[image: image1.png]

Thesis on “Enhancement of TCP Over an Ad-Hoc Network”

Project Report

On

Enhancement of Transmission Control Protocol (TCP) Over an Ad-Hoc Network
Submitted in the partial fulfillment
for the award of degree of

Master of Engineering

In

Computer Technology & Application

Under the Guidance

Of

Mrs. Rajni Jindal

 Lect.(IT),DCE

Submitted By:

Sunil Kumar Singh

Roll No. 22/CTA/03

Univ. Roll No: 3015

M.E.(CTA)

Department of Computer Sc. & Engineering

Delhi College of Engineering

Bawana Road , Delhi-110042

[image: image2.png]

[image: image3.png]

Contents

Synopsis

 iv

Acknowledgement

 vi

List of Figures

 vii

1. Introduction

1.1 Overview of Mobile Ad Hoc Network…………………………1

1.1.1 Definition………………………………………………..2

1.1.2 What are ad hoc network………...……………….……..4

1.1.3 Ad-hoc Network Characteristics………………………..4

1.2 TCP in General ………………………………………………….5

1.3 Behaviour of TCP in Ad-hoc Networks…………………………6

1.4 Problem with TCP in Ad-Hoc Networks………………………...8

1.5 Problem Statement ……………………………………………..14

1.6 Overview of Thesis……………………………………………..14

2. Background and Motivation 16

2.1 Ad-Hoc Transmission Control Protocol……………………….16

2.2 State of Ad-Hoc TCP………………………………………….18

3. Proposed Approach 21

3.1 General Approach……………………………………………...21

3.2 New Approach…………………………………………………25

3.3 Merits and Demerits……………………………………………28

4. Implementation

 29
4.1 Implementation Environment………………………………… 29

4.2 Simulation of mobile Ad Hoc Network over wired Network….30

4.3 Modules………………………………………………………...31

4.3.1 Router Module………………...…………………….…31

4.3.2 Sender Module…………………………………………32

4.3.3 Receiver Module………………………………………32

4.3.4 Buffer module………………………………………….33

4.4 Coding …………………………………………………………33

5. Performance Study

 48

5.1 Loss Case………………………………………………………48

5.2 Congestion Case……………………………………………….49

5.3 Partition Case…………………………………………………..51

5.4 Packet Reordering……………………………………………...54

6. Conclusion and Future Work

 59

Reference

 60

A Glossary of Terms

 62

[image: image4.png]

Synopsis

[image: image5.png]

TCP/IP is the standard networking protocol on the internet and is also the most widely used. Due to these reason, its use over mobile Ad-Hoc networks is a certainty. Transport connections set up in wireless ad-hoc network are suffered by problems such as high bit error rates, frequent route changes, and partition.

Ad-Hoc networks are peer to peer, autonomous network comprised of wireless mobile device. Ad-Hoc networks are prone to link failures due to node mobility. If we run transmission control protocol (TCP) over such connections, the throughput of the connection is observed to be extremely poor since TCP is unable to distinguish between losses due to route failures and losses due to congestion. As a result, throughput degrades significantly when nodes are move and routes disconnected. Since all nodes are movable in a wireless ad-hoc network, route re-construction procedures are frequently invoked during data transmission due to node movements. Moreover, route failure is unavoidable due to the inherent nature of the wireless ad hoc network. If the TCP used in existing wired networks is applied to wireless ad hoc networks. TCP performance will be degraded, as it can not distinguish congestion from route failure.

In wireless ad hoc networks, links are broken as a result of node mobility and hence some time is needed to perform route reconfiguration. During this time, packets could lost. Hence, the TCP sender could misinterpret this event as congestion, which is untrue. A route disconnection should be handled differently from network congestion while we use Transmission control Protocol in Ad-he network.

In this thesis, we propose a new approach that improves ATCPs (Ad-hoc Transmission Control Protocol) performance in a mobile Ad hoc network, where each intermediate node have buffer, which temporarily buffers on going packets during a route disconnection and route re-establishment. And a prototype implementation also implemented.

 The main idea is to inform the source by a route failure message when the route is disconnected allowing the source to stop sending packets and the intermediate node at the point of disconnection buffers the packet as long as the route re-established or the retransmission timeout expires. When the route is re-established packet transmission continued.

[image: image6.png]

Acknowledgements

[image: image7.png]

The satisfaction that accompanies that successful completion of any task would be complete without the mention of the people whose co-operation made it possible, whose guidance and encouragement crown all the efforts with success.

I would like to express my heart felt thanks to my revered project guide Mrs. Rajni Jindal for her encouragement and benevolent guidance. Her experience and knowledge provided me great educative support.

I extent my sincere thanks to Dr. D. Roy Choudhary (H.O.D.) Computer Science & Engineering Department for giving invariable encouragement and suggestions.

I again extended my indebtedness to thank all staff of Comp. Sc. & Engg. Deptt., DCE, Delhi and my friend and fellow student for their valuable suggestions and help during the course of my thesis.

 (Mr. Sunil Kumar Singh)

 M.E. (CTA)

Univ. Roll No. 3015

[image: image8.png]

[image: image9.png]

List of figure

1.1
An Ad-hoc Mobile Wireless Network……………………………….3

1.2
Route change forced by mobility……..………………………………9

1.3
Network Partitions Formed and recombined due to mobility…...11-12

1.4
Effect of Multipath Routing…………………………………………13

2.1 State Transition Diagram for ATCP………………………………...20

3.1 Effect of link failure on packet transfer…………………………23-24

3.2 Packet transfer according to our proposed approach……………26-27

5.1 ATCP and TCP performance in the presence of bit

error only……………………………………………………………50

5.2 TCP trace in the presence of bit error only…………………………52

5.3 ATCP trace in the presence of bit error only……………………….53

5.4 ATCP and TCP performance in the presence of bit

error and congestion………………………………………………..55

5.5 ATCP and TCP performance in the presence of bit

error and partition…………………………………………………..56

5.6 ATCP and TCP performance in the presence of bit

error and packet reordering………………………………………...58

Chapter 1
[image: image10.png]

 Introduction

1.1 Overview of Mobile Ad Hoc Network

Since their emergence in the 1970s,wirless networks have become increasingly popular in the computing industry. This is particularly true within the past decade, which has seen wireless networks being adapted to enable mobility. There are currently two variation of mobile wireless networks.

The first is known as infrastructure networks, i.e. those network with fixed and wired gateways. The bridges for these networks are known as base stations. A mobile unit within these networks connects to, and communication with, the nearest base station that with in its communication radius. As the mobile travels out of range of one base station and into the range of another, a “handoff” occurs from the old base station to the new, and the mobile is able to continue communication seamlessly throughout the network. Typical application of this of network includes office wireless local area networks (WLANs).

The second type of mobile wireless network is the infrastructureless mobile network, commonly known as an ad-hoc network. Infrastructureless networks have no fixed routers; all nodes are capable of movement and can be connected dynamically in an arbitrary manner. Nodes of these networks function as router, which discover and maintain routes to other nodes in the network. Example applications of ad-hoc networks are emergency search and rescue operations, meetings or conventions in which persons wish to quickly share information, and data acquisition operations in inhospitable terrains.

1.1.1 Definition

“ Ad hoc network is a self-organizing multi-hop wireless network, which relies neither on fixed infrastructure nor on predetermined connectivity”.

Mobile Ad hoc networks (MANETs) are infrastructureless, autonomous networks comprised of work of wireless mobile computing devices. MANETs are peer to peer networks in which all the nodes in the network have the same capability and communicate with each other without the intervention or need of a centralized access point or base –station [as figure 1.1]. The mobile nodes or devices are equipped with wireless transmitters and receivers. Due to limited transmission range of wireless interfaces, these networks are multi-hop networks i.e.; a node may have relay a message through several intermediate nodes to reach the destination. Thus every node is a router as well as a host in a MANET.

The arbitrary movement of the nodes in such networks results in highly dynamic or ad-hoc topologies. Lower channel capacity of wireless channels as compared to wired links, coupled with effects of interference, fading and noise reduce the effective available bandwidth for communication. Moreover since the mobile device are dependent on batteries for their operation, these networks are also energy constrained. MANETs are attractive as they provide instant network setup without any fixed infrastructure.

The ease and speech of deployment of these networks makes them ideal for battle field communication, disaster recovery, conferencing, electronic class rooms etc.

1.1.2 What are ad hoc networks

An ad-hoc mobile network is a collection of mobile users (nodes) that are dynamically and arbitrarily located in such a manner that the interconnections between nodes are capable of changing on a continual basis. A mobile ad hoc network communicates over bandwidth- constrained wireless links. Due to nodal mobility, the network topology may change rapidly and unpredictably over time. The network is decentralized, where network organization and message delivery must be executed by the nodes themselves. Ad-Hoc networks have no fixed network infrastructure for routing traffic. Furthermore, transmission range is limited by power constraints, frequency reuse and channel effects.

It lacks a wired backbone to maintain routes as hosts move, or turn off or on. Instead, the hosts in the ad hoc network cooperatively determine routes in a distributed manner. Thus, every host is potentially a router, and a router between two hosts may change not only because of end – host mobility.

1.1.3 Ad- hoc Network Characteristics

· Rapidly deployable.

· Reconfigurable.

· High node mobility.

· Low Bandwidth.

· Lack of centralized entity.

· Node mobility leads to frequent link breaks.

· High Bit Error Rate.

· Network topology changes frequently and unpredictably.

1.2 TCP in General

TCP was specifically designed to provide a reliable end-to-end byte stream over an unreliable internetwork[7]. TCP uses multiple timers to do its work. The most important of these is the retransmission timer, which is calculated based on the estimate of round-trip delay. The second timer is the persistence timer.

To make congestion control, TCP maintain two windows: the windows the receiver has granted and a second window, the congestion window. Each reflects the number of bytes the sender may transmit. The number of bytes that may be sent is the minimum of the two windows. When a connection is established, the sender initializes the congestion window to the size of the maximum segments. If this segment is acknowledge before the timer goes off, it adds one segment worth of bytes to the congestion window and sends two segments. If these two segments are acknowledged, the congestion window is increased by 2 maximum segments. In this way, the congestion window size grows exponentially until either a time out occurs or the receivers window is reached.

If the retransmission timer goes off before the acknowledgement comes in, the sender retransmits the segment and reduces the window size by half. From that point on, the source increase its window size by one unite every average round trip time. When time out happens again, the window size is halved and the algorithm repeats.

The persistence timer is used when the receiver sends an acknowledgement with a window size of 0, telling the sender to wait, then sender go into persistence mode and set the persistence timer. If persistence time out, the sender will send a one-byte segment as a probe to the receiver. The response to the probe gives window size. If it is still zero, the persistence timer is set again and the cycle repeats. If it is non zero, sender

will go out of persistence mode and new data can be sent. If no persistence timer and the packet from the receiver for updating the window is lost, then both receiver and sender will wait for each other to do something forever.

1.3 Behavior of TCP in Ad-hoc Networks.

TCP is a reliable, stream oriented transport layer protocol which has been designed for use over fixed networks like the internet. It has been established that packet error or loss rates over the internet due to transmission errors are of the order of 1%. In other words, packets are rarely lost. Route failures and disruptions are very infrequent as the network is fixed. Therefore, packet loss, which is detected by TCP as a timeout, is interpreted to be a symptom of congestion in the network. In response, TCP invokes congestion control mechanisms. In other words, TCP cannot distinguish between congestion on the one hand and packet loss due to transmission errors or route failures on the other. This inability of TCP to distinguish between two distinct problems exhibiting the same symptoms will result in performance degradation in ad-hoc networks.

In an Ad-hoc network, packet losses are frequent in the error-prone wireless medium. However, the effect of these losses can be reduced using reliable link layer protocols. Route failures, which can occur frequently and unpredictably during the lifetime of a transport session, depending on the relative motion of MHs in the network, are more difficult to handle. In general, whenever the mobility of an MH invalidates a route, the re-establishment of the route by the underlying routing protocol takes a finite destination though the existing route. This will result in the queuing and possible loss of packets or acknowledgements, which will be interpreted by the transport protocol at the source as congestion.

Consequently the source will;

· Retransmit unacknowledged packet upon timing out.

· Invoke congestion control mechanisms that include exponential back off of the retransmission timers and immediate shrinking of the window size, thus resulting in reduction of the transmission at the normal rate.

· Enter a slow start recovery phase to ensure that the congestion has reduced before resuming packet transmission at normal rate.

This is undesirable for the following reasons;

· When there is no route available, there is no need to retransmit packets that will anyway not reach the destination.

· Packet retransmission wastes precious MH battery power and scarce bandwidth.

· In the period immediately following the re-establishment of the route, the throughput will be unnecessarily low as a result of the slow start recovering mechanism even though there is actually no congestion in the network.

1.4 Problem with TCP in Ad-Hoc Networks

TCP is a connection- oriented transport layer protocol that provides reliable, in-order delivery of data to the TCP receiver. If we use TCP without any modification in mobile ad hoc network, we experience a serious drop in the throughput of the connection[6]. There are several reason for such a drastic drop in TCP throughput and these reason in some detail are:

· Effect of a High BER:
 Bit errors cause packets to get corrupted which result in lost TCP data segment or acknowledgement. When acknowledgement do not arrive at the TCP sender within a short amount of time [the retransmit timeout (RTO)], the sender Retransmits the segment, exponentially back off its retransmit timer for the next retransmission, reduces its congestion control window threshold, and closes its congestion window to one segment. Repeated errors will ensure that the congestion window at the sender remain small resulting in low throughput [1], [2]. It is important to note that error correction may be used to combat high BER but it will waste valuable wireless bandwidth when correction is not necessary.

· Effect of Route Changes:

 When an old route is no longer available [as in Figure 1.2], the network layer at the sender attempts to find a new route to the destination. It is possible that discovering a new route may take significantly longer than the RTO at the sender. As a result, the TCP sender times out, retransmits a packet, and invokes congestion control. Thus, when a new route is discovered, the throughput will continue to be small for some time because TCP at the sender grows its congestion window using the slow start and congestion avoidance algorithm. This is clearly undesirable behavior

because the TCP connection will be very inefficient. If we imagine a network in which route computations are done frequently (i.e., the congestion window will always be significantly smaller than the advertised window size from the receiver).

· Effect of Network Partitions:
 It is likely that the ad hoc network may periodically get partitioned for several seconds at a time [as in Figure 1.3]. if the second and the receiver of a TCP connection lie in different partitions, all the sender’s packets get dropped the network resulting in the sender invoking congestion control. If the partition lasts for a significant amount of time (say, several times longer than the RTO), the situation gets even worse because of a phenomenon called serial timeouts. A serial timeout is a condition wherein multiple consecutive retransmissions of the same segments are transmitted to the receiver while it is disconnected from the sender. All these retransmissions are, thus lost. Since the retransmission timer at the sender is doubled with each unsuccessful retransmission attempt (until it reaches 64 sec.), several consecutive failure can lead to inactivity lasting one or two minutes even when the sender and receiver get reconnected.

· Effect of Multipath Routing :

 Some routing protocols (such as temporally ordered routing algorithm (TORA)) maintain multiple routes between source destination pairs, the purpose of which is to minimize the frequently of route recomputation. Unfortunately, this sometimes results in a significant number of out-of-sequence packets arriving at the receiver [as in Figure 1.4].The effect of this is that the receiver generates duplicate acknowledgments (ACKs) which cause the sender (on receipt of three duplicate ACKs) to invoke congestion control.

What does congestion windows (CWND) really mean in Ad-Hoc Networks?

The congestion windows in TCP impose an acceptable data rate for a particular connection based on congestion that is derived from timeout events as well as from duplicate ACKs. In an ad hoc network, since routes changes during the lifetime of a connection, we lose the relationship between the CWND size and the tolerable data rates for the route. In the other words, the CWND as computed for one route may be too large for a newer route, resulting in network congestion when the sender transmits at the full rate allowed by the old CWND.

1.5 Problem Statement

1.6 Overview of Thesis

The main aim of our thesis is to improve performance of TCP in mobile Ad- Hoc networks. It covers an approach, in which main motive is to improve the TCP throughput in mobile Ad-Hoc networks.

· Chapter 2

Describe the background and motivation of Ad Hoc transmission control protocol used for the mobile Ad-Hoc networks.

· Chapter 3

Describe the detail of our proposed approach and it’s merits and demerits.

· Chapter 4

Gives details of implementation of our approach.

· Chapter 5

Describe the performance of our approach.

· Chapter 6

Gives the summary of the work done with the perspective on the future work.

Chapter 2

 Background and Motivation

In this chapter we briefly describe background of Ad hoc transmission control protocol’s used to improve TCP’s throughput if we use TCP in mobile Ad hoc networks.

2.1 Ad Hoc Transmission Control protocol

Many approaches [1]-[3] have been suggested in different papers for improving TCP performance in cellular networks where the last link is the only wireless link in the system. The method used in these various approaches is to split the connection in two at the base station. The base station then retransmits the packets to the mobile node and prevent the TCP sender located in the wireline network from invoking congestion control.

In an ad hoc network the TCP connection traverses multiple wireless links. Thus, solution based on using the base station to solve the problem

could not work very well. If the TCP used in existing wired networks is applied to wireless ad hoc network, TCP performance will be degraded, as it cannot distinguish congestion from route failure. So if we use TCP without any modification in mobile ad hoc network, we a serious drop in the throughput of the connection.

 Ad hoc TCP approach uses links failure ICMP message to notify TCP sender that a link has failed and it disables its retransmission timer and enters in stand-by mode. In stand-by mode, the TCP sender periodically sends a packet to the destination. When an ACK is received, TCP come out of the stand-by mode, restore its retransmission timers, and resumes transmission as normal. Ad hoc TCP approach differs from the various proposed approach as those approaches do not deal with high loss environment present in ad hoc networks. While ad hoc TCP treats loss due to packet loss and loss due to congestion differently and it ensures that the congestion window is recomputed after every new route recomputation. Thus all have been taken into account possible sources of defficiency in TCP so that throughput is not poor while using TCP in Ad - hoc mobile networks.

When high bit errors causes packets to get corrupted which results in loss of TCP data segments or acknowledgement, than sender retransmits the lost segments without shrinking the congestion window. When the delay due to route change and partition causes retransmission timeout (RTO) at sender to expire in that case sender stops transmitting and resume transmission when a new route found. Hence if we run the transmission control protocol(TCP) over ad hoc mobile network it will function well in the lossy and partition prone ad hoc networking environment.

2.2 States of Ad Hoc TCP

To understand ATCPs behavior the possible states of it are normal, congested loss and disconnected [as in Fig 2.1] When TCP connection is initially established, ATCP at the sender is in the normal state[6]. ATCPs behavior under possible four circumstances are :

· Lossy Channel :

When the connection from the sender to the receiver is lossy, it is likely that some segments will not arrive at the receiver or may arrive out-of-order. Thus the receiver may generate duplicate acknowledgement (ACKs) in response to out of sequence segments. When TCP receives three consecutive duplicates ACKs, it retransmits the data segment and shrinks the congestion window. It is also possible that due to lost ACKs the TCP senders RTO may expire causing it to retransmit one segment and invoke congestion control. When sender is put in persist state, it enters loss state.

ATCP in its normal state counts the number of duplicate ACKs received for any data segment. When it sees that three duplicate ACKs have been received it dose not forward the third duplicate ACK but puts TCP sender in persist mode. Similarly, When ATCP sees that TCPs RTO is about to expire, it again puts TCP in persist mode. By doing this we ensure that the wrong thing to do under these circumstances. In the loss state ATCP transmits the unacknowledged segments from TCPs send buffer. It maintain its own separate timers to retransmit these segments in the event that ACKs are not forthcoming. Eventually when a new ACK arrives(i.e., an ACK for a previously unacknowledged segment), ATCP forward that ACK to TCP which also removes TCP from persist mode. ATCP then returns to its normal state.

· Congested:

It have assumed that when the network detects congestion the explicit congestion notification (ECN) flag is set in ACK and data packets. Let us assume that ATCP receives this message when in its normal state. ATCP moves into its congested state and dose

nothing. It ignores any duplicate ACKs that arrive and it also ignores imminent RTO expiration events. In other words, ATCP dose not interferes with TCPs normal congestion behaviour. After TCP transmits a new segment, ATCP returns to its normal state.

· Disconnected :

Node mobility in ad hoc network causes route

 Recomputation or even temporary network partition. When this happens, we assumed that the network generate an ICMP Destination Unreachable massage in response to a packet transmission. When ATCP receives this message, it puts the TCP sender into persists mode and itself enters the disconnected state. TCP sender periodically generates probe packets while it is in persist mode. When the receiver is connected to the sender it responds to these probe packets. This removes TCP from persist mode and move ATCP back into normal state.

 When ATCP is in the loss state on reception of an ECN or an ICMP message will move ATCP into congested state and TCP sender come out from its persist state, Similarly reception of an ICMP Destination Unreachable message moves ATCP from either the loss state or the congested state into the disconnected state and ATCP moves TCP sender into persist mode.

Let us examination how ATCP changes TCPs behavior under lossy condition (due to high BER), ATCP retransmits unacknowledged segments while TCP sender is put into persist state. Thus , TCP sender dose not invoke congestion control. In the event that the source and the destination get disconnected either for short periods of time while a new route is computed or for longer periods due to partition, TCP sender is again put into persist mode for the duration of the disconnection and on segments are transmitted by ATCP. When the network is reconnected, TCP sender automatically comes out of persist mode because the receiver responds to the senders probe packets.

 Receive dup ACK

 or packet from receiver

Destination Unreachable

ICMP

cwnd (1

Start Here

 TCP Transmits

 a packet

New ACK

RTO about

to expire OR

3 dup ACKs

 ATCP Retransmits

 segments in TCP’s

 Buffer

Receive ECN

Chapter 3

Proposed Approach

In this chapter, we describe our approach, which enhance the performance of the TCP for mobile Ad hoc networks. When we run the transmission control protocol in the mobile Ad hoc networks. In this we also describe general behaviour data transfer in Ad hoc network and detailed description of our new approach which makes TCP perform well in Ad hoc networks.

3.1 General Approach

Mobile Ad hoc networks suffer by high bit-error rate (BER) and node connectivity tends to change over time. The rate at which the connectivity changes depends on the number of nodes, their velocity, transmission range, and obstacles in the environment that may create shadows. Due to high node mobility, there are two efforts of this change in the node connectivity. First nodes may need to recompute routes to some destination. As in figure 1.2

node S need to recompute routes to destination D for an ongoing TCP connection because node S and node B moved in the range of node S.

Second it is likely that the ad hoc network may be temporarily partitioned due to node mobility. As in figure 1.3 at time to node S has an open TCP connection to node D. At time t1 partitioned causing node S and D to lie in different partitions. Thus all the sender’s packets get dropped. At time t2 network eventually reconnects. Thus allowing node S and node D to continue communicating and transmission resumes. Due to this change in node connectivity due to high node mobility, which leads to route disruption and link failure, has poor consequences for TCP throughput which can drop to very low.

The reference [6] described a view for improving TCP performance in ad-hoc networks. But it happened that packets reaching the failure point are lost when the next link from the failure point is down due to link failure or network partitions as shown in fig 3.1.

When we run TCP in Ad-hoc network and due to node mobility when link fails, sender will still keep transmitting data from TCPs send buffer. But due to non-availability of the route by link failure these packet dropped. This continuous transmission of packets will decrease the transmission energy and hence decrease the transmission energy efficiency and throughput is also not too much better and a wastage of limited band width also.

 ICMP msg.

3.2 New Approach

Our new approach enhances the TCP performance in wireless ad-hoc networks. TCP performance is improved by introducing buffering capability in intermediate mobile nodes during the link failure as shown in fig 3.2. Packets are buffered at intermediate nodes which awaiting transmission. During the link failure due to high node mobility, when the route fails from sender to destination, the packet in their way buffered at the intermediate node at the failure point. Our proposed approach take advantage of ICMP “Destination Unreachable” message for detecting a route disconnection and route re-establishment for informing sender about the link failure to stop further transmission and resume transmission after the reconnection. It happened that packet reaching the failure point are lost when the next link from the failure point is down. But packets will not loss if the intermediate node buffers these packets to a limited extent. If the route established, the buffered packet sent to the destination along the established route which awaiting transmissions in the intermediate node. Destinations Unreachable ICMP messages indicate route disruption in our scheme.

This buffering schemes has advantage that it will save packet retransmission and packet flow can resume even before the source learns about the route re-establishment. Addition of buffering capability at intermediate nodes leads to minimum overhead of addition burden of buffer. This will leads to little memory uses. It also make better utilization of limited band-width.

However, since all nodes are movable in a wireless ad hoc network, the route reconstruction procedures are frequently invoked during data transmission due to node movements. Since route failure is unavoidable due to the inherent nature of the wireless ad hoc network. If the TCP used in existing wired networks is applied to wireless ad hoc networks, TCP performance will be degraded, as it can not distinguish congestion from route failure. Thus our proposed approach for improving TCP performance in wireless mobile ad hoc networks by introducing buffering capability in intermediate mobile nodes will increase the throughput of the TCP in ad hoc networks and decrease transmission energy efficiency.

 ICMP msg.

3.3 Merits and Demerits

Our new approach for running TCP in ad hoc mobile networks, in which frequent link disconnectivity, frequent route changes and partitions take place, improves throughput of the TCP running in mobile ad hoc networks as packets buffered at intermediate nodes during the route failure. The merits and demerits of our approach are as follows:

Merits

· Better utilization of limited bandwidth.

· Improvement in energy efficiency.

· Better TCP throughput.

· Time saving.

Demerits

· Additional overhead of buffer.

· Memory uses.

· Consumption of some CPU time.

Chapter 4

Implementation

This chapter describes the implementation details of our thesis approach. Implementation is a process that realizes the design. It evaluates the design and provides feedback to the designer in order to improve the design. First section gives implementation environment and second section describes the generation of mobile Ad hoc network environment over wired network. Third section describes the properties of different modules, used in the implementation part of our thesis.

4.1 Implementation Environment

The design of this system can be implemented in any operating system. The system is implemented on Linux (ver 7.2) platform. Linux is chosen as a platform because it provides very good support for IPC (Inter process communication), signal and network

programming. This thesis contains the prototype implementation of our approach by using Socket programming.

The programming language used for development is C/C++ language because it is very integrated with Linux and provide feature for accessing the facilities provided by Linux operating System, and also very frequently used in Socket Programming for networking.

4.2 Simulation of mobile Ad Hoc network over wired network:
For the simulation the Ad hoc network scenario is generated over wired network by ignoring the concept of transmission range as its concept exists in Ad hoc network. In this implementation, the wireless network is simulated over wired network. We can make any network topology by connecting a number of machines through cables and hubs.

First when any router module is started at any machines which is treated as node, it starts scanning all the neighbour nodes directly connected to it and builds the routing table entries for all nodes in the network connected to it. The table entries are modified dynamically, due to attaching or detaching nodes from the network.

And when mobile node is being up, it gives manual option to connect to any machines as mobile node through one directly connected node. After it connected, sends routing update request and newly connected nodes along with all live node’s routing table is updated. Entries in the routing table contains node’s IP address, which is connected via some IP address form.

Suppose node A is connected to node B and node C connected to B, than routing table of node A contains entries as node A connected to node A via node A via node B and rest of the nodes have entries similarly.

To show that any node has moved out of range of any nodes, we disconnect these two nodes and the routing table is updated accordingly. In

this way we can generate any topology scenario and also connect and disconnect any machines to show link failure or new route formation.

4.3 Modules

In the implementation part, this thesis contains three modules. Three modules and their properties are as follows:

· Router

· Receiver

· Sender

· Buffer

4.3.1 Router Module

This module has an important role in the implementation. It works like a sample router and maintains the routing table for different machines. It updates the routing table entries time to time, as machines are being up/down. If any packet, having other machine as destination, is coming to it, it can forward the according to routing table entries.

With these routing capabilities, this router also has the Ad hoc mobile node capabilities for receiving and forwarding packet to other machines. So it can work as receiver, sender and router.

The functionality of this module as a router is as follows:

· It can send or receives routing updates.

· It can listen or send routing updates.

· It can modify all the entries according to routing updates on the direct connected node.

· It can connect or disconnect to or from any router.

· It can route the packet, which passes thorough this, according to the route entry in the routing table.

4.3.2 Sender Module

In this module, A Sender Node simulator is implemented, which can work as a sender to send the packet. The capabilities of Sender module as a sender are as follows:
· It can send packets.

· It can send or receive acknowledgements.

· The packet exchange is done as per Go back N sliding window protocol.

4.3.3 Receiver Module

In this module, A receiver Node simulator is implemented, which can work as a receiver of the packet. The capabilities of receiver module as a receiver are as follows:

· It can receive packets.

· It can send or receive acknowledgements.

· The packet exchange is done as per Go Back N sliding window protocol.
4.3.4 Buffer module

A Buffer is an amount of memory set aside for storing information (Data). In the mobile Ad-Hoc Network, The packet will be stored to the intermediate node where the failure of the route to be occurs between transferring the data.
4.4

Coding

Receiver side

/* for use with Winsock */

#include <winsock2.h>

#include <iostream>

using namespace std;

/* my own library */

#include "../mysocket.h"

class Packet {

public:

int len;

char data[1000];

};

bool InitSocket() {

WORD wVersionRequested;

WSADATA wsaData;

int err;

wVersionRequested = MAKEWORD(2, 0);

err = WSAStartup(wVersionRequested, &wsaData);

if (err != 0) return false;

/* Confirm that the WinSock DLL supports 2.0.*/

/* Note that if the DLL supports versions greater */

/* than 2.0 in addition to 2.0, it will still return */

/* 2.0 in wVersion since that is the version we */

/* requested. */

if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 0) {

return false;

}

return true;

}

DWORD WINAPI HandlingThread(LPVOID p) {

CMySocket *senderSock = (CMySocket *) p;

// now we can send and receive via this socket

char msg[100];

 sprintf(msg, "hello %s:%d", senderSock->remoteAddr, senderSock->remotePort);

Packet pk;

pk.len = strlen(msg);

strcpy(pk.data, msg);

senderSock->Send((char *) &pk, sizeof(Packet));

while(1) {

if (senderSock->Receive((char *) &pk, sizeof(Packet)) == -1) {

break;

}

if (pk.len == -1) break;

char *str = new char[sizeof(Packet)];

sprintf(str, "receiver: %s", pk.data);

strcpy(pk.data, str);

delete str;

pk.len = strlen(pk.data);

if (senderSock->Send((char *) &pk, sizeof(Packet)) == -1) {

break;

}

}

senderSock->Close();

return 0;

}

int main(int argc, char **argv) {

DWORD dwA;

char receiverIP[20];

int receiverPort;

if(!InitSocket()) {

MessageBox(NULL, "Could not initialize socket", "Error", MB_OK);

return 0;

}

// check command line

if (argc != 2) {

cout << "Usage: chatreceiver receiverPort\n";

cout << "Enter port: ";

cin >> receiverPort;

}

else {

receiverPort = atoi(argv[1]);

}

CMySocket *sock = new CMySocket;

sock->Create();

if (sock->Bind(receiverPort) == SOCKET_ERROR) {

 cout << "could not bind to port " << receiverPort << "\n";

return 0;

}

if (sock->Listen() == SOCKET_ERROR) {

cout << "could not listen on port " << receiverPort << "\n";

return 0;

}

cout << "listening ...\n";

while(1) {

CMySocket sendertSock = sock->Accept();

DWORD pdwThreadId;

HANDLE hThread = CreateThread(NULL, NULL,

HandlingThread, (void *) &senderSock, NULL, &pdwThreadId);

}

sock->Close();

delete sock;

}

Socket header file

// MySocket.h: interface for the CMySocket class.

//

#include <winsock2.h>

class CMySocket {

private:

fd_set fds;

timeval *SendTimeout;

timeval *RecvTimeout;

int sendBufSize;

int recvBufSize;

public:

SOCKET sock;

char remoteAddr[20];

UINT remotePort;

public:

void InitTimeOut(timeval, timeval);

CMySocket();

virtual ~CMySocket();

void Create();

int Connect(char rSocketAddress[], UINT rSocketPort);

int Send(char *, int);

int Receive(char *, int);

int Bind(int);

int Bind(int, char[]);

int Listen();

void Close();

void SetBlocking(bool);

CMySocket Accept();

protected:

void InitFD_SET();

};

Socket

// MySocket.cpp: implementation of the CMySocket class.

//

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include <time.h>

#include "MySocket.h"

#ifdef _DEBUG

#undef THIS_FILE

static char THIS_FILE[]=__FILE__;

#define new DEBUG_NEW

#endif

//

// Construction/Destruction

//

CMySocket::CMySocket()

{

// Set timeout

SendTimeout = NULL;

RecvTimeout = NULL;

sock = INVALID_SOCKET;

sendBufSize = 1024 * 64; // 64K

recvBufSize = 1024 * 64; // 64K

}

CMySocket::~CMySocket()

{

}

void CMySocket::Create() {

sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

InitFD_SET();

setsockopt(sock, SOL_SOCKET, SO_SNDBUF, (char *) &sendBufSize, sizeof(sendBufSize));

setsockopt(sock, SOL_SOCKET, SO_RCVBUF, (char *) &recvBufSize, sizeof(recvBufSize));

timeval timeoutV;

/*timeoutV.tv_sec = 3; // 3 seconds

timeoutV.tv_usec = 0;

InitTimeOut(timeoutV, timeoutV);*/

}

int CMySocket::Connect(char rSocketAddress[], UINT rSocketPort) {

sockaddr_in sinRemote;

 sinRemote.sin_family = AF_INET;

 sinRemote.sin_addr.s_addr = inet_addr(rSocketAddress);

 sinRemote.sin_port = htons(rSocketPort);

 return connect(sock, (sockaddr*)&sinRemote, sizeof(sockaddr_in));

}

CMySocket CMySocket::Accept() {

// wait until somebody wants us...

 CMySocket retSock;

sockaddr_in srcaddr;

int srcaddrlen = sizeof(sockaddr_in);

retSock.sock = accept(sock, (sockaddr*) &srcaddr, &srcaddrlen);

if (retSock.sock != INVALID_SOCKET) {

sprintf(retSock.remoteAddr, inet_ntoa(srcaddr.sin_addr));

retSock.remotePort = srcaddr.sin_port;

retSock.InitFD_SET();

}

return retSock;

}

int CMySocket::Send(char *pBuf, int nBytes) {

int iRC = 0;

int iSendStatus = 0;

int
 totalSend = 0;

char *pBuffer = static_cast<char *>(pBuf);

// As long we need to send bytes...

while(totalSend < nBytes) {

// Send some bytes

iSendStatus = send(sock, pBuffer + totalSend, nBytes - totalSend, 0);

// Error

if(iSendStatus == SOCKET_ERROR) return -1;

else {

// Update buffer and counter

totalSend += iSendStatus;

}

}

return nBytes;

}

void CMySocket::Close() {

closesocket(sock);

sock = INVALID_SOCKET;

}

void CMySocket::SetBlocking(bool flag) {

u_long i = 1;

if (flag) i = 0;

else i = 1;

ioctlsocket(sock, FIONBIO, &i);

}

int CMySocket::Receive(char *pBuf, int nBytes) {

int iRC = 0;

int iRecvStatus = 0;

int

totalRead = 0;

char *pBuffer = static_cast<char *>(pBuf);

// As long we need to receive bytes...

while(totalRead < nBytes) {

// Receive some bytes

iRecvStatus = recv(sock, pBuffer + totalRead, nBytes - totalRead, 0);

// Error

if(iRecvStatus == SOCKET_ERROR || iRecvStatus == 0) return -1;

else {

// Update buffer and counter

totalRead += iRecvStatus;

}

}

return nBytes;

}

int CMySocket::Bind(int nPort) {

// bind the receiver socket to its local address

 sockaddr_in local;

 local.sin_family = AF_INET;

 local.sin_port = htons(nPort);

 local.sin_addr.s_addr = htonl(INADDR_ANY); //allow connections FROM anyone

 return bind(sock, (sockaddr*) &local, sizeof(sockaddr_in));

}

int CMySocket::Bind(int nPort, char ipAddr[]) {

sockaddr_in local;

 local.sin_family = AF_INET;

 local.sin_port = htons(nPort);

 local.sin_addr.s_addr = inet_addr(ipAddr);

 return bind(sock, (sockaddr*) &local, sizeof(sockaddr_in));

}

int CMySocket::Listen() {

return listen(sock, SOMAXCONN);

}

void CMySocket::InitFD_SET() {

if (sock != INVALID_SOCKET) {

FD_ZERO(&fds);

FD_SET(sock, &fds);

}

}

void CMySocket::InitTimeOut(timeval sendT, timeval recvT) {

if (SendTimeout == NULL) {

// first time initialized

SendTimeout = (timeval *) malloc(sizeof(timeval));

SendTimeout->tv_sec = sendT.tv_sec;

SendTimeout->tv_usec = sendT.tv_usec;

}

else {

SendTimeout->tv_sec = sendT.tv_sec;

SendTimeout->tv_usec = sendT.tv_usec;

}

if (RecvTimeout == NULL) {

// first time initialized

RecvTimeout = (timeval *) malloc(sizeof(timeval));

RecvTimeout->tv_sec = recvT.tv_sec;

RecvTimeout->tv_usec = recvT.tv_usec;

}

else {

SendTimeout->tv_sec = recvT.tv_sec;

SendTimeout->tv_usec = recvT.tv_usec;

}

}

Sender side

/* for use with Winsock */

#include <winsock2.h>

#include <iostream>

using namespace std;

/* my own library */

#include "../mysocket.h"

class Packet {

public:

int len;

char data[1000];

};

bool InitSocket() {

WORD wVersionRequested;

WSADATA wsaData;

int err;

wVersionRequested = MAKEWORD(2, 0);

err = WSAStartup(wVersionRequested, &wsaData);

if (err != 0) return false;

/* Confirm that the WinSock DLL supports 2.0.*/

/* Note that if the DLL supports versions greater */

/* than 2.0 in addition to 2.0, it will still return */

/* 2.0 in wVersion since that is the version we */

/* requested. */

if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 0) {

return false;

}

return true;

}

void printPacket(Packet pk) {

char *str = new char[pk.len+1];

for (int i = 0; i < pk.len; i++)

str[i] = pk.data[i];

str[pk.len] = '\0';

cout << str << "\n";

}

int main(int argc, char **argv) {

char receiverIP[20];

int reciverPort;

if(!InitSocket()) {

MessageBox(NULL, "Could not initialize socket", "Error", MB_OK);

return 0;

}

// check command line

if (argc != 3) {

cout << "Usage: chat receiverIP receiverPort\n";

cout << "Enter receiver IP: ";

cin >> receiverIP;

cout << "Enter port: ";

cin >> receiverPort;

}

else {

strcpy(receiverIP, argv[1]);

reciverPort = atoi(argv[2]);

}

CMySocket *sock = new CMySocket;

sock->Create();

int ret = sock->Connect(receiverIP, receiverPort);

if (ret == SOCKET_ERROR) {

cout << "Failed connecting receiver\n";

return false;

}

Packet pk;

sock->Receive((char *) &pk, sizeof(Packet));

printPacket(pk);

while (1) {

char msg[100];

gets(msg);

if (strcmp(msg, "quit") == 0) {

break;

}

pk.len = strlen(msg);

strcpy(pk.data, msg);

sock->Send((char *) &pk, sizeof(Packet));

sock->Receive((char *) &pk, sizeof(Packet));

printPacket(pk);

}

sock->Close();

delete sock;

}

Coding of Buffer

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "bigbuffer.h"

static int Bigbuffer_seek(Bigbuffer *buffer, index_type i);

static int Bigbuffer _seek(Bigbuffer *buffer, index_type i)

{

if (buffer->file_pointer_index != i) {

buffer->file_pointer_index = i;

return (fseek(buffer->fp, i*buffer->elmt_size, SEEK_SET));

}

return (0);

}

Bigbuffer *Bigbuffer_calloc(char *fname, index_type num_elmts, size_t elmt_size)

{

Bigbuffer *r;

index_type i;

if ((r = malloc(sizeof(*r))) != NULL) {

if ((r->fname = strdup(fname)) == NULL) {

free(r);

return (NULL);

}

if ((r->fp = fopen(fname, "wb+")) == NULL) {

free(r->fname);

free(r);

return (NULL);

}

r->num_elmts = num_elmts;

r->elmt_size = elmt_size;

if ((r->last_elmt = calloc((size_t) 1, (size_t) elmt_size)) == NULL) {

free(r->fname);

fclose(r->fp);

free(r);

return (NULL);

}

r->last_elmt_index = -1L;

for (i=0; i < num_elmts; i++) {

if (fwrite((void*) r->last_elmt, (size_t) elmt_size, (size_t) 1, r->fp) != (size_t) 1) {

free(r->fname);

free(r->last_elmt);

fclose(r->fp);

free(r);

return (NULL);

}

}

if (fseek(r->fp, 0L, SEEK_SET)) {

free(r->fname);

fclose(r->fp);

free(r->last_elmt);

free(r);

return (NULL);

}

r->last_elmt_index = -1L;

r->file_pointer_index = 0;

}

return (r);

}

int Bigbuffer_free(Bigbuffer *buffer)

{

if (fclose(buffer->fp)) return (0);

if (unlink(buffer->fname)) return (0);

free(buffer->fname);

free(buffer->last_elmt);

return (1);

}

void *Bigbuffer_element(Bigbuffer *buffer, index_type i, void *dest)

{

if (i != buffer->last_elmt_index) {

if (Bigbuffer_seek(buffer, i)) {

return (NULL);

}

if (fread(buffer->last_elmt, (size_t) buffer->elmt_size, (size_t) 1, buffer->fp) != (size_t) 1) {

return (NULL);

}

buffer->last_elmt_index = i;

buffer->file_pointer_index++;

memcpy(dest, buffer->last_elmt, buffer->elmt_size);

}

return (dest);

}

int Bigbuffer_assign(Bigbuffer *buffer, index_type i, void *src)

{

if (i == buffer->last_elmt_index) {

memcpy(buffer->last_elmt, src, buffer->elmt_size);

}

if (Bigbuffer_seek(buffer, i)) {

return (0);

}

if (fwrite(src, array->elmt_size, 1, buffer->fp) != 1) {

return (0);

}

buffer->file_pointer_index++;

return (1);

}

#if 0

#define NUM_ELMTS
10

#define ELMT_TYPE
char

void main(void)

{

index_type i, j;

ELMT_TYPE e;

Bigbuffer *buffer;

if ((buffer= Bigbuffer_calloc("f:buffer.$$$", NUM_ELMTS, sizeof(ELMT_TYPE))) == NULL) {

fprintf(stderr, "Bigbuffer_calloc() failed.\n");

exit(-1);

}

for (i=0; i < NUM_ELMTS; i++) {

e = random(255);

j = random(NUM_ELMTS);

fprintf(stderr, "%ld'th elmt = %d\n", j, (int) e);

if (!Bigbuffer_assign(buffer, j, (void*) &e))

{

fprintf(stderr, "Bigbuffer_assign() failed for %ld'th elmt.\n", i);

exit(-1);

}

}

fprintf(stderr, "\n");

for (i=0; i < NUM_ELMTS; i++) {

if (Bigbuffer_element(buffer, i, &e) == NULL)

 {

fprintf(stderr, "Bigbuffer_element() failed for %ld'th elmt.\n", i);

exit(-1);

}

fprintf(stderr, "%ld'th elmt = %d.\n", i, (int) e);

}

if (!Bigbuffer_free(buffer)) {

fprintf(stderr, "Bigbuffer_free() failed.\n");

exit(-1);

}

}

#endif

Chapter 5

 Performance Study

In this section, we discuss the performance of our implementation. Our goal in running the various experiments was to examine ATCP’s performance in the presence of bit error, network partition, and congestion. Specific questions we looked at included:

· What is the effect of high bit error on ATCP performance? How does ATCP perform when the wireless bandwidth is low? How does ATCP performance scale with varying RTT values?

· How does multipath routing affect ATCP’s performance in relation to TCP?

· Does ATCP perform correct congestion control when network congestion occurs?

· How does ATCP perform, in relation to plain TCP, in ad hoc networks where there are frequent short disconnection’s ? How does ATCP deal with cases where network partitions occur during file transfer?

In order to evaluate the performance of our approach, we used an experimental testbed consisting of five Pentium PCs, each of which had two Ethernet cards. This gives us a four-hop network where the traffic in each hop is isolated from the other hops. To model the lossy and low-bandwidth nature of the wireless links, we emulated, in IP, a 32-kb/s channel over each hop. We modified the IP code as follows. All calls to output() are intercepted and then, based on the link speed and packet size (including TCP and IP headers), a timer is set to go off each time a packet can be sent on the wireless link. At each timeout, one packet is removed from a link queue and output() is called normally. In addition to the link bandwidth, the modified IP code also allowed us to introduce bit errors in the packets during transmission. We used a BER of for all experiments. We also introduced hop-by-hop delays by the simple mechanism of delaying input() by some amount of time at each hop. For instance, to have a 20-ms average delay on a link, we generate a uniform random number between 10 ms and 30 ms. That number is then converted into an integer that specifies a timeout value. Thus, input() is called when this timer expires. Network partition occurs at an intermediate hop in our setup. This host periodically thinks that its next hop is no longer valid (this is again implemented by using a timer in IP), thus causing ICMP to generate the appropriate host unreachable message. Network congestion is made to occur at some intermediate host as well by flooding that host with spurious packets (generated by a process running on that host). This results in the generation of an explicit congestion notification (ECN).

5.1 Loss Case

The first experiments we ran did not include partition or congestion events. The connection was only subjected to bit error that occurred at a BER of at each hop. We measured the time taken to transfer a one-MB file when using plain TCP and when using ATCP. In Fig. 5.1, we plot the transfer time (in seconds) on the axis and the mean hop-by-hop delay on the axis. It is interesting to note that the time taken by TCP to transfer the file increases almost linearly from 900 to 1900 s with increasing hop-by-hop delays. On the other hand, the time taken by ATCP is almost constant at approximately 425 s. It is instructive to perform a rough computation to explain the 425 s transfer time for ATCP.

The difference in behavior between TCP and ATCP is illustrated in the sequence number versus time plots shown in Figs.5.2 and fig. 5.3. This dramatic difference in performance between TCP and ATCP can be explained by the fact that TCP invokes congestion control frequently during the experiment because of lost packets or duplicate ACKs. TCP uses slow start to increase its transmit window. ATCP, on the other hand, puts the TCP senders in persist mode and retransmits the packet whose retransmit timer was about to expire.

5.2 Congestion Case

In the next set of experiments, we introduced periodic congestion in the network every five seconds. In order to congest the intermediate node, a local source dumps packets into output() for a period of 200 ms. In Fig. 5.4 we plot the transfer time for a one-MB file as a function of mean hop-by-hop delay (the BER is). We notice that the file transfer time for TCP increases from about 1200 s to almost 3000 s while ATCP’s file transfer time increases from approximately 460 s to about 500 s. Again, we can perform some rough calculations to determine the minimum time it takes to transfer the file in the presence of congestion. As before, it takes a minimum of 361 s to transfer the file in the absence of congestion. Since congestion occurs every 5 s for a period of 200 ms, we will have approximately 80 congestion events during the file transfer each lasting 200 ms. Thus, the additional file transfer time (assuming no data can be transferred during congestion) is 16 s for a total time of 377 s. As before, it is interesting to note that ATCP’s file transfer time is quite close to this minimum.

There are a couple of reasons for the difference in performance between ATCP and TCP. First, the number of timeout events in TCP is high because of the high bit error as well as the loss due to congestion. Thus, TCP does not get much of an pportunity to grow its congestion window. ATCP, on the other hand, defers to TCP’s congestion control only when it receives an ECN message. In other cases, it enters the loss state and retransmits the lost packets from TCP’s buffer. The slight increase in transfer time for ATCP as a function of hop-by-hop delay is caused because the round trip

 x 104

 x 107

time affects the rate at which the congestion window can be grown. The effect of this is more pronounced in the case of TCP because TCP invokes congestion control very often.

5.3. Partition Case
In this section, we consider the case when the network suffers periodic partitions. For our experiments, a network partition occurs every five minutes (at an intermediate node), and the partition lasts for one minute. Fig. 14 plots the file transfer time for a one-MB file as a function of hop-by-hop delay. The transfer time for ATCP is almost constant at a little over 500 s while TCP’s file transfer time increases with hop-by-hop delay. The transfer time for ATCP in the presence of loss only is about 425 s. If the network gets partitioned every five minutes (i.e., every 300 seconds) for one minute, we expect the transfer time to increase by at least the length of the partition, which is 60 s. Note that ATCP puts TCP into persist mode upon receiving the ICMP destination unreachable message. In persist mode, TCP generates probe packets at exponentially increasing intervals (starting at two seconds) up to a maximum interval of 60 s. The effect of this behavior is that the sender does not realize that the network is connected until it sends out the next probe packet. In the worst case, this may happen anywhere from 32 s to 60 s after reconnection! This brings the total transfer time for ATCP to 425 s 60 s (partition time) 32 s (time to realize the network is no longer partitioned) 517 s. TCP’s poor behavior is caused because of the high error as well as serial timeout behavior when the network is partitioned.

Our purpose here is to investigate TCP and ATCP performance when the network experiences long network partitions. As in the short network partition case, delays for ATCP almost remain a constant while delays for ATCP grow linearly as the hop-to-hop delay increases.

5.4 Packet Reordering

Packet reordering may happen when there are multiple routes available from the source to the destination or when route recomputing occurs. When a router has more than one outgoing interface that leads to the same destination, it can distribute incoming packets among those different interfaces provided that the packets are going to that same destination. These packets may, therefore, arrive at the destination out of order because they have taken different routes. Another reasons for packet reordering is route recomputation. This happens when a router fails to locating an outgoing route to forward a packet. In ad hoc wireless networks, route failure occurs frequently due to high nodal mobility. Packets in the previous route and those that take the new route may reach their destination in a different order, Current routing protocols for ad hoc networks take a substantial amount of time to find new routes. Consequently the packets that have been sent before the rerouting may have ample time to reach their destination before a new route is found. Thus, we believe that packet retransmission because of packet loss due to link error is the major reason for packet reordering, not route recomputation.

In our experiment, we simulate packet reordering as follows. We set a timer to expire every 25 s on one of the intermediate hosts. The next four packets are then inserted into the front of the packet queue when the timer expires. Fig The transfer time needed by TCP and ATCP for a 1-MByte file. TCP needs much more time to transfer the same amount of data than ATCP does. The amount of time needed for ATCP remains almost a constant around 425 s while the transfer time for TCP increases (approximately) linearly from around 940 to 2010 s as the hop-to-hop delay increases from 10 to 50 ms.

Chapter 6

Conclusion and Future Work

By the New Approach we improve TCP performance while running TCP in mobile Ad hoc networks by buffering (A Buffer is an amount of memory set aside for storing information) The packet at intermediate node at the failure point of the route. Though there is an overhead of buffer, which will cause use of memory, but it is feasible. It leads to better utilization of limited bandwidth, decrease in transmission energy and better TCP throughput.

The implementation part of our thesis shows that the implementation and design of such buffering capabilities at mobile nodes are feasible. Thus in future this approach can be further used to improve TCP performance by proposing a intelligent buffering and a sequence checking techniques if continuous packets arrive at mobile nodes.

References

[1]. A. Baker and B. R. Badrinath , “ I- TCP : Indirect TCP for mobile hosts” , in Proc . 15th Int. Conf. Distributed Computed Systems, vancover, BC, Canada , June 1995.

[2]. K.. Brown and S. Singh , “ M- TCP : TCP for mobile cellular networks”, ACM Comput. Commun . Rev., Vol . 27. , 1997.

[3]. K. Chandran , S. Raghunathan , S . Venkatesan , and R . Prakesh , “ A feed back – based scheme for improving TCP performance in ad hoc wireless networks” , in Proc . 18th Int . Conf . Distributed Computing System , Amsterdam , The Netherlands , May 2629 , 1998.

[4]. G. Holland and N . Vaidya , “ Analysis of TCP performance over Mobile Ad Hoc Networks” , Proceeding ACM Mobile Communication Conference . (Mobicom ‘ 99).

[5]. H . Balakrishnan , V . Padamanabhan , S . Seshan , R . H . Katz , “ A Comparison of Mechanisms for Improving TCP Performance over Wireless Links” , In Proceeding of ACM SIGCOMM 1996 .

[6]. Jian Liu and Suresh Singh , “ATCP : TCP for Mobile Ad Hoc Networks” , IEEE Journal on Selected Areas in Communication , VOL . 19 , NO . 7 , JULY 2001.

[7]. Arjun Kishore and Rajesh V , “TCP For Wireless Networks” , in Mobile Computing , 2001 .

[8]. Karan Wang , Baochun Li. , “Group Mobility and Partition Predication in Wireless Ad- Hoc Networks” , in Proceedings of IEEE International Conference on Communications (ICC 2002), VOL . 2. PP .1017 – 1021 , New York City , April 28 – May 2 , 2002.

[9]. Sorav Bansal , Archan Misra , Rajeev Gupta , Shorey , “Energy Efficiency and Throughput for TCP Traffic in Milti- Hop wireless Networks” , in IEEE , 2002.

[10]. Stevens , W . Richard , Unix Network Programming . 1990. Prentice – Hall.

Appendix

Glossary of Terms

· ATCP Ad hoc transmission control protocol.

· Bandwidth The amount of idea that can be pushed i.e. send through a link i.e. a channel in unit time. Usually measured in bits or bytes per second.

· Energy efficiency Average total transmission energy required to reliability transmit a single packet (or byte) to its destination .

· Fixed Network A wired data network with stationary nodes or PCs. Node (Wireless). Technical term for a computer (or any other data terminal) connected to a wireless LAN using a NIC.

· ICMP Internet Control Message Protocol . ICMP is used for diagnostic in the network. The Unix program, ping uses ICMP message to detect the status of other hosts in the net. ICMP message can either be queries (in the case of ping) or error reports, such as when a network is unreachable

· Mobility Ability to continually move from one location to another.

· Node (Wireless) Technical term for a computer (or any other data terminal) connected to wireless LAN using a NIC.

· Peer-to-peer P-t-P configuration are typical to ad hoc network They involve at least two wireless nodes setting up an independent network (as long as they’re in communicating distance from each other).

· Persistence timer It is necessary to prevent a particular deadlock condition . If the network receives a 0- size window acknowledgement and loses the subsequent acknowledgement that restarts the flow, the persistence timer expires and sends a probe. The response indicates the window size (which may still be zero, in which case the timer starts over). Sender uses a persistence timer to break this deadlock.

· Range Transmitting distance of a single by a wireless node . Maximum range is the optimal effective distance achieved by a wireless node under perfect conditions. The more relevant term would be nominal range that refers to effective distance under normal everyday conditions.

· Router A special – purpose computer (or software package) that handles the connection between two or more packet- switched networks. Routers spends all their time looking at the source and destination addresses of the packets passing through them and destination addresses of the packets passing through them and deciding which route to send them on.

· RTO Retransmission timeout .

· Serial Timeout A serial timeout is a condition wherein multiple consecutive retransmission of the same segment are transmitted to the receiver while it is disconnected from the sender.

· TCP Transmission control protocol. TCP is a connection oriented protocol that guarantees that message are delivered in the order in which they were sent and all that messages are delivered. If a TCP connection can not delivered a message it closes the connection and inform the entity that creates it. This protocol is layered on top of IP.

· TCP/IP Transmission control protocol/ Internet protocol. This is the suite of protocol that defines the Internet. Originally designed for the UNIX operating system, TCP/IP, software is now included with every major kind of computer operating system.

· Wireless Network. A network in which data is transmitted without wires, increasing mobility of the user and their access to data.

· WLAN Wireless Local Area Network or “wireless LAN”. Currently, WLANs serve as extensions to wired Ethernet, while emerging, high band-width WLAN standards, such as IEEE 802.11 a and Hiper LAN2, offer Ethernet-like data rates enabling users to replace wired Ethernet altogether.

· Gateways A gateway is a network point that acts as an entrance to another network

· Bridges In telecommunication networks, a bridge is a product that connects a local area network (LAN) to another local area network that uses the same protocol (for example, Ethernet or Token Ring).

· Handoff An Mobile host (MH) can move out of one cell and into another cell. In such a case the MSS (Mobile support system) of the old cell has to hand over the responsibilities for the MH's communication to the MSS of the new cell. This process is referred to as hand-off.

At time t0

At time t1

D

B

B

S

At time t1

D

A

A

B

S

Fig. 1.2: Route change forced by mobility

A

At time t0

S

D

D

S

Fig. 1.3: Network partitions formed and recombined due to mobility

D

At time t2

S

Fig. 1.4: Effect of Multipath Routing

25

4

6

1

3

5

D

Fig. 1.1: An Ad-Hoc Wireless Mobile Network

Enhancement of the Ad-Hoc Transmission Control Protocol (TCP) Performance in Mobile AD-Hoc Network.

Disconnected

 TCP Sender put in persist state

Loss

Congested

Normal

Fig 2.1: State Transition Diagram for ATCP

A

S

S

D

A

(b)

(a)

A

D

Fig. 3.1: Effect of link failure on packet transfer

(d)

(c)

S

A

A

A

D

A

D

S

A

D

A

S

D

(b)

(a)

A

Fig. 3.2: Packet Transfer According To Our Proposed Approach

A

D

A

S

A

 ATCP

	 TCP	

A

(c)

(d)

S

S

D

5

ATCP vs TCP (file size = 1 MB)

Mean Message propagation time

Fig 5.1 : ATCP and TCP performance in the presence of bit error only

 10 15 20 25 30 35 40 45 50 55

Hop to Hop delay (milisecond)

Transfer

T

ime

in

Second

 2200

 2000

 1800

1600

 1400

 1200

 1000

 600

 400

 800

 200

16

Mean Message propagation time

Sequence

number

 3.25

16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0

TCP sequence number in 5 second

Time (Second)

 3.60

 3.55

 3.50

3.45

 3.40

 3.35

 3.30

 3.20

 3.15

 3.10

Fig 5.2 : TCP trace in the presence of bit error only

19.0

Mean Message propagation time

1.3586

 1.3584

Sequence

number

19.2 19.4 19.6 19.8 20.0 20.2 20.4 20.6 20.8 21.0

ATCP sequence number in 2 second

Time (Second)

1.3585

1.358

 1.3583

1.3582

1.3581

Fig 5.3 : ATCP trace in the presence of bit error only

 ATCP

	 TCP	

5

Mean Message propagation time

Fig 5.4 : ATCP and TCP performance in the presence of bit error and congestion

 3500

 3000

2500

 2000

 1500

 1000

 500

 0

ATCP vs TCP with congestion (file size = 1 MB, ECN)

 10 15 20 25 30 35 40 45 50 55

Hop to Hop delay(mili second)

Transfer

T

ime

in

Second

 ATCP

	 TCP	

5

Mean Message propagation time

2500

 3000

 2000

 1500

 1000

 500

ATCP vs TCP with partition (file size = 1 MB, Slow Start)

Fig 5.5 : ATCP and TCP performance in the presence of bit error and partition.

 0

 10 15 20 25 30 35 40 45 50 55

Hop to Hop delay(mili-second)

Transfer

T

ime

in

Second

 TCP

	 ATCP	

5

Mean Message propagation time

ATCP vs TCP (file size = 1 MByte)

 10 15 20 25 30 35 40 45 50 55

Hop to Hop delay(milisecond)

Fig 5.6 : ATCP and TCP performance in the presence of bit error and packet reordering.

Transfer

T

ime

in

Second

 2200

 2000

 1800

1600

 1400

 1200

 1000

 600

 400

 800

 0

S

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

PAGE
17
Created by: Mr. sunil Kr. Singh, M.E.(22/CTA/03),DCE, DELHI.

_945131225.doc
[image: image1.png]

_945131227.doc
[image: image1.png]

_945131230.doc
[image: image1.png]

_945131231.doc
[image: image1.png]

_945131232.doc
[image: image1.png]

_945131228.doc
[image: image1.png]

_945131226.doc
[image: image1.png]

_945131223.doc
[image: image1.png]

_945131224.doc
[image: image1.png]

_945131222.doc
[image: image1.png]

