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ABSTRACT 
 

 

This thesis gives an insight into the working of CCP (Coverage Configuration Protocol) 

for energy efficient sensor networks, which provides sensing coverage with the adequate 

network connectivity. In my minor thesis, I simulated the energy efficient S-MAC 

protocol for Sensor networks, which provides only network connectivity, but not the 

sensing coverage. 

 

In sensor networks, there are two critical requirements;  

• Sufficient sensing coverage,  

• Sufficient network connectivity.  

 

Sensing is one of the responsibilities of a sensor network. To operate successfully, a 

sensor network must provide satisfactorily sensing coverage and network connectivity. 

By satisfactorily network connectivity, nodes can communicate for data fusion and 

reporting to base station. Sensing coverage characterizes the monitoring quality provided 

by a sensor network in a designated region. The coverage requirement for a sensor 

network depends on the different applications and also on the number of faults that must 

be tolerated. 

 

Without sufficient sensing coverage, the network cannot monitor the environment with 

sufficient accuracy or may even suffer from “sensing voids” locations where no sensing 

can occur. Without sufficient connectivity, nodes may not be able to coordinate 

effectively or transmit data back to base station. The combination of coverage and 

connectivity is a special requirement introduced by sensor networks that integrate 

multihop wireless communication and sensing capabilities into a single platform. 

 

Hence, this thesis covers the entire connectivity as well as the sensing coverage of sensor 

network by simulating the efficient energy conservation protocol called CCP (Coverage 

Configuration Protocol). CCP selects a small number of active nodes to maintain the 



sensing coverage and connectivity of a sensor network while scheduling other nodes to 

sleep. CCP can dynamically configure a sensor network to different degrees of coverage 

requested by applications. This flexibility allows the network to self configure for a wide 

range of applications and environments with diverse or changing coverage requirements.  

Through geometric analysis and simulation results, it can be showed that CCP can 

maintain robust sensing coverage and network connectivity when communication range 

is at least twice sensing range.   

 

The problem of coverage configuration can be formulated as follows. Given a convex 

region A, and a degree of coverage K specified by the application, the number of sleeping 

nodes must be maximized such that the remaining active nodes must provide K-coverage 

to region A. 
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INTRODUCTION TO SENSOR NETWORKS & COVERAGE 
CONFIGURATION PROTOCOL 

 
1.1 OVERVIEW OF WIRELESS SENSOR NETWORKS 
Efficient design and implementation of wireless sensor networks has become a hot area of 

research in recent years, due to the vast potential of sensor networks to enable applications 

that connect the physical world to the virtual world. Wide range of potential applications of 

wireless sensor networks includes environment monitoring, smart spaces, medical systems 

and robotic exploration. 

 

Such a network normally consists of a large number of distributed nodes that organize 

themselves into a multi-hop wireless network. Each node has one or more sensors, 

embedded processors and low-power radios, and is normally battery operated. Typically, 

these nodes coordinate to perform a common task. 

 

Wireless sensor network consists of a large number of distributed nodes that organize 

themselves into a multi-hop wireless network. These nodes are comprised of transducers 

(sensor or actuator), communication circuitry and behavior logic.  These nodes will be 

embedded in ceiling tiles and will locate things, sense danger and control the environment 

with minimal human effort. The behavior and characteristics of wireless sensor networks 

(WSN) are very much different from other wireless networks.  

 

Differences between different types of networks:- 

 

Types           Number of       Range           Data rate       Mobility 

                         nodes 

           Cellular  Large   Long   Medium       High 

           WLAN   Small   Medium  High        Medium 

           Bluetooth  Small   Short   Medium       Low 

           WSN   Large   Very short  Low        Low 
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Types            Power          Cost                     Size             Redundancy 

 

           Cellular  High   High   large   low 

           WLAN   Medium  Medium  Medium  low 

           Bluetooth  Low   Low   Small   low 

           WSN   Very low  Very low  Very small      high 

     

  Table 1.1: Differences between different types of networks 

 

Unique Features of Sensor Networks: 

 

It should be noted that sensor networks do share some commonalities with general ad hoc 

networks. Thus, protocol design for sensor networks must account for the properties of ad 

hoc networks, including the following: 

 

• Lifetime constraints imposed by the limited energy supplies of the nodes in the network. 

• Unreliable communication due to the wireless medium. 

• Need for self-configuration, requiring little or no human intervention. 

 

However, several unique features exist in wireless sensor networks that do not exist in 

general ad hoc networks. These features present new challenges and require modification 

of designs for traditional ad hoc networks: 

 

• While traditional ad hoc networks consist of network sizes on the order of 10s, sensor 

networks are expected to scale to sizes of 1000s. 

• Since nodes may be deployed in harsh environmental conditions, unexpected node failure 

may be common. 

• Sensor nodes may be much smaller than nodes in traditional ad hoc networks (e.g., PDAs, 

laptop computers), with smaller batteries leading to shorter lifetimes, less computational 

power, and less memory. 
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• Additional services, such as location information, may be required in wireless sensor 

networks. 

• While nodes in traditional ad hoc networks compete for resources such as bandwidth, 

nodes in a sensor network can be expected to behave more cooperatively, since they are 

trying to accomplish a similar universal goal, typically related to maintaining an 

application-level quality of service (QoS), or fidelity. 

• Communication is typically data-centric rather than address-centric, meaning that routed 

data may be aggregated/compressed/prioritized/dropped depending on the description of 

the data. 

• Communication in sensor networks typically takes place in the form of very short 

packets, meaning that the relative overhead imposed at the different network layers 

becomes much more important. 

• Sensor networks often have a many-to-one traffic pattern, which leads to a “hot spot” 

problem. Incorporating these unique features of sensor networks into protocol design is 

important in order to efficiently utilize the limited resources of the network.  

 

An important property of sensor networks is the need of the sensors to reliably disseminate 

the data to the sink or the base station within a time interval that allows the user or 

controller application to respond to the information in a timely manner, as out of date 

information is of no use and may lead to disastrous results. 

 

Another important attribute is the scalability to the change in network size, node density 

and topology. Sensor networks are very dense as compared to mobile ad hoc and wired 

networks. This arises from the fact that the sensing range is lesser than the communication 

range and hence more nodes are needed to achieve sufficient sensing coverage. Sensor 

nodes are required to be resistant to failures and attacks. 

 

Information routing is a very challenging task in Distributed Sensor Networks due to the 

inherent characteristics that distinguish these networks from other wireless or adhoc 

networks. The sensor nodes deployed in an adhoc manner need to be self-organizing as this 
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kind of deployment requires system to form connections and cope with the resultant nodal 

distribution.  

 

Another important design issue in sensor networks is that sensor networks are application 

specific. Hence, the application scenario demands the protocol design in a sensor network. 

Also, the data collected by sensor nodes is often redundant and needs to be exploited by 

routing protocols to improve energy and bandwidth utilization. The proposed routing 

protocols for sensor networks should consider all the above issues for it to be very efficient. 

The algorithms developed need to be very energy efficient, scalable and increase the life of 

the network in the process. 

The multitudes of design challenges imposed on Sensor Networks tend to be quite complex 

and usually defy the analytical methods that are quite effective for traditional networks. At 

current stage of technology very few Sensor Networks have come into existence. Although 

there are many unsolved research problems in this domain, actual deployment and study is 

infeasible. The only practical alternate to study Sensor Networks is through simulation, 

which can provide better insight to behavior and performance of various algorithms and 

protocols. 

 

1.2 THESIS OUTLINE 
As wireless sensor networks continue to attract more attention, new ideas for applications 

are continually being developed, many of which involve consistent coverage with 

appropriate network connectivity of a given surveillance area. Several other protocols (e.g., 

ASCENT [2]], SPAN [3], AFECA [4], and GAF [5]) aim to maintain network 

connectivity, but do not guarantee sensing coverage. 

 

 Recently, some protocols and architectures have been proposed to maintain adequate 

coverage quality with network connectivity [1] while minimizing the drain on the scarce 

energy resources of the sensor nodes.  

An effective approach for energy conservation in wireless sensor networks is scheduling 

sleep intervals for extraneous nodes, while the remaining nodes stay active to provide 
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continuous service. For the sensor network to operate successfully, the active nodes must 

maintain both sensing coverage and network connectivity. Furthermore, the network must 

be able to configure itself to any feasible degrees of coverage and connectivity in order to 

support different applications and environments with diverse requirements. This Thesis 

presents the design and analysis of novel protocol that can dynamically configure a 

network to achieve guaranteed degrees of coverage and connectivity, which differs, from 

existing connectivity or coverage maintenance protocols in several ways. 

Coverage configuration is an important issue in wireless sensor networks (WSNs). Existing 

coverage configuration methods are generally based on the concept of physical coverage. 

That is, a point is covered if it is located within the sensing area of at least one sensor but 

Coverage Configuration depends on the information about the states of neighboring sensors 

and the intersection points of neighboring sensors within the sensing region of that sensor.  

 

To provide such kinds of network’s characteristics, Coverage configuration protocol (CCP) 

is introduced which preserves the network connectivity with providing the adequate 

coverage quality that is distinctly different from the previously proposed S-MAC protocol. 

Coverage Configuration Protocol (CCP) can provide different degrees of coverage 

requested by applications. This flexibility allows the network to self-configure for a wide 

range of applications and (possibly dynamic) environments.  

 

This Thesis also provides the geometric analysis of the relationship between coverage and 

connectivity. This analysis yields key insights for treating coverage and connectivity in a 

unified framework: this is in sharp contrast to several existing approaches.  
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COVERAGE CONFIGURATION PROTOCOL 

DESIGN 
 

 

An effective approach for energy conservation in wireless sensor networks is scheduling 

sleep intervals for extraneous nodes [12], while the remaining nodes stay active to provide 

continuous service. For the sensor network to operate successfully, the active nodes must 

maintain both sensing coverage [11] and network connectivity. Furthermore, the network 

must be able to configure itself to any feasible degrees of coverage and connectivity in 

order to support different applications and environments with diverse requirements. 

 

This chapter presents the design and analysis of novel protocols that can dynamically 

configure a network to achieve guaranteed degrees of coverage and connectivity, which is 

different from existing connectivity, or coverage maintenance protocols in several ways:  

 

1) Coverage Configuration Protocol (CCP) is a protocol that can provide different degrees 

of coverage requested by applications. This flexibility allows the network to self-configure 

for a wide range of applications and (possibly dynamic) environments. 

 

 2) Geometric analysis of the relationship between coverage and connectivity yields key 

insights for treating coverage and connectivity in a unified framework: this is in sharp 

contrast to several existing approaches. 

 

2.1 PROBLEM FORMULATION 

 

For design of CCP, a point p is assumed to be covered (monitored) by a node v if their 

Euclidian distance is less than the sensing range of v, Rs, i.e., |Pv| < Rs. Sensing circle C(v) 

of node v is defined as the boundary of v’s coverage region. Any point p on the sensing 

circle C (v) (i.e., |Pv| = Rs) is not assumed to be covered by v.  Based on the above coverage 

model, a convex region A (that contains at least one sensing circle) is defined as having a 

coverage degree of K (i.e., being K-covered) if every location inside A is covered by at 
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least K nodes. Practically, a network with a higher degree of coverage can achieve higher 

sensing accuracy and be more robust against sensing failures. The coverage configuration 

problem [13] can be formulated as follows.  

 

Given a convex coverage region A, and a coverage degree K specified by the application 

(either before or after deployment), the number of sleeping nodes must be maximize under 

the constraint that the remaining nodes must guarantee A is K covered. Despite its 

simplicity, this coverage model is applicable in a number of applications. For example, it 

fits well with the decision approach to distributed detection of selfish sensors. Therefore, 

the statistical nature of sensor network applications and the environments can be 

incorporated in the definition of sensing range.  

 

In addition, it is assumed that any two nodes u and v can directly communicate with each 

other if their Euclidian distance is less than a communication range Rc, i.e., |uv| < Rc. Given 

a coverage region A and a sensor coverage degree Ks, the goal of an integrated coverage 

and connectivity configuration is maximizing the number of nodes that are scheduled to 

sleep under the constraints that the remaining nodes must guarantee: 1) A is at least Ks– 

covered, and 2) all active nodes are connected. 

 
2.2 RELATIONSHIP BETWEEN COVERAGE AND CONNECTIVITY  
 

In this section, sufficient condition is first derived when coverage implies connectivity in a 

network. The relationship between the degree of coverage and connectivity is then 

quantified. The analysis presented in this section will serve as the foundation for an 

integrated solution to the problem of integrated coverage and connectivity configuration. 

 
2.2.1 Sufficient Condition for 1-Coverage to Imply Connectivity 

 

In this subsection, the relationship between 1-coverage and connectivity is analyzed in a 

network. It is noted that connectivity only requires that the location of any active node be 

within the communication range of one or more active nodes such that all active nodes can 
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form a connected communication backbone, while coverage requires all locations in the 

coverage region be within the sensing range of at least one active node. 

 

Intuitively, the relationship between connectivity and coverage depends on the ratio of the 

communication range to the sensing range. However, it is easily seen that a connected 

network may not guarantee its coverage regardless of the ranges. This is because coverage 

is concerned with whether any location is uncovered while connectivity only requires all 

locations of active nodes are connected. Hence, focus must be given on analyzing the 

condition for a covered network to guarantee connectivity in the rest of this section. 

 

Define the graph G(V,E) to be the communication graph of a set of sensors, where each 

sensor in the set is represented by a node in V, and for any node x and y in V, the edge (x, 

y) Є E if and only if the Euclidean distance between x and y, |xy| < Rc. Nodes v and u are 

connected in G(V,E) if and only if a network path consisting of consecutive edges in E 

exists between node u and v. 

 

Theorem 1: For a set of sensors that at least 1-cover a convex region A, the 

communication graph is connected if Rc ≥ 2Rs.

Proof: For any two nodes, u and v in region A, let Puv be the line segment joining them. 

Since region A is convex, Puv remains entirely within A. Hence, any point on Puv is at least 

1-covered. Each point P on Puv has a set of one or more closest sensors equidistant from P. 

A finite sequence Suv = s1…..sn of closest sensor sets can be constructed for contiguous 

segments 1..n of Puv, where a segment is defined by all points within it having the same set 

of closest sensors. Suv starts with s1 = {u} and ends with sn = {v}, with intervening sets 

possibly containing other sensors.  

 

The distance from each point on the line segment Puv to its closest sensor(s) is always less 

than Rs, as otherwise the path would go through regions that are not sensor-covered. 

Furthermore, if there were any two sensors x and y in any consecutive sets sj and sj+1 in Suv, 

x Є sj and y Є sj+1, such that |xy|≥ 2Rs, then the point p at the intersection of Puv with the 

sensing circle of x is exactly Rs from x (and not covered by x from the definition of sensing 
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circle) and according to the triangle inequality is at least Rs from y. However, since that 

point would then have x as one of its closest sensors, it would be at least Rs from any 

sensor and thus would not be sensor-covered. Therefore, the distance between every pair of 

sensors in consecutive sets in Suv is less than 2Rs, and is thus less than Rc, so an edge exists 

between them in the communication graph. Because each set in Suv contains at least one 

sensor, thus a communication path can be constructed from u to v through each 

combination of node choices in the sets in Suv. i.e., the communication graph of sensors in 

region A is connected. 

 

Therefore, Theorem 1 establishes a sufficient condition for a 1-covered network to 

guarantee 1-connectivity. Under the condition that Rc ≥ 2Rs, a sensor network only needs 

to be configured to guarantee coverage in order to satisfy both coverage and connectivity. 

 

2.3 RELATIONSHIP BETWEEN THE DEGREE OF COVERAGE AND 

CONNECTIVITY 
 

In previous section, it is proved that if a region is sensor covered, and then the sensors 

covering that region are connected as long as their communication range is no less than 

twice the sensing range. If the condition of Rc ≥ 2Rs is maintained, then the relationship 

between the degree of coverage and connectivity can be maintained. This result is 

important for applications that require degrees of coverage or connectivity greater than one. 

Boundary sensor is defined as a sensor whose sensing circle intersects with the boundary of 

the convex sensor deployment region A. Clearly all boundary sensors are located within Rs 

distance to the boundary of A. All the other sensors in region A are interior sensors. 

 

Theorem 2: For a Ks-covered convex region A, it is possible to disconnect a boundary 

node from the rest of the nodes in the communication graph by removing Ks sensors if Rc 

≥ 2Rs. 

Proof: A sensor u is located at a corner (point q) of the rectangular sensor deployment 

region A that is Ks-covered as shown in Figure 2.1. Suppose point p is on the sensing circle 

of sensor u such that pq has a 45o angle with the horizontal boundary of region A. 
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       Figure 2.1: Removing Ks nodes disconnects a covered network 

 

Suppose Ks coinciding sensors are located at point p. Clearly, these Ks sensors can Ks-

cover the quarter circle of sensor u. In addition, it is assumed that there are no other sensors 

whose sensing circles intersect with sensing circle of u. Then removing these Ks coinciding 

sensors will create an uncovered region (i.e., a sensing void) surrounding sensor u. 

Furthermore, when Rc is equal to 2Rs, there is no sensor within the communication range of 

sensor u after the removal of these Ks sensors. i.e., the communication graph is 

disconnected. 

 

Theorem 3: A set of nodes that Ks-cover a convex region A forms a Ks connected 

communication graph if Rc ≥ 2Rs. 

 

Proof: Disconnecting the communication graph G of a set of sensors creates (at least) 3 

disjoint sets of nodes, the set of nodes W that is removed, and two sets of nodes V1 and 

V2, such that there are no edges from any node in V1 to any node in V2 in G. By Theorem 

1, if it is possible to draw a continuous path between two nodes so that every point on the 

path is sensor-covered, then there exists a communication path between those two nodes. 

Therefore, to disconnect the graph it is necessary to create a sensing void, so that it is 

impossible to draw a continuous covered path connecting a node in V1 to a node in V2. 

That is, as illustrated in Figure 2.2, the nodes of V1 may all lie in region S, the nodes in V2 
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may all lie in region Q, and a set of nodes W must be removed to make a region T that is 0-

covered. The nodes that are removed may actually lie in the region labeled S or Q, but their 

removal leaves the 0-covered region labeled as T. 

 

 

  
 

          Figure 2.2:  A disconnected network 

 

To create a sensing void in an originally Ks-covered region A, it is necessary to remove at 

least Ks sensors. Thus, the network connectivity is at least Ks. By Theorem 2, removing Ks 

sensors could disconnect the communication graph. Therefore, the tight lower bound on the 

connectivity of communication graph is Ks. 

 

Intuitively, the connectivity of the boundary sensors dominates the overall connectivity of 

the communication graph. However, in a large-scale sensor network, the interior sensors 

normally route more traffic and higher connectivity is needed for interior sensor to 

maintain the required throughput. Interior connectivity is defined as the number of sensors 

(either interior or boundary) that must be removed to disconnect any two interior sensors in 

the communication graph of the sensors. 
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Theorem 4: For a set of sensors that Ks-cover a convex region A, the interior connectivity 

is 2Ks if Rc ≥ 2Rs. 

 

Proof: Suppose u and v are two interior nodes and the removal of a set of nodes W 

disconnects node u and node v. In order for nodes v and u to be disconnected, there must be 

a “void” region that separates node v from node u. There are two cases, either this void is 

completely contained within the sensor deployment region, or the void merges with the 

boundary of the region. 

 

Case 1: As illustrated in Figure 2.3, the void does not merge with the boundary. It 

will prove that one must remove at least 2Ks+1 sensors in this case to create such a void. It 

is proved by contradiction. 

 

 

 

 

 

 

  

                 

      

         Figure 2.3: Case 1: The void does not merge with    

                                     boundary 

 

Suppose |W| < 2Ks+1. In this case, the void must completely surround a set of nodes 

including node v. Since node v remains active, the sensing void must be at a distance at 

least Rs from v. Now a line is drawn from v through a sensor node j in W. Line vj is to be 

defined as the direction referred to as ‘vertical’. Now, there are at most 2Ks-1 remaining 

sensors (except sensor j) in W which are either on the line vj or to the left or the right of 

line vj. By the pigeonhole principle, there must be one side that has less than Ks nodes 

from the set W, which is  defined to be the left side. A line is drawn straight left from v 
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until it intersects the void region, and noted this point as P (note that P is covered by zero 

sensors.) Point P is at least Rs from node v, and is at least Rs from any point on or to the 

right of the vertical line. However, there are at most Ks –1 nodes in the set W that are to the 

left of the line. This contradicts the assertion that P was originally Ks covered and the 

removal of the nodes of W leaves it 0-covered. Thus, |W| is at least 2Ks+1. 

 

Case 2: The void merges with the boundary of region A, as illustrated in Figure 2.4. 

In this case, the removal of a set of nodes W creates a void, which separates the nodes v 

and u, and this void merges with the boundary of the region A that is being sensed. 

  

            

    

     Figure 2.4: Case 2: The void merges with boundary 

 

Since v is an interior node, all the points within a radius Rs from v are inside region A, and 

the same holds true for u. Furthermore, since the region A is convex, the line connecting 

any point v' within Rs from v and any point u' within Rs from u are inside the region A and 

must be intersected by the void, otherwise there will exist a continuous path (vv'u'u) from v 

to u, which remains entirely within sensor covered region and defines a network path in the 

communication graph (from Theorem 1). Thus, the minimum width of the void that 

separates u from v is at least 2 Rs. Now any two points are considered in the void that are a 

distance of 2Rs apart. No sensor can simultaneously cover both points. This implies that at 

least 2Ks sensors were removed in the Ks-covered region A to create the void. This bound 

is proved tight by the following example. Suppose the Ks-covered region A is a rectangle 

A1A2A3A4 with width 2 Rs +r (0 < r < Rs). Two points x and y are located at perpendicular 

bisector of A1A2 and have distance (Rs +r)/2 < Rs with A1A2 and A3A4respectively, as 
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shown in Figure 2.4. Suppose there are Ks sensors (shown as dotted circles) located at point 

x and y respectively. W is composed of these 2Ks sensors. It is assumed the sensors (not 

shown in the figure) whose sensing circles intersect the 2Ks sensors in W are far enough 

from point x and y such that the void created by the removal of W intersects both A1A2 and 

A3A4. It is clear that the void disconnects the nodes on left side from the nodes on right 

side in communication graph. 

 

From the proof of case 1 and case 2, for a set of sensors that Ks cover a convex region, it 

has shown that the tight lower bound on the interior connectivity is 2Ks. 

 

From the Theorems 3 and 4, one can draw the conclusion that the boundary nodes that are 

located within Rs distance to the boundary of the coverage region are Ks connected; to the 

rest of the network, the interior connectivity is 2Ks.  

 
 2.4  COVERAGE AND CONNECTIVITY CONFIGURATION WHEN    

Rc ≥ 2Rs 
 

Based on Theorems 1, 2 and 3, the integrated coverage and connectivity configuration 

problem [13] can be handled by a coverage configuration protocol if Rc ≥ 2Rs. In this 

section, a new coverage configuration protocol is presented, called CCP that uses this 

principle. CCP has several key benefits.  

1) CCP can configure a network to the specific coverage degree requested by the 

     application.    

2) It is a decentralized protocol that only depends on local states of sensing neighbors.  

3) Geometric analysis has proven that CCP can provide guaranteed degrees of coverage. 

 

2.4.1 Ks-Coverage Eligibility Algorithm 

 

Each node executes an eligibility algorithm to determine whether it is necessary to become 

active. Given a requested coverage degree Ks, a node v is ineligible if every location within 

its coverage range is already Ks-covered by other active nodes in its neighborhood. For 
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example, assume the nodes covering the shaded circles in Figure 5 are active, the node with 

the bold sensing circle is ineligible for Ks=1, but eligible for Ks > 1. Before presenting the 

eligibility algorithm, the following notations are defined. 

 

1) The sensing region of node v is the region inside its sensing circle, i.e., a point P is in v’s 

sensing region if and only if |pv| < Rs. 

 

2) A point P Є A is called an intersection point between nodes u and v, i.e., P Є u ∩ v, if P 

is an intersection point of the sensing circles of u and v. 

 

3) A point P on the boundary of the coverage region A is called an intersection point 

between node v and A, i.e., P Є v ∩ A if |pv|= Rs. 

 

 

  

 

        

 

 

 

 

 

           Figure 2.5: An example of Ks-eligibility 

 

 

Theorem 5: A convex region A is Ks-covered by a set of sensors S if  

1) there exist in region A intersection points between sensors or between sensors and A’s 

boundary;  

2) all intersection points between any sensors are at least Ks-covered; and  

3) all intersections points between any sensor and A’s boundary are at least Ks covered. 
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Proof: It is proved by contradiction. Let P be the point that has the lowest coverage degree 

k in region A and k < Ks. Furthermore, suppose there is no intersection point in A which is 

covered to a degree less than Ks. The set of sensing circles partition A into a collection of 

coverage patches, each of them is bounded by arcs of sensing circles and/or the boundary 

of A, and all points in each coverage patch have the same coverage degree. Suppose point 

P is located in coverage patch S. First, it is proved that the interior arc of any sensing circle 

cannot serve as the boundary of S. It is proved by contradiction. Assume there exists an 

interior arc (of sensing circle C(u)) serving as the boundary of S, crossing this arc (i.e. 

leaving the coverage region of sensor u) would reach an area that is lower covered than 

point P. This contradicts with the assumption that point P has the lowest coverage degree in 

region A. The following two cases are now considered: 

  

 

 

 
            Figure 2.6: A coverage patch bounded by arcs of sensing   
     Circles 
 
1) The point P lies in a coverage region S whose boundary is only composed of exterior 

arcs of a collection of sensing circles (as Figure 2.6 illustrates). Furthermore, since the 

sensing circles themselves are outside the sensing range of the nodes that define them, the 

entire boundary of this coverage patch, including the intersection points of the sensing 

circles defining the boundary, has the same coverage degree as point P. This contradicts the 
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assertion that P is covered to a degree less than Ks and all intersection points have coverage 

degree at least Ks. 

 

2) The point P lies in a coverage region S that is bounded by the exterior arcs of a 

collection of sensing circles and the boundary of A. As shown in Figure 2.7, point P is in a 

region bounded by the exterior arcs of sensor u, v, w, x and the boundary of region A. 

Similarly as case 1), the entire boundary of this coverage patch, including the intersection 

points of sensors u, v, w, x and intersection points between sensors w, x and boundary of A, 

has the same coverage degree as point P. This contradicts the assertion that P is covered to 

a degree less than Ks and all intersection points have coverage degree at least Ks. 

 

  
  
       Figure 2.7: A coverage patch bounded by arcs of sensing     

                 circles and boundary of a coverage region 
 

 

Clearly the point P cannot lie in a coverage patch that is bounded solely by the boundary of 

region A. Otherwise the region A has the same coverage as point P. This contradicts with 

the assumption that the region A is Ks covered. From the above discussion, the point P with 

lower coverage degree than Ks does not exist. Thus, the region A is Ks covered. 

 

Theorem 5 allows us to transform the problem of determining the coverage degree of a 

region to the simpler problem of determining the coverage degrees of all the intersection 
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points in the same region. A sensor is ineligible for turning active if all the intersection 

points inside its sensing circle are at least Ks-covered. To find all the intersection points 

inside its sensing circle, a sensor v needs to consider all the sensors in its sensing neighbor 

set, SN (v). 

 

SN (v) includes all the active nodes that are within a distance of twice of the sensing range 

to v, i.e., SN (v) = {active node u | |uv|≤ 2Rs and u! =v}. If there is no intersection point 

inside the sensing circle of sensor v, v is ineligible when there are Ks or more sensors that 

are located at sensor v’s position. 

 

CCP maintains a table of known sensing neighbors based on the beacons (HELLO 

messages) that it receives from its communication neighbors. When Rc ≥ 2Rs, the HELLO 

message from each node only needs to include its own location. When Rc < 2Rs, however, 

a node may not be aware of all sensing neighbors through such HELLO messages. Since 

some sensing neighbors may be “hidden” from a node, it might activate itself to cover a 

perceived sensing void that is actually covered by its hidden sensing neighbors. Thus, the 

number of active nodes would be higher than necessary in this case. To address this 

limitation, there must be some mechanism for a node to advertise its existence to the 

neighborhood of 2Rs range. 

 

There are two approaches to make each node aware of its multihop neighbors. One is to 

broadcast HELLO messages in multiple hops by setting the TTL of each HELLO message. 

The other is to let each node include the locations of all known multi-hop neighbors in its 

HELLO messages. Specifically, each node may broadcast the locations and status of all 

active nodes within 2Rs/Rc hops. The second approach reduces the number of broadcasts 

and is adopted by CCP. Here, it should be noted that, in a network with random topology, 

such HELLO messages still could not guarantee the discovery of all nodes within a 

distance of 2Rs. Since including multi-hop neighbors in the HELLO messages introduce 

much higher communication overhead compared to a one-hop approach in a dense 

network, there is a tradeoff between the beacon overhead and the number of active nodes 

maintained by CCP. 
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2.5  THE STATE TRANSITION OF CCP 
 

In CCP, each node determines its eligibility using the Ks -coverage eligibility algorithm 

based on the information about its sensing neighbors, and may switch state dynamically 

when its eligibility changes. A node can be in one of three states: SLEEP, ACTIVE, and 

LISTEN, as illustrated in fig 2.8. 

 

 

 
 

                      Figure 2.8: State Diagram of CCP 

 

In the SLEEP state, the node sleeps to conserve energy. In the ACTIVE state, the node 

actively senses the environment and communicates with other sensors. Each node 

periodically enters the LISTEN state to collect HELLO messages from its neighbors and 

reevaluates its eligibility. Two more transient states JOIN and WITHDRAW, are used to 

reduce the contention among neighbors in the transition from LISTEN to ACTIVE and the 

transition from ACTIVE to SLEEP, respectively. 

 

1. SLEEP- When the sleep timer Ts expires, a node turns on the radio,   starts a listen timer 

Tl, and enters the LISTEN state. 
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2. LISTEN- When a beacon (HELLO, WITHDRAW, or JOIN message) is received, a 

node evaluates its eligibility. If it is eligible, it starts a join timer Tj and enters the JOIN 

state. Otherwise, it sets a sleep timer Ts and returns to the SLEEP state when Tl expires. 

3. JOIN- If a node becomes ineligible before Tj expires (e.g., due to the reception of a 

JOIN message), it cancels Tj, starts a sleep timer Ts, and returns to the SLEEP state. If Tj 

expires, it broadcasts a JOIN message and enters the ACTIVE state. 

4. ACTIVE- When a node receives a HELLO message, it executes the coverage eligibility 

algorithm to determine its eligibility to remain active. If it is ineligible, it starts a withdraw 

timer Tw and enters the WITHDRAW state. 

5. WITHDRAW- If a node becomes eligible (due to the reception of a WITHDRAW or 

HELLO message from a neighbor) before the Tw expires, it cancels the Tw and returns to 

the ACTIVE state. If Tw expires, it broadcasts a WITHDRAW message, starts a sleep 

timer Ts, and enters the SLEEP mode. 

 

Both the join and withdraw timers are randomized to avoid collisions among multiple 

nodes that decide to join or withdraw. The values of Tj and Tw affect the responsiveness of 

CCP. Shorter timers lead to quicker response to the variations in coverage. Both timers 

should be set appropriately according to the network density. For example, for a denser 

network where a node has more neighbors, both timers should be increased to give a node 

enough time to collect the JOIN or WITHDRAW messages from its neighbors.  
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     OVERVIEW OF THE EXISTING NETWORK               
SIMULATORS 

 
 

Network simulators are very important for analyzing various protocols designed for a 

network (wired or wireless) and its necessity is very well known in the field of research. 

Especially, the research challenges in wireless sensor networks brought many open issues 

to network designers. The techniques used for analyzing the performance of any wireless 

networks are physical measurement, analytical methods and computer simulation. The 

constraints imposed on sensor networks, such as energy limitation, fault tolerance make the 

algorithms for sensor networks to be quite complex and usually defy analytical methods 

that have been effective for traditional networks. Moreover, physical measurement is not 

possible because of the unsolved research problems in the field of sensor networks. Hence, 

computer simulations appear to be the only feasible approach than anything else [6]. 

 

ns2, a widely used network simulator in the research community has the extended features 

to simulate Sensor Networks. It uses object-oriented design for the implementation of 

various modules of a sensor network [7]. 

 

There are modules for energy model, wireless channel, sensor channel which models 

dynamic inter-action between the physical environment and the sensor nodes. It also has 

implementations of few protocols that are under development for sensor networks. These 

include S-MAC, a Sensor MAC protocol at the MAC layer in a Sensor Node protocol 

stack, Directed Diffusion routing protocol with Geographic Routing. It also has a 

framework developed for Sensor Networks known as SensorSim that has the detailed 

implementation of a Sensor Node with a hardware model defining the hardware 

components of a sensor node and a software model defining the protocol stack of the node. 

The object-oriented design of ns2 introduces unnecessary interdependence between 

modules and makes the addition of new protocols very difficult as it can be mastered only 

by experts in ns2 [6]. This extension might be easy for traditional networks but not for 

sensor networks where the protocols are not very dominant and it is very unlikely that a 
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single algorithm will be optimal under various circumstances. In addition, various 

simulation studies show that the memory utilization of ns2 is very high and increases for 

very large simulations. Since the application, areas in sensor networks require many 

number of sensor nodes in a sensor field, the simulations in ns2 take lot of memory. In 

addition, another disadvantage posed by ns2 comes from its open source nature. The 

documentation is often limited and out of date with the current release of the simulator. The 

problems can be solved with the help of dynamic news groups and going through the 

source code. In addition, the consistency of code is lacking as many users develop it. There 

are no tools describe simulation scenarios and analyze or visualize simulation trace files. 

The tools for ns2 are written with scripting languages. The lack of generalized analysis 

tools may lead to different people measuring different values for the same metric names 

[10]. 

 

OPNET modeler is another popular commercial platform for network modeling and 

simulation, which allows the design and study of communication networks, devices, 

protocols, and applications with unmatched flexibility and scalability. This is used by many 

prestigious technology organizations to accelerate the research and development process. 

OPNET Modeler is based on a series of hierarchical editors that directly parallel the 

structure of real networks, equipment, and protocols. The wireless model uses a 13- stage 

pipeline to determine connectivity and propagation among nodes. Modeler’s object- 

oriented modeling and hierarchical editors mirror the structure of actual networks and 

network components [8]. The difficulty with OPNET Modeler is to build the state machine 

for each level of the protocol stack. It is difficult to abstract such a state machine starting 

from a pseudo-coded algorithm. However, state machines are the most practical input for 

discrete simulators. Hence, it is possible to reuse many existing components (MAC layer, 

transceivers, links, etc.) improving the deployment process. But on the other hand, any new 

feature must be described as a finite state machine which can be difficult to debug, extend 

and validate [10]. In addition, it is commercial and is not available for public, which 

becomes the biggest disadvantage for working on it. 
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J-Sim is an open-source, component based network simulation environment developed 

entirely in Java by Ohio State University (initially and later by University of Illinois). This 

along with the autonomous component architecture makes it a truly platform-neutral, 

extensible, and reusable environment. The Sensor Network Framework developed in J-Sim 

provides an object-oriented definition for target, sensor and sink nodes; sensor and wireless 

communication channels; and physical media such as seismic channels, mobility model and 

power model [9]. The simulation analysis described in [10] show that the execution speed 

of J-Sim is less compared to many other simulators and this happens because of its 

implementation in JAVA. But the memory consumption of J-Sim is less compared to 

others and this advantage comes from its garbage collectors. 

 

 GloMoSim developed initially at UCLA Computing Laboratory, is a scalable simulation 

environment for wireless and wired networks systems developed [6]. It is designed using 

the parallel discrete-event simulation capability provided by a C-based parallel simulation 

language, Parsec [10]. It currently supports protocols for purely wireless networks and is 

built using a layered approach. Standard APIs are used between the different layers and 

allow the rapid integration of models developed at different layers by users. The difficulty 

with GloMoSim was to describe a simple application that bypasses most OSI layers. The 

bypass of the protocol stack is not obvious to achieve as most applications usually lie on 

top of it. The architecture is also not very flexible compared to other simulators. Though 

many simulators were developed to emulate a Sensor Network, each has its own design 

complexities to test and verify new protocols. 

 

The current study of coverage configuration protocols is done on OMNeT++ network 

simulator. OMNeT++ is an object-oriented modular discrete event network simulator.  This 

framework allows the user to debug and test software for distributed sensor networks. 

OMNeT++ allows developers and researchers in the area of Sensor Networks to investigate 

topological, phenomenological, networking, robustness and scaling issues, to explore 

arbitrary algorithms for distributed sensors, and to defeat those algorithms through 

simulated failure. 
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  INTRODUCTION TO OMNeT++ NETWORK     
      SIMULATOR 

 
 

OMNeT++ is an object-oriented modular discrete event network simulator. This 

framework allows the user to debug and test software for distributed sensor networks. 

OMNeT++ allows developers and researchers in the area of Sensor Networks to investigate 

topological, phenomenological, networking, robustness and scaling issues, to explore 

arbitrary algorithms for distributed sensors, and to defeat those algorithms through 

simulated failure. 

 

An OMNeT++ model consists of hierarchically nested modules. The depth of module 

nesting is not limited, which allows the user to reflect the logical structure of the actual 

system in the model structure. Modules communicate through message passing. Messages 

can contain arbitrarily complex data structures. Modules can send messages either directly 

to their destination or along a predefined path, through gates and connections. 

 

Modules can have their own parameters. Parameters can be used to customize module 

behavior and to parameterize the model’s topology. Modules at the lowest level of the 

module hierarchy encapsulate behavior. These modules are termed simple modules, and 

they are programmed in C++ using the simulation library. 

 

OMNeT++ simulations can feature varying user interfaces for different purposes: 

debugging, demonstration and batch execution. Advanced user interfaces make the inside 

of the model visible to the user, allow control over simulation execution and to intervene 

by changing variables/objects inside the model. This is very useful in the 

development/debugging phase of the simulation project. User interfaces also facilitate 

demonstration of how a model works. 

 

The simulator as well as user interfaces and tools are portable. They are known to work on 

Windows and on several UNIX flavors, using various C++ compilers. 
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OMNeT++ also supports parallel-distributed simulation. OMNeT++ can use several 

mechanisms for communication between partitions of a parallel-distributed simulation, for 

example MPI or named pipes. The parallel simulation algorithm can easily be extended or 

new ones plugged in. Models do not need any special instrumentation to be run in parallel 

– it is just a matter of configuration. OMNeT++ can even be used for classroom 

presentation of parallel simulation algorithms, because simulations can be run in parallel 

even under the GUI, which provides detailed feedback on what is going on. 

                 

4.1 ARCHITECTURE OF OMNeT++ 

 
OMNeT++ has a modular architecture. The high-level architecture of OMNeT++ 

simulations is shown in fig.4.1.   

 

The rectangles in the picture represent components: 

• Sim: It is the simulation kernel and class library. Sim exists as a library you link your 

simulation program with.  

 

• Envir: It is another library, which contains all code that is common to all user interfaces. 

main () is also in Envir. Envir provides services like ini file handling for specific user 

interface implementations. Envir presents itself towards Sim and the executing model via 

the ev facade object, hiding all other user interface internals. Some aspects of Envir can be 

customized via plug-in interfaces. Embedding OMNeT++ into applications can be achieved 

implementing a new user interface in addition to Cmdenv and Tkev, or by replacing Envir 

with another implementation of ev. 
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MODEL 
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main () 

    MODEL  
COMPONENT 
    LIBRARY 
 

CMDENV 
      
     OR 
 
TKENV 
 
 

 
                Figure 4.1: Architecture of OMNeT++ simulation programs 

 

• Cmdenv and Tkenv: These are specific user interface implementations. A simulation is 

linked with either Cmdenv or Tkenv. 

 

• Model Component Library: It consists of simple module definitions and their C++ 

implementations, compound module types, channels, networks, message types and in 

general everything that belongs to models and has been linked into the simulation program. 

A simulation program is able to run any model that has all necessary components linked in. 

 

• Executing Model: It is the model that has been set up for simulation. It contains objects 

(modules, channels, etc.) that are all instances of components in the model component 

library. The arrows in the figure show how components interact with each other: 

 

4.2 COMPONENTS OF OMNeT++: 

• Simulation kernel library  

• Compiler for the NED topology description language  
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• Graphical network editor for NED files (GNED)  

• GUI for simulation execution, links into simulation  executable (Tkenv)  

akefile creation tool, etc.)  

4.3 PLATFORMS OF OMNeT++: 

s. It was first developed on Linux. OMNet++ 

• Solaris, Linux (or other Unix-like systems) with GNU tools.  

4.4 LICENSING FOR OMNeT++: 

The author must be contacted if it is used in a 

.5 MODELING CONCEPTS: 
r the user to describe the structure of the actual 

le types 

rough channels 

e 

•  Command-line user interface for simulation execution (Cmdenv)  

•  Graphical output vector plotting tool (Plove)  

•  Utilities (random number seed generation tool, m

•  Documentation, sample simulations, contributed material, etc.  

 
MNeT++ works well on multiple platformO

runs on most UNIX systems and Windows platforms (works best on NT4.0, W2K or XP).  

The best platforms used are: 

• Win32 and Cygwin32 (Win32 port of gcc)  

• Win32 and Microsoft Visual C++  

 
MNeT++ is free for any non-profit use.  O

commercial project. The GNU General Public License can be chosen on OMNeT++.  

 
4
OMNeT++ provides efficient tools fo

system. Some of the main features are: 

• hierarchically nested modules 

• modules are instances of modu

•  modules communicate with messages th

• flexible module parameters 

•  topology description languag

 

 

Delhi College of Engineering 31



        

 

 Hierarchical modules 

n OMNeT++ model consists of hierarchically nested modules, which communicate by 

cture is described in OMNeT++’s NED language. 

Figure 4.2: Simple and compound modules 

 

odules that contain submodules are termed compound modules, as opposed simple 

odule types 

oth simple and compound modules are instances of module types. While describing the 

model, the user defines module types; instances of these module types serve as components 

 

A

passing messages to each another. OMNeT++ models are often referred to as networks. 

The top level module is the system module. The system module contains sub modules, 

which can also contain sub modules themselves (Fig 4.2). The depth of module nesting is 

not limited; this allows the user to reflect the logical structure of actual system in the model 

structure. 

Model stru

 

 
 

SYSTEM MODULE SIMPLE MODULE 

COMPOUD 
MODULE 

M

modules, which are at the lowest level of the module hierarchy. Simple modules contain 

the algorithms in the model. The user implements the simple modules in C++, using the 

OMNeT++ simulation class library. 

 

M

 

B
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for more complex module types. Finally, the user creates the system module as an instance 

of a previously defined module type; all modules of the network are instantiated as 

submodules and sub-submodules of the system module. 

 

When a module type is used as a building block, there is no distinction whether it is a 

mple or a compound module. This allows the user to split a simple module into several 

ed in files separately from the place of their actual usage. This 

eans that the user can group existing module types and create component libraries.  

odules communicate by exchanging messages. In an actual simulation, messages can 

ets in a computer network, jobs or customers in a queuing network 

dule advances when the module receives a message. 

he message can arrive from another module or from the same module (self-messages are 

ut interfaces of modules; messages are sent out through output 

ates and arrive through input gates. Each connection (also called link) is created within a 

si

simple modules embedded into a compound module, or vice versa, aggregate the 

functionality of a compound module into a single simple module, without affecting existing 

users of the module type. 

 

Module types can be stor

m

 

Messages, gates, links 

M

represent frames or pack

or other types of mobile entities. Messages can contain arbitrarily complex data structures. 

Simple modules can send messages either directly to their destination or along a predefined 

path, through gates and connections. 

 

The “local simulation time” of a mo

T

used to implement timers). 

 

Gates are the input and outp

g

single level of the module hierarchy: within a compound module, one can connect the 

corresponding gates of two submodules, or a gate of one sub module and a gate of the 

compound module (Fig 4.3 &Fig 4.4). 
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PARENT MODULE PARENT MODULE 

S1 S2 S1 S2 

       Figure 4.3: Submodules connected        Figure4.4: Each submodule connected 

                                 to each other                                to parent module  

  

onnections, to start and arrive in simple modules. Such series of connections that go from 

ULATION MODELING IN OMNeT++ 

The following are types of modeling that can be used: 

• Computer networks and traffic modeling  

ted systems  

screte event approaches is suitable.  

Lib r
 
Object libraries can be made using simple modules. The best simple modules to be used for 

 the ones that implement: 

 

Due to the hierarchical structure of the model, messages typically travel through a series of 

c

simple module to simple module are called routes. Compound modules act as ‘cardboard 

boxes’ in the model, transparently relaying messages between their inside and the outside 

world. 

4.6 SIM

• Communication protocols  

• Multi-processor and distribu

• Administrative systems  

• In addition, any other system where the di

ra y Modules 

library modules are
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• Physical/Data-link protocols: Ethernet, Token Ring, FDDI, LAPB etc.  

• Higher layer protocols: IP, TCP, X.25 L2/L3, etc.  

tor/simple hub, queue etc.  

ocessor or network  

 
Network Modeling 

sists of “nodes” connected by “links. The nodes representing blocks, 

entities, modules, etc, while the link representing channels, connections, etc. The structure 

ses NED language, thus allowing for a more user friendly and accessible 

environment for creation and editing. It can be created with any text-processing tool (Perl, 

 
ule structure allowing for different levels of 

rganization.  

ork  

2. Sub network (site)  

 within a node:  

nk, Network, Transport, Application layers are of greater    

importance. 

     

• Network application types: E-mail, NFS, X, audio etc.  

• Basic elements: message generator, sink, concentra

• Modules that implement routing algorithms in a multipr

A model network con

of how fixed elements (i.e. nodes) in a network are interconnected together is called 

topology.  

Omnet++ u

awk, etc). It has a human-readable textual topology. It also uses the same format as that of 

a graphical editor. It also supports submodule testing. Omnet++ allows for the creation of a 

driver entity to build a network at run-time by program.  

Organization of Network Simulation: 

Omnet++ follows a hierarchical mod

o

• Physical Layer: 
  
 1. Top-level netw

 

 3. LAN  

 4. node 

• Topology
 
 1. OSI layers. The Data-Li

  2. Applications/protocols within a layer. 
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 specified using the NED language. The NED language 

cilitates the modular description of a network. This means that a network description may 

enerally have a .ned suffix. NED files can be loaded 

ynamically into simulation programs, or translated into C++ by the NED compiler and 

 NED description can contain the following components, in arbitrary number or order: 

odule definitions 

 THE ALGORITHMS:   

+ functions. The full flexibility 

and power of the programming language can be used, supported by the OMNeT++ 

s. They 

have been designed to work together efficiently, creating a powerful simulation-

programming framework. The following classes are part of the simulation class library: 

4.7 NED LANGUAGE: 
 

The topology of a model is

fa

consist of a number of component descriptions (channels, simple/compound module types). 

The channels, simple modules and compound modules of one network description can be 

reused in another network description. 

 

Files containing network descriptions g

d

linked into the simulation executable. 

 

Components of a NED description 

A

• import directives 

•  channel definitions 

• simple and compound m

•  network definitions 

4.8 PROGRAMMING

The simple modules of a model contain algorithms as C+

simulation class library. The simulation programmer can choose between event-driven and 

process-style description, and can freely use object-oriented concepts (inheritance, 

polymorphism etc) and design patterns to extend the functionality of the simulator. 

Simulation objects (messages, modules, queues etc.) are represented by C++ classe
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    •  modules, gates, connections etc. 

    •  parameters 

    • messages 

    • container classes (e.g. queue, array) 

tion classes 

on classes (histograms, P2 algorithm for 

 calculating quintiles etc.) 

    •  transient detection and result accuracy detection classes 

ted, allowing one to traverse objects of a running 

simulation and display information about them such as name, class name, state variables or 

 GUI where all internals of 

the simulation are visible. 

 be seen by the user. It also allows the user to initiate and 

 change variable inside simulation models. These features 

are handy during the development and debugging phase of modules in a project. Graphical 

    •  data collec

    •  statistic and distribution estimati

The classes are also specially instrumen

contents. This feature has made it possible to create a simulation

4.9 USER INTERFACES 

OMNeT++ user interface is used with the simulation execution. OMNeT++’s design 

allows the inside of model to

terminate simulations, as well as

interface is a user-friendly option in Omnet++ allows access to the internal workings of the 

model. The interaction of the user interface and the simulation kernel is through a well 

defined interface. Without changing the simulation kernel, it is possible to implement 

several types  

 

of user interfaces. Also without changing the model file, the simulation model can run 

under different interfaces.  The user would test and debug the simulation with a powerful 
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graphical user interface, and finally run it with a simple and fast user interface that supports 

batch execution. 

 

The user interfaces are a form of interchangeable libraries.  When linking into a created 

mulation executable, the user can choose the interface libraries they would like to use. 

ng user interface (X-Window, Win95, WinNT 

etc...)  

 

Sim a env is used for actual 

mulation experiments since it supports batch execution. 

Tkenv is a portable graphical windowing user interface. Tracing, debugging, and 

s the ability to provide a detailed picture 

ach module's text output  

• scheduled messages can be watched in a window as simulation progresses  

examine and alter objects and variables in the model  

simulation results during execution. Results can be displayed 

si

 
Currently, two user interfaces are supported 

 
• Tkenv: Tk-based graphical, windowi

• Cmdenv: command-line user interface for batch execution  

ul tion is tested and debugged under Tkenv, while the Cmd

si

 Tkenv 
 

simulation execution is supported by Tkenv. It ha

of the state of the simulation at any point during the execution. This feature makes Tkenv a 

good candidate in the development stage of a simulation or for presentations. A snapshot of 

a Tkenv interface is shown in figure 4.5. 

 

Important features in Tkenv 

• separate window for e

• event-by-event execution  

• execution animation  

• labeled breakpoints  

• inspector windows to 

• Graphical display of 

as histograms or time-series diagrams.  
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• simulation can be restarted  

Snapshots (detailed report about the mod• el: objects, variables etc.)  

It i re  xxgdb. Tkenv 

provides a good environment for experimenting with the model during executions and 

   

          Figure 4.5: Example of a Tkenv User Interface in OMNeT++ 

Cmdenv 

 designed primarily for batch execution. It is a portable and small command line 

terface that is fast. It compiles and runs on all platforms. Cmdenv simply executes all 

s commended for testing and debugging when used with gdb or

verification of the correct operation during the simulation program. Since this is possible  

to display simulation results during execution.  

 
 
 
 

 

 

Cmdenv is

in

simulation runs that are described in the configuration file. 
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4.10 BUILDING AND RUNNING SIMULATION 

• NED language topology description(s) (.ned files) which describe the module 

 can be written using any text editor 

• 

translates message definitions into full-fledged C++ 

• 

 

Sim la  are translated 

to C++ code using the opp_msgc program. Then all C++ sources are compiled, and 

 simulation and analyzing the results 

he simulation executable is a standalone program, thus it can be run on other machines 

hen the program is started, it reads a 

 

 
An OMNeT++ model consists of the following parts:  

structure with parameters, gates etc. NED files

or the GNED graphical editor.  

Message definitions (.msg files). You can define various message types and add 

data fields to them. OMNeT++ 

classes.  

Simple modules sources. They are C++ files, with .h/.cc/.cpp suffix.  

u tion programs are built from the above components. First, .msg files

in

linked with the simulation kernel and a user interface library to form a simulation 

executable. 

 

Running the

T

without OMNeT++ or the model files being present. W

configuration file (usually called omnetpp.ini). This file contains settings that control how 

the simulation is executed, values for model parameters, etc.  
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     IMPLEMENTATION 
 

ENTING DIFFERENT STATES 

 CCP, each node determines its eligibility using the Ks -coverage eligibility algorithm 

.1.1 Different States : 

 
5.1 OMNeT++ SIMULATOR REPRES

OF NODES 
 

In

based on the information about its sensing neighbors, and may switch state dynamically 

when its eligibility changes. A node can be in one of three states: SLEEP, ACTIVE, and 

LISTEN, as shown in Fig 5.1. Two more transient states JOIN and WITHDRAW, are used 

to reduce the contention among neighbors in the transition from LISTEN to ACTIVE and 

the transition from ACTIVE to SLEEP, respectively. 

 

5

 
    

 

. SLEEP- When the sleep timer Ts expires, a node turns on the radio,   starts a listen timer 

. LISTEN- When a beacon (HELLO, WITHDRAW, or JOIN message) is received, a 

node evaluates its eligibility. If it is eligible, it starts a join timer Tj and enters the JOIN 

state. Otherwise, it sets a sleep timer Ts and returns to the SLEEP state when Tl expires. 

Figure 5.1: State Diagram of CCP 

1

Tl, and enters the LISTEN state. 

 

2
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3. JOIN- If a node becomes ineligible before Tj expires (e.g., due to the reception of a 

JOIN message), it cancels Tj, starts a sleep timer Ts, and returns to the SLEEP state. If Tj 

xpires, it broadcasts a JOIN message and enters the ACTIVE state. 

le, it starts a withdraw 

mer Tw and enters the WITHDRAW state. 

 Tw expires, it cancels the Tw and returns to 

e ACTIVE state. If Tw expires, it broadcasts a WITHDRAW message, starts a sleep 

mple txc13 

eMean: numeric, 

eMean: numeric, 

: numeric, 

 

les: 

      tic: txc13[6]; 

e

 

4. ACTIVE- When a node receives a HELLO message, it executes the coverage eligibility 

algorithm to determine its eligibility to remain active. If it is ineligib

ti

 

5. WITHDRAW- If a node becomes eligible (due to the reception of a WITHDRAW or 

HELLO message from a neighbor) before the

th

timer Ts, and enters the SLEEP mode. 

 

5.1.2 Different Files for Simulation: 

1. NED File: 

si

    parameters: 

        sleepTim

        burstTim

        sendJTime

        sendIATime: numeric, 

        msgLength: numeric; 

    gates: 

        in: in[]; 

        out: out[]; 

endsimple

 

module States 

    submodu
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            display: "i=block/process"; 

> delay 100ms --> tic[1].in++; 

- tic[1].out++; 

ndmodule 

_DEBUG 

include <omnetpp.h> 

pleModule 

protected: 

double sleepTimeMean; 

double burstTimeMean; 

    connections: 

        tic[0].out++ --

        tic[0].in++ <-- delay 100ms <-

 

        tic[1].out++ --> delay 100ms --> tic[2].in++; 

        tic[1].in++ <-- delay 100ms <-- tic[2].out++; 

 

        tic[1].out++ --> delay 100ms --> tic[4].in++; 

        tic[1].in++ <-- delay 100ms <-- tic[4].out++; 

 

        tic[3].out++ --> delay 100ms --> tic[4].in++; 

        tic[3].in++ <-- delay 100ms <-- tic[4].out++; 

 

        tic[4].out++ --> delay 100ms --> tic[5].in++; 

        tic[4].in++ <-- delay 100ms <-- tic[5].out++; 

e

 

network states : States 

endnetwork 

 

2. CPP File: 

#define FSM

#

 

class txc13 : public cSim

{ 

  

// parameters 
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 double sendJTime; 

enum  

   { 

y(1), 

EN    = FSM_Steady(2), 

M_Steady(3), 

         ), 

les used 

 

cMessage *startStopBurst; 

cMessage *sendJMessage; 

virtual void handleMessage(cMessage *msg); 

oid txc13::initialize() 

fsm.setName("fsm"); 

 double sendIATime; 

 cPar *msgLength; 

 

// FSM and its states 

 cFSM fsm; 

 

 

   WITHDRAW  = 0, 

    SLEEP    = FSM_Stead

    LIST

    JOIN    = FS

     ACTIVE   = FSM_Transient(1

   }; 

 

// variab

 int i;

 

 

 cMessage *sendMessage; 

 

// the virtual functions 

 virtual void initialize(); 

 

}; 

 

Define_Module(txc13); 

 

v

 { 
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 sleepTimeMean   = par("sleepTimeMean"); 

burstTimeMean  = par("burstTimeMean"); 

 

// alw ize() 

rtStopBu t    cMessage("startStopBurst"); 

sendJMessage  = new cMessage("sendJMessage"); 

e"); 

ta

 

FSM_Switch(fsm) 

     case FSM_Exit(WITHDRAW): 

  FSM_Goto(fsm,SLEEP); 

   

ent(startStopBurst);  

SLEEP"); 

tartStopB

 

 sendJTime   = par("sendJTime"); 

 sendIATime   = par("sendIATime"); 

 msgLength   = &par("msgLength"); 

 i   = 0; 

 

 WATCH(i); ays put watches in initial

 sta rs  = new

 

 sendMessage  = new cMessage("sendMessag

 scheduleAt(0.0,s rtStopBurst); 

  

}

 

void txc13::handleMessage(cMessage *msg) 

{ 

 

   { 

 

// transition to SLEEP state 

       

         break; 

    

      case FSM_Enter(SLEEP): 

   cancelEv

  bubble("enter 

// schedule end of sleep period (start of next burst) 

   

 scheduleAt(simTime()+exponential(sleepTimeMean),s

 urst);  

Delhi College of Engineering 46



        

 break; 

 

      case FSM_Exit(SLEEP): 

   cancelEvent(startStopBurst); bubble("exit SLEEP"); 

 schedule end of this burst 

rtStopB

t); 

 transition to LISTEN state: 

FSM_Goto(fsm,WITHDRAW); 

 cancelEvent(startStopBurst);  

k; 

le(" enter LISTEN"); 

 schedule next sending 

 sendJMessage); 

 break; 

TEN"); 

 transition to either JOIN or SLEEP 

   { 

//

 

 scheduleAt(simTime()+exponential(burstTimeMean),sta

 urs

//

  if (msg!=startStopBurst)  

     { 

   

 

    } 

      FSM_Goto(fsm,LISTEN); 

 

  brea

 

      case FSM_Enter(LISTEN): 

      cancelEvent(sendJMessage); bubb

 

//

  scheduleAt(simTime()+exponential(sendJTime),   

 

 

 

       case FSM_Exit(LISTEN): bubble(" exit LIS

 

//

  if (msg==sendJMessage)  
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          FSM_Goto(fsm,JOIN); 

  

 cancelEvent(sendJMessage); 

           

ble("enter JOIN"); 

 sendMessage); 

 break; 

"); 

transition to either ACTI E

 if (msg==sendMessage) 

   { 

E"); 

   cancelEvent(sendMessage); 

    }  

  else

    { 

         

  FSM_Goto(fsm,SLEEP); 

    }  

   

  break; 

  

  case FSM_Enter(JOIN): 

  cancelEvent(sendJMessage); bub

 

//schedule next sending    

  scheduleAt(simTime()+exponential(sendIATime),   

 

 

 

  case FSM_Exit(JOIN): bubble("exit JOIN

 

 

// V  or SLEEP or WITHDRAW 

 

 

   bubble(" enter ACTIV

   FSM_Goto(fsm,ACTIVE); 

    } 

  else if (msg==startStopBurst) 

    { 

   

   FSM_Goto(fsm,SLEEP); 
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    } 

    

  else 

    {  

   bubble("enter WITHDRAW"); 

ge); 

 FSM_Goto(fsm,WITHDRAW); 

    FSM_Exit(ACTIVE): 

 generate and send out job 

                      ubble("ACTIVE"); 

sprintf( msgname, "job-%d", ++i); 

 ev << "Generating HELLO MESSAGE" << 

gname); 

imestamp(); 

EEP); 

 break; 

states network simulation. 

              cancelEvent(sendMessa

 

    } 

  break; 

 

    case

    { 

//

    char msgname[32]; b

   

  

msgname    << endl; 

   cMessage *job = new cMessage(ms

   job->setLength( (long) *msgLength ); 

   job->setT

   send( job, "out" ); 

// return to LISTEN 

   bubble("enter SLEEP"); 

   FSM_Goto(fsm,SL

 

  } 

 } 

} 
 
 
 3. Configuration (ini) File : 
 
# This file is shared by 
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# Lines beginning with `#' are comments 

nv, Tkenv will still let you choose from a dialog 

it=500000s 

vec 

 

[General] 

preload-ned-files=*.ned 

network= states  # this line is for Cmde

sim-time-lim

output-vector-file=states.

[Parameters] 
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5.2 OMNeT++ SIMULATOR REPRESENTING THE SENSING OF 

ARAMETERS  

 
ature 

er six are Voltage sensing nodes. Each node is a simple module, 

which goes in one of the five different st es according to the broadcasting of hello 

ain in SLEEP or LISTEN state, but not in ACTIVE state. 

eMean: numeric, 

eMean: numeric, 

e: numeric, 

module Sense 

P

Sense is a Network, which contains twelve nodes from which six nodes are Temper

sensing nodes and oth

at

messages from other nodes. 

 

When temperature is sensed, then all six nodes, sensing temperature, come in coverage of 

each other and go in one of the five states to transmit the message. At this time, voltage-

sensing nodes rem

 

Similarly, when voltage is sensed, all voltage sensing nodes come in coverage of each other 

and go in one of the five different states to transmit message, but temperature-sensing 

nodes remain in SLEEP or LISTEN state. 

 

5.2.1 Different Files for Simulation: 

1. NED File: 

simple txc13 

    parameters: 

        sleepTim

        burstTim

        sendJTim

        sendIATime: numeric, 

        msgLength: numeric; 

    gates: 

        in: in[]; 

        out: out[]; 

endsimple 
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    submodules: 

        temp: txc13[6];  

          display: "i=block/process,cyan"; 

[6]; 

"i=block/app2,gold"; 

temp[1].in++; 

-- delay 100ms <-- temp[1].out++; 

++ --> delay 100ms --> temp[2].in++; 

      temp[1].out++ --> delay 100ms --> temp[4].in++; 

      temp[3].out++ --> delay 100ms --> temp[4].in++; 

      temp[4].out++ --> delay 100ms --> temp[5].in++; 

      volt[2].out++ --> delay 100ms --> volt[5].in++; 

      volt[0].out++ --> delay 100ms --> volt[2].in++; 

  

        volt: txc13

            display: 

    connections: 

        temp[0].out++ --> delay 100ms --> 

        temp[0].in++ <

 

        temp[1].out

        temp[1].in++ <-- delay 100ms <-- temp[2].out++; 

 

  

        temp[1].in++ <-- delay 100ms <-- temp[4].out++; 

 

  

        temp[3].in++ <-- delay 100ms <-- temp[4].out++; 

 

  

        temp[4].in++ <-- delay 100ms <-- temp[5].out++; 

 

 

        volt[0].out++ --> delay 100ms --> volt[4].in++; 

        volt[0].in++ <-- delay 100ms <-- volt[4].out++; 

 

  

        volt[2].in++ <-- delay 100ms <-- volt[5].out++; 

 

  

       

        volt[0].in++ <-- delay 100ms <-- volt[2].out++; 
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        volt[1].out++ --> delay 100ms --> volt[0].in++; 

ndmodule 

ndnetwork 

.CPP File 

 

netpp.h> 

 public cSimpleModule 

 parameters 

pTimeMean; 

double burstTimeMean; 

double sendJTime; 

double sendIATime; 

   { 

  

        volt[1].in++ <-- delay 100ms <-- volt[0].out++; 

 

        volt[2].out++ --> delay 100ms --> volt[3].in++; 

        volt[2].in++ <-- delay 100ms <-- volt[3].out++; 

 

e

 

network sense : Sense 

e

 

2

#define FSM_DEBUG

#include <om

 

class txc13 :

{ 

  protected: 

//

 double slee

 

 

 

 cPar *msgLength; 

 

// FSM and its states 

 cFSM fsm; 

 enum  

 

 

   WITHDRAW  = 0, 
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    SLEEP    = FSM_Steady(1), 

EN    = FSM_Steady(2), 

Steady(3), 

         M_Transient(1), 

 variables used 

ssage *startStopBurst; 

cMessage *sendJMessage; 

cMessage *sendMessage; 

; 

d txc13::initialize() 

 

fsm.setName("fsm"); 

sleepTimeMean   = par("sleepTimeMean"); 

burstTimeMean  = par("burstTimeMean"); 

sendJTime   = par("sendJTime"); 

 alw lize() 

t   topBurst"); 

    LIST

    JOIN    = FSM_

     ACTIVE   = FS

   }; 

 

//

 int i; 

 cMe

 

 

 

// the virtual functions 

 virtual void initialize(); 

 virtual void handleMessage(cMessage *msg); 

}

 

Define_Module(txc13); 

 

voi

 {

 

 

 

 

 sendIATime   = par("sendIATime"); 

 msgLength   = &par("msgLength"); 

 i    = 0; 

 

 WATCH(i); // ays put watches in initia

 startStopBurs  = new cMessage("startS
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 sen ge  = newdJMessa   cMessage("sendJMessage"); 

sendMessage  = new cMessage("sendMessage"); 

 

FSM_Switch(fsm) 

  { 

ITHDRAW): 

ransition to SLEEP state 

  break; 

  case FSM_Enter(SLEEP): 

;  

enter SLEEP"); 

 (start of next burst) 

eMean),startStopB

ubble("exit SLEEP"); 

ential(burstTimeMean),startStopB

 

 

 scheduleAt(0.0,startStopBurst); 

  

}

 

void txc13::handleMessage(cMessage *msg) 

{ 

 

 

      case FSM_Exit(W

// t

         FSM_Goto(fsm,SLEEP); 

       

       

    

   cancelEvent(startStopBurst)

  bubble("

// schedule end of sleep period

   

 scheduleAt(simTime()+exponential(sleepTim

 urst);  

 break; 

 

      case FSM_Exit(SLEEP): 

   cancelEvent(startStopBurst); b

// schedule end of this burst 

 

 scheduleAt(simTime()+expon

 urst); 

// transition to LISTEN state:
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     { 

   FSM_Goto(fsm,WIT

 if (msg!=startStopBurst)  

HDRAW); 

_Goto(fsm,LISTEN); 

 break; 

 schedule next sending 

nential(sendJTime),   

 break; 

 if (msg==sendJMessage)  

         FSM_Goto(fsm,JOIN); 

ge); 

FSM_Goto(fsm,SLEEP); 

 

    } 

  FSM

  cancelEvent(startStopBurst);  

 

 

      case FSM_Enter(LISTEN): 

      cancelEvent(sendJMessage); bubble(" enter LISTEN"); 

 

//

  scheduleAt(simTime()+expo

  sendJMessage); 

 

 

       case FSM_Exit(LISTEN): bubble(" exit LISTEN"); 

 

// transition to either JOIN or SLEEP 

 

    { 

 

    }  

  else  

    { 

          cancelEvent(sendJMessa

  

    }  

   

  break; 
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              case FSM_Enter(JOIN): 

  cancelEvent(sendJMessage); bubble("enter JOIN"); 

ponential(sendIATime),   

 break; 

transition to either ACTIVE or SLEEP or WITHDRAW 

   { 

  bubble(" enter ACTIVE"); 

IVE); 

 if (msg==startStopBurst) 

FSM_Goto(fsm,SLEEP); 

 

bubble("enter WITHDRAW"); 

); 

DRAW); 

 

//schedule next sending    

  scheduleAt(simTime()+ex

  sendMessage); 

 

 

  case FSM_Exit(JOIN): bubble("exit JOIN"); 

 

 

//

  if (msg==sendMessage) 

 

 

   FSM_Goto(fsm,ACT

    } 

  else

    { 

      cancelEvent(sendMessage); 

   

    } 

   

  else 

    {  

   

 cancelEvent(sendMessage

 FSM_Goto(fsm,WITH

    } 

  break; 
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       case FSM_Exit(ACTIVE): 

    { 

// generate and send out job 

                           char msgname[32]; bubble("ACTIVE"); 

ob-%d", ++i); 

ev << "Generating HELLO MESSAGE" << 

 << endl; 

); 

 ); 

 "out" ); 

 return to LISTEN 

reak; 

 } 

ines beginning with `#' are comments 

 Tkenv will still let you choose from a dialog 

m-time-limit=500000s 

tor-file= sense.vec 

   sprintf( msgname, "j

   

msgname   

   cMessage *job = new cMessage(msgname

   job->setLength( (long) *msgLength

   job->setTimestamp(); 

   send( job,

//

   bubble("enter SLEEP"); 

   FSM_Goto(fsm,SLEEP); 

  b

 

 } 

} 

 

3. Configuration (ini) File: 

# This file is shared by sense network simulation. 

# L

 

[General] 

preload-ned-files=*.ned 

network= sense  # this line is for Cmdenv,

si

output-vec

[Parameters] 
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5.3 APPLICATION OF CCP IN DETECTING THE SELFISH NODE 

he simulator is based on OMNeT++ and implements the CCP algorithm for providing 

nsing coverage and connectivity in a Wireless Sensor Network. The simulator depicts a 

ree 

f obstacles. Each host has a defined transmission power that affect the range within a 

• A MAC layer 

• An application layer; 

 

The o etween the modules is made via messages exchange. Each module 

(sim  can be replaced by other newly implemented one simply modifying 

the om re is no need to bother about writing any new instruction in 

e other simulator models.  

portant contribute to the existing wireless module for 

OMNeT++ available in Internet. Every time an inter-distance check on each node is 

 

T

se

Sensor Network with a parameterizable number of hosts that are distributed in a field f

o

communication is feasible. The signal power degradation is modeled by the Free Space 

Propagation Model, which states that the received signal strength is inversely proportional 

to the node distance square. 

 

Each host is a compound module, which encapsulates the following simple modules: 

 

• A physical layer 

• A route layer 

 c mmunication b

ple or compound)

netpp.ini file. Then the

th

5.3.1 Physical Model 
It implements the physical layer of each host. In particular, it cares about the on-fly 

creation of gates that allow the exchange of messages among the hosts. This dynamic 

capability represents an im

performed. If a host gets close enough (depending on the transmission power of the moving 

node) to a new neighbor, these operations take place: 

 

1. A new gate is created for both the compound modules (the two hosts modules). 
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2. A new gate is created on each of the physic simple module contained in the host 

module. 

3. A link is created between the newly created simple module gate and the compound 

roperty. “Etere” is a channel type that I defined and that gives to the link a 

 

Wh

coverag

deleted d. Each node has its own 

ansmission power so it can happen that a node has a link toward another host but there is 

her-level module needs to send a message, it sends it to the physical 

vel that will care about the correct delivery. This module has a list of the current 

h as CSMA/CA, MACA, MACAW and any other existent 

these protocols are very complex and their implementation is a new 

roject worth. 

The incoming one instead is delivered to the higher levels with a MM1 queue policy. When 

module new gate. 

4. A link is created between the two hosts modules. This last link uses the “etere” 

channel p

delay, throughput and error probability characteristics. 

en the two nodes get too far that is the first node has no intersection point within its 

e region with second node, it means these two are out of coverage, these gates are 

, so the link between these two hosts are not create

tr

not a reverse link.  

 

The physic module can receive messages from other hosts. When this happen, if the 

message comes from outside and does not contains errors, it is sent directly to the higher 

levels. When a hig

le

neighbors so scanning this list entries, it sends a new copy of the original message through 

the gates that connect the host to the other nodes. The simulator kernel, accordingly to the 

gate settings and the message length, will care about the correct delivery time of the 

message to the neighbor. 

5.3.2 Mac Layer 
 

This module depicts the ISO/OSI MAC layer. Here it is possible to insert different channel 

contention protocols suc

algorithm. All of 

p

 

The layer implemented is much a simpler one. The outgoing messages are let pass through. 
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a in-coming message arrives the module check a flag that advise if the higher level is busy. 

If it is the message, is put in buffer or, if the buffer is full, it is dropped. When the higher 

vel is no busier, the MAC module picks the first message in the buffer, send it upward 

 promiscuous mode meaning that all the messages, even the 

ther module’s one, are allowed to be elaborated by the higher levels. This is a dangerous 

module. It receives DATA messages from 

e higher layers and tries to find a route to the chosen destination looking in its neighbor 

l messages (a rreq) to get a new route. 

 As stated by the standard, 

when the underlying layer does not provide any information about the link status, 

rmation it receives through broadcasting the HELLO message & updates into a 

neighbor table. Consequently, this neighbor table contains a list of neighbors and 

le

and schedule to itself an end of service message that will trigger a new pick from the buffer 

or set the busy-flag as free. 

 

This level check all the incoming messages and watching their mac address. It let pass only 

those who are addressed to this module or are broadcast one. 

 

The node can even work in

o

thing for the security of the network communication but it is as well a very important 

resource for all the on-demand routing protocols. 

 

5.3.3 Routing model 
 

The routing model is the simulator heart. This model depicts the routing protocol and it is 

set between the MAC module and the application 

th

table or sending contro

 

This CCP simulator implements those options suitable for a wireless sensor network and in 

particular: 

 

• HELLO message exchange between neighbor nodes.

HELLO messages are used to check the neighbor status. Each node enters all the 

info

for each neighbor, a list of its neighbors. The fields (bits) of HELLO message 

(broadcast message) of a node is shown below in table5.1. 
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     Source ID 

    Destination ID 

  

 

 r Table  

 

regulate RREQ broadcast. This 

neighbor knew a route toward the chosen destination. If the request fails, a new one 

with a bigger ttl rials is allowed a  which the 

transmission trial is aborted. 

 

• 

 

• A black list is used to avoid unreliable neighbor nodes. A node, call as X, inserts a 

 is unidirectional, X “hears” the messages sent by Y 

but Y does not do the same with X’s messages. CCP standard says that when a node 

    

   Fields of HELLO message 

     

 

     Neighbors list 

    Table 5.1: Neighbo  

• The expanding ring search optimization is used to 

means that initially a route request is sent using a small ttl hoping that some 

is sent. A fixed number of ret fter

Due to the asymmetrical nature of the wireless link, ACK messages are used to 

confirm the correct delivery of a RREP message. Data message acknowledgment is 

referred to the transport layer. 

neighbor Y, in the black list when X, after trying a number of times to send a RREP 

message to Y, it does not receive any acknowledgment. When this happen it means 

that the link between X and Y

X put a neighbor Y in the black list, X will not consider any new RREQ messages 

coming from Y for a fixed amount of time. Hello message coming from Y are still 

processed by X. This may bring some problems to the node that might wish to 
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communicate directly with to Y and because Y is in X’s neighbor table, no RREQ 

will be sent and the straight route will be used. 

odule generates the data traffic that triggers all the routing operations. Each host has 

 traffic generator that can be switched on/off settin

5.3.4 Traffic model 
 
This m

its own g the active parameter in the 

omnetppp.ini file. This module schedules a self-message to trigger the data sending 

g messages is defined by the rate parameter. 

hese IDs are not in sequence and may vary depending on the total number of modules that 

inters kept by the simulator kernel, the module uses a 

ointer to the physic layer that already has a list of all available destinations. 

operation. 

 

The traffic is modeled by generating a packet burst of sixty four messages sent to a 

randomly chosen destination that stays the same for all the burst length. The rate of each 

burst sendin

 

As previously mentioned, a host is identified by its ID number that the OMNeT++ kernel 

assigns at the simulation beginning. 

 

T

work in a simulation. To generate a correct destination number, avoiding the burden of 

scanning all the module vector of po

p
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5.3.5 Modular architecture of Network: 

 

 
              Host 

                 Host [n] 
         N = No. of  Host 

  

   Fig 5.2: Modular Architecture of Network 

 

Network is a simple module, which contains n Host submodules. Each Host submodule 

contains four submodules to represent physical, mac, network, and application layers. Each 

Host submodule has two gates In and Out for external communication. 

 

5.3.6 Different Files for simulation: 

1. NED Files: 

a) For World Network: 

module World 

    parameters: 

        dim: numeric, 

        width: numeric, 

        height: numeric; 

    submodules: 
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        Host: Host[dim]; 

            parameters: 

                numHost = dim, 

                Xbound = width, 

                Ybound = height, 

 

                //x = width /2, 

                //y = height /2; 

                x = intuniform (5, width -5), 

                y = intuniform (5, height -5); 

                                              //x = 60 + (index % 5 ) * 120, 

                                              //y = 30 + (index - index %  5 ) * 30 ; 

 

                                              //display: "p=95, 40; b=20, 20"; 

            display: "p=10, 10; b=$width, $height"; 

    connections: 

    display: "b=0, 12"; 

endmodule 

 

b) For simple modules: 

   simple Physic 

    parameters: 

        txPower: numeric, 

        rxThreshold: numeric, 

        channelDelay: numeric, 

        channelDatarate: numeric, 

        channelError: numeric; 

    gates: 

        in: fromMobility; 

        in: fromMac; 

        out: toMac; 
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endsimple 

 

simple Mac 

    parameters: 

        inBufferSize: numeric, 

        promisqueMode: bool; 

    gates: 

        in: fromPh; 

        in: fromRoute; 

        out: toRoute; 

        out: toPh; 

endsimple 

 

simple Application 

    parameters: 

        rate: numeric, //paket per secod 

        pktSize: numeric, 

        hostNum: numeric, 

        active: numeric, 

        burstInterval: numeric; // time(s) between two data bursts 

    gates: 

        out: out; 

endsimple 

 

simple Routing 

    gates: 

        in: fromMac; 

        in: fromApp; 

        out: toMac; 

endsimple    
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2. Configuration (ini) File: 

#omnetpp.ini 

[General] 

preload-ned-files=*.ned 

network = world 

sim-time-limit = 60s 

total-stack-kb = 32768 

num-rngs=5 

 

[Parameters] 

 

#world module 

;world.height = 500 

;world.width = 500 

;world.dim = 50 

 

#include randWP.ini 

 

 #sensor host module 

#world.Host [*].x = intuniform (5, 55) 

#world.Host [*].y = intuniform (5, 55) 

 

world.Host[*].routeAlgorithm = "CCP" 

world.Host [*].macAlgorithm = "SimpleMac" 

 

 #pyisic module 

world.Host [*].physic.txPower = uniform (9000, 9900) 

world.Host [*].physic.rxThreshold = 1 

world.Host [*].physic.channelDelay = 0.0001 

world.Host [*].physic.channelDatarate = 11.04858e+6 

world.Host [*].physic.channelError = 0.000001 
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 #mac module 

world.Host [*].mac.promisqueMode = true; 

world.Host [*].mac.inBufferSize = 8.38864e6 

 

 

 #application module 

; pakets per secod 

world.Host [*].app.rate = 3 

; pakets of 512 byte = 4096 bit 

world.Host [*].app.pktSize = 4096; 

// time elapsed between two data burst 

world.Host [*].app.burstInterval = truncnormal (2, 1.0) 

world.Host [*].app.active = 1 
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      CHAPTER 6 

 
      

RESULTS 
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RESULTS 
 

 

6.1 OUTPUT OF NETWORK FOR SHOWING DIFFERENT STATES 

OF NODES: 
 

When simulation is started, then the numbers of States of nodes of a network (as specified 

by the parameters) is displayed on the screen and nodes of the network are appeared to 

move in different states as shown in Figure 6.1. These states are ACTIVE, SLEEP, 

LISTEN, JOIN & WITHDRAW. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
          

Figure 6.1: Simulation snapshot of different states of wireless sensor network with 
CCP using OMNET++ 
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  Figure 6.2:  Output screen with messages of wireless sensor       
 network with CCP protocol using OMNeT++ 
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6.2 OUTPUT OF NETWORK FOR SENSING TEMPERATURE AND 
VOLTAGE : 
 

When simulation is started, then the numbers of States of nodes of a network (as specified 

by the parameters) are displayed on the screen and appear to move in different states as 

shown in Figure 6.3. Here in this simulation, nodes are parameter sensitive that is some 

node sense the temperature and some voltage. When Temperature is sensed, then 

temperature-sensing nodes come in active state and exchange the messages. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 6.3: Simulation snapshot of different states of wireless sensor network sensing 

temperature or voltage once at a time with CCP using OMNET++ 
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Figure 6.4: Output screen with messages of wireless sensor network sensing      

       Temperature or voltage once at a time with CCP Using OMNeT++ 
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6.3 Output of Network for Selfish Node Detection: 
 
 
When the simulation stared, then a number of  hosts (as specified by the parameters) are 

displayed on the screen and appear to remain in different directions. When a host comes 

within the sensing range of another host, they start communicating with each other. As 

shown in fig.6.3.The coverage of this network follows the rule of CCP protocol. 

 

 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

  
  

 
 
 

 
 

   Figure 6.5: Simulation snapshot of selfish node detection in network by following 
the CCP using OMNET++ 
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     Figure 6.6 Output screen with messages of wireless sensor            
             network detecting the selfish node 
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CHAPTER 7 

 
     

CONCLUSION 
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CONCLUSION 

 
 

This Thesis presents a new protocol, Coverage Configuration Protocol, for wireless sensor 

networks to provide both desired coverage and connectivity.  

 

This Thesis also provides the geometric analysis that  

1) proves sensing coverage implies network connectivity when the sensing range is no       

more than half of the communication range; and  

 

2) quantify the relationship between the degree of coverage and  connectivity. 

 

It develops the Coverage Configuration Protocol (CCP) that can achieve different degrees 

of coverage requested by applications, and also reduce the energy consumption by allowing 

the nodes of network to go in SLEEP and LISTEN modes most of the time when they do 

not sense anything. This flexibility allows the network to self-configure for a wide range of 

applications and (possibly dynamic) environments. 
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 CHAPTER 8 

 
    

 

APPLICATION & FUTURE WORK 
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APPLICATION & FUTURE WORK 
 

 

Wireless sensor networks have a wide range of applications. They offers their networked 

wireless systems across a broad range of applications, including industrial automation, 

building automation, security, home automation, consumer, medical and transportation. 

Sensing coverage and communication coverage are two fundamental qualities of service 

for wireless sensor networks. In this Thesis, work on energy efficient sensing coverage and 

communication are presented. Several schemes for sensing coverage subject to different 

requirements and constraints are designed respectively. It also propose a broadcasting 

communication protocol with high energy efficiency and low latency for large scale sensor 

networks based on the Small World network theory.  

 

 

In future, Study of CCP will extend the solution to handle more sophisticated coverage 

models and connectivity configuration and develop adaptive coverage reconfiguration for 

energy-efficient distributed detection and tracking techniques. 
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