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Abstract 
 

 

 

The accelerating growth of LAN traffic is pushing network administrators to look for 

even higher-speed backbone network technology, which can be compatible with existing 

Ethernet installation. Gigabit Ethernet is one such higher speed network technology. . 

Gigabit Ethernet uses the same frame format, and functions as its 10Mbps and 100Mbps 

precursors. It offers1000Mbps bandwidth and uses the same CSMA/CD protocol. This 

works evaluates the performance of Gigabit Ethernet and also presents a comparative study 

of Gigabit Ethernet against Fast Ethernet. It is shown that half-duplex Gigabit Ethernet 

achieves over 70% throughput with a 100% offered load. It is also shown that as packet size 

increases, the performance of Gigabit Ethernet Exceeds the performance of Fast Ethernet.  
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 Chapter-1 

INTRODUCTION 
 

1.1 . Evolution of Gigabit Ethernet  
As companies rely on application like electronic mail and database management for 

core business operations, computer networking becomes increasingly more important. A 

network is a set of communication links for interconnection a collection of terminals, 

computers, telephones, printer or other type of data handling devices. These devices are 

refereed to as stations. A local Area network (LAN) allows multiple stations within a 

building or campus area to exchange information among themselves. In the late 1970s and 

early 1980s LANs made a dramatic entrance into the communication scene. Now Ethernet 

is the world’s most pervasive LAN technology. It operates at the data rate of 10Mbps, and 

employs Carrier Sense Multiple Access with Collision Detection (CSMA/CD) protocol to 

access the common channel. 

Since modern organization depend upon their LANs to provide connection for a 

growing number of complex desktop computer applications, the volume of the network 

traffic increases. As the volume of network increases, the bandwidth offered by a 10Mbps 

Ethernet LAN becomes inadequate to maintain acceptable performance. This created a need 

for high-speed networks. 

As the high-speed LAN becomes the leading choice. Fast Ethernet provides 10-

times higher bandwidth than 10-Mbps Ethernet and is compatible with existing Ethernet 

This establishing Ethernet as a scalable technology. But the growing use of Fast Ethernet 

connection to servers and desktops, however is creating a clear need for an even higher-

speed network technology at the backbone and server level. 

Before Gigabit Ethernet appeared, ATM was the ultimate promise for handling the 

traffic at the backbone level. But ATM consumes 25-30 percent bandwidth overhead as 

LAN frames are fragmented and turned into cells. Its ever-increasing complexities delayed 

atm’s real world debut. Even now, fundamental ATN standards are still being defined, and 

the technology is just beginning to roll out with capabilities needed for general use. 
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But the newly and timely arrived, Gigabit Ethernet is a 1000Mbps (1Gbps) 

extension of the same CSMA/CD protocol for accessing the channel and uses the same 

Ethernet frame format. From 10Mbps Ethernet to 100Mbps Fast Ethernet, there is an 

enormous installed base of Ethernet drivers, and adapters that Gigabit Ethernet perfectly fits 

as a backbone core. 

 

1.2 Organization of the Thesis 
  The objective of this work is to 

1. Simulate Gigabit Ethernet using Discrete Event Simulation Technique. 

2. Analyze Gigabit Ethernet’s performance using simulator. 

3. Compare the performance of Gigabit Ethernet with that of Fast Ethernet. 

 

1.3  Organization of The Thesis 
 The thesis has six chapters. Chapter-1 is introductory. Ethernet and it’s operation are 

given in Chapter-2. An overview of Fast Ethernet is also included in this chapter. Chapter –

3 gives a detailed view of Gigabit Ethernet. Chapter-4 introduces some of the important 

discrete event simulation concepts and the implementation details of Gigabit Ethernet 

simulator for various inputs. It also gives an interpretation to these results. The conclusion 

and future scope of work have been included in Chapter-6. 
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Chapter-2 

Ethernet and Fast Ethernet 
 

2.1 Introduction  
 Ethernet is a multi-access, packet –switched communication system for carrying 

digital data among locally distributed systems. Ethernet is characterized by use of specified 

packet format and set of rules for transmitting packets. 

 This chapter deals in detail about Ethernet and Fast Ethernet. This chapter begins 

with an important family of standards for LAN developed by IEEE.Section 2.3 

gives information about Ethernet’s packet format. Section 2.4 gives Ethernet’s operation in 

detail. Section 2.6 presents an overview of Fast Ethernet. Finally, the chapter ends with a 

conclusion in section 2.7. 

 

2.2 IEEE LAN Standards 

 The shared communication channel in an Ethernet is a passive broadcast medium 

with no central control; packet address recognition is used in each to take packets from the 

channel. Access to the channel by stations wishing to transmit is coordinated in distributed 

fashion by stations themselves, using a statistical arbitration scheme. IEEE developed a 

family of standards for LANs to enable equipment of variety of manufactures to interface. 

This family is called the IEEE 802 family. The components of the IEEE-802 standard are as 

follows: 

802.1 Overview, Internetworking, and Systems management. 

802.2 Logical Link Control (LLC) 

802.3 CSMA/CD bus 

802.4 Token bus. 

802.5 Token ring. 

802.6 Metropolitan Area Networks (MANs) 

802.7 Advisory group for broadband transmission. 

802.8 Advisory group for fiber optics. 
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802.9 Integrated voice and data LANs 

802.10 Standard for Interoperable LAN security(SILS) WG 

802.11 Wireless LAN WG 

802.12 Demand Priority WG 

A comparison of the IEEE-802standards to the OSI Model is shown here: 

 

 

  

 

 

 

 

  

 

    

The IEEE-802 data link layer is divided into following two sublayers: 

1.Logical Link Control. 

2. Medium Access Control. 

 The MAC layer is responsible for using either a random or a token procedure. 

For controlling access to the channel, and it handles frame delimiting, address recognition 

and error-checking functions. The LLC layer, which is above the MAC layer, provides two 

types of user services: an unacknowledged connectionless service and a set of connection-

oriented services. 

2.3 Ethernet Packet Format 
 Stations using Ethernet must be to transmit and receive packets  

On the common channel with the packet format and spacing as shown here: 
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Packet 

Fig: 2.2 Ethernet Packet Format 

Each packet is a sequence of 8-bit bytes. The least significant bit of each byte is transmitted 

first. The fields are defined as follows: 

 

Preamble: 

 This is a 56-bit (7-byte) synchronization pattern consisting of alternating ones and 

Zeros, which is used to ensure receiver synchronization. 

 

Start-Frame Delimiter: 

 The 1-byte start-frame delimiter is similar to the preamble, except that it ends with 

two consecutive one bits. Thus, 10101011 give the start-frame delimiter. 

 

Destination Address: 

 This 48-bit field specifies to which station the packet is addressed. The address 

Can be either a unique station on the Ethernet, or it can be a multidestination address. 

 

Source Address: 

 The two-byte field indicates the number of information bytes being supplied 
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by the LLC layer for the data field. 

 

Data field: 

The IEEE-802 Standard recommends that the data field has a length between 46 and 

1500 bytes. The 46-bytes minimum ensures that valid packet will distinguishable from 

collision fragment. Thus Ethernet has a minimum ensures that valid packet will be 

distinguishable from collision fragment. Thus Ethernet has minimum frame size of 64 –

bytes(excluding preamble 7-bytes and start-frame delimiter 1-byte).Another important 

reason for having a minimum frame size is to prevent a station from completing the 

transmission of a frame before the first bit has reached the far end of the cable , where it 

may collide with another frame. Therefore, the minimum time to detect a collision is the 

time it takes for the signal to propagate from one end of cable to the other. This minimum 

time is called the Slot time. The number of bytes that can be transmitted in a slot time is 

called the Slot size. In Ethernet, the slot size is 64 bytes. Therefore for a 10Mbps Ethernet 

with a minimum length of 2500 meters and 4 repeaters, the minimum allowed frame must 

take 51.2 μsec. 

 

Frame check Sequence: 

This part of the frame contains a 32-bit (4-byte) cyclic redundancy check (CRC) 

code for error detection. The CRC covers the destination address, source address, length, 

and data fields. 

Maximum Packet Size: 1526 bytes 

Minimum Packet Size: 72 bytes. 

Minimum Packet Spacing: 

 The minimum time that must elapse after one transmission before another 

transmission is started is 9.6μsec. 

 

Collision Filtering: 

Any received bit sequence smaller than the minimum valid packet size is discarded 

as a collision fragment. 
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2.4 Ethernet Operation 
Access to a Ethernet’s shared communications channel is managed with a 

distributed control policy specified by IEEE 802.3 standard known as 1 Persistent Carrier 

Sense Multiple Access with Collision Detection or 1-persistant CSMA/CD. A station 

wishing to transmit is said to “contend” for use of the common shared communications 

channel (called Ether) until it “acquires” the channel, once the channel is acquired the 

station uses it to transmit a packet. 

To acquire the channel, station check whether the network is busy (Carrier Sense) 

and defer transmission of their packet until the Ether is quiet (no transmission occurring). 

When quiet is detected, the deferring station begins to transmit with probability one (1-

persistent). 

If the channel is busy, and there is a packet ready to be sent out, the MAC sublayer 

defers to the passing frame by delaying the transmission of its own waiting packet. After 

the last bit of the frame from other station has passed by, the MAC sublayer continues to 

defer for a certain time period called an interframe spacing. Transmission of any waiting 

packet is initiated at the end of this time. When the transmission is completed (or 

immediately at the end of the interframe spacing time if no packet is waiting in the 

transmission buffer), the MAC sublayer resumes monitoring the carrier-sense signal. 

During transmission, the transmitting station listen for a collision. In a correctly functioning 

system, collision occur only within a short time interval following the start of transmission, 

since after this interval all stations will detect carrier and defer transmission. This time 

interval is called collision window or the collisions interval and is a function of the end-to-

end propagation delay. If no collisions occur during this time , a transmitter has acquired 

the Ether and continues transmission of the packet. If a station detects collision, the 

transmission of the rest of the packet is immediately aborted, and a jamming signal is 

transmitted. To minimize repeated collision, each station involved in a collision tries to 

retransmit at a different time by scheduling the retransmission to take place after a random 

delay period. By using random delay period, the stations, which were involved in the 

collisions, are not likely to have another collision on the next transmission attempt. 
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However, to ensure that this backoff technique maintains stability, a method known as 

truncated binary exponential backoff is used in Ethernet. 

 

2.4.1 Binary Exponential Backoff (BEB) Algorithm: 
 

 A station that finds it participating in a collision aborts its transmission and then 

goes to sleep for a random period of time, called the backoff time, before attempting to 

retransmit its packet. This present IEEE-802.3 standard prescribe the BEB algorithm as the 

method for station to determine its backoff time. The BEB algorithm is given by: 

 K=Min (attempts, 10) 

Backoff=Random (0,2k) 

Wait for backoff number of slot times 

Before proceeding to retry. 

  

 The function Random (0, 2k) returns an integer random value uniformly distributed 

from 0 to 2k-1 slot times. The variable is incremented each time the given packet is 

transmitted. Thus the average backoff delay doubles after each collision that a station 

experience on a given packet. If the packet remains undelivered when attempts reaches 16, 

the , the packet is discarded with an excessive collision error. 

 

2.4.2 Ethernet Addressing 
 IEEE-802.3 standard allow 2-byte or 6-byte addresses, but Ethernet uses only the 6-

byte addresses. The higher-order bit of the destination address is 0 for ordinary addresses 

and 1 for group address. Group addresses allow multiple stations to listen to a single 

address. When a frame is sent to a group address, all the station in the group receive it. 

Sending to a group of station is called multicast. The address consisting of all 1 bits is 

reserved for broadcast. A frame consisting of all 1s in the destination field is delivered to all 

station on the network. 
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 The 46th bit (adjacent to the high-order bit) is used to distinguish local and global 

addresses. Local addresses are assigned by each network administrator and have no 

significance outside the local network. Global addresses is contrast, are assigned by IEEE 

to ensure that no two station anywhere in world have the same global addresses. Therefore 

any station can uniquely address any other station by just giving the right 48-bit number. 

 

The basic operating characteristics of the CSMA/CD protocol are outlined in the 

following diagram. 
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Capture Effect: 
 Ethernet channel capture is a phenomenon in which the Ethernet media access 

control (MAC) system can become biased for a short term toward one station on a heavily 

loaded network. Under certain circumstances, this allows a station to more frequently win 

the contention for the channel, or “capture” the channel, while that station has something to 

send. 

 The time required to acquire the channel to send the next packet in the transmit 

queue resembles a “reverse lottery”: most packets get sent as soon as they reach the head of 

the transmit queue, but a few suffer spectacularly large delays. 

 Under BEB, the updates to the collision counter at each host are done independently 

and only in response to actual transmission attempts by the given host. Thus, in particular, 

only the “winner” gets to reset its collision counter after a successful packet transmission. 

 This asymmetry in the treatment of the collision counters can permit a single busy 

host to “capture” the network for an extended period of time , in the following way. If we 

examine the system during a contention interval, when several action hosts are competing 

for control of the channel, we would expect each of them to possess a non-zero collision 

counter. Eventually, one of those hosts will acquire the channel and deliver its packet. At 

the next end-of-carrier event, the remaining host will still have non-zero collision values, 

but the “winning” host will reset its collision counter to zero before returning to 

competition. If the  “winning” host has more packets in its transmit queue (and its network 

interface is fast enough), it is free to transmit its next packet immediately. Conversely, the 

rest of the hosts may be delayed until their latest backoff interval expires. Furthermore, 

should any of them collide with the “winning” host, Observe that the “winner” randomize 

their next retry over a (much) larger interval. Thus, the same host is likely to “win” a 

second time, in which case the same situation will be repeated at the next end-of-carrier 

event except the other hosts collision counters have gotten larger. Thus, it is even more 

likely that the winner’s “run” of good luck will continue until its transmit queue is emptied, 

or some other especially-unlucky host’s collision counter “wrap around” after 16 failed 

attempts---causing it to compete more aggressively for control of the channel after reporting 

an excessive collision error. 
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 Although the Ethernet capture effects can cause significant short- term unfairness 

(in terms of the channel access delays experienced by different hosts), one not forgets the 

fact that it can also help performance under some circumstances. In particular, capture 

increases the capacity of the network by allowing a host to spread the “cost” of acquiring 

the channel during an Ethernet MAC layer contention period over multiple packet 

transmissions. 

 

2.5 Transmission Media: 
 An important part of designing and installing an Ethernet is selecting the appropriate 

Ethernet medium. There are four major types of media in use today. Thickwire for 10Base5 

(10Mbps, uses baseband signaling and can support segments of up to 500 meters) networks, 

thin coax for 10 Base2 networks and fiber optic for 10BaseFL networks. Thickwire was one 

of the first cabling systems used in Ethernet, but was expensive and difficult to use one of 

first cabling systems used in Ethernet, but it excellent noise immunity and is the method of 

choice when running between building or widely separated hubs. 

2.6 FAST ETHERNET 
 Fast Ethernet is the generic term for the Ethernet network technology that runs at 

100Mbps over either UTP or fiber-optic cable and is the successor to 10Mbps (10BaseT). It 

works on the basis of IEEE-802.3u standard approved in June 1995. 802.3u is not a new 

standard, but an addendum to the existing 802.3 standard. The Ethernet networks uses the 

same CSMA/CD protocol that normal 10Mbps Ethernet uses. 

 The maximum cable length permitted in Ethernet is 2.5km (with a maximum of four 

repeaters on any path). As the bit rate increases, the sender transmits the frame faster. As a 

result, if the frame sizes and cable lengths are maintained, then a station may transmit a 

frame too fast and not detect a collision at other end of the cable. So one of the two things 

has to be done: 

(i) Keep the maximum cable length and increase the slot time (OR) 

(ii) Keep the slot time same and decrease the maximum cable length(OR) 

(iii) Both. 
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In the Fast Ethernet, the maximum cable length is reduced to only 200 meters, 

leaving the minimum frame size and slot time intact. 

In particular, the parameter table for 100Mbps Fast Ethernet was changed as 

follows: 

 

Parameters Values 

Slot time 512 bit times 

Inter Frame Gap 0.96µs 

Attempt Limit 16 

Backoff Limit 10 

Jam Size 32 bit 

Max Frame Size 1518 bytes 

Min Frame Size 512 bits 

Burst Limit Not applicable 

 

           Technically, it would have been possible to copy 10Base-5 or 10Base-2 and 

still detect collision on time by just reducing the maximum cable length by a factor of 10. 

However, the advantage of 10Base-t wiring so overwhelming, that Fast Ethernet is based 

entirely on this design. Thus all Fast Ethernet systems use hubs. Beside the operating rate 

the main difference concern type of network cabling, the data encoding method and the 

network spans. 

 

2.6.1 Media Independent Interface of Fast Ethernet: 

  The various layers of Fast Ethernet protocol architecture are shown here in 

the following figure: 
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                    MAC-Media Access Control Layer 
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  The Media Independent Interface (MII) is the interface between the MAC 

layer and the Physical layer. It allows any physical layer to be used with MAC layer. MII  

can accommodate two specific data rates of 10 and 100 Mbps, thereby permitting the 

support of 10-Base-T nodes at Fast Ethernet hubs. To reconcile the MII signal with MAC 

signal , the reconciliation sublayer is used .That is it provides the mapping between the 1-

bit data stream at the MAC interface and the nibblewide  transmit and receive interface at 

the MII. 

 The physical layer is structured in three sublayers: 

Physical Coding Medium Attachment – provide a medium-independent 

means for the PCS to support various bit-oriented physical media. 

  Physical Medium Dependent – responsible for transmission and reception 

and reception of the electrical signal. 

            PCS-Physical Coding Sublayer  

        PMA-Physical Medium Attachment  

        PMD-Physical Medium Dependent 

Reconciliation Sublayer  

Physical Medium-100Mbps 

Fig.2.4 Fast Ethernet Protocol Architecture. 
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2.6.2 Physical Media for 100BASE-T 
 The four physical medium alternative for Fast Ethernet are shown here in the 

following figure  
  

 

 

 

 

 

 

 

 

 

  

   

100BASE-FX 

100BASE-X 

100BASE-TX 100BASE-T4 

Fig 2.5.  Media option for the IEEE-802.3u Standard  

100BASE-T 

The various 100BASE-X options all use two physical links between devices. 

One link is used for transmission and other is used for reception and collision detection. 

100BASE-X uses either two pairs of shielded twisted-pair(STP) wire or two pairs of high 

quality Cat-5 UTP cable, the latter  being the most widely used in practice. The DTE-to-

repeater distance is limited to 100 m. The 100BASE –FX option is similar to 100BASE-

TX, except that it uses two multimode optical fibers. With these fibers transmission 

distances of up to 2 km are possible.    

2.7 Conclusion: 
  Ethernet is the word’s most pervasive LAN technology. Ethernet is intended 

primarily for use in such areas as office automation, distributed data processing, terminal 

access, and other situation requiring economical connections to local communication 

medium carrying bursts of traffic at high peak data rates. Now they are the information 

infrastructure of entire organizations, serving a missile-critical role and recognized as 

strategic business assets. 
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  The arrival of Fast Ethernet established Ethernet as a scalable technology. 

Fast Ethernet is being deployed to the desktops and servers. Today most network traffic 

leaves its locality and has to cross a backbone link to get where it is going. A hundred 

Ethernet or Fast Ethernet users can easily generate a gigabit of backbone of traffic. To 

accommodate this traffic Gigabit Ethernet has to come. 
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Chapter-3 

Gigabit Ethernet 
 

3.1 Introduction 
 Gigabit Ethernet is an extension of the 10Mbps and 100Mbps IEEE-802.3. Ethernet 

standards that increase the transmission speed to 1000Mbps, ten times that of Fast Ethernet. 

Gigabit Ethernet standards are fully compatible with existing Ethernet installations. Since 

the Gigabit Ethernet specifications are based on the current Ethernet technology and 

keeping the layer above the MAC intact, managing and maintaining the Gigabit network 

should be easier than that with totally a new technology. The topology of the network that 

Gigabit Ethernet supports is star. 

  This Chapter gives an overview of Gigabit Ethernet. In this chapter 

importance is gives an overview of Gigabit Ethernet. In this chapter importance is given to 

half-duplex Gigabit Ethernet. The next section deals with the MAC Layer of Gigabit 

Ethernet. Section 3.3 describes Carrier Extension technique used in Gigabit Ethernet. The 

chapter ends up with a conclusion in Section 3.6. 

 

3.2. THE MAC Layer of IEEE-802.3z: 
 Gigabit Ethernet works on the basis of IEEE-802.3z standard retains Carrier Sense 

Multiple Access/Collision Detection (CSMA/CD) protocol as the access method. 

 The MAC layer of Gigabit Ethernet is similar to that of 10Mbps Ethernet and 

100Mbps Fast Ethernet. Scaling Ethernet to 1000Mbps creates some problem. Gigabit 

Ethernet maintains the minimum and maximum frame sizes of Ethernet. Since Gigabit 

Ethernet maintains the minimum and maximum frame sizes of Ethernet. Since Gigabit 

Ethernet is 10 times faster than Fast Ethernet, to maintain the same slot size, the maximum 

cable length would have to about 20 meters, which would make for a very unpractical 

topology. Instead, Gigabit Ethernet uses a bigger slot size of 512 bytes. 

 

 

 24



3.2.1 Transmission Media 
  The physical layer alternatives fall under realm of IEEE 802.3z, which specifies 

using 8B 10B encoding on the line include the following : 

(i) 1000BASE-LX supports optical fiber backbone using wavelength in the 1310nm 

window (1270 to 1355 nm). For short-span backbone the maximum lengths are 550 

m using multimode fibers with either 50 or 62.5-µm core diameters. Long-span 

campus-type backbone can have spans up to 5 km with single mode fibers. 

(ii) 1000BASE-SX is a lower-cost short-wavelength (770-to 860-nm range) option used 

in short span backbones. The link length can be up to 275 m with a maximum length 

of 25 m. 

(iii)   1000BASE-CX supports short 1-Gbps spans between devices clustered within a 

single room or an equipment rack. The cables are specialized shielded twisted-pair 

(STP) copper wire with maximum length of 25m.    

3.2.2 Gigabit Ethernet Encoding Schemes 
   The 8B10B coding method arose from Fiber Channel and other fiber 

oriented protocol. In this scheme an 8-bit group of data from MAC is converted into a 

larger group of 10 signals .The figure shown below illustrates the operation of this code. 

The encoding is actually accomplished as a combination of two separate 5B6B and 3B4B 

block codes. However, these two codes are not necessarily performed as separate functions 

since they generally serve as a tool that simplifies the mapping and implementation 

functions. Before encoding, the bits are given designations A,B,C,D,E,F,G,H. After 

encoding, the bits are designated by the letters a through j. 

  The 8B10B code has a good transition density for easier clock recovery; it is 

well DC-balanced to prevent baseline wander and provide a good error detection capability. 

As part of encoding process, the control line input K indicates whether the bit A through H 

is data or control bit s. If they are control bits, a special 10-bit block is generated. There are 

12 of these unique non-data blocks, which can be used for synchronization, signal control 

instructions, or other functions. The disparity control function monitor the number of 1 and 

0 bits, where the disparity is the excess of one type of bit over another. The disparity 
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controller determines the proper 8B10B encoding of next data byte so that an equal balance 

of 1 nad 0 bits is maintained. 
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3.3 Carrier Extension: 
 To maintain compatibility with Ethernet, the minimum frame size of Gigabit 

Ethernet is not increased, but the “carrier event” is extended. If the frame size is less than 

512 bytes, then the frame is padded with extension symbols. These are special symbols, 

which cannot occur in the payload. This process is called carrier extension. Carrier 

extension is a way of maintaining 802.3 minimum and maximum frame size with 

meaningful cabling distances. 

 For carrier extended frames, the non-data extension frames, the non-data extension 

symbols are included in the collision and dropped. However, the Frame Check Sequence 

(FCS) is calculated only on the original (without extension symbols) frame. The extension 

symbols are removed before the receiver checks the FCS. So the LLC (Logical Link 

Control) layer is not even aware of the carrier extension. The following figure shows the 

Ethernet frame format when carrier extension is used. 

 
 

 

 

 

 

 

 

           

    

 

Preamble SFD DA Type/Length Data FCS Extension 

64 bytes min 

Duration of Carrier event

512 bytes min 

 

 

                     Fig3.1 Gigabit Ethernet Frame format           

 

To accommodate the new frame, a number of modifications were made to the MAC. 

In particular, the parameter table was changed as follows: 
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Parameters Values 

Slot time 4096 bit times 

Inter Frame Gap 96ns 

Attempt Limit 16 

Backoff Limit 10 

Jam Size 32 bit 

Max Frame Size 1518 bytes 

Address Size  48 bits 

Extended Size 448 bytes 

 

    Table3.1: MAC parameters 

 

 Carrier Extension has some undesirable side effects. 

 

3.3.1 Implication of Carrier Extension: 
 

• End of packet may precede end of carrier. 

If the packet size is less than 512 bytes, then it will be padded with extension 

symbols to make carrier 512 bytes and then transmitted. On the receiving side the 

end of this packet precedes the end of carrier. But the transmission is said to be 

successful only if whole carrier event of 512 bytes is received. 

• Reduced network efficiency: 

Consider the following  

 Station A transmits short packet with carrier extension. Station B (at 

maximum distance from station A) collides with A. Now the fragment received by station 

C (distance (C,A) is much less than distance(A,B) ) may contain the entire packet but must 

still be discarded to avoid duplication of data when A retransmits. 
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 Also carrier extension on small packets increases overhead. Therefore carrier 

extension reduced network efficiency when transmitting small packets and when collision 

occurs. 

3.4 Packet Bursting: 

 Most frames in the network are small and the carrier extension adds significant 

overhead and result in an effective throughput much less than 1000 Mbps. This throughput 

problem was addressed by feature called Packet Bursting is an extension of carrier 

extension. 

 Packet Bursting is nothing but a “Carrier Extension + Burst of packets”. After 

padding a frame with carrier extension symbols, a station does not relinquish control, 

instead it transmits whatever remaining packet it has, one after the other, filling the 

interframe gap (IPG) with carrier extension symbols, such that the line never appears free to 

any other station. This continues until a Packet Bursting timer of 1500 bytes expires. In the 

worst possible scenario a station may hold control for two 1500-byte packets. Packet 

Bursting substantially increases the throughput. The following figure shows how packet 

Bursting works. 

 Burst Timer (1500 bytes) 
 

 

 

 

 

 

 

    

Fig 3.2 Packet Bursting 

 

3.5 Gigabit Ethernet Architecture 
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 As we already mentioned that IEEE 802.3z retains the CSMA/CD protocol from 

Ethernet. It supports half-duplex as well as full-duplex mode of operation. For the Physical 

layer, 802.3z uses the physical signaling used in Fiber channel to support gigabit rates over 

optical fibers. As it stand today, 802.3z define transmissions via single-mode and 

multimode fiber (long wave and short wave) , short haul twinax cabled (balanced two-pair 

shielded coax). Gigabit Ethernet supports shared as well as switched architecture. 

 Gigabit Ethernet technology brings Fast Ethernet and Fiber channel as follows: 

 From Fast Ethernet 

1. Maintains the same technology alternatives and constraints. 

2. Medium Access Control (CSMA/CD and Full-duplex). 

3. Frame structure. 

4. Minimum frame size of 64 bytes. 

5. Maximum frame size of 1518 bytes. 

6. Management Independent Interface. 

 

From Fiber Channel 

1. 8b/10B coding (PCS Layer) 

2. Serializer/Deserializer (PMA layer) 

3. Physical Medium Dependent (PMD) 

4. Medium Dependent Interfaces. 

5. Physical Media and Signaling. 

 

3.5.1 Protocol Architecture: 
 Two technologies were merged to create the Gigabit Ethernet standard: IEEE 802.3 

Ethernet and ANSI Fiber Channel. The following figure shows the components that were 

brought together to form the new Gigabit Ethernet technology. 

 

 

 

 

 31



 

 

 

 

 

 

 

 

 

  

                                                    

 

 

 

 

3.6 Conclusion: 
 By bringing Fast Ethernet and Fiber channel technologies together, Gigabit Ethernet 

takes advantage of the high-speed physical interface technology of Fiber Channel while 

maintaining the IEEE 802.3 Ethernet frame format. This ensures backward compatibility 

for installed media, use of full or full-duplex transmissions, and at the end this guarantees 

interoperability with existing Ethernet and Fast Ethernet applications. 

 Now Gigabit Ethernet is being deployed as a backbone in existing networks. It can 

be used to aggregate traffic between clients and “server level”, and for connecting Fast 

Ethernet switches. It can also be used for connecting workstations and servers for high-

bandwidth applications such as medical imaging or CAD. 

 

 

 

 

IEEE 802.3 LLC 

IEEE 802.3 

CSMA/CD 

IEEE 802.3 

Physical Layer 

IEEE 802.3 LLC 

CSMA/CD or 

Full-Duplex MAC 

8B/10B 

Encode/Decode 

Serializer 

Deserializer 

Connector 

FC-4 Mapping 

FC-3 Common 

Services 

FC-2 Signaling 

FC-1 Encode/Decode 

FC-Q Interface & 

Media 

IEEE 802.3 
 Ethernet 

 ANSI X311 
Fiber Channel 

IEEE 802.3Z 
Gigabit Ethernet 

Fig3.3 Gigabit Ethernet Protocol Stack 
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Chapter-4 
Simulation and Gigabit Ethernet Simulator 

 

4.1 Introduction 
 In order to study a system to understand the relationship between its components or 

to predict how the system will operate under a new policy, it is sometimes possible to 

experiment with the system itself. However, this is not always possible. A new system may 

not yet exist or even if the system exists, it may be impractical to experiment with it. For 

example, it may not be possible to keep the length of all the packets in a big Ethernet LAN 

to be fixed and analyze the effect of it on the throughput of the network. Studies of such 

type of systems are accomplished through simulation. 

 A simulation is the imitation of the operation of a real-world process or system over 

time. In this chapter we discuss some of the basic concepts of simulation and the 

implementation details of the simulator. 

 

4.2 Components of a System  
 

In order to understand and analyze a system, a number of terms need to be defined. 

System: A collection of entities that interact together over time to accomplish one 

or more goals. 

System State: A collection of variables that contain all the information necessary to 

describe the system at any time. 

Event: A simultaneous occurrence that changes the state of a system. 

Event notice: A record of an event to occur at the current or some future time, 

along with any associated data necessary to execute the event. 

Event list: A list of event notices for future events, ordered by time of occurrence; 

also Known as the future event list (FEL). 

  Clock: A variable representing simulation time. 
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4.3 Discrete Event Simulation 
A discrete-event simulation is the modeling over time of a system all of whose state 

changes occur at discrete points in time – those points when an event occurs. A discrete-

event simulation proceeds by producing a sequence of systems that represent the evolution 

of the system through time. A given snapshot at a given time t include not only the system 

state at time t, but also a event list of all activities currently in progress and when each such 

activity will end, the status of all entities and current membership of all sets, plus the 

current values of cumulative statistics and counters that will be used to calculate summary 

statistics and counter that will be used to calculate summary statistics 

at the end of simulation. 

 

4.4 The Event Scheduling/Time Advance Algorithm 
The mechanism for advancing simulation time and guaranteeing that all events 

occur in correct chronological order is based on the future event list (FEL). This list 

contains all event notices for events that have been scheduled to occur at future time. 

Scheduling a future event means that at the instant an activity begins, its duration is 

computed or drawn as a sample from a statistical distribution and the end-activity event, 

together with its event time, is placed on the future event list. In the real world, most future 

events are not scheduled but merely happen- such as random breakdown or random arrivals. 

In the model, the end of some activity, which in turn is represented by a statistical 

distribution, represents such random events. 

At any given time t, the FEL contains all previously scheduled future events and 

their associated event times. The FEL is ordered by event time, meaning that the events are 

arranged chronologically; that is the event times satisfy 

t<t1<=t2<=t3 <=…<=tn 

Time t is the value of CLOCK, the current value of simulated time. The event 

associated with time t1 is called the imminent event; that is, it is the next event that will 

occur. After the system snapshot at simulation time CLOCK=t has been updated the 

CLOCK is advanced to simulation time CLOCK=t1 and the imminent event notice is 
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removed from the FEL and the event executed. Execution of the imminent event means that 

a new system snapshot for time t1 is created based on the old snapshot at time t and the 

nature of the imminent event. At time t1, new future events may or may not be generated, 

but if any are scheduled by created event notices and putting them in their position on the 

FEL. After the new system snapshot for time t1 has been updated, the clock is advanced to 

the time of the new imminent event and that event is executed. This process repeats until 

the simulator must perform to advance the clock and build a new system snapshot is called 

the event-scheduling/time-advance algorithm. 

 

4.4.1 Algorithm steps: 
  Step1. Remove the event notice for the imminent event from the FEL. 

Step2.Advance CLOCK to imminent event time (i.e., advance CLOCK from 

t to t1). 

Step3.Execute imminent event, update system state, change entity attribute, 

and set membership as needed. 

Step4. Generate future events and place their event notices on FEL ranked 

by event time. 

  Step5. Update cumulative statistics and counters. 

 

4.5 Performance Measures 
There are many measures to evaluate the performance of a network. We 

have used some of the important performance measures like throughput, average_delay, 

Collision/Packet and Collision Rate. A description of these above quantities is as follows: 

Throughput: 

 The throughput of a local network is a measure in bits per second of the successful 

traffic being transmitted between stations; that is since packets can become corrupted in 

traveling station to station, it is customary to only count the error-free bits (error free 

packets) when measuring throughput. 
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Average delay: 

 The average delay experienced by packets transmitted in the experiment. This 

quantity is calculated by dividing the total delay for the experiment by the number of 

successful packet transmissions. 

 

Collision per Packet: 

 The average number of collisions experienced by packets before successful 

transmission. 

Collision Rate: 

  The overall collision rate in collisions per second. 

 

4.6 Gigabit Ethernet Simulator 
The Gigabit Ethernet Simulator is a single process discrete event simulator. The 

program simulates a finite population network. This gives a better picture of the behavior of 

the network than simulations based on assumptions similar to those used in infinite-

population modeling studies. The program models packet buffering at each individual 

station with a buffer length of one. First, we simulated Fast, we simulated Fast Ethernet, 

then we increased the speed to 1000Mbps(1Gbps), the slot time to 512 bytes and 

implemented Carrier Extension to get “Gigabit Ethernet without Packet bursting” we got 

the final half-duplex Gigabit Ethernet simulator. 

 

4.7 Important Data Structures: 
Some of the important data structures used in the simulation are given here. 

Description of s host and the statistics kept for that host. 

typedef struct 

{ 

 long status;//Indication of host status 

 long hostid;//This is used to reconize host 

 double time;//Time of next packet arrival 
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} host_desc; 

 

Statistics collected for the experiment as a whole. 

 

typedef struct 

{ 

 long thruput; 

 double delay;// Total delay experienced*/ 

 long  success;//Successful transmission*/ 

 long collision;//Total overall collision experienced*/ 

 long discards; 

} expt_stats ; 

 

Description of a simulated network event. 

 

struct event 

{ 

 struct event *ptr; 

 double time; //Time at which struct event occur 

 short hostid;//Location of the host ehich generated the struct event 

 short size;//Length of the packet 

 short retries;//Attempt before success 

}; 

 

4.8 Input Parameters 
 

The main parameters for the simulator program are: 

1. Number of hosts. 

2. Packet distribution in terms of four different packet sizes and their percentage in 

total load generated. 
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3. Offered load for the network. The packets are generated using a uniform 

distribution according to the offered load. 

 

4.9 EVENT QUEUE: 
A single event queue is used for the simulation, which at any given time contains 

one entry for each station on the network. The entries in the event queue are event 

structures. Entries in the queue are arranged in the ascending order with respect to the 

simulation time of the next transmission attempt by the station. Therefore the head of the 

queue contains an event whose next transmission attempts time is less than all the other 

events in the queue. 

 

4.10  Main Routines of the simulator 
 

1. init_run 

(i) Calculates total number of packets to be generated based on offered 

load, packet sizes & their percentage in total load. 

(ii) Generates first batch of packet arrivals. 

(iii) Initializes host descriptions, queues and overall experiment statistics. 

2. addPackets 

(i) Generates a batch of packets with different packet sizes based on their 

percentage in total load. Generate packet arrival time based on the 

uniform distribution starting from the last arrival time in the previous 

batch of packets. Adds packets to the respective queues based on the 

hostid of generated packet. 

(ii) Remove one packet each from all host queues and add to event queue, 

so that event queue has only one packet for each host. 

3. en_send 

(i) Send a packet. First, see if the packet caused a collision. Any enqueued 

transition, which begins with one propagation delay of the beginning of 
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this packet, will collide. If collision is detected then call en_collision, 

else the transmission is successful. Call en_successful if the network is 

Fast Ethernet, en_successful_g if the network is Gigabit Ethernet 

without packet bursting, en_successful_g_pb if the network is Gigabit 

Ethernet with packet bursting. 

(ii) If it the last arrival in the current batch of packets, then generate a new 

batch of packets. 

(iii) Scan event queue for arrivals and backoffs with in current transmission 

and move them into boundary. Call en_defer. 

4. en_defer 

(i) As long as the arrival times are less that the end time of current 

transmission, deferral mechanism means these will wait until the current 

transmission finishes. Their arrival time is updated, and they are moved 

to the appropriate position in the queue. 

5. en_successful 

(i) In case of successful transmission, size of packet will be used to 

calculate the throughput. Update total throughput. 

(ii) Remove one more packet from the host queue for which the 

transmission is successful, and add to the event queue. 

(iii) If the arrival time of this packet is less than current time, update arrival 

time to current time. Update total delay for the experiment. 

6. en_successful_g 

(i) In case of successful transmission, size of packet will be used to 

calculate the throughput. Update total throughput. If the packet size is 

less than 512 bytes then the current time is calculated based on the time 

taken to transmit 512 bytes. 

(ii) Remove one more packet from the host queue for which the 

transmission is successful, and add to the event queue. 

(iii) If the arrival time of this packet is less than current time, update arrival 

time to current time. Update total delay for the experiment. 
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7. en_successful_g_pb 

(i) In case of successful transmission, size of packet will be used to 

calculate the throughput. Update total throughput. If the packet size is 

less than 512 bytes then the current time is calculated based on the time 

taken to transmit 512 bytes (career extension bytes). 

(ii) If there are more packets in the host queue for which arrival time is less 

than current time and the total transmission size (including career 

extension bytes) is less than 1500 bytes, remove those from the host 

queue. Update current time and throughput based on the packet sizes of 

these packets. 

(iii) Remove one more packet from the host queue for which the 

transmission is successful, and add to the event queue. 

(iv) If the arrival time of this packet is less than current time, update arrival 

time to current time. Update total delay for the experiment. 

8. en_collision. 

(i)        Count this collision. 

(i)       Call backoff for each station involved in collision using actual end of 

collision at each station. The time from which the backoff is computed 

is the later of 

The time at which the station detects the collision plus CD (collidion 

detection time for the host) plus JAM (Jamming signal time) 

The last time at which the station is busy from the transmission of some 

other station. 

This does not take into account non-configuration collisions, where the 

backoff may start earlier. 

(ii) Update total delay for the experiment and move the packets to 

appropriate positions in the queue. 

 

9. backoff 
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(i) Calculates the backoff for a station involved in a collision based on the 

retry count. 

4.11 Conclusion 
The implementation details of a half-duplex Gigabit Ethernet simulator are 

presented in this chapter. Through this simulator we can investigate the effects of 

the packet arrival process, size of packets transmitted, Carrier Extension and Packet 

Bursting. We can also get results on ta number of different performance metrics, 

such as throughput, average packet delay, collision rate, collision/packet and the 

actual arrival rate. Based on these metrics we can analyze the performance of 

Gigabit Ethernet and we can compare that with Fast Ethernet. 
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Chapter-5 

Result and Discussions 
 

5.1  Introduction 
There are many ways to analyze the performance of a network. We have analyzed 

the performance considering variations of (i) throughput verses offered load; (ii) average 

delay versus offered load; (ii) Collision per packet (Collision/pkt) versus offered load. We 

have computed the results obtained for “Gigabit Ethernet with Packet Bursting” with that of 

“Gigabit Ethernet without Packet Bursting” and “Fast Ethernet”. This gives a clear picture 

about the performance of Gigabit Ethernet. Analyze is done for a bus network. Since hub is 

logically equivalent to bus network, analyze the made for bus works holds for hubs also. 

5.2  Input for the Simulator 
For the total analysis the following assumption were made: 

1. The cable length is the maximum allowed cable length. 

2. Distribution of the inter-arrival times is uniformly distributed. 

 

For mixed packet size load, two types of inputs were considered for the analysis. They are 

as follows: 

Input 1: 

 Packet Size Distribution 

 40% of the packets are 76 bytes in length, 39% are 180 bytes, 3% are 975 bytes, and 

18% are 1526 bytes. 

 Number of hosts is 32. 

Input 2: 

  Packet Size Distribution 

  40% of the packets are 72 bytes in length, 20% are 180 bytes, 22% are 975 bytes 

and 18% are 1526 bytes. 

 Number of hosts is 16. 

 

 42



5.3  Measured Performance 
To measure the performance the metrics considered are throughput, collision/packet and 

average packet delay. Comparisons are made between Gigabit Ethernet with Carrier 

Extension and without Packet Bursting, Gigabit Ethernet with Carrier Extension and with 

Packet bursting, and Fast Ethernet. The following are the terminologies used to present in a 

simpler manner: 

• By Gigabit Ethernet without PB, we mean Gigabit Ethernet with Carrier Extension only 

(Packet Bursting is not implemented). 

• By Gigabit Ethernet with PB or by simply Gigabit Ethernet we mean Gigabit Ethernet 

with Carrier Extension and with Packet Bursting. 

Here by three networks we mean Fast Ethernet, Gigabit Ethernet without PB and 

Gigabit Ethernet with PB. 

We now present the results obtained from simulation for measuring the performance 

of Fast Ethernet, Gigabit Ethernet  with Packet Bursting. In the Graphs plotted ‘FE’ 

represents Fast Ethernet, ‘GE’ represents Gigabit Ethernet without PB, and ‘GE_PB’ 

represents Gigabit Ethernet with PB. 

 

1. Throughput: 

(ii) Figure 5.3.1 shows the throughput as a function of offered load for Input-1 

for the three networks. It can be easily seen that Gigabit Ethernet without PB achieved only 

throughput of over 399.3Mbps with 100 percent Offered Load, whereas Gigabit Ethernet 

with PB achieved a throughput of over 648Mbps compared to Fast Ethernet’s 87Mbps 

throughput with 100 percent Offered Load. This means that the performance of Gigabit 

Ethernet without PB is only marginally better than Fast Ethernet. But this is due to reason 

that 79% of the Packets in the network are of size less than 512 bytes and the carrier 

Extension on each of these small packets increases the overload on the packets. After 

implementing Packet Bursting the throughput of Gigabit Ethernet increases to 648Mbps. 

This is because of the reason that for all the small packets following the first one within a 

burst timer the overload is almost nil. 

 43



Figure 5.3.2 shows the throughput as a function of Offered Load for the Inout-2 for 

the three networks. Here it can be seen that the throughput achieved by Gigabit Ethernet is 

752Mbps. The main reason behind this is the number of station in the network considered 

for Input-2 is 16, and the number of small packets (of size less than 512 bytes) is less than 

that of the number of small packets in Input-1. Since the number of station is less, the 

number of collisions is less than and hence the throughput is more. 

 (ii)  The following table gives the throughput achieved by Gigabit Ethernet with and 

without PB for two types of Packet length 256 and 512 bytes and for the packet size 

distribution mentioned in Input-1 for 100% offered load. 

 

Packet Size Gigabit Ethernet without PB 
Gigabit Ethernet 

with PB 

256 bytes           324.8Mbps 605Mbps 

512 bytes          638.4Mbps 732Mbps 

Distribution in 

Input-1 
        399.3Mbps 648.66Mbps 

Distribution in 

Input-2 
         557.76Mbps 752.36Mbps 

 

    Table 5.3 

 

 From the above table and from Figure 5.3.3, it is clear that the use of Packet 

Bursting resulted in significant improvement in the throughput of small packets over 

Carrier Extension. The same result was obtained with packet size distribution specified in 

the Input-1. There is not much difference in figure 5.3.4 because at size of 512 bytes career 

extension overload is nil. 

With Packet Bursting, up to 448 bytes “wasted space” is amortized over a large 

number of useful data bits. Without it, every frame below 512 bytes would need to be 

padded with extension bits. 
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2. Collision/packet: 

Figure 5.3.5, Figure 5.3.6, Figure 5.3.7 and Figure 5.3.8 show Collision/pkt 

as a function of the offered load for fixed packet lengths of Input-1, Input-2, 256 bytes and 

512 bytes respectively for the three networks. The number of stations considered in the 

network is 32. 

It is clearly observable from the figures that the collision/pkt peaks at lower 

percent offered load for Gigabit Ethernet compared to Fast Ethernet then decreases due to 

increased number of packet discards (resulting in an increasing in capture effect). 

It is also visible that for small packets, collision/pkt for Gigabit Ethernet 

without PB is higher. If the packet are small, then many packets can be accommodated 

within a burst timer, and if the packet within the burst timer is transmitted successfully, 

then the subsequent packets within that burst timer are guaranteed not to collide. 

Collision/pkt for Input-2 is less compared to collision/pkt for Input-1 for all 

the three networks. The reason is that the number of station in the stations in Input-2 is less 

than that of the number of stations in Input-1. 

 

3. Average a Packet Delay: 

Figure 5.3.9, 5.3.10, 5.3.11 & 5.3.12 show average packet delay as a function of 

offered load for the three networks. Here we have considered 32 stations in the network. 

      The graphs show that average packet delay for Gigabit Ethernet without PB for 

small packets is even more than that of average packet delay for Fast Ethernet. The reason 

is increase in slot time to 4096 bit times. 

       But for Gigabit Ethernet with PB, even for small packets the average packet 

delay is much less than that of Fast Ethernet’s. 
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Throughput Vs Offered Load for Input1
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Figure 5.3.1 

 

Throughput Vs Offered Load for Input2
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Figure 5.3.2
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Throughput Vs Offered Load for 256
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Figure 5.3.3 

 

Throughput Vs Offered Load for 512
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Figure 5.3.4
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Collision Per Packet Vs Offered Load for Input1
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Figure 5.3.5 

 

Collision Per Packet Vs Offered Load for Input2
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Figure 5.3.6
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Collision Per Packet Vs Offered Load for 256
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Figure 5.3.7 

 

Collision Per Packet Vs Offered Load for 512
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Figure 5.3.8
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Average Delay Vs Offered Load for Input1
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Figure 5.3.9 

 

Average Delay Vs Offered Load for Input2
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Figure 5.3.10
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Average Delay Vs Offered Load for 256
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Figure 5.3.11 
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Figure 5.3.12
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5.4  Conclusion 
Analysis has been done based on these performance metrices throughput, 

collision/pkt and average packet delays. Observations made from the analysis are as 

follows: 

1. The Carrier Extension allows maintaining a 200 meters network diameter for 

CSMA/CD operation, however it reduces network efficiency. 

2. Carrier extension plus Packet Bursting has approximation 30% higher throughput 

than without Packet Bursting. 

3. Collision/pkt peaks at lower percent offered load for Gigabit Ethernet compared to 

Fast Ethernet, then decreases due to increased number of packet discards. 

4. Average packet delay decreases because of Packet Bursting for Gigabit Ethernet, and 

much less than that of Fast Ethernet. 

 

From the above observation it is obvious that Packet Bursting improves all measure 

of performance. Also we can see that Gigabit Ethernet approaches the performance of Fast 

Ethernet as packet size increases, in term of throughput percent. After the implementing of 

Packet Bursting, Gigabit Ethernet has become even more efficient at handling small 

packets. 
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Chapter-6 

Conclusion and Future Scope of the Work 
 

3.1 Conclusions 
Performance of Gigabit Ethernet (half-duplex) has been analyzed through discrete 

event simulation technique. A comparative study has been made against the performance of 

Fast Ethernet. In the study thus carried on, Gigabit Ethernet has proven to exceed the 

performance of Fast Ethernet as packet Ethernet as packet size increases. Gigabit Ethernet 

is also found to be efficient at handling small packets. Simulation results show that in half-

duplex topology with collision, Gigabit Ethernet achieves a throughput of over 70% with a 

100% offered load. Thus we can conclude from the analysis that Gigabit Ethernet is 

suitable for handling gigabit of backbone traffic, and hence can be installed as a backbone. 

 

3.2 Future Scope of the work 
In this work analysis has been made for half-duplex Gigabit Ethernet with 

collisions. Full-duplex Gigabit Ethernet switches without collision exist. Therefore a similar 

simulation study can be made for full-duplex Gigabit Ethernet switches to analyze their 

performance. 
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Code 
 
#include<stdio.h> 

#include<stdlib.h> 

#include<time.h> 

#include<malloc.h> 

#include<math.h> 

 

#define MODULS 2147483647 

#define MULT1 24112 

#define MULT2 26143 

 

double clock_time = 0.0; 

double tprop, bitrate, jamtime, interfgap, slottime; 

double max_arrival = 0.0; 

long iteration = 0, tot_iteration, network_type, host_count; 

long p1_packets, p2_packets, p3_packets, p4_packets, sz1, sz2, sz3, 

sz4; 

 

typedef struct 

{ 

 unsigned long seed; 

 long minimum; 

 long maximum; 

} random_data; 

 

random_data random_hostid, random_slot, random_backoff; 

 

double getRandom(random_data *data) 

{ 

 

 long tempSeed, lowprd, hi31; 

 

 tempSeed = data->seed; 

 



 lowprd = (tempSeed & 65535) * MULT1; 

 hi31 = (tempSeed >> 16) * MULT1 + (lowprd >> 16); 

 tempSeed   = ((lowprd & 65535)- MODULS) + ((hi31 & 32767) << 

16) + (hi31 >> 15); 

 

 if (tempSeed < 0) 

  tempSeed += MODULS; 

 

 lowprd = (tempSeed & 65535)*MULT2; 

 hi31 = (tempSeed>>16) * MULT2 + (lowprd >> 16); 

 tempSeed   = ((lowprd & 65535) - MODULS ) + (( hi31 & 32767) 

<< 16) + ( hi31 >> 15); 

 

 if (tempSeed < 0) 

  tempSeed += MODULS; 

 

 data->seed = tempSeed ; 

 

 return fabs((((tempSeed >> 7) | 1) + 1) / 16777216.0); 

} 

 

long getUniformRandom(random_data *data) 

{ 

 

 double u; 

 do 

 { 

  u = getRandom(data); 

 } 

 while (u <= 0.0); 

 return (long)((data->maximum - data->minimum) * u + data-

>minimum + 0.5); 

 

} 

 

long getRandomBackoff(long maximum) 
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{ 

 random_backoff.maximum = maximum; 

 return getUniformRandom(&random_backoff); 

} 

 

void init_random(long hosts, long slots) 

{ 

 double seed = 1973272912.0; 

 random_hostid.minimum = 1; 

 random_hostid.maximum = hosts; 

 random_slot.minimum = 0; 

 random_slot.maximum = slots; 

 random_backoff.minimum = 0; 

 seed = fmod(715.0 *seed, 2147483647.0); 

 seed = fmod(1058.0*seed, 2147483647.0); 

 seed = fmod(1385.0*seed, 2147483647.0); 

 random_hostid.seed = (unsigned long)seed; 

 seed = fmod(715.0 *seed, 2147483647.0); 

 seed = fmod(1058.0*seed, 2147483647.0); 

 seed = fmod(1385.0*seed, 2147483647.0); 

 random_slot.seed = (unsigned long)seed; 

 seed = fmod(715.0 *seed, 2147483647.0); 

 seed = fmod(1058.0*seed, 2147483647.0); 

 seed = fmod(1385.0*seed, 2147483647.0); 

 random_backoff.seed = (unsigned long)seed; 

} 

 

long getRandomHost() 

{ 

 return getUniformRandom(&random_hostid); 

} 

 

double getRandomArrivalTime() 

{ 

 return getUniformRandom(&random_slot) * slottime; 

} 
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typedef struct 

{ 

 long status;//Indication of host status 

 long hostid;//This is used to reconize host 

 double time;//Time of next packet arrival 

} host_desc; 

 

host_desc host[66]; 

 

typedef struct 

{ 

 long thruput; 

 double delay;// Total delay experienced*/ 

 long  success;//Successful transmission*/ 

 long collision;//Total overall collision experienced*/ 

 long discards; 

} expt_stats ; 

 

expt_stats stats; 

 

struct event 

{ 

 struct event *ptr; 

 double time; //Time at which struct event occur 

 short hostid;//Location of the host ehich generated the 

struct event 

 short size;//Length of the packet 

 short retries;//Attempt before success 

}; 

 

// The global struct event queue front and rear 

struct event *host_front[66], *host_rear[66], *front, *rear; 
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void queue_add(struct event **f, struct event **r, struct event * 

e) 

{ 

 struct event *temp = *f; 

 if(*f==NULL) 

 { 

  e->ptr = NULL; 

  *f=*r=e; 

 } 

 else if((*f)->time > e->time) 

 { 

  e->ptr = *f; 

  *f=e; 

 } 

 else 

 { 

  /*traverse the entire  the queue to search the position 

to insert the new node*/ 

  while(temp!=NULL) 

  { 

   if(temp->time <= e->time && (temp->ptr==NULL || 

temp->ptr->time > e->time)) 

   { 

    e->ptr=temp->ptr; 

    temp->ptr=e; 

    if(e->ptr==NULL) 

     *r=e; 

    return; 

   } 

   temp=temp->ptr; /*go to next struct event*/ 

  } 

  printf("\nMust Never Reach Here"); 

 } 

} 

 

struct event * queue_remove(struct event **f, struct event **r) 
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{ 

 struct event *q; 

 if(*f==NULL) 

 { 

  printf("queue is empty"); 

  return NULL; 

 } 

 else 

 { 

  q=*f; 

  *f=q->ptr; 

  if(*f==NULL) 

   *r=NULL; 

  return q; 

 } 

} 

 

/*Function to delete struct event queue*/ 

void deleventq(struct event **f, struct event **r) 

{ 

 struct event *q; 

 q = queue_remove(f, r); 

 if(q != NULL) 

  free(q); 

} 

 

/*adds a new element to the queue*/ 

void addq(double time, short hostid, short size, short retries) 

{ 

 struct event *e; 

 /*create new node*/ 

 e = (struct event *) malloc(sizeof(struct event)); 

 if(e == NULL) 

 { 

  printf(" M_A "); 

  return; 
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 } 

 e->time=time; 

 e->hostid=hostid; 

 e->size=size; 

 e->retries=retries; 

 

 queue_add(&(host_front[hostid]), &(host_rear[hostid]), e); 

} 

 

/*displays all element of the queue*/ 

void q_display(struct event *q) 

{ 

 /*traverse the entire linked list*/ 

 while(q != NULL) 

 { 

  printf("\n Time = %f HostId = %d PacketSize = %d 

Retries = %d", q->time, q->hostid, q->size, q->retries); 

  q=q->ptr; 

 } 

} 

 

/*count the number of nodes present in the lined list representing 

a queue*/ 

long count(struct event *q) 

{ 

 long c=0; 

 /*traverse the entire linked list*/ 

 while(q!=NULL) 

 { 

  q=q->ptr; 

  c++; 

 } 

 return c; 

} 

 

void addPackets(double start_time) 
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{ 

 long pc; 

 for(pc = 0; pc < p1_packets; pc++) 

 { 

  double arrival_time = start_time + 

getRandomArrivalTime(); 

  addq(arrival_time, getRandomHost(), sz1, 0); 

  if(arrival_time > max_arrival) 

   max_arrival = arrival_time; 

 } 

 //printf("Added SZ1 = %ld", p1_packets); 

 for(pc = 0; pc < p2_packets; pc++) 

 { 

  double arrival_time = start_time + 

getRandomArrivalTime(); 

  addq(arrival_time, getRandomHost(), sz2, 0); 

  if(arrival_time > max_arrival) 

   max_arrival = arrival_time; 

 } 

 //printf("Added SZ2 = %ld", p2_packets); 

 for(pc = 0; pc < p3_packets; pc++) 

 { 

  double arrival_time = start_time + 

getRandomArrivalTime(); 

  addq(arrival_time, getRandomHost(), sz3, 0); 

  if(arrival_time > max_arrival) 

   max_arrival = arrival_time; 

 } 

 //printf("Added SZ3 = %ld", p3_packets); 

 for(pc = 0; pc < p4_packets; pc++) 

 { 

  double arrival_time = start_time + 

getRandomArrivalTime(); 

  addq(arrival_time, getRandomHost(), sz4, 0); 

  if(arrival_time > max_arrival) 

   max_arrival = arrival_time; 
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 } 

 

 for(pc = 1; pc < host_count; pc++) 

 { 

  if(host_front[pc] != NULL) 

  { 

   struct event *temp = front; 

   int found = 0; 

   while(temp != NULL) 

   { 

    if(temp->hostid == pc) 

    { 

     found = 1; 

     break; 

    } 

    temp = temp->ptr; 

   } 

   if(!found) 

   { 

    struct event *e = 

queue_remove(&(host_front[pc]), &(host_rear[pc])); 

    if(e->time < clock_time) 

    { 

     stats.delay += clock_time - e->time; 

     e->time = clock_time; 

    } 

    queue_add(&front, &rear, e); 

   } 

  } 

 } 

 //printf("Added  SZ4 = %ld", p4_packets); 

 //printf("Count : %ld", count(front)); 

 //getch(); 

 //q_display(front); 

} 
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//Function to compute backoff time 

double backoff(long nattempt) 

{ 

 double backoff_time; 

 long k, minvalue; 

 

 if(nattempt<=10) 

  minvalue=nattempt; 

 else 

  minvalue=10; 

 

 k=(long)pow(2,minvalue); 

 backoff_time = getRandomBackoff(k) * (4096 / bitrate); 

 return(backoff_time); 

} 

 

//On successful transmission of packet 

void en_successful(host_desc *h1, long packets) 

{ 

 stats.success++; 

 stats.thruput = stats.thruput + (packets * 8); 

 h1->status = 0; 

 clock_time += ((packets * 8.0) / bitrate) + tprop; 

 deleventq(&front,&rear); 

 if(host_front[h1->hostid] != NULL) 

 { 

  struct event *e = queue_remove(&(host_front[h1-

>hostid]), &(host_rear[h1->hostid])); 

  if(e->time < clock_time) 

  { 

   stats.delay += clock_time - e->time; 

   e->time = clock_time; 

  } 

  queue_add(&front, &rear, e); 

 } 

} 
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//On successful transmission of packet 

void en_successful_g(host_desc *h1, long packets) 

{ 

 stats.success++; 

 stats.thruput = stats.thruput + (packets * 8); 

 h1->status = 0; 

 if(packets >= 512) 

  clock_time += ((packets * 8.0) / bitrate) + tprop; 

 else 

  clock_time += ((512 * 8.0) / bitrate) + tprop; 

 deleventq(&front,&rear); 

 if(host_front[h1->hostid] != NULL) 

 { 

  struct event *e = queue_remove(&(host_front[h1-

>hostid]), &(host_rear[h1->hostid])); 

  if(e->time < clock_time) 

  { 

   stats.delay += clock_time - e->time; 

   e->time = clock_time; 

  } 

  queue_add(&front, &rear, e); 

 } 

} 

 

void deleventq_int(struct event **f, struct event **r, struct event 

*d) 

{ 

 if(*f == d) 

  deleventq(f,r); 

 else 

 { 

  struct event *temp = *f; 

  while(temp != NULL) 

  { 

   if(temp->ptr == d) 
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   { 

    temp->ptr = d->ptr; 

    if(*r == d) 

    { 

     *r = temp; 

    } 

    free(d); 

    break; 

   } 

   temp = temp->ptr; 

  } 

 } 

} 

 

//On successful transmission of packet 

void en_successful_g_pb(host_desc *h1, long packets) 

{ 

 struct event *temp; 

 stats.success++; 

 stats.thruput = stats.thruput + (packets * 8); 

 h1->status = 0; 

 if(packets >= 512) 

  clock_time += ((packets * 8.0) / bitrate); 

 else 

  clock_time += ((512 * 8.0) / bitrate); 

 deleventq(&front, &rear); 

 temp = host_front[h1->hostid]; 

 if(packets < 512) 

  packets = 512; 

 while(temp != NULL && temp->time < clock_time) 

 { 

  if(temp->time >= max_arrival && iteration < 

tot_iteration) 

  { 

   iteration++; 

   addPackets(max_arrival); 
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  } 

 

  if((temp->size + packets) < 1500) 

  { 

   stats.success++; 

   stats.thruput = stats.thruput + (temp->size * 8); 

   clock_time += ((temp->size * 8) / bitrate); 

   packets += temp->size; 

   deleventq(&(host_front[h1->hostid]), 

&(host_rear[h1->hostid])); 

  } 

  else 

  { 

   break; 

  } 

  temp = host_front[h1->hostid]; 

 } 

 //printf("Burst : %d", burstCount); 

 //getchar(); 

 clock_time += tprop; 

 if(host_front[h1->hostid] != NULL) 

 { 

  struct event *e = queue_remove(&(host_front[h1-

>hostid]), &(host_rear[h1->hostid])); 

  if(e->time < clock_time) 

  { 

   stats.delay += clock_time - e->time; 

   e->time = clock_time; 

  } 

  queue_add(&front, &rear, e); 

 } 

} 

 

//Function to defer the packet 

//long en_defer(host_desc *hd1,host_desc *hd2,expt_status 

*esd,double timed1,double timed2,double tpd1,long psized1,long 
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psized2,double delayd1,double delayd2,long retriesd1,long 

retriesd2,long typed1,long typed2,double tpropd,double interfgapd) 

void en_defer() 

{ 

 double time;//Time at which struct event occur 

 struct event *temp; 

 

 time = clock_time + interfgap; 

 while(front != NULL && front->time < clock_time) 

 { 

  temp = queue_remove(&front, &rear); 

   stats.delay += time - temp->time; 

  temp->time = time; 

  queue_add(&front, &rear, temp); 

 } 

} 

 

void en_collision(double max_detection_time) 

{ 

 double collision_time; 

 struct event *temp; 

 double end_time; 

 end_time = max_detection_time + jamtime; 

 collision_time = clock_time + tprop; 

 clock_time = end_time; 

 stats.collision++; 

 while(front != NULL && front->time < collision_time) 

 { 

  double temp_time; 

  temp = queue_remove(&front, &rear); 

  temp->retries++; 

  temp_time = end_time + interfgap + backoff(temp-

>retries); 

  host[temp->hostid].status=1; 

  host[temp->hostid].time = temp->time; 

  stats.delay += (temp_time - temp->time); 
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  temp->time = temp_time; 

  if(temp->retries < 16) 

   queue_add(&front, &rear, temp); 

  else 

  { 

   host[temp->hostid].status=0; 

   stats.discards++; 

   if(host_front[temp->hostid] != NULL) 

   { 

    struct event *e = 

queue_remove(&(host_front[temp->hostid]), &(host_rear[temp-

>hostid])); 

    if(e->time < clock_time) 

    { 

     stats.delay += clock_time - e->time; 

     e->time = clock_time; 

    } 

    queue_add(&front, &rear, e); 

   } 

   free(temp); 

  } 

 } 

} 

 

//Function for attempt to send packet 

void en_send(long ipi_dist_idx1,long len_dist_idx1,long nhost) 

{ 

 double delay1,delay2,time1,time2,tp1; 

 short 

psize1,psize2,hid1,hid2,retries1,retries2,type1,type2,i=1; 

 

 

 //initialization  host_desc 

 for(i=1;i<=nhost;i++) 

 { 

  host[i].status=0; 
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  host[i].hostid=i; 

  host[i].time=0.0; 

  host_front[i] = host_rear[i] = NULL; 

 } 

 

 stats.thruput=0; 

 stats.delay=0.0; 

 stats.success=0; 

 stats.collision=0; 

 //end of initialization of expt_status 

 addPackets(0.0); 

 //printf("Starting Simulation"); 

 while(front != NULL && front->time <= 1000000.0) 

 { 

  struct event *next; 

  next = front->ptr; 

  hid1=front->hostid; 

  psize1=front->size; 

  time1=front->time; 

  retries1=front->retries; 

 

  if(time1 >= max_arrival && iteration < tot_iteration) 

  { 

   iteration++; 

   addPackets(max_arrival); 

  } 

 

  clock_time = time1; 

  if(next != NULL) 

  { 

   //printf("\nT1 = %f H1 = %d S1 = %d", time1, 

hid1, psize1); 

   //printf(" T2 = %f H2 = %d S2 = %d", time2, hid2, 

psize2); 

   //getch(); 
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   if(next->time < (time1 + tprop)) 

   { 

    en_collision(next->time + tprop); 

   } 

   else 

   { 

    switch(network_type) 

    { 

     case 1: 

     en_successful(&host[hid1], psize1); 

     break; 

 

     case 2: 

     en_successful_g(&host[hid1], psize1); 

     break; 

 

     case 3: 

     en_successful_g_pb(&host[hid1], 

psize1); 

     break; 

    } 

   } 

   en_defer(); 

  } 

  else 

  { 

   en_successful(&host[hid1], psize1); 

   if(iteration < tot_iteration) 

   { 

    iteration++; 

    addPackets(max_arrival); 

   } 

  } 

 } 

 //initialization  host_desc 

 for(i=1;i<=nhost;i++) 
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 { 

  while(host_front[i] != NULL) 

   deleventq(&(host_front[i]), &(host_rear[i])); 

 } 

 while(front != NULL) 

  deleventq(&front, &rear); 

 printf("\n\tSuccesses %ld, Collisions %ld, Discards %ld", 

stats.success, stats.collision, stats.discards); 

 printf("\n\tThroughput %ld, CollisionsPerPacket %f, 

AverageDelay %f", stats.thruput, (stats.collision * 1.0) / 

(stats.success * 1.0), stats.delay / stats.success); 

 getchar(); 

} 

 

 

void init_run(long nhost,long p1,long p2,long p3,long p4,long 

ipi_dist_idx1,long len_dist_idx1,long type_of_net) 

{ 

 long bits, pc, jamsize=32, bits_for_100, packets, 

offered_load; 

 clock_time = 0.0; 

 max_arrival = 0.0; 

 stats.thruput = 0, stats.success = 0, stats.discards = 0, 

iteration = 0; 

 front = rear = NULL; 

 stats.collision = 0; 

 network_type = type_of_net; 

 switch(type_of_net) 

 { 

  case 1: 

   tprop=0.8695; 

   bitrate=100.0; 

   jamtime=jamsize/bitrate; 

   interfgap=0.96; 

   slottime=5.12; 

   tot_iteration = 100; 
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   init_random(nhost, (long)(10000.0 / slottime)); 

   break; 

  case 2: 

   tprop=0.86956; 

   bitrate=1000.0; 

   jamtime=jamsize/bitrate; 

   interfgap=0.096; 

   slottime=4.096; 

   tot_iteration = 1000; 

   init_random(nhost, (long)(1000.0 / slottime)); 

   break; 

  case 3: 

   tprop=0.86956; 

   bitrate=1000.0; 

   jamtime=jamsize/bitrate; 

   slottime=4.096; 

   interfgap=0.096; 

   tot_iteration = 1000; 

   init_random(nhost, (long)(1000.0 / slottime)); 

   break; 

  default: 

   break; 

 

 } 

 

 switch(type_of_net) 

 { 

  case 1: 

   bits = 100000000; 

   break; 

  case 2: 

   bits = 100000000; 

   break; 

  case 3: 

   bits = 100000000; 

   break; 
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  default: 

   break; 

 

 } 

 bits_for_100 = (p1 * sz1 + p2 * sz2 + p3 * sz3 + p4 * sz4) * 

8; 

 printf("\n\tEnter Offered Load : "); 

 scanf("%ld", &offered_load); 

 packets = ((bits / bits_for_100) * offered_load) / 100; 

 p1_packets = (packets * p1) / 100; 

 p2_packets = (packets * p2) / 100; 

 p3_packets = (packets * p3) / 100; 

 p4_packets = (packets * p4) / 100; 

 //printf("Packets = %ld", packets); 

 en_send(ipi_dist_idx1,len_dist_idx1,nhost); 

} 

 

//start of main function 

void main(void) 

{ 

 /*INPUT PARAMETERS START  */ 

 long type_of_net; 

 long len_dist_idx1;//Index of packet length distribution 

 long ipi_dist_idx1; 

 int ch1;//Index of interpacket interval distribution 

 long no_of_host;//Number of host 

 

 /*A set of arrival rate of packet.This is used 

 

  to generate packet arrival times*/ 

 long pktarr_rate[15]; 

 

 /*Specifies the no. struct event to be simulated. In general 

   successful transmission and collision are considered 

  to be events.*/ 

 long no_of_event; 
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 /*If val>1 simulator conduct specifies no of 

 

  repetition of the experiment and present 

  average of reported quantities in the output file*/ 

 long no_of_repitition; 

 

 /*The name of distribution to be used for generating 

 

   either packet lengths or interarrival times*/ 

 char dist_name[50]; 

 

  /*If the val is EXPON the distribution is exponential with 

mean parameter 1 . 

    If the value is UNIFORM, the distribution is uniform on 

the interval from 

        the value of parameter1 to value of parameter2. 

    If the value is FIXED, the distribution is deterministic 

     with the value of parameter 1 as constant value of 

the distribution. 

       If the value is DESCRETE, the value of the distribution 

     is determined from a set of (value, probability) 

pairs specified with 

     x_val and y_val keywords.*/ 

 char dist_type[10]; 

 

 long i,j,k,sz,t,p1,p2,p3,p4,q1,q2,q3,q4; 

 /*INPUT PARAMETER ENDS*/ 

 int choice; 

 //clrscr(); 

 printf("\n\t\t\tPERFORMANCE 

ANALYSIS\n\n\t\t\tOF\n\n\t\t\tGIGABIT 

ETHERNET\n\n\t\t\tAGAINST\n\n\t\t\tFAST  ETHERNET"); 

 getchar(); 

 //clrscr(); 

 while(1) 
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 { 

  //clrscr(); 

  printf("\n\tAssumptions :"); 

  printf("\n\t\tThe cable length is the maximum allowed 

cable length"); 

  printf("\n\t\tDistribution of inter-arrival time is 

uniform"); 

  printf("\n\t\tFor Input-I "); 

  printf("\n\t\t\tNumber of Stations: 32."); 

  printf("\n\t\t\tPacket Length Distribution: "); 

  printf("\n\t\t\t\t40%% Are 76 Bytes, 39%% Are 180 

Bytes\n\t\t\t\t3%% Are 975 Bytes, 18%% Are 1526 Bytes"); 

  printf("\n\t\tFor Input-II "); 

  printf("\n\t\t\tNumber of Stations: 16."); 

  printf("\n\t\t\tPacket Length Distribution: "); 

  printf("\n\t\t\t\t40%% are 72 Bytes, 20%% Are 180 

Bytes\n\t\t\t\t22%% Are 975 Bytes, 18%% Are 1526 Bytes"); 

  while(1) 

  { 

   printf("\n\n\tChoose The Input Option"); 

   printf("\n\t\t1 - Input-I"); 

   printf("\n\t\t2 - Input-II"); 

   printf("\n\t\t3 - Constant Packet Size of 72 

Bytes And 32 Stations"); 

   printf("\n\t\t4 - Constant Packet Size of 256 

Bytes And 32 Stations"); 

   printf("\n\t\t5 - Constant Packet Size of 512 

Bytes And 32 Stations"); 

   printf("\n\t\t6 - Exit"); 

   printf("\n\tYour choice: "); 

   scanf("%d",&choice); 

   switch(choice) 

   { 

    case 1: 

    { 

     ipi_dist_idx1=1; 
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     host_count=no_of_host=32; 

     no_of_event=1000; 

     p1=40; 

     p2=39; 

     p3=3; 

     p4=18; 

     sz1=76;sz2=180;sz3=975;sz4=1526; 

     break; 

    } 

    case 2: 

    { 

     ipi_dist_idx1=1; 

     host_count=no_of_host=16; 

     no_of_event=1000; 

     p1=40; 

     p2=20; 

     p3=22; 

     p4=18; 

     sz1=72;sz2=180;sz3=975;sz4=1526; 

     break; 

    } 

    case 3: 

    { 

     ipi_dist_idx1=1; 

     host_count=no_of_host=32; 

     no_of_event=1000; 

     p1=25; 

     p2=25; 

     p3=25; 

     p4=25; 

     sz1=72;sz2=72;sz3=72;sz4=72; 

     break; 

    } 

    case 4: 

    { 

     ipi_dist_idx1=1; 

 69



     host_count=no_of_host=32; 

     no_of_event=1000; 

     p1=25; 

     p2=25; 

     p3=25; 

     p4=25; 

     sz1=256;sz2=256;sz3=256;sz4=256; 

     break; 

    } 

    case 5: 

    { 

     ipi_dist_idx1=1; 

     host_count=no_of_host=32; 

     no_of_event=1000; 

     p1=25; 

     p2=25; 

     p3=25; 

     p4=25; 

     sz1=512;sz2=512;sz3=512;sz4=512; 

     break; 

    } 

    case 6: 

     exit(0); 

    default: 

     break; 

   }/*end of switch loop*/ 

   //clrscr(); 

   printf("\n\n\tChoose The Network Type"); 

   printf("\n\t\t1 - Fast EthernetT"); 

   printf("\n\t\t2 - Gigabit Ethernet Without Packet 

Bursting"); 

   printf("\n\t\t3 - Gigabit Ethernet With Packet 

Bursting"); 

   printf("\n\tYour choice: "); 

   scanf("%d",&ch1); 

   getchar(); 
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   switch(ch1) 

   { 

    case 1: 

     type_of_net=1; 

     break; 

    case 2: 

     type_of_net=2; 

     break; 

    case 3: 

     type_of_net=3; 

     break; 

    default: 

     break; 

   } 

   //clrscr(); 

  

 init_run(no_of_host,p1,p2,p3,p4,ipi_dist_idx1,len_dist_idx1,t

ype_of_net); 

  }/*end of while loop2*/ 

 }/*end of while loop1*/ 

}/*end of main loop*/
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