
A
Dissertation

On

SIMULATION OF COVERAGE CONFIGURATION
PROTOCOL FOR ENERGY EFFICIENT

SENSOR NETWORK

Submitted in Partial fulfillment of the requirement
for the award of Degree of

MASTER OF ENGINEERING
(Electronics & Communication Engineering)

Submitted By

Puja Krishna
College Roll No: 06/EC/05
University Roll No. 2804

Under the Guidance of:
Mrs. S. Indu

Dept. of Electronics & Communication
Delhi College of Engineering, Delhi

DEPARTMENT OF ELECTRONICS & COMMUNICATION
DELHI COLLEGE OF ENGINEERING

DELHI UNIVERSITY
2005-2007

CERTIFICATE

This is to certify that the work contained in this dissertation entitled

“Simulation of Coverage Configuration Protocol for Energy Efficient Sensor

Network” submitted by Puja Krishna in the requirement for the partial fulfillment

for the award of the degree of Master of Engineering in Electronics &

Communication, Delhi College of Engineering is an account of her work carried out

under my guidance and supervision in the academic year 2006-2007.

The work embodies in this dissertation has not been submitted for the award

of any other degree to the best of my knowledge.

 Approved by: Guided by:

 Prof. Asok Bhattacharyya Mrs. S. Indu
 H.O.D (E&C) Lecturer
Electronics & Communication Electronics & Communication

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extend my heartiest felt gratitude

to everybody who helped me throughout the course of this project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to

my learned supervisor Mrs. S. Indu for her invaluable guidance, encouragement and

patient reviews. With her continuous inspiration only, it becomes possible to complete

this dissertation. She kept on boosting me with time, to put an extra ounce of effort to

realize this work.

I am also thankful to Prof. Asok Bhattacharyya, for his valuable suggestions and

constant support.

I would also like to take this opportunity to present my sincere regards to all the

faculty members of the Department for their support and encouragement.

I am grateful to my parents for their moral support all the time; they have been

always around to cheer me up, in the odd times of this work. I am also thankful to my

classmates for their unconditional support and motivation during this work.

Puja Krishna

M.E. (Electronics & Communication)
College Roll No. 06/EC/05

University Roll No. 2804
Department of Electronics & Communication
Delhi College of Engineering, Delhi-110042

ABSTRACT

This thesis gives an insight into the working of CCP (Coverage Configuration Protocol)

for energy efficient sensor networks, which provides sensing coverage with the adequate

network connectivity. In my minor thesis, I simulated the energy efficient S-MAC

protocol for Sensor networks, which provides only network connectivity, but not the

sensing coverage.

In sensor networks, there are two critical requirements;

• Sufficient sensing coverage,

• Sufficient network connectivity.

Sensing is one of the responsibilities of a sensor network. To operate successfully, a

sensor network must provide satisfactorily sensing coverage and network connectivity.

By satisfactorily network connectivity, nodes can communicate for data fusion and

reporting to base station. Sensing coverage characterizes the monitoring quality provided

by a sensor network in a designated region. The coverage requirement for a sensor

network depends on the different applications and also on the number of faults that must

be tolerated.

Without sufficient sensing coverage, the network cannot monitor the environment with

sufficient accuracy or may even suffer from “sensing voids” locations where no sensing

can occur. Without sufficient connectivity, nodes may not be able to coordinate

effectively or transmit data back to base station. The combination of coverage and

connectivity is a special requirement introduced by sensor networks that integrate

multihop wireless communication and sensing capabilities into a single platform.

Hence, this thesis covers the entire connectivity as well as the sensing coverage of sensor

network by simulating the efficient energy conservation protocol called CCP (Coverage

Configuration Protocol). CCP selects a small number of active nodes to maintain the

sensing coverage and connectivity of a sensor network while scheduling other nodes to

sleep. CCP can dynamically configure a sensor network to different degrees of coverage

requested by applications. This flexibility allows the network to self configure for a wide

range of applications and environments with diverse or changing coverage requirements.

Through geometric analysis and simulation results, it can be showed that CCP can

maintain robust sensing coverage and network connectivity when communication range

is at least twice sensing range.

The problem of coverage configuration can be formulated as follows. Given a convex

region A, and a degree of coverage K specified by the application, the number of sleeping

nodes must be maximized such that the remaining active nodes must provide K-coverage

to region A.

TABLE OF CONTENTS

ABSTRACT
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES

1.INTRODUCTION... 1

1.1 Overview of Wireless Sensor Networks .. 2
1.2 Thesis Outline ... 5

2. COVERAGE CONFIGURATION PROTOCOL DESIGN .. 7

2.1 Problem Formulation .. 8
2.2 Relationship between Coverage & Connectivity ... 9

2.2.1 Sufficient condition for 1-coverage to imply Connectivity 9
2.3 Relationship between the degree of Coverage & Connectivity 11
2.4 Coverage & Connectivity Configuration when Rc ≥ Rs .. 16

2.4.1 Ks- Coverage Eligibility algorithm .. 16
2.5 State Transition of CCP ... 21

3. OVERVIEW OF THE EXISTING NETWORK SIMULATOR 23

4. SIMULATION TOOL: INTORDUCTION TO OMNeT++ ... 27

4.1 Architecture of OMNeT++ .. 29
4.2 Component of OMNeT++ .. 30
4.3 Platforms of OMNeT++... 31
4.4 Licensing for OMNeT++ .. 31
4.5 Modeling concepts .. 31
4.6 Simulation modeling in OMNeT++ .. 34
4.7 NED language.. 36
4.8 Programming the algorithms ... 36
4.9 User Interfaces .. 37
4.10 Building and running simulations ... 40

5. IMPLEMENTATION ... 41

5.1 OMNeT++ Simulator Representing Different States Of nodes.................................. 42
5.2.1 Different States .. 42
5.2.2 Different Files for Simulation ... 43

5.2 OMNeT++ Simulator representing the Sensing of Parameters 51
5.2.1 Different Files for Simulation ... 51

5.3 Application of CCP in Detecting the Selfish Node .. 59
5.3.1 Physical Model ... 59
5.3.2 Mac Layer... 60
5.3.3 Routing model ... 61
5.3.4 Traffic model ... 63

5.3.5 Modular architecture of Network .. 64
5.3.6 Different Files for Simulation ... 64

6. RESULTS ... 69

6.1 Output of Network for Showing Different States of Nodes................................ 70
6.2 Output of Network for sensing Temperature and Voltage 72
6.3 Output of Network for Selfish Node Detection .. 74

7. CONCLUSION ...76

8. APPLICATION & FUTURE WORK ... 78

9. REFERENCES .. 80

LIST OF FIGURES

Fig 2.1 Removing Ks nodes disconnects a covered network ... 12

Fig 2.2 A disconnected network ... 13

Fig 2.3 Case 1: The void does not merge with boundary ... 14

Fig 2.4 Case 2: The void merges with boundary .. 15

Fig 2.5 An example of Ks-eligibility.. 17

Fig 2.6 A coverage patch bounded by arcs of sensing circles .. 18

Fig 2.7 A coverage patch bounded by arcs of sensing circles

 & boundary of coverage region .. 19

Fig 2.8 State diagram of CCP... 21

Fig 4.1 Architecture of OMNeT++ simulation program .. 30

Fig 4.2 Simple & Compound modules ... 32

Fig 4.3 Submodules connected to each other ... 34

Fig 4.4 Each submodule connected to parent module .. 34

Fig 4.5 Example of a TKenv user interface in OMNeT++... 39

Fig 5.1 State diagram of CCP... 42

Fig 5.2 Modular Architecture of Network.. 64

Fig 6.1 Simulation snapshot of different states of nodes of wireless

 Sensor network with CCP using OMNeT++ .. 70

Fig 6.2 Output screen with messages of wireless sensor network

 with CCP using OMNeT++ .. 71

Fig 6.3 Simulation snapshot of different states of wireless sensor

 network sensing temperature or voltage once at a time... 72

Fig 6.4 Output screen with messages of wireless sensor network sensing

 temperature or voltage once at a time with CCP ... 73

Fig 6.5 Simulation snapshot of selfish node detection in network

 following the CCP using OMNeT++.. 74

Fig 6.6 Output screen with messages of wireless sensor network

 detecting the selfish node... 75

LIST OF TABLES

 Table 1.1 Differences between different types of networks..2-3

 Table 5.1 Neighbor table... 62

 CHAPTER 1

INTRODUCTION TO SENSOR NETWORKS & COVERAGE

CONFIGURATION PROTOCOL

Delhi College of Engineering 1

INTRODUCTION TO SENSOR NETWORKS & COVERAGE
CONFIGURATION PROTOCOL

1.1 OVERVIEW OF WIRELESS SENSOR NETWORKS
Efficient design and implementation of wireless sensor networks has become a hot area of

research in recent years, due to the vast potential of sensor networks to enable applications

that connect the physical world to the virtual world. Wide range of potential applications of

wireless sensor networks includes environment monitoring, smart spaces, medical systems

and robotic exploration.

Such a network normally consists of a large number of distributed nodes that organize

themselves into a multi-hop wireless network. Each node has one or more sensors,

embedded processors and low-power radios, and is normally battery operated. Typically,

these nodes coordinate to perform a common task.

Wireless sensor network consists of a large number of distributed nodes that organize

themselves into a multi-hop wireless network. These nodes are comprised of transducers

(sensor or actuator), communication circuitry and behavior logic. These nodes will be

embedded in ceiling tiles and will locate things, sense danger and control the environment

with minimal human effort. The behavior and characteristics of wireless sensor networks

(WSN) are very much different from other wireless networks.

Differences between different types of networks:-

Types Number of Range Data rate Mobility

 nodes

 Cellular Large Long Medium High

 WLAN Small Medium High Medium

 Bluetooth Small Short Medium Low

 WSN Large Very short Low Low

Delhi College of Engineering 2

Types Power Cost Size Redundancy

 Cellular High High large low

 WLAN Medium Medium Medium low

 Bluetooth Low Low Small low

 WSN Very low Very low Very small high

 Table 1.1: Differences between different types of networks

Unique Features of Sensor Networks:

It should be noted that sensor networks do share some commonalities with general ad hoc

networks. Thus, protocol design for sensor networks must account for the properties of ad

hoc networks, including the following:

• Lifetime constraints imposed by the limited energy supplies of the nodes in the network.

• Unreliable communication due to the wireless medium.

• Need for self-configuration, requiring little or no human intervention.

However, several unique features exist in wireless sensor networks that do not exist in

general ad hoc networks. These features present new challenges and require modification

of designs for traditional ad hoc networks:

• While traditional ad hoc networks consist of network sizes on the order of 10s, sensor

networks are expected to scale to sizes of 1000s.

• Since nodes may be deployed in harsh environmental conditions, unexpected node failure

may be common.

• Sensor nodes may be much smaller than nodes in traditional ad hoc networks (e.g., PDAs,

laptop computers), with smaller batteries leading to shorter lifetimes, less computational

power, and less memory.

Delhi College of Engineering 3

• Additional services, such as location information, may be required in wireless sensor

networks.

• While nodes in traditional ad hoc networks compete for resources such as bandwidth,

nodes in a sensor network can be expected to behave more cooperatively, since they are

trying to accomplish a similar universal goal, typically related to maintaining an

application-level quality of service (QoS), or fidelity.

• Communication is typically data-centric rather than address-centric, meaning that routed

data may be aggregated/compressed/prioritized/dropped depending on the description of

the data.

• Communication in sensor networks typically takes place in the form of very short

packets, meaning that the relative overhead imposed at the different network layers

becomes much more important.

• Sensor networks often have a many-to-one traffic pattern, which leads to a “hot spot”

problem. Incorporating these unique features of sensor networks into protocol design is

important in order to efficiently utilize the limited resources of the network.

An important property of sensor networks is the need of the sensors to reliably disseminate

the data to the sink or the base station within a time interval that allows the user or

controller application to respond to the information in a timely manner, as out of date

information is of no use and may lead to disastrous results.

Another important attribute is the scalability to the change in network size, node density

and topology. Sensor networks are very dense as compared to mobile ad hoc and wired

networks. This arises from the fact that the sensing range is lesser than the communication

range and hence more nodes are needed to achieve sufficient sensing coverage. Sensor

nodes are required to be resistant to failures and attacks.

Information routing is a very challenging task in Distributed Sensor Networks due to the

inherent characteristics that distinguish these networks from other wireless or adhoc

networks. The sensor nodes deployed in an adhoc manner need to be self-organizing as this

Delhi College of Engineering 4

kind of deployment requires system to form connections and cope with the resultant nodal

distribution.

Another important design issue in sensor networks is that sensor networks are application

specific. Hence, the application scenario demands the protocol design in a sensor network.

Also, the data collected by sensor nodes is often redundant and needs to be exploited by

routing protocols to improve energy and bandwidth utilization. The proposed routing

protocols for sensor networks should consider all the above issues for it to be very efficient.

The algorithms developed need to be very energy efficient, scalable and increase the life of

the network in the process.

The multitudes of design challenges imposed on Sensor Networks tend to be quite complex

and usually defy the analytical methods that are quite effective for traditional networks. At

current stage of technology very few Sensor Networks have come into existence. Although

there are many unsolved research problems in this domain, actual deployment and study is

infeasible. The only practical alternate to study Sensor Networks is through simulation,

which can provide better insight to behavior and performance of various algorithms and

protocols.

1.2 THESIS OUTLINE
As wireless sensor networks continue to attract more attention, new ideas for applications

are continually being developed, many of which involve consistent coverage with

appropriate network connectivity of a given surveillance area. Several other protocols (e.g.,

ASCENT [2]], SPAN [3], AFECA [4], and GAF [5]) aim to maintain network

connectivity, but do not guarantee sensing coverage.

 Recently, some protocols and architectures have been proposed to maintain adequate

coverage quality with network connectivity [1] while minimizing the drain on the scarce

energy resources of the sensor nodes.

An effective approach for energy conservation in wireless sensor networks is scheduling

sleep intervals for extraneous nodes, while the remaining nodes stay active to provide

Delhi College of Engineering 5

continuous service. For the sensor network to operate successfully, the active nodes must

maintain both sensing coverage and network connectivity. Furthermore, the network must

be able to configure itself to any feasible degrees of coverage and connectivity in order to

support different applications and environments with diverse requirements. This Thesis

presents the design and analysis of novel protocol that can dynamically configure a

network to achieve guaranteed degrees of coverage and connectivity, which differs, from

existing connectivity or coverage maintenance protocols in several ways.

Coverage configuration is an important issue in wireless sensor networks (WSNs). Existing

coverage configuration methods are generally based on the concept of physical coverage.

That is, a point is covered if it is located within the sensing area of at least one sensor but

Coverage Configuration depends on the information about the states of neighboring sensors

and the intersection points of neighboring sensors within the sensing region of that sensor.

To provide such kinds of network’s characteristics, Coverage configuration protocol (CCP)

is introduced which preserves the network connectivity with providing the adequate

coverage quality that is distinctly different from the previously proposed S-MAC protocol.

Coverage Configuration Protocol (CCP) can provide different degrees of coverage

requested by applications. This flexibility allows the network to self-configure for a wide

range of applications and (possibly dynamic) environments.

This Thesis also provides the geometric analysis of the relationship between coverage and

connectivity. This analysis yields key insights for treating coverage and connectivity in a

unified framework: this is in sharp contrast to several existing approaches.

Delhi College of Engineering 6

 CHAPTER 2

COVERAGE CONFIGURATION PROTOCOL

DESIGN

Delhi College of Engineering 7

COVERAGE CONFIGURATION PROTOCOL

DESIGN

An effective approach for energy conservation in wireless sensor networks is scheduling

sleep intervals for extraneous nodes [12], while the remaining nodes stay active to provide

continuous service. For the sensor network to operate successfully, the active nodes must

maintain both sensing coverage [11] and network connectivity. Furthermore, the network

must be able to configure itself to any feasible degrees of coverage and connectivity in

order to support different applications and environments with diverse requirements.

This chapter presents the design and analysis of novel protocols that can dynamically

configure a network to achieve guaranteed degrees of coverage and connectivity, which is

different from existing connectivity, or coverage maintenance protocols in several ways:

1) Coverage Configuration Protocol (CCP) is a protocol that can provide different degrees

of coverage requested by applications. This flexibility allows the network to self-configure

for a wide range of applications and (possibly dynamic) environments.

 2) Geometric analysis of the relationship between coverage and connectivity yields key

insights for treating coverage and connectivity in a unified framework: this is in sharp

contrast to several existing approaches.

2.1 PROBLEM FORMULATION

For design of CCP, a point p is assumed to be covered (monitored) by a node v if their

Euclidian distance is less than the sensing range of v, Rs, i.e., |Pv| < Rs. Sensing circle C(v)

of node v is defined as the boundary of v’s coverage region. Any point p on the sensing

circle C (v) (i.e., |Pv| = Rs) is not assumed to be covered by v. Based on the above coverage

model, a convex region A (that contains at least one sensing circle) is defined as having a

coverage degree of K (i.e., being K-covered) if every location inside A is covered by at

Delhi College of Engineering 8

least K nodes. Practically, a network with a higher degree of coverage can achieve higher

sensing accuracy and be more robust against sensing failures. The coverage configuration

problem [13] can be formulated as follows.

Given a convex coverage region A, and a coverage degree K specified by the application

(either before or after deployment), the number of sleeping nodes must be maximize under

the constraint that the remaining nodes must guarantee A is K covered. Despite its

simplicity, this coverage model is applicable in a number of applications. For example, it

fits well with the decision approach to distributed detection of selfish sensors. Therefore,

the statistical nature of sensor network applications and the environments can be

incorporated in the definition of sensing range.

In addition, it is assumed that any two nodes u and v can directly communicate with each

other if their Euclidian distance is less than a communication range Rc, i.e., |uv| < Rc. Given

a coverage region A and a sensor coverage degree Ks, the goal of an integrated coverage

and connectivity configuration is maximizing the number of nodes that are scheduled to

sleep under the constraints that the remaining nodes must guarantee: 1) A is at least Ks–

covered, and 2) all active nodes are connected.

2.2 RELATIONSHIP BETWEEN COVERAGE AND CONNECTIVITY

In this section, sufficient condition is first derived when coverage implies connectivity in a

network. The relationship between the degree of coverage and connectivity is then

quantified. The analysis presented in this section will serve as the foundation for an

integrated solution to the problem of integrated coverage and connectivity configuration.

2.2.1 Sufficient Condition for 1-Coverage to Imply Connectivity

In this subsection, the relationship between 1-coverage and connectivity is analyzed in a

network. It is noted that connectivity only requires that the location of any active node be

within the communication range of one or more active nodes such that all active nodes can

Delhi College of Engineering 9

form a connected communication backbone, while coverage requires all locations in the

coverage region be within the sensing range of at least one active node.

Intuitively, the relationship between connectivity and coverage depends on the ratio of the

communication range to the sensing range. However, it is easily seen that a connected

network may not guarantee its coverage regardless of the ranges. This is because coverage

is concerned with whether any location is uncovered while connectivity only requires all

locations of active nodes are connected. Hence, focus must be given on analyzing the

condition for a covered network to guarantee connectivity in the rest of this section.

Define the graph G(V,E) to be the communication graph of a set of sensors, where each

sensor in the set is represented by a node in V, and for any node x and y in V, the edge (x,

y) Є E if and only if the Euclidean distance between x and y, |xy| < Rc. Nodes v and u are

connected in G(V,E) if and only if a network path consisting of consecutive edges in E

exists between node u and v.

Theorem 1: For a set of sensors that at least 1-cover a convex region A, the

communication graph is connected if Rc ≥ 2Rs.

Proof: For any two nodes, u and v in region A, let Puv be the line segment joining them.

Since region A is convex, Puv remains entirely within A. Hence, any point on Puv is at least

1-covered. Each point P on Puv has a set of one or more closest sensors equidistant from P.

A finite sequence Suv = s1…..sn of closest sensor sets can be constructed for contiguous

segments 1..n of Puv, where a segment is defined by all points within it having the same set

of closest sensors. Suv starts with s1 = {u} and ends with sn = {v}, with intervening sets

possibly containing other sensors.

The distance from each point on the line segment Puv to its closest sensor(s) is always less

than Rs, as otherwise the path would go through regions that are not sensor-covered.

Furthermore, if there were any two sensors x and y in any consecutive sets sj and sj+1 in Suv,

x Є sj and y Є sj+1, such that |xy|≥ 2Rs, then the point p at the intersection of Puv with the

sensing circle of x is exactly Rs from x (and not covered by x from the definition of sensing

Delhi College of Engineering 10

circle) and according to the triangle inequality is at least Rs from y. However, since that

point would then have x as one of its closest sensors, it would be at least Rs from any

sensor and thus would not be sensor-covered. Therefore, the distance between every pair of

sensors in consecutive sets in Suv is less than 2Rs, and is thus less than Rc, so an edge exists

between them in the communication graph. Because each set in Suv contains at least one

sensor, thus a communication path can be constructed from u to v through each

combination of node choices in the sets in Suv. i.e., the communication graph of sensors in

region A is connected.

Therefore, Theorem 1 establishes a sufficient condition for a 1-covered network to

guarantee 1-connectivity. Under the condition that Rc ≥ 2Rs, a sensor network only needs

to be configured to guarantee coverage in order to satisfy both coverage and connectivity.

2.3 RELATIONSHIP BETWEEN THE DEGREE OF COVERAGE AND

CONNECTIVITY

In previous section, it is proved that if a region is sensor covered, and then the sensors

covering that region are connected as long as their communication range is no less than

twice the sensing range. If the condition of Rc ≥ 2Rs is maintained, then the relationship

between the degree of coverage and connectivity can be maintained. This result is

important for applications that require degrees of coverage or connectivity greater than one.

Boundary sensor is defined as a sensor whose sensing circle intersects with the boundary of

the convex sensor deployment region A. Clearly all boundary sensors are located within Rs

distance to the boundary of A. All the other sensors in region A are interior sensors.

Theorem 2: For a Ks-covered convex region A, it is possible to disconnect a boundary

node from the rest of the nodes in the communication graph by removing Ks sensors if Rc

≥ 2Rs.

Proof: A sensor u is located at a corner (point q) of the rectangular sensor deployment

region A that is Ks-covered as shown in Figure 2.1. Suppose point p is on the sensing circle

of sensor u such that pq has a 45o angle with the horizontal boundary of region A.

Delhi College of Engineering 11

 Figure 2.1: Removing Ks nodes disconnects a covered network

Suppose Ks coinciding sensors are located at point p. Clearly, these Ks sensors can Ks-

cover the quarter circle of sensor u. In addition, it is assumed that there are no other sensors

whose sensing circles intersect with sensing circle of u. Then removing these Ks coinciding

sensors will create an uncovered region (i.e., a sensing void) surrounding sensor u.

Furthermore, when Rc is equal to 2Rs, there is no sensor within the communication range of

sensor u after the removal of these Ks sensors. i.e., the communication graph is

disconnected.

Theorem 3: A set of nodes that Ks-cover a convex region A forms a Ks connected

communication graph if Rc ≥ 2Rs.

Proof: Disconnecting the communication graph G of a set of sensors creates (at least) 3

disjoint sets of nodes, the set of nodes W that is removed, and two sets of nodes V1 and

V2, such that there are no edges from any node in V1 to any node in V2 in G. By Theorem

1, if it is possible to draw a continuous path between two nodes so that every point on the

path is sensor-covered, then there exists a communication path between those two nodes.

Therefore, to disconnect the graph it is necessary to create a sensing void, so that it is

impossible to draw a continuous covered path connecting a node in V1 to a node in V2.

That is, as illustrated in Figure 2.2, the nodes of V1 may all lie in region S, the nodes in V2

Delhi College of Engineering 12

may all lie in region Q, and a set of nodes W must be removed to make a region T that is 0-

covered. The nodes that are removed may actually lie in the region labeled S or Q, but their

removal leaves the 0-covered region labeled as T.

 Figure 2.2: A disconnected network

To create a sensing void in an originally Ks-covered region A, it is necessary to remove at

least Ks sensors. Thus, the network connectivity is at least Ks. By Theorem 2, removing Ks

sensors could disconnect the communication graph. Therefore, the tight lower bound on the

connectivity of communication graph is Ks.

Intuitively, the connectivity of the boundary sensors dominates the overall connectivity of

the communication graph. However, in a large-scale sensor network, the interior sensors

normally route more traffic and higher connectivity is needed for interior sensor to

maintain the required throughput. Interior connectivity is defined as the number of sensors

(either interior or boundary) that must be removed to disconnect any two interior sensors in

the communication graph of the sensors.

Delhi College of Engineering 13

Theorem 4: For a set of sensors that Ks-cover a convex region A, the interior connectivity

is 2Ks if Rc ≥ 2Rs.

Proof: Suppose u and v are two interior nodes and the removal of a set of nodes W

disconnects node u and node v. In order for nodes v and u to be disconnected, there must be

a “void” region that separates node v from node u. There are two cases, either this void is

completely contained within the sensor deployment region, or the void merges with the

boundary of the region.

Case 1: As illustrated in Figure 2.3, the void does not merge with the boundary. It

will prove that one must remove at least 2Ks+1 sensors in this case to create such a void. It

is proved by contradiction.

 Figure 2.3: Case 1: The void does not merge with

 boundary

Suppose |W| < 2Ks+1. In this case, the void must completely surround a set of nodes

including node v. Since node v remains active, the sensing void must be at a distance at

least Rs from v. Now a line is drawn from v through a sensor node j in W. Line vj is to be

defined as the direction referred to as ‘vertical’. Now, there are at most 2Ks-1 remaining

sensors (except sensor j) in W which are either on the line vj or to the left or the right of

line vj. By the pigeonhole principle, there must be one side that has less than Ks nodes

from the set W, which is defined to be the left side. A line is drawn straight left from v

Delhi College of Engineering 14

until it intersects the void region, and noted this point as P (note that P is covered by zero

sensors.) Point P is at least Rs from node v, and is at least Rs from any point on or to the

right of the vertical line. However, there are at most Ks –1 nodes in the set W that are to the

left of the line. This contradicts the assertion that P was originally Ks covered and the

removal of the nodes of W leaves it 0-covered. Thus, |W| is at least 2Ks+1.

Case 2: The void merges with the boundary of region A, as illustrated in Figure 2.4.

In this case, the removal of a set of nodes W creates a void, which separates the nodes v

and u, and this void merges with the boundary of the region A that is being sensed.

 Figure 2.4: Case 2: The void merges with boundary

Since v is an interior node, all the points within a radius Rs from v are inside region A, and

the same holds true for u. Furthermore, since the region A is convex, the line connecting

any point v' within Rs from v and any point u' within Rs from u are inside the region A and

must be intersected by the void, otherwise there will exist a continuous path (vv'u'u) from v

to u, which remains entirely within sensor covered region and defines a network path in the

communication graph (from Theorem 1). Thus, the minimum width of the void that

separates u from v is at least 2 Rs. Now any two points are considered in the void that are a

distance of 2Rs apart. No sensor can simultaneously cover both points. This implies that at

least 2Ks sensors were removed in the Ks-covered region A to create the void. This bound

is proved tight by the following example. Suppose the Ks-covered region A is a rectangle

A1A2A3A4 with width 2 Rs +r (0 < r < Rs). Two points x and y are located at perpendicular

bisector of A1A2 and have distance (Rs +r)/2 < Rs with A1A2 and A3A4respectively, as

Delhi College of Engineering 15

shown in Figure 2.4. Suppose there are Ks sensors (shown as dotted circles) located at point

x and y respectively. W is composed of these 2Ks sensors. It is assumed the sensors (not

shown in the figure) whose sensing circles intersect the 2Ks sensors in W are far enough

from point x and y such that the void created by the removal of W intersects both A1A2 and

A3A4. It is clear that the void disconnects the nodes on left side from the nodes on right

side in communication graph.

From the proof of case 1 and case 2, for a set of sensors that Ks cover a convex region, it

has shown that the tight lower bound on the interior connectivity is 2Ks.

From the Theorems 3 and 4, one can draw the conclusion that the boundary nodes that are

located within Rs distance to the boundary of the coverage region are Ks connected; to the

rest of the network, the interior connectivity is 2Ks.

 2.4 COVERAGE AND CONNECTIVITY CONFIGURATION WHEN

Rc ≥ 2Rs

Based on Theorems 1, 2 and 3, the integrated coverage and connectivity configuration

problem [13] can be handled by a coverage configuration protocol if Rc ≥ 2Rs. In this

section, a new coverage configuration protocol is presented, called CCP that uses this

principle. CCP has several key benefits.

1) CCP can configure a network to the specific coverage degree requested by the

 application.

2) It is a decentralized protocol that only depends on local states of sensing neighbors.

3) Geometric analysis has proven that CCP can provide guaranteed degrees of coverage.

2.4.1 Ks-Coverage Eligibility Algorithm

Each node executes an eligibility algorithm to determine whether it is necessary to become

active. Given a requested coverage degree Ks, a node v is ineligible if every location within

its coverage range is already Ks-covered by other active nodes in its neighborhood. For

Delhi College of Engineering 16

example, assume the nodes covering the shaded circles in Figure 5 are active, the node with

the bold sensing circle is ineligible for Ks=1, but eligible for Ks > 1. Before presenting the

eligibility algorithm, the following notations are defined.

1) The sensing region of node v is the region inside its sensing circle, i.e., a point P is in v’s

sensing region if and only if |pv| < Rs.

2) A point P Є A is called an intersection point between nodes u and v, i.e., P Є u ∩ v, if P

is an intersection point of the sensing circles of u and v.

3) A point P on the boundary of the coverage region A is called an intersection point

between node v and A, i.e., P Є v ∩ A if |pv|= Rs.

 Figure 2.5: An example of Ks-eligibility

Theorem 5: A convex region A is Ks-covered by a set of sensors S if

1) there exist in region A intersection points between sensors or between sensors and A’s

boundary;

2) all intersection points between any sensors are at least Ks-covered; and

3) all intersections points between any sensor and A’s boundary are at least Ks covered.

Delhi College of Engineering 17

Proof: It is proved by contradiction. Let P be the point that has the lowest coverage degree

k in region A and k < Ks. Furthermore, suppose there is no intersection point in A which is

covered to a degree less than Ks. The set of sensing circles partition A into a collection of

coverage patches, each of them is bounded by arcs of sensing circles and/or the boundary

of A, and all points in each coverage patch have the same coverage degree. Suppose point

P is located in coverage patch S. First, it is proved that the interior arc of any sensing circle

cannot serve as the boundary of S. It is proved by contradiction. Assume there exists an

interior arc (of sensing circle C(u)) serving as the boundary of S, crossing this arc (i.e.

leaving the coverage region of sensor u) would reach an area that is lower covered than

point P. This contradicts with the assumption that point P has the lowest coverage degree in

region A. The following two cases are now considered:

 Figure 2.6: A coverage patch bounded by arcs of sensing
 Circles

1) The point P lies in a coverage region S whose boundary is only composed of exterior

arcs of a collection of sensing circles (as Figure 2.6 illustrates). Furthermore, since the

sensing circles themselves are outside the sensing range of the nodes that define them, the

entire boundary of this coverage patch, including the intersection points of the sensing

circles defining the boundary, has the same coverage degree as point P. This contradicts the

Delhi College of Engineering 18

assertion that P is covered to a degree less than Ks and all intersection points have coverage

degree at least Ks.

2) The point P lies in a coverage region S that is bounded by the exterior arcs of a

collection of sensing circles and the boundary of A. As shown in Figure 2.7, point P is in a

region bounded by the exterior arcs of sensor u, v, w, x and the boundary of region A.

Similarly as case 1), the entire boundary of this coverage patch, including the intersection

points of sensors u, v, w, x and intersection points between sensors w, x and boundary of A,

has the same coverage degree as point P. This contradicts the assertion that P is covered to

a degree less than Ks and all intersection points have coverage degree at least Ks.

 Figure 2.7: A coverage patch bounded by arcs of sensing

 circles and boundary of a coverage region

Clearly the point P cannot lie in a coverage patch that is bounded solely by the boundary of

region A. Otherwise the region A has the same coverage as point P. This contradicts with

the assumption that the region A is Ks covered. From the above discussion, the point P with

lower coverage degree than Ks does not exist. Thus, the region A is Ks covered.

Theorem 5 allows us to transform the problem of determining the coverage degree of a

region to the simpler problem of determining the coverage degrees of all the intersection

Delhi College of Engineering 19

points in the same region. A sensor is ineligible for turning active if all the intersection

points inside its sensing circle are at least Ks-covered. To find all the intersection points

inside its sensing circle, a sensor v needs to consider all the sensors in its sensing neighbor

set, SN (v).

SN (v) includes all the active nodes that are within a distance of twice of the sensing range

to v, i.e., SN (v) = {active node u | |uv|≤ 2Rs and u! =v}. If there is no intersection point

inside the sensing circle of sensor v, v is ineligible when there are Ks or more sensors that

are located at sensor v’s position.

CCP maintains a table of known sensing neighbors based on the beacons (HELLO

messages) that it receives from its communication neighbors. When Rc ≥ 2Rs, the HELLO

message from each node only needs to include its own location. When Rc < 2Rs, however,

a node may not be aware of all sensing neighbors through such HELLO messages. Since

some sensing neighbors may be “hidden” from a node, it might activate itself to cover a

perceived sensing void that is actually covered by its hidden sensing neighbors. Thus, the

number of active nodes would be higher than necessary in this case. To address this

limitation, there must be some mechanism for a node to advertise its existence to the

neighborhood of 2Rs range.

There are two approaches to make each node aware of its multihop neighbors. One is to

broadcast HELLO messages in multiple hops by setting the TTL of each HELLO message.

The other is to let each node include the locations of all known multi-hop neighbors in its

HELLO messages. Specifically, each node may broadcast the locations and status of all

active nodes within 2Rs/Rc hops. The second approach reduces the number of broadcasts

and is adopted by CCP. Here, it should be noted that, in a network with random topology,

such HELLO messages still could not guarantee the discovery of all nodes within a

distance of 2Rs. Since including multi-hop neighbors in the HELLO messages introduce

much higher communication overhead compared to a one-hop approach in a dense

network, there is a tradeoff between the beacon overhead and the number of active nodes

maintained by CCP.

Delhi College of Engineering 20

2.5 THE STATE TRANSITION OF CCP

In CCP, each node determines its eligibility using the Ks -coverage eligibility algorithm

based on the information about its sensing neighbors, and may switch state dynamically

when its eligibility changes. A node can be in one of three states: SLEEP, ACTIVE, and

LISTEN, as illustrated in fig 2.8.

 Figure 2.8: State Diagram of CCP

In the SLEEP state, the node sleeps to conserve energy. In the ACTIVE state, the node

actively senses the environment and communicates with other sensors. Each node

periodically enters the LISTEN state to collect HELLO messages from its neighbors and

reevaluates its eligibility. Two more transient states JOIN and WITHDRAW, are used to

reduce the contention among neighbors in the transition from LISTEN to ACTIVE and the

transition from ACTIVE to SLEEP, respectively.

1. SLEEP- When the sleep timer Ts expires, a node turns on the radio, starts a listen timer

Tl, and enters the LISTEN state.

Delhi College of Engineering 21

2. LISTEN- When a beacon (HELLO, WITHDRAW, or JOIN message) is received, a

node evaluates its eligibility. If it is eligible, it starts a join timer Tj and enters the JOIN

state. Otherwise, it sets a sleep timer Ts and returns to the SLEEP state when Tl expires.

3. JOIN- If a node becomes ineligible before Tj expires (e.g., due to the reception of a

JOIN message), it cancels Tj, starts a sleep timer Ts, and returns to the SLEEP state. If Tj

expires, it broadcasts a JOIN message and enters the ACTIVE state.

4. ACTIVE- When a node receives a HELLO message, it executes the coverage eligibility

algorithm to determine its eligibility to remain active. If it is ineligible, it starts a withdraw

timer Tw and enters the WITHDRAW state.

5. WITHDRAW- If a node becomes eligible (due to the reception of a WITHDRAW or

HELLO message from a neighbor) before the Tw expires, it cancels the Tw and returns to

the ACTIVE state. If Tw expires, it broadcasts a WITHDRAW message, starts a sleep

timer Ts, and enters the SLEEP mode.

Both the join and withdraw timers are randomized to avoid collisions among multiple

nodes that decide to join or withdraw. The values of Tj and Tw affect the responsiveness of

CCP. Shorter timers lead to quicker response to the variations in coverage. Both timers

should be set appropriately according to the network density. For example, for a denser

network where a node has more neighbors, both timers should be increased to give a node

enough time to collect the JOIN or WITHDRAW messages from its neighbors.

Delhi College of Engineering 22

 CHAPTER 3

 OVERVIEW OF THE EXISTING NETWORK

SIMULATORS

Delhi College of Engineering 23

 OVERVIEW OF THE EXISTING NETWORK
SIMULATORS

Network simulators are very important for analyzing various protocols designed for a

network (wired or wireless) and its necessity is very well known in the field of research.

Especially, the research challenges in wireless sensor networks brought many open issues

to network designers. The techniques used for analyzing the performance of any wireless

networks are physical measurement, analytical methods and computer simulation. The

constraints imposed on sensor networks, such as energy limitation, fault tolerance make the

algorithms for sensor networks to be quite complex and usually defy analytical methods

that have been effective for traditional networks. Moreover, physical measurement is not

possible because of the unsolved research problems in the field of sensor networks. Hence,

computer simulations appear to be the only feasible approach than anything else [6].

ns2, a widely used network simulator in the research community has the extended features

to simulate Sensor Networks. It uses object-oriented design for the implementation of

various modules of a sensor network [7].

There are modules for energy model, wireless channel, sensor channel which models

dynamic inter-action between the physical environment and the sensor nodes. It also has

implementations of few protocols that are under development for sensor networks. These

include S-MAC, a Sensor MAC protocol at the MAC layer in a Sensor Node protocol

stack, Directed Diffusion routing protocol with Geographic Routing. It also has a

framework developed for Sensor Networks known as SensorSim that has the detailed

implementation of a Sensor Node with a hardware model defining the hardware

components of a sensor node and a software model defining the protocol stack of the node.

The object-oriented design of ns2 introduces unnecessary interdependence between

modules and makes the addition of new protocols very difficult as it can be mastered only

by experts in ns2 [6]. This extension might be easy for traditional networks but not for

sensor networks where the protocols are not very dominant and it is very unlikely that a

Delhi College of Engineering 24

single algorithm will be optimal under various circumstances. In addition, various

simulation studies show that the memory utilization of ns2 is very high and increases for

very large simulations. Since the application, areas in sensor networks require many

number of sensor nodes in a sensor field, the simulations in ns2 take lot of memory. In

addition, another disadvantage posed by ns2 comes from its open source nature. The

documentation is often limited and out of date with the current release of the simulator. The

problems can be solved with the help of dynamic news groups and going through the

source code. In addition, the consistency of code is lacking as many users develop it. There

are no tools describe simulation scenarios and analyze or visualize simulation trace files.

The tools for ns2 are written with scripting languages. The lack of generalized analysis

tools may lead to different people measuring different values for the same metric names

[10].

OPNET modeler is another popular commercial platform for network modeling and

simulation, which allows the design and study of communication networks, devices,

protocols, and applications with unmatched flexibility and scalability. This is used by many

prestigious technology organizations to accelerate the research and development process.

OPNET Modeler is based on a series of hierarchical editors that directly parallel the

structure of real networks, equipment, and protocols. The wireless model uses a 13- stage

pipeline to determine connectivity and propagation among nodes. Modeler’s object-

oriented modeling and hierarchical editors mirror the structure of actual networks and

network components [8]. The difficulty with OPNET Modeler is to build the state machine

for each level of the protocol stack. It is difficult to abstract such a state machine starting

from a pseudo-coded algorithm. However, state machines are the most practical input for

discrete simulators. Hence, it is possible to reuse many existing components (MAC layer,

transceivers, links, etc.) improving the deployment process. But on the other hand, any new

feature must be described as a finite state machine which can be difficult to debug, extend

and validate [10]. In addition, it is commercial and is not available for public, which

becomes the biggest disadvantage for working on it.

Delhi College of Engineering 25

J-Sim is an open-source, component based network simulation environment developed

entirely in Java by Ohio State University (initially and later by University of Illinois). This

along with the autonomous component architecture makes it a truly platform-neutral,

extensible, and reusable environment. The Sensor Network Framework developed in J-Sim

provides an object-oriented definition for target, sensor and sink nodes; sensor and wireless

communication channels; and physical media such as seismic channels, mobility model and

power model [9]. The simulation analysis described in [10] show that the execution speed

of J-Sim is less compared to many other simulators and this happens because of its

implementation in JAVA. But the memory consumption of J-Sim is less compared to

others and this advantage comes from its garbage collectors.

 GloMoSim developed initially at UCLA Computing Laboratory, is a scalable simulation

environment for wireless and wired networks systems developed [6]. It is designed using

the parallel discrete-event simulation capability provided by a C-based parallel simulation

language, Parsec [10]. It currently supports protocols for purely wireless networks and is

built using a layered approach. Standard APIs are used between the different layers and

allow the rapid integration of models developed at different layers by users. The difficulty

with GloMoSim was to describe a simple application that bypasses most OSI layers. The

bypass of the protocol stack is not obvious to achieve as most applications usually lie on

top of it. The architecture is also not very flexible compared to other simulators. Though

many simulators were developed to emulate a Sensor Network, each has its own design

complexities to test and verify new protocols.

The current study of coverage configuration protocols is done on OMNeT++ network

simulator. OMNeT++ is an object-oriented modular discrete event network simulator. This

framework allows the user to debug and test software for distributed sensor networks.

OMNeT++ allows developers and researchers in the area of Sensor Networks to investigate

topological, phenomenological, networking, robustness and scaling issues, to explore

arbitrary algorithms for distributed sensors, and to defeat those algorithms through

simulated failure.

Delhi College of Engineering 26

 CHAPTER 4

INTRODUCTION TO OMNeT++ NETWORK
SIMULATOR

Delhi College of Engineering 27

 INTRODUCTION TO OMNeT++ NETWORK
 SIMULATOR

OMNeT++ is an object-oriented modular discrete event network simulator. This

framework allows the user to debug and test software for distributed sensor networks.

OMNeT++ allows developers and researchers in the area of Sensor Networks to investigate

topological, phenomenological, networking, robustness and scaling issues, to explore

arbitrary algorithms for distributed sensors, and to defeat those algorithms through

simulated failure.

An OMNeT++ model consists of hierarchically nested modules. The depth of module

nesting is not limited, which allows the user to reflect the logical structure of the actual

system in the model structure. Modules communicate through message passing. Messages

can contain arbitrarily complex data structures. Modules can send messages either directly

to their destination or along a predefined path, through gates and connections.

Modules can have their own parameters. Parameters can be used to customize module

behavior and to parameterize the model’s topology. Modules at the lowest level of the

module hierarchy encapsulate behavior. These modules are termed simple modules, and

they are programmed in C++ using the simulation library.

OMNeT++ simulations can feature varying user interfaces for different purposes:

debugging, demonstration and batch execution. Advanced user interfaces make the inside

of the model visible to the user, allow control over simulation execution and to intervene

by changing variables/objects inside the model. This is very useful in the

development/debugging phase of the simulation project. User interfaces also facilitate

demonstration of how a model works.

The simulator as well as user interfaces and tools are portable. They are known to work on

Windows and on several UNIX flavors, using various C++ compilers.

Delhi College of Engineering 28

OMNeT++ also supports parallel-distributed simulation. OMNeT++ can use several

mechanisms for communication between partitions of a parallel-distributed simulation, for

example MPI or named pipes. The parallel simulation algorithm can easily be extended or

new ones plugged in. Models do not need any special instrumentation to be run in parallel

– it is just a matter of configuration. OMNeT++ can even be used for classroom

presentation of parallel simulation algorithms, because simulations can be run in parallel

even under the GUI, which provides detailed feedback on what is going on.

4.1 ARCHITECTURE OF OMNeT++

OMNeT++ has a modular architecture. The high-level architecture of OMNeT++

simulations is shown in fig.4.1.

The rectangles in the picture represent components:

• Sim: It is the simulation kernel and class library. Sim exists as a library you link your

simulation program with.

• Envir: It is another library, which contains all code that is common to all user interfaces.

main () is also in Envir. Envir provides services like ini file handling for specific user

interface implementations. Envir presents itself towards Sim and the executing model via

the ev facade object, hiding all other user interface internals. Some aspects of Envir can be

customized via plug-in interfaces. Embedding OMNeT++ into applications can be achieved

implementing a new user interface in addition to Cmdenv and Tkev, or by replacing Envir

with another implementation of ev.

Delhi College of Engineering 29

EXECUTING
MODEL

 SIM

ENVIR
main ()

 MODEL
COMPONENT
 LIBRARY

CMDENV

 OR

TKENV

 Figure 4.1: Architecture of OMNeT++ simulation programs

• Cmdenv and Tkenv: These are specific user interface implementations. A simulation is

linked with either Cmdenv or Tkenv.

• Model Component Library: It consists of simple module definitions and their C++

implementations, compound module types, channels, networks, message types and in

general everything that belongs to models and has been linked into the simulation program.

A simulation program is able to run any model that has all necessary components linked in.

• Executing Model: It is the model that has been set up for simulation. It contains objects

(modules, channels, etc.) that are all instances of components in the model component

library. The arrows in the figure show how components interact with each other:

4.2 COMPONENTS OF OMNeT++:

• Simulation kernel library

• Compiler for the NED topology description language

Delhi College of Engineering 30

• Graphical network editor for NED files (GNED)

• GUI for simulation execution, links into simulation executable (Tkenv)

akefile creation tool, etc.)

4.3 PLATFORMS OF OMNeT++:

s. It was first developed on Linux. OMNet++

• Solaris, Linux (or other Unix-like systems) with GNU tools.

4.4 LICENSING FOR OMNeT++:

The author must be contacted if it is used in a

.5 MODELING CONCEPTS:
r the user to describe the structure of the actual

le types

rough channels

e

• Command-line user interface for simulation execution (Cmdenv)

• Graphical output vector plotting tool (Plove)

• Utilities (random number seed generation tool, m

• Documentation, sample simulations, contributed material, etc.

MNeT++ works well on multiple platformO

runs on most UNIX systems and Windows platforms (works best on NT4.0, W2K or XP).

The best platforms used are:

• Win32 and Cygwin32 (Win32 port of gcc)

• Win32 and Microsoft Visual C++

MNeT++ is free for any non-profit use. O

commercial project. The GNU General Public License can be chosen on OMNeT++.

4
OMNeT++ provides efficient tools fo

system. Some of the main features are:

• hierarchically nested modules

• modules are instances of modu

• modules communicate with messages th

• flexible module parameters

• topology description languag

Delhi College of Engineering 31

 Hierarchical modules

n OMNeT++ model consists of hierarchically nested modules, which communicate by

cture is described in OMNeT++’s NED language.

Figure 4.2: Simple and compound modules

odules that contain submodules are termed compound modules, as opposed simple

odule types

oth simple and compound modules are instances of module types. While describing the

model, the user defines module types; instances of these module types serve as components

A

passing messages to each another. OMNeT++ models are often referred to as networks.

The top level module is the system module. The system module contains sub modules,

which can also contain sub modules themselves (Fig 4.2). The depth of module nesting is

not limited; this allows the user to reflect the logical structure of actual system in the model

structure.

Model stru

SYSTEM MODULE SIMPLE MODULE

COMPOUD
MODULE

M

modules, which are at the lowest level of the module hierarchy. Simple modules contain

the algorithms in the model. The user implements the simple modules in C++, using the

OMNeT++ simulation class library.

M

B

Delhi College of Engineering 32

for more complex module types. Finally, the user creates the system module as an instance

of a previously defined module type; all modules of the network are instantiated as

submodules and sub-submodules of the system module.

When a module type is used as a building block, there is no distinction whether it is a

mple or a compound module. This allows the user to split a simple module into several

ed in files separately from the place of their actual usage. This

eans that the user can group existing module types and create component libraries.

odules communicate by exchanging messages. In an actual simulation, messages can

ets in a computer network, jobs or customers in a queuing network

dule advances when the module receives a message.

he message can arrive from another module or from the same module (self-messages are

ut interfaces of modules; messages are sent out through output

ates and arrive through input gates. Each connection (also called link) is created within a

si

simple modules embedded into a compound module, or vice versa, aggregate the

functionality of a compound module into a single simple module, without affecting existing

users of the module type.

Module types can be stor

m

Messages, gates, links

M

represent frames or pack

or other types of mobile entities. Messages can contain arbitrarily complex data structures.

Simple modules can send messages either directly to their destination or along a predefined

path, through gates and connections.

The “local simulation time” of a mo

T

used to implement timers).

Gates are the input and outp

g

single level of the module hierarchy: within a compound module, one can connect the

corresponding gates of two submodules, or a gate of one sub module and a gate of the

compound module (Fig 4.3 &Fig 4.4).

Delhi College of Engineering 33

PARENT MODULE PARENT MODULE

S1 S2 S1 S2

 Figure 4.3: Submodules connected Figure4.4: Each submodule connected

 to each other to parent module

onnections, to start and arrive in simple modules. Such series of connections that go from

ULATION MODELING IN OMNeT++

The following are types of modeling that can be used:

• Computer networks and traffic modeling

ted systems

screte event approaches is suitable.

Lib r

Object libraries can be made using simple modules. The best simple modules to be used for

 the ones that implement:

Due to the hierarchical structure of the model, messages typically travel through a series of

c

simple module to simple module are called routes. Compound modules act as ‘cardboard

boxes’ in the model, transparently relaying messages between their inside and the outside

world.

4.6 SIM

• Communication protocols

• Multi-processor and distribu

• Administrative systems

• In addition, any other system where the di

ra y Modules

library modules are

Delhi College of Engineering 34

• Physical/Data-link protocols: Ethernet, Token Ring, FDDI, LAPB etc.

• Higher layer protocols: IP, TCP, X.25 L2/L3, etc.

tor/simple hub, queue etc.

ocessor or network

Network Modeling

sists of “nodes” connected by “links. The nodes representing blocks,

entities, modules, etc, while the link representing channels, connections, etc. The structure

ses NED language, thus allowing for a more user friendly and accessible

environment for creation and editing. It can be created with any text-processing tool (Perl,

ule structure allowing for different levels of

rganization.

ork

2. Sub network (site)

 within a node:

nk, Network, Transport, Application layers are of greater

importance.

• Network application types: E-mail, NFS, X, audio etc.

• Basic elements: message generator, sink, concentra

• Modules that implement routing algorithms in a multipr

A model network con

of how fixed elements (i.e. nodes) in a network are interconnected together is called

topology.

Omnet++ u

awk, etc). It has a human-readable textual topology. It also uses the same format as that of

a graphical editor. It also supports submodule testing. Omnet++ allows for the creation of a

driver entity to build a network at run-time by program.

Organization of Network Simulation:

Omnet++ follows a hierarchical mod

o

• Physical Layer:

 1. Top-level netw

 3. LAN

 4. node

• Topology

 1. OSI layers. The Data-Li

 2. Applications/protocols within a layer.

Delhi College of Engineering 35

 specified using the NED language. The NED language

cilitates the modular description of a network. This means that a network description may

enerally have a .ned suffix. NED files can be loaded

ynamically into simulation programs, or translated into C++ by the NED compiler and

 NED description can contain the following components, in arbitrary number or order:

odule definitions

 THE ALGORITHMS:

+ functions. The full flexibility

and power of the programming language can be used, supported by the OMNeT++

s. They

have been designed to work together efficiently, creating a powerful simulation-

programming framework. The following classes are part of the simulation class library:

4.7 NED LANGUAGE:

The topology of a model is

fa

consist of a number of component descriptions (channels, simple/compound module types).

The channels, simple modules and compound modules of one network description can be

reused in another network description.

Files containing network descriptions g

d

linked into the simulation executable.

Components of a NED description

A

• import directives

• channel definitions

• simple and compound m

• network definitions

4.8 PROGRAMMING

The simple modules of a model contain algorithms as C+

simulation class library. The simulation programmer can choose between event-driven and

process-style description, and can freely use object-oriented concepts (inheritance,

polymorphism etc) and design patterns to extend the functionality of the simulator.

Simulation objects (messages, modules, queues etc.) are represented by C++ classe

Delhi College of Engineering 36

 • modules, gates, connections etc.

 • parameters

 • messages

 • container classes (e.g. queue, array)

tion classes

on classes (histograms, P2 algorithm for

 calculating quintiles etc.)

 • transient detection and result accuracy detection classes

ted, allowing one to traverse objects of a running

simulation and display information about them such as name, class name, state variables or

 GUI where all internals of

the simulation are visible.

 be seen by the user. It also allows the user to initiate and

 change variable inside simulation models. These features

are handy during the development and debugging phase of modules in a project. Graphical

 • data collec

 • statistic and distribution estimati

The classes are also specially instrumen

contents. This feature has made it possible to create a simulation

4.9 USER INTERFACES

OMNeT++ user interface is used with the simulation execution. OMNeT++’s design

allows the inside of model to

terminate simulations, as well as

interface is a user-friendly option in Omnet++ allows access to the internal workings of the

model. The interaction of the user interface and the simulation kernel is through a well

defined interface. Without changing the simulation kernel, it is possible to implement

several types

of user interfaces. Also without changing the model file, the simulation model can run

under different interfaces. The user would test and debug the simulation with a powerful

Delhi College of Engineering 37

graphical user interface, and finally run it with a simple and fast user interface that supports

batch execution.

The user interfaces are a form of interchangeable libraries. When linking into a created

mulation executable, the user can choose the interface libraries they would like to use.

ng user interface (X-Window, Win95, WinNT

etc...)

Sim a env is used for actual

mulation experiments since it supports batch execution.

Tkenv is a portable graphical windowing user interface. Tracing, debugging, and

s the ability to provide a detailed picture

ach module's text output

• scheduled messages can be watched in a window as simulation progresses

examine and alter objects and variables in the model

simulation results during execution. Results can be displayed

si

Currently, two user interfaces are supported

• Tkenv: Tk-based graphical, windowi

• Cmdenv: command-line user interface for batch execution

ul tion is tested and debugged under Tkenv, while the Cmd

si

 Tkenv

simulation execution is supported by Tkenv. It ha

of the state of the simulation at any point during the execution. This feature makes Tkenv a

good candidate in the development stage of a simulation or for presentations. A snapshot of

a Tkenv interface is shown in figure 4.5.

Important features in Tkenv

• separate window for e

• event-by-event execution

• execution animation

• labeled breakpoints

• inspector windows to

• Graphical display of

as histograms or time-series diagrams.

Delhi College of Engineering 38

• simulation can be restarted

Snapshots (detailed report about the mod• el: objects, variables etc.)

It i re xxgdb. Tkenv

provides a good environment for experimenting with the model during executions and

 Figure 4.5: Example of a Tkenv User Interface in OMNeT++

Cmdenv

 designed primarily for batch execution. It is a portable and small command line

terface that is fast. It compiles and runs on all platforms. Cmdenv simply executes all

s commended for testing and debugging when used with gdb or

verification of the correct operation during the simulation program. Since this is possible

to display simulation results during execution.

Cmdenv is

in

simulation runs that are described in the configuration file.

Delhi College of Engineering 39

4.10 BUILDING AND RUNNING SIMULATION

• NED language topology description(s) (.ned files) which describe the module

 can be written using any text editor

•

translates message definitions into full-fledged C++

•

Sim la are translated

to C++ code using the opp_msgc program. Then all C++ sources are compiled, and

 simulation and analyzing the results

he simulation executable is a standalone program, thus it can be run on other machines

hen the program is started, it reads a

An OMNeT++ model consists of the following parts:

structure with parameters, gates etc. NED files

or the GNED graphical editor.

Message definitions (.msg files). You can define various message types and add

data fields to them. OMNeT++

classes.

Simple modules sources. They are C++ files, with .h/.cc/.cpp suffix.

u tion programs are built from the above components. First, .msg files

in

linked with the simulation kernel and a user interface library to form a simulation

executable.

Running the

T

without OMNeT++ or the model files being present. W

configuration file (usually called omnetpp.ini). This file contains settings that control how

the simulation is executed, values for model parameters, etc.

Delhi College of Engineering 40

 CHAPTER 5

EMENTATION

IMPL

Delhi College of Engineering 41

 IMPLEMENTATION

ENTING DIFFERENT STATES

 CCP, each node determines its eligibility using the Ks -coverage eligibility algorithm

.1.1 Different States :

5.1 OMNeT++ SIMULATOR REPRES

OF NODES

In

based on the information about its sensing neighbors, and may switch state dynamically

when its eligibility changes. A node can be in one of three states: SLEEP, ACTIVE, and

LISTEN, as shown in Fig 5.1. Two more transient states JOIN and WITHDRAW, are used

to reduce the contention among neighbors in the transition from LISTEN to ACTIVE and

the transition from ACTIVE to SLEEP, respectively.

5

. SLEEP- When the sleep timer Ts expires, a node turns on the radio, starts a listen timer

. LISTEN- When a beacon (HELLO, WITHDRAW, or JOIN message) is received, a

node evaluates its eligibility. If it is eligible, it starts a join timer Tj and enters the JOIN

state. Otherwise, it sets a sleep timer Ts and returns to the SLEEP state when Tl expires.

Figure 5.1: State Diagram of CCP

1

Tl, and enters the LISTEN state.

2

Delhi College of Engineering 42

3. JOIN- If a node becomes ineligible before Tj expires (e.g., due to the reception of a

JOIN message), it cancels Tj, starts a sleep timer Ts, and returns to the SLEEP state. If Tj

xpires, it broadcasts a JOIN message and enters the ACTIVE state.

le, it starts a withdraw

mer Tw and enters the WITHDRAW state.

 Tw expires, it cancels the Tw and returns to

e ACTIVE state. If Tw expires, it broadcasts a WITHDRAW message, starts a sleep

mple txc13

eMean: numeric,

eMean: numeric,

: numeric,

les:

 tic: txc13[6];

e

4. ACTIVE- When a node receives a HELLO message, it executes the coverage eligibility

algorithm to determine its eligibility to remain active. If it is ineligib

ti

5. WITHDRAW- If a node becomes eligible (due to the reception of a WITHDRAW or

HELLO message from a neighbor) before the

th

timer Ts, and enters the SLEEP mode.

5.1.2 Different Files for Simulation:

1. NED File:

si

 parameters:

 sleepTim

 burstTim

 sendJTime

 sendIATime: numeric,

 msgLength: numeric;

 gates:

 in: in[];

 out: out[];

endsimple

module States

 submodu

Delhi College of Engineering 43

 display: "i=block/process";

> delay 100ms --> tic[1].in++;

- tic[1].out++;

ndmodule

_DEBUG

include <omnetpp.h>

pleModule

protected:

double sleepTimeMean;

double burstTimeMean;

 connections:

 tic[0].out++ --

 tic[0].in++ <-- delay 100ms <-

 tic[1].out++ --> delay 100ms --> tic[2].in++;

 tic[1].in++ <-- delay 100ms <-- tic[2].out++;

 tic[1].out++ --> delay 100ms --> tic[4].in++;

 tic[1].in++ <-- delay 100ms <-- tic[4].out++;

 tic[3].out++ --> delay 100ms --> tic[4].in++;

 tic[3].in++ <-- delay 100ms <-- tic[4].out++;

 tic[4].out++ --> delay 100ms --> tic[5].in++;

 tic[4].in++ <-- delay 100ms <-- tic[5].out++;

e

network states : States

endnetwork

2. CPP File:

#define FSM

#

class txc13 : public cSim

{

// parameters

Delhi College of Engineering 44

 double sendJTime;

enum

 {

y(1),

EN = FSM_Steady(2),

M_Steady(3),

),

les used

cMessage *startStopBurst;

cMessage *sendJMessage;

virtual void handleMessage(cMessage *msg);

oid txc13::initialize()

fsm.setName("fsm");

 double sendIATime;

 cPar *msgLength;

// FSM and its states

 cFSM fsm;

 WITHDRAW = 0,

 SLEEP = FSM_Stead

 LIST

 JOIN = FS

 ACTIVE = FSM_Transient(1

 };

// variab

 int i;

 cMessage *sendMessage;

// the virtual functions

 virtual void initialize();

};

Define_Module(txc13);

v

 {

Delhi College of Engineering 45

 sleepTimeMean = par("sleepTimeMean");

burstTimeMean = par("burstTimeMean");

// alw ize()

rtStopBu t cMessage("startStopBurst");

sendJMessage = new cMessage("sendJMessage");

e");

ta

FSM_Switch(fsm)

 case FSM_Exit(WITHDRAW):

 FSM_Goto(fsm,SLEEP);

ent(startStopBurst);

SLEEP");

tartStopB

 sendJTime = par("sendJTime");

 sendIATime = par("sendIATime");

 msgLength = &par("msgLength");

 i = 0;

 WATCH(i); ays put watches in initial

 sta rs = new

 sendMessage = new cMessage("sendMessag

 scheduleAt(0.0,s rtStopBurst);

}

void txc13::handleMessage(cMessage *msg)

{

 {

// transition to SLEEP state

 break;

 case FSM_Enter(SLEEP):

 cancelEv

 bubble("enter

// schedule end of sleep period (start of next burst)

 scheduleAt(simTime()+exponential(sleepTimeMean),s

 urst);

Delhi College of Engineering 46

 break;

 case FSM_Exit(SLEEP):

 cancelEvent(startStopBurst); bubble("exit SLEEP");

 schedule end of this burst

rtStopB

t);

 transition to LISTEN state:

FSM_Goto(fsm,WITHDRAW);

 cancelEvent(startStopBurst);

k;

le(" enter LISTEN");

 schedule next sending

 sendJMessage);

 break;

TEN");

 transition to either JOIN or SLEEP

 {

//

 scheduleAt(simTime()+exponential(burstTimeMean),sta

 urs

//

 if (msg!=startStopBurst)

 {

 }

 FSM_Goto(fsm,LISTEN);

 brea

 case FSM_Enter(LISTEN):

 cancelEvent(sendJMessage); bubb

//

 scheduleAt(simTime()+exponential(sendJTime),

 case FSM_Exit(LISTEN): bubble(" exit LIS

//

 if (msg==sendJMessage)

Delhi College of Engineering 47

 FSM_Goto(fsm,JOIN);

 cancelEvent(sendJMessage);

ble("enter JOIN");

 sendMessage);

 break;

");

transition to either ACTI E

 if (msg==sendMessage)

 {

E");

 cancelEvent(sendMessage);

 }

 else

 {

 FSM_Goto(fsm,SLEEP);

 }

 break;

 case FSM_Enter(JOIN):

 cancelEvent(sendJMessage); bub

//schedule next sending

 scheduleAt(simTime()+exponential(sendIATime),

 case FSM_Exit(JOIN): bubble("exit JOIN

// V or SLEEP or WITHDRAW

 bubble(" enter ACTIV

 FSM_Goto(fsm,ACTIVE);

 }

 else if (msg==startStopBurst)

 {

 FSM_Goto(fsm,SLEEP);

Delhi College of Engineering 48

 }

 else

 {

 bubble("enter WITHDRAW");

ge);

 FSM_Goto(fsm,WITHDRAW);

 FSM_Exit(ACTIVE):

 generate and send out job

 ubble("ACTIVE");

sprintf(msgname, "job-%d", ++i);

 ev << "Generating HELLO MESSAGE" <<

gname);

imestamp();

EEP);

 break;

states network simulation.

 cancelEvent(sendMessa

 }

 break;

 case

 {

//

 char msgname[32]; b

msgname << endl;

 cMessage *job = new cMessage(ms

 job->setLength((long) *msgLength);

 job->setT

 send(job, "out");

// return to LISTEN

 bubble("enter SLEEP");

 FSM_Goto(fsm,SL

 }

 }

}

 3. Configuration (ini) File :

This file is shared by

Delhi College of Engineering 49

Lines beginning with `#' are comments

nv, Tkenv will still let you choose from a dialog

it=500000s

vec

[General]

preload-ned-files=*.ned

network= states # this line is for Cmde

sim-time-lim

output-vector-file=states.

[Parameters]

Delhi College of Engineering 50

5.2 OMNeT++ SIMULATOR REPRESENTING THE SENSING OF

ARAMETERS

ature

er six are Voltage sensing nodes. Each node is a simple module,

which goes in one of the five different st es according to the broadcasting of hello

ain in SLEEP or LISTEN state, but not in ACTIVE state.

eMean: numeric,

eMean: numeric,

e: numeric,

module Sense

P

Sense is a Network, which contains twelve nodes from which six nodes are Temper

sensing nodes and oth

at

messages from other nodes.

When temperature is sensed, then all six nodes, sensing temperature, come in coverage of

each other and go in one of the five states to transmit the message. At this time, voltage-

sensing nodes rem

Similarly, when voltage is sensed, all voltage sensing nodes come in coverage of each other

and go in one of the five different states to transmit message, but temperature-sensing

nodes remain in SLEEP or LISTEN state.

5.2.1 Different Files for Simulation:

1. NED File:

simple txc13

 parameters:

 sleepTim

 burstTim

 sendJTim

 sendIATime: numeric,

 msgLength: numeric;

 gates:

 in: in[];

 out: out[];

endsimple

Delhi College of Engineering 51

 submodules:

 temp: txc13[6];

 display: "i=block/process,cyan";

[6];

"i=block/app2,gold";

temp[1].in++;

-- delay 100ms <-- temp[1].out++;

++ --> delay 100ms --> temp[2].in++;

 temp[1].out++ --> delay 100ms --> temp[4].in++;

 temp[3].out++ --> delay 100ms --> temp[4].in++;

 temp[4].out++ --> delay 100ms --> temp[5].in++;

 volt[2].out++ --> delay 100ms --> volt[5].in++;

 volt[0].out++ --> delay 100ms --> volt[2].in++;

 volt: txc13

 display:

 connections:

 temp[0].out++ --> delay 100ms -->

 temp[0].in++ <

 temp[1].out

 temp[1].in++ <-- delay 100ms <-- temp[2].out++;

 temp[1].in++ <-- delay 100ms <-- temp[4].out++;

 temp[3].in++ <-- delay 100ms <-- temp[4].out++;

 temp[4].in++ <-- delay 100ms <-- temp[5].out++;

 volt[0].out++ --> delay 100ms --> volt[4].in++;

 volt[0].in++ <-- delay 100ms <-- volt[4].out++;

 volt[2].in++ <-- delay 100ms <-- volt[5].out++;

 volt[0].in++ <-- delay 100ms <-- volt[2].out++;

Delhi College of Engineering 52

 volt[1].out++ --> delay 100ms --> volt[0].in++;

ndmodule

ndnetwork

.CPP File

netpp.h>

 public cSimpleModule

 parameters

pTimeMean;

double burstTimeMean;

double sendJTime;

double sendIATime;

 {

 volt[1].in++ <-- delay 100ms <-- volt[0].out++;

 volt[2].out++ --> delay 100ms --> volt[3].in++;

 volt[2].in++ <-- delay 100ms <-- volt[3].out++;

e

network sense : Sense

e

2

#define FSM_DEBUG

#include <om

class txc13 :

{

 protected:

//

 double slee

 cPar *msgLength;

// FSM and its states

 cFSM fsm;

 enum

 WITHDRAW = 0,

Delhi College of Engineering 53

 SLEEP = FSM_Steady(1),

EN = FSM_Steady(2),

Steady(3),

 M_Transient(1),

 variables used

ssage *startStopBurst;

cMessage *sendJMessage;

cMessage *sendMessage;

;

d txc13::initialize()

fsm.setName("fsm");

sleepTimeMean = par("sleepTimeMean");

burstTimeMean = par("burstTimeMean");

sendJTime = par("sendJTime");

 alw lize()

t topBurst");

 LIST

 JOIN = FSM_

 ACTIVE = FS

 };

//

 int i;

 cMe

// the virtual functions

 virtual void initialize();

 virtual void handleMessage(cMessage *msg);

}

Define_Module(txc13);

voi

 {

 sendIATime = par("sendIATime");

 msgLength = &par("msgLength");

 i = 0;

 WATCH(i); // ays put watches in initia

 startStopBurs = new cMessage("startS

Delhi College of Engineering 54

 sen ge = newdJMessa cMessage("sendJMessage");

sendMessage = new cMessage("sendMessage");

FSM_Switch(fsm)

 {

ITHDRAW):

ransition to SLEEP state

 break;

 case FSM_Enter(SLEEP):

;

enter SLEEP");

 (start of next burst)

eMean),startStopB

ubble("exit SLEEP");

ential(burstTimeMean),startStopB

 scheduleAt(0.0,startStopBurst);

}

void txc13::handleMessage(cMessage *msg)

{

 case FSM_Exit(W

// t

 FSM_Goto(fsm,SLEEP);

 cancelEvent(startStopBurst)

 bubble("

// schedule end of sleep period

 scheduleAt(simTime()+exponential(sleepTim

 urst);

 break;

 case FSM_Exit(SLEEP):

 cancelEvent(startStopBurst); b

// schedule end of this burst

 scheduleAt(simTime()+expon

 urst);

// transition to LISTEN state:

Delhi College of Engineering 55

 {

 FSM_Goto(fsm,WIT

 if (msg!=startStopBurst)

HDRAW);

_Goto(fsm,LISTEN);

 break;

 schedule next sending

nential(sendJTime),

 break;

 if (msg==sendJMessage)

 FSM_Goto(fsm,JOIN);

ge);

FSM_Goto(fsm,SLEEP);

 }

 FSM

 cancelEvent(startStopBurst);

 case FSM_Enter(LISTEN):

 cancelEvent(sendJMessage); bubble(" enter LISTEN");

//

 scheduleAt(simTime()+expo

 sendJMessage);

 case FSM_Exit(LISTEN): bubble(" exit LISTEN");

// transition to either JOIN or SLEEP

 {

 }

 else

 {

 cancelEvent(sendJMessa

 }

 break;

Delhi College of Engineering 56

 case FSM_Enter(JOIN):

 cancelEvent(sendJMessage); bubble("enter JOIN");

ponential(sendIATime),

 break;

transition to either ACTIVE or SLEEP or WITHDRAW

 {

 bubble(" enter ACTIVE");

IVE);

 if (msg==startStopBurst)

FSM_Goto(fsm,SLEEP);

bubble("enter WITHDRAW");

);

DRAW);

//schedule next sending

 scheduleAt(simTime()+ex

 sendMessage);

 case FSM_Exit(JOIN): bubble("exit JOIN");

//

 if (msg==sendMessage)

 FSM_Goto(fsm,ACT

 }

 else

 {

 cancelEvent(sendMessage);

 }

 else

 {

 cancelEvent(sendMessage

 FSM_Goto(fsm,WITH

 }

 break;

Delhi College of Engineering 57

 case FSM_Exit(ACTIVE):

 {

// generate and send out job

 char msgname[32]; bubble("ACTIVE");

ob-%d", ++i);

ev << "Generating HELLO MESSAGE" <<

 << endl;

);

);

 "out");

 return to LISTEN

reak;

 }

ines beginning with `#' are comments

 Tkenv will still let you choose from a dialog

m-time-limit=500000s

tor-file= sense.vec

 sprintf(msgname, "j

msgname

 cMessage *job = new cMessage(msgname

 job->setLength((long) *msgLength

 job->setTimestamp();

 send(job,

//

 bubble("enter SLEEP");

 FSM_Goto(fsm,SLEEP);

 b

 }

}

3. Configuration (ini) File:

This file is shared by sense network simulation.

L

[General]

preload-ned-files=*.ned

network= sense # this line is for Cmdenv,

si

output-vec

[Parameters]

Delhi College of Engineering 58

5.3 APPLICATION OF CCP IN DETECTING THE SELFISH NODE

he simulator is based on OMNeT++ and implements the CCP algorithm for providing

nsing coverage and connectivity in a Wireless Sensor Network. The simulator depicts a

ree

f obstacles. Each host has a defined transmission power that affect the range within a

• A MAC layer

• An application layer;

The o etween the modules is made via messages exchange. Each module

(sim can be replaced by other newly implemented one simply modifying

the om re is no need to bother about writing any new instruction in

e other simulator models.

portant contribute to the existing wireless module for

OMNeT++ available in Internet. Every time an inter-distance check on each node is

T

se

Sensor Network with a parameterizable number of hosts that are distributed in a field f

o

communication is feasible. The signal power degradation is modeled by the Free Space

Propagation Model, which states that the received signal strength is inversely proportional

to the node distance square.

Each host is a compound module, which encapsulates the following simple modules:

• A physical layer

• A route layer

 c mmunication b

ple or compound)

netpp.ini file. Then the

th

5.3.1 Physical Model
It implements the physical layer of each host. In particular, it cares about the on-fly

creation of gates that allow the exchange of messages among the hosts. This dynamic

capability represents an im

performed. If a host gets close enough (depending on the transmission power of the moving

node) to a new neighbor, these operations take place:

1. A new gate is created for both the compound modules (the two hosts modules).

Delhi College of Engineering 59

2. A new gate is created on each of the physic simple module contained in the host

module.

3. A link is created between the newly created simple module gate and the compound

roperty. “Etere” is a channel type that I defined and that gives to the link a

Wh

coverag

deleted d. Each node has its own

ansmission power so it can happen that a node has a link toward another host but there is

her-level module needs to send a message, it sends it to the physical

vel that will care about the correct delivery. This module has a list of the current

h as CSMA/CA, MACA, MACAW and any other existent

these protocols are very complex and their implementation is a new

roject worth.

The incoming one instead is delivered to the higher levels with a MM1 queue policy. When

module new gate.

4. A link is created between the two hosts modules. This last link uses the “etere”

channel p

delay, throughput and error probability characteristics.

en the two nodes get too far that is the first node has no intersection point within its

e region with second node, it means these two are out of coverage, these gates are

, so the link between these two hosts are not create

tr

not a reverse link.

The physic module can receive messages from other hosts. When this happen, if the

message comes from outside and does not contains errors, it is sent directly to the higher

levels. When a hig

le

neighbors so scanning this list entries, it sends a new copy of the original message through

the gates that connect the host to the other nodes. The simulator kernel, accordingly to the

gate settings and the message length, will care about the correct delivery time of the

message to the neighbor.

5.3.2 Mac Layer

This module depicts the ISO/OSI MAC layer. Here it is possible to insert different channel

contention protocols suc

algorithm. All of

p

The layer implemented is much a simpler one. The outgoing messages are let pass through.

Delhi College of Engineering 60

a in-coming message arrives the module check a flag that advise if the higher level is busy.

If it is the message, is put in buffer or, if the buffer is full, it is dropped. When the higher

vel is no busier, the MAC module picks the first message in the buffer, send it upward

 promiscuous mode meaning that all the messages, even the

ther module’s one, are allowed to be elaborated by the higher levels. This is a dangerous

module. It receives DATA messages from

e higher layers and tries to find a route to the chosen destination looking in its neighbor

l messages (a rreq) to get a new route.

 As stated by the standard,

when the underlying layer does not provide any information about the link status,

rmation it receives through broadcasting the HELLO message & updates into a

neighbor table. Consequently, this neighbor table contains a list of neighbors and

le

and schedule to itself an end of service message that will trigger a new pick from the buffer

or set the busy-flag as free.

This level check all the incoming messages and watching their mac address. It let pass only

those who are addressed to this module or are broadcast one.

The node can even work in

o

thing for the security of the network communication but it is as well a very important

resource for all the on-demand routing protocols.

5.3.3 Routing model

The routing model is the simulator heart. This model depicts the routing protocol and it is

set between the MAC module and the application

th

table or sending contro

This CCP simulator implements those options suitable for a wireless sensor network and in

particular:

• HELLO message exchange between neighbor nodes.

HELLO messages are used to check the neighbor status. Each node enters all the

info

for each neighbor, a list of its neighbors. The fields (bits) of HELLO message

(broadcast message) of a node is shown below in table5.1.

Delhi College of Engineering 61

 Source ID

 Destination ID

 r Table

regulate RREQ broadcast. This

neighbor knew a route toward the chosen destination. If the request fails, a new one

with a bigger ttl rials is allowed a which the

transmission trial is aborted.

•

• A black list is used to avoid unreliable neighbor nodes. A node, call as X, inserts a

 is unidirectional, X “hears” the messages sent by Y

but Y does not do the same with X’s messages. CCP standard says that when a node

 Fields of HELLO message

 Neighbors list

 Table 5.1: Neighbo

• The expanding ring search optimization is used to

means that initially a route request is sent using a small ttl hoping that some

is sent. A fixed number of ret fter

Due to the asymmetrical nature of the wireless link, ACK messages are used to

confirm the correct delivery of a RREP message. Data message acknowledgment is

referred to the transport layer.

neighbor Y, in the black list when X, after trying a number of times to send a RREP

message to Y, it does not receive any acknowledgment. When this happen it means

that the link between X and Y

X put a neighbor Y in the black list, X will not consider any new RREQ messages

coming from Y for a fixed amount of time. Hello message coming from Y are still

processed by X. This may bring some problems to the node that might wish to

Delhi College of Engineering 62

communicate directly with to Y and because Y is in X’s neighbor table, no RREQ

will be sent and the straight route will be used.

odule generates the data traffic that triggers all the routing operations. Each host has

 traffic generator that can be switched on/off settin

5.3.4 Traffic model

This m

its own g the active parameter in the

omnetppp.ini file. This module schedules a self-message to trigger the data sending

g messages is defined by the rate parameter.

hese IDs are not in sequence and may vary depending on the total number of modules that

inters kept by the simulator kernel, the module uses a

ointer to the physic layer that already has a list of all available destinations.

operation.

The traffic is modeled by generating a packet burst of sixty four messages sent to a

randomly chosen destination that stays the same for all the burst length. The rate of each

burst sendin

As previously mentioned, a host is identified by its ID number that the OMNeT++ kernel

assigns at the simulation beginning.

T

work in a simulation. To generate a correct destination number, avoiding the burden of

scanning all the module vector of po

p

Delhi College of Engineering 63

5.3.5 Modular architecture of Network:

 Host

 Host [n]
 N = No. of Host

 Fig 5.2: Modular Architecture of Network

Network is a simple module, which contains n Host submodules. Each Host submodule

contains four submodules to represent physical, mac, network, and application layers. Each

Host submodule has two gates In and Out for external communication.

5.3.6 Different Files for simulation:

1. NED Files:

a) For World Network:

module World

 parameters:

 dim: numeric,

 width: numeric,

 height: numeric;

 submodules:

Delhi College of Engineering 64

 Host: Host[dim];

 parameters:

 numHost = dim,

 Xbound = width,

 Ybound = height,

 //x = width /2,

 //y = height /2;

 x = intuniform (5, width -5),

 y = intuniform (5, height -5);

 //x = 60 + (index % 5) * 120,

 //y = 30 + (index - index % 5) * 30 ;

 //display: "p=95, 40; b=20, 20";

 display: "p=10, 10; b=$width, $height";

 connections:

 display: "b=0, 12";

endmodule

b) For simple modules:

 simple Physic

 parameters:

 txPower: numeric,

 rxThreshold: numeric,

 channelDelay: numeric,

 channelDatarate: numeric,

 channelError: numeric;

 gates:

 in: fromMobility;

 in: fromMac;

 out: toMac;

Delhi College of Engineering 65

endsimple

simple Mac

 parameters:

 inBufferSize: numeric,

 promisqueMode: bool;

 gates:

 in: fromPh;

 in: fromRoute;

 out: toRoute;

 out: toPh;

endsimple

simple Application

 parameters:

 rate: numeric, //paket per secod

 pktSize: numeric,

 hostNum: numeric,

 active: numeric,

 burstInterval: numeric; // time(s) between two data bursts

 gates:

 out: out;

endsimple

simple Routing

 gates:

 in: fromMac;

 in: fromApp;

 out: toMac;

endsimple

Delhi College of Engineering 66

2. Configuration (ini) File:

#omnetpp.ini

[General]

preload-ned-files=*.ned

network = world

sim-time-limit = 60s

total-stack-kb = 32768

num-rngs=5

[Parameters]

#world module

;world.height = 500

;world.width = 500

;world.dim = 50

#include randWP.ini

 #sensor host module

#world.Host [*].x = intuniform (5, 55)

#world.Host [*].y = intuniform (5, 55)

world.Host[*].routeAlgorithm = "CCP"

world.Host [*].macAlgorithm = "SimpleMac"

 #pyisic module

world.Host [*].physic.txPower = uniform (9000, 9900)

world.Host [*].physic.rxThreshold = 1

world.Host [*].physic.channelDelay = 0.0001

world.Host [*].physic.channelDatarate = 11.04858e+6

world.Host [*].physic.channelError = 0.000001

Delhi College of Engineering 67

 #mac module

world.Host [*].mac.promisqueMode = true;

world.Host [*].mac.inBufferSize = 8.38864e6

 #application module

; pakets per secod

world.Host [*].app.rate = 3

; pakets of 512 byte = 4096 bit

world.Host [*].app.pktSize = 4096;

// time elapsed between two data burst

world.Host [*].app.burstInterval = truncnormal (2, 1.0)

world.Host [*].app.active = 1

Delhi College of Engineering 68

 CHAPTER 6

RESULTS

Delhi College of Engineering 69

RESULTS

6.1 OUTPUT OF NETWORK FOR SHOWING DIFFERENT STATES

OF NODES:

When simulation is started, then the numbers of States of nodes of a network (as specified

by the parameters) is displayed on the screen and nodes of the network are appeared to

move in different states as shown in Figure 6.1. These states are ACTIVE, SLEEP,

LISTEN, JOIN & WITHDRAW.

Figure 6.1: Simulation snapshot of different states of wireless sensor network with
CCP using OMNET++

Delhi College of Engineering 70

 Figure 6.2: Output screen with messages of wireless sensor
 network with CCP protocol using OMNeT++

Delhi College of Engineering 71

6.2 OUTPUT OF NETWORK FOR SENSING TEMPERATURE AND
VOLTAGE :

When simulation is started, then the numbers of States of nodes of a network (as specified

by the parameters) are displayed on the screen and appear to move in different states as

shown in Figure 6.3. Here in this simulation, nodes are parameter sensitive that is some

node sense the temperature and some voltage. When Temperature is sensed, then

temperature-sensing nodes come in active state and exchange the messages.

Figure 6.3: Simulation snapshot of different states of wireless sensor network sensing

temperature or voltage once at a time with CCP using OMNET++

Delhi College of Engineering 72

Figure 6.4: Output screen with messages of wireless sensor network sensing

 Temperature or voltage once at a time with CCP Using OMNeT++

Delhi College of Engineering 73

6.3 Output of Network for Selfish Node Detection:

When the simulation stared, then a number of hosts (as specified by the parameters) are

displayed on the screen and appear to remain in different directions. When a host comes

within the sensing range of another host, they start communicating with each other. As

shown in fig.6.3.The coverage of this network follows the rule of CCP protocol.

 Figure 6.5: Simulation snapshot of selfish node detection in network by following
the CCP using OMNET++

Delhi College of Engineering 74

 Figure 6.6 Output screen with messages of wireless sensor
 network detecting the selfish node

Delhi College of Engineering 75

CHAPTER 7

CONCLUSION

Delhi College of Engineering 76

CONCLUSION

This Thesis presents a new protocol, Coverage Configuration Protocol, for wireless sensor

networks to provide both desired coverage and connectivity.

This Thesis also provides the geometric analysis that

1) proves sensing coverage implies network connectivity when the sensing range is no

more than half of the communication range; and

2) quantify the relationship between the degree of coverage and connectivity.

It develops the Coverage Configuration Protocol (CCP) that can achieve different degrees

of coverage requested by applications, and also reduce the energy consumption by allowing

the nodes of network to go in SLEEP and LISTEN modes most of the time when they do

not sense anything. This flexibility allows the network to self-configure for a wide range of

applications and (possibly dynamic) environments.

Delhi College of Engineering 77

 CHAPTER 8

APPLICATION & FUTURE WORK

Delhi College of Engineering 78

APPLICATION & FUTURE WORK

Wireless sensor networks have a wide range of applications. They offers their networked

wireless systems across a broad range of applications, including industrial automation,

building automation, security, home automation, consumer, medical and transportation.

Sensing coverage and communication coverage are two fundamental qualities of service

for wireless sensor networks. In this Thesis, work on energy efficient sensing coverage and

communication are presented. Several schemes for sensing coverage subject to different

requirements and constraints are designed respectively. It also propose a broadcasting

communication protocol with high energy efficiency and low latency for large scale sensor

networks based on the Small World network theory.

In future, Study of CCP will extend the solution to handle more sophisticated coverage

models and connectivity configuration and develop adaptive coverage reconfiguration for

energy-efficient distributed detection and tracking techniques.

Delhi College of Engineering 79

 REFERENCES

WEBSITES:

http://www.cse.wustl.edu/

http://www.csc.lsu.edu/~iyengar/index.html

http://www.csc.lsu.edu/~iyengar/publications.html#papers

http://www.cse.wustl.edu/~lu/papers/sensys03_ccp.pdf

http://www.monarch.cs.cmu.edu

PAPERS:

[1] Gouliang Xing, Xiaorui Wang, Yuanfang Zhang, Chenyang Lu, Robert Pless and

 Christopher Gill, “Integrated coverage and connectivity configuration in wireless

 sensor networks”, Washington University in St. Louis.

[2] A. Cerpa and D. Estrin, "ASCENT: Adaptive Self- Configuring Sensor Networks

 Topologies," INFOCOM, June 2002.

[3] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, "Span: An Energy-Efficient

 Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks,"

 ACM/IEEE International Conference on Mobile Computing and Networking

 (MobiCom 2001), Rome, Italy, July 16-21, 2001

[4] Y. Xu, J. Heidemann, and D. Estrin, "Adaptive Energy-Conserving Routing for

 Multihop Ad Hoc Networks," Research Report 527, USC/Information Sciences

 Institute, October 2000.

Delhi College of Engineering 80

http://www.cse.wustl.edu/

[5] Y. Xu, J. Heidemann, and D. Estrin, "Geography-informed Energy Conservation

for Ad Hoc Routing," ACM/IEEE International Conference on Mobile Computing and

 Networking (MobiCom 2001), Rome, Italy, July 16-21, 2001.

[6] Chen., J. Branch, M. J. Pflug, L. Zhu and B. Szymanski SENSE: A Sensor Network

 Simulator. Advances in Pervasive Computing and Networking. B. Szymanksi and

 B. Yener, Springer: 249-267 (2004)..

[7] Kevin Fall, Kannan Varadhan, Editors, The VINT Project, UC Berkeley, LBL,

 USC/ISI, and Xerox PARC, the ns Manual.

[8] OPNET Technolgies, Inc. OPNET Modeler.

[9] Ahmed Sobeih, Wei-Peng Chen, Jennifer C. Hou, Lu-Chuan Kung, Ning Li, Hyuk

 Lim, Hung-Ying Tyan, and Honghai Zhang, J-Sim: A Simulation and Emulation

 Environment for Wireless Sensor Networks.

[10] David Cavin, Yoav Sasson, Andre Schiper, Distributed Systems Laboratory, On the

 accuracy of MANET simulators.

[11] P. Hall, Introduction to the Theory of Coverage Processes. John Wiley & Sons Inc.,

 New York.

[12] S. Meguerdichian and M. Potkonjak. "Low Power 01 Coverage and scheduling

 Techniques in Sensor Networks." UCLA Technical Reports 030001. June 2003.

[13] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Srivastava, "Coverage

 Problems in Wireless Ad-Hoc Sensor Networks." INFOCOM'01, Vol 3, April

 2001.

Delhi College of Engineering 81

	Front Page.pdf
	SIMULATION OF COVERAGE CONFIGURATION PROTOCOL FOR ENERGY EFFICIENT

	certi.pdf
	This is to certify that the work contained in this dissertation entitled “Simulation of Coverage Configuration Protocol for Energy Efficient Sensor Network” submitted by Puja Krishna in the requirement for the partial fulfillment for the award of the degree of Master of Engineering in Electronics & Communication, Delhi College of Engineering is an account of her work carried out under my guidance and supervision in the academic year 2006-2007.

	ACKNOWLEDGEMENT1.pdf
	ABSTRACT.pdf
	TABLE OF CONTENTS.pdf
	list of figures.pdf
	LIST OF FIGURES
	LIST OF TABLES

	introduction.pdf
	4.2 COMPONENTS OF OMNeT++:
	4.3 PLATFORMS OF OMNeT++:
	4.4 LICENSING FOR OMNeT++:
	 Tkenv
	
	Cmdenv
	
	IMPLEMENTATION
	 IMPLEMENTATION
	5.3.1 Physical Model
	5.3.2 Mac Layer
	5.3.3 Routing model
	5.3.4 Traffic model

	
	
	
	6.2 OUTPUT OF NETWORK FOR SENSING TEMPERATURE AND VOLTAGE :
	 Temperature or voltage once at a time with CCP Using OMNeT++
	
	
	
	6.3 Output of Network for Selfish Node Detection:
	
	
	
	
	 Figure 6.6 Output screen with messages of wireless sensor

