensitivity characteristics. The frequency of 

oscillation can be digitally controlled and the circuit can he easily interfaced with mini-

microcomputer- or microprocessor-based systems.The circuit and its working is described in 

the following. 

3.6.1 Oscillator circuit 

Consider the circuit shown in Fig. 3.14. Assuming ideal OTA's. routine analysis yields the 

characteristic equation of the circuit given by 

                                  𝑆2𝐶1𝐶3 + 𝑆  𝐺2 − 𝑔2  𝐶1 + 𝐶3  + 𝑔1 𝑔2 − 𝐺2 = 0                     (3.6.1) 

where 𝐺2 represents the input resistance of the OTA,. By equating the real and imaginary parts 

of (1) to zero, the frequency of oscillation and the condition of oscillation will be given by 

                                                            𝜔𝑜 =  
𝑔1 𝑔2−𝐺2 

𝐶1𝐶3
                                                       (3.6.2) 

And                                                            𝑔2 = 𝐺2                                                              (3.6.3) 

 

Fig 3.14. Oscillator circuit Proposed in [6]. 
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From (3.6.2), (3.6.3) it is obvious that the frequency of oscillation can be changed by adjusting 

gl without affecting the condition of oscillation, i.e., the circuit enjoys noninteractive electronic 

tunability. Moreover, since the frequency of oscillation is a function of 𝑔1 which in turn is a 

function of the dc-bias current 𝐼𝐵1, then by obtaining I,, from the output of a digital-to-analog 

converter (DAC), the realization of a digitally-programmable electronically-tunable oscillator 

is feasible.  

3.7 SYSTEMATIC DERIVATION OF ALL POSSIBLE CANONIC OTA-C 

SINUSOIDAL OSCILLATORS [7] 

In [7]  Bhaskar, Tripathi, and Senani, have presented a systematic derivation of all possible 

canonic OTA-C sinusoidal oscillators. The method is presented  below. 

There are only five possibilities in which two capacitors can be embedded in an all OTA 

network N (denoted as Na - Ne in fig.3.15).  

 

 

 

 

Fig 3.15  Five possible structures for the synthesis of canonic OTA-C sinusoidal oscillators [7]. 

The general form of the characteristic equation (CE) of all the oscillators, based on any of these 

five structures, would be of the form: 
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                                                 𝑠2 + 𝑏1𝑠 + 𝑏0 = 0                                                           (3.7.1) 

It is easy to see that the frequency of oscillation 𝑓0 given by 𝑓0 =  𝑏0 
1

2  can have correct 

dimensions by being dependent on only two of the transconductances of the OTAs contained in 

the networks  Na - Ne, thus, leading to the expression for 𝑓0  of the type 

 

                𝑓0 =
1

2𝜋𝐶
 𝑔1𝑔2 

1
2       (3.7.2) 

 

(Assuming for simplicity C1=C2=C). 

To make the oscillator self-starting, the roots of CE must be movable in the right half of the s-

plane (for building up the oscillations) and on the ±jω axis (for facilitating sustained 

oscillations). This, in turn, means that the coefficient b1 in the CE should contain a difference 

of two transconductances in either of the two possible forms: 

 

𝑏1 = ± 𝑔1 − 𝑔3 𝐶 or  ± 𝑔2 − 𝑔3 𝐶     (3.7.3) 

 

𝑏1 = ± 𝑔3 − 𝑔4 𝐶      (3.7.4) 

 

It is to be noted that in both of these cases 𝑓0  can be independently controlled without affecting 

the condition of oscillation (CO). Also, the oscillators having characterizations (3.7.2) and 

(3.7.4) would require at least four OTAs whereas those characterized by (3.7.2) and (3.7.3) 

should be realizable with only three OTAs. Therefore, the minimum number of OTAs, for a 

canonic realization of an oscillator with non-interacting control of the FO, is three. Hence, in 

the formulation that follows we will be focusing on the realizations requiring only three OTAs 

and two capacitors. 

 

3.7.1 Generation of canonic OTA-C sinusoidal oscillators 

If the networks Na-Nd are characterized by the short circuit admittance parameters, the CE for 

these cases turns out to be of the form (1) from where the CO and FO are found to be as 

follows.  
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Case (a) 

 

  𝑌11 −
 𝑌11 +𝑌12 +𝑌13  𝑌11 +𝑌21 +𝑌31 

𝑌1
  +    𝑌33 −

 𝑌13 +𝑌23 +𝑌33  𝑌31 +𝑌32 +𝑌33 

𝑌1
  ≤ 0  

     (3.7.5)  

𝑓0 =
1

2𝜋𝐶
 
𝑑𝑒𝑡  𝑌𝑎  

𝑌1
 

1
2 

         (3.7.6) 

Where 

 

   𝑑𝑒𝑡 𝑌𝑎  = 𝑌11 𝑌22𝑌33 − 𝑌23𝑌32 − 𝑌12 𝑌21𝑌33 − 𝑌23𝑌31 + 𝑌13 𝑌21𝑌32 − 𝑌22𝑌31           (3.7.7) 

 

𝑌1 = 𝑌11 + 𝑌12 + 𝑌13 + 𝑌21 + 𝑌22 + 𝑌23 + 𝑌31 + 𝑌32 + 𝑌33    (3.7.8) 

 

 

Case (b) 

 

  𝑌11 −
 𝑌11 +𝑌31  𝑌11 +𝑌13 

𝑌2
  +    𝑌22 −

 𝑌12 +𝑌32   𝑌21+𝑌23  

𝑌2
  ≤ 0     (3.7.9)  

𝑓0 =
1

2𝜋𝐶
 
𝑑𝑒𝑡  𝑌𝑏  

𝑌2
 

1
2 

         (3.7.10) 

 

Where  

𝑑𝑒𝑡 𝑌𝑏 = 𝑑𝑒𝑡 𝑌𝑎        (3.7.11) 

 

𝑌2 = (𝑌11 + 𝑌13 + 𝑌31 + 𝑌33)     (3.7.12) 

 

Case (c) 

 2𝑌11 + 𝑌12 + 𝑌21 + 𝑌22 ≤ 0      (3.7.13) 

 

𝑓0 =
1

2𝜋𝐶
 𝑑𝑒𝑡 𝑌𝑐  

1
2            (3.7.14) 

 

Where  

𝑑𝑒𝑡 𝑌𝑐 =  𝑌11𝑌22 − 𝑌12𝑌21       (3.7.15) 

Case (d) 

 𝑌11 + 𝑌22 ≤ 0        (3.7.16) 

 

𝑓0 =
1

2𝜋𝐶
 𝑑𝑒𝑡 𝑌𝑑  

1
2            (3.7.17) 
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Where  

𝑑𝑒𝑡 𝑌𝑑 = 𝑑𝑒𝑡 𝑌𝑐       (3.7.18)  

 

 

An inspection of the above equations suggests that in order to have the oscillators based upon 

networks Na-Ne with no more than three OTAs, a number of elements in the Y-matrix 

characterization would have to be selected as zeros. The selection of such zero entries (ZE), 

however, cannot be made arbitrarily in view of the following restrictions applicable to all of the 

cases being considered here. 

 

Restriction 1 

All elements in any row cannot be simultaneously zero because this makes the corresponding 

port current zero (thereby making one capacitor in the circuit redundant ). 

Also, in such a case det 𝑌𝑗  (j = a-e) becomes zero and hence 𝑓𝑜 = 0. 

Restriction 2 

 All elements in any column cannot be simultaneously zero as this also makes  

det 𝑌𝑗  (j = a-e) becomes zero and hence 𝑓𝑜 = 0. 

The various feasible cases may now be examined in detail. While synthesizing the three-OTA 

oscillators of the desired kind as set out in the previous section, it will be shown that apart from 

the tuning laws of the form (3.7.2) and (3.7.3) there are many other forms of tuning laws, the 

three OTA oscillators corresponding to which can provide independent control of the FO. 

Restriction 3 

If the zeros are distributed one in each row, then in order to have a three-OTA structure each 

row must have remaining two entries equal and opposite (i.e. all three OTAs to be connected in 

differential mode). Such a situation makes det 𝑌  = 0 and hence FO becomes zero. 

Restriction 4 

If zero are distributed such that one row does not contain any ZE (this row will then have three 

transconductances and would require at least two OTAs), one row contains one ZE and the rest 

two zeros appear in the remaining row, then the resulting matrix cannot be realized with only 

three OTAs. 

Thus, any  𝑌  matrix characterization having only three ZEs cannot result in a three-OTA 

structure of the desired type. 
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Case a :- 

OTA-C oscillators employing two floating capacitors with a common node: In view of the 

restriction 1 and 2, the possibility of three zeros lying in any single row or single column is 

ruled out. The other possibilities may now be considered. 

    

 (i) Three ZEs in  𝑌𝑎  .   

 (ii)  Four ZEs in  𝑌𝑎    

This implies that OTA circuit corresponding to this would have two OTAs in differential mode 

and the third OTA in single ended mode. Although four entries can be selected out of nine in 

(9/45) = 126 ways, the only meaningful ways are those(keeping in mind restriction 1,2 and 3 

as outlined above) where out of the four ZEs two row contain one ZE and a third row contains 

two ZEs. The total number of possible cases having this kind of assignment of ZEs turn out to 

be 63. The resulting  63 characterizations of   𝑌𝑎   are then checked to find which of these result 

in three- OTA oscillators possessing independent control of  FO. It has been found that none of 

this set of 63 characterizations of   𝑌𝑎   results in any oscillator of the desired type.   

 

(iii) Five ZEs in  𝑌𝑎    

This implies that OTA circuit corresponding to this would have one OTAs in differential mode 

and the two OTAs in single ended mode. On the basis of the considerations 

Similar to those outlined in (i) and (ii), the total number of  possible characterizations 

corresponding to this case is 45 out of which only 16 qualify to yield three-OTA oscillators of 

the desired kind. Further, if port transposition is applied , the number of oscillator circuits 

reduces to eight. These are shown in Table 3.3. 

 

(iv) Six ZEs in  𝑌𝑎   

This implies that all three OTAs are to be connected ina single ended mode. It is obvious that 

each row should have one and only one transconductance and, therefore, keeping in mind 

restrictions 1 and 2, the total number of characterizations of interest are only six in this case. 

None of these, however, result in oscillators providing independent contro of FO. 

The possibility of having more than six ZEs and less three ZEs in  𝑌𝑎   is ruled out; the former 

because of resulting in the  𝑌𝑎   matrix not permissible due to restriction 1 and 2, the latter 

because of the reqirement of more than three OTAs. 
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TABLE 3.3 

 

Various oscillator realizations corresponding to schematic of Fig. 3.15(a) 

 
S.No. Generic  𝒀  matrix Oscillator circuit CO and FO 

 

    

   1. 

 

 

 
0 𝑔1 −𝑔1

0 0 𝑔2

𝑔3 0 0
  

 

 

 

 𝑔1 − 𝑔2 = 0   

            𝑓𝑂 =
1

2𝜋𝐶
 

𝑔1𝑔2𝑔3

𝑔2+𝑔3
 

 

    

   2. 

 

 

 
0 −𝑔1 𝑔1

𝑔2 0 0
0 0 𝑔3

  

 

 

 

 𝑔2 − 𝑔1 = 0   

𝑓𝑜 =
1

2𝜋𝐶
 

𝑔1𝑔2𝑔3

𝑔2 + 𝑔3
 

 

   

   3. 

 

 

 
−𝑔1 0 𝑔1

0 𝑔2 0
−𝑔3 0 0

  

 

 

 
 2𝑔3 − 𝑔2 = 0   

𝑓𝑜 =
1

2𝜋𝐶
 𝑔1𝑔2  

 

    

   4. 

 

 

 
0 −𝑔1 0
0 0 𝑔2

−𝑔3 0 𝑔3

  

 

 

 
 𝑔2 − 2𝑔1 = 0   

𝑓𝑜 =
1

2𝜋𝐶
 𝑔2𝑔3 

 

 

   5. 

 

 

 
0 𝑔1 0
0 𝑔2 −𝑔2

−𝑔3 0 0
  

 

 

 

              𝑔1 − 𝑔2 = 0  
  

𝑓𝑜 =
1

2𝜋𝐶
 

𝑔1𝑔2𝑔3

𝑔1 − 𝑔3
 

𝑔3 < 𝑔1 
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   6. 

 

 

 
𝑔1 0 0
−𝑔2 𝑔2 0

0 0 −𝑔3

  

 

 

 

 −𝑔2 + 2𝑔3 = 0   

𝑓𝑜 =
1

2𝜋𝐶
 

𝑔1𝑔2𝑔3

𝑔3 − 𝑔1
 

𝑔1 < 𝑔3 

 

 

   7. 

 

 

 
𝑔1 0 0
0 −𝑔2 𝑔2

0 −𝑔3 0
  

 

 

 

 𝑔2 − 𝑔1 = 0 

𝑓𝑜 =
1

2𝜋𝐶
 

𝑔1𝑔2𝑔3

𝑔1 − 𝑔3
 

𝑔3 < 𝑔1 

 

 

   8. 

 

 

 
0 0 𝑔1

𝑔2 −𝑔2 0
−𝑔3 0 0

  

 

 

 
 −2𝑔3 + 𝑔2 = 0   

𝑓𝑜 =
1

2𝜋𝐶
 

𝑔1𝑔2𝑔3

𝑔3 − 𝑔1
 

𝑔1 < 𝑔3 

 

 

Case b:- 

OTA-C oscillators employing one floating  and one grounded capacitor having no common 

node: Since  𝑌𝑏  is also 3 × 3 matrix like  𝑌𝑎  , the various constraints and restrictions on 

selecting ZEs, to arrive at three-OTA oscillator structures of the desired kind, are analogous to 

those for case (a). It has been found that: 

 Only four oscillators of the desired kind result from the 63 possibilities of selecting 

four ZEs; 

 Only  12 oscillators of the desired kind result from the 45 possibilities of selecting 

five  ZEs; 

 The cases of three ZEs and six ZEs do not yield any valid realizations. 

The various feasible oscillators (after deleting the redundant cases related by port-

transposition) corresponding to this case are shown in Table 3.4. 
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TABLE 3.4 

Various oscillator realizations corresponding to schematic of Fig. 3.15(b) 

S.No.. Generic  𝒀  matrix Oscillator circuit CO and FO 

 

    

   1. 

 

 

 
0 −𝑔1 𝑔1

𝑔2 0 0
0 𝑔3 0

  

 

 

 

 −𝑔3 + 𝑔1 = 0   

𝑓𝑜 =
1

2𝜋𝐶
 𝑔2𝑔3 

 

 

    

   2. 

 

 

 
𝑔1 −𝑔1 0
0 0 −𝑔2

0 𝑔3 0
  

 

 

 
 −𝑔1 + 𝑔3 = 0 

𝑓𝑜 =
1

2𝜋𝐶
 𝑔2𝑔3 

 

   

   3. 

 

 

 
0 0 𝑔1

−𝑔2 𝑔2 0
0 −𝑔3 0

  

 

 

 

 −𝑔3 + 𝑔1 = 0 

𝑓𝑜 =
1

2𝜋𝐶
 𝑔2𝑔3 

 

 

    

   4. 

 

 

 
−𝑔1 0 0

0 𝑔2 −𝑔2

0 𝑔3 0
  

 

 

 
 −𝑔3 + 𝑔1 = 0 

𝑓𝑜 =
1

2𝜋𝐶
 𝑔2𝑔3 

 

 

   5. 

 

 

 
0 0 𝑔1

0 −𝑔2 𝑔2

−𝑔3 𝑔3 0
  

 

 

 
 −𝑔2 + 𝑔3 = 0   

𝑓𝑜 =
1

2𝜋𝐶
 

𝑔1𝑔2𝑔3

𝑔3 − 𝑔1
 

𝑔1 < 𝑔3 
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   6. 

 

 

 
𝑔1 0 0
−𝑔2 𝑔2 0

0 𝑔3 −𝑔3

  

 

 

    

              𝑔2 − 𝑔3 = 0  
  

𝑓𝑜 =
1

2𝜋𝐶
 

𝑔1𝑔2𝑔3

𝑔3 − 𝑔1
 

𝑔1 < 𝑔3 

 

 

   7. 

 

 

 
0 0 𝑔1

𝑔2 0 0
−𝑔3 𝑔3 0

  

 

 

 

 𝑔1 − 𝑔2 = 0 

𝑓𝑜 =
1

2𝜋𝐶
 

𝑔1𝑔2𝑔3

𝑔1 − 𝑔3
 

𝑔3 < 𝑔1 

 

 

   8. 

 

 

 
𝑔1 0 0
0 0 −𝑔2

0 𝑔3 −𝑔3

  

 

 

 

 𝑔2 − 𝑔1 = 0 

𝑓𝑜 =
1

2𝜋𝐶
 
𝑔1𝑔2𝑔3

𝑔1 − 𝑔3
 

𝑔3 < 𝑔1 

 

 

 

Case c:- 

OTA-C oscillators employing one floating  and one grounded capacitor having a common 

node: In this case, because Nc is a two port network and in view of the restrictions 1 and 2, at 

the most one element can be made zero out of the four elements in order to realize the desired 

type of oscillators. Thus, the following two possibilities should be considered: 

 (i) one ZE in  𝑌𝑐 ; 

 (ii) no ZE in  𝑌𝑐 . 

A rigorous search for all possible choices of the elements of  𝑌𝑐  which satisfy the CO and the 

FO has been made for both of the above cases. It turns out that only three distinctly different 

choices are possible for case (i), and four distinctly different combinations exist for the case 

(ii). The resulting  𝑌𝑐  matrix and the oscillators corresponding to these are shown in Table 3.5. 
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TABLE 3.5 

 

Various oscillator realizations corresponding to schematic of Fig. 3.15(c) 

 

S.No. Generic  𝒀  matrix Oscillator circuit CO and FO 

 

    

   1. 

 

 

 
0 𝑔1

−𝑔2 𝑔2 − 𝑔3
  

 

 

              𝑔1 − 𝑔3 = 0   

 

 

𝑓𝑜 =
1

2𝜋𝐶
 𝑔1𝑔2 

 

    

   2. 

 

 

 
0 𝑔1

−𝑔2 − 𝑔3 𝑔2
  

 

 
 𝑔1 − 𝑔3 = 0   

𝑓𝑜 =
1

2𝜋𝐶
 𝑔1(𝑔2 + 𝑔3) 

 

   

   3. 

 

 

 
𝑔1 0
−𝑔3 𝑔3 − 𝑔2

  

 

 

 2𝑔1 − 𝑔2 = 0 

𝑓𝑜 =
1

2𝜋𝐶
 𝑔1 𝑔3 − 𝑔2  

                   𝑔2 < 𝑔3  

 

    

   4. 

 

 

 
𝑔1 0

−𝑔2 − 𝑔3 𝑔3
  

 

 

 2𝑔1 − 𝑔2 = 0 

𝑓𝑜 =
1

2𝜋𝐶
 𝑔1𝑔3 

 

 

 

   5. 

 

 

 
−𝑔1 + 𝑔2 −𝑔2

𝑔3 −𝑔3
  

 

 

 

            −2𝑔1 + 𝑔2 = 0 

            𝑓𝑜 =
1

2𝜋𝐶
 𝑔1𝑔3    
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   6. 

 

 

 
𝑔1 −𝑔2

𝑔3 −𝑔3
  

 

 

 2𝑔1 − 𝑔2 = 0   

𝑓𝑜 =
1

2𝜋𝐶
 𝑔1𝑔3 

 

 

 

   7. 

 

 

 
𝑔1 −𝑔1 − 𝑔2

𝑔3 −𝑔3
  

 

 

      𝑔1 − 𝑔2 = 0    

𝑓𝑜 =
1

2𝜋𝐶
 𝑔2𝑔3 

 
 

 

 

Case d:- 

OTA-C oscillators with both the capacitors grounded. Since  𝑌𝑑  is a 2 × 2 matrix like  𝑌𝑐  , 

the considerations to select appropriate entries for  𝑌𝑑   are simiar to those of case (c). There are 

only three distinct forms of the matrix  𝑌𝑑   which yield three-OTA oscillators of the desired 

kind. These generic matrices and the corresponding circuits are shown in Table 3.6. 

 

 
TABLE 3.6 

 

Various oscillator realizations corresponding to schematic of Fig. 3.15(d) 

 

S.No. Generic  𝒀  matrix Oscillator circuit CO and FO 

 

    

   1. 

 

 

 
𝑔2 − 𝑔1 𝑔1

−𝑔3 0   

 

 

                 𝑔2 − 𝑔1 = 0   

𝑓𝑜 =
1

2𝜋𝐶
 𝑔1𝑔3 



78 

 

 

    

   2. 

 

 

 
−𝑔2 𝑔1 + 𝑔2

−𝑔3 𝑔3
  

 

 

 𝑔3 − 𝑔2 = 0 

𝑓𝑜 =
1

2𝜋𝐶
 𝑔1𝑔3 

 

   

   3. 

 

 

 
−𝑔1 𝑔3

−𝑔2 𝑔2
  

 

 

  𝑔2 − 𝑔1 = 0 

𝑓𝑜 =
1

2𝜋𝐶
 𝑔2 𝑔3 − 𝑔1  

𝑔1 < 𝑔3 

 

 
 

 

3.8 SAMPLE EXPERIMENTAL RESULTS  

The workability of all the circuits of Tables 3.3-3.6  has been checked experimentally using  

CA 3080 type IC OTAs biased with  the biasing arrangement shown below in Figure 3.16. 

 

Fig. 3.16 Schematic of CA3080 OTA 

                                

Some sample experimental results from the structures of table 3.3-3.6 are shown in Figs.3.18, 

3.20, 3.22, and 3.24. Fig. 3.25. shows the variation of the oscillation frequency with the bias 

current 𝐼𝐵3 for the oscillator circuit no. 4 of table 3.5.  Figs.3.18, 3.20, 3.22, and 3.24 show 
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typical waveforms generated by oscillator circuit no. 4 of table 3.3, no. 3 of table 3.4, no. 1 of 

table 3.5, and no. 2 of table 3.6 respectively . The performance of the circuits is thus found to 

be as predicted by theory.  

(a) Oscillator no. 4 of table 3.3  

The oscillator has been shown in fig.3.17 

 

Fig. 3.17 oscillator using 3-OTA-2C 

 

The Condition of oscillation is    𝑔2 − 2𝑔1 = 0  and 

The frequency of oscillation is     𝑓𝑜 =
1

2𝜋𝐶
 𝑔2𝑔3 

The  following values of components were selected to realize a sinusoidal oscillator  with a 

frequency of  𝑓 = 1.66𝑘𝐻𝑧,  amplitude = 84 mV (P-P),  𝐶1 = 𝐶2 = 𝐶 = 10𝑛𝐹, 𝐼𝐵1 = 6𝜇𝐴,

𝐼𝐵2 = 13.92𝜇𝐴, 𝐼𝐵3 = 2𝜇𝐴  ±𝑉𝐶𝐶 = ±9 𝑉 𝐷𝐶. 

The recorded output waveform is shown in Fig. 3.18.  

 

                                                Fig. 3.18 Output Waveform 

The result closely matches with the theoretical value of frequency (1.66kHz). 
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(b) Oscillator no. 3 of table 3.4  

The oscillator has been shown in fig.3.19. 

 

 

Fig. 3.19 oscillator using 3-OTA-2C 

 

The Condition of oscillation is    −𝑔3 + 𝑔1 = 0  and  

 

The frequency of oscillation is     𝑓𝑜 =
1

2𝜋𝐶
 𝑔2𝑔3 

The following values of components were selected to realize a sinusoidal oscillator  with a 

frequency of  𝑓 = 2.86𝑘𝐻𝑧,  amplitude = 95 mV (P-P),  𝐶1 = 𝐶2 = 𝐶 = 10𝑛𝐹, 𝐼𝐵1 = 5𝜇𝐴,

𝐼𝐵2 = 5𝜇𝐴, 𝐼𝐵3 = 17𝜇𝐴  ±𝑉𝐶𝐶 = ±9 𝑉 𝐷𝐶. 

The recorded output waveform is shown in Fig.3.20.  

 

 

Fig. 3.20 Output Waveform 

The  result closely matches with the theoretical value of frequency (2.86kHz). 
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(c) Oscillator no. 1 of table 3.5  

The oscillator has been shown in fig.3.21. 

 

Fig. 3.21 oscillator using 3-OTA-2C 

The Condition of oscillation is    −𝑔3 + 𝑔1 = 0  and 

The frequency of oscillation is     𝑓𝑜 =
1

2𝜋𝐶
 𝑔1𝑔2 

The  following values of components were selected to realize a sinusoidal oscillator  with a 

frequency of  𝑓 = 3.057𝑘𝐻𝑧,  amplitude = 48 mV (P-P),  𝐶1 = 𝐶2 = 𝐶 = 10𝑛𝐹, 𝐼𝐵1 = 5𝜇𝐴,

𝐼𝐵2 = 20𝜇𝐴, 𝐼𝐵3 = 5𝜇𝐴  ±𝑉𝐶𝐶 = ±9 𝑉 𝐷𝐶. 

The recorded output waveform is shown in Fig.3.22.  

 

 

Fig. 3.22 Output Waveform 

 

The result closely matches with the theoretical value of frequency (3.057kHz). 
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 (d) Oscillator no. 2 of table 3.6 

The oscillator has been shown in fig.3.23. 

 

 

Fig. 3.23 oscillator using 3-OTA-2C 

 

 

The Condition of oscillation is    𝑔3 − 𝑔2 = 0  and 

The frequency of oscillation is     𝑓𝑜 =
1

2𝜋𝐶
 𝑔1𝑔3 

The  following values of components were selected to realize a sinusoidal oscillator  with a 

frequency of  𝑓 = 2.598𝑘𝐻𝑧,  amplitude = 51 mV (P-P),  𝐶1 = 𝐶2 = 𝐶 = 10𝑛𝐹, 𝐼𝐵1 = 7𝜇𝐴,

𝐼𝐵2 = 10.32𝜇𝐴, 𝐼𝐵3 = 10.32𝜇𝐴  ±𝑉𝐶𝐶 = ±9𝑉 𝐷𝐶. 

The recorded output waveform is shown in Fig.3.24.  

 

 

Fig. 3.24 Output Waveform 

The  result closely matches with the theoretical value of frequency (2.598kHz). 
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The Variation of the oscillation frequency with the bias current 𝐼𝐵3 for the oscillator circuit no. 

4 of Table 3.5 are shown in fig. 3.25. The following component Values were selected to drown 

this fig. 𝐶1 = 𝐶2 = 𝐶 = 10.45𝑛𝐹, 𝐼𝐵1 = 4𝜇𝐴, 𝐼𝐵2 = 4𝜇𝐴, 𝐼𝐵3  Vari𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 10 − 100𝜇𝐴,  

±𝑉𝐶𝐶 = ±15 𝑉 𝐷𝐶. 

 

Fig. 3.25 Variation of the oscillation frequency with the bias current 𝐼𝐵3 for the oscillator circuit no. 4 

of Table 3.5. 

 

 

 

3.9 CONCLUSION  

In the present chapter a detailed review of some of the important works carried out on OTA-C 

oscillators has been presented. Some experimental results have also been given. In the next 

chapter we have used the methodology proposed in [7] to derive 4-OTA based sinusoidal 

oscillator circuits. 
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