CERTIFICATE

This is to certify that the project entitled, "ENHANCEMENT OF STEADY STATE VOLTAGE STABILITY BY USING TAP-CHANGING TRANSFORMER AND STATIC VAR COMPENSATOR", submitted by Mr. Sandeep Verma, University Roll No. 12245, student of Master of Engineering (Control and Instrumentation) from Delhi College of Engineering, Delhi is a dissertation work carried out by him under my guidance during session 2008-2009 towards the partial fulfillment of the requirements for the award of the degree of Master of Engineering in Control& Instrumentation.

I wish him all the best in his endeavors.

Dr. NARENDRA KUMAR, Professor & Head, Department of Electrical Engineering, Delhi College of Engineering, Delhi-110042.

ACKNOWLEDGEMENT

This report as we see today is an outcome of persistent effort and a great deal of dedication and it has drawn intellectual and moral support from various people within the institution.

It is my great pleasure to express my profound gratitude to my honorable guide **Dr. NARENDRA KUMAR,** Professor, Department of Electrical Engineering, Delhi College of Engineering for his constant Guidance and unflinching encouragement throughout the development of this project. It is a matter of great pride for me to have worked under him. It in itself was a source of inspiration for me to complete the project with great enthusiasm, energy and determination. I also give extra special thanks to him for dedicating his valuable time whenever I needed to discuss project related work.

I would also like to thank **Dr. PARAMOD KUMAR**, Head of the Department, Electrical Engineering Department, Delhi College of Engineering for his valuable suggestions and timely help.

I will be indebted to my parents helping me realize my goals. Without their blessings, this work would not have been possible.

I thank Almighty GOD for his countless blessings

Date:

Sandeep Verma (17/C&I/07) Univ. Roll No: 12245

TABLE OF CONTENTS

	Page No.
Abstract	1
Chapter 1: Introduction	2-19
1.1 Voltage Stability	3
1.1.1 Definition and classification of voltage stability	4
1.1.1(a) Definition of voltage stability, voltage instability	
and Voltage collapse	4
1.1.1(b) Classification of power system stability	5
1.1.2 Analysis of power system Voltage stability	7
1.2 On load tap-changing transformer	10
1.3 FACTS controllers for power system	12
1.3.1 Shunt controlled controllers	12
1.3.1.1 Static synchronous compensator (STATCOM)	13
1.3.1.2 Static synchronous Generator (SSG)	13
1.3.1.3 Battery energy storage system (BESS)	14
1.3.1.4 Superconducting magnetic energy storage (SMES)	14
1.3.1.5 Static VAR compensator (SVC)	14
1.3.1.6 Thyristor controlled reactor (TCR)	14
1.3.1.7 Thyristor switched reactor (TSR)	15
1.3.1.8 Thyristor switched capacitor (TSC)	15
1.3.1.9 Static VAR Generator or Absorber (SVG)	15
1.3.1.10 Static VAR system (SVS)	15
1.3.1.11 Thyristor controlled banking resistor (TCBR)	16
1.3.2 Series connected controllers	16
1.3.2.1 Static synchronous series compensator (SSSC)	16
1.3.2.2 Interline power flow controller (IPFC)	16
1.3.2.3 Thyristor controlled series capacitor (TCSC)	17
1.3.2.4 Thyristor switched series capacitor (TSSC)	17
1.3.2.5 Thyristor controlled series reactor (TCSR)	17

1.3.2.6 Thyristor switched series reactor (TSSR)	18
1.3.3 Combined shunt and series connected controllers	18
1.3.3.1 Unified power flow controllers (UPFC)	18
1.3.3.2 Thyristor controlled phase shifting transformer (TCPST)	18
1.3.3.3 Interphase power controller (IPC)	18
Chapter 2: Literature review	20-22
2.1 Overview of Voltage stability by using static VAR compensator,	
Series capacitor and Tap-changing transformer	20
2.2 Recent work	20
Chapter 3: Analysis of tap-changing transformer	
and Static VAR compensator	23-31
3.1 Studied system	23
3.2 Power system model with tap-changing transformer and	
static VAR compensator	24
3.4 System Equations	26
3.5 Compensator Rating	31
Chapter 4: Results and discussion using Matlab	32-68
4.1 System data	32
4.2 Power versus voltage (P-V) curve with the presence of	
Tap-changing transformer and Static VAR compensator	32
4.2(a) Case 1 when $G = 0.0$ (i.e. without compensator Action)	33
4.2(b) Case 2 when $G = 2.5$	37
4.2(c) Case 3 when $G = 5$	38
4.2(d) Case 4 when $G = 10$	39
4.3 Addition of series capacitor in the circuit	40

4.4 Plots between load power and voltage response with presence of	
Tap-changing transformer, Series capacitor and Static VAR	
compensator	40
4.4(a) Case 1 with Xc is 25% of Xs i.e. $Xc = 0.0781$	41
4.4(b) Case 2 with Xc is 50% of Xs i.e. $Xc = 0.1562$	42
4.4(c) Case 3 with Xc is 75% of Xs i.e. $Xc = 0.2343$	43
4.5 Static VAR compensator parameters in the presence of load	
tap- changing transformer	45
4.5.1 Compensator controller gain "G"	45
4.5.1(a) Case 1 Gain with active power	45
4.5.1(b) Case 2 Gain with reactive power	49
4.5.2 Influence of Tap-changing transformer on SVC	
Controller Gain versus Slope relation	52
4.5.2(a) SVC controller Gain versus SVC rated reactive	
power	56
4.5.2(b) SVC controller Gain versus Reactance of SVC (1/Bc)	57
4.5.3 Compensator controller reference voltage in presence	
of tap-changing transformer	60
4.5.3(a) Case 1 when $G = 2.5$	61
4.5.3(b) Case 2 when $G = 5$	65
4.5.3(c) Case 3 when $G = 10$	66
Chapter 5: Conclussions	69
References	70-71
Scope for future work	