

Shear Strengthening of RC Beams using NSM Reinforcement

Submitted in partial fulfillment of the requirement For the award of the Degree of

MASTER OF ENGINEERING (Structure)

Submitted by KANAV MAHAJAN (University Roll No. 10305) Class Roll No. 06/STR/06

Under the Guidance of

PROF. D. GOLDAR

B.E. (Civil), M.Sc. Engg. (Structures), PhD (Structures), Steering Committee Member, ASEM, MSEM (US), LMISCMS, LMISWE, Former Principal, Delhi College of Engineering, Delhi

&

Dr. S.K. SHARMA

Technical Officer, Bridges and Structures Central Road Research Institute, New Delhi

DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING DELHI COLLEGE OF ENGINEERING BAWANA ROAD, DELHI -110042 (UNIVERSITY OF DELHI) 2007-08

Department of Civil & Environmental Engineering Delhi College of Engineering, Delhi-110042

CERTIFICATE

This is to declare that the major project entitle "Shear Strengthening of RC Beams using NSM Reinforcement" is a bonafide record of work done by me for partially fulfillment of requirement for the degree of M.E., Civil Engineering (Structural Engineering) from Delhi College of Engineering.

This project has been carried out under the supervision of **Dr. D Goldar Professor** and **Former Principal** Delhi College of Engineering, Delhi and co-guided by **Dr. S.K. Sharma, Technical Officer** Bridge and Structures CRRI, New Delhi.

I have not submitted the matter embodied in this report to any other University or Institution for the award of any Degree or Diploma.

> Name : Kanav Mahajan Enroll No: 06/STR/2006

Certificate:-

This is to certify that the above statement laid by the candidate is correct to best of our knowledge

(Dr S.K. Sharma) Technical Officer Bridges and Structures CRRI, New Delhi (Prof. D Goldar) Former Principal Delhi College of Engineering Delhi

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extent my heartfelt gratitude to everybody who helped me throughout the course of this project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my learned supervision **Dr. D Goldar and Dr. S.K. Sharma** for their invaluable guidance, encouragement and patient reviews. Their continuous inspiration has made me complete this major project. They kept on boosting me time and again for putting an extra ounce of effort to realize my work.

I would also like to take this opportunity to present my sincere regards to **Prof. A. Trivedi, Head of Department** for his support and encouragement.

I am thankful to **Dr. Vikram Kumar**, Director CRRI, New Delhi and **Dr. Ram Kumar** Head of Bridges and Structures, CRRI for providing necessary facilities at CRRI to undertake this study. I am also thankful to **Sh. Rajveer Singh** Technical Assistant Bridges and Structures CRRI for all the help and support at the time during the project. I am also thankful to **Sh. Rajesh Rana** for his help rendered during the testing on UTM and other staff members for providing me unconditional and anytime access to the resources.

I am thankful to Professor **Pramod Kumar**, Dean (Faculty of Technology) and Prof. S.K. Singh University Head, for their Kind motivation and support.

I am grateful to my parents for their moral support all the time; they have been always cheering me up in the odd times of this work.

Kanav Mahajan

College Roll No 06/STR/06 University Roll No. 10305 M.E. (Structure) Department of Civil and Environmental Engineering Delhi College of Engineering, Delhi-110042

DISCLAIMER

All the data furnished in this report based on the tests conducted in Bridges and Structures Division of Central Road Research Institute (CRRI), New Delhi. The data compiled in the report can not be used without the permission of CRRI.

S.No.	Topics	Page No.
1.	Introduction	1
1.1	NSM Technique for strengthening the RC structures	1
1.1.1	The NSM reinforcement	3
1.1.2	The groove filler	4
1.1.3	The Groove and its dimensions	5
1.2	Failure modes and mechanism	6
1.3	Strengthening applications of NSM	9
1.3.1	Flexural strengthening	9
1.3.2	Shear strengthening	10
2	Specimens	14
2.1	Preparation of test specimen	14
2.1.1	Strengthening of the beam "S"	15
2.1.2	Strengthening of the beam "S1"	16
2.1.3	Strengthening of the beam "NS"	19
3	Test set up	24
4	Instrumentation	27
5	Material Properties	30
5.1	Test for Compressive strength	30
5.2	Test for tensile strength of concrete	31
5.3	Test for E (Modulus of Elasticity) of concrete	33
6	Test Procedure	36
7	Test Results	38
7.1	Test RWS (reference without shear reinforcement, retrofitted with NSM bar and GFRF wrap)	38
7.1.1	Crack Propagation and Failure Mode	39
7.1.2	Strain distribution in the longitudinal reinforcement	45
7.1.3	Deflection	45
7.2	Test B1–SS (with NSM shear steel strips)	46
7.2.1	Crack propagation and failure mode	48
7.2.2	Strain distribution in longitudinal reinforcement	55
7.2.3	Strain distribution in NSM shear strips	56
7.2.4	Deflection	59
8	Analyses for Shear Strength	60
8.1	Beam BRS with Internal Shear Stirrups (R, BRS)	60

8.2	Beam B2-SR with NSM round bars (NS, B2-SR)	63
8.3	Beam RWS without any shear reinforcement (S, RWS)	65
8.4	Beam B1-SS strengthened with NSM steel strips (S1,	66
	B1-SS)	
9	Discussion and comments on test results	68
9.1	Crack pattern	68
9.2	Load carrying capacity	70
9.3	Deflection under load	71
9.4	Strain variations in Longitudinal steel reinforcement	72
9.5	Strain variation in NSM strips at different distances from	73
	the support	
9.6	Steel requirement of various methods	74
10	Conclusions	75
11	References	76

List of figures

S.No.	Figure name	Page
		no.
1.1	The NSM system	3
1.2	Different systems of NSM and its Nomenclature	5
1.3	The various bond failure modes of NSM system	7
	observed in various bond tests	
1.4	The bond stresses in the longitudinal plane	9
2.1	NSM Strengthened beam "S"	16
2.2	The groove cutter and groove cutting	17
2.3	The NSM strip	18
2.4	Beam S1 strengthened with NSM strips	18
2.5	Grinding of beam surface at strengthened side to remove	18
	excessive mortar	
2.6	Air compressor used for cleaning the grooved surface	19
2.7	Cutting of grooves	21
2.8	NSM rod fixed with strain gauges	21
2.9	Primed grooves	21
2.10	Grooved beam with repaired wire	22
2.11	Grooves filled with NSM steel rods using epoxy-sand	22
	mortar	
2.12	Details of reinforcement in reference specimen(R)	23
2.13	Details of reinforcement in specimen(S, S1)	23

0.1.4		22
2.14	Details of reinforcement in specimen without shear	23
1	reinforcement (NS)	~~~
3.1	Arrangement of NSM steel strips in beam (S1)	25
3.2	Arrangement of NSM steel rods in beam (NS)	25
3.3	Arrangement of NSM rod and GFRP Wrap in retrofitted	25
	beam(S)	
3.4	Loading arrangement of test reference beam (R)	26
3.5	Loading arrangement of test reference without shear	26
	stirrups beam (RWS)	
3.6	Loading arrangement of test beam with shear steel strips	26
	(B1-SS)	
3.7	Loading arrangement of test beam with NSM steel rods	27
	(B2-SR)	
4.1	Arrangements of internal strain gauges in reference	28
	beam(R)	
4.2	Arrangements of strain gauges in reference ring beam	28
	without shear stirrups (RSW)	
4.3	Arrangement of strain gauges on main bars and on NSM	28
	Steel Strips (Face A) (B1-SS)	
4.4	Arrangement of strain gauges on main bars and on NSM	29
	Steel Strips (Face B) (B1-SS)	
4.5	Arrangement of strain gauges on internal bars and NSM	29
	steel rods (Face A)	
4.6	Arrangement of strain gauges on internal bars and NSM	29
	steel rods (Face B)	
5.1	Test setup for compressive strength	30
5.2	Compressive failure of cube	31
5.3(a)	Split cylinder test setup	32
5.3(b)	Crack along the diameter	32
5.3(c)	Split cylinder	32
5.4	Split surface of cylinder	32
5.5	Test set up for the "E" of concrete using extensometer	34
7.1	Test RWS loading arrangement	39
7.2	Test set up for beam RWS	39
7.3	Test RWS crack pattern at 60 kN	41
7.4	Test RWS crack pattern at 70 kN	41
7.5	Test RWS crack pattern at 75 kN	42
7.6	Test RWS crack pattern at 75 kN	42
7.0	Test RWS final crack pattern at 90 kN failure load (Face	42
/./	A)	τJ
7.8	Test RWS final crack pattern at 90 kN failure load (Face	43
7.0		40
	B)	

7.9	Test RWS crack at interface of epoxy mortar and	44
1.5	concrete at bottom face	
7.10	Test RWS transverse cracks at bottom face	44
7.11	Strain variation in longitudinal reinforcement (RWS)	45
7.12	Test RWS: Deflection of the beam	46
7.13	Test B1–SS setup	47
7.14	Arrangement for strain recoding	47
7.15	Test B1-SS crack pattern at 90 kN (Face SE)	50
7.16	Test B1-SS crack pattern at 125 kN (Face SE)	50
7.17	Test B1-SS crack pattern at 155 kN (Face SE)	51
7.18	Test B1-SS crack pattern at 170 kN (Face SE)	51
7.19	Test B1-SS final crack pattern at 200 kN (Face SE)	52
7.20	Test B1-SS crack pattern at 90 kN (Face SW)	52
7.21	Test B1-SS crack pattern at 170 kN (Face SW)	53
7.22	Test B1-SS final failure crack pattern at 200 kN (Face	53
	SW)	
7.23	Close view of NSM strip debonding failure	54
7.24	Test B1-SS final crack pattern at 200 kN (Bottom Face)	54
7.25	The mid span Strain variations (microstrain $\times 10^{-2}$) in	55
	longitudinal bars wrt. Time	
7.26	The mid span strain variations in longitudinal bars at	55
	mid span wrt. load	
7.27	Graph showing strain (micro strain) in NSM shear strips	56
	vs Time	
7.28	Graph showing strain (micro strain) in NSM shear strips	57
	vs load	
7.29	Graph showing strain (micro strain) in NSM shear strips	57
	vs load	
7.30	Graph showing strain (micro strain) in NSM shear strips	58
	vs time	
7.31	Test B1–SS: Deflection of the beam	59
8.1	Loading and SFD diagram for beam (R, BRS)	60
8.2	Loading and SFD diagram for beam (NS)	63
8.3	Loading and SFD diagram for beam (RWS)	65
8.4	Loading and SFD diagram for beam (B1-SS)	66
9.1	Comparison of load vs deflection	71
9.2	The strain variation in longitudinal steel wrt. load	72
9.3	The strain variations in NSM strip at different location	73
	at 180kN	

List of tables

S.No.	Name of table	Page
		no.
1	Details of test conducted	24
2	Material properties of the concrete	35
3	Material properties of the glue Sikadur 32 (Sika hibond) (as per supplier)	35
4	Material properties of the steel reinforcement and NSM	36