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Abstract

The aim is to build a simple model of neural network that have biological features ie. the network is biologically plausible and that can search for correct output automatically. Here the purpose is not to build a complex model as of brain, but to study the principles of learning. Therefore a very simplified model is used.

In this work a layered neural net with the following properties is studied: 

· It has adaptable weights.

· The threshold potential is fixed.

A feedback signal is used for this neural net, it is a binary signal, whose value depend on whether the output of the network for its input is wrong or right. 

According to some assumptions based on some biological theories, it comes out that two kind of learning are possible:

· One is Hebbian

· Other one is Anti–Hebbian

What the Hebbian learning does is that it keep knowledge of input-output relations, so it occur when the output of the network is same as expected. While on the other hand Anti– Hebbian learning changes the input–output relations of the network, so it occur when the output is not same as expected output. 

In this thesis a complete learning rule is derived which include both of these learning principles and an application for the simulation of the neural net learning is developed and the effect of various parameters on the performance of neural network is studied.
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Chapter 1 

Introduction

In the sciences psychology, biology, medicine, mathematics, philosophy, chemistry, and also physics, researchers are trying to understand (parts of) the human brain. Knowledge about the working of our brain will probably affect all other sciences too, and maybe even influence our perception of the world.

Most researchers narrow their studies to the science they ‘belong to’. Maybe because of this, maybe because of the enormous complexity, the general principles of learning and memory have not been fully understood yet. Another possible reason is that only recently useful measurements on the scale of the neuron have become possible and also computers to test models are available only since a few decades. 

Although a lot of scientists in history have thought about the human brain or even did some research, it is only since about half a century that scientific obser​vations are giving us a few clues about the biological mechanisms that probably account for the possibilities of learning. Today a lot is still unknown and research is in progress. 

In this work we make some effort to contribute to the study biological neuron net​works, in particular with respect to learning. Since we are interested in the basic principles rather than subtle biological details, we will use suitably simplified models. However, in our models, we will not allow for properties that are unrealistic from a biological point of view. In this way we hope to reveal the essential properties, without blurring the analysis with irrelevant (biological) details.
In section 4.1 we present the model that we will study: a simple feed–forward network with one hidden layer of which not all possible connections are present (i.e., dilution unequal zero). Each neuron of the net has three variables associated with it: a (fixed) threshold potential θ, a (variable) membrane potential h and a state x, which is assumed to take two values only, depending on the fact whether the neuron fires or is quiescent. 

The dynamics of a neural net is determined by the rule that tells a neuron when to fire. A biological neuron fires if its membrane potential h exceeds its threshold θ. In the model of Chialvo and Bak this property is not taken into account, but replaced by the rule that in each layer a fixed number of neurons, having the highest membrane potentials, fire. They refer to this rule by the name of ‘extremal dynamics’. Using the biological rule for the network dynamics rather than extremal dynamics has the advantage that the number of active neurons is no longer artificially fixed. In order to guarantee that the activity of the network remains at a desired level Alstrøm and Stassinopoulos [8] adapted the neuron thresholds in each step of the learning process. We propose a biological learning rule that has the property that the activity remains at a desired level automatically. 

As a first guess, one might think some feed–back mechanism like inhibitory feed–back or lateral connections or a threshold controlling mechanism would be needed to control the average activity (the fraction of firing neurons) in the net​work. However, we started by a biologically inspired reasoning about the learning rules. On the basis of four biologically motivated assumptions, we found a learning rule that turned out to have the property of keeping the activity of the network at a desired level automatically, without the need for additional mechanisms. 

According to some assumptions based on some biological theories, it comes out that two kind of learning are possible:

· One is Hebbian

· Other one is Anti–Hebbian

With some calculations, we will show that the Hebbian learning rule fixes, and strengthens, the state of the network at the moment it is applied, while the Anti–Hebbian learning rule destabilizes the state of the network, and, when applied repeatedly, will change the network state. We conclude that Hebbian learning is associated with reward, and should be applied if the network realizes the desired output state in reaction to its input, while Anti–Hebbian learning can be associated with punishment, and should be applied when the output of the network is wrong in order to enable the network to search for better output. 

Because the Hebbian learning rule is already studied in [4], we will at first focus on the effect of the Anti–Hebbian learning rule. In order to test the learning rule, and verify it is indeed capable of keeping the average activity at a desired level, we perform a number of numerical simulations. Our simulations show that the Anti– Hebbian learning rule is successful in keeping the average activity at a desired level, and is very efficient in generating different output states with adequate activities. 

After this, we simulate networks using the complete learning rule, that includes both the Hebbian and the Anti–Hebbian component. We show that this learning rule enables the network to learn a number of input–output relations with an acceptable efficiency. To get an idea about the influence of different parameters on the behavior of the network, the performance of the network is measured when these parameters are varied. We show that there exists an optimum value for the average neuronal activity. Furthermore, it is shown that for non–zero threshold potentials, the performance is only acceptable if the network is sufficiently diluted. So ‘cutting away’ synaptic connections enhances the performance of the network in this case. 

This thesis consists of the following chapters: 

Chapter 2. Biology of the nervous system :In this chapter, an introduction to the recent biological knowledge of neural networks is presented to give an idea about the field of research and what we do know and do not know about neurons, neural networks and learning. 

Chapter 3. Neural network models: Different possibilities of modeling neural networks are presented. Some interesting models that form a starting point for this thesis are discussed. 

Chapter 4. Theoretical considerations: We will determine the different aspects of the neural network model as developed in this thesis. In the first part of this chapter, some definitions and descriptions are given; in the rest of this chapter learning rules are determined. 

Chapter 5. Simulating the network: We determine how to simulate our network model. Choices for parameters are motivated and we choose how to set up the simulations. 

Chapter 6. Discussion of results: The results from simulations of the network model are presented and discussed. It will turn out that our learning rule behaves as expected. 

Chapter 7. Conclusions 

Chapter 8. Future Work: We will look at questions that might be interesting to look at in future research projects. 

Appendices A and B. In appendix A, the software written to do the simulations is described. In appendix B, some tests that were done to verify the correct working of the software are summarized. 

Chapter 2 

Biology of the nervous system

In this chapter some basic and some more advanced facts about biological neural networks, relevant for this thesis, is introduced. 

To understand the properties of a neural network, it is necessary to understand the properties of neurons first, while, to understand the physiology of one neuron, it is not strictly necessary to understand the mechanisms of a neural network as a whole. Hence, it makes sense to start by describing the properties of a single neuron first. 

2.1  The neuron

A neuron is a single cell, just like every other cell in the body of animals. This means, there is a nucleus with DNA, containing the chromosomes, a cell mem​brane, and a cell body, where all kinds of chemical reactions take place. 

As seen in figure 2.1, neurons can look quite differently, however, each of the neurons has a lot of properties in common with the other neurons. 

Except for the soma (or cell body), nucleus and membrane, every neuron has an axon and dendrites (see figure 2.1). The dendrites form, together with the cell body, the receptors of the neuron, they sense chemical signals. The axon, on the other side, transmits electrical signals sent by the neuron. The axon may split into several branches. At the endpoint of each branch there is a small knob (or terminal) establishing a connection to other neurons (or muscle fibers in case of a motor neuron). 

Neurons are not connected directly. There is a small gap between the knob at the end of a branch of an axon, and a dendrite or cell body of a second neuron. This is called the synaptic gap. A neuron whose axon connects to another neuron is called pre-synaptic; the neuron to which it connects is called post-synaptic. 

       [image: image1.png]



Figure 2.1: Some different single neurons, lengths given are approximate and correspond to direction of maximal extent. Adapted from [10]. 

A. Alpha motor neuron in spinal cord of cat (2.6 mm)

B. Spiking interneuron in mesothoracic ganglion of locust (540 μm)

C. Layer 5 neocortical pyramidal cell in rat (1030 μm)

D. Retinal ganglion cell in postnatal cat (390 μm)

E. Amacrine cell in retina of larval tiger salamander (160 μm)

F. Cerebellar Purkinje cell in human

G. Relay neuron in rat ventrobasal thalamus (350 μm)

H. Granule cell from olfactory bulb of mouse (260 μm)

I. Spiny projection neuron in rat striatum (370 μm)

J. Nerve cell in the Nucleus of Burdach in human fetus

K. Purkinje cell in mormyrid fish (420 μm)

L. Golgi epithelial (glial) cell in cerebellum of normal–reeler mutant mouse chimera

(150 μm)

M. Axonal arborization of isthmotectal neurons in turtle (460 μm)
2.1.1 Resting potential

When a neuron is at rest, there is a difference in potential between the inner and outer part of the cell membrane. The cell body is negatively charged with respect to its environment. This is called the resting potential and it is about −70 mV. The resting potential can be as low as −90 mV and as high as −50 mV [3] . 

The cell membrane is able to let pass some molecules freely, like oxygen and water, and block other molecules. This is called selective permeability. Some bio​logically important ions, such as sodium (Na+), potassium (K+), calcium (Ca++) and chloride (Cl−), can cross through specialized channels (or gates) in proteins embedded in the cell membrane. Chloride and potassium can enter the cell slowly, while sodium ions are blocked when the cell is at rest. The first two are passive processes: the molecules enter and leave the cell because of diffusion; we could call the cell ‘leaky’ with respect to molecules like Cl− and K+. 

The most important mechanism for maintaining the resting potential is an active mechanism, referred to by the name of sodium–potassium pump. The sodium–potassium pump exchanges three sodium ions from the inside of the cell with two potassium ions from the outside. The effect of the sodium–potassium pump is to bring down the concentration of sodium ions in the cell to less then one tenth of the outside concentration, while the concentration of potassium ions becomes about twenty times the outside concentration. Although one might think the potential inside the neuron would become positive with respect to the outside because of the raised potassium concentration, the net result is a lowered potential inside the neuron because the number of sodium ions is far greater than the number of potassium ions in our body. 

To understand the reason why there is a mechanism with a resting potential, we have to know about the excitation of neurons. As we will see in the next section, a neuron can send an electrical signal through its axon when it gets excitated (the neuron becomes active). The excitation happens when the potential difference is lowered in absolute value, e.g. −70 mV becomes −50 mV, until a certain threshold potential is reached. At that moment the sodium channels are opened and the sodium ions enter the cell very quickly. In this way a neuron can react in a very short time. This rapid reaction is of course very important from a biological point of view, and is therefore a way to explain the resting potential. The energy needed for the excitatory signal is used in advance by (slowly) building up the resting potential.

2.1.2. Action potential 

As mentioned before, a neuron can be activated by lowering the potential difference until a certain threshold potential is reached. How does this happen exactly? 

When a pre-synaptic neuron is excitated, it releases a certain combination of neurotransmitters into the synaptic gap. As far as we know, this combination is always the same for a neuron of a certain type, but is different for different types of neurons. The neurotransmitters reach the post-synaptic dendrites or cell body within 10 µs (microseconds). The post-synaptic neuron has certain kinds of receptors for the neurotransmitters. Depending on the combination of pre-synaptic transmitters and post-synaptic receptors, the resting potential of the post-synaptic membrane will be lowered or raised. When the potential becomes more negative (the potential difference is raised), we say the synapse has an inhibitory effect, when the potential becomes less negative (the potential difference is lowered), the synapse is called excitatory. 

Some neurotransmitters can be both excitatory or inhibitory, depending on the receptors. Other neurotransmitters are always excitatory or always inhibitory. The induced excitation or inhibition is propagated through the dendrites and cell body of the post-synaptic neuron, and decreases over time. However, when a neuron is excitated by more than one synapse in a short period of time, or when one synapse is repeatedly active, the potential of this neuron can reach a certain threshold potential (typically −50 mV). When this happens, the voltage activated sodium channels are opened simultaneously, and sodium enters the neuron very quickly. Therefore, the potential of the neuron rises rapidly, it becomes even slightly positive (about 20 mV). Then, the sodium gates shut down again for at least a few milliseconds. The neuron now rapidly returns to its resting potential. How is this possible? It is not the sodium– potassium pump (this mechanism is too slow). The quick return is caused by an outflow of potassium ions. All these actions happen within a few milliseconds and are summarized in figure 2.2. After this, the neuron can be excitated again, but each action potential causes the concentration of sodium in the neuron to increase by approximately 1%, so when a neuron is repeatedly excitated with a high frequency, the sodium–potassium pump cannot keep up, and the neuron becomes fatigued and cannot fire for a certain period. Normally, the synapses fatigue faster than the neuron itself, because the neurotransmitters are partly lost and must be regenerated, so a neuron fatigued by sodium excess is rare [3]. 

The intensity of the signal a neuron outputs when firing, is independent of the strength of the depolarization of the dendrites and cell body caused by active incoming axonic branches. It is like flushing an ordinary toilet: pushing the button using more force does not make the toilet flush harder. 

2.1.3 Types of neurons 

As already mentioned, it can be seen in figure 2.1, that different neurons can look quite differently. Different names are given to different looking neurons. In this thesis, we will not enumerate all types that could possibly be distinguished. Instead, the classification used by Braitenberg and Sch¨uz will be used [11]. 

The most important criterium they use, is the type of synapses on the axons of the neurons. Two different types of synapses exist: type I and type II synapses [11]. It is now generally accepted that type I synapses are excitatory and type II synapses are inhibitory. About 11% of the synapses are of type II. Two main types of neurons are distinguished: pyramidal cells and stellate cells. A third type that is somewhat in between of the two main types is also distinguishable: the Martinotti cells.
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Figure 2.2: Schematic view of action potential and flow of sodium and potassium ions, based on [3] . 

The most important property of pyramidal cells is that they have spines (little swellings) on their dendrites. The stellate cells do not have spines on their den​drites. Their dendrites are often star–shaped. Stellate cells have many different appearances. Therefore, other researchers often define different types for these dif​ferent looking stellate cells. Martinotti cells have some spines on their dendrites, but far less than pyramidal cells have. 

Sometimes the classification of neurons is very difficult, but it appears that about 85% of all neurons in the cortex are pyramidal cells [11].

Pyramidal cells are pre-synaptic to excitatory synapses, i.e., their axons have excitatory synapses at the end, while non–pyramidal cells (stellate and Martinotti cells) are pre-synaptic to inhibitory synapses. Pyramidal and non–pyramidal cells connect to both the dendrites and cell bodies of non–pyramidal cells, however, pyramidal cells do not connect to the cell body of other pyramidal cells but they do connect to the dendrites of other pyramidal cells. Non–pyramidal cells do not connect to the dendrites of pyramidal cells but they do connect to the cell bodies of the pyramidal cells. 

Since the spines on the dendrites of the pyramidal cells can change their shape, it is believed that they enable the change of the synaptic efficacy, and are therefore the key to the capability of learning. If this is true indeed, the synaptic efficacy of the inhibitory synapses is probably less capable of changing. 

2.2  Architecture of neural networks

The number of neurons in the human brain is estimated to be of the order of 1010 or 1011 (10 or 100 billion). A neuron in the human cortex receives 20, 000 – 80, 000 synaptic inputs. Besides the ‘normal’ neurons discussed earlier, there are a lot of glia (about five times the number of neurons). They resemble neurons, but do not have axons, so they do not produce action potentials. They are sometimes called ‘local neurons’. Not much is known about their function, but they do transmit local potential differences. They can also form myelin sheaths. A myelin sheath insulates an axon and can dramatically increase the transmission speed of an axonic signal. Furthermore, the glia may play a role in synchronizing the activity of neurons by taking up and releasing neurotransmitters and transmitting depolarizations. 

About 85% of the excitatory synapses on the axons of the pyramidal cells, connect to other pyramidal cells. Recalling that 89% of all synapses in the cortex are of type I (excitatory), 75% of all synapses are excitatory synapses that connect one pyramidal cell to another pyramidal cell. The pyramidal cells can thus be viewed as the skeleton of the cortex. All those synapses are located on spines on the dendrites. 

We can distinguish an input and an output of a neural network. The collection of sensory neurons can be viewed as the input of the network, while the collection of motor neurons can be viewed as the output of the network. The sensory neurons can be triggered to fire in reaction to outside events, like light falling on a particular sensor cell in the eye etcetera. The axons of motorneurons are very long and connect to the muscle fibers of the body. 

Neurons will fire at certain moments in time. It is not clear whether the precise moments of firing are important, or merely the frequency with which a neuron fires. Probably both can be important in different situations.

2.2.1 Large scale structure

The underlying principles determining the structure of the human brain seem to be much different on different scales. On a large scale, different parts of the human brain are distinguishable, like the cerebral cortex and the cerebellar cortex. These different parts of the brain can have very different structures. It is beyond the scope of this thesis to describe the knowledge about the specific functions of the different parts because we will look at a more abstract level at neural networks. It is, however, important to note that a certain ‘design’ exists at this level. Also, inside the cortex, the long–range connections seem to be build according to some specific design determining the flow of information: the destination of long–range fibers depends strongly on the origin [11]. 

Several layers can be distinguished in the cortex of the human brain. Tradi​tionally, six layers are distinguished, but some of them are further divided into ‘sub–layers’. The differences between the layers can be found by looking at the types of neurons of which the layers are build and the neuronal densities inside the layers. The idea that information is processed ‘vertically’ inside the cortex, i.e., the input would enter the first layer and after processing through the different layers, the output would leave the last layer, is not correct, because both input and output neurons are connected to the same layers.
2.2.2 Local scale structure 

On the short–range or local scale, connections between neurons can be perfectly described with a model of ‘random’ connections, although multiple exceptions exist. If we look at all synapses on the axonic tree of one neuron, they appear as a cloud: they are rather randomly distributed in a certain volume, which is called the ramification area [11]. In the cerebral cortex, the relative density, i.e., the number of synapses of one neuron in its ramification area divided by the total number of synapses (mostly from other neurons) in that same area is extremely small. The relative density is so small, that if the ramification area of the axonic tree of one neuron overlaps the ramification area of the dendritic tree of another neuron, they will have, on average, only one synaptic connection with each other. It looks like the cerebral cortex is build to have a maximum diffusion and mixing: almost all synapses of the axon of one neuron connect to different neurons. This means that probably no one neuron does have a large influence on any other neuron. Normally, a certain group of firing neurons will be needed to let a neuron fire. It must be noted that these observations are not true for a special area in the brain called the cerebellar cortex. Here, the dendrites of the neurons are not mixed up maximally, but instead, their dendritic ramification areas are almost totally separated. They are connected by long stretched axons of other neurons. 

2.3 Learning 

At the level of neurons and the behavior of a biological neural network, a lot is unknown about the mechanisms of learning. First, we take a look at what we actually mean by learning and introduce some basic principles, then, some mechanisms we do know, or have strong indications to believe, are summarized, and some possible learning mechanisms are discussed. 

2.3.1 What is learning? 

By learning we mean that the probability for a certain behavior to happen in reaction to a certain event is altered. This can either mean that some reaction is likely to be repeated, or that the probability for some reaction to occur is lowered. For example, if a rat gets some food when he or she pushes a lever, the rat is more likely to push the lever again in the future, we will call this reinforcement. However, if the rat feels an electric shock when pushing another lever, the rat is more likely not to push that lever again, we will call this deinforcement. (This kind of experiment is actually carried out very often by some biologists.) In both cases we can say the rat has learned something. 

Evidently, some kind of memory is involved in the process of learning. One thing we know is that the strength of the synaptic connections between neurons can change for some time or more permanently by various mechanisms discussed later. It is likely that these are the underlying mechanisms of memory and learning.

The effect of some action taken can lead to some sort of satisfaction or hap​piness (like getting food), which can lead to reinforcement, or some sort of dis​satisfaction or unhappiness (like getting an electrical shock), which can lead to deinforcement. In this way there is some kind of feedback to the neural network, which is necessary to learn: the neural network must in some way get informa​tion to deinforce or reinforce the behavior. It is very likely that these ‘feelings’ of (un)happiness are either caused by some chemicals released, or that these ‘feel​ings’ cause the chemicals to be released, so it is very likely that reinforcement and deinforcement are regulated by some chemical reactions. 

2.3.2 Hebbian learning

The Canadian physiologist Donald Hebb suggested in 1949 that when an axon of a neuron A “repeatedly or persistently takes part in firing [neuron B], some growth process or metabolic change takes place in one or both cells” that increases the effectiveness of neuron A to excite neuron B [6]. 

This famous suggestion is now widely accepted as being one of the mechanisms of learning. In fact a growth of synaptic efficacies has been observed experimen​tally. It is, however, unlikely that this is the only mechanism involved. It is likely there is also a mechanism to weaken a certain connection, a mechanism that is also observed in reality. Maybe it would theoretically be possible to have a network where only strengthening of connections would appear. It would then probably be very hard to deinforce some behavior, also, when connections only strengthen, and never weaken, and we suppose that there is some limit on the strength of a connection, the network would not be able to learn at a certain time when all connection are close to their maximum. Maybe we would, however, never notice this effect because of the enormous number of neurons in our brain and our limited lifetime, or maybe it is just true and explains why it is harder to learn something for aged people, or maybe the connections never reach their maximum because some mechanism slowly decreases the synaptic strengths over time: this would mean that forgetting is involved, which is also not unlikely. 

2.3.3 LTP and LTD 

Long Term Potentiation (LTP), the strengthening of synaptic connections, hap​pens when a neuron repeatedly fires and causes a depolarization of a post-synaptic neuron. Normally this happens when there are also other neurons participating in depolarizing the post-synaptic neuron. This post-synaptic neuron does not nec​essarily have to get excitated; a partial depolarization of the membrane or one or more dendrites can be sufficient. The mechanisms are far from fully understood yet. 

Long Term Depression (LTD), the weakening of a connection, is observed also. One of the differences with the signals causing LTP is less activity by the pre-synaptic neurons and therefore less depolarization of the post-synaptic neuron. The underlying principles causing this behavior have probably to do with timing: when the pre-synaptic neuron fires just before the post-synaptic neuron fires, the connection is strengthened, when it fires slightly after the post-synaptic neuron, the connection will be weakened. If the pre-synaptic neuron actually caused the post-synaptic neuron to fire (by depolarizing its cell body or dendrite), it fired just before the post-synaptic neuron fired, but if the pre-synaptic neuron fired after the post-synaptic neuron fired, it did not cause the post-synaptic neuron to fire. 

The net effect is that if a pre-synaptic neuron causes a post-synaptic neuron to fire, the synaptic efficacy will normally be enlarged. If the signals of the pre-synaptic neuron were not strong enough, it does not cause the post-synaptic neuron to fire, and the synaptic efficacy will be lowered. The opposite behavior is observed also in specific parts of brains. 

We do know some aspects of LTP [3]: Normally, when a neuron gets (partially) depolarized, this is caused by the inflow of sodium ions. The sodium channels are opened when AMPA receptors are activated by the neurotransmitter glutamate (one of the most common neurotransmitters in our brain). Some other receptors, called NMDA receptors can open ion channels for calcium and sodium. When the neuron is at rest, these channels are blocked by magnesium. When the potential difference decreases, the magnesium ions are no longer attracted by the less negative charged membrane and they stop blocking the calcium/sodium channels. Thus calcium enters the neuron when the membrane gets depolarized, and it activates some genes inside the neuron and alters the activity of more than another hundred known chemicals. 

The precise reactions caused by these activities are unknown, but the result is that the strength of the synaptic connection can increase in a number of ways [3]: 

1 The structure of the AMPA receptors change, causing them to get more responsive. 

2 Some NMDA receptors are changed to AMPA receptors. 

3 More AMPA receptors are made, or moved to a better position. 

4 The dendrite grows into more branches, causing the pre-synaptic axon to form more synapses. 

Probably, there are also changes at the incoming axons, a lot of researchers are studying these changes and trying to discover the precise locations and mecha​nisms. 

At this moment, less is known about the mechanisms of long term depression.

2.3.4 Learning input–output relations

For the different senses like vision, taste etcetera, receptor neurons are excitated by events from outside the network. The signals of these firing neurons excitate or inhibit other neurons in the brain of the organism. We can speak of input signals to the neural network. 

On the other side, by activating motor neurons, or activating neurons in certain organs that will then release some chemicals like hormones, the neural network can influence the body of the organism and the outside world. We can call these neurons output neurons.

The output actions can influence the body and the outside world. The changes caused by this influence in the body and outside world, can cause changes in the body of the organism that causes the organism to ‘feel good’, ‘excited’ or ‘happy’, or to ‘feel bad’ or ‘unhappy’. These ‘feelings’ normally have a relationship with chemicals released in the body and possibly in the neural network of the organism, caused by physiological reactions like getting food or sex, or experiencing pain. Probably animals and humans can also ‘learn’ that there is a (large) possibility that some sort of action will cause happiness or unhappiness in the future, causing the feedback to happen on an indirect basis. 

Learning means that relations between the input and the output of a neural network are altered. In animals and humans, some sort of behavior is ‘prepro​grammed’ in parts of the brain. In reaction to certain input signals, some output is generated. If the effect of this output is not satisfactory, the organism can change its behavior by changing its output signals following a certain input. Some sort of searching for the correct output by changing things must happen. When a correct, or satisfactory, output has been found, the probability for this output to be caused again by the same kind of input can be enlarged. If this has happened, a new input–output relation is learned. 

Chapter 3

Neural network models 

After the introduction to the biology of neural networks, we are ready to look at some possible models describing neural networks. A lot of different models have been built, all trying to describe some properties of neural networks or neu​rons. Other models have been built in an attempt to build networks, which are of industrial relevance, in most cases these networks do not pay attention to biolog​ical plausibility, so they are not very interesting from our point of view. We will especially focus on the modeling of biological principles of learning. 

As in the previous chapter about the biology of neural networks, We will start by describing how single neurons can be modeled, followed by the architecture of the networks, and finally describing how to model learning mechanisms

3.1 The neuron 

In most models, spatial properties of the neuron, like length of axons and dendrites, are ignored. The neuron is modeled as a mathematical object with a number of input signals and one output signal. The input signals consist of output signals of other neurons connected to it and the output signal splits and is connected to the inputs of a number of other neurons. 

Every connection has a certain weight (or strength) associated with it labeled wij for a connection from neuron j to neuron i. It represents the synaptic strength of the connection from neuron j (pre-synaptic) to neuron i (post-synaptic): the axon of neuron j connects to the membrane or dendrites of neuron i. Because the spatial properties of neurons are not modeled normally, there is no difference between the membrane and the dendrites; dendrites are not modeled at all. Also, normally the lengths of axons are not taken into account, so there are no differences in propagation time of a signal through axons of different length. Of course it is possible to include the simulation of propagation times if one would include concepts of timing, but for now we focus on simple, abstract models because we want to study the basic principles of learning. 

The weights are real valued and can be negative (inhibitory synapse) or positive (excitatory synapse). 

Every neuron i is modeled to have a state variable xi, a potential hi and a threshold potential θi. 

In the most basic models, the state variable xi is binary: it can have only two values (normally modeled as 0 and 1). The value of xi describes whether neuron i is firing (or active). The value xi = 0 corresponds to a neuron that is at rest while xi = 1 means the neuron is firing.

Models on a slightly higher level, use continuous state variables, representing the frequency of firing (number of times the neuron fires per second). In this kind of models xi can have all values between the minimum and maximum firing frequency. 

Now, every model describes some relationship between hi, θi and xi. The simplest model is to take 
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where ΘH is the Heaviside stepfunction, defined by ΘH(x) = 0if x< 0 and ΘH(x) = 1 if x> 0. Thus, a neuron becomes active if its potential exceeds its threshold potential and is at rest otherwise. 

Other models include some stochastics at this level by introducing a probability distribution for neuron i to become active as a function of hi − θi, for example
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where p(xi = 1) is the probability for neuron i to become active. This distribution is similar to the Fermi–Dirac distribution encountered in statistical physics and reduces to (3.1) for β →∞. 

For the continuous state models, other relations are used. A simple example is to set xi proportional to the potential hi. 

Still, we did not specify how the potential hi of a neuron is determined. This potential of neuron i will be a function of the states of the neurons connecting to neuron i and the weights of these connections. The most used form of this function is to take the weighted sum of the states of the neurons connecting to neuron i using the weights wij: 
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where Vi is the collection of all neurons that have an afferent synaptic connection to neuron i. Other forms, for example multiplying the state variables, are possible also. 

3.2 Architecture

A lot of different architectures are used in different models. One possibility is to connect every neuron to all other neurons: a fully connected network. If self– connections are omitted and there are N neurons, there are N(N −1) connections. Note that there are two connections between every pair of neurons in a fully connected network. This is because the connections are one–way: the axon of neuron i can connect to a dendrite or cell body of neuron j, while at the same time the axon of neuron j can connect to the cell body or a dendrite of neuron i. The connection from neuron i to neuron j is generally different from the connection from neuron j to neuron i: the network connections are asymmetric. Biological networks are not fully connected; a more realistic model is a diluted network. We can imagine this by ‘cutting’ a number of connections. If M connections are cut, than the dilution d is defined by 

                                   
[image: image6.wmf]M

d=

N(N-1)


The M connections to be cut can be chosen at random. 

Another very popular architecture is the layered network: the N neurons are grouped in a number of layers. One form of layered networks constructed to do easy simulations is the layered feed–forward network. In this model there is an input layer consisting of NI neurons, an output layer consisting of NO neurons and a number of hidden layers in between, each hidden layer consisting of NH neurons. If the layers are sequentially numbered starting with the input layer and ending with the output layer, then feed–forward means that every neuron in layer i has only connections to neurons in layer j if j>i. (In most cases there are only connections to the layer next to the current layer: a neuron in layer i has only connections to neurons in layer j if j = i + 1.) In a lot of models, every neuron connects to all neurons in the next layer. Of course, we can generalize this model and cut some of the connections. It is also possible to add feed–back connections (to a previous layer) and add connections inside a layer. In this case, the network will not be feed–forward only anymore. 

3.2.1 Input and output neurons 

A subset of the neurons of a network can be chosen to be input neurons. Another subset functions as output. The input neurons represent sensory neurons. In a biological organism they would get their input from one of the sensory systems. Because the input neurons get their input only from a sensory system, they do not get input from other neurons in the neural network. Output neurons are neurons like motor neurons. Their axons are connected to cells of muscles, for example, not to other neurons in the network. 

3.3 Dynamics 

The study of dynamics means the study of how the network will evolve over time. We are not looking yet at changing weights and learning, so for now we look only at the propagation of activities in a neural network. 

If the firing neurons are modeled at a basic level, time is normally discretized. The states of the neurons are only determined at the moments tn,tn+1,..., with tn+1 = tn +Δt. What happens if some neurons are active at a certain moment? Well, they will change the potential of neurons to which they connect: if a connec​tion is excitatory, the potential will be raised, if it is inhibitory, the potential will be lowered. As a result of this, the potentials of some of these inactive neurons can reach their threshold potential, so they will become active. These neurons cause new changes in potentials of other neurons, so they can activate more neurons in their turn. It is also possible that the potential of an active neuron is lowered below its threshold potential. Then it will stop firing. 

Each time step, the states of the neurons can be updated. This can be done in several ways. One way is to use synchronous dynamics; by this we mean that the new states of the neurons on time tn+1 is calculated for all neurons using the states of the current time tn. No states are changed before all new states are determined. When all new states are determined, the states are updated at once (synchronously). Another way is sequential dynamics. When using sequential dynamics, we start with the first neuron and determine its new state. The state of this neuron is now changed immediately and then the state of the next neuron is updated etcetera, until all neurons are updated. Now the order in which the states are updated is important, so instead of a sequential update, the activities evolve in a different way if we change the order of updating. We can for example update the states in a random order. 

Now how does the state of the network evolve over time? There are three possibilities: 

1 The network evolves to a fixed point: this means that at a certain moment, the activity of each neuron will stay the same in every following time step: the state of the network does not change anymore. 

2 The network hops periodically between a set of fixed points: at every time step the state of the network changes, however, after a certain number of time steps, the sequence of the same patterns repeats. 

3 The states of the network change at every following step, this can be in a chaotic way. 

If the activity of a neuron is determined in a stochastic way, we can never be sure the network evolves to a fixed point or to periodically changing states, because we cannot predict the states in the following time step. 

If we do not use stochastics for the neuronal activities, we can say more about different networks:

For a feed–forward network, the state of the network always evolves to a fixed point (if no stochastics is included), no matter what kind of dynamics we use for updating the states. This can be seen by starting with the input layer: after the first time step, the states of the neurons in the first hidden layer are determined and cannot change anymore in later time windows because there are, by the definition of the network, no feed–back connections. After the second time step, the state of the second hidden layer is determined, etcetera, so the number of time steps it will cost before the state of the output layer is determined is always the number of layers in the network. (The input layer is not counted in layered networks.) We here are looking at the situation that the input of the network if fixed for some time. 

If there are feed–back connections, the dynamics we use for updating the states determines the possible final states of the network. When using synchronous dynamics, the network will evolve to either a fixed point or to a periodically changing state because the updating is always performed in the same way, so two similar starting situations will always result in the same next state, and because the number of neurons is finite, the number of possible states if finite also. This is also true for all schemes that perform the updating in the same order. Only when updating in a random order, the network will possibly behave chaotically. 

3.4 Learning

We already know that a neural network can learn by changing its weights wij. However, it is useful to start by formulating what a network should learn. This comes down to describing the interaction of the network with the outside world: the body of the organism and the world around it. 

3.4.1 Interaction

To talk about learning and interaction, it is necessary to include the outside world in the models. We can define learning only in connection to the interaction with the outside world. The network receives information from this outside world through its input. In biological terms this can be thought of as, for example, receiving information through the nerves of the eyes. On the other hand, a network can influence the outside world through its output. In biological terms, the output would be the motor neurons activating muscles and neurons sending signals to hormone releasing organs. When the output of the neural network causes a change in the outside world, the input to the network can change as an effect of this. Also, there is some feedback from outside to the desirability of the behavior of the neural network through chemicals released in the body and brain of the organism. 

Normally, this feedback comes from the body of the organism as a signal of, for example, pain or satisfaction. These signals are, in their turn, normally caused by an event outside the body like something causing the pain or something causing the satisfaction (like getting food). This feedback is normally modeled by a single (scalar) number, encoding the desirability of a certain behavior. 

In models the input to a neural network is normally provided by setting the activity of a number of neurons defined as input neurons according to a certain input pattern. An input pattern consists of a set of binary numbers (0 and 1) in case of binary neurons. We will denote such a pattern by the vector
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, where I is a reminder that we are talking about an input pattern. When there are NI input neurons, the vector 
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has NI components ξI1 ...ξINI . 

Normally, we want to offer several different input patterns to the network. If there are p input patterns, we denote the patterns by
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In the same way we can define output patterns, which we will denote by 
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Now we can formulate relations between the input and the output that a network must learn. 

The most general model is a dynamic environment: the output of the network can change the environment, which in turn can change the input to the network and the feedback signal. 

A simpler model is to demand the network to associate every input pattern 
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with a prescribed output pattern 
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. This corresponds to a static model of the environment; we can imagine someone sitting in front of a computer screen, seeing different images at different moments and learning to push the right combination of buttons on a keyboard for every image by activating the right muscles through motor neurons. 

When the network is not ‘told’ somehow what output to generate for a certain input, but must instead search for the best solution on its own by trying different possibilities and getting feed–back on how well it performs, we will talk about reinforcement learning. Another possibility, often used to model memory is to ‘tell’ the network exactly what output it should generate for a certain input. In this way, the network is not able to solve any problems by itself; it will only imitate some desired behavior, which is already determined in advance. This can be done by clamping the output of the network together with the input. By clamping the state of a neuron we mean that the state is just set to a specified value, i.e., the neuron will fire if the value is 1 and be quiescent otherwise, irrespective of its membrane potential. In this model, there is a distinction between a learning phase and a retrieval phase. When applied in recurrent networks (for example randomly connected networks), we do not necessarily have to define separate input and output neurons, but instead, a pattern can be applied to a subset of the neurons that than act effectively as an input, while the same neurons can be thought of as output neurons later. 

3.4.2 Learning rules

One possibility is to do a calculation that determines the values of all weights in such a way that some set of desired patterns is learned. A method that is used more often and is much more relevant from a biological point of view is to use an iterative process that changes the weights in every time step. Such a prescription to change the weights is called a learning rule. 

We can write 
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Put in words this formula tells us that the quantity Δwij is added to the weights at time tn to determine the changed weights at the next time step tn+1. The problem is now reduced to finding an appropriate expression for Δwij. Δwij can depend, in principle, on all variables associated with the network. However, for biologically plausible networks, it is supposed that Δwij can only depend on local variables. By this we mean that Δwij can only depend on variables associated with the neurons i and j. Of course there can also be global variables modeling chemicals in the whole brain on which Δwij can depend, but we suppose Δwij can not depend on variables local to neurons other than the neurons i and j. 

3.5 Heerema and Van Leeuwen 

In [4], Heerema and Van Leeuwen study recurrent neural networks with binary state variables for the neurons. They do not study reinforcement learning: there is no (global) feed–back signal telling the network how well it performed. Instead, they study the storage of patterns that are determined in advance. Their model can be viewed as a model for memory in neural networks. A number of patterns 
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,(µ =1,...p) is presented to the network by clamping the states of the neurons to the values specified by the binary elements of the pattern 
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. Every time, when a pattern is presented to the network, a learning rule is applied in order to try to memorize the pattern. 

Heerema and Van Leeuwen determine a biologically plausible learning rule using two different methods: At first, they make some biological assumptions from which a number of restrictions follows, resulting in the rule 
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where εij are positive functions of the local variables of the neurons i and j. Their assumptions will be used by us in section 4.5. Heerema and Van Leeuwen also calculate, starting from scratch again, the rule that would be the most efficient to learn patterns when looking at the energy it costs to change synaptic connections. We know from biology that it is very important for any living creature to be efficient with energy, so this is a very plausible assumption to start with.

The rule they derive in this way is 
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with κ and ηi constants. As can be seen immediately, this rule is compatible with rule 3.2 as long as κ is not too small. It is shown that this rule works well for the storage of patterns.

3.6 Chialvo and Bak

Chialvo and Bak introduce a local learning rule, that can be characterized by ‘learning from mistakes’ ([5]). They model reinforcement learning, so they simulate networks that can search for optimal solutions by themselves. Chialvo and Bak use a simple feed–forward network with only one active neuron in each layer. The feedback signal, r, can have only two values: r = 0 means the output was not correct and r = 1 means the output was correct. Their learning rule is very simple and reads 
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So, on success (r = 1), nothing happens because the factor (1 − r) is zero then. On failure, when r = 0, the weight wij is decreased if both xi and xj are active. Eventually, xi will not fire anymore when xj fires because of the decrease in the strength of the weights, and the path of activity is altered. This process continues until the correct output has been found. To force the network to have only one active neuron in each layer, Chialvo and Bak ignore the threshold potentials of neurons. Instead, they select the neuron with the highest potential in each layer and let that neuron fire. This is called extremal dynamics. 

They argue that this mechanism might be realized in biological systems by a lot of inhibitory connections inside each layer: as soon as one-neuron fires, it will stop other neurons in its layer from firing through the inhibitory synapses. This mechanism is called lateral inhibition. Now they suppose that the neuron with the highest potential is most likely to fire first. These inhibitory connections are not included in their simulations. The networks Chialvo and Bak simulate seem to perform quite well in case only one neuron per layer fires. 

3.7 Bosman, Van Leeuwen and Wemmenhove

In [2], Bosman, Van Leeuwen and Wemmenhove combined the Hebbian learning rule (3.3) with the punishing rule of Chialvo and Bak (3.4). They used a simple layered network model similar to the one Chialvo and Bak used with extremal dynamics. A ‘redistribution term’ φ was added to the punishment part of the rule to prevent a continuous decrease of the weights. Their rule now reads: 

                           
[image: image19.wmf]ijiijij

Δw= η(k-γ)(2x-1 )x-(i-r)(ρxx-φ)


with γi given by (4.4). The Hebbian part is always active in this learning rule. When the output is not correct (r = 0), the ‘punishment term’ becomes effective also. This rule works well in the region 0.25 < η/ρ < 0.50: the network learns a lot faster than without the Hebbian part. Bosman used also extremal dynamics, but tested the model also for more than one active neuron per layer. If, for example, two neurons must be active, the two neurons with the highest potential are chosen to fire. Especially for more than one active neuron, the Hebbian term causes a significant increase in the performance of the network. 

3.8 Activity

When a pattern is learned by a neural network, we can imagine that some different ‘paths of activity’ exist within the network: the connections between pairs of pre– and post-synaptic neurons which are both active are strong enough to cause a transmission of activity, while the connections from active pre-synaptic to inactive post-synaptic neurons are weak enough or inhibitory, so the post-synaptic neuron will not fire. 

When we want the network to learn more patterns, additional paths must be formed. To preserve the old learned patterns, the new patterns should not disturb the already existing paths too much. As different experiments have shown (see for example [2], [5]), this can be accomplished by keeping the activity low. The activity a at time tn is defined as the fraction of active neurons in a network of N neurons :
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where xi(tn) = 1 if neuron i fires in time window tn and xi(tn) = 0 if neuron i is not active in time window tn. We can calculate the average activity over a certain period of time. This is what is meant here by the words average activity. We can also calculate the average activity of a certain layer of a layered network model. 

3.8.1 Controlling the activity 

Suppose we want to learn our network patterns with a certain prescribed (low) average activity. In this way, the average activity of the input neurons will have the correct value automatically. When there is no mechanism to control the activity in parts of the network that do not belong to the input, there is no guarantee that these parts will have the correct average activities. In fact, it turns out that in most cases, the activity of the output neurons will be too low or too high, thereby making it impossible for the network to find the desired output. So, we need some mechanism to control the activity. 

3.8.2 Mechanisms used in past experiments

Chialvo and Bak ([5]) use extremal dynamics to solve this problem. Extremal dynamics can be used in a layered network. For each layer the desired number of active neurons is determined. Normally this number is taken to be low. Then, they let exactly that number of neurons fire in that layer by choosing the neurons with the highest potential to become active. Chialvo and Bak, use only one neuron in each layer: only the neuron with the highest potential will fire. 

Of course this works fine because the activity will be exactly the desired activity because the network is simply forced to do so. However, the biological property of threshold potential is neglected. Remember that a neuron will fire when its potential is raised above the threshold potential. When the potential is lower than the threshold potential, the neuron will not fire. By using extremal dynamics, neurons whose potential is above the threshold potential will not fire if there are enough other neurons in its layer with higher potential. Also, neurons with potentials below the threshold value, could be forced to fire if their potential is the highest. 

Chialvo and Bak argue that maybe there is a mechanism called lateral inhibi​tion: if one neuron fires, it should then inhibit all other neurons in the same layer immediately to stop them from firing for a short period of time. Then only one neuron would fire in a small period of time. Every neuron should have inhibitory synaptic connections to other neurons in the same layer in this model. We do not know if this is realistic from a biological point of view. But anyway, Chialvo and Bak did not incorporate this mechanism in their simulations, so the explanation remains a bit artificial. 

Another mechanism used in past experiments is changing the threshold poten​tials of all neurons in every time step of a simulation in order to keep the activity at a desired level ([8], [9]). Mechanisms of global increase or decrease in the poten​tials or chemicals influencing the threshold potentials must be introduced for this to work. In this way the activity can of course also be forced to a desired level. In [8] and [9], the threshold potentials of all neurons are increased as long as the activity is too low and decreased when the activity is too high, until just the right level of activity is reached. The idea of chemicals regulating the activity is, in principle, not unrealistic from a biological point of view; however, one drawback is that there is no natural equilibrium state. By this we mean that it is possible for the threshold potentials of all neurons to increase on average after some learning process, without them returning to their original levels. This would mean that the chemicals released to regulate the activities must be released on a permanent basis and there is no limit, in principle, on the needed strength of their influence, which we think is not very plausible biologically. 

Chapter 4 

Theoretical considerations 

4.1 Network model 

We will look at a simplified model. We consider a diluted neural net with one hidden layer. The net is diluted, i.e. not all neurons are connected to all others. We take the net to be feed–forward, i.e., there are connections from the input layer to the hidden layer and from the hidden layer to the output layer. There are no connections from the input layer to the output layer. The neural net may be trained to realize input–output relations by adapting its synaptic connections, given by wij, by some learning rule. 

Let us suppose that the neural net consists of N binary neurons i, i = 1, 2,...,N, see figure 4.1. We will use the symbols I, H and O to refer to the Input, Hidden and Output layers. In order to denote that a neuron i of the net belongs to one of these layers we will write i 
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 O, respectively. Furthermore, NX denotes the number of neurons in layer X (X = I, H or O). 

The activity aX in layer X is defined by  
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The weights of the synapses connecting either the input layer with the hidden layer or the hidden layer with the output layer both are indicated by the symbol wij. In this feed– forward network there are maximally NINH possible connections from the input layer to the hidden layer. If only the fraction (1 − dH), 0 ≤ dH ≤ 1, of these connections to the hidden layer is actually realized, we call dH the dilution (of the connections with H). Similarly, dO is the dilution of the connections from the hidden layer with the output layer. 

[image: image25.wmf]
Figure 4.1: The feed–forward network has one hidden layer. The symbols I, Hand O refer to the Input, Hidden and Output layers. In order to denote that a neuron i of the net belongs to one of these layers we will write i 
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 O, respectively. Furthermore, NX denotes the number of neurons in layer X(X = I, H or O). The activity aX is defined by 
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The weights of the synapses connecting either the input layer with the hidden layer or the hidden layer with the output layer both are indicated by the symbol wij . In this feed–forward network there are maximally NINH possible connections from the input layer to the hidden layer. If only the fraction (1−dH), 0 _ dH _ 1, of these connections to the hidden layer is actually realized, we call dH the dilution (of the connections with H). Similarly, dO is the dilution of the connections from the hidden layer with the output layer.

The state xi of neuron i is active (xi = 1) or non–active (xi = 0). The potential hi, the difference in potential between the inner and the outer part of a neuron, is supposed to depend linearly on the activities of the incoming synaptic connections:
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where Vi is the collection of neurons j that have an afferent synaptic connection to neuron i. 

This formula can be viewed as the defining expression for the weights wij. Since the xi’s are dimensionless, the weights have the dimension of a potential. Let θi be the potential that should be exceeded in order that neuron i becomes active, i.e., 
                                   
[image: image31.wmf]i

x

 =1  if 
[image: image32.wmf]i

h

 >
[image: image33.wmf]θi

,  
[image: image34.wmf]i

x

 =0  if  
[image: image35.wmf]i

h

≤ 
[image: image36.wmf]θi

.              (4.2) 

An alternative way to specify the state of neuron i as given by equation (4.2), is to write 
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The function ΘH is the Heaviside step–function .The state of the neurons of the input layer determine the state of the hidden layer via (4.1) and (4.3). The state of the hidden layer, in turn, determines the state of the output layer. Thus, if the states xi for i 
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 I are given at each time step, once we have a rule that fixes the wij at time tn (n =0, 1, 2,...), we can determine the network state at every time tn. 

4.2 Stability coefficient 

Now define the ‘two time stability coefficient’ 
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which is a generalization of the usual stability coefficient [4]. With equation (4.3) it follows that, at two times tn and tm we have 

                            
[image: image40.wmf](,)0()  () 

inminim

ttxtxt

g

>Û=

                 (4.5) 

                              
[image: image41.wmf](,)0()  ()  

inminim

ttxtxt

g

<Û¹

                 (4.6)
In particular, if n = m, we have
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The property (4.5) explains already the name stability coefficient: the state of neuron i does not change if γi(tn,tm) is positive. Moreover, the larger γi(tn,tn), the more stable the system is with respect to changes in the synaptic weights [4]. The γ’s will play a role in section 4.6 when we discuss the essential difference between Hebbian and Anti–Hebbian learning. It will turn out that the Hebbian term reinforces what the network has learned already, whereas the Anti–Hebbian term enables the network to learn new input–output relations. Therefore, the Hebbian term corresponds to reward, while the Anti–Hebbian term may be associated with punishment. 

4.3 Learning input–output relations 

Let us denote the state of layer X (X = I, H, O) by
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 We want the network to associate with a particular, prescribed input state 
[image: image44.wmf]u

I

ξ

r

, chosen from a collection of p input states 
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 (µ =1,...,p), the particular state 
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,  from the collection of p prescribed output states 
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 (µ =1,...,p). The goal of the learning process is that the network will be able to generate, for all p input–output relations, the correct output pattern 
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 immediately when the input pattern 
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  is presented to the input of the network. This will be achieved by a learning procedure, in which the weights are adapted stepwise according to some rule. 

If we present a pattern 
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  to the network by setting 
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, the network will respond by generating an output state 
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 which, in general, will not be equal to the desired output state
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. We will associate a variable r with each of the two possibilities: r = 1 if the output is right, i.e., 
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 and r = 0 if the output is wrong, i.e. 
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. We require that the learning rule be such that the output state 
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  is produced, and that, once found, the µ–th input–output relation is memorized by the net. Since the only feed–back information to the network about its current output state in reaction to the input is the binary variable r, the network should try (at random) all possible output patterns as a reaction to an input pattern as long as the output pattern is not the desired one. Once the correct output has been found, the input–output relation should be memorized, so it will be recalled a next time after some other relations are learned by the network.

4.4 Performance 

The network will be studied under various conditions. In order to judge the performance, we need some measure. This will be the subject of this section.

Let us first calculate the a priori probability that an output state 
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, when each neuron of the output layer has a probability pO to be active. Let N(a)( 
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(The probability that the output state equals the pattern 
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 , is the same as the probability that the output state equals a pattern with the first N(a) elements set to 1 and all other elements zero.) The average number of time steps needed to arrive at the desired output pattern equals, a priori,  1/P(
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If p input–output relations (
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) are to be realized, (µ =1,...,p), the average number of time steps that is needed, a priori, is  . 
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Comparing the a priori average number of time steps and the actual number of time steps M needed to learn all p input–output relations we can get a measure of how well the network performs. This leads us to define the performance R as the quotient 
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with P(
[image: image75.wmf]u
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) given by (4.8. Note that the performance will be zero when the network is unable to learn all input–output relations and the performance will be 1 for an ‘ideal’ network. By an ‘ideal’ network, we mean a network that finds the correct output of each relation in a number of time steps on average equal to the random search time and immediately remembers the relation once found and never forgets it. 

4.5 Biologically plausible learning rules 

Let us suppose that the weights wij(tn) may be changed stepwise by some learning process 
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where j is the pre-synaptic and i the post-synaptic neuron. 

We make four biological assumptions. The contents of these assumptions cor​respond to the assumptions Heerema and van Leeuwen make in [4]. They are, however, slightly generalized to include the feed–back signal r. 

i. 
The changes in wij,Δwij, depend on the global variable r and the local variables xi, xj, hi, θi and wij, i.e., 
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Biologically this means that only variables that can be ‘felt’ at the synapse with weight wij, can influence the weight change. Of course, this includes the global variable r and the strength of the weight wij itself. Since the state of neuron j determines whether or not neurotransmitters are released at the synapse, it can influence the weight change. Because the synapse is located at the dendrites or cell body of neuron i, we suppose that variables local to neuron i; xi, hi and θi, can influence the strength of the weight change. 

ii. 
The sign of Δwij depends on r, and the neuron states xi and xj only, i.e., 
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where σ equals −1, 0 or +1 and where εij are positive functions.

Biologically this means that as long as the states of the pre-synaptic and post-synaptic neurons do not change and the global feed–back signal r does not change, the sign of the weight change will not change, i.e., the variables hi, θi and wij can influence the magnitude of the weight change, but they cannot switch the learning from an increase to a decrease as long as the states and r do not change. 

iii. There is only a change in wij if the pre-synaptic neuron xj is active, i.e., 
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Biologically this means that if the pre-synaptic neuron does not fire, there will be no change in the synaptic efficacy wij. This is supposed because we think it is unlikely that the synaptic efficacy will change if nothing happens, i.e., no neurotransmitters are released into the synaptic gap. 

iv. 
Both in case r = 0 and r = 1, there is not only enhancement or only diminishment of the weights. This implies that σ(r =0,xi) cannot take on only negative or only positive values. The same is true for σ(r =1,xi). Since xi is the only variable that is not determined yet, we get σ(r, xi = 0) = −σ(r, xi = 1), or, equivalently 
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 where σ(r) equals −1, 0 or +1. 

Biologically, this means that we think it is implausible that weights can either only increase or only decrease, because the activity would easily blow up or die out if weights would only increase or only decrease. Since r =0 can be true for long times as long as something is not learned, and r = 1 can also last for long times as long as the behavior is desired, the assumption must hold both for r = 0 and r = 1. 

Inserting (4.14) into (4.13) and the resulting equation into (4.12) we have
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 The case σ(r) = 0 is trivial, and will not be considered anymore. Thus we are left with the possibilities σ(r) = +1 and σ(r)= −1, 
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where r, xi and xj each take one of the values 0 or 1. These two possibilities are usually referred to by the names of Hebbian (H) and Anti–Hebbian (A) learning. 

4.6 Implementing reward and punishment 

We will now discuss the effects of the weight changes 
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. To that end, consider neuron i, a fixed but arbitrary neuron of the network. Suppose that the neurons j
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 EMBED Equation.DSMT4  [image: image87.wmf]i
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 do not change during the time step tn → tn+1: 
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Now, we multiply both sides of (4.10) by xj(tn), sum over all indices j
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 EMBED Equation.DSMT4  [image: image92.wmf]i
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, and subtract the threshold potential θi to obtain 
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where we used (4.1) and (4.18). Next, we multiply by the factor (2xi(tn) − 1). Using equation (4.4), we then get 
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Now, we distinguish between Hebbian and Anti–Hebbian learning respectively. 

Firstly, substituting (4.16) into (4.20) we find, using (2xi−1)2 = 1 and xj = xj, that 
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Recalling that γi(tn,tn) and 
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 are positive, we see that γi(tn,tn+1) is positive. 

Hence, according to (4.5) the state of neuron i has not changed:
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Consequently, if the input does not change, going from time tn to time tn+1, the state of a neuron i of the hidden layer does not change. This holds true for any neuron i of the hidden layer, implying that the input of the output layer will not change. In other words, the output does not change when the input remains the same, although the weights wij(tn) change to wij(tn+1) according to the rule (4.10) combined with (4.16). Thus the Hebbian rule (4.16) conserves an input–output relation. 

Moreover, since γi(tn,tn+1) is larger than γi(tn,tn), as follows from (4.21), the new net is more stable. In other words, Hebbian learning engraves an input–output relation into the memory of the net by properly adapting its weights. 

Secondly, we substitute (4.17) into (4.20). We find 
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Since both γi(tn,tn) and 
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 are positive, γi(tn,tn+1) is smaller than γi(tn,tn).

Hence, Anti–Hebbian learning has the effect of decreasing the stability of the network. As long as the state of the network does not change (i.e. xj(tn+1)= xj(tn) for all j), all stability coefficients γi(tn,tn+1) decrease, and, at a certain moment tm (m>n) at least for one neuron i, γi(tm,tm+1) will become negative, implying, with (4.6), that 
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Consequently, repeated Anti–Hebbian learning results in a change of the output related to the same input. The corresponding changes of the weights of the net are given by (4.10) combined with (4.17). 

We come to the main conclusion of this section. If the network output is the wrong one (r = 0), we must adapt the weights such that other output results, i.e., we should use the Anti–Hebbian, not the Hebbian learning rule to change the network state. If the network output is the right one, we may use the Hebbian learning rule to consolidate this situation. These two observations can be combined into the mathematical prescription 
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or, with (4.16) and (4.17), 
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 In summary, reward​ing is Hebbian, whereas punishing is Anti–Hebbian in character. Consequently, we may use these terms as synonyms, if the four biological assumptions i–iv hold indeed. 

What remains is to find explicit expressions for the (positive) functions 
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. This will be the subject of the next section. 

4.7 Determining explicit rules 

For the Hebbian factor 
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we choose the form derived in [4], because it is derived as a biologically plausible learning rule: 
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where ηi and κ are constants. Note that there is no j and no wij dependence for this choice of the rewarding contribution to the learning rule (4.24). Also not that κ must be large enough in order that 
[image: image107.wmf]ε

H

ij

 stays positive indeed. 

 We now come to the punishment term 
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Since any two positive constants can be expressed as 
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or, equivalently
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Note that (4.27) can be obtained from (4.25) by the substitutions ηi → ρi, hi → αi, κ → ½  and          θi →½ . Hence, the simple assumption for the form of the punishment term (4.26) can be viewed as kind of analogue of the Hebbian term. However, for the latter exists a derivation, whereas (4.26) is an educated guess only. 

Upon substituting (4.25) and (4.27) into (4.16) and (4.17) we obtain 
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Using (4.23), we find for our learning rule
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The numerical study of section 6.1 will show that the effect of (4.29) is that the average neuronal activity of the network is well controlled. 

Chapter 5 

Simulating the network 

5.1 Choice of parameters 

Up to now we did not specify the parameters ηi, κ, θi, ρi and αi occurring in the learning rule (4.30). In [4] it is argued that ηi should be proportional to the inverse of the average number of neurons j 
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 Vi that fire. It is also argued that a reasonable approximation will suffice, therefore, we choose ηi is ηX for i 
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 X, i.e., we choose ηi the same for all neurons i of layer X (X=H, O): 
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with
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where the bar denotes a time average and where η is some positive constant, which we will call the (global) learning rate. Note that ηH is the learning rate associated with the connections from the input layer I to the hidden layer H. Similarly, ηO is associated with connections from H to O. 
In analogue to (5.1) and (5.2) we take
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with
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We will choose the parameters θi = θX, i 
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 X and αi = αX, i 
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 X, i.e., we take these parameters the same also for neurons belonging to the same layer. 

The margin parameter κ will be fixed at the value 1, in agreement with liter​ature (see e.g. [4]). This can be done because instead of varying κ, one can also vary the learning and punishment rates η and ρ, with the same effect.

5.2 Addition of noise 

Since the equations determining the network dynamics are deterministic, and the number of possible states of the network is finite, the system will suffer from periodic behavior, which is not realistic biologically, since in an actual biologi​cal net there is always some disturbing effect. Therefore, when performing our simulations, we add some noise, in order to mimic reality. 

Let F be the Gaussian distribution 
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with mean µ and standard deviation σ. We now replace Δwij by a number x, the distribution of which is given by 
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We have chosen the standard deviation of the noise proportional to Δwij with proportionality constant [image: image152.png]


. 

5.3 Preparing the network 

Since we do not know the initial values of a (biological) neural net, we here choose an ad hoc approach by starting with characteristic initial values for the weights wij which are such that the γ’s are distributed around zero, corresponding, according to (4.5) and (4.6) to the situation that each neuron i of the network hesitates between changing or not changing its state. If γi = 0, it follows from (4.4) with m = 0, that hi = θi or 
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We now first approximate 
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 where wH and wO are values characteristic for the values of the weights of con​nections to the hidden and output layers. Thereupon we approximate the sums of the right–hand sides according to 

                                 
[image: image158.wmf](1)

i

jIIH

jV

xNad

Î

»-

å

,            i
[image: image159.wmf]Î

H                               (5.10)

                               
[image: image160.wmf](1)

i

jHHO

jV

xNad

Î

»-

å

     ,   i
[image: image161.wmf]Î

O                                  (5.11)    

Now, substituting (5.7) for i 
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as characteristic values for the weights in a situation that the neurons of the network hesitate between firing or staying quiescent. Now, let us suppose that the weights in the hidden and output layers are distributed normally around the averages (5.12). with widths of the orders ρH and ρO, i.e., their probabilities are given by 
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 where F is given by (5.5) and where µ and σ are given by 
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We chose σ = ρX / 2  because we suppose the width of the distribution of the weights  will be in the order of the punishment rate ρX, because the weights will normally change in each time step by an amount in the order of ρX. 

When the real learning process is applied, the distribution of the weights will not be exactly the one roughly estimated above, therefore, before starting the actual learning process of a set of input–output relations, we apply the Anti– Hebbian learning rule (4.29) a number of times (e.g. 10,000 times), each time with an arbitrary input pattern with activity aI presented to the network. In this way, we hope that the distribution of the weights will become naturally. 

Chapter 6 

Discussion of results 

6.1 Effect of the Anti–Hebbian component 

It is our purpose to model a neural net that has biological features. We will show that the learning rule (4.29) entails that the neural potentials hi and the weights wij remain within realistic bounds. 

We will show that the activities, averaged in time, of the hidden and output layers are given by αH and αO respectively. Moreover, we will show that the distribution of the activities around the value αH (or αO) is such that, effectively, each neuron i in layer H (or O) has a probability αH (or αO) to fire, independent of the activities of the other neurons. In other words, the proposed learning rule (4.29) focuses the average activity in a natural way around the value αH or αO. 

In order to get a first impression of the network behavior, we will plot, as a function of time, the activity, the membrane potential of an arbitrary neuron and the weight of an arbitrary synapse. We will offer the network p = 1000 input patterns. Each input pattern will be repeatedly offered to the net until the desired output pattern associated with the input pattern is found by the network. The input and associated output patterns are chosen at random but with a certain specified activity. As soon as the correct output is found, the next pattern is presented until all output patterns associated with the input patterns have been found. At this time, we do not require the network to remember the correct output patterns, because we set the Hebbian factor to zero in order to study only the effect of the Anti–Hebbian term. 

Activity In figure 6.1 (top) we can observe that the activity aH of the hidden layer fluctuates around the value αH =0.05, the value which we have chosen in the learning rule for changes of weights of connections between the input and hidden layers. This is what we had hoped to 

                         [image: image173.wmf]
Figure 6.1: The activities of the hidden layer (top) and the output layer (bottom) as a function of time . The network has NI = 20 neurons in the input layer, NH = 2000 neurons in the hidden layer and NO = 10 neurons in the output layer. All neuron thresholds vanish: θH = θO = 0. The dilutions are zero: dH = dO = 0. The parameters in the learning rule are: learning rate η = 0, punishing rate ρ =0.01, αH =0.05 and αO =0.3. The noise parameter is δ =0.1. The number of patterns is p = 1000. The pictures show only a small interval (500 time steps) of the total number of time steps needed to find all desired output patterns. The activities aH and aO are seen to wiggle around the values αH and αO.

achieve when we postulated (4.29). The larger fluctuations occur when the net is confronted with a new input pattern, to which it must learn to react by a new, prescribed output pattern. 

We see that it takes only a short period of time before the net has found back its balance. Similar observations can be made with respect to the output layer: in figure 6.1 (bottom) the activity is seen to fluctuate around the value αO =0.3, chosen in the learning rule (4.29) in case it is associated with the connections between the hidden and output layers.
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Figure 6.2: Membrane potentials of an arbitrary neuron of the hidden layer (top) and the output layer (bottom) as a function of time for the same system as in figure 6.1. The same interval for the pictures as in figure 6.1 is chosen. 

Membrane potential In figure 6.2, we plotted the membrane potentials of one neuron in the hidden layer (top) and one neuron in the output layer (bottom). In figure 6.2 (top) we recognize the rule (4.29): the potential increases when it is below the threshold, while it decreases when it is above the threshold value. 
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Figure 6.3: Weights of an arbitrary synapse connecting a neuron of the input layer to the hidden layer (top) and an arbitrary synapse between the hidden layer and the output layer (bottom), for the same system as in figure 6.1. Weights do not change if the pre-synaptic neuron is non–active. 

Exceptions to this rule may occur if the state of the pre-synaptic neurons is altered. The effect of rule (4.29) cannot easily be observed directly in figure 6.2 (bottom), since the states of the neurons of the hidden layer change more frequently than those of the input layer, which only change when a new pattern is presented. The exceptions occur with such a high frequency that the original effect of the rule is blurred. 

Weights We have plotted an arbitrarily chosen weight of a synapse connecting a neuron of the input and a neuron of the hidden layer (figure 6.3 (top)) and similarly, for a synapse connecting a neuron of the hidden to a neuron of the output layer (figure 6.3 (bottom)). Again an interval of 500 time steps is plotted .The interval for the top figure is shifted to view an actual change into the interval (the weight does not change sometimes for a long period of time if the input neuron does not fire in the current pattern). We see that the weight of the connection to the output layer only changes once in about every 20 time steps because the chosen neuron from the hidden layer fires only once in about every 20 steps (see figure 6.2 (top )). 

6.2 Learning input–output relations 

In the preceding section we saw that the Anti–Hebbian part of the learning rule adapts the weights in such a way that a desired input–output relation is found after a number of time steps, while, at the same time the network activities aH and aO stay within acceptable bounds. 

In this section we study the complete learning rule. Combining (4.23), (4.28) and (4.29) we find 
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where ηX and ρX are given by (5.1) and (5.2). Furthermore, we choose κ = 1 as explained in section 5. In the actual simulations we replace Δwij by a Gaussian variable, described in section 5.2. 

Again, we will offer a number of p input–output relations to the network. From now on, however, we will require the network to learn all p input–output relations. By this we mean that for each input pattern presented to the network, the correct output pattern must be generated immediately by the network. Again, each input pattern is repeated until the correct output has been found. If this happens, r is set to 1 and the Hebbian part of the learning rule becomes effective. When all input–output relations have been found, the next learning cycle is entered: the patterns are presented to the network again in random order (they are shuffled after each learning cycle to prevent possible effects due to a specific learning or​der). Generally, not all patterns will be memorized after one cycle. We repeat these learning cycles until all output patterns are generated immediately after the corresponding input patterns are presented to the network. If all patterns are recalled at once, we say the network has successfully learned all input–output relations. 

6.2.1 Varying parameters 

The performance of a neural net depends on many parameters, e.g., the coefficients η, ρ and α occurring in the learning rule (6.2), the dilutions d and the threshold potentials θ. In order to get more insight with respect to variations of all these parameters, we will study a number of particular cases. 

In figure 6.4 we plotted the performance R of the net as a function of the parameter αH, the coefficient determining the activity of the hidden layer. There is seen to be an optimal range of values with a satisfactory performance. For values of αH below 0.02, the performance decreases rapidly. This is probably because the probability that no one output neuron fires is increasing if very few hidden neurons will fire. If αH grows above 0.05, the performance is seen to decrease also. This is probably due to the fact that the different input–output relations will start to interfere more often and thereby destroy each other. 
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Figure 6.4: Performance as a function of the parameter αH determining the activ​ity of the hidden layer for p = 10 input–output relations. We have chosen NI = NO = 10, NH = 2000, 
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=  2, θH = θO = 0, dH = dO = 0, ρ =0.1,  η =0.2 and δ was set to 0.1 again. There is seen to be an optimal range of values with a satisfactory perfor​mance. 

In figure 6.5 we plotted the performance R as a function of η/ρ for ρ =0.05. For values around η = 2, the performance is optimal. For values of η below 2 times the value of ρ, the performance decreases. This is probably due to the fact that the strengthening of patterns is too weak in relation to the punishing Anti–Hebbian term; existing relations will be easily destroyed when the network tries to learn other patterns by means of applying the Anti–Hebbian factor. 

However, if η raises above 3 times ρ, the performance starts to decrease slowly. So, if the Hebbian term is too large in comparison to the Anti–Hebbian term, the performance decreases also. This is probably because the Hebbian term also destroys other existing input–output relations when memorizing a specific relation. 
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 Figure 6.5: Performance as a function of the ratio of reward and punishment for p = 10 input–output relations. We choose the same parameters as in the simulations of figure 6.4, except for ρ, which was set now to ρ =0.05. We set αH =0.025, and η varying between 0.05 and 0.5. For values of η/ρ around 2, the performance seems optimal.

In figure 6.6 we fixed the quotient of the learning rates η/ρ at 2, and varied η between 0.02 and 0.5. For values of η above 0.2, the performance is best. Effectively, we vary the strength of the learning rule (both η and ρ) with respect to the margin parameter κ = 1. The margin parameter acts as a limit to the strength of connections in the Hebbian term. If η is very small with respect to κ, this limiting effect will be very weak, and if one pattern is strengthened repeatedly, the paths of activity for this pattern can become so strong, that it becomes very hard or impossible for the network to change them when some other pattern must be learned. If η is too large with respect to κ however, the probability that some pattern will not be memorized strongly enough, increases, which can be seen for values of η above 0.4: the error in the measurements shows some big increases, meaning that the time to learn all patterns fluctuated heavily for some simulations, probably due to the effect that it was very hard to learn for the network some sets of patterns. 
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Figure 6.6: Performance as a function of the strength of the learning rule for p = 10 input–output relations. We fixed the quotient of the learning rates η/ρ at 2, and varied η between 0.02 and 0.5. All other parameters are chosen the same as in figure 6.4.

In figure 6.7 we plotted the performance as a function of the dilution dO, with dH = 0. It can be seen that the performance of the network decreases for increasing dilution. This is probably because there becomes less ‘paths of activity’ possible if more connections disappear. Values below 0.2 of the dilution do not have a large effect on the performance. 
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Figure 6.7: Performance as a function of the dilution for p = 10 input–output relations. We plotted the performance as a function of the dilution dO, with dH = 0. All other parameters are the same as those in figure 6.4 again. We see that the performance decreases for values of dO above dO =0.2. 
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Figure 6.8: Performance of a network with θH = θO = 1 as a function of the number of input–output relations p for different values of the dilution dO: dO = 0, dO =0.5, dO =0.9. All other parameters are the same as those in figure 6.4 again. The network performance is best in this picture for dO =0.9.

Up to now, we took, quite unrealistically biologically, the thresholds θ equal to zero. If we take θ unequal zero, we only get satisfactory results if we also take the dilution d unequal to zero. In figure 6.8 the performance is plotted as a function of the number of input–output relations p for different values of the dilution dO. The network performance is optimal around dO =0.9. 

Chapter 7 

Conclusions 

The aim of building a simple model of neural network that has biological features and which can be learned in a manner that does not use the concept of extremal dynamics, is achieved successfully.

On the basis of some assumptions based on some biological theories, we find out that two kind of learning are possible:

· One is Hebbian.

· Other one is Anti–Hebbian.

By studying effects of these learning principles, they are associated with reward and punishment and a complete learning rule is obtained which include both of these principles. It is found that, in this learning rule the punishment part allows to control the average activity in a neural net. It is showed that the activity of network remains at desired level while concurrently the network is able to search for the desired output with remarkable efficiency.

In this way, we are able to control the average activity of the network with no need of: 

· Any additional process like varying threshold potentials.

· Any specific architecture enhancements like use of feedback or lateral connections.

So here, the main advantage is that we are able to control the activity of neural network without depending on any mechanisms and methods that are not much realistic with respect to biological principles and also unlike to many other models, the active neurons are not fixed in our model.

Finally we showed these important results: 

· There are certain optimal values for the:

· Strength of the learning rule.

· Ratio between reward and punishment.

· Activity in the hidden layer.

· Functionality of a biological neural net can be improved by choosing a proper value of dilution, especially when the neurons have some threshold potentials (not equal to zero) then the neural net must be diluted for a reasonable performance.

Chapter 8 

Future Work

A lot of research can be done to further investigate the behavior of biologically inspired neural networks. 

One way is to include more biological known features into the model, like:

·  The architecture could become more realistic by including more layers 

·  The input–output relations which are required to learned could be made more realistic,

· Also, the neuron model could be made to resemble closer real neurons by including different types of neurons and synapses, or using the fact that excitatory synapses are probably more plastic than the inhibitory ones. 

· Another would be to refine the measure of success: instead of saying the output is right or wrong, a mechanism telling the network whether it performed better or worse than during the previous attempt could be implemented. Of course, it is also possible to use a variable that can have a range of values to measure the success instead of a variable that can only have two values. 

The possible extensions are:

· The most obvious first extension to our model would be to include (inhibitory) lateral connections inside layers and possibly also feed–back connections. It would be interesting to study the influence of these non–feed–forward connections on the behavior of the network, and especially the effect they will have on the (average) activity inside the network.

· Another extension would be to associate Hebbian and Anti–Hebbian learning with different types of neurons (or synapses) instead of letting the same neurons behave 

differently under different conditions of success or failure. Such a model would have the advantage that the Hebbian connections, in which the input– output relations are memorized on success, would not have to change on failure. 

Appendix A 

Simulation software overview 

The neural network simulation software consists of several files written in the programming language C++. The program consists of the following files: 

· read parms.h contains some template functions to read parameters from an initialization    

            file. 

· io patterns.h and io patterns.cpp contain classes to construct and handle input–output

            relations. 

· mtrand.h and mtrand.cpp contain random number generators that use the Mersenne

            Twister algorithm. 

· neural net.h and neural net.cpp contain classes that define network objects like synapses

            and neurons and function that act on these objects. 

· brain.cpp is the main program file. 

· brain.ini is an initialization file containing the parameters read by the pro​gram. 

· Makefile can be used to build the executable program from the source code.

In this appendix, the different components of the software will be discussed. In appendix B, a summary of tests that were performed to verify the correct working of the program is presented. For C++ programmers, the source codes in section C together with the comments in the source codes, will be sufficient to understand the program. The current appendix can be viewed as an addition to the program explanation and can be used as an overview or introduction. Implementation details can be found in the source codes. 

A.1 Reading program parameters 

In the file read parms.h, a small library to read parameters from a file is created. The file includes four template functions that can be used to read parameters or parameter ranges from a specified file. All templates can throw an exception (string) when an error occurs such as a parameter that is not found or a file that cannot be opened. The string thrown as exception describes the problem that caused the exception. The templates are short and straightforward, therefore, only their use is described here. Further details are not very interesting for the understanding of the simulations and can be found in the source code. The use of the functions is described below: 

· template <typename T> T readValue(const char* filename, const char* parameter, int position = 0) tries to read the value of a parameter called parameter from a file called filename. On success the parameter of type T is returned. On failure an exception is thrown describing the problem. A third argument, position, can be specified optionally. If specified, the template tries to read the value at the specified position. Normally, the value at the first position after the parameter name is read. 

Example: readValue<int>(”net.ini”, ”ni”) returns the value 10 when the file net.ini contains a line “ni 10”. 

· template <typename T> T readValue(T value, const char* filename, const char* parameter, int position = 0) is like the previous one, but does not throw an exception when the parameter or file cannot be found, but instead returns value as the default value. This is useful when a parameter is optional, i.e., a default value will be used when the parameter is not specified at all. 

· template <typename T> std::vector<T> readRange(const char* inifile, const char* parameter, int size) returns a vector with size elements or throws an exception when an error occurs. The first element of the vector is the first value specified in the file inifile by the parameter parameter, while the last element of the vector is the second value specified. The other elements of the vector are such that there is an uniform increase or decrease from the first to the last element. This function is useful when the program needs to do simulations where one or more parameters are varied within some range. In case the parameter is of integral type, every value is rounded (not truncated) to the closest integral number. 

Example: readRange<float>(”net.ini”, ”rho”, 6), with net.ini containing “rho 0.01 0.02” returns (0.10, 0.12, 0.14, 0.16, 0.18, 0.20). 

· template <typename T> std::vector<T> readRange(T value, const char* inifile, const char* parameter, int size) is like the function above, but does not throw an error when the parameter or the file cannot be found, but instead returns a vector with size elements all set to the default value value. 

A.2 Input–output relations 

To accommodate the creation, storage and usage of input–output relations, three classes are declared and defined in the files io patterns.h and io patterns.cpp. 

The class Pattern defines one pattern. The pattern is stored in a private vector of boolean elements. Also, the number of elements in the pattern that are 1 is stored. The size of the pattern can be read using the member function size(), the number of elements that is active can be read with na(). The array indexing operator [i] is overloaded to return the ith element and the () operator is overloaded to return the pattern as a vector. 

Except for the default and copy constructor, there are two constructors that can be used to construct a pattern: 

· Pattern(int n, int a) constructs a pattern of size n with a elements out of n set to 1 and the other n − a elements set to zero. The a elements that are set to 1 are chosen at random. An exception is thrown when n or a is negative or a is greater than n. 

· Pattern(const std::string&) constructs a pattern from a string containing the characters ’1’ and ’0’. If other characters are read from the string, an exception is thrown. 

The class Relation defines one input–output relation. It contains two Pattern objects: one input pattern and one output pattern. Additionally, the class keeps track of a number that identifies the pattern. This is useful when multiple patterns get shuffled and one specific pattern must be followed. Except for the default and copy constructor, there are three constructors: 

· Relation(int index, const Pattern& in, const Pattern& out) constructs the relation with the input pattern constructed from in and the output pattern constructed from out. The identification number is set to index. 

· Relation(int index, int ni, int no, int nai, int nao) constructs an input– output relation where the identification number is set to index and the input pattern is constructed with Pattern(ni, nai) and the output pattern is con​structed with Pattern(no, nao). 

· Relation(int index, const std::string& in, const std::string& out) accepts the identification number and two strings representing the input and the output pattern that are used to construct the input pattern and the output pattern. 

The other class called RelationSet, defines a complete set of input–output relations. The set is stored in a vector of Relations. Also the average activity of all input and of all output patterns is stored. The patterns can be constructed randomly, by specifying size and number of active input and output neurons, or read from a file. Except for default and copy constructors, there are two constructors: 

· RelationSet(int nio, int ni, int no, int nai, int nao) constructs a set of nio input–output relations with specified sizes and numbers of active neurons. At first, a calculation is done to check whether it is possible to construct nio unique input patterns with the specified number of active elements. If not possible, an exception is thrown. The constructed relations are such that all input patterns are unique. The output patterns are not necessarily unique. 

· RelationSet(const std::string& patternfile) reads the input–output rela​tions from the file specified. The read patterns are tested for correctness and also it is checked if all input patterns are unique and of the same size. The output patterns do not need to be unique, but they must all have the same size. After the patterns are read, the average activity of the input and the output is calculated and stored. 

It is possible to shuffle the order of all relations in the set. 

· shuffle() shuffles the order of all input–output relations in a set. 

A.3 Random number generators 

In the files mtrand.h and mtrand.cpp are some random number generator classes using the Mersenne Twister algorithm. The generators are not written by me, but ported by me to C++ from the C source code files available for download at the site of the the authors [12]. Therefore, these pieces of code are only briefly described. More details about the random number generators can be found at the site of the authors. 

The Mersenne Twister random number generator is considered to be one of the best pseudo–random number generators currently available. It is especially useful when a large number of random numbers is needed because the period of the generator is about 219937 and therefore very suitable to use for the neural network simulation software. 

Except for a generator that returns 32–bit pseudo–random uniformly dis​tributed integer numbers and a generator that returns double precision uniformly distributed floating point numbers in the half–open interval [0.1), a generator is added that returns pseudo–random numbers that are distributed according to the Gaussian distribution 
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with mean µ = 0 and standard deviation σ = 1. This is done by using the Box– M¨uller method that creates two Gaussian pseudo–random numbers x and y from two uniform random numbers u and v in the half–open interval [0, 1) according to: 

x = −2 log (1 − u) cos (2πv) 

y = −2 log (1 − u) sin (2πv). 

Here (1 − u) is used as argument to the log function instead of u to prevent the possibility that the argument becomes zero. Since x and y are not independent, only the variable x is calculated and used in the program. 

A.4 A neural network 

Classes are written to create and use a neural network in the files neural net.h and neural net.cpp. Three classes are declared in the file neural net.h, their names are Synapse, Neuron and Network. 

A.4.1 The synapse 

A synapse will belong to one neuron. The following member functions belong to Synapse objects: 

· Neuron* post() returns a pointer to the post-synaptic neuron. 

· setPost(Neuron*) can be used to set the address of the post-synaptic neuron (the neuron to which it connects). 

· float weight() returns the weight of the synaptic connection. 

· setWeight(float) can be used to initialize the value of the weight. 

· grow(float delta) can be used to let the weight grow by an amount delta (or decrease if delta is negative). 

Normally, the address of the post-synaptic neuron will be set through the construc​tor: 

· Synapse(Neuron* = 0, float = 0) constructs a synapse with the pointer to the post-synaptic neuron initialized and its weight initialized if specified. 

A.4.2 The neuron 

The class Neuron contains the following members: 

· bool isActive() returns true if the neuron fires and false if the neuron is at rest. 

· setActivity(bool) sets the state of the neuron. 

· float potential() returns the membrane potential. 

· raisePotential(float) will raise the potential. 

· resetPotential() resets the potential to the value 0. 

· float threshold() returns the threshold potential. 

· setThreshold(float) sets the threshold potential. 

· size() and size(output) return the number of synapses to which the neuron is pre-synaptic. 

· size(input) returns the number of neurons that are pre-synaptic to the neuron in question. 

· connect(Neuron*, float = 0.) is used to make a connection: A synapse is added to the neuron with its post-synaptic neuron initialized and option​ally its initial weight set. Also the number of incoming connections for the post-synaptic neuron is adjusted. 

· [i] can be used to access a synapse of the neuron; the array indexing operator [i] is overloaded to return a reference to the synapse i. 

A.4.3 The network 

This class is used to construct a network and manage the sizes and offsets of the different layers. Also the input can be set and the output can be read. Fixed points can be found by simulating the dynamics. All neurons are stored in an array and connected at construction of the network. The member functions of the class Network are: 

· int size() returns the total number of neurons. 

· int size(input) returns the number of neurons in the input layer. 

· int size(hidden) returns the number of neurons in each hidden layer. 

· int size(output) returns the number of neurons in the output layer. 

· int size(layers) returns the number of hidden layers. 

· int offset(input) returns the offset of the input layer. 

· int offset(hidden) returns the offset of the first hidden layer. 

· int offset(output) returns the offset of the output layer. 

· int offset(int n) returns the offset of the nth hidden layer, starting with 0 for the first hidden layer. 

· Neuron* begin() returns a pointer to the first neuron. 

· Neuron* end() returns a pointer after the last neuron. 

· Neuron* begin(input) returns a pointer to the first input neuron. 

· Neuron* end(input) returns a pointer after the last input neuron. 

· Neuron* begin(hidden) returns a pointer to the first hidden neuron. 

· Neuron* end(hidden) returns a pointer after the last hidden neuron. 

· Neuron* begin(output) returns a pointer to the first output neuron. 

· Neuron* end(output) returns a pointer after the last output neuron. 

· Neuron* begin(int n) returns a pointer to the first neuron of the nth hidden layer. 

· Neuron* end(int n) returns a pointer after the last neuron of the nth hidden layer. 

· setInput(const std::vector<bool>&) sets the states of the input neurons as specified in the vector. If the vector is too large, only the first part is used. If the vector is too small, the state of the other input neurons is set to zero. 

· const std::vector<bool>& getOutput() returns a reference to a vector that contains the state of the output layer. 

· findFixed(const vector<bool>& in, int nah = 0, int nao = 0) can only be used for feed–forward networks. The vector in is used to set the input of the network. The potential of the other neurons is reset. After that, the state of each layer is determined from input to output, using the functions fire() and update() described in the next section. If nah or nao are zero or not specified, the states of the neurons in the hidden or output layers is determined by whether their membrane potentials exceed their threshold potentials. If nah or nao are non–zero, extremal dynamics is used to de​termine which neurons will become active in each layer; nah neurons will become active in each hidden layer and nao neurons will become active in the output layer. 

· int findFixed(int tmax, const vector<bool>& in, int nah = 0, int nao = 0) is suitable for recurrent networks. The first argument determines how many steps are used at maximum to find a fixed point. This function is slower than the function above, so it should not be used for feed–forward networks although it will give the correct results of course. The function returns the number of steps needed to find a fixed point, or zero if no fixed point was found in tmax steps. The member function makes use again of the functions fire() and update() described in the next section to determine the states of the network at every time step. After every time step, the state of the network is recorded and compared to the state at one time step earlier, to determine if a fixed point was reached. 

· [i], the array indexing operator, is overloaded to return a reference to the ith neuron. 

· Network(int ni, int nh, int no, int nl, const std::vector<float>&) can be used to construct a network with ni input neurons, nh hidden neurons in each hidden layer, no output neurons and nl hidden layers. The vector is used to specify the connectedness: the first nl +1 elements specify downward connection probabilities, the next element specifies the probability for a con​nection between two neurons in the same layer (lateral) to be realized and the other elements specify upward (recurrent) connection probabilities. The first of the downward connection probabilities specifies the probability that a neuron is connected to a neuron one layer down. The second probability specifies the probability that it is connected to a neuron that is two layers down etcetera. For the upward connection probabilities, the same idea is used: the first of this elements specifies the probability that a neuron is con​nected to a neuron that is just one layer above the layer of the neuron, the second element specifies the probability that a connection two layers up is realized. In this way, a variety of network architectures can be built: if only the first element of the vector is specified, the network is of the simple feed– forward type: only connections going one layer down exist. If the probability is set to 1, all connections going one layer down are realized. Of course also other feed–forward network can be realized by setting the right probabili​ties not equal to zero. With only one hidden layer and the probabilities for connections within each layer set to p and the probabilities for downward connection probabilities set to p also, a recurrent network is realized in which every neuron has a probability of p that it is connected to another neuron with the exception that there are no connections to the input layer and no connections from the output layer, and also no self–connections are realized. The constructor makes use of a function called connect() described below to connect the different layers. Before the connections are made, some error checking is done to make sure the arguments have acceptable values. 

· Network(int ni, int nh, int no, float ph, float po) is available also, which constructs a simple feed–forward network with one hidden layer. The proba​bility for a connection to exist from the input to the hidden layer is specified by ph, while the probability for a connection to exist from the hidden to the output layer is specified by po. 

A.4.4 Neural network functions 

A number of functions is designed to work on a set of neurons. These functions are not member functions of the classes Neuron or Network because they are not always associated with a specific neuron or network. They can have an effect on neurons belonging to different networks. The functions are: 

· connect(Neuron* src begin, Neuron* src end, Neuron* dest begin, Neu​ron* dest end, float chance = 1.) connects the neurons in the region src begin to src end (pre-synaptic) to the neurons in the region dest begin to dest end (post-synaptic), with a probability of chance for each possible connection to be realized. Since only pointers to neurons are used, the func​tion can be used not only to make connections inside a network, but also to connect different networks with each other.

· fire(Neuron* start, Neuron* end) tests which neurons in the specified re​gion are active. For each neuron that fires, the potentials of its post-synaptic neurons is raised (or lowered if the corresponding weight is negative). 

· update(Neuron* start, Neuron* end, int na = 0) updates the states of the neurons in the specified range. If na is zero or not specified, the state of each neuron is set to whether its potential exceeds its threshold potential. If na is non–zero, extremal dynamics is used; the na neurons with the highest potential in the specified region are selected to become active. 

· Hebb(Neuron* begin, Neuron* end, float eta, float kappa, float delta) performs a Hebbian learning step on the neurons in the specified range with the specified parameters. If a neuron is not active, nothing will happen to the weights it is pre-synaptic to. Else, depending on whether a post-synaptic neuron fires, the corresponding weight is increased or decreased. 

· antiHebb(Neuron* begin, Neuron* end, float rho, float alpha, float delta) performs an Anti–Hebbian learning step on the neurons in the specified range with the specified parameters. 

A.5 Examples 

This section consists of a list of examples. The examples can serve as a quick reference. 

readValue<int>(”parameters.ini”, ”p”); read p from parameters.ini as an inte​ger 

readValue<float>(10., ”parameters.ini”, ”p”); read p from parameters.ini, use elements 10. as default

readRange<int>(”parameters.ini”, ”p”, 10); read p as range with 10 integer 

RelationSet rs(20, 15, 10, 5, 2); construct relationset with 20 relations, 5 of 15 input neurons are 1, 2 of 10 output neurons are 1 

RelationSet rs(”rs.txt”); construct relationset and read patterns from file rs.txt 

rs.ai(); mean number of active neurons in input patterns

rs.ao(); mean number of active neurons in output patterns

rs.size(); number of relations

rs[i].id(); identification number of relation i

rs[i].input(); input pattern of relation i

rs[i].output(); output pattern of relation i

rs[i].input.size(); size of input pattern

rs[i].output.size(); size of output pattern

rs[i].input[j]; element j of the input of relation i

rs[i].output[j]; element j of the output of relation i

rs[i].input.na(); number of elements that are 1 in the input pattern of relation i

rs[i].output.na(); number of elements that are 1 in the output pattern of relation

i

rs.shuffle(); shuffle relations

Network network(20, 1000, 10, 0.8, 0.5); create network with 20 input neurons,

1000 neurons in the hidden layer, 10 output neurons and connection probabilities

0.8 and 0.5

vector<float> chances;

Network network(20, 500, 10, 5, chances); create network with 5 hidden layers

and (recurrent) connection probabilities specified in chances

network.size(); total number of neurons in network

network.size(input); number of neurons in input layer

network.size(hidden); number of neurons in hidden layer

network.size(ouput); number of neurons in output layer

network.size(layers); number of hidden layers

network.offset(input); offset of input layer

network.offset(hidden); offset of hidden layer

network.offset(output); offset of output layer

network.offset(2); offset of third hidden layer

network.begin(); pointer to first neuron

network.end(); pointer after last neuron

network.begin(input); pointer to first input neuron

network.end(input); pointer after last input neuron

network.begin(hidden); pointer to first hidden neuron

network.end(hidden); pointer after last hidden neuron

network.begin(output); pointer to first output neuron

network.end(output); pointer after last output neuron

network.begin(2); pointer to first neuron in third hidden layer

network.end(2); pointer after last in third hidden layer neuron

vector<bool> in;

network.setInput(in); set input layer according to the elements of in

network.getOutput(); get the state of the output layer as vector

network.findFixed(in); simulate dynamics for feed–forward net with in as input

vector

network.findFixed(in, 10, 5); extremal dynamics for feed–forward net, 10 neurons

fire in hidden layer, 5 neurons fire in output layer

network.findFixed(100, in); dynamics for recurrent net, use 100 time steps to

search for fixed point maximally

network.findFixed(100, in, 10, 5); same as above for extremal dynamics

network[i].isActive(); true if neuron i fires

network[i].setActivity(true); set the state of neuron i

network[i].potential(); membrane potential of neuron i

network[i].raisePotential(-0.1); raise the potential with −0.1

network[i].resetPotential(); set the potential to zero

network[i].threshold(); the threshold potential of neuron i

network[i].setThreshold(theta); set the threshold potential

network[i].size(); number of synapses to which neuron i is pre-synaptic

network[i].size(input); number of synapses to which neuron i is post-synaptic

network[i].size(output); number of synapses to which neuron i is pre-synaptic

network[i].connect(n); connect neuron i to the neuron that n points to

network[i][j].post(); pointer to the jth neuron to which neuron i is pre-synaptic

network[i][j].weight(); synaptic weight of the connection from neuron i to the jth

post-synaptic neuron of neuron i

network[i][j].grow(-0.1); let the weight grow with −0.1

network[i][j].setPost(n); set the jth post-synaptic neuron of neuron i to the neuron

pointed to by n

network[i][j].setWeight(0.1); set the (initial) weight

connect(network.begin(input), network.end(input), network.begin(0), network.end(0),

0.5); connect the input layer to the first hidden layer with a probability of 0.5 for

each possible connection to exist

connect(network.begin(input), network.end(input), network.begin(0), network.end(0));

same as above, but with probability 1 for each possible connection to exist

fire(network.begin(input), network.end(input)); let the neurons of the input

layer that are active fire, i.e., change the potentials of the neurons they connect

to

update(network.begin(output), network.end(output)); update the states of the

neurons in the output layer by determining if their potentials exceed their threshold

potentials

update(network.begin(output), network.end(output), 3); update the state of

the output layer using extremal dynamics, 3 neurons of the output layer will fire

Hebb(network.begin(0), network.end(0), eta, kappa, delta); apply the Hebbian

learning rule in the first hidden layer with the specified parameters

antiHebb(network.begin(0), network.end(0), rho, alpha, delta); apply the Anti–

Hebbian learning rule in the first hidden layer with the specified parameters.

A.6 Initialization file 

The parameters needed by the main program, are read from a file brain.ini. The values that can or must be specified are divided into three groups: program control parameters, network parameters and learning rule parameters. All network and learning rule parameters can be specified in two ways: 

1 parameter value 

2 parameter first value last value 

The first way just sets the parameter parameter to the value value, while the second way constructs a vector of ndata (see below) elements, that increase (or decrease) uniformly such that the first element will equal first value and the last element will equal last value. If needed, the values of integer type parameters will be rounded. 

The program control parameters are: 

· ndata the number of data points, i.e., the number of measurements with different parameters that should be done. 

· nmean the number of independent measurements for each datapoint that should be done to determine the precision. 

· xvalue the name of the parameter that should be printed as value for the x–axis in plots. By default, that parameter will be interpreted as a floating point number, if the second value is specified to be int, it is interpreted as an integer number. 

· randomIO can be 0 or 1. If 1, random input–output relations (with specified properties) are created for each measurement, if 0, the input–output relations are read from a file. 

· patternfile is needed to specify the file containing the input–output relations if randomIO is set to 0. 

· extremal can also be 0 or 1, 1 meaning that extremal dynamics should be used. 

· nequilibrium specifies the number of random patterns that is presented to the net before the start of any measurement. 

· nmaxsearch specifies the maximum number of output patterns to generate when searching for the correct output. If the correct output pattern is not found in this number of time steps, an error is printed. 

· nmaxcycles maximum number of learning cycles in which all input–output relations are learned. If not all relations are learned within this number of trials. an error is printed. 

The network parameters are: 

· ni number of neurons in the input layer. 

· nh number of neurons in the hidden layer. 

· no number of neurons in the output layer. 

· nio number of input–output relations that the network should learn. 

· nai number of neurons that should be active in the input layer. 

· nah number of neurons that should be active in the hidden layer. 

· nao number of neurons that should be active in the output layer. 

· thetah threshold potential of hidden neurons. 

· thetao threshold potential of output neurons. 

· ph probability for each connection from an input neuron to a hidden neuron to exist. 

· po probability for each connection from a hidden neuron to an output neuron to exist. 

The learning rule parameters are: 

· eta the learning rate. 

· kappa the margin parameter. 

· rho the punishment rate. 

· delta the strength of the noise.

A.7 The main program 

A program is written to simulate a feed–forward network with one hidden layer. The main part of the main program is embedded in a try block, so any exceptions thrown by one of the constructors related to the network of input–output relation classes, will be caught and an error will be sent to stderr. The initialization of the program consists of 

· Construction of a Gaussian random number generator called gaussian that is initialized with time(0) (the number of seconds elapsed since the start of the year 1970), so another sequence of pseudo–random numbers will be generated on different runs of the program. 

· The name of the initialization file is set to ”brain.ini” and changed to the first argument of the main program if specified. The name of the file con​taining the measured performance is written to the output file that has the name specified in the second program argument if specified and else is set to ”p.dat”. 

· If the preprocessor variable FOLLOW VARS is defined, six output streams are initialized that are used to write the values of some variables to output files at each time step. These variables are the activities of the hidden and output layers, the potentials of one hidden and one output neuron and the weights of one connection between an input and a hidden neuron and between a hidden and an output neuron. If one of these files is not be opened correctly, an exception is thrown.

· The parameters needed are read from the initialization file. These are the parameters mentioned in the previous section. The parameter ndata is read first, because it is needed to determine the size of the vector that is used for the ranges of the other parameters. 

· Now, the desired average activities of each layer are calculated from the specified numbers of active neurons and the sizes of the layers. (If one of the layer sizes is zero, an exception is thrown to prevent a divide–by–zero bug.) 

· A RelationSet object is created. If the program control variable randomIO was not set, the patterns are read from the file specified in the parameter patternfile. In this case, the sizes and desired activities of the input and output layers are set and/or calculated again from the values read from the patterns that are read from file. 

· Now the learning rates and punishment rates for the hidden and output layers etah, etao, rhoh and rhoo are calculated from the global learning and punishment rates eta and rho. For details see section 5.1. Again it is tested that values used as denominator are not zero. 

After these first program initializations, a loop is entered that is executed for all ndata measurements. In the ith iteration of this loop, the ith values of all parameters is used to build and simulate a network a number of times. Inside the loop, another loop is executed nmean times. Every time, the total number of learning steps needed is added to a sum. Also the squares of these numbers is summed. At the end of the inner loop, the mean performance is calculated and also its standard deviation in the usual way. For all ndata * nmean simulations, a number of steps is performed: 

· A network object is created with the desired layer sizes and dilutions. 

· The threshold potentials of the neurons in the hidden and output layers are set to the desired values. 

· The weights are initialized as described in 5.2. 

· For nequilibrium times, an input pattern that is chosen at random with the specfied input activity, is presented to the network. After simulating the dynamics, the Anti–Hebbian learning rule is applied. 

At this point, the actual simulations start. A loop is iterated at most nmaxcycle times. Everytime, the learning of all input–output relations is attempted. For every input–output relation, a loop is executed that is iterated at most nmaxsearch times. Every time, the input pattern is presented to the network and the dynamics is simulated. The generated output is compared to the desired output pattern. If the output is correct, the Hebbian learning rule is applied, the loop stops and a next input–output relation is learned. If the output is wrong, the Anti–Hebbian learning rule is applied and the dynamics is simulated again until the correct output is found. When all input–output relations are learned once, the relations are shuffled and the learning cycle is repeated until all output patterns are recalled at the first time step when the input pattern is presented. At this point, we say the network has successfully learned all patterns. 

Appendix B 

Testing the code 

It is of course necessary to verify the correct working of the program. It is generally understood that it is extremely difficult to write bug free code. The chance for errors is minimized by carefully inspecting the source codes a number of times and performing a reasonable number of explicit tests to directly verify the correct working of the different components. For this purpose, some small test programs were written. Output of the test programs was compared to the expected results the program should generate. 

B.1 Reading parameters 

All available template functions in the read parms.h file were tested. The read-Value() function was tested with and without default values, for an integer, float​ing point, boolean and string value and with and without a position specification. In addition, the error handling was tested by writing the parameter to be read in a wrong format and not specifying it at all. 

The readRange() function was tested for integer and floating point vectors, with different values, with and without a default value, with and without specifying the second parameter. The rounding in case of integer ranges was especially tested and error checking was tested also by omitting the asked parameters and specifying a non–existent file. 

B.2 Input–output relations 

The input–output relation classes were tested by creating different input–output relation sets and checking if their values where correct. Random patterns were created with different values for nio, ni, no, nai and nao. The sizes and values of all patterns were displayed and checked. Also, the number of active neurons in the input and output patterns were checked and the mean number of active neurons in the set was checked. The shuffle member–function was tested and the error checking was tested for wrong combinations of values and negative sizes. Special care was taken to test the calculation of the number of possible unique input patterns with given size and number of active neurons. 

Also, patterns were constructed that were read from file. The read patterns were compared to the patterns in the file and the sizes and mean number of active neurons were checked. Also the error checking was tested for wrong characters in the pattern file and non–uniform sizes. 

B.3 Random numbers 

The pseudo–random number generator is already tested by different researchers. It was tested if the C++ port produced the same output as the C–program. The Gaussian distributed random number generator was tested by generating 106 variables and plotting them in a histogram. A normal distribution was fitted to perform a visual comparison. 

B.4 The network 

Network objects with different layer sizes and connection probabilities were cre​ated. The sizes and offsets were tested. For some neurons, their properties (state, membrane potential, threshold potential) were set and tested. The neurons to which the neurons did connect were checked, and it was tested if the number of pre-synaptic and post-synaptic neurons was correct. In this way, the connect() function was tested indirectly. the functions to set the input and read the output were tested directly. The functions fire() and update() were tested indirectly by testing the results of the function findFixed(). This test was done by following the membrane potentials and states of the neurons in a small network. 

B.5 The main program 

The main program was tested by verifying the properties of the network and relation set objects and watching the output for different parameter values. The activities, performance, membrane potential of a neuron and values of a weight were followed in time. The initial weights and threshold potentials were verified. 
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