SIMULATION OF VFA ALGORITHM FOR LOCALIZATION

AND TARGET TRACKING

A

DISSERTATION SUBMITTED TO

UNIVERSITY OF DELHI

IN PARTIAL
FULFILLMENT OF THE REQUIREMENT FOR
THE AWARD OF THE
DEGREE OF MASTER OF ENGINEERING

IN ELECTRONICS & COMMUNICATION ENGINEERING
BY

SONIA MALIK

College Roll No. 10/E&C/03

Delhi University Roll No. 3110

Under the guidance of

MS. S. INDU

(LECTURER, E&C DEPTT., DCE)

[image: image1.jpg]

DEPARTMENT OF

ELECTRONICS & COMMUNICATION ENGINEERING

DELHI COLLEGE OF ENGINEERING

UNIVERSITY OF DELHI

JULY-2005

CERTIFICATE

It is to certify that the work that is being presented in this dissertation entitled “Simulation Of VFA algorithm for localization and target tracking”, in partial fulfillment of the requirement for the award of the degree of Master of Engineering in Electronics & Communication Engineering Technology submitted by Sonia Malik (10/E&C/03) to the Department of Electronics & Communication Engineering, Delhi College of Engineering, is an authentic record of the student’s own work carried out under our supervision and guidance.

The work embodied in this dissertation has not been submitted for the award of any other degree to the best of our knowledge.
 Dr. ASOK BHATTACHARYYA MS. S.INDU

 Professor & H. O. D. (Lecturer)

 Elect. & Comm. Engg. Deptt. Elect. & Comm. Engg. Deptt.

 Delhi College of Engineering Delhi College of Engineering

ACKNOWLEDGMENTS

I would first like to thank my supervisor, Ms. S. Indu, Lecturer in Department of Electronics & Communication Engineering, for her guidance during my whole project work. I also give extra special thanks to her for dedicating her valuable time whenever I needed to discuss project related work without any delay.

I would like to thank Dr. Asok Bhattacharyya, Professor and Head, department of Electronics & Communication Engineering, for providing facilities for this dissertation.

I am also thankful to all my friends who continuously helped and motivated me during the course of this dissertation.

Lastly, I express my respect and regards to my parents, who have been a constant source of inspiration to me.

Sonia Malik

 10/E&C/03

 M.E. (E&C)

ABSTRACT

Wireless Distributed sensor networks (DSNs) are important for a number of strategic applications such as coordinated target detection, surveillance, and localization. The effectiveness of cluster-based distributed sensor networks depends to a large extent on the coverage provided by the sensor deployment. I have worked on a virtual force algorithm (VFA) as a sensor deployment strategy to enhance the coverage after an initial random placement of sensors. For a given number of sensors, the VFA algorithm attempts to maximize the sensor field coverage.
A judicious combination of attractive and repulsive forces is used to determine virtual motion paths and the rate of movement for the randomly-placed sensors. Once the effective sensor positions are identified, a one-time movement with energy consideration incorporated is carried out, i.e., the sensors are redeployed to these positions. Next part of work involves a novel probabilistic target localization algorithm that is executed by the cluster head. The localization results are used by the cluster head to query only a few sensors (out of those that report the presence of a target) for more detailed information.
CONTENTS
	1. Introduction..
1.1 Distributed sensor networks…………………………………..
 1.2 Distributed sensor network architectures …………………….

 1.3 Overview of the recent research efforts in DSNs …………….

1.3.1 Fault-tolerant interval integration methods ……………..

1.3.2 Coding Theory Framework for Target Location .……….
1.3.3 Computational complexities of sensor deployments …...
 1.3.4 Mobile Agent Based DSN……………………………….
 1.4 Introduction to coverage problems ……….…………………..

 1.5 Work related to coverage problems…………………………..

 1.6 Preliminaries………………………………………………….
 1.7 Deterministic Coverage……………………………………….

 1.8 Stochastic Coverage…………………………………………..

 1.9 Problem Statement…………………………………………….
 2. Related work……………………………………………………
 3. Virtual Force Algorithm ……………………………………..
3.1 Preliminaries ………………………………………………….
3.2Virtual Forces ………………………………………………….
3.3 Implementation of VFA Algorithm……………………….. …
3.4 Simulation…………………………………………………….

4. Target Localization……………………………………………
4.1 Detection Probability Table ………………………………….

4.2 Implementation of Localization and Tracking………………..

4.3 Score Based Ranking…………….…………………………….
4.4 Selections of sensors to query…………………………………
4.5 Calculation of Score Table and Selection of Sensors………....
 5. Conclusion……………………………………………………..

 6. Future Work…………………………………………………..

 7.Coding..
References………………………………………………………...….
Appendix …………………………………………………………….

	1

1

2
4
4
5
7
8
13

15
16
20
20
23
24
26
26
28
34
35
38
38
40
44
46
48

50
51
52

66

73

Chapter 1

 INTRODUCTION

The study of systems with multiple sensors has been an active area of research since early 90s. A great deal of effort has been devoted to the information integration in distributed sensor networks. Recent advances in sensor technology make it possible to use many duplicate sensors of the same type in both military and civilian applications, especially when the environment is harsh, unreliable, or even adversarial, to insure increased fault tolerance.

Thus, integrating and utilizing the data collected from a great number of spatially distributed sensors in the most effective way has brought new challenges to all the aspects of DSNs like network architectures, computation paradigms, data fusion methods, and sensor deployment schemes etc. The design of tracking and surveillance systems with sophisticated demands involves the integration of solutions obtained by solving sub-problems in data association and fusion, hypothesis testing, effective computational strategies, etc.[1].
1.1 What is a distributed sensor network?
A distributed sensor network (DSN) consists of a set of geographically distributed intelligent sensors, which are designed to collect measurements (acoustic, seismic, and infrared etc.) from the environment (see Appendix[2],[3]). The data collected from each local sensor are processed by its associated processing element (PE) into abstract sensor estimates. The processed results are then transmitted through an interconnected communication network and integrated with the information gathered from other parts of the network according to some data fusion strategy. The integrated information is used to derive appropriate inferences about the environment for a certain civilian or military application.
A group of neighboring sensors that are commanded by the same PE forms a cluster. A unit consisting of a PE and all its associated sensors is termed as a node. Each PE in the DSN performs tracking function using the data from its governing cluster and communicates with other PEs to arrive at a better estimate. The interconnection between the PEs (nodes) is determined by the DSN architecture.
1.2 Distributed sensor network architectures

· Two types of traditional architectures

With regard to the design of a DSN, the search for an efficient, fault-tolerant architecture is a very important task because the performance of a DSN is critically dependent on its interconnection topology. Two types of traditional network architectures are shown in Figure 1.1, namely the committee organization and the hierarchical organization, which have been discussed by Wesson et. al. in [4].

[image: image2.png]

Fig.-1.1 Committee organization and hierarchical organization.
In a committee organization, each node is autonomous and connected to some or all of the other nodes so that the local information can be broadcasted between any two of the connected nodes. This organization solves the problem by sharing individual perspectives, which refine and ultimately integrate local interpretations into a unified group consensus. The completely connected network, which belongs to this organizational category, is one of the architectures extensively used in practice. Nevertheless, this architecture has caused a heavy communication burden because O(2N) interconnections are required in such a network with N nodes. Moreover, since the nodes share data during integration process, the final estimate obtained tends to be biased.
In a hierarchical organization, the nodes are placed at different levels and each node can only communicate with its parent and child nodes. At each level, individual nodes receive information from the nodes below them, integrate the information according to their position in the hierarchy and report upwards the integrated and abstracted versions of their results. The node at the highest level, called the commander makes appropriate decisions based on the received information and may order its subordinates to adjust some previous results based on the final result that it generates. In contrast to the committee organization, this network requires only O(N) interconnections in a network with N nodes. However, the communication problems are more complicated here than in the committee organization. The results are unbiased since the nodes at a level are not connected to one another, but errors may accumulate as the estimate moves up the hierarchy.

From the above discussion, it is clear that both the committee and hierarchical organization have disadvantages hence the design of a DSN cannot be based on either of them alone. A mixed structure having the merits of both the types of architectures is desirable. The JIK network, proposed in [5,6] has such a structure that the nodes in the JIK network are organized as many complete binary trees while the roots of which are completely connected. Figure1.2 shows a JIK network with 12 nodes.
[image: image3.png]

Fig.-1.2 JIK network with 12 nodes.
· A versatile architecture
The JIK network has also some disadvantages. For example, integration errors of the lower nodes accumulate as the information goes up the hierarchy, thus making it difficult to identify the faulty component of the network. This problem can be solved by interconnecting the nodes at every level of the JIK network as a de Bruijn network. This new versatile architecture is proposed in [7] and referred to as the binary multi-level de Bruijn network (BMD). The BMD has shown several fault tolerant properties so that using them as a basis in the network makes the network tolerant to node or link failures. Since nodes at every level are interconnected, the BMD network facilitates comparison of abstract estimates at the same level to eliminate any errors in these estimates and identify the faulty component during the process of sensor integration.
1.3 Overview of the recent research efforts in DSNs

1.3.1 Fault-tolerant interval integration methods

Recent advances in sensor technology have led to better, cheaper and smaller sensors. These advances beget more complex tactical deployment of sensors. Such deployment requires new and sophisticated techniques for fault-tolerant integration of sensor information.

 It has been demonstrated that redundancy in interval-valued sensors can be used to provide error tolerance [25]. Sensor averaging by Marzullo’s method exhibits an irregular behavior in the sense that a sight difference in the input may produce a quite different output. In other words, the sensor averaging process is not stable. This behavior was formalized in [26] as violation of Lipschitz condition with respect to a certain metric on intervals. A general integration model has been developed to improve the results by combining interval estimates of sensor outputs into a best intersection estimate of outputs. Recently Schimd etc. presented a new fault tolerant interval intersection function with the same worst-case behavior as the Marzullo function but satisfying Lipschitz condition. However, Schimd-Schossmaier function gives the output intervals that are sub-optimal in some cases.

A new fault-tolerant interval integration method is proposed in [27] which performs better than Schmid-Schossmaier function by narrowing down the region containing the true value of the state measured by the sensors. The proposed function satisfies local Lipschitz condition, tolerates failures of the interval valued sensors up to a certain number and has the better performance than existing fault tolerant interval integration functions. [27] gives a detailed analysis of how this function yields a narrow interval, which is an accurate estimation of the true value. A comparison of this new function with the existing fault-tolerant interval integration functions is also given in the paper.

Brooks-Iyengar hybrid algorithm is presented in [28]. The hybrid algorithm makes a weighted average of the mid-points of the regions found by the sensor fusion algorithm. The hybrid algorithm allows for increased precision, but does not sacrifice accuracy in the process. The algorithm allows distributed systems to converge towards an answer within precisely defined accuracy bound. Using this algorithm distributed computing applications can be developed that are truly robust.

1.3.2 Coding Theory Framework for Target Location

Target location is an important problem in sensor networks. If the sensor field is represented by a two or three-dimensional grid of points, target location refers to the problem of pinpointing a target at a grid point at any time point. Alternatively, target location can be simplified considerably if the sensors are strategically placed in such a way that every grid point in the surveillance region is covered by a unique subset of sensors. In this way, the set of sensors reporting the detection of a target at time t uniquely identify the grid location for the target at time t.
The sensor placement problem for target location is closely related to the alarm placement problem described in [29], which shows that the alarm placement problem is NP-complete for arbitrary graphs. It is shown in [30] that a coding theory framework can be used to efficiently determine sensor placement for target location in a sensor field with a restricted topology, i.e. a set of grid points. The sensor locations correspond to code words of an identifying code constructed over the grid points in the sensor field. Such coding frameworks are often used in computing systems, e.g. for error control and more recently for resource placement in multi computers.
[image: image4.png]o o0ooo
© 000

o
o

(]
© 00

o000
o o0oo0o0

o

‘Sensor at grid point

Fig.1.3-Sensor deployment for target location

In [30], the identifying code problem is stated as an optimal covering of vertices in an undirected graph G such that any vertex in G can be uniquely identified by examining the vertices that cover it. As shown in Figure1.3, a circle (or a ball in 3-dim) of radius r centered on a vertex v is defined as the set of vertices that are at distance at most r from v. The vertex v is then said to cover itself and every other vertex in the circle with center v. The grid points in the sensor field correspond to the vertices in the graph G, while the centers of the circles correspond to the grid points where sensors are placed. The unique identification of a vertex in G corresponds to the unique location of a target by the sensors in the sensor field. Each sensor at a grid point can detect a target at grid points that are adjacent to it.
Coding-theoretic bounds on the number of sensors for target location under some certain sensor at grid point conditions are provided in [30] as well as their proofs. The methods for determining their placement schemes in the sensor field by way of coding theory are presented in the paper. The paper also shows that sensor placement for single targets provide asymptotically complete (unambiguous) location of multiple targets.
1.3.3 Computational complexities of sensor deployments

The sensor deployment problems are generalized in [31] and their computational complexities are discussed as well. By specifying different goals and constraint conditions, the sensor deployment problems are categorized into different deployment paradigms such as probabilistic deployment with investment limit (denoted as PROBABILISTIC-DEPLOYMENT), minimum sensor set for target coverage (denoted as MINIMUM-COVERAGE), and deployment for integrity etc. A formal NP-completeness proof is given for the first two of these deployment paradigms.

PROBABILISTIC-DEPLOYMENT : In this deployment paradigm, the objective is to achieve the maximum detection probability under the constraint of the maximum investment limit. In other words, the whole surveillance region needs to be covered as much as possible while the total deployment expense does not exceed the given cost budget. The deployment expense is considered as the cost incurred only by purchasing the sensors to be deployed.

MINIMUM-COVERAGE : In this deployment paradigm, the objective is to completely cover some set T of targets by a minimum size of set S of sensors in a surveillance region R . Its corresponding decision problem is defined as follows: Given some set T of targets in a surveillance region R , determine whether some set S of sensors can completely cover all the targets. It is shown that even the restricted version of MINIMUM-COVERAGE problem remains NP complete. The proof directly follows [32]. In the restricted version, a finite surveillance region R is divided into a number of uniform contiguous square cells of unit size. Any target is only located at a corner of one cell. The detection area of a sensor is a disc of some size centering at the sensor’s location. In other words, each sensor has isotropic detection ability. The sensor’s location can be anywhere within the surveillance region.
1.3.4 Mobile Agent Based DSN

An improved DSN architecture using mobile agents (MADSN) is designed in [34] to meet the new challenges brought to the current DSN, such as larger data volume, lower communication bandwidth, and more unreliable environment, etc. As shown in Figure 1.4, in traditional DSNs, data are collected by individual sensors, and then transmitted to a higher-level processing element, which performs sensor fusion. During this process, large amounts of data are moved around the network, as is the typical scenario in the client/server paradigm. MADSN adopts a new computation paradigm : data stay at the local site, while the integration process (executable code) is carried by mobile agents and moved to the data sites.

[image: image5.png]

Figure 1.4. Comparison between traditional server/client system and mobile agent based DSN

Generally speaking, mobile agents are programs that can be dispatched from one computer and transported to a remote computer for execution. While arriving at the remote site, they present their credentials and obtain access to local services and data to collect needed information or perform certain actions and then return with results. Although there are advantages and disadvantages of using mobile agents, the successful application areas of mobile agents have been extended from Ecommerce, to parallel processing and military situation awareness, etc.

Three technical issues associated with MADSN are discussed in [34]: mobile agent routing, data integration, and optimum performance.

Mobile agent routing: Once a mobile agent is dispatched from the starting node, an itinerary needs to be decided on the fly for the mobile agent to travel along. The quality of the itineraries planned for mobile agents has a significant impact on the performance of MADSN.

Local closest first (LCF) and global closest first (GCF) are two representative algorithms used to solve the routing problem. Both algorithms start at the same sensor node closest to cluster center. To determine the next node in the itinerary, LCF searches for the next node with the shortest distance to the current node, while GCF searches for the closet node to the cluster center. GCF algorithm is a relatively simple and fast search method but suffers from poor performance. Moreover, under the extreme case where the n sensor nodes form two clusters centered at the two ends of the diameter of the service area of the

mobile agent, the itinerary planned by GCF can result in redundant fluctuation between these two clusters. As is the case for GCF algorithm, the performance of LCF algorithm also depends significantly on the network structure.

 Essentially, the search for optimal itinerary of mobile agent can be formalized as a general combinatorial optimization problem consisting of an objective function and a constraint condition. In [35], a method based on genetic algorithm is described to solve the optimal itinerary problem for MADSN.

Data integration : At each sensor site, it must be determined what kind of data processing should be conducted and what integration results should be carried with the mobile agent.

In a distributed sensor network, all readouts from the sensor nodes are sent to their corresponding processing elements (PEs), where the overlap function at the finest resolution is first generated, and the multi-resolution analysis procedure is then applied to find the crest at the desired resolution. In a mobile agent based DSN, it is the mobile agents that migrate among the sensor nodes and collect readouts. Therefore, mobile agents always carry a partially integrated overlap function, which is accumulated into a final version at the PE after all the mobile agents return. The basic multi-resolution integration (MRI) algorithm is improved for MADSN by applying MRI before accumulating the overlap function to avoid heavy data transmission.

Optimum performance : Although the case study given in [34] shows that MADSN saves 91.25% of data transfer time compared to DSN while obtaining the same interval integration results, this does not necessarily mean that MADSN always performs better than DSN since MADSN also introduces overhead, such as the agent creation and dispatch time, the time spent for itinerary planning, etc. The performance comparisons between DSN and MADSN with respect to different parameters such as the number of agents, agent and file access overhead ratio, network transfer rate, the number of nodes, etc. are discussed in detail in [34].

 The effective use of multi sensor systems requires the solutions of various problems relating to sensor models, sensor deployment schemes, the architecture of the sensor network, the cost of information translation, and the fault tolerance of the network, etc.

So far, very little basic research has been done on the fundamental mathematical problems that need to be solved in order to provide a systematic approach to distributed sensor network system design. Major issues include optimal distribution of sensors, tradeoff between communication bandwidth and storage, maximization of system reliability and flexibility. The following areas of research (but not limited) will need more attention in the coming years:

(1) Evolution of sensor networks from stability point of view. This includes algorithms for sensor operator decomposition, subspace decomposition, function space decomposition, and domain decomposition. Techniques for abstracting global data exchanges to transform back to physical variables must be explored:

(2) Distributed image reconstruction procedures must be developed for displaying multiple source locations as an energy intensity map.

(3) A distributed operating system kernel for efficient synthesis must be developed.
Following is an example of DSNs :

The Mobile Patient: Wireless Distributed Sensor Networks for Patient Monitoring and Care by P. Bauer, M. Sichitiu, R. Istepanian and K. Premaratne.

These authors have introduced the concept of a 3 layer distributed sensor network for patient monitoring and care. The envisioned network has a leaf node layer (consisting of patient sensors), a intermediate node layer (consisting of the supervisory processor residing with each patient) and the root node processor (residing at a central monitoring facility). The introduced paradigm has the capability of dealing with the bandwidth bottleneck at the wireless patient - root node link and the processing bottleneck at the central processor or root node of the network.

Recent advances in digital cellular telephony technology, distributed sensor networks (DSNs) and sensor fusion open new avenues for the implementation of wireless networks for telemedicine. The idea of this wireless networks has been investigated by a large number of authors (see e.g. [36]-[40]). However, in many cases, the bandwidth bottleneck of currently available 2nd generation wireless links highly restrict these type of applications and the current focus is on 3rd and 4th generation wireless technology [41].
These authors have developed a new concept for the use of current and future wireless network technology to monitor patient’s vital functions and provide instantaneous medical feedback. Recent advances in DSNs and data fusion are brought to bear in order to develop the proposed system. The envisioned concept provides the individual patient with greatly improved mobility and allows him/her to roam freely outside of treatment centers, thus facilitating a higher quality of life.

This capability (independence of wired monitoring/diagnosis equipment) is achieved by the patient carrying a sensor network that communicates with a central/supervisory processor which would typically be located at a treatment center.
 The arising DSN is a tree structured three level network with the leaf node represented by the individual patient sensors. The intermediate level nodes are represented by supervisory, intelligent processors. Such a processor is carried by each patient and has the task of communicating through a wireless channel with the top node (central supervisory processor) of the network. Other tasks of the intermediate level nodes are to distribute the bandwidth between individual sensors of a patient according to their instantaneous importance and their nominal band-width requirement, to vary its data rate according to a measure of criticality that is handed down and determined by the root node, to handle the communication up and down the network tree as well as evaluating and fusing sensor signals to determine an initial estimate of the patient’s criticality. The most challenging technology issues that will be addressed in the development of such a wireless DSN for patient monitoring are as follows:

1. Overcoming the limitation in battery power in the intermediate level (patient) nodes.

2. Overcoming the bandwidth bottleneck of the wireless link from the patient to the top-

 layer processor in the case of high criticality.

3. Overcoming the processing bottleneck at the top-layer processor.

Some of these issues will persist regardless of the available type of mobile network, i.e. even in the Third Generation Mobile Systems. Their work develops a concept that will effectively address the above problems and offers conceptual solutions.

After a detailed discussion about DSNs, now lets talk about coverage.

Coverage in general, answers the questions about quality of service (surveillance) that can be provided by a particular sensor network.

Seapahn Meguerdichian1, Farinaz Koushanfar, Miodrag Potkonjak, and Mani B. Srivastava have discussed in detail about coverage problems in wireless ad-hoc sensor systems[15].

1.4 Introduction to coverage problems

As our personal computing era evolves into a ubiquitous computing one, there is a need for a world of fully connected devices with inexpensive wireless networks. Improvements

in wireless network technology interfacing with emerging micro-sensor based on MEMs technology [43], is allowing sophisticated inexpensive sensing, storage, processing, and communication capabilities to be unobtrusively embedded into our everyday physical world. Moreover, embedded web servers [42,44] can be used to connect the physical world of sensors and actuators to the virtual world of information utilities and services.

Consequently, a flurry of research activity has recently commenced in the sensor network domain, especially in wireless ad-hoc sensor networks. Although many of the sensor technologies are not new, there are certain physical laws governing the energy requirements of performing wireless communications that have limited the feasibility of such devices in the past. Some of the benefits of the newer, more capable sensor nodes are the ability to:

· Build large-scale networks;

· Implement sophisticated protocols;

· Reduce the amount of communication (wireless) required to perform tasks by distributed and/or local pre-computations;

· Implement complex power saving modes of operation depending on the environment and the state of the network.

Due to the above-mentioned advances in sensor network technology, more and more practical applications of wireless sensor networks continue to emerge. As an example, consider the millions of acres that are lost around the world, due to forest fires every year. In all fires, early warnings are critical in preventing small harmless brush fires from becoming monstrous infernos. By deploying specialized wireless sensor nodes in strategically selected high-risk areas, the detection time for such disasters can be drastically reduced, increasing the likelihood of success in early extinguishing efforts. Also, since the nodes are self configuring and do not need constant monitoring, the cost of such a deployment is minimal compared to the huge losses incurred in a large blaze.

In addition to the new applications, wireless sensor networks provide a viable alternative to several existing technologies. For example, large buildings contain hundreds of environmental sensors that are wired to a central air conditioning and ventilation system. The significant wiring costs limit the complexity of current environmental controls and the reconfigurability of these systems. However, replacing the hard-wired monitoring units with ad-hoc wireless sensor nodes can improve the quality and energy efficiency of the environmental system while allowing almost unlimited reconfiguration and customization in the future. In many instances, the savings in the wiring costs alone justify the use of the wireless sensor nodes.
Current Research Goal: Sensor Network Coverage

One of the fundamental issues that arises in sensor networks, in addition to location calculation, tracking, and deployment, is coverage. Due to the large variety of sensors and applications, coverage is subject to a wide range of interpretations. In general, coverage can be considered as the measure of quality of service of a sensor network. For example, in the previous fire detection sensor networks example, one may ask how well the network can observe a given area and what the chances are that a fire starting in a specific location will be detected in a given time frame.

Furthermore, coverage formulations can try to find weak points in a sensor field and suggest future deployment or reconfiguration schemes for improving the overall quality of service.

In most sensor networks, two seemingly contradictory, yet related viewpoints of coverage exist: worst and best case coverage. In worst-case coverage, attempts are made to quantify the quality of service by finding areas of lower observability from sensor nodes and detecting breach regions. In best-case coverage, finding areas of high observability from sensors and identifying the best support and guidance regions are of primary concern.
From the conceptual and algorithmic point of view, the main contribution is provably optimal polynomial time algorithm for coverage in sensor networks. These authors have combine existing computational geometry techniques and constructs such as the Voronoi diagram, with graph theoretical algorithmic techniques. The use of Voronoi diagram, efficiently and without loss of optimality, transforms the continuous geometric problem into a discrete graph problem. Furthermore, it enables direct application of search techniques in the resulting graph representation. They have also studied asymptotic coverage behavior of random wireless ad-hoc networks.
1.5 Work related to coverage problems
The increasing trend in research efforts in the areas referred to as Smart Spaces or Pervasive Computing are directly related to many problems in sensor networks. Although

many researchers in the sensor network area have mentioned the critical notion of coverage in the network, to our knowledge this is the first time that an algorithmic approach combined with computational geometry constructs was adopted in ad-hoc sensor networks. Also, to our knowledge, [59] was the first to identify the importance of computational geometry and Voronoi Diagrams in sensor network coverage. Reference [52] describes a general systematic method for developing an advanced sensor network for monitoring complex systems such as those found in nuclear power plants but does not present any general coverage algorithms. The Art Gallery Problem [53] deals with determining the number of observers necessary to cover an art gallery room such that every point is seen by at least one observer. It has found several applications in many domains such as the optimal antenna placement problems for wireless communication. The Art Gallery problem was solved optimally in 2D and was shown to be NP-hard in the

3D case. Reference [53] proposes heuristics for solving the 3D case using Delaunay triangulation. Sensor coverage for detecting global ocean color where sensors observe the

distribution and abundance of oceanic phytoplankton [48] is approached by assembling and merging data from satellites at different orbits.

Perhaps the most related works are the attempts on coverage of an initially unknown environment for mobile robots [45,47]. However, when the geometry of the environment is known in advance, coverage becomes a special case of path planning [51]. Both of these problems are solved using generalized Voronoi diagrams.

Radar and sonar coverage also present several related challenges. The radar and sonar netting optimization is of great importance in the networking technologies and the optimal distribution of detection and tracking in a surveillance area [56]. Based on the measured radar cross sections and the coverage diagrams for different radars, [53] proposes a method for optimally locating the radars to achieve a satisfactory surveillance area with limited radar resources.

Coverage studies to maintain connectivity have also been the focus of study. For example, [54] and [55] calculate the optimum number of base stations required to achieve the system operator's service objectives. Previously, connectivity was achieved through mobile host attachments to a base station. However, the connectivity coverage is more important in the case of ad-hoc wireless networks since the connections are peer-to-peer. Reference [50] shows the improvement in the network coverage due to the multi-hop routing features and optimizes the coverage constraint to the limited path length. Although their coverage study is aimed at ad-hoc wireless sensor networks, it is different from the above-mentioned class of problems due to their geometrical algorithmic approach.
1.6 Preliminaries

A. Topology of the network and Sensor Model

Generally, wireless sensor networks are targeted to the extremes of miniaturization, availability, accuracy, reliability, and power savings. This requires a networked infrastructure with small physical nodes, low power consumption, and low cost, that in turn limit communications to the immediate proximity of each node. There are several existing models of sensor behavior each with varying degrees of complexity. However, most models share one thing in common in that generally, sensing ability is directly dependant on distance. Consequently, in all our subsequent discussions, we assume that sensor coverage decreases as distance from sensors increases.

B. Enabling Technologies: Sensor Location Technology and Algorithms

The idea of having a smarter environment has fostered a growing interest in location aware systems and services. Obtaining reliable location information is an enabling component to many other location-aware basic tasks in sensor networks such as coverage, tracking and mobility management. Here, geolocation with GPS (Global Positioning System) is an unattractive solution due to cost, power, and accuracy constraints. Since our coverage algorithms rely on geolocation information, we have implemented the location procedure as the initial step before the coverage algorithm. In this geolocation approach [58], a few of the sensor nodes called beacons know their coordinates in advance, either from satellite information (GPS) or pre-deployment. The geolocation scheme then relies on signal strength information embedded in the inherent radio frequency communication capabilities of the nodes in approximating neighbor distances. Each node that can hear from a minimum of three beacon neighbors can determine its own location by trilateration and become a beacon. Iterative trilaterations are then used to locate as many nodes as possible.

They have also developed heuristics to compensate for the errors in the initial beacon locations and distance information. Initial analysis and percolation simulations show that in a reasonably dense network, by having 1% or less of the nodes as initial beacons, almost all other nodes can locate themselves at the end of the location process. In their discussions of coverage algorithms, they have only considered nodes that have valid location information.

C. Enabling Technology: Computational Geometry Voronoi Diagram and Delaunay Triangulation
The Voronoi diagram has been re-invented, used, and studied in many domains. According to [46] it is believed that the Voronoi diagram is a fundamental construct defined by a discrete set of points. In 2D, the Voronoi diagram of a set of discrete sites (points) partitions the plane into a set of convex polygons such that all points inside a polygon are closest to only one site. This construction effectively produces polygons with edges that are equidistant from neighboring sites. Fig.-1.5 shows an example of a Voronoi diagram for a set of randomly placed sites. Reference [46] presents a detailed survey of Voronoi diagrams and their applications. Another structure that is directly related to Voronoi diagrams is the Delaunay triangulation [49]. The Delaunay triangulation can be obtained by connecting the sites in the Voronoi diagram whose polygons share a common edge. It has been shown that among all possible triangulations, the Delaunay triangulation maximizes the smallest angle in each triangle. Also, neighborhood information can be extracted from the Delaunay triangulation since sites that are close together are connected. In fact the Delaunay triangulation can be used to find the two closest sites by considering the shortest edge in the triangulation. They have used the properties of the Voronoi diagram and Delaunay triangulation to solve for best and worst case coverages.

[image: image6.png]

Fig.-1.5 Voronoi Diagram Of A Set Of Randomly Placed Points In A Plane.

D. Implementation: Centralized vs. Distributed
Multi-hop communication is one of the main enablers in reducing power consumption in ad-hoc sensor networks. The energy required for communication between two arbitrary nodes A and B is strongly dependent on the distance d between the two nodes. More precisely, y d B E . = where y>1 is the path loss exponent depending on the RF environment and B is a proportionality constant describing the overhead per bit. Given this super linear relationship between energy and distance, generally using several short intermediate hops to send a bit is more energy efficient than using one longer hop.

However, an incorrect conclusion would be to use an infinite number of hops over the smallest possible distances. In reality, this is impractical for two reasons:

(i) The number of intermediate hops is limited by the number of nodes between A and B;

(ii) The energy is not limited to the energy radiated through the antenna. There is also the

 energy dissipated in the radio for receiving a bit and readying a bit for retransmission.

For applications such as coverage calculations, the energy of computations per node is also a component of the energy metric. It is important to note that technology scaling will

gradually reduce the processing costs, with the transmission cost remaining constant. Using compression techniques, one can reduce the number of transmitted bits, thus reducing the cost of transmission at the expense of more computation. This communication-computation trade-off is the core idea behind low energy sensor networks. From this discussion it is apparent that a good algorithm designed for wireless sensor networks will require minimal amount of communication. This is in sharp contrast with classical distributed systems [60] where the goal generally is maximizing the speed of execution. This renders the classical distributed algorithm irrelevant for developing wireless sensor networks algorithms.

The most relevant metrics in wireless networks is power. Experimental measurements indicate that communication cost in wireless ad-hoc networks is at least two orders of magnitude higher than computation costs in terms of consumed power. Note that the coverage problem is intrinsically global in the sense that, lack of knowledge of location of any single node implies that the problem may not be solved correctly. Therefore, any algorithm which aims to provide correct solution must inherently use all location data.
1.7 Deterministic Coverage

In order to achieve deterministic coverage, a static network must be deployed according to a predefined shape. The predefined locations of the sensors can be uniform in different areas of the sensor field or can be weighted to compensate for the more critically monitored areas. An example of a uniform deterministic coverage is the grid-based sensor deployment where nodes are located on the intersection points of a grid. In this case, the problem of coverage of the sensor field reduces to the problem of coverage of one cell and its neighborhood due to the symmetric and periodic deployment scheme.

An example of weighted predefined deployment is the security sensor systems used in museums. The more valuable exhibit items are equipped with more sensors to maximize the coverage of the monitoring scheme. Another deterministic deployment scheme can be found in the 3D Art Gallery Problem heuristics solutions discussed in [53]. Their proposed coverage algorithm can be used in all predefined (deterministic) deployment schemes to determine the coverage in the sensor field.

1.8 Stochastic Coverage

In many situations, deterministic deployment is neither feasible nor practical. Another deployment option is to cover the sensor field with sensors randomly distributed in the environment. The stochastic random distribution scheme can be uniform, Gaussian, Poisson or any other distribution based on the application at hand.

Wireless ad-hoc sensor networks have recently emerged as a premier research topic. They have great long term economic potential, ability to transform our lives, and pose many new system-building challenges. Sensor networks also pose a number of new conceptual and optimization problems. Some, such as location, deployment, and tracking, are fundamental issues, in that many applications rely on them for needed information.
Distributed sensor networks (DSNs) are important for a number of strategic applications such as coordinated target detection, surveillance, and localization. The effectiveness of DSNs is determined to a large extent by the coverage provided by the sensor deployment. The positioning of sensors affects coverage, communication cost, and resource management. In my work, I have focused on sensor placement strategies that maximize the coverage for a given number of sensors within a cluster in cluster-based DSNs[8].

As an initial deployment step, a random placement of sensors in the target area (sensor field) is often desirable, especially if no a priori knowledge of the terrain is available. Random deployment is also practical in military applications, where DSNs are initially established by dropping or throwing sensors into the sensor field(Fig.-1.3 shows sensors randomly dropped from airplane). However, random deployment does not always lead to effective coverage, especially if the sensors are overly clustered and there is a small concentration of sensors in certain parts of the sensor field. The key idea of my work is that the coverage provided by a random deployment can be improved using a force-directed algorithm.

[image: image7.png]

Fig.-1.3 Sensors dropped from airplane.

I have used present the virtual force algorithm (VFA) as a sensor deployment strategy to enhance the coverage after an initial random placement of sensors. The VFA algorithm is inspired by disk packing theory [19] and the virtual force field concept from robotics [13]. For a given number of sensors, VFA attempts to maximize the sensor field coverage using a combination of attractive and repulsive forces. During the execution of the force-directed VFA algorithm, sensors do not physically move but a sequence of virtual motion paths is determined for the randomly-placed sensors. Once the effective sensor positions are identified, a one-time movement is carried out to redeploy the sensors at these positions. Energy constraints are also included in the sensor repositioning algorithm.

I have also worked on a novel target localization approach based on a two-step communication protocol between the cluster head and the sensors within the cluster. In the first step, sensors detecting a target report the event to the cluster head. The amount of information transmitted to the cluster head is limited; in order to save power and bandwidth, the sensor only reports the presence of a target, and it does not transmit detailed information such as signal strength, confidence level in the detection, imagery or time series data. Based on the information received from the sensor and the knowledge of

the sensor deployment within the cluster, the cluster head executes a probabilistic scoring-based localization algorithm to determine likely position of the target. The cluster head subsequently queries a subset of sensors that are in the vicinity of these likely target positions.

The sensor field is represented by a two-dimensional grid. The dimensions of the grid provide a measure of the sensor field. The granularity of the grid, i.e. distance between grid points can be adjusted to trade off computation time of the VFA algorithm with the effectiveness of the coverage measure. The detection by each sensor is modeled as a circle on the two-dimensional grid. The center of the circle denotes the sensor while the radius denotes the detection range of the sensor. I will first consider a binary detection model in which a target is detected (not detected) with complete certainty by the sensor if a target is inside (outside) its circle. The binary model facilitates the understanding of the VFA model. I will then investigate a realistic probabilistic model in which the probability that the sensor detects a target depends on the relative position of the target within the circle.

The organization of my work is as follows. First of all I will give a review of prior research on topics related to sensor deployment in DSNs. Then, details of VFA algorithm along with simulation results. Next, will be target localization algorithm that is executed by the cluster head. Finally, conclusions and directions for future work.
1.9 Problem Statement
Now my aim is to find final sensor locations such that maximum area is covered using VFA then finally find subset of sensors that are in the vicinity of likely target positions.

Basically my problem is solved in two steps:-

STEP I Find sensor location (using VFA).

STEP II Find set of sensors which are in close vicinity of target (using Target
 Localization algorithm) .
Chapter 2
RELATED WORK

Sensor deployment problems have been studied in a variety of contexts [9], [10], [17]. In the area of adaptive beacon placement and spatial localization, a number of techniques have been proposed for both fine-grained and coarse-grained localization [20].

Sensor deployment and sensor planning for military applications are described in [14], where a general sensor model is used to detect elusive targets in the battlefield. However,

the proposed DSN framework in [14] requires a great deal of a priori knowledge about possible targets. Hence it is not applicable in scenarios where there is no information about potential targets in the environment.

The deployment of sensors for coverage of the sensing field has been considered for multi-robot exploration [13]. Each robot can be viewed as a sensor node in such systems. An incremental deployment algorithm is used in which sensor nodes are deployed one by one in an adaptive fashion. A drawback of this approach is that it is computationally expensive. As the number of sensors increases, each new deployment results in a relatively large amount of computation.

The problem of evaluating the coverage provided by a given placement of sensors is discussed in [15]. The major concern here is the self-localization of sensor nodes; sensor nodes are considered to be highly mobile and they move frequently. An optimal polynomial-time algorithm that uses graph theory and computational geometry constructs is used to determine the best-case and the worst-case coverage.

Radar and sonar coverage also present several related challenges [21]. Radar and sonar netting optimization are of great importance for detection and tracking in a surveillance area. Based on the measured radar cross-sections and the coverage diagrams for the different radars, the authors in [21] propose a method for optimally locating the radars to achieve satisfactory surveillance with limited radar resources.

Sensor placement on two- and three-dimensional grids has been formulated as a combinatorial optimization problem, and solved using integer linear programming in [11], [12]. This approach suffers from two main drawbacks. First, computational complexity makes the approach infeasible for large problem instances. Second, the grid coverage approach relies on “perfect” sensor detection, i.e. a sensor is expected to yield a binary yes/no detection outcome in every case. However, because of the inherent uncertainty associated with sensor readings, sensor detection must be modeled probabilistically[18].

A probabilistic optimization framework for minimizing the number of sensors for a two-dimensional grid has been proposed recently [18]. This algorithm attempts to maximize the average coverage of the grid points. Finally, there exists a close resemblance between the sensor placement problem and the art gallery problem (AGP) addressed by the art gallery theorem [22]. Other related work includes the placement of a given number of sensors to reduce communication cost [23], optimal sensor placement for a given target distribution [24].
Algorithms on which I have worked differs from prior methods in several ways. First, these algorithms consider both the binary sensor detection model and probabilistic detection model to handle sensors with both high and low detection accuracy. Second, the amount of computation is limited since a one-time computation is performed and sensor locations are determined at the same time for all the sensor nodes. Third, this approach improves upon an initial random placement, which offers a practical sensor deployment solution. Finally, it investigates the relationship between sensor placement within a cluster and target localization by the cluster head.
Chapter 3

VIRTUAL FORCE ALGORITHM

In this section, I will describe the underlying assumptions and the virtual force algorithm (VFA).
3.1 Preliminaries
For a cluster-based sensor network architecture, the following assumptions are made:

• After the initial random deployment, all sensor nodes are able to communicate with the

 cluster head.

• The cluster head is responsible for executing the VFA algorithm and managing the one-

 time movement of sensors to the desired locations.

• In order to minimize the network traffic and conserve energy, sensors only send a

 yes/no notification message to the cluster head when a target is detected. The cluster
 head intelligently queries a subset of sensors to gather more detailed target information.

The VFA algorithm combines the ideas of potential field [13] and disk packing [19]. In the sensor field, each sensor behaves as a “source of force” for all other sensors. This force can be either positive (attractive) or negative (repulsive). If two sensors are placed too close to each other, the “closeness” being measured by a pre-determined threshold, they exert negative forces on each other. This ensures that the sensors are not overly clustered, leading to poor coverage in other parts of the sensor field. On the other hand, if a pair of sensors is too far apart from each (once again a pre-determined threshold is used here), they exert positive forces on each other. This ensures that a globally uniform sensor placement is achieved.

Consider an n by m sensor field grid and assume that there are k sensors deployed in the random deployment stage. Each sensor has a detection range r. Assume sensor si is deployed at point (xi, yi). For any point P at (x, y), we denote the Euclidean distance between si and P as d(si, P), i.e. d(si, P) = ((xi - x)2 + (yi - y)2)1/2. Equation (1) shows the binary sensor model [11], [12] that expresses the coverage cxy(si) of a grid point P by sensor si.

 1, if d(si, P) < r

 cxy(si) = (1)

 0, otherwise.

The binary sensor model assumes that sensor readings have no associated uncertainty. In reality, sensor detections are imprecise, hence the coverage cxy(si) needs to be expressed in probabilistic terms.

In this work, I have assumed the following, motivated in part by [16]:

 0, if r + re ≤ d(si, P)

cxy(Si) =
[image: image8.wmf]b

l

a

e

-

, if r - re < d(si, P) < r + re (2)
 1, if r - r e ≥ d(si, P)

where re(re < r) is a measure of the uncertainty in sensor detection, a = d(si, P)-(r-re), and λ and β are parameters that measure detection probability when a target is at distance greater than re but within a distance from the sensor. This model reflects the behavior of range sensing devices such as infrared and ultrasound sensors. The probabilistic sensor detection model is shown in Fig.3.1. Note that distances are measured in units of grid points. Fig.3.1 also illustrates the translation of a distance response from a sensor to the confidence level as a probability value about this sensor response. Different values of the parameters λ and β yield different translations reflected by different detection probabilities, which can be viewed as the characteristics of various types of physical sensors.

3.2 Virtual Forces

Now I describe the virtual forces and virtual force calculation in the VFA algorithm. In the following discussion, I have used the notation introduced in the previous subsection. Let the total force action on sensor si be denoted by Fi. Note that Fi is a vector whose orientation is determined by the vector sum of all the forces acting on si. Let the force exerted on si by another sensor sj be denoted by Fij .

[image: image9.png]

Fig.-3.1 Probabilistic sensor detection model.

In addition to the positive and negative forces due to other sensors, a sensor si is also subjected to forces exerted by obstacles and areas of preferential coverage in the grid. This provides us with a convenient method to model obstacles and the need for preferential coverage. Sensor deployment must take into account the nature of the terrain, e.g., obstacles such as building and trees in the line of sight for infrared sensors, uneven surface and elevations for hilly terrain, etc. In addition, based on relative measures of security needs and tactical importance, certain areas of the grid need to be covered with greater certainty.

In virtual force model, it is assumed that obstacles exert repulsive (negative) forces on a sensor. Likewise, areas of preferential coverage exert attractive (positive) forces on a sensor. Let FiA be the total (attractive) force on si due to preferential coverage areas, and let FiR be the total (repulsive) force on si due to obstacles. The total force Fi on si can now be expressed as

 Fi =
[image: image10.wmf]å

¹

=

k

i

j

j

,

1

Fij + FiR +FiA (3)

Next is the force Fij between si and sj in polar coordinate notation. Note that f = (r,θ) implies a magnitude of r and orientation θ for vector f.

 (wA(dij - dth), αij) if dij > dth
 Fij = 0, if dij = dth (4)

 (wR * (1/di)j, αij + П), if otherwise

where dij is the Euclidean distance between sensor si and sj , dth is the threshold on the distance between si and sj , αij is the orientation (angle) of a line segment from si to sj ,and wA(wR) is a measure of the attractive (repulsive) force. The threshold distance dth controls how close sensors get to each other. As an example, consider the four sensors s1, s2, s3 and s4 in Fig.3.2. The force F1 on s1 is given by F1 = F12 + F13 + F14. If it is assumed that d12 > dth, d13 < dth, and d14 = dth, s2 exerts an attractive force on s1, s3 exerts a repulsive force on s1 and s4 exerts no force on s1. This is shown Fig.-3. 2.
[image: image11.png]

Fig.-3.2 An example of virtual forces with four sensors.

If re ≈ 0 and I use the binary sensor detection model given by Equation (1), I attempt to make dij as close to 2r as possible. This ensures that the detection regions of two sensors do not overlap, thereby minimizing “wasted overlap” and allowing me to cover a large grid with a small number of sensors. This is illustrated in Fig. 3.3(a). An obvious drawback here is that a few grid points are not covered by any sensor.
[image: image12.png]Qe
S

Fig.-3.3 Non-overlapped and overlapped sensor coverage areas.

 Note that an alternative strategy is to allow overlap, as shown in Fig. 3.3(b). While this approach ensures that all grid points are covered, it needs more sensors for grid coverage. Therefore, I have adopted the first strategy. Note that in both cases, the coverage is effective only if the total area kПr2 that can be covered with the k sensors exceeds the area of the grid.

If re > 0, re is not negligible and the probabilistic sensor model given by Equation (2) is used. Note that due to the uncertainty in sensor detection responses, grid points are not uniformly covered with the same probability. Some grid points will have low coverage if they are covered only by only one sensor and they are far from the sensor. In this case, it is necessary to overlap sensor detection areas in order to compensate for the low detection probability of grid points that are far from a sensor. Consider a grid point with coordinate (x, y) lying in the overlap region of sensors si and sj. Let cxy(si, sj) be the probability that a target at this grid point is reported as being detected by observing the outputs of these two sensors. I have assumed that sensors within a cluster operate independently in their sensing activities. Thus

cx,y(si, sj) = 1 - (1 - cx,y(si))(1 - cx,y(sj)) (5)

where cxy(si) and cxy(sj) were defined earlier. Since the term (1-cx,y(si))(1-cx,y(sj)) expresses the probability that neither si nor sj covers grid point at (x, y), the probability that the grid point (x, y) is covered is given by Equation (5). Let cth be the desired coverage threshold for all grid points. This implies that
min {cx,y(si, sj)} ≥ cth (6)

 x,y

Note that Equation (5) can also be extended to a region which is overlapped by a set of kov sensors, denoted as Sov, kov = |Sov|, Sov
[image: image13.wmf]Í

 {s1, s2, · · · , sk}. The coverage in this case is given by:
cx,y(Sov) = 1 -
[image: image14.wmf]Õ

v

o

i

S

S

e

 (1 - cx,y(si)) (7)

As shown in Equation (4), the threshold distance dth is used to control how close sensors get to each other. When sensor detection areas overlap, the closer the sensors are to each other, the higher is the coverage probability for grid points in the overlapped areas. Note however that there is no increase in the point coverage once one of the sensors gets close enough to provide detection with a probability of one. Therefore, it is needed to determine dth that maximizes the number of grid points in the overlapped area that satisfies cxy(si) > cth.

Note that the VFA algorithm is designed to be executed on the cluster head, which is expected to have more computational capabilities than sensor nodes. The cluster head uses the VFA algorithm to find appropriate sensor node locations based on the coverage requirements. The new locations are then sent to the sensor nodes, which perform a one-time movement to the designated positions. No movements are performed during the execution of the VFA algorithm.
VFA Data Structures : Grid, {s1, s2, · · · , sk}

/* nP is the number of preferential area blocks (attractive forces) and nO is the number of obstacle blocks (repulsive forces). Sxy, kxy and p_ tablexy are used for localization.

(x,y)VFA is the final position found by the VFA algorithm.*/

1 Grid structure:

2 Properties: width, height, k, cth, dth, c(loops), c, Δc;
3 Preferential areas: PAi(x, y,wx,wy), i = 1, 2, · · · , nP ;

4 Obstacles areas: OAi(x, y,wx,wy), i = 1, 2, · · · , nO;

5 Grid points, Pxy: cxy(s1, s2, · · · , sk), Sxy, kxy, p_ tablexy;

6 Sensor si structure: (x,y)rand , (x,y)virtual , (x,y)VFA ,i, r, re, α,β;

Fig.- 3.4. Data structures used in the VFA algorithm.

Fig.3.4 shows the data structure of the VFA algorithm, and Fig.3.5 shows the implementation details in pseudocode form. For an n by m grid with a total of k sensors deployed, the computational complexity of the VFA algorithm is O(nmk). Due the granularity of the grid and the fact that the actual coverage is evaluated by the number of grid points that have been adequately covered, the convergence of the VFA algorithm is controlled by a threshold value, denoted by Δc.

Lets use c(loops) to denote the current grid coverage of the number loops iteration in the VFA algorithm. For the binary sensor detection model without the energy constraint, the upper bound value denoted as c is kПr2 ; for the probabilistic sensor detection model or binary sensor detection model with the energy constraint, c(loops) is checked for saturation by defining c as the average of the coverage ratios of the near 5(or 100 iterations. Therefore, the VFA algorithm continues to iterate until |c(loops)-c| ≤ Δc. In my experiments, Δc is set to 0.6.
Procedure: Virtual Force Algorithm (Grid, {s1, s2, · · · , sk})

1 Set loops = 0;

2 Set MaxLoops =MAX LOOPS;

3 While (loops < MaxLoops)

4 /* coverage evaluation */

5 For P(x, y) in Grid, x
[image: image15.wmf]Î

 [1, width], y
[image: image16.wmf]Î

 [1, height]

6 For si
[image: image17.wmf]Î

 {s1, s2, · · · , sk}

7 Calculate cxy(si, P) from the sensor model using (d(si, P), cth, dth, λ, β);

8 End

9 End
10 If coverage requirements are met: |c(loops) - c| ≤ Δc

11 Break from While loop;

12 End

13 /* virtual forces among sensors */

14 For si
[image: image18.wmf]Î

 {s1, s2, · · · , sk}

15 Calculate Fij using d(si, sj), dth, wA, wR;

16 Calculate FiA using d(si, PA1, · · · , PAnP), dth;

17 Calculate FiR using d(si,OA1, · · ·,OAnO), dth;

18 Fi =
[image: image19.wmf]å

 Fij + FiA + FiR , j
[image: image20.wmf]Î

 [1, k], j≠ i;

19 End

20 /* move sensors virtually */

21 For si
[image: image21.wmf]Î

 {s1, s2, · · · , sk}

22 Fi virtually moves si to its next position;

23 End

24 Set loops = loops + 1;

25 End

Fig. 3.5. Pseudocode of the VFA algorithm.
3.3 Implementation of VFA algorithm

I started with three sensors s1,s2,s3 placed randomly(initially). Grid size was taken 30 ×30. (x1,y1), (x2,y2) and (x3,y3) give coordinates of locations of 3 sensors. (xp,yp) tells about target location.

Assumptions:

 r(range) = 5 ; re(range detection error) = 3

 λ = 0.5 ; β = 0.5

 dth = 4 ; cth = 0.7
Coding was done in c language(given at end of project report).

Finally results obtained from VFA are:-

Table 3.1

Coverage and positions of sensors after each iteration.

	Iterations
	S1
	S2
	S3
	Coverage cxy(s1,s2,s3)

	Initially(random)
	(9,19)
	(20,20)
	(21,10)
	0.6779599

	I
	(9.5,18.8)
	(19.7,19.6)
	(20.7,10.4)
	0.7027034

	II
	(10,18.65)
	(19.38,19.2)
	(20.4,10.8)
	0.7284840

	III
	(10.5,18.5)
	(19,18.5)
	(20.1,11.2)
	0.7354052

	IV
	(11,18.3)
	(18.62,18.1)
	(19.8,11.6)
	0.7911354

	V
	(11.5,18.1)
	(18.25,17.7)
	(19.5,12)
	0.8230148

3.4 Simulation:
The following graphs make it more clear as how, the positions of sensors have shifted in order to increase the coverage of target. Second graph shows final positions of sensors obtained from VFA algorithm.
Fig.-3.6

Initial stage with P(15,15)
[image: image22.png]SIMULATION RESULTS

00

scale

10 pixels
200

Radius r=s0
260

circle 180, 1900
210 Girele 1200, 200

220 Girele 51210, 100>

200

120
150
10
120
100
@
@
r
Y

Y
r
@
@

100

120

10

150

120

200

220

240

260

200

00

Fig.-3.7

Final Stage of Sensors

[image: image23.png]SIMULATION RESULTS

00

scale

Pixalz
200

Radius r=s0
260

Circle 1118, 180
210 Girele sic183, 177>

220 Girele siciss, 1200
200

120

160 ‘

10
120
100
@
@
r
Y

Y
r
@
@

100
120
10
150

120

200

220

240

260

200

00

Chapter 4

Target Localization
In two-step communication protocol, when a sensor detects a target, it sends an event notification to the cluster head. In order to conserve power and bandwidth, the message from the sensor to the cluster head is kept very small; in fact, the presence or absence of a target can be encoded in just one bit. Detailed information such as detection strength level, imagery and time series data are stored in the local memory and provided to the cluster head upon subsequent queries. Based on the information received from the sensors within the cluster, the cluster head executes a probabilistic localization algorithm to determine candidate target locations, and it then queries the sensor(s) in the vicinity of the target. It is assumed here that the sensor detection reports are time-labeled.
4.1 Detection Probability Table

After the VFA algorithm is used to determine the final sensor locations, the cluster head generates a detection probability table for each grid point. The detection probability table contains entries for all possible detection reports from those sensors that can detect a target at this grid point. Let us assume that a grid point P(x, y) is covered by a set of kxy sensors, denoted as Sxy, |Sxy| = kxy, 0 ≤ kxy ≤ k, and Sxy
[image: image24.wmf]Í

 {s1, s2, · · · , sk}. The probability table is built on the power set of Sxy since there are
[image: image25.wmf]y

x

K

2

 possibilities for kxy sensors in reporting an event. These
[image: image26.wmf]y

x

K

2

cases include the event that none of the sensors detect anything (represented by the binary string as “00...0”) as well as the event that all of the sensors (represented by the binary string as “11...1”). Thus the probability table for grid point (x, y) then contains
[image: image27.wmf]y

x

K

2

entries, defined as:

[image: image28.wmf](

)

(

)

Õ

=

y

x

j

S

S

j

y

x

y

x

i

S

p

i

table

p

e

,

_

 (8)
where 0 ≤ i ≤
[image: image29.wmf]y

x

K

2

, and pxy(sj, i) = cx,y(sj) if sj detects a target at grid point P(x, y); otherwise pxy(sj, i) = 1 - cx,y(sj) . Table 4.1 gives an example of the probability tables on a 5 by 5 grid with 3 sensors deployed. Consider the grid point (2, 4) which is covered by all three sensors s1, s2 and s3 with probabilities as 0.57, 1, and 0.57 respectively. For the three sensors s1, s2 and s3, there are a total of 8 possibilities for their combined event detection at grid point (2, 4). For example, the binary string 110 denotes the possibility that s1 and s2 report a target but s3 does not report a target. For each such possibility d1d2d3 (d1,d2,d3
[image: image30.wmf]Î

 {0, 1}) for a grid point, calculate the conditional probabilities that the cluster head receives d1d2d3 given that a target is present at that grid point. For the above example, these conditional probabilities are listed in Table 4.1. Consider the binary string 110, the conditional probability associated with this possibility is given by p_ table24(6) =

p24(s1, 6)p24(s2, 6)p24(s3, 6) = 0.57×1×(1-0.57) = 0.24. Note that the number of entries in the detection probability tables for different grid points will in general be different.
TABLE 4.1

EXAMPLE PROBABILITY TABLE

	i
	d1d2d3
	p_ tablexy(i)

	0
	000
	0

	1
	001
	0

	2
	010
	0.18

	3
	011
	0.24

	4
	100
	0

	5
	101
	0

	6
	110
	0.24

	7
	111
	0.33

Coding for generating probability table was done in C language which is given at end of report.

Procedure : Generate Probability Table (P(x, y), {s1, s2, · · · , sk})

1 /* find Sxy, the set of sensors that can detect P(x, y) */

2 For si
[image: image31.wmf]Î

 {s1, s2, · · · , sk}

3 If d(si, P(x, y)) ≤ r + re
4 Sxy = Sxy
[image: image32.wmf]È

 {si};

5 End

6 End

7 /* fill up the probability table */

8 For i, 0 ≤ i ≤ kxy, kxy = |Sxy|;

9 If sj detects P(x, y)

10 Set pxy(sj, i) = cx,y(sj);

11 Else

12 Set pxy(sj, i) = 1 - cx,y(sj);

13 End

14 Set p_ tablexy(i) =
[image: image33.wmf]Õ

sj
[image: image34.wmf]Î

Sxy pxy(sj, i);

15 End

Fig.-4.1 Pseudocode for generating the probability table

4.2 Implementation Of Localization and Tracking

Using VFA I have calculated final positions of three sensors. I have considered 30 ×30 grid, with three sensors deployed i.e. k = 3.Fig.-4.2 shows the zig-zag shaped line which is target movement trace. The target starts to move at t = t0 and finishes at t = t7. The coordinates of each node are:
t0(13,15) t1(14,15)

t2(15,15) t3(15,14)

t4(16,14) t5(17,14)

t6(17,15) t7(17,16)
Fig.-4.2
Graph showing the trace of target
[image: image35.png]SIMULATION RESULTS

00
Scale 1710 Pixelz
200

Radius r=3
260

Circle 1118, 180
210 Girele sic183, 177>
220 Girele siciss, 1200

200

- o .
- o
o =

120 g

- :

-
-

r
Y

Y
r
@
@

100
120
10
150

120

200

220

240

260

200

00

Now probability corresponding to each point of trace (i.e.Results of program) is as follows:

(1)t0:

Enter the co-ordinates of s1,s2,s3,sp
11.5 18.1 18.25 17.7 19.5 12 13 15

Enter range(r) and detection error(re)

5 3

Enter the value of cxy1,cxy2,cxy3
0.548811 0.372366 0.321209

Final probability is 0.065642

(2)t1:

Enter the co-ordinates of s1,s2,s3,sp
11.5 18.1 18.25 17.7 19.5 12 14 15

Enter range(r) and detection error(re)

5 3

Enter the value of cxy1,cxy2,cxy3
0.494603 0.418499 0.356082

Final probability is 0.073706

(3)t2
Enter the co-ordinates of s1,s2,s3,sp
11.5 18.1 18.25 17.7 19.5 12 15 15

Enter range(r) and detection error(re)

5 3

Enter the value of cxy1,cxy2,cxy3
0.441383 0.474327 0.397292

Final probability is 0.083177

(4)t3
Enter the co-ordinates of s1,s2,s3,sp
11.5 18.1 18.25 17.7 19.5 12 15 14

Enter range(r) and detection error(re)

5 3

Enter the value of cxy1,cxy2,cxy3
0.398241 0.425246 0.425262

Final probability is 0.072018

(5)t4
Enter the co-ordinates of s1,s2,s3,sp
11.5 18.1 18.25 17.7 19.5 12 16 14

Enter range(r) and detection error(re)

5 3

Enter the value of cxy1,cxy2,cxy3
0.363890 0.466133 0.490373

Final probability is 0.083178

(6)t5
Enter the co-ordinates of s1,s2,s3,sp
11.5 18.1 18.25 17.7 19.5 12 17 14

Enter range(r) and detection error(re)

5 3

Enter the value of cxy1,cxy2,cxy3
0.332115 0.501481 0.578059

Final probability is 0.096275

(7)t6
Enter the co-ordinates of s1,s2,s3,sp
11.5 18.1 18.25 17.7 19.5 12 17 15

Enter range(r) and detection error(re)

5 3

Enter the value of cxy1,cxy2,cxy3
0.354004 0.610308 0.501510

Final probability is 0.108352

(8)t7
Enter the co-ordinates of s1,s2,s3,sp
11.5 18.1 18.25 17.7 19.5 12 17 16

Enter range(r) and detection error(re)

5 3

Enter the value of cxy1,cxy2,cxy3
0.373137 0.847128 0.438601

Final probability is 0.138639
Table 4.2

Probability table
	Event
	Grid point
	Probability

	t0
	(13,15)
	0.065642

	t1
	(14,15)
	0.073706

	t2
	(15,15)
	0.083177

	t3
	(15,14)
	0.072018

	t4
	(16,14)
	0.083178

	t5
	(17,14)
	0.096275

	t6
	(17,15)
	0.108352

	t7
	(17,16)
	0.138639

4.3 Score-based Ranking

After the probability table is generated for all the grid points, localization is done by the cluster head if a target is detected by one or more sensors. I have used an inference method based on the established grid point probability table. When at time instant t, the cluster head receives positive event message from k(t) sensors, it uses the grid point probability table to determine which of these sensors are most suitable to be queried for more detailed information. Detailed target reporting involves sending large amount of data, which consumes more energy consumption and needs more bandwidth. Therefore, the cluster head cannot afford to query all the sensors for detailed reports. There is also an inherent redundancy in sensor detection information so it is not necessary to query all sensors. My scoring approach is able to select the most suitable sensors for this purpose.

Assume Srep(t) is the set of sensors that have reported the detection of an object at time t, Srep,xy(t) is the set of sensors that can detect a target at point P(x,y) and have also reported the detection of an object at time t. Obviously, Srep,xy(t)
[image: image36.wmf]Í

 Srep(t) and Srep,xy(t)
[image: image37.wmf]Í

 Sxy(t) since Srep,xy(t) = Srep(t) ∩ Sxy. The score of the grid point P(x,y) at time instant t is calculated as follows:

 SCORExy(t) = p_tablexy(i(t)) × wxy(t) (10)

Where i(t) is the index of the p_tablexy at time t. the parameter i(t) is calculated from Sxy and Srep,xy. The parameter p_tablexy(i(t)) correspond to the conditional probability that the cluster head receives this event information given that there was a target at P(x,y). the weight wxy(t) reflects the confidence level in this reporting event for this particular grid point.

The weight for the grid point P(x,y) at time instant t is defined as,

 0

 if Srep,xy(t) = {Φ}

 wxy(t) =
 (11)

 4-∆Krep,xy(t) otherwise

where ∆Krep,xy(t) measures the degree of difference in the set of sensors that reported and those sensors that can detect point P(x,y) at time instant t. The parameter ∆Krep,xy(t) is defined as

∆Krep,xy(t) = | Krep(t) - Krep,xy(t) | + | Krep(t) - Kxy |

(12)

where Kxy = | Sxy |, Krep(t) = | Srep(t) |, and Krep,xy(t) = | Srep,xy(t) |. The parameter wxy is therefore a decaying factor that is 1 only if Srep(t) = Sxy. The number 4 in the formula for wxy(t) was chosen empirically after it was found to provide accurate simulation results. We are using wxy(t) to filter out grid points that are not likely to be close to the actual target location. The score is based on both the probability table and the current relationship between Srep(t), Srep,xy(t) and Sxy . wxy(t) was chosen empirically after it was found to provide accurate simulation results. I have used wxy(t) to filter out grid points that are not likely to be close to the actual target location. The score is based on both the probability table and the current relationship between Srep(t), Srep,xy(t) and Sxy .
4.4 Selection of Sensors to Query

Assume that the maximum number of sensors tat are allowed to report an event is Kmax, and the set of the sensors selected by the cluster head for querying at time t is Sq(t), Sq(t)
[image: image38.wmf]Í

 Srep(t)
[image: image39.wmf]Í

{s1,s2,……sk}. To select the sensor to query based on the event reports and the localization procedure, first note that for time instant t, if Kmax ≥ Krep(t), then all reported sensors can be queried. Otherwise, select sensors based on a score-based ranking. The sensors selected correspond to the ones that have the shortest distance to those grid points with the highest scores. This selection rule is defines as

Sq(t) : d(Sq(t), PMS) = min{ d(si, PMS) }

(13)

Where si ε Srep(t), and PMS denotes the set of grid points with the highest scores. Note it is possible that there are multiple grid points that have the maximum score. When this happens, calculate the score concentration by averaging the scores of the current grid point and its eight neighboring grid points. The grid point with the highest score (or the score concentration) is the most likely current target location. Therefore, selecting sensors that are closest to this point guarantee that the selected sensors can provide the most detailed and accurate data in response to the subsequent queries.

Note target identification is not possible as at this stage since the cluster head has no additional information other than Srep(t). However, the selected sensors provide enough information in the subsequent stage to facilitate target identification. I have evaluated the accuracy of this target localization procedure by calculating the distance between the grid point with the highest score and the actual target location. Ŝq(t) is the set of sensors that are closest to the actual location of the target at time t. The results show that Sq(t) matches Ŝq(t) in many cases.
Procedure : Localization (Grid, {s1, s2, · · · , sk}, TargetTrace)

/* kmax is the maximum number of sensors that are allowed for querying, prep is the threshold level for a sensor to report to the cluster head of an event. TargetTrace starts from tstart and it ends at tend. The simulation time unit is 1. */

1 Set t = tstart ;

2 While (t ≤ tend)

3 /* current target location */

4 Set Target = TargetTrace(t);

5 /* calculate the scores */

6 Calculate Srep(t) from {s1, s2, · · · , sk }, Target(t), prep;

7 Set krep(t) = |Srep(t)|;

8 For P(x, y) in Grid, x
[image: image40.wmf]Î

 [1, width], y
[image: image41.wmf]Î

 [1, height]

9 Set kxy = |Sxy|;

10 Calculate Srep,xy(t) from Srep(t) and P(x, y);

11 Calculate the index i(t) of p_ tablexy from Srep(t) and Srep,xy(t);

12 Set krep,xy(t) = |Srep,xy(t)|;

13 If Srep,xy(t) = {φ}

14 wxy(t) = 0;

15 Else

16 Set ∆Krep,xy(t) = | Krep(t) - Krep,xy(t) | + | Krep(t) - Kxy |;

17 wxy(t) = 4-∆Krep,xy(t)

18 End
19 Set SCORExy(t) = p_ tablexy(i(t)) × wxy(t);

20 End

21 /* select sensors for querying */

22 Calculate Sq(t) from SCORExy(t) and kmax, x
[image: image42.wmf]Î

 [1, width], y
[image: image43.wmf]Î

 [1, height];

23 /* next time instant */

24 Set t = t + 1;

25 End

Fig. 4.3. Pseudocode of the localization algorithm.
Fig.-4.3 shows the pseudocode for the simulation of the probabilistic localization algorithm. For an n by m grid with k sensors, the computational complexity involved in generating the probability table is O(nm2k) since the maximum number of sensors that can detect a grid point is k for the worst case. The computational complexity of the localization procedure is O(nmkmax), kmax ≤ k. Therefore, computational complexity of the probabilistic localization algorithm is max{ O(nmkmax), O(nm2k) } = O(nm2k). Even though the worst-case complexity of the localization procedure is exponential in k, in practice. The localization procedure can execute in less time since the number of sensors that can effectively detect a target at a given grid point is quite small.
4.5 Calculation of Score table and Selection of Sensors

As already mentioned I have considered grid 30 × 30 and deployed three sensors, with r(range) = 5units and re(range detection error) = 3units. The zig-zag shaped line in graph shows the target movement trace. I have calculated score-table and finally selected sensors for this path.

Assumptions made:-

(i) For Srep(t) , r = 4 and re = 2.

(ii) Srep(t) = Srep,xy(t) i.e. Krep(t) = Krep,xy(t)

Now results are:-
Table 4.3

Scoring Calculations

	(x,y)
	Sxy
	Srep,xy(t)
	wxy(t)
	p_tablexy(i(t))
	SCORExy(t)

	(13,15)
	s1,s2,s3
	s1,s2
	0.25
	0.138716
	0.034679

	(14,15)
	s1,s2,s3
	s1,s2
	0.25
	0.133284
	0.033321

	(15,15)
	s1,s2,s3
	s1,s2,s3
	1.0
	0.083177
	0.083177

	(15,14)
	s1,s2,s3
	s1,s2,s3
	1.0
	0.072018
	0.072018

	(16,14)
	s1,s2,s3
	s2,s3
	0.25
	0.145401
	0.036350

	(17,14)
	s1,s2,s3
	s2,s3
	0.25
	0.193610
	0.048402

	(17,15)
	s1,s2,s3
	s2,s3
	0.25
	0.197723
	0.049430

	(17,16)
	s1,s2,s3
	s1,s2,s3
	1.0
	0.138639
	0.138639

Table 4.4
Finally selected sensors
	t
	Srep(t)
	Sq(t)
	Ŝq(t)

	t0 (13,15)
	s1,s2
	s1
	s1

	t1 (14,15)
	s1,s2
	s1
	s1

	t2 (15,15)
	s1,s2,s3
	s2
	s2

	t3 (15,14)
	s1,s2,s3
	s3
	s3

	t4 (16,14)
	s2,s3
	s2,s3
	s3

	t5 (17,14)
	s2,s3
	s2,s3
	 s3

	t6 (17,15)
	s2,s3
	s2,s3
	s2

	t7 (17,16)
	s1,s2,s3
	s2
	s2

Chapter 5

Conclusion
In this project work, we have worked on virtual force algorithm (VFA) which is a practical approach for sensor deployment. The VFA algorithm uses a force-directed approach to improve the coverage provided by an initial random placement. The VFA algorithm offers a number of important advantages. These include negligible computation time and a one-time repositioning of the sensors. Moreover, the desired sensor field coverage and model parameters can be provided as inputs to the VFA algorithm, thereby ensuring flexibility. we have shown how a probabilistic localization algorithm can be used in combination with force-directed sensor placement.
Chapter 6

Future work
Future work can be focused on overcoming the current limitations of the VFA algorithm. The VFA algorithm can be made more efficient if it is provided with the theoretical bounds on the number of sensors needed to achieve a given coverage threshold. Also, there is no route plan for repositioning the sensors in the VFA algorithm, where sensor collision can happen during the repositioning. The VFA algorithm also requires accurate location information from the sensor nodes, it is better to consider a relaxed model with little requirements for the knowledge of all sensor nodes locations.

Since the current target localization algorithm considers only one target in the sensor field, it is necessary to extend the proposed approach to facilitate the localization of multiple objects. Another extension lies in distributed localization and querying. Extensions to non-mobile sensor nodes, and situations of sensor node failures can also be considered in future work.
One further advancement can be that VFA can be called at every sensor and make sensor move according to target and further localization according to the latest movement of sensors. Finally, a continuous coordination system can be examined instead of discrete coordination systems in this work.
Chapter 7

Coding
I. Code for VFA algorithm

include<stdio.h>

include<graphics.h>

include<math.h>

define maxloop 5

void main()

{

float x1,x2,x3,xp,y1,y2,y3,yp,d[3],r,re,c[3],cf[maxloop],a,b,z,l,cav=0.0;

float ds12,ds23,ds13,m1,m2,m3,xd1,yd1,s1d1,h11=0.5,h21=0.5,h31=0.5,xl1,yl1;

float h12,h22,h32,xd2,yd2,s2d2,xl2,yl2,xd3,yd3,s3d3,xl3,yl3,dth,delc;

int i,j,k,;

FILE *ofp;

if((ofp=fopen("c:\\write.txt","w"))==NULL)

printf("\n file could not be opened");

printf("\n Enter the coordinates of S1,S2,S3 AND SP");

scanf("%f%f%f%f%f%f%f%f",&x1,&y1,&x2,&y2,&x3,&y3,&xp,&yp);

printf("Enter range(r) and range detection error(re)");

scanf("%f%f",&r,&re);

printf("\n Enter Lambda,Beta");

scanf("%f%f",&l,&b);

printf("\n Enter Threshold");

scanf("%f",&dth);

printf("\n Enter Delta C");

scanf("%f",&delc);

for(k=0;k<maxloop;k++)

{

d[0]=sqrt((xp-x1)*(xp-x1)+(yp-y1)*(yp-y1));

d[1]=sqrt((xp-x2)*(xp-x2)+(yp-y2)*(yp-y2));

d[2]=sqrt((xp-x3)*(xp-x3)+(yp-y3)*(yp-y3));

for(i=0;i<3;i++)

{

if((d[i]<(r-re))||((d[i]==(r-re))))

c[i]=1.0;

else

if((d[i]>(r-re))||((d[i]<(r+re))))

{

a=d[i]-r+re;

z=pow(a,b);

c[i]=exp(-l*z);

printf("\n individual coverage %f",c[i]);

fprintf(ofp,"\n individual coverage%d %f",i+1,c[i]);

}

else

if((d[i]>(r+re))||((d[i]==(r+re))))

c[i]=0.0;

}//end of i

cf[k]=1-(1-c[0])*(1-c[1])*(1-c[2]);

printf("\n final coverage %f",cf[k]);

fprintf(ofp,"\n final coverage%d %f",k+1,cf[k]);

if(k>0)

{

if((cf[k]<0.7)||(cf[k]==0.7))

break;

}

cav=0.0;

for(j=0;j<k;j++)

cav+=cf[j];

if(k>0)

cav/=k;

printf("\n cav=%f %f",cf[k]-cav,delc);

if((cf[k]-cav)>delc)

break;

ds12=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));

ds23=sqrt((x2-x3)*(x2-x3)+(y2-y3)*(y2-y3));

ds13=sqrt((x1-x3)*(x1-x3)+(y1-y3)*(y1-y3));

if((ds12<dth)||(ds13<dth)||(ds23<dth))

break;

m1=(y2-y1)/(x2-x1);

m2=(y3-y1)/(x3-x1);

m3=(y3-y2)/(x3-x2);

xd1=(-m2*x2+m1*x3+y2-y3)/(m1-m2);

yd1=(y3+m1*xd1-m1*x3);

s1d1=sqrt((xd1-x1)*(xd1-x1)+(yd1-y1)*(yd1-y1));

h12=s1d1-h11;

xl1=(h11*xd1+h12*x1)/s1d1;

yl1=(h11*yd1+h12*y1)/s1d1;

xd2=(-m3*x1+y1-y3+m1*x3)/(m1-m3);

yd2=y3+m1*(xd2-x3);

s2d2=sqrt((x2-xd2)*(x2-xd2)+(y2-yd2)*(y2-yd2));

h22=s2d2-h21;

xl2=(h21*xd2+h22*x2)/s2d2;

yl2=(h21*yd2+h22*y2)/s2d2;

xd3=(-m2*x2-y1+m3*x1+y2)/(m3-m2);

yd3=y1+m3*(xd3-x1);

s3d3=sqrt((x3-xd3)*(x3-xd3)+(y3-yd3)*(y3-yd3));

h32=s3d3-h31;

xl3=(h31*xd3+h32*x3)/s3d3;

yl3=(h31*yd3+h32*y3)/s3d3;

x1=xl1;

y1=yl1;

x2=xl2;

y2=yl2;

x3=xl3;

y3=yl3;

fprintf(ofp,"\nNext loop Values are:\n x1:%f y1:%f \nx2:%f y2:%f \nx3:%f y3:%f",x1,y1,x2,y2,x3,y3);

}//end of k

}//end of main

II. Code for plotting circles showing different stages of coverage
#include <iostream.h>

#include <conio.h>

#include <graphics.h>

#include <stdlib.h>

#include <stdio.h>

void Print_pixel(int x_center, int y_center,int x,int y)

{

 putpixel(x_center+x, y_center+y, 15);

 putpixel(x_center-x, y_center+y, 15);

 putpixel(x_center+x, y_center-y, 15);

 putpixel(x_center-x, y_center-y, 15);

 putpixel(x_center+y, y_center+x, 15);

 putpixel(x_center-y, y_center+x, 15);

 putpixel(x_center+y, y_center-x, 15);

 putpixel(x_center-y, y_center-x, 15);

}

void Circle_Mid_Point(int x_center, int y_center, int radius)

{

 int p,x,y;

 x=0;

 y=radius;

 Print_pixel(x_center,y_center,x,y);

 p=1-radius;

 while(x<y)

 {

 if(p<0)

x++;

 else

 {

x++; y--;

 }

 if(p<0)

p=p+2*x+1;

 else

p=p+2*(x-y)+1;

 Print_pixel(x_center,y_center,x,y);

 }

}

define SHIFT_UD 50

define SHIFT_LR 100

define LENGTH 300

// AXIS CENTER (SHIFT_LR, SHIFT_UD+LENGTH)

void axis()

{

 char str[10];

 line(SHIFT_LR,SHIFT_UD+LENGTH,SHIFT_LR,SHIFT_UD); // draw X-axis

 line(SHIFT_LR,SHIFT_UD+LENGTH,SHIFT_LR+LENGTH,SHIFT_UD+LENGTH); // draw Y-axis

 //draw x scale

 for(int i=20; i<=300; i+=20)

 {

 line(SHIFT_LR,SHIFT_UD+LENGTH-i,SHIFT_LR-5,SHIFT_UD+LENGTH-i);

 itoa(i,str,10);

 settextstyle(2,0,4);

 settextjustify(2,2);

 outtextxy(SHIFT_LR-15,SHIFT_UD+LENGTH-i-5,str);

 }

 //draw y scale

 for(i=20; i<=300; i+=20)

 {

 line(SHIFT_LR+i,SHIFT_UD+LENGTH,SHIFT_LR+i,SHIFT_UD+LENGTH+5);

 itoa(i,str,10);

 settextstyle(2,1,4);

 settextjustify(1,2);

 outtextxy(SHIFT_LR+i,SHIFT_UD+LENGTH+10,str);

 }

}

void display_param()

{

 settextstyle(2,0,4);

 settextjustify(0,1);

 rectangle(500,50,630,150);

 outtextxy(510,60,"Scale 1=10 Pixels");

 outtextxy(510,80,"Radius r=50");

 outtextxy(510,100,"Circle S1(90,190)");

 outtextxy(510,112,"Circle S1(200,200)");

 outtextxy(510,124,"Circle S1(210,100)");

}

define CS 3

void display_circle()

{

 Circle_Mid_Point(SHIFT_LR+90,SHIFT_UD+LENGTH-190,50);

 putpixel(SHIFT_LR+90,SHIFT_UD+LENGTH-190,15);

 Circle_Mid_Point(SHIFT_LR+200,SHIFT_UD+LENGTH-200,50);

 putpixel(SHIFT_LR+200,SHIFT_UD+LENGTH-200,15);

 Circle_Mid_Point(SHIFT_LR+210,SHIFT_UD+LENGTH-100,50);

 putpixel(SHIFT_LR+210,SHIFT_UD+LENGTH-100,15);

 settextstyle(2,0,4);

 outtextxy(SHIFT_LR+CS+90,SHIFT_UD+LENGTH+CS-190,"S1");

 outtextxy(SHIFT_LR+CS+200,SHIFT_UD+LENGTH+CS-200,"S2");

 outtextxy(SHIFT_LR+CS+210,SHIFT_UD+LENGTH+CS-100,"S3");

}

int main(void)

{

 int gdriver = DETECT, gmode;

 int x,y;

 initgraph(&gdriver, &gmode, "");

 settextstyle(7,0,2);

 outtextxy(200,5,"SIMULATION RESULTS");

 axis();

 display_circle();

 display_param();

 getch();

 closegraph();

 return 0;

}

III. Code for generating probability Table

#include<stdio.h>

#include<math.h>

void main()

{

float x1,y1,x2,y2,x3,y3,xp,yp,cxy[3],d[3],pxy[3],r,re,p_table,cxy1,cxy2,cxy3;

int i;

printf("\nEnter the co-ordinates of s1,s2,s3,sp");

scanf("%f%f%f%f%f%f%f%f",&x1,&y1,&x2,&y2,&x3,&y3,&xp,&yp);

printf("\nEnter range(r) and detection error(re)");

scanf("%f%f",&r,&re);

d[0]=sqrt((xp-x1)*(xp-x1)+(yp-y1)*(yp-y1));

d[1]=sqrt((xp-x2)*(xp-x2)+(yp-y2)*(yp-y2));

d[2]=sqrt((xp-x3)*(xp-x3)+(yp-y3)*(yp-y3));

printf("\nEnter the value of cxy1,cxy2,cxy3");

scanf("%f%f%f",&cxy1,&cxy2,&cxy3);

cxy[0]=cxy1 ;

cxy[1]=cxy2;

cxy[2]=cxy3;

for(i=0; i<3;i++)

{

if((d[i]<(r+re))||((d[i]==(r+re))))

pxy[i]=cxy[i];

else

pxy[i]=(1-cxy[i]);

}

p_table=pxy[0]*pxy[1]*pxy[2];

printf("\nFinal probability is %f",p_table);

}
IV. Code for generating trace of target
#include <iostream.h>

#include <conio.h>

#include <graphics.h>

#include <stdlib.h>

#include <stdio.h>

void Print_pixel(int x_center, int y_center,int x,int y)

{

 putpixel(x_center+x, y_center+y, 15);

 putpixel(x_center-x, y_center+y, 15);

 putpixel(x_center+x, y_center-y, 15);

 putpixel(x_center-x, y_center-y, 15);

 putpixel(x_center+y, y_center+x, 15);

 putpixel(x_center-y, y_center+x, 15);

 putpixel(x_center+y, y_center-x, 15);

 putpixel(x_center-y, y_center-x, 15);

}

void Circle_Mid_Point(int x_center, int y_center, int radius)

{

 int p,x,y;

 x=0;

 y=radius;

 Print_pixel(x_center,y_center,x,y);

 p=1-radius;

 while(x<y)

 {

 if(p<0)

x++;

 else

 {

x++; y--;

 }

 if(p<0)

p=p+2*x+1;

 else

p=p+2*(x-y)+1;

 Print_pixel(x_center,y_center,x,y);

 }

}

define SHIFT_UD 50

define SHIFT_LR 100

define LENGTH 300

// AXIS CENTER (SHIFT_LR, SHIFT_UD+LENGTH)

void axis()

{

 char str[10];

 line(SHIFT_LR,SHIFT_UD+LENGTH,SHIFT_LR,SHIFT_UD); // draw X-axis

 line(SHIFT_LR,SHIFT_UD+LENGTH,SHIFT_LR+LENGTH,SHIFT_UD+LENGTH); // draw Y-axis

 //draw x scale

 for(int i=0; i<=300; i+=20)

 {

 line(SHIFT_LR,SHIFT_UD+LENGTH-i,SHIFT_LR-5,SHIFT_UD+LENGTH-i);

 itoa(i,str,10);

 settextstyle(2,0,4);

 settextjustify(2,2);

 outtextxy(SHIFT_LR-15,SHIFT_UD+LENGTH-i-5,str);

 }

 //draw y scale

 for(i=0; i<=300; i+=20)

 {

 line(SHIFT_LR+i,SHIFT_UD+LENGTH,SHIFT_LR+i,SHIFT_UD+LENGTH+5);

 itoa(i,str,10);

 settextstyle(2,1,4);

 settextjustify(1,2);

 outtextxy(SHIFT_LR+i,SHIFT_UD+LENGTH+10,str);

 }

}

void display_param()

{

 settextstyle(2,0,4);

 settextjustify(0,1);

 rectangle(500,50,630,150);

 outtextxy(510,60,"Scale 1=10 Pixels");

 outtextxy(510,80,"Radius r=3");

 outtextxy(510,100,"Circle S1(115,181)");

 outtextxy(510,112,"Circle S1(183,177)");

 outtextxy(510,124,"Circle S1(195,120)");

}

define CS 3

void display_circle()

{

 Circle_Mid_Point(SHIFT_LR+115,SHIFT_UD+LENGTH-181,1);

 putpixel(SHIFT_LR+115,SHIFT_UD+LENGTH-181,15);

 Circle_Mid_Point(SHIFT_LR+183,SHIFT_UD+LENGTH-177,1);

 putpixel(SHIFT_LR+183,SHIFT_UD+LENGTH-177,15);

 Circle_Mid_Point(SHIFT_LR+195,SHIFT_UD+LENGTH-120,1);

 putpixel(SHIFT_LR+195,SHIFT_UD+LENGTH-120,15);

 settextstyle(2,0,4);

 outtextxy(SHIFT_LR+CS+115,SHIFT_UD+LENGTH+CS-181,"S1");

 outtextxy(SHIFT_LR+CS+183,SHIFT_UD+LENGTH+CS-177,"S2");

 outtextxy(SHIFT_LR+CS+195,SHIFT_UD+LENGTH+CS-120,"S3");

}

define CSLx 20

void display_line()

{

int t0x=130,t0y=150,t1x=140,t1y=150,t2x=150,t2y=150;

int t3x=150,t3y=140,t4x=160,t4y=140,t5x=170,t5y=140;

int t6x=170,t6y=150,t7x=170,t7y=160;

line(SHIFT_LR+t0x,SHIFT_UD+LENGTH-t0y,SHIFT_LR+t1x,SHIFT_UD+LENGTH-t1y);

line(SHIFT_LR+t1x,SHIFT_UD+LENGTH-t1y,SHIFT_LR+t2x,SHIFT_UD+LENGTH-t2y);

line(SHIFT_LR+t2x,SHIFT_UD+LENGTH-t2y,SHIFT_LR+t3x,SHIFT_UD+LENGTH-t3y);

line(SHIFT_LR+t3x,SHIFT_UD+LENGTH-t3y,SHIFT_LR+t4x,SHIFT_UD+LENGTH-t4y);

line(SHIFT_LR+t4x,SHIFT_UD+LENGTH-t4y,SHIFT_LR+t5x,SHIFT_UD+LENGTH-t5y);

line(SHIFT_LR+t5x,SHIFT_UD+LENGTH-t5y,SHIFT_LR+t6x,SHIFT_UD+LENGTH-t6y);

line(SHIFT_LR+t6x,SHIFT_UD+LENGTH-t6y,SHIFT_LR+t7x,SHIFT_UD+LENGTH-t7y);

settextstyle(2,1,4);

outtextxy(SHIFT_LR+t0x,SHIFT_UD+LENGTH-t0y,"t0 Start");

Circle_Mid_Point(SHIFT_LR+t0x,SHIFT_UD+LENGTH-t0y,1);

Circle_Mid_Point(SHIFT_LR+t1x,SHIFT_UD+LENGTH-t1y,1);

Circle_Mid_Point(SHIFT_LR+t2x,SHIFT_UD+LENGTH-t2y,1);

Circle_Mid_Point(SHIFT_LR+t3x,SHIFT_UD+LENGTH-t3y,1);

Circle_Mid_Point(SHIFT_LR+t4x,SHIFT_UD+LENGTH-t4y,1);

Circle_Mid_Point(SHIFT_LR+t5x,SHIFT_UD+LENGTH-t5y,1);

Circle_Mid_Point(SHIFT_LR+t6x,SHIFT_UD+LENGTH-t6y,1);

Circle_Mid_Point(SHIFT_LR+t7x,SHIFT_UD+LENGTH-t7y,1);

settextstyle(2,0,4);

outtextxy(SHIFT_LR+CSLx+t7x,SHIFT_UD+LENGTH-t7y,"t7 End");

putpixel(SHIFT_LR+t7x,SHIFT_UD+LENGTH-t7y,4);

}

int main(void)

{

 int gdriver = DETECT, gmode;

 int x,y;

 initgraph(&gdriver, &gmode, "");

 settextstyle(7,0,2);

 outtextxy(200,5,"SIMULATION RESULTS");

 axis();

 display_circle();

 //display_param();

 display_line();

 getch();

 closegraph();

 return 0;

}

References
1.S.Sitharama Iyengaar and Qishi Wu “Computational Aspects of Distributed Sensor

 Networks”, Proceedings of the International Symposium on Parallel Architectures,

 Algorithms and Networks (ISPAN.02).
2.The Free On-line Dictionary of Computing.

3.IEEE1451.2, “Definition of sensors” vol.2, July 2001,page no.-45-47.
4. Wesson R. ,“Network structures for distributed situation assessment,” IEEE

 Transactions on Systems ,Man and Cybernetics ,Jan.1981,pp.5-23.

5.Jayasimha,D.N.,Iyengar,S.S.,and Kashyap, R.L., “Information Integration and

 Synchronization in Distributed Sensor Networks ”,Tech.Rpt.8, Dept. of Computer

 &Information Science ,The Ohio State Univeristy,Feb.1991 .IEEE Transactions on SMC

 ,Sept.1991.

6.Prasad,Lakshman,Iyengar,S.S.,Kashyap,R.L.,Madan,R.N.,“Functional Characterization

 of Sensor Integration in Distributed Sensor Networks ” ,TR-EE-91-23,Dept.of Electrical

 Engineering, Purdue Univ.1991 .IEEE Transactions on SMC ,Sept.1991.

7. Iyengar,S.S., Jayasimha, D.N.,Nadig, Deepak, and Pradhan,D.K.,“ A V rsatil

 Architecture for the Distributed Sensor Integration Problem,” IEEE Transactions on

 Computers ,Vol.43,No.2, February 1994.
8.Yi Zou and Krishnendu Chakrabarty,Duke University “Sensor Deployment and Target

 Localization in Distributed Sensor Networks” ACM Transactions on Embedded

 Computing Systems,Vol. 3, No. 1, Februrary 2004,pages 61-91.

9. H. Qi, S. S. Iyengar, and K. Chakrabarty, “Multi-resolution data integration using

 mobile agents in distributed sensor networks”, IEEE Transactions on System, Man and

 Cybernetics (Part C), vol. 31, pp. 383-391, August 2001.

10. S. S. Iyengar, L. Prasad and H. Min, Adances in Distributed Sensor Technology,

 Prentice Hall, Englewood Cliffs, NJ, 1995.

11. K. Chakrabarty, S. S. Iyengar, H. Qi and E. Cho, “Grid coverage for surveillance and

 target location in distributed sensor networks”, IEEE Transactions on Computers, vol.

 51, pp. 1448-1453, 2002.

12. K. Chakrabarty, S. S. Iyengar, H. Qi and E. Cho, “Coding Theory Framework for

 Target Location in Distributed Sensor Networks”, Proc. International Symposium on

 Information Technology: Coding and Computing, pp.130-134, 2001.

13. A. Howard, M. J. Matari´c and G. S. Sukhatme, “Mobile Sensor Network

 Deployment Using Potential Field: a distributed scalable solution to the area coverage

 problem”, to appear in Proc. International Conference on Distributed Autonomous

 Robotic Systems”, June 2002.

14. S. A. Musman, P. E. Lehner and C. Elsaesser, “Sensor Planning for Elusive Targets”,

 Journal of Computer & Mathematical Modeling, vol. 25, No. 3, pp. 103-115, 1997.

15. S. Meguerdichian, S. Slijepcevic, V. Karayan and M. Potkonjak, “Coverage problems

 in wireless ad-hoc sensor networks”, Proc. IEEE Infocom, vol. 3, pp. 1380-1387, 2001.

16. A. Elfes, “Occupancy Grids: A Stochastic Spatial Representation for Active Robot

 Perception”, Proc. 6th Conference on Uncertainty in AI, pp. 60-70, July 1990.

17. R. R. Brooks and S. S. Iyengar, Multi-Sensor Fusion: Fundamentals and Applications

 with Software, Prentice Hall, Upper Saddle River, NJ, 1997.

18.S. S. Dhillon, K. Chakrabarty and S. S. Iyengar, “Sensor placement algorithms for

 grid coverage”, Proc. International Conference on Information Fusion, pp. 1581-1587,

 2002.

19. M. Locateli and U. Raber, “Packing equal circles in a square: a deterministic global

 optimization approach”, Discrete Applied Mathematics, vol. 122, pp. 139-166, October

 2002.

20. N. Bulusu, J. Heidemann and D. Estrin, “Adaptive beacon placement”, Proc.

 International Conference on Distributed Computing Systems, pp. 489-498, 2001.

21. N. B. Priyantha, A. Chakraborty and H. Balakrishnan, “The cricket location-support

 system”, Proc. ACM/IEEE International Conference on Mobile Computing and

 Networking, pp. 32-43, 2000.

22 .J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, New

 York, NY, 1987.

23. T. Kasetkasem and P. K. Varshney, “Communication structure planning for multi

 sensor detection systems”, IEE Proc. Radar, Sonar and Navigation, vol. 148, pp. 2-8,

 February 2001.

24. D. E. Penny, “The automatic management of multi-sensor systems”, Proc.

 International Conference on Information Fusion, July 1998.

25. Marzullo, K., “Tolerating Failures of Continuous- Valued Sensors”, ACM

 Transactions on Computer Systems, Vol. 4, no. 4, Nov. 1990, pp. 284-304.

26. Leslie Lamport, “Synchronizing time servers”. Technical Report 18, Digital System

 Research Center, 1987.
27. E.C. Cho, S.S. Iyengar, K. Chakrabarty, H. Qi, “A New Fault-tolerant Interval

 Integration Function Satisfying Local Lipschitz Condition”, paper in preparation.

28. R. Brooks and S.S. Iyengar, “Multi-sensor Fusion: Fundamental and Application

 Software”, Prentice Hall, 1998, Prentice Hall Incorporation, pp. 488.

29. N.S. V. Rao, “Computational Complexity Issues in Operative Diagnosis of Graph-

 based Systems”. IEEE Transactions on Computers, Vol.42, pp. 447-457, April 1993.

30. K. Chakrabarty, S.S. Iyengar, H. Qi, E. Cho, “Grid coverage for surveillance and

 target location in distributed sensor networks”, to appear in IEEE Transactions on

 Computers, December 2001.

31. Q. Wu, N.S. Rao, S.S. Iyengar, “Computational Complexities of Sensor Deployment

 Problems”, paper in preparation.

32. Robert J. Fowler, Michael S. Paterson, Steven L. Tanimoto, “Optimal Packing and

 Covering in the Plane are NP-complete”, Information Processing Letters, Vol. 12,

 number 3, 1981.

33. Q. Wu, S.S. Iyengar, N.S. Rao etc., “On Efficient Deployment of Probabilistic

 Detectors in the Plane”, submitted to IEEE Transactions onComputers, 2001.
34. H. Qi, S.S. Iyengar, K. Chakrabarty, “Distributed Multi-Resolution Data Integration

 Using Mobile Agents”, Proc. IEEE Aerospace Conference, vol. 3, pp. 1133-1141,

 2001.
35. Q. Wu, S.S. Iyengar, V.K. Vaishnavi, etc. “A Genetic Algorithm for Optimal

 Itinerary in Mobile Agent based Distributed Sensor Networks”, paper in preparation.

 Proceedings of the International Symposium on Parallel Architectures, Algorithms and

 Networks (ISPAN.02)

36. R. Wotton and J. Craig, Introduction to Telemedicine. The Royal Society of Medicine

 Press, 1999.

37. R- IstePanian, M- Brien, and Smith) “Modelling the photoplethysmography mobile

 telemedical system,” in Proceedings on the 19th Annual IEEE International

 Conference of the Engineering in Medicine and Biology Society, pp. 987-990, Oct.

 1997.

38. R. H. Istepanian, B. Woodward, P. Balos, S. Chen, and B. Luk, “The comparative

 performance of mobile telemedical systems using the IS54 and GSM cellular telephone

 standards,” Journal of Telemedicine and Telecare, vol. 5,no. 2, pp. 97-104, 1999.

39.R. H. Istepanian and S. Chandran, “Enhanced telemedicine applications with next

 generation wireless systems,” in Proceedings of the 21th IEEE Annual International

 Conference of Engineering in Medicine and Biology, Oct. 1999.

40.R. Prasad, Third Generation Mobile Communication Systems. Artech House

 Publishers,London-Boston, 2000.

41.N. J. Muller, IP Convergence: The next revolution in telecommunications. Artech

 House Publishers, London-Bos t on, 2000.

42. D. Tennenhouse, Proactive Computing, Communications of the ACM, vol.43, pp. 43-

 50, May 2000.

43. G.J. Pottie, W.J. Kaiser, “Wireless Integrated Network Sensors,” Communications of

 the ACM, vol.43, pp. 51-58, May 2000.

44. G. Borriello, R. Want, “Embedded Computation Meets The World Wide Web,”

 Communications of the ACM, vol.43, pp. 59-66, May 2000.

45. G.S. Sukhatme, M.J. Mataric, “Embedding Robots Into The Internet,”

 Communications of the ACM, vol.43, pp. 67-73, May 2000.

46. F. Aurenhammer, “Voronoi Diagrams – A Survey Of A Fundamental Geometric Data

 Structure,” ACM Computing Surveys 23, pp. 345-405, 1991.

47. Z.J. Butler, A.A. Rizzi, R.L. Hollis, “Contact Sensor-Based Coverage Of Rectilinear

 Environments,” IEEE International Symposium on Intelligent Control Intelligent

 Systems and Semiotics, pp. 266-271, Sept. 1999.

48. W.W. Gregg, W.E. Esaias, G.C. Feldman, R. Frouin, S.B. Hooker, C.R. McClain,

 R.H. Woodward, “Coverage Opportunities For Global Ocean Color In A

 Multimission Era”, IEEE Transactions on Geoscience and Remote Sensing, vol.36, pp.

 1620-7, Sept. 1998.

49. K. Mulmuley, Computational Geometry: An Introduction Through Randomized

 Algorithms, Prentice-Hall, 1994.

50. Z.J. Haas, “On The Relaying Capability Of The Reconfigurable Wireless Networks,”

 IEEE 47th Vehicular Technology Conference, vol.2, pp. 1148-52, May 1997.

51. C. Hofner, G. Schmidt, “Path Planning And Guidance Techniques For An

 Autonomous Mobile Cleaning Robot,” Robotics and Autonomous Systems, vol.14, pp.

 199-212, May 1998.

52. C.W. Kang, M.W. Golay, “An Integrated Method For Comprehensive Sensor

 Network Developement In Complex Power Plant Systems,” Reliability Engineering &

 System Safety, vol.67, pp. 17-27, Jan. 2000.

53. M. Marengoni, B.A. Draper, A. Hanson, R.A. Sitaraman, “System To Place

 Observers On A Polyhedral Terrain In Polynomial Time,” Image and Vision

 Computing, vol.18, pp. 773-80, Dec. 1996.
54. A. Molina, G.E. Athanasiadou, A.R. Nix, “The Automatic Location Of Base-Stations

 For Optimised Cellular Coverage: A New Combinatorial Approach,” IEEE 49th

 Vehicular Technology Conference, vol.1, pp. 606-10, May 1999.

55. K. Lieska, E. Laitinen, J. Lahteenmaki, “Radio Coverage Optimization With Genetic

 Algorithms,” IEEE International Symposium on Personal, Indoor and Mobile Radio

 Communications, vol.1, pp. 318-22, Sept. 1998.

56. G.F. Van Blaricum, “Tactical Air Surveillance Radar Netting Simulator/Emulator,”

 AD_A110382, 1982.

57. Q. Weiyan, P. Yingning, L. Dajin, H. Xiuying, “Approach To Radar Netting,”

 Journal of Tsinghua University (Science and Technology), vol.37, pp. 45-8, April

 1997.

58. A. Savvides, F. Koushanfar, M. Potkonjak, M.B. Srivastava, “Location Discovery in

 Ad-hoc Wireless Sensor Networks,” unpublished, UCLA EE and CS Departments.

59. Personal communication with J. Agre, Rockwell Siences Center. DARPA Program

 Review Meeting, Feb. 2000.

60. Nancy Lynch, Distributed Algorithms, Morgan Kaufman Publishers,1996.

61.Yashwant Kanetkar, “Let Us C”, BPB Publications.

62.Brian W. Kernighan and Dennis M. Ritchie, “The C Programming Language”,

 Pearson Education.

Appendix

Sensor

 An electronic device used to measure a physical quantity such as temperature, pressure or loudness and convert it into an electronic signal of some kind (e.g a voltage). Sensors are normally components of some larger electronic system such as a computer control and/or measurement system. Analog sensors most often produce a voltage proportional to the measured quantity. The signal must be converted to digital form with a ADC before the CPU can process it. Digital sensors most often use serial communication such as EIA-232 to return information directly to the controller or computer through a serial port. (1997-04-15)[2].

OR

 The generic name for a device that senses a change in a physical quantity such as light, sound or radio waves and converts that change into a useful input signal for an information-gathering system[2].

OR

Device that produces an output (usually electrical) in response to stimulus such as incident radiation. Sensors aboard satellites obtain information about features and objects on Earth by detecting radiation reflected or emitted in different bands of the electromagnetic spectrum. Analyzing the transmitted data provides valuable scientific information about Earth. Weather satellites commonly carry radiometers, which measure radiation from snow, ice, clouds, and bodies of water. Spaceborne radars are used for Earth observations, bouncing radar waves off land and ocean surfaces to study sea-surface conditions, ice thickness, and land surface features. A wind scatterometer is a special type of radar designed to measure ocean surface winds indirectly by bouncing signals off the water and measuring them from various angles. Infrared (IR) detectors measure heat generated by Earth features in the IR band of the spectrum. Photographic reconnaissance sensors in their simplest form are large telescope-camera systems used to view objects on Earth's surface. The bigger the lens, the smaller the object that can be detected. Camera-telescope systems now incorporate all sorts of sophisticated electronics to produce better images, but even these systems need cloudless skies, excellent lighting, and good color contrast between objects and their surroundings to detect objects the size of a basketball. Some of the satellites produce film images that must be returned to Earth, but a more convenient method is to record the image as a series of digital code numbers, then reconstruct the image from the electronic code using a computer at a ground station[2].

· Types of sensors defined in IEEE 1451.2 :

· Sensor:

Takes a new sample with each trigger.

· Buffered Sensor:

Behaves like a sensor, but makes the data acquired on the previous trigger available for immediate reading.

· Data Sequence Sensor:

Acquires a sequence of measurements without missing a sample.

· Buffered Data Sequence Sensor:

Keeps the most recent readings in its buffer so that it is always available to be read immediately after a trigger.

· Event Sequence Sensor:

 Armed by the trigger and responds with an acknowledge signal when the

 event is detected[3].
_1183485609.unknown

_1183492583.unknown

_1183741813.unknown

_1183832703.unknown

_1183832860.unknown

_1183742422.unknown

_1183493213.unknown

_1183534322.unknown

_1183534341.unknown

_1183493236.unknown

_1183492598.unknown

_1183486147.unknown

_1183486181.unknown

_1183485745.unknown

_1183460080.unknown

_1183476345.unknown

_1183481756.unknown

_1183460977.unknown

_1183404561.unknown

_1183460047.unknown

_1183395394.unknown

