
Software Metrics i

A
Dissertation

On

Estimation of Object Oriented Function Points based on
UML Design Specification

Submitted in Partial fulfillment of the requirements

For the award of Degree of

MASTER OF ENGINEERING
(Computer Technology and Application)

Delhi University, Delhi

Submitted By:
VARUN BARTHWAL

(University Roll No. 12216)

Under the Guidance of:
Dr. Daya Gupta

Head Of Department
Department Of Computer Engineering

Delhi College of Engineering, Delhi

DEPARTMENT OF COMPUTER ENGINEERING
DELHI COLLEGE OF ENGINEERING

DELHI UNIVERSITY
(2008-2009)

Software Metrics ii

TABLE OF CONTENT

CERTIFICATE

ABSTRACT

ACKNOWLEDGEMENT

1. INTRODUCTION...1
1.1 General Concept 1
1.2 Motivation 2
1.4 Related Work 3
1.5 Organization 4

2. SOFTWARE METRICS..5
2.1 Basic Metrics 5

2.1.1 Function Points 5
2.1.2 FPA Process Overview 6
2.1.3 Internal logical files (ILF) 6
2.1.4 External Interface Files (EIF) 6
2.1.5 External input (EI) 7
2.1.6 External output (EO) 8
2.1.7 External query (EQ) 8

2.2 IFPUG version 9
2.3 Object Oriented Design Function Point 11
2.4 Kusumoto’s Dynamic approach 13

 2.5 Function Point to Unified Modelling Language: Conversion Model 14
2.5 Harput’s Transformation Model 15

2.5.1 Estimation of data function types 18
2.5.2 Identification of Transactional Function Types 21

Software Metrics iii

3. SOFTWARE METRICS ESTIMATION: COCOMOII.....................24
 3.1 General Software Metrics 24
 3.1 Relating UFPs to SLOC 24

3.3 COCOMO II 25
 3.2.1 Effort Estimation 26
 3.2.2 Schedule Estimation 28
 3.3 Advanced Software Metrics 30
..
4. TOOL ARCHITECTURE AND DESIGN..34
 4.1 Tool Architecture 34

4.2 Design Approach 36
 4.2.1 First layer Design 36
 4.2.2 First Layer Design Algorithm 37
 4.2.4 Second layer Design 43

5. IMPLEMENTATION DETAILS..45
5.1 Rational Rose 45
5.2 Platform Used 48

5.2.2 Netbeans IDE 48
5.2.3 Software Architecture of tool 50

6. CASE STUDY : HOSPITAL MANAGMENT SYSTEM...................54

7. CONCLUSION

8. REFERECES

Software Metrics iv

CERTIFICATE

 Date:___________

This is certified that the work contained in this dissertation entitled “Estimation of Object

Oriented Function Points based on UML Design Specification.” by Varun Barthwal is

the requirement of the partial fulfillment for the award of degree of Master of

Engineering in Computer Technology & Application at Delhi College of Engineering.

This work was completed under my direct supervision and guidance. He has completed

his work with utmost sincerity and diligence.

The work embodied in this major project has not been submitted for the award of any

other degree to the best of my knowledge.

Dr.Daya Gupta
Head Of Department

Department of Computer Engineering
Delhi College of Engineering

DELHI COLLEGE OF ENGINEERING
(Govt. of National Capital Territory of Delhi)

BAWANA ROAD, DELHI - 110042

Software Metrics v

ABSTRACT

Object - oriented programming is widely used approach to develop a software system,

several techniques have been defined by researchers and practitioners to measure the size

of object-oriented software system. Unified modelling language (UML) is most popular

way to implement a object oriented software system, how to map this UML to function

point analysis various approaches are suggested by software practitioners, we have used

UML design specification to map the UML to function point analysis. Various rules were

proposed earlier, these rules can be applied on UML design specification to estimate

function points. We have used UML class diagram for data function analysis and UML

sequence diagram for transaction function analysis than we have applied transformation

rules and guidelines to estimates function point. We have developed a tool based

estimation technique for object oriented software metrics based on UML design

specification using COCOMO II.

Software Metrics vi

ACKNOWLEDGEMENT

I am thankful to the Almighty because without his blessings this work was not possible. It

is a great pleasure to have the opportunity to extent my heartfelt gratitude to everybody

who helped me throughout the course of this project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my

learned supervisor Dr. Daya Gupta for his invaluable guidance, encouragement and

patient reviews.

His continuous inspiration has made me complete this dissertation. He kept on boosting

me time and again for putting an extra ounce of effort to realize his work.

I would also like to take this opportunity to present my sincere regards to my teachers

Mrs. Rajni Jindal, Dr. S.K. Saxena, Mr. Manoj Sethi, Mr. Manoj Kumar and Mr. Vinod

Kumar for their support and encouragement.

I am grateful to my parents, brother and sister for their moral support all the time, they

have been always around on the phone to cheer me up in the odd times of this work.

I am also thankful to my classmates for their unconditional support and motivation during

this work.

Varun Barthwal

M.E.(Computer Technology and Application)

Department of Computer Engineering

Delhi College of Engineering, Delhi-42

Software Metrics 1

1. INTRODUCTION

1.1General Concept

Today is the era of developing of Object oriented software e.g. banking application,

commercial application and in various fields. Developing a quality, cost- effective

software within a specified time period is still a challenging task. In order to attain it, it is

necessary to manage the entire software development processes based on the effective

project plan. Therefore software development process should include correct estimation

of various software metrics like size, effort invested, development time, quality, risks and

resources of software. Many Researchers feel that size estimation should be done in the

early phase of the development life cycle that is on the transformation model. There are

various models for effort, cost, quality estimation used by software practitioners. There

have been proposed a lot of effort models and most of them include software size as an

important parameter. In the models, LOC (lines of codes) is often adopted. However,

using LOC as the software size has difficulties because the definition of LOC is very

vagueness and LOC depends on the programming language. Function point is a measure

of software size that uses logical functional terms business owners and users more readily

understand. Since it measures the software requirements or business models, the

measured size stays constant despite the programming language, design technology, or

development skills involved. Also, it is available early in the development process,

making its use opportune for planning the design and development projects. Up to the

present, various FPA versions based on the Albrecht’s version have been proposed.

IFPUG (International Function Point Users Group) version [2] frequently used in

software organizations. In industrial practice, it is desirable to have a reliable cost

estimate available already before software is actually built. One of the more popular

approaches to estimating the software size is Function Point Analysis (FPA) [2,7].

Detailed FPA measurement rules were proposed for the design specifications using the

UML (Unified Modeling Language) and develop the function point measurement tool.

Software Metrics 2

Rational Rose is widely used in software development organizations which provide

inputs to estimate function points. The Unified Modeling Language (UML) [11,12] was

developed to provide a common language for object oriented modeling. It was designed

to be extensible in order to satisfy a wide variety of needs and was also intended to be

independent of particular programming language and development methods. In this thesis

we have present our work that is to automate this process completely in early

development life cycles then we will used COCOM II estimation techniques to calculates

rest of the software metrics e.g. effort, cost, development time etc.

1.2 Motivation

It is very important to determine the size of a proposed software system yet to be built

based on its requirements, i.e., early in the development life cycle. Given a size estimate,

it is usually possible to estimate the effort, cost, development time and rest of the

software metrics, to build this system. The most widely used approach to size estimation

is Function Point Analysis (FPA). It is not clear, however, how function points can be

reasonably counted for object-oriented requirements specifications. To estimates size of

object oriented system in early development life cycle is quiet necessary and to automate

this process is still changeling task. Our main goal is to automate this process completely

in early development life cycles then we will used COCOMO II estimation techniques to

calculates rest of the software metrics e.g. effort, cost, development time etc. This thesis

presents an algorithm to calculates software size in function points and an architecture

which calculates rest of the software metrics, e.g. effort, development time, cost etc.

along with the support of tool that have been constructed to automate the metrics

estimation.

Harput suggest a semi-automatic transformation model to estimate the size of object

oriented system which is based on class diagram, use-cases and sequence diagram.

Kusumoto has calculated function point for java source code. Uemura and Kusumoto also

developed a tool, based on UML design specification. Our FPA algorithm follow all rules

suggested by Harput and inspired by approach given by Uemura and Kusumoto.

Software Metrics 3

1.3 Related Work
There are various techniques for measuring size of traditional software like LOC,

function point etc. Commonly used techniques to measure size of software, Line of code

(LOC), function count, object point and statement count. Early approaches were centred

on function point measures such as Albrech method[1],IFPUG method[9], Mark II

method[6],COSMIC full function point method [7], IBM German point Method [8].

Caldiera had a approach used for Objet Oriented Programming (OOP) is Function Point

Count for OO system [11], application Point and Multimedia Point [13], D.J Ram an

S.V.G.K Raju presented Object Oriented Design Function Points [3] and Object Point

Count by Sneed [12], he proposed object points as a measure of size for OO software.

Object points are derived from the class structures, the messages and the processes or use

cases, weighted by complexity adjustment factors. Problem with this approaches were

that they required judgment on the part of measurer, hence they were not accurate.

Recent approaches for size estimation of OOP are web object [34], statement count [15],

automated function count for OOP [4] and class point. Harput proposed rule based

function point estimation from transformation Model [2]. D. Janaki Ram and S. V. G. K.

Raju used all the available information during the Object oriented design phase to

estimate Object Oriented Design Function Points (OODFP). They have suggested a

counting procedure to measure the functionality of an object oriented system during the

design phase from a designers’ perspective. They have used all the available information

during the oriented system design phase to estimate Object Oriented Design Function

Points (OODFP). It considers all the basic concepts of oriented system systems such as

inheritance, aggregation, association and polymorphism. Kusumoto measured function

point from source code based on static and dynamic information collected by execution

of set of test cases [4]. This approach is not suitable for project planning but can be used

only for maintenance metrics when coding and implementation part have completed.

Some research concentrate on new emerging paradigm of Object Oriented (OO) software

and design a tool that provide unifying framework for calculation of different kind of

software metrics like size, cost, time, effort, productivity, maintenance metrics, and

quality metrics [15][16]. Edilson J. D. Candido, Rosely Sanches, Estimate the size of web

applications by using a simplified function point Method[39]. Sneed and Huang [10],

Software Metrics 4

presents an effort estimation technique for maintaining a large-scale web application by

measuring and tracking the size and complexity of web based system, they used a

combination of function-points and static impact analysis to trace the change request to

different components of web application and then measure their size and complexity.

H.Sneed [9] described an ongoing project to improve the maintenance process. A

repository has been constructed on the basis of a relational database and populated with

metadata on a wide variety of software artifacts at each semantic level of development –

concept, code and test, this repository is used to perform impact analysis and cost

estimation of change requests prior to implementing them. Sneed constructed a tool to

navigate through the repository, select the impacted entities and pick up their size,

complexity and quality metrics for effort estimation. Giovanni Cantone [19] introduces a

conversion model (UML to FP) for establishing the link, and presents a pilot study for

comparing the Function Point counts provided by the model with those provided by a

Function Point certified expert. K.Koteswara Rao,Srinivasan, Nagaraj and Jitender Ahuja

introduced the idea of using UML Relationships as the starting point and gave the brief

introduction on how to get the building blocks of the function point analysis out of the

diagrams, Relationships, they have focused on UML relationship, generalization,

association, dependency and realization. In order to map the UML elements to Function

Point Analysis entities, they develop guidelines, rules, heuristics, and flexibility

specifications, which also constitute the requirements of an analyzer and semi-automatic

converter.

1.4 Organization
The remainder of thesis is organized as follows: Chapter 2 provides an overview of

function points metrics and related approach given by D.Ram, Kusumoto approach to

measure it. COCOMO II is introduce in Chapter 3 in which early design model is

discussed and how function points is converted into source lines of codes also describe

there. Chapter 4 describe the tool architecture which we have developed and its design

scheme and also in this section we have propose algorithm to estimate function points for

object oriented system. Implementation details are given in 5th section of thesis in which

required platform and additional tool have been introduced. Finally Conclusion and

future work are mention in chapter 7.

Software Metrics 5

2. SOFTWARE METRICS

2.1 Basic Software Metrics

Size of software system is considered as the basic metrics in software metrics model. Size

can be estimated in Lines of code or function point. Lines of code cannot be estimated

correctly before software completion because it varies due to language complexities of

different language. While Function points are technologically independent, consistent,

repeatable, help normalize data, enable comparisons and set project scope and client

expectation. So here size is estimated in terms of function point.

2.1.1 Function Points
Function points measure the information processing content of software systems.

Function points measure the size of an application from the customer's point of view. The

aspects of a software system that can be measured accurately are these:

 Inputs to the application.

 Outputs from the application.

 Inquiries by the end users.

 Data files updated by the application.

 The interface to other applications.

2.1.2 FPA Process Overview
The FPA process involves:

1. Identifying the function point counting boundary. A boundary indicates the border

between the software system being measured and the external application or the

user domain. A boundary determines what functions are included in the function

point count.

Software Metrics 6

2. Determining the unadjusted function point count (UFPC). The unadjusted

function point count reflects the specific countable functionality provided to the

user by the application.

2.1.3 Internal logical files (ILF)
An internal logical file (ILF) is a user identifiable group of related data maintained within

the boundary of the application.

An ILF must be a group of data that is maintained within the application and satisfies

specific user requirement. Data stores that were created for technical reasons or for

storage of intermediate values are not counted. Extra capabilities automatically provided

are not counted unless the customer specifically requests them.

ILF Complexity

RECORD ELEMENT TYPE

 DATA ELEMENT TYPE

 1-19 20-50 >51

1 LOW(7) LOW(7) AVG(10)

2 TO 5 LOW(7) AVG(10) HIGH(15)

6 OR MORE AVG(10) HIGH(15) HIGH(15)

TABLE 2.1

2.1.4 External Interface Files (EIF)
An External Interface File (EIF) is a user identifiable group of logically related data

maintained outside the boundary of the application. One example of an EIF is a file or

table containing names of codes read by the system being counted but maintained by

some other application. The group of data is logical and user identifiable, and satisfies a

specific user requirement, referenced by the application, not maintained by the

application, is also an ILF in another application

Software Metrics 7

EIF Complexity

RECORD ELEMENT TYPE

 DATA ELEMENT TYPE

 1-19 20-50 >51

1 LOW(5) LOW(5) AVG(7)

2 TO 5 LOW(5) AVG(7) HIGH(10)

6 OR MORE AVG(7) HIGH(10) HIGH(10)

TABLE 2.2

2.1.5 External input (EI)
An external input (EI) processes data that come from outside the application boundary.

An external input is the facility provided to the customer to insert, update, and delete

records of an ILF. It may maintain one or more ILFs. For example, an external input may

maintain department and employee information. The information entered will be stored in

one or more ILFs. Another example may be the maintenance of system parameters,

which will be used by the processes of the software system being developed. Data are

received from outside the application boundary, input is the smallest business transaction

as seen by the user, comprehensive and self contained.

External input complexity

RECORD ELEMENT TYPE

 DATA ELEMENT TYPE

 1-19 20-50 >51

1 LOW(5) LOW(5) AVG(7)

2 TO 5 LOW(5) AVG(7) HIGH(10)

6 OR MORE AVG(7) HIGH(10) HIGH(10)

TABLE 2.3

Software Metrics 8

2.1.6 External output (EO)
An external output (EO) is a process that generates data sent outside the application

boundary, for example, the external output the customer views in the form of reports,

messages, etc. External outputs also include the files the application generates to be used

as transactions by another application. An external output may be generated using one or

more ILFs or EIFs. Data are sent outside the application boundary. The output is

meaningful to the customer's business, comprehensive and self contained. Data in the ILF

or EIF is not changed by the external output. Count only unique external output.

External output complexity

RECORD ELEMENT TYPE

 DATA ELEMENT TYPE

 1-19 20-50 >51

1 LOW(5) LOW(5) AVG(7)

2 TO 5 LOW(5) AVG(7) HIGH(10)

6 OR MORE AVG(7) HIGH(10) HIGH(10)

TABLE 2.4

2.1.7 External query (EQ)
An external query is a process made up of an input-output combination that results in

data retrieval. It has two parts, the screen on which the customer specifies the request

(search criteria) and the resulting display. Count each unique request and display

combination. The external query is unique if it has a format different from other external

queries in either the request or display parts, or if the customer requests processing logic

different from other external queries with the same format. On an external query, the

customer enters data for control purposes to direct the search. An external query differs

from an external input since it does not modify an ILF. Though it reflects the immediate

retrieval of current data for display, it differs from external output in that external output

reflects the manipulation and reformatting of data (usually in report form). The media

Software Metrics 9

(screen or paper) is not the basis for distinguishing external queries from external output

since external output can also be displayed on a terminal. An external output may be

generated using one or more ILFs or EIFs.

The output is comprehensive, self contained and immediately required for the customer's

business. When there is a one-to-one relationship between requests and displays, count

only displays. Also, count just the displays if one request results in multiple displays. In

either case, the count of the displays will equal the external query count. If several unique

request panels result in the same display, count the requests instead of the display, for

example, a display of customer information that results from completing a screen of name

information, a screen of address information, or information about a specific purchase. In

these cases there is one display but three external queries, since there are three different

processes that get the same display.

External query complexity

RECORD ELEMENT TYPE

 DATA ELEMENT TYPE

 1-19 20-50 >51

1 LOW(5) LOW(5) AVG(7)

2 TO 5 LOW(5) AVG(7) HIGH(10)

6 OR MORE AVG(7) HIGH(10) HIGH(10)

TABLE 2.5

2.2. IFPUG version
IFPUG version is a modified-version of the Albrecht’s function point. In the

modification, the evaluation of the complexity of the software was objectively established

and the rules of the counting procedures were also described minutely and precisely. In

the IFPUG version, the counting procedure of function point consists of the following

seven steps[2].

Software Metrics 10

Step1 (Determine the Type of Function Point Count): Select the type of function point

from the following three ones:(1) Development project function point count,

(2)Enhancement project function point count and (3)Application function point count.

Step2 (Identify the Counting Boundary): A boundary indicates the border between the

application or project being measured and the external applications or the user domain. A

boundary establishes which functions are included in the function point count.

Step3 (Count Data Function Types): Data function types represent the functionality

provided to the user to meet internal and external data requirements. Data function types

are classified into the following two types: Internal logical file(ILF) and External

interface file(EIF).

Step4 (Count Transactional Function Types): Transactional function types represent the

functionality provided to the user for the processing of data by an application. They are

defined as the following three types: External input(EI), External output(EO) and

External inquiry(EQ). The definition of transactional functions are described as follows:

External input(EI): An external input processes data or control information that comes

from outside the application’s boundary. The external input itself is an elementary

process. External output(EO): An external output is an elementary process that generates

data or control information sent outside the application’s boundary. External

inquiry(EQ): An external inquiry is an elementary process made up of an input-output

combination that results in data retrieval. The output side contains no derived data. Here,

derived data is data that requires processing other than direct retrieval and editing of

information from internal logical files and or external interface files. No internal logical

file is maintained during processing.

Then, assign each identified EI or EO a functional complexity based on the number of

file types referenced (FTRs) and data element types (DETs).A file type referenced is ,(1)

An internal logical file read or maintained by a function type, or (2) An external interface

file read by a function type. Also, assign each EQ a functional complexity based on the

number of file types referenced (FTRs) and data element types (DETs) for each input and

output component. Use the higher of the two functional complexities for either the input

or output side of the inquiry to translate the external inquiry to unadjusted function

points. For each of EI, EO and EQ, there is a FTR/DET complexity matrix.

Software Metrics 11

Step5 (Determine the Unadjusted Function Point Count): As the result of Step3 and

Step4, the counts for each function type are classified according to complexity.

Step6 (Determine the Value Adjustment Factor): The value adjustment factor (VAF)

indicates the general functionality provided to the user of the application. VAF is

comprised of 14 general system characteristics that assess the general functionality of the

application.

Step7 (Calculate the Final Adjusted Function Point Count):

The final adjusted function point count is calculated using a specific formula for

development project, enhancement project or application based on the result of Step1.

2.3 Object Oriented Design Function Point
D.J Ram has given this approach to estimate size based on all information available in

design phase.

Data Function Types

According to Ram classes are mapped into data functions. A logical file is divided into

two types depending on the application boundary. The complexity of an ILF/EIF depends

on the DETs and RETs it has. A DET is a simple data type such as int, char, float, string

etc. Object reference, a complex data type is considered as a RET. So, in case of

aggregation RET should be considered. The inherited data is visible to all the methods in

a derived class. So, inherited data should he included to calculate the complexity of a

derived class.

Transaction Function Types

Methods in a class are candidates for transactional function types. It operates on the data

within that class, arguments and return values. The complexity of a method depends on

the DETs and FTRs. The inherited methods will he coded only once in the base class. So,

methods that are inherited from a base class should not he considered for estimating the

complexity of a derived class. If any derived class overrides a method, its complexity

should be considered for that derived class alone. Using the signature of a method, it is

possible to identify the communicating objects. So, association should he considered for

Software Metrics 12

the method from where it invokes the required method(s). A single valued association is

considered as a DET and a multivalued association is considered as a FTR. Method

without any arguments and return type, then its complexity is considered as one DET.

Complexity of Class

The complexity of a class is classified low if a class processes less than 50% of data that

is visible to it , average if a class processes 51 % to 70% of data that is visible to it and

high if a class processes more than 70% of data that is visible to it.

 Complexity Value

LOW 0.3
AVERAGE 0.6

HIGH 0.9

TABLE 2.6 Complexity Value Of Class

The complexities are mapped to a numerical value based on observations across different

projects. These values are presented in Table 2.6.

Unadjusted Function Point

Unadjusted Function point (UFP) of the Object Oriented system is calculated as follows:

1. Calculate the function points for each class in the design. It is obtained by adding the

function points of its data function and transactional function.

2. Estimate Complexity Value of Class.

3. UFP of a class is obtained by multiplying its function points with Complexity Value of

Class.

4. Add UFP of each class to the get the UFP of the Object Oriented system.

Software Metrics 13

2.4 Kusumoto’s Dynamic approach

Kusmoto suggests dynamic approach to calculate size of java source code. They have

developed a function point measurement tool to measure function points from java source

code, they proposed measurement rules to count data function and transactional function

types based on IFPUG method and used dynamic information collected from the program

execution based on a set of test cases which should correspond to all functions of the

target program. In order to measure function point, it is necessary to extract the logical

file and transaction function from the target program. Complexity of logical file based on

the number of data element type (DET) and the record element type (RET) and for

method complexity is determined by number DET and file type references (FTR). Tool

generates syntax information log and dynamic information log files reading java source

code.

Kusumoto’s tool includes following components

Syntax analyzer

It analyses the target program and collect syntax information used in the function point

calculation of it into syntax information file.

Executor

It executes the target program using a set of test cases and collects information about

program execution and store it into execution log file.

Function point calculator

It calculates the value of function point based on the data of syntax database, execution

log database using the specified data function classes and boundary classes.

Software Metrics 14

2.5 Function Point to Unified Modelling Language: Conversion Model
by Giovanni Cantone

Cantone considers convertibility of the elements of the Unified Modeling Language into

entities of the Function Point Analysis; they introduced a model for establishing the link.

In order to map the Unified Modeling Language elements to Function Point Analysis

entities, some guidelines, rules, heuristics, and flexibility specifications, developed by

Cantone. Cantone aimed to develop map, a usage strategy, and a tool to support analysis

of UML-documented applications, UML-FP conversion, and FP counts. Consequently,

they have chosen to describe UML-FP mapping by placing conversion items in the form

of rules and tool specific items in form of flexibility requirements. Cantone introduced a

tool For a given set of parameter values, tool will be configured as a certain Automatic

Analyzer and Counter and hence will enact the related mapping model.

Cantone introduced some rules, guidelines some flexibility requirements to estimate

function points based on UML diagrams e.g. Use cases, Class diagram and Sequence

diagram.

Data Function types

To estimate data function types, they used class diagram. The UML CD elements that are

useful for counting Function Points are: Class, Class Stereotype, Attribute, Relationship,

and Responsibility, Operation or Method (simply Method, in the followings). Class

Stereotype includes three basic UML stereotypes, (i) Entity: these classes represent the

key concepts of the application system; their main responsibilities are to store and

manage information in the application system. (ii) Control: these classes model the

control behavior of one or, in some cases, more Use Cases of the application system.

 (iii) Boundary: these classes model the interaction between the external world and the

internal logic of the application system. Entity classes are the candidates for logical files,

they agreed with Caldiera[11] approach that all Logical Files are ILF, those files excepted

that are mapped to classes encapsulating external components, which are identified as

EIF, (e. g. other applications, external services, library functions).

Software Metrics 15

Transactional Function types

Cantone focused on use-case diagram and sequence diagram to estimate transactional

function. Communication patterns are used to detect transactional function types, in

sequence diagram. External inputs can be identified by system directed messages

sequences and external outputs and external query depends upon the message sequences

which are actor directed. Complexity of transactional function is determined by total

number of arguments of candidate messages and entity classes.

2.5 Harput’s Transformation Model

Harput has proposed a semiautomatic transformation model to estimates Object Oriented

Function Point (OOFP) early in the software development cycle. He proposed eighteen

rules for Data function types and nine rules for transaction function types that specify a

semi-automated transformation from an object-oriented requirement model to an FPA

model. Harput presented the rules for mapping classes and associations to data function

types as well as the rules for mapping use cases and functional requirements to

transactional function types.

Rules for data function types

Rule 1 Classes or groups of classes in the information model are mapped to internal

logical files (ILFs). If there is no information model available, then classes or groups of

classes in the domain model are mapped to ILFs. In this case, however, only those classes

are to be mapped to ILFs which represent entities the system to be built is required to

maintain information about.

Rule 2 Some of the classes or groups of classes in the domain model are mapped to

external interface files (EIFs). Classes which have already been mapped to ILFs

according to Rule 1 for data function types may not be mapped to EIFs.

Rule 3 A single class can be mapped to one file.

Rule 4 All classes in a subtree of a generalization hierarchy can be mapped together to

one file.

Rule 5 Leaf classes can be mapped together with all their ancestors to one file.

Software Metrics 16

Rule 6 Classes which are connected through an aggregation can be mapped together to

one file.

Rule 7 Attributes of classes represent the data element types (DETs) of the files.

Rule 8 Regardless of the number of the attributes in the mapped classes, every file has at

least one DET.

Rule 9 Every file has at least one record element type (RET).

Rule 10 Some of the classes mapped to a function point file represent the RETs of this

file. Which of the mapped classes represent RETs depends on the mapping method as

given in the following rules, and they are to be determined by the FPA expert.

Rule 11 If a single class is mapped to a file, then one RET is counted for this file.

Since there is only one class being mapped in this case, it is the only one which can be

counted as a RET.

Rule 12 If the classes in a generalization hierarchy are mapped as a group to one file,

then a RET can be counted for each leaf class or, alternatively, a RET can be counted for

each class in the hierarchy.

Rule 13 If a leaf class together with all its ancestors is mapped to a file, then a RET can

be counted for the leaf class only or, alternatively, a RET can be counted for each class

from leaf to root.

Rule 14 If classes which are connected through an aggregation are mapped together to

one file, then a RET is counted for the aggregating class and for each aggregated class.

Rule 15 n-ary associations (with n > 2) can be decomposed into binary associations. If an

n-ary association found in the domain or information model is to be mapped to function

point files, it needs to be decomposed to binary associations first

Rule 16 Binary associations between classes can be mapped to files.

Rule 17 Associations and aggregations can increase the DET counts of those files by one

which have been created by mapping the connected classes.

Such relations which are not mapped to files can increase the DET count of files.

Rule 18 Files that were created by mapping associations to them, have at least two DETs.

Software Metrics 17

Rules for transactional function types

Rule 1 Use cases with given pre- and post conditions can be viewed as functional

requirements for the composite system.

Rule 2 Messages in UML sequence diagrams can be viewed as functional requirements

for the system to be built.

Rule 3 Functional requirements for the composite system consisting of the system to be

built and the users can be mapped to transactions. Functional requirements for the system

to be built can also be mapped to transactions.

Rule 4 Several functional requirements for the system to be built can be mapped together

as a group to a transaction.

Rule 5 If a functional requirement for the composite system is mapped to a transaction,

the related functional requirements for the system to be built must not be mapped to

transactions, and vice versa.

Rule 6 The FPA expert has to determine the type of the transactions.

Rule 7 The file types referenced (FTRs) of the transactions are determined through the

classes in the domain or information model that have been mapped to files. These classes

can be explicitly referenced from the functional requirements or from messages in

sequence diagrams, respectively. The files which these classes have been mapped to are

the FTRs of those transactions which the corresponding functional requirements or

messages have been mapped to.

Rule 8 For each transaction identified and for each message in a UML sequence diagram

corresponding to this transaction that contains an object as a parameter, DETs can be

counted as follows: for each attribute of such an object in a UML class diagram, one DET

can be counted for each field according to its data type, if this attribute crosses the system

boundary (but it may be counted only once).

Rule 9 For each transaction identified, if at least one corresponding message in a UML

sequence diagram exists for a system response message, a confirmation or verification,

then count one additional DET for this transaction.

Software Metrics 18

2.5.1 Estimation of data function types

Identifying Data Functions

An information model in software engineering is a representation of concepts,

relationships, constraints, rules, and operations to specify data semantics for a chosen

domain of discourse. It can provide sharable, stable, and organized structure of

information requirements for the domain context.

In problem solving a domain model can be thought of as a conceptual model of a system

which describes the various entities involved in that system and their relationships. The

domain model is created in order to document the key concepts, and the domain-

vocabulary of the system being modeled. The model identifies the relationships among

all major entities within the system, and usually identifies their important methods and

attributes. In UML, a class diagram is used to represent the domain model.

Harput suggests that domain model is used for data function types identification,

information model can also be taken but mostly it is not available, only those classes of

domain model are to be mapped to internal logical files which represent entities the

system to be built is required to maintain information about (see Harput rule 1,2).

If data members of classes can be modified or renewed than these classes should be

considered as a candidate for internal logical files else these are candidates for external

interface files [21].

All Logical Files are ILF, only those files are accepted as EIF that are mapped to classes

encapsulating external components (e. g. other applications, external services, library

functions) [10]. Only those objects are kept as Logical File candidates that both include

some attributes, and exchange data with non-Actor objects: “Objects that have attributes

changed by the operations of other objects are regarded as ILF and others are regarded as

EIF”, according to Uemura[21] .

Entity: These classes represent the key concepts of the application system; their main

responsibilities are to store and manage information in the application system. All and

only classes stereotyped Entity are logical file candidates, ILF or EIF [18].

Software Metrics 19

Simple attribute: This represents a basic data type; one DET is counted for each of such

attributes (“e.g. integers, strings etc.” are counted as 1 DET each). Attributes do map

DET one to one (Harput rule for data function types 7).

Complex attribute: One RET is counted for each of such attributes.

In UML, a class diagram is used to estimation of data function types.

Single Class

A single class can provide information about data function types if system to be built has

to maintain information only about that particular class.

DET Count: Attributes of class represent the Data Element Types (DETs) of the files

(Harput rule for data function types 7).

RET Count: At least One Record Element Types RET is counted for a single class

(Harput rule for data function types 9,11).

Association

Binary association is used for mapping classes into logical files. If association is not

binary then first it converted into binary then mapped to files. Self- Associations are

never mentioned (Harput rule for data function types 15,16).

Fig. 4.2 Association in Class diagram

DET Count: Data element types are increased by one due to associations or in other

words at least two DETs can be taken for those logical files which are mapped by

B A

Software Metrics 20

associations. Association having multiplicity not greater than one, increase FP

complexity by one DET each (Harput rule for data function types 17,18).

RET Count: Association having maximum multiplicity is not just one, increase FP

complexity by one RET each.

Aggregation

An aggregation may signify that an instance of one class can contain an instance of

another class. Entire aggregation structure is counted as a single logical file these classes

can be taken as candidates for data function types (Harput rule for data function types 6).

Fig. 4.3 Aggregation in Class diagram

DET Count: Aggregation having multiplicity not greater than one, increase FP

complexity by one DET each (Harput rule for data function types 17).

RET Count: If classes which are connected through an aggregation are mapped together

to one file, then a RET is counted for the aggregating class and for each aggregated class.

In an Aggregation, RET increment affects the Logical File complexity of the aggregating

class. Aggregation having maximum multiplicity is not just one, increase FP complexity

by one RET each (Harput rule for data function types 14).

Generalization

These classes represent the information in the application system are analyzed for

estimation of data function types. Leaf classes are mapped together with all their

ancestors to one file or in class hierarchies, total path from root to leaf class is provides

one logical file, e.g. in figure given below {A,B,D}, {A,B,E} and {A,C} can be taken as

data function types (Harput rule for data function types 5).

B A

Software Metrics 21

Fig. 4.4 Generlization in Class diagram

DET Count: Total number of attributes in one logical file (Harput rule for data function

types 7).

RET Count: RET can be counted for each class from leaf class to root in generalization

hierarchy (Harput rule for data function types 13).

For each logical file in a generalization hierarchy each class represent one RET e.g. in

given figure {A,B,D}, {A,B,E} and {A,C} are taken as logical files having RET 3,3 and

2 respectively.

2.5.2 Estimation of Transactional Function Types:
In sequence diagram, two kinds of messages sequences should be considered [19]

 1. Actor directed messages sequences (ADMS)

 2. System directed messages sequences (SDMS)

Messages between actor to actor and entity objects to entity objects should not be

considered as candidates for transactional function types.

A

C B

E D

Software Metrics 22

Messages: Messages help to find the Elementary Processes of the application system.
Here the problem is to map messages or message sequences to Elementary Processes.

We have taken messages as candidates for transactional function types (Harput rule for

transactional function types 2).

External Input (EI): External inputs are those messages which occur in System Directed

Messages Sequences (SDMS), i.e. from actor to application.

DET count: A data element type (DET) counts of a transactional function is the number

of arguments in messages directed to entity objects types (Harput rule for transactional

function types 8, 9).

FTR count: The file type reference (FTR) count of a Transactional Function is the

number of entity objects that participate in the message exchange types (Harput rule for

transactional function types 7).

External Output (EO): Messages which occur in Actor Directed Messages Sequences

(ADMS), i.e. from system to actor. When arguments of all the messages in an ADMS

include some but not all attributes of the objects read through messages sequence. It

means that the message contains derived data. Then, we regard it as an External Output.

DET count: A data element type (DET) counts of a transactional function is the number

of arguments which are attributes of entity objects in messages or message sequences

(Harput rule for transactional function types 8, 9).

FTR count: The file type reference (FTR) count of a Transactional Function is the

number of entity objects that participate in the message exchange (Harput rule for

transactional function types 7).

External Query (EQ): Those messages which occur in Actor Directed Messages

Sequences (ADMS), i.e. from system to actor. When arguments of all the messages in an

Software Metrics 23

ADMS include all the attributes of the objects read through messages sequence. Then, we

regard it as an External Query.

DET count: A data element type (DET) counts of a transactional function is the number

of arguments which are attributes of entity objects in messages or message sequences

(Harput rule for transactional function types 8, 9).

FTR count: The file type reference (FTR) count of a Transactional Function is the

number of entity objects that participate in the message exchange (Harput rule for

transactional function types 7).

Software Metrics 24

3. SOFTWARE METRICS ESTIMATION:
COCOMOII

3.1 General Software Metrics

Effort, Development time, cost and productivity are considered as a general software

metrics. COCOMO II model is adopted for estimating these metrics. COCOMO II

requires software size in terms of LOC. In first layer we estimate size in unadjusted

function point.

3.2 Relating UFPs to SLOC

COCOMO II is used for calculation of other software matrices. The unadjusted function

points have to be converted to source lines of code in the implementation language (Ada,

C, C++, Pascal, etc.). Table given below shows the number of lines of codes per function

point.

Programming Language SLOC/UFP

ADA 95 49

C 128

C++ 55

COBOL (ANSI 85) 91

FORTRAN 95 71

HTML 3.0 15

JAVA 53

LISP 64

PROLOG 64

VISUAL C++ 34

TABLE 3.1 SLOC/UFP

Software Metrics 25

For many years, software engineers and computer scientists have used phrases as “high

level language ” and “low level language” without precisely defining a terms. Now with

reasonable good justification, language can classify according to the number of

statements they require to encode one function point:

High level language , less than 50

Mid level language, 51-99 and

Low level language, more than 100

3.2 COCOMO II
COCOMO II is tuned to modern software life cycles. The original COCOMO model has

been very successful, but it doesn't apply to newer software development practices as

well as it does to traditional practices. COCOMO II targets the software projects of the

1990s and 2000s, and will continue to evolve over the next few years.

The primary objectives of the COCOMO II effort are:

 To develop a software cost and schedule estimation model tuned to the life cycle

practices of the 1990's and 2000's.

 To develop software cost database and tool support capabilities for continuous

model improvement.

 To provide a quantitative analytic framework, and set of tools and techniques for

evaluating the effects of software technology improvements on software life cycle

costs and schedules.

COCOMO II is really three different models:

 The Application Composition Model

 The Early Design Model

 The Post-Architecture Model

Software Metrics 26

3.2.1 Effort Estimation
In COCOMO II effort is expressed as Person-Months (PM). A person month is the

amount of time one person spends working on the software development project for one

month. This number excludes time typically devoted to holidays, vacations, and

weekend time off. The number of person-months is different from the time it will take

the project to complete; this is called the development schedule or Time to Develop,

TDEV. For example, a project may be estimated to require 50 PM of effort but have a

schedule of 11 months.

Scale Factors

The exponent E in equation is an aggregation of five scale drivers that account for the

relative economies or diseconomies of scale encountered for software projects of

different sizes. If E < 1.0 the project exhibits economies of scale. If the product's size is

doubled, the project effort is less than doubled. For small projects, fixed start-up costs

such as tool tailoring and setup of standards and administrative reports are often a source

of economies of scale. If E = 1.0 the economies and diseconomies of scale are in

balance. This linear model is often used for cost estimation of small projects. If E > 1.0

the project exhibits diseconomies of scale.

Scale
drivers

Very low Low Nominal High Very High Extra
High

 PREC 6.20 4.96 3.72 2.48 1.24 0.00

FLEX

5.07 4.05 3.04 2.03 1.01 0.00

RESL

7.07 5.65 4.24 2.83 1.41 0.00

 TEAM

5.48 4.38 3.29 2.19 1.10 0.00

 PMAT

7.80 6.24 4.68 3.12 1.56 0.00

 or the estimated Process Maturity Level (EMPL)
 TABLE 3.2 Scale Factors (E) COCOMO II estimation model

 2.94 A where

EM(Size)APM
n

1i
i

E

Software Metrics 27

Early Design Model Cost Drivers

COCOMO II uses a set of effort multipliers to adjust the nominal person-month estimate

obtained from the project’s size and exponent drivers

This model is used in the early stages of a software project when very little may be

known about the size of the product to be developed, the nature of the target platform, the

nature of the personnel to be involved in the project, or the detailed specifics of the

process to be used. This model could be employed in either Application Generator,

System Integration, or Infrastructure development sectors. The Early Design model uses

KSLOC or unadjusted function points (UFP) for size. UFPs are converted to the

equivalent SLOC and then to KSLOC. The application of project scale drivers is the

same for Early Design and the Post-Architecture models. In the Early Design model a

reduced set of cost drivers is used as shown in Table given below. The Early Design cost

drivers are obtained by combining the Post-Architecture model cost drivers.

TABLE 3.3

Early Design Post-Architecture Cost Drivers

RCPX RELY, DATA, CPLX, DOCU

RUSE RUSE

PDIF TIME, STOR, PVOL

PERS ACAP, PCAP, PCON

PREX APEX, PLEX, LTEX

FCIL TOOL, SITE

SCED SCED

Software Metrics 28

Cost

Driver

Extra

Low

Very

Low

Low Nominal High Very

High

Extra

High

RCPX 0.73 0.81 0.98 1.0 1.30 1.74 2.38

RUSE
--- --- 0.95 1.0 1.29 1.81 2.61

PDIF --- --- 0.87 1.0 0.83 0.63 0.50

PERS 2.12 1.62 1.26 1.0 0.83 0.63 0.50

PREX 1.59 1.33 1.12 1.0 0.87 0.71 0.62

FCIL 1.43 1.30 1.10 1.0 0.87 0.73 0.62

SCED --- 1.43 1.14 1.0 1.0 1.0 ---

TABLE 3.4 Early Design Cost Driver

3.2.2 Schedule Estimation
Nominal-Schedule Estimation Equations

Both the Post-Architecture and Early Design models use the same functional form to

estimate the amount of effort and calendar time it will take to develop a software project.

These nominal-schedule (NS) formulas exclude the cost driver for Required

Development Schedule, SCED. The amount of effort in person-months, PMNS, is

estimated by the formula:

5

1j
j

n

1i
i

E
NS

SF0.01BE where

EMSizeAPM

TDEVNS, it will take to develop the product is estimated by the formula:

Software Metrics 29

The value of n is 16 for the Post-Architecture model effort multipliers, EMi, and 6 for the

Early Design model. The values of A, B, C, D, SF1, …, and SF5 for the Early Design

model are the same as those for the Post-Architecture model. The values of EM1, …, and

EM6 for the Early Design model are obtained by combining the values of their 16 Post-

Architecture counterparts.

The subscript NS applied to PM and TDEV indicates that these are the nominal-schedule

estimates of effort and calendar time. The effects of schedule compression or stretch-out

are covered by an additional cost driver, Required Development Schedule. Size is

expressed as thousands of source lines of code (SLOC) or as unadjusted function points

(UFP). Development labor cost is obtained by multiplying effort in PM by the average

labor cost per PM.

The values of A, B, C, and D are:

A = 2.94 B = 0.91

C = 3.67 D = 0.28

The initial baseline schedule equation for the COCOMO II Early Design and Post-

Architecture stages is:

 0.91B 0.28,D 3.67,C where
100

SCED%])(PM[CTDEV B))(E0.2(D
NS

In Equation, C is a TDEV coefficient that can be calibrated, PMNS is the estimated PM

excluding the SCED effort multiplier, D is a TDEV scaling base-exponent that can also

be calibrated. E is the effort scaling exponent derived as the sum of project scale drivers

SF01. 00.2 D F where

PM C TDEV
5

1j
j

F
NSNS

Software Metrics 30

and B as the calibrated scale driver base-exponent. SCED% is the compression /

expansion percentage in the SCED effort multiplier rating scale.

3.3 Advanced Software Metrics
Maintenance and quality metrics are advanced software Metrics. Impact analysis [13][14]

is used to calculate maintenance metrics , while quality metrics is estimated by software

tester on the basis of different quality parameter. Impact analysis estimates the

maintenance size of project.

Software Maintenance

Software maintenance is defined as the process of modifying existing software while not

changing its primary functions. COCOMO II model assume that software maintenance

cost generally has the same cost driver attributes as software development costs.

Maintenance includes redesign and recoding of small portions of the original product,

redesign and development of interfaces, and minor modification of the product structure.

Maintenance can be classified as either updates or repairs. Product repairs can be further

segregated into corrective (failures in processing, performance, or implementation),

adaptive (changes in the processing or data environment), or perfective maintenance

(enhancing performance or maintainability). The SCED cost driver (Required

Development Schedule) is not used in the estimation of effort for maintenance because

maintenance cycle is usually of a fixed duration. The RUSE cost driver (Required

Reusability) is not used in the estimation of effort for maintenance due to the extra effort

required to maintain a component’s reusability is roughly balanced by the reduced

maintenance effort due to the component’s careful design, documentation, and testing.

The RELY cost driver (Required Software Reliability) has a different set of effort

multipliers for maintenance. For maintenance the RELY Cost driver depends on the

required reliability under which the product was developed. If the product was developed

with low reliability it will require more effort to fix latent faults. If the product was

developed with very high reliability, the effort required to maintain that level of

reliability will be above nominal. The scaling exponent, E, is applied to the number of

changed KSLOC (added and modified, not deleted) rather than the total legacy system

Software Metrics 31

KSLOC. The effective maintenance size (Size)m is adjusted by a Maintenance

Adjustment Factor (MAF) to account for legacy system effects.

RELY
Descriptors:

slight
inconvenience

low, easily
recoverable
losses

moderate,
easily
recoverable
losses

high
financial
loss

risk to
human
life

Rating Levels Very Low Low Nominal High Very
High

Extra
High

Effort
Multipliers

1.23 1.10 1.00 0.99 1.07 n/a

Table 5.9 . RELY Maintenance Cost Driver

The maintenance effort estimation formula is the same as the COCOMO II Post-
Architecture development model (with the exclusion of SCED and RUSE):

15

1i
i

E
MM EM)(SizeAPM

Sizing Software Maintenance

COCOMO II differs from COCOMO 81 in applying the COCOMO II scale drivers to the

size of the modified code rather than applying the COCOMO 81 modes to the size of the

product being modified. Applying the scale drivers to a 10 million SLOC product

produced overlarge estimates as most of the product was not being touched by the

changes. The scope of “software maintenance” follows the COCOMO 81 guidelines in

[Boehm 1981; pp.534-536]. It includes adding new capabilities and fixing or adapting

existing capabilities. It excludes major product rebuilds changing over 50% of the

existing software, and development of sizable (over 20%) interfacing systems requiring

little rework of the existing system. The maintenance size is normally obtained via

Equation given below, when the base code size is known and the percentage of change to

the base code is known.

 MAFMCFSize) Code (Base(Size)M

Software Metrics 32

The Maintenance Adjustment Factor (MAF) is discussed below. But first, the percentage

of change to the base code is called the Maintenance Change Factor (MCF). The MCF is

similar to the Annual Change Traffic in COCOMO 81, except that maintenance periods

other than a year can be used. Conceptually the MCF represents the ratio in Equation

below:

 Size Code Base
Modified Size Added SizeMCF

A simpler version can be used when the fraction of code added or modified to the

existing base code during the maintenance period is known. Deleted code is not counted.

MAFModified) Size Added (Size(Size)M

The size can refer to thousands of source lines of code (KSLOC), Function Points, or

Object Points. When using Function Points or Object Points, it is better to estimate MCF

in terms of the fraction of the overall application being changed, rather than the fraction

of inputs, outputs, screens, reports, etc. touched by the changes. The Maintenance

Adjustment Factor (MAF). COCOMO II uses the Software Understanding (SU) and

Programmer Unfamiliarity (UNFM) factors from its reuse model to model the effects of

well or poorly structured/understandable software on maintenance effort.

 UNFM
100
SU1MAF

The Software Understanding increment (SU) is obtained from Table 5.10. SU is

expressed quantitatively as a percentage. If the software is rated very high on structure,

applications clarity, and self-descriptiveness, the software understanding and interface-

checking penalty is 10%. If the software is rated very low on these factors, the penalty is

50%. SU is determined by taking the subjective average of the three categories.

Software Metrics 33

 Very Low Low Nominal High Very High

Structure

Very low
cohesion, high
coupling,
spaghetti
code.

Moderately
low cohesion,
high coupling.

Reasonably
well-
structured;
some weak
areas.

High cohesion,
low coupling.

Strong
modularity,
information
hiding in data
/ control
structures.

Application
Clarity

No match
between
program and
application
world-views.

Some
correlation
between
program and
application.

Moderate
correlation
between
program and
application.

Good
correlation
between
program and
application.

Clear match
between
program and
application
world-views.

Self-
Descriptive-
ness

Obscure code;
documentation
missing,
obscure or
obsolete

Some code
commentary
and headers;
some useful
documentation.

Moderate level
of code
commentary,
headers,
documentation.

Good code
commentary
and headers;
useful
documentation;
some weak
areas.

Self-
descriptive
code;
documentation
up-to-date,
well-
organized,
with design
rationale.

SU
Increment
to ESLOC

50

40

30

20

10

Table 5.10 Rating Scale for Software Understanding Increment SU

UNFM Increment Level of Unfamiliarity
0.0 Completely familiar
0.2 Mostly familiar
0.4 Somewhat familiar
0.6 Considerably familiar
0.8 Mostly unfamiliar
1.0 Completely unfamiliar

Table 7. Rating Scale for Programmer Unfamiliarity (UNFM)

Software Metrics 34

4. TOOL ARCHITECTURE AND DESIGN

4.1 Tool Architecture

In this section architecture of the tool is described which estimates unadjusted function

point in early development life cycle of object oriented software. Harput transformation

rules are applied to estimate function points. In this section architecture of tool is

presented which estimates early design software metrics in layered approach, in first

layer object oriented function points are calculated based on UML design specification on

applying harput rules [20]. These function points are converted into source line of codes

(SLOC), primary input for COCOMO II to calculate General Software Metrics, which is

done in layer two of the tool. The most fundamental calculation in the COCOMO II

model is the use of the Effort Equation to estimate the number of Person-Months required

developing a project. Most of the other COCOMO II results are derived from this

quantity. In this model, some of the most important factors contributing to a project's

duration and cost are the Scale Drivers. By using COCOMO II we can estimate effort in

person month and development time. Now other metrics can be converted to by means of

the following techniques.

1. PM to Dollars – On the basis of hourly salary

2. Productivity = FP/PM

3. Productivity = KLOC/PM

4. Development Cost = $/FP

5. Development Cost = $/LOC

6. Documentation= pages-of-documentation/FP

7. Documentation = pages-of-documentation/KLOC

Software Metrics 35

Advanced software metrics are quality and maintenance of project. These metrics are

calculated after completion of implementation phase of software development life cycle

(SDLC). Here we are dealing with early design phase so these advanced metrics are not

to be considered. Our main approach is to estimate software metrics in early design

phase.

Fig 4.1 shows the architecture of tool.

 Fig. 4.1 Architecture of Tool

Software Metrics 36

4.2 Design Approach

4.2.1 First layer Design

First layer of tool estimates function point based on UML design specification. UML

design (Class diagram, Sequence diagram) developed in Rational Rose, as an input

resource. We used Rational Rose Class diagram to estimate Data function types and

Sequence diagram for Transactional function type estimation. Class diagram and

sequence diagram by Rational rose generates design specification in UML syntax which

is analyzed by analysis unit by applying Harput transformation rules. Both analysis unit

and counting unit follow the rules to estimates unadjusted function points (UFP).

Fig. 4.2 Size estimation in First layer

Design
specification in

UML syntax

Design Specification in rational rose
(Class diagram, Sequence diagram)

Analysis Unit

Counting Unit

UFP

Software Metrics 37

4.2.2 First Layer Design Algorithm

Algorithm to estimate data function type:

Step 1: Identification of ILF and EIF

 LF_SingleClass() // According to Harput rule 3
 LF_Generalization() // According to Harput rule 4,5
 LF_Association() // According to Harput rule 15, 16
 LF_Aggregation() // According to Harput rule 6

Step 2: Estimation of DET: DET_calc() // According to Harput rule 7,8,17,18

Step 3: Estimation of RET

 RET_SingleClass() //According to Harput rule 9
 RET_ Generalization() // According to Harput rule 12,13
 RET_Association() // According to Harput rule 9
RET_Aggregation() // According to Harput rule 14

Step 4: Complexity estimation of files: cmplx_est()

Step 5: DataFunctions()

Algorithm to estimate transactional function:

Step 1: Identification of External Input (EI), External Output (EO) and External Enquiry
(EQ) // According to Harput rule 2

Step 2: Estimation of DET: DET_calc() // According to Harput rule 8,9

Step 3: Estimation of FTR: FTR_calc() // According to Harput rule 7

Step 4: Complexity estimation of files: cmplx_est()

Step 5: TransactionalFunctions()

Unadjusted Function Calculation:

Step 1: UFP=DataFunctions() + TransactionalFunctions()

Software Metrics 38

According to algorithm given function point measurement is done as follows:

First Data function types are estimated

In step 1 identification of data function types is done. Function In step 1

LF_SingleClass(), LF_Generalization(), LF_Association() and LF_Aggregation() return

the set of classes in each logical file e.g. LF_Generalization() returns the all the set of

classes which are candidates for data function types or we can say in step 1 data function

types are evaluated. Fig 4.3 shows the pseudo code in which first class information is

extracted from UML syntax textual description.

Fig 4.3 Pseudo code to analyze class information

Software Metrics 39

Fig 4.4 Pseudo code to LF_singleClass

Fig 4.4, 4.5, 4.6 and 4.7 shows the pseudo code for LF_Generalization, LF_Association

and LF_Aggregation.

Fig 4.5 Pseudo code to LF_Generalization

Software Metrics 40

Step 2 determines total numbers of data element types for each logical file, here

DET_calc() is used for estimation of DET this function will take each data function types

as arguments and returns the total numbers of data element types of corresponding data

function.

Step 3 estimates record element types of each data function here RET_SingleClass()

which returns the numbers of record element types of data function mapped by only one

class, RET_Generalization() takes data function mapped by generalization hierarchy and

returns total numbers of RET for corresponding data function e.g. in figure 2 {A,B,D},

{A,B,E} and {A,C} are taken as logical files having RET 3,3 and 2 respectively. Same

for RET_Association and RET_Aggregation().

Fig 4.6 Pseudo code to LF_Association

Software Metrics 41

Fig 4.7 Pseudo code to LF_Association

Cmplx_est() is a function which assign complexity to each data function based on

DET/RET complexity matrix.

Finally in step 5 DataFunction() will returns the total data function with all details.

Transactional function types are calculated as follows

In step 1 and step 2 identification of transactional function is done on the basis of

messages sequences (ADMS, SDMS).

Identify_EI (), Identify_EO() and Identify_EQ() will return the type of transactional

functions on the basis of messages sequences, if messages is SDMS than identified

transactional function is regarded as External input, and if messages sequence is ADMS

Software Metrics 42

and messages contain derived in their arguments than this will be external output

otherwise external query is taken as transactional function.

Fig. 4.10 Transactional Function Analysis

Step 2 and step three calculates total number of data element types and file types

references.

Step 4 will assign complexity to each transactional function based on their complexity

table.

Finally in step 5 TransactionalFunction() will returns the total data function with all

details

Software Metrics 43

4.2.4 Second layer Design

In this layer general software metrics are estimated e.g. effort, development time, cost,

productivity etc. SLOC is the input for COCOMO II estimation technique, so unadjusted

function points, estimated in first layer are converted into Source lines of code (see table

3.1) then scale drivers and cost drivers for early design model (see table 3.2 and 3.4) are

to be set and finally we use COCOMO II formula to estimate general software metrics.

We have introduced COCOMO II in chapter three, here COCOMO II is used to estimate

general software metrics. Our first layer output is size of object oriented system in

unadjusted function points (UFP), this is converted into source lines of code (SLOC) (see

table 3.1).

Scale drivers (see table 3.2) are adjusted according to relative economies or diseconomies

of scale encountered for software projects of different sizes.

We are using early design model of COCOMO II, using this model effort is estimated in

nominal person-month then set of effort multipliers (see table 3.4) to adjust the nominal

person-month. Early design model uses KSLOC to evaluate effort in person month.

Software Metrics 44

Fig. 4.9 General software metrics estimation in second layer

UFP from First
Layer

UFP to SLOC conversion

Scale and cost drivers’ adjustment

Estimate general software metrics

Software Metrics 45

5. IMPLEMENTATION DETAILS

5.1 Rational Rose
Rational rose is most popular UML design tool. We have used rational rose enterprise

edition 2000. First we develop UML diagram (Class diagram and sequence diagram) then

Rational rose generates documentation report which is based on UML design

specification and taken as input resource to estimate function points. Figure 5.1 shows the

Class diagram of ATM system developed in rational rose.

Fig. 5.1 Rational Rose Class diagram for ATM system

Software Metrics 46

Fig. 5.3 Document generation using Rational rose in UML syntax

Step to generate UML documentation

1. Locate the generated file into directory.

2. Assign Report title.

3. Assign Report type as logical view report.

4. Select Unified modeling language syntax.

5. Press Generate to generate documentation.

Software Metrics 47

Fig. 5.4 Design specification in UML syntax

Fig 5.4 shows the design specification in UML syntax generated by rational rose. This is

the input for first layer of the tool (see fig 4.1). Tool read this file line by line and extracts

required data set to estimates size in Unadjusted Function Points

Software Metrics 48

5.2 Platform Used
We have used JAVA (JDK 1.6.0) as a platform to implement this tool. The JDK is a

development environment for building applications, applets, and components using the

Java programming language. The JDK includes tools useful for developing and testing

programs written in the Java programming language and running on the Java platform.

5.2.1 Netbean IDE

We have used the tool Netbean IDE (Integrated development environment) to develop

our application under the environment of JDK. Netbean IDE is development tool based

on JAVA (1.6.0) developed by Sun Microsystems Inc., it is supported by Windows vista,

XP operating system. Netbean tool have editor view and design view, Using Design view

of netbean tool user can use JDK’s swings and AWT utility, in easy way i.e. pick and

locate. Design view is shown in fig 5.5. in editor view user can develop JAVA

application using JDK’s different types of utility, e.g. swings, beans, abstract window

toolkit(AWT). Netbean tool have its own GUI window using which user can easily

perform the task e.g. run, debug, compile, edit etc. Editor view is shown in fig 5.6.

We have used JAVA swings to design the Graphical User Interface (GUI), to develop the

tool. Fig 5.5 and 5.6 shows the Netbean development GUI design and program editor

window.

Software Metrics 49

Fig.

5.5 GUI design in Netbean IDE tool

Fig. 5.6 Program editor in Netbean IDE tool

Software Metrics 50

5.2.2 Software Architecture of tool

Fig 5.7 shows the software architecture of tool, UML rational rose tool is used to

design class diagram and sequence diagram, then its documentation report is

generated in UML syntax which is analyzed by syntax analysis unit design in JDK

platform in netbean IDE editor, syntax analysis unit will transfer all required data to

which is stored in runtime database, than counting unit fetch data from memory to

estimate function point, finally it calculates basic and general software metrics.

Fig. 5.7 Software Architecture of tool

UML Tool
Rational Rose

Documentation
Report

UML syntax

Syntax analysis
unit

Run time
Database

Counting
Unit

Software Metrics 51

Fig 5.7 shows dialog box which browse input text file and load it into memory, then

tool will analyze input file to estimate basic software metrics. After uploading the input

file we analyze transactional function as given in fig 5.8.

Fig. 5.8 Input File

Fig. 5.9 Transactional function analysis

Software Metrics 52

Fig. 5.10 Basic Software Metrics

Fig 5.6 shows the window of our Function Point Analyzer (FPA) in which input file

which describes specification details is given to the tool then it estimate datafunction and

transactional function and finally calculates unadjusted function points metrics.

The output of FPA tool is converted into source lines of codes (see table 4.1)

Software Metrics 53

Fig. 5.11 General Software Metrics

Fig 5.7 shows tool window in which general software metrics are estimated using

COCOMO II technique.

Software Metrics 54

6. CASE STUDY OF HOSPITAL MANAGMENT
SYSTEM

In this chapter case study of Hospital Management System is described. we have applied

all Harput rules to estimate size of Hospital Management System. Class diagram and

sequence diagram of various events of Hospital management system are taken as a

reference to estimates function poins, than we have applied Harput rules.

Fig. 6.1 Class diagram of Hospital Management System

Size is estimated in Unadjusted function point which is converted into source lines of

codes (SLOC), see table 3.1. SLOC is the necessary input to COCOMO II, applying

COCOMOII we have calculated rest of the software metrics.

Software Metrics 55

Data function type estimation

Objects that have operations which change the attributes of other objects in exchanging

the data are regarded as Internal Logical Files, hence we will take all classes in given

class diagram as candidates for internal logical files. According to Harput Rule for Data

Function Types 7, Attributes of classes represent the data element types (DETs) of the

file e.g. (Patient, Registration) having 6 data element types. We have associated classes.

having binary association so we have mapped these classes according to rule e.g. (Patient,

Registration) due to association considered as a single logical file, (see Harput rule for

data function types 16). According to harput for rule data element types 17, associated

classes is increased e.g. (Patient, Registration) 7 data element type, 6 due to total no of

attributes and 1 due to rule. On the basis of complexity matrix, low complexity is

assigned to each logical file given in Table 6.1. Total number of DETs and RETs are

decided according to Harput rules for associated classes, according to rule data element

types are total number of data member in associated classes and record element types can

be determined by total no of classes and multiplicity between associated classes, e.g.

(Patient, Appointment) having total number of DETs are 9 and RETs are 3, two due to

number of classes and 1 increment due to multiplicity between classes.

Software Metrics 56

InternalLogical Files DET RET Complexit

Patient, Registration 7 2 LOW

Patient, Appoinment 9 3 LOW

Patient, Income 9 2 LOW

Patient, Test 10 3 LOW

Patient, Report 7 2 LOW

Registration, Ward 4 3 LOW

Ward, Report 4 2 LOW

DoctorStaff, Test 10 3 LOW

DoctorStaff, Edit 7 3 LOW

DoctorStaff, Expendr 8 2 LOW

Test, Report 3 2 LOW

Test, Appointment 5 2 LOW

Table 6.1 Internal Logical Files

Transactional function types estimation:

These messages from given sequence diagrams for different events are taken as

candidates for transaction function types:

 1. addApptCharges(int id)

 2. addApptCharges(int id)

 3. addTestCharges(int id)

 4. addTestCharges(int id)

 5. addWardCharges(int id)

 6. allotbed(int id)

 7. getOper(int id)

 8. delDoctor(int id)

Software Metrics 57

 9. delStaff(int id)

 10.editDoc(int id)

 11.editStaff(int id)

Admission:

Fig. 6.2 Sequence diagram for Admission event

Message addApptCharges(int id)

Actor: Income

Non-Actor: Registration

Here communication from non-actor to actor, so it can be identified as external output.

DET: 1, only one argument candidate message have.

FTR: 1, only one entity class is there.

Software Metrics 58

Test Appointment:

Fig. 6.3 Sequence diagram for Test Appointment event

Message: addTestCharges(int id)

Actor: Income

Non-Actor: Appointment

Here communication from actor to non-actor, so it can be identified as external input

(EI).

DET: 1, only one argument candidate message have.

FTR: 1, only one entity class is there.

Software Metrics 59

Doctor Appointments:

Fig. 6.4 Sequence diagram for Doctor Appointment event

Message: addApptCharges(int id)

Actor: Income

Non-Actor: Appointment

Here communication from actor to non-actor, so it can be identified as external input

(EI).

DET: 1, only one argument candidate message have.

FTR: 1, only one entity class is there.

Software Metrics 60

Bed Allotment:

Fig. 6.5 Sequence diagram for Bed Allotment event

Message: addWardCharges(int id)

Actor: Income

Non-Actor: Registration

Here communication from non-actor to actor, so it can be identified as external output

(EO).

DET: 1, only one argument candidate message have.

FTR: 1, only one entity class is there.

Message: allotBed(int id)

Actor: Income

Non-Actor: Ward

Here communication from actor to non-actor, so it can be identified as external input

(EI).

DET: 1, only one argument candidate message have.

FTR: 1, only one entity class is there.

Software Metrics 61

Undergo Operation:

Fig. 6.6 Sequence diagram for Undergo Operation event

Message: getOpr(int id)

Actor: Income

Non-Actor: TestOperation

Here communication from actor to non-actor, so it can be identified as external input

(EI).

DET: 1, only one argument candidate message have.

FTR: 1, only one entity class is there.

Login:

Fig. 6.7 Sequence diagram for Login event

Software Metrics 62

Draw salary:

Fig. 6.8 Sequence diagram for Draw salary event

Login and Draw salary events have no candidate message for transactional function

types. Here some messages are having no arguments so they should be discarded and

rest are between actor to actor or non-actor to non-actor so they cannot be taken as a

candidates for transactional function types.

Delete Doctor/staff:

Fig. 6.9 Sequence diagram for Delete Doctor/staff event

Message: delDoctor(int id), delStaff(int id)

Actor: DoctorStaff

Non-Actor: Edit

Software Metrics 63

Here communication from non-actor to actor, so it can be identified as external output

(EO).

DET: 1,1, only one argument candidate message have.

FTR: 1,1, only one entity class is there.

Edit Doctor/staff:

Fig. 6.10 Sequence diagram for Edit Doctor/staff event

Message: editDoctor(int id), editStaff(int id)

Actor: DoctorStaff

Non-Actor: Edit

Here communication from non-actor to actor, so it can be identified as external output

(EO).

DET: 1,1, only one argument candidate message have.

FTR: 1,1, only one entity class is there.

Software Metrics 64

Prescribed Test:

Fig. 6.11 Sequence diagram for Prescribed test event

Message: getTestCharges(int id),getTest(int id)

Actor: DoctorStaff

Non-Actor: TestOperation

Here communication from actor to non-actor, so it can be identified as external input.

DET: 1,1, only one argument candidate message have.

FTR: 1,1, only one entity class is there.

Messages Transaction

function

Complexity

addApptCharges(int id) EO (L) 1 DET, 1FTR

addApptCharges(int id) EI (L) 1 DET, 1FTR

addTestCharges(int id) EI (L) 1 DET, 1FTR

addTestCharges(int id) EI (L) 1 DET, 1FTR

addWardCharges(int id) EO (L) 1 DET, 1FTR

allotbed(int id) EI (L) 1 DET, 1FTR

getOper(int id) EI(L) 1 DET, 1FTR

delDoctor(int id) EO (L) 1 DET, 1FTR

delStaff(int id) EO (L) 1 DET, 1FTR

editDoc(int id) EO (L) 1 DET, 1FTR

editStaff(int id) EO (L) 1 DET, 1FTR

getTest(int id) EI (L) 1 DET, 1FTR
Table 6.2 Transactional Function types

Software Metrics 65

Total Internal Logical Files: 12 with low complexity

Total External Input: 6 with low complexity

Total External Output: 6 with low complexity

Total UFP: 12*7 + 6*5 + 6*5 = 144

Total SLOC: 144*53 = 7362 (UFP to SLOC conversion ratio for JAVA) see

 Table 3.1

Size 144 UFP

SLOC 7362

Effort 22.91 PM

Development time 3.67 Month

Staff 2.5

Productivity (SLOC/PM) 321.2

Table 6.3 General Software Metrics

Software Metrics 66

7. CONCLUSION

In this thesis, we have applied detailed function point analysis rules for design

specification developed based on the UML. Our tool estimates object oriented software

metrics in early life cycle phase, based on information of software in early design we

have applied Harput rules and some guidelines to estimate size metrics then we have

applied COCOMO II techniques to calculate rest of the software metrics. Tool

architecture and design is only for object oriented software. We have used Harput

transformation rules and Uemura approach to automate function point estimation but still

fully automatic model transformation still seems to be out of reach. Compared with FPA,

the estimation error range will decreased as we are accounting for the complexities of

generalization, aggregation and association which are not considered in traditional

function point measurement techniques. This approach easily estimate the effort for a

software development project based on its size using FPA.

Software Metrics 67

REFERENCES:

[1] A.J. Albrecht, “Measuring Application Development Productivity”, Proc. IBM

Applications Development Symp., Monterey, Calif. ,Oct 14-17, 1979.

[2]Harput V,Kaindl H,Kramer S.,”Extending Function Point Analysis to Object-Oriented

Requirements Specifications “,procceding on 11th IEEE International Software Metrics

Symposium (METRICS 2005).

[3] D.J Ram, S.V.G.K Raju,” Object Oriented Design Function Points”, -7695-0825-1/00

2000 IEEE.

[4] Kusumoto S.,Imagawa K.,Inoue K.,Morimoto S.,”Function Point Measurement from

Java Program” Proceedings of the ICSE’2002,florida ,USA.

 [5] International Function Point User Group (IFPUG), Function Point Counting Practices

Manual, Release 4.0, IFPUG, Westerville, Ohio, April 1990.

[6]Symons,C.:“Function-Point Analysis: Difficulties and Improvements.” IEEE

Transactions on Software Engineering, Vol. 14, Nr. 1, January 1988, pp. 2-11.

[7]Common software Measurement International Consortium, COSMIC–FFP version

2.0(2000).http:// www.cosmicon.com/

[8] Poensgen, B. and Bock, B. Function-Point An]alyse, dpunkt.verlag, Heidelberg,
2005.

[9] Sneed, H. “Impact Analysis of Maintenance Tasks for A Distributed Object-Oriented

System” Proceedings of 17th International Conference on Software Maintenance(ICSM

2001: Florence, Italy, November 7-9, 2001) IEEE CS Press, pp. 180-189.

[10] Sneed H.M, Huang S,” Sizing Maintenance Tasks for Web Applications”, procceding

on 11th European Conference on Software Maintenance and Reengineering (CSMR'07)

2007.

Software Metrics 68

[11] G. Caldiera, G. Antoniol, R. Fiutem, and C. Lokan. “Definition and experimental

evaluation of function points for object-oriented systems”In Proc. of the 5‘h

InternationalSymposium on Software Metrics, pages 167-178, November 1998.

[12] Sneed, H.M.: “Estimating the Development Costs of Object-Oriented Software.”

Proceedings of 7th European Software Control and Metrics Conference, Wilmslow,UK,

1996, p. 135.

[13] Cowderoy, A.J.C. “Size and Quality Measures for Multimedia and Web-site
Production.” Proceedings of the 14th International Cocomo Forum, 1999.

[14] Reifer, D.: “Web Development: Estimating Quick-to-Market Software.” IEEE
Softeware, November/December 2000.

[15] M. Sadiq., Shabbir Ahmed, “Computation of Function Point of a Software on the

basis of average complexity”, International Conference on Advanced Computing and

Communication Technologies,(ICACCT 07),Panipat, Haryana, India, 2007.

[36] Gupta D.,Kaushal S.,Sadiq M.,”software Estimation tool based on three layer model

for software engineering metrics” , ICMIT 2008.

 [17] Prof. Ellis, COCOMO II.2000.0 Horowitz University of southern California, Center

for software engineering, 1995

[18] Edilson J. D. Candido,Rosely Sanches, “Estimating the size of web applications by

using a simplified function point Method”,IEEE 2004.

[19] G. Cantone, D. Pace, and G. Calavaro. Applying function point to unified modeling

language: Conversion model and pilot study. In Proceedings of the 10th International

Symposium on Software Metrics (METRICS’04), pages 280–291. IEEE Computer

Society, 2004.

[20] Fetcke, T., Abran, A. and Nguyen, T., “Mapping the OOJacobson Approach into

Function Point Analysis”, IEEE Proceedings of TOOLS-23’97, 1997.

[21] T. Uemura, S. Kusumoto, and K. Inoue. Function Point Measurement Tool for UML

Design Specification. In Proceedings of the Sixth IEEE International Symposium on

Software Metrics, 1998.

