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Abstract 

 
 

Multicast is the preferred transport mechanism for bulk data transfer to multiple receivers 

especially in multimedia applications and services on the internet. Applications like content 

distribution, streaming, multi-player games, multimedia multi-user chat/telephony, distance 

education etc could benefit from multicast and QoS. Multicast congestion control is the first step 

toward a multicast QoS architecture for the Internet. There are two categories of multicast 

congestion control. One of them is single-rate, in which the source controls the data transmission 

rate and all receivers receive data at the same rate. The other is multi-rate (layered multicast 

congestion control), in which receivers join just enough layers in the form of multicast groups to 

retrieve data as fast as they can.  

This dissertation intended for the policy which is the enhancement of the single-rate 

multicast congestion control scheme (ESMCC) based on a new metric calculation, 

Throughput Rate on Congestion. It reduces a memory complexity to maintain state 

information at source and receivers; requires only simple computations. It addresses the 

pieces of the single-rate multicast congestion control problem including drop-to-zero issues, 

TCP friendliness and RTT estimation. It’s rate-based on additive increase multiplicative-

decrease (AIMD) module and does not necessitate measurement of RTTs from all re-

ceivers to the source. It is very effective with feedback suppression.  
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1) Introduction 
 
 

 
The Internet relies on applications performing congestion control to react to network congestion 

and avoid congestion collapse. Most applications in use on the Internet employ TCP's 

congestion control algorithms [13].  

 

The increasing popularity of group communication applications such as multi-party 

teleconferencing tools and information dissemination services had lead to a great deal of interest 

in the development of multicast transport protocols layered on top of IP multicast. Unlike TCP's 

point-to-point model, which treats multipoint data delivery as a collection of point-to-point 

flows thus sending duplicate data repeatedly over the same network links, multicast protocols 

can greatly improve the efficiency of multipoint data distribution by using a many-to-many 

delivery model. To allow multicast protocols to be deployed on the Internet, it is imperative that 

they incorporate mechanisms for handling network congestion. While many proposals have been 

forthcoming on reliable multicast protocols, few of them have focused on congestion control 

mechanisms to accompany these protocols. 

 

 

There are two categories of multicast congestion control. One of them is single-rate, in which 

the source controls the data transmission rate and all receivers receive data at the same rate. The 

previous work includes, for example, DeLucia et. aI's work in [1], PGMCC[2], TFMCC[3], 

MDP-CC[4] and our prior work LESBCC [5]. The other is multi-rate (layered multicast 

congestion control), in which receivers join just enough layers in the form of multicast groups to 

retrieve data as fast as they can. The most noticeable among them are recently developed Fine-

Grained Layered Multicast [6] and STAIR [7]. 

 

 

 

Multicast protocols face the feedback implosion problem [14, which becomes critical as mul-

ticast group size increases. Several existing reliable multicast transport protocols use 

probabilistic suppression to limit the amount of feedback received at the source. 
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The single-rate category is easy to implement and deploy, because it does not require support 

from intermediate nodes beyond standard multicast capabilities, also does not introduce high 

processing load to them. Although such schemes do not scale as well as multi-rate ones because 

they track the slowest receiver, they are suitable for such situations as the multicast in a not-so 

heterogeneous environment, or bulk data transfer without concerns over delay. With some 

network support [8], we can also emulate multi-rate schemes by deploying single-rate schemes 

on selected intermediate nodes.  

 

 

In this paper, we introduce an Enhancement of the Single-rate Multicast Congestion Control 

scheme (ESMCC) based on a new metric calculation, Throughput Rate on Congestion. We will 

first very briefly describe ESMCC below, and then in Section 2, we will briefly discuss some 

related work followed by the ESMCC details in Section 3. Then, we will present simulation and 

experiment results in Section 4. Finally, we will conclude the paper in Section 5. 
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1.1)Brief Description of ESMCC  
 
 

The key idea of ESMCC is to base the scheme on a new metric, TROC (Throughput Rate 

on Congestion), which is the throughput rate measured by receivers when congestion is 

detected. At the source and receivers, 0(1) state is maintained, and only simple computations are 

required; there is no need to measure RTTs from all receivers to the source, which can be a 

tedious problem especially without external instrumentation (e.g. GPS, NTP server), and (iii) we 

do not make any assumption on network topology and intermediate nodes beyond standard 

multicast capabilities. It is also effective because (1) it successfully addresses the well-known 

problems of slowest receiver tracking, TCP-friendliness, and drop-to-zero; and (2) the feedback 

suppression mechanism works very effectively by suppressing over 95% feedback under normal 

situations.  

The general concept of our scheme is as follows: The source dynamically selects one of 

the slowest receivers as Congestion Representative (CR), and only considers its feedback for 

rate adaptation. The slowest receivers are those with the lowest average TROCs. Each receiver 

keeps measuring its TROC when it detects congestion and updates its average TROC by means 

of a smoothing technique such as Exponentially Weighted Moving Average (EWMA). Re-

ceivers detect congestion, when they observe a loss in the data packets1. The source considers 

these average TROCs of the slowest receivers in its decision to select the CR. When there is no 

CR, all receivers may send feedbacks to the source. However, this no-CR situation will last at 

most one RTT, because the new CR will be chosen in one RTT. This limitation of one RTT time 

period on no-CR case also prevents any possible Ack implosion. Once a CR is selected, only the 

CR and those receivers with average TROC lower than that of the CR can send feedbacks so 

that feedbacks are efficiently suppressed. Also notice that our scheme is not concerned with 

reliability issue and only considers congestion control. Therefore, it is applicable to both reliable 

and unreliable multicast. 

An example operation can illustrate how our scheme works more clearly. In Figure 1 (a), 
let's assume that at time to the source has chosen a receiver behind the most congested path as 
CR by comparing average TROCs of receivers. Only the CR will send feedback while other 
receivers suppress their feedback. These feedbacks are indeed congestion indications (CIs), 
because they are sent only when congestion is detected due to packet loss. As shown in Figure 1, 

the feedback from the current CR is the average TROC  µ φ α( ) ( ( ), )t t0 0= Ω , where Ω( )t0  is the 
TROC of the current CR at time t0  and Φ() is an EWMA averaging function with a being the 

exponential averaging factor, which will later be defined in detail. In addition, the TROC,Ω( )t0 , 
for the current CR is calculated by averaging instantaneous output rate ω( )t0  of the current CR 
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over a small period of time. 2  
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1 Note that it is also possible to use additional techniques to detect congestion. We do not focus on this to 
assure needed emphasis on the multicast congestion control rather than congestion detection.  
2 These definitions of the different kinds of TROCs correspond to averaging at two different time-scales 
with two different methods, and they are calculated in the same manner for all receivers.  will give more 
detailed explanation of these definitions later.  
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Fig.1. Example operation of ESMCC 
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Assume that, after some time another path becomes the new most congested path. After a 

while at time t1, those receivers 1..K behind that path will see average TROCs lower than 

that of the current CR ( . . .. , ( ) ( ) ( ))i e i k t t ti∀ = < −1 1 0 0µ µ σ , and will send feed backs as 

shown in Figure 1 (b). As the result, one of them will be chosen as the new CR. After that, 

again, other receivers will suppress their feedback as shown in Figure 1 (c) 

 

 

1.2 Key Contributions  
 
 
ESMCC introduces a novel method of using explicit rate feedback at the time of 

congestion (i.e. TROC) in such a way that several major multicast congestion control 

problems are remedied. By using smoothing techniques like EWMA, receivers in 

ESMCC successfully achieve efficient feedback suppression. Similarly, each receiver 

maintains two statistical measures (i.e. average TROC and deviation of TROC) which 

provides venue for robust and effective tracking of the slowest receiver. By using an 

AIMD-like rate adaptation technique, ESMCC also warrants TCP-friendliness and 

immunity to the drop-to-zero problem. In addition, only state of the slowest receiver (i.e. 

0 (1) memory complexities) is needed and only estimation of the RTT to the CR is 

needed. 
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2) Related Works 

 
 

2.1 Single-Rate Schemes 
 
In single-rate schemes, all receivers get the same data rate, and the source adapts to the 

slowest receiver. These schemes are nice in that they do not require the source to transmit 

multiple streams or use special data coding. Furthermore, many single-rate multicast 

protocols have been proposed which try to implement a TCP-like service over multicast, so 

there is some interest in adding congestion control to such protocols especially when 

deployment in the Internet is desired.  

 

 

Single-rate schemes have known limitations in presence of large or heterogeneous groups: a 

single slow receiver can drag down the data rate for the whole group. Furthermore, 

uncorrelated losses at receivers are not easy to handle, and an improper aggregation of 

feedback is likely to cause the so called "drop-to-zero" problem [16], where the sender's 

estimate of the loss rate is much higher than the actual loss rate experienced at every single 

receiver. 

 

 

DeLucia et. aI's work in [1] is an early single-rate multicast congestion control scheme 

using representatives. It requires two types of feedback from receivers, Congestion Clear 

(CC) and Congestion Indication (CI). Note that their CIs are single bit and thus different 

from ours carrying the explicit output rateµ . A fixed number of receiver representatives are 

maintained at the source. Whenever a CI is received by the source, if the sender of this CI is 

in the representative set, the representative is refreshed; if not, the sender will replace the 

representative that has not been refreshed for the longest time. Feedback from 

representatives is echoed by the source to suppress feedback scheduled at non-

representative receivers. The source uses only the feedback from representatives to do 

MIMD (multiplicative increase and multiplicative decrease) rate adaptation. The 

representative selection mechanism in that scheme is "simplistic" [1], but there is certain 

complexity involved in generating CC. The representative set is not guaranteed to include 

the slowest receiver, which means that the slowest receiver can be overloaded. Furthermore, 
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it assumes that only a few bottlenecks cause most of the congestion. Based on this 

assumption, receiver suppression is the only mechanism for filtering feedback from 

receivers. In a heterogeneous network, where there may be many different bottlenecks and 

asynchronous congestion, the assumption may not be true. Consequently, the transmission 

rate may be reduced more than necessarily and stay very low or close to zero. This is known 

as the drop-to-zero problem. 

 

 

 

PGMCC [2], TFMCC [3] and MDP-CC [4] are recent work also using representatives. 

Although they use different policies for rate adaptation, they all leverage the TCP 

throughput formula [10] [11] for allocating the slowest receiver, i.e. the receiver with the 

lowest estimate TCP throughput according to the formula. Therefore, it is necessary for 

them to measure packet loss rate and RTT for all receivers. 

 

 

 

PGMCC [2] keeps one representative as acker. The acker sends ACKs to the source which 

mimics the behavior of TCP. At the same time, NAKs with loss rate are sent from all other 

receivers. This is different from our scheme because we do not require separate ACK 

streams. The PGMCC source measures RTT between itself and all receivers in terms of 

packet numbers, and compares the estimated throughput for updating acker. Due to the 

necessity of RTT measurement for all receivers, feedback suppression may have serious ef-

fect on PGMCC's performance. In fact, PGMCC does not provide a feedback suppression 

mechanism. 
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TFMCC [3] adjusts the rate according to the estimated rate calculated by the representative. 

RTTs are measured by receivers with a somewhat complex procedure. The sender needs to 

echo receiver's feedback according to some priority order, and there is one-way delay RTT 

adjustment plus sender-side RTT measurement. TFMCC comes with feedback suppression 

which is an enhanced version of [12] and is probabilistic timer-based. Therefore, the total 

number of feedbacks is the function of the estimated total number of receivers, and 

additional delay is introduced into feedback. 

 

 

MDP-CC [4] increases/decreases the transmission rate exponentially toward the target rate. 

Similar to TFMCC, the target rate is also calculated by the representative. in contrast to 

PGMCC and TFMCC, MDP-CC maintains a pool of representative candidates for 

representative update. As shown in that paper, maintaining multiple representative 

candidates requires much effort. MDP-CC can use probabilistic timer-based feedback 

suppression which has the same properties as that of TFMCC. 
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2.2 Multi-Rate Schemes  
 
 
Multi-rate schemes are based on the ability to generate the same data at different rates over 

multiple streams (generally organized as cumulative layers), either at the source, or as a 

result of a filtering/distillation process done by intermediate elements such as routers or 

transcoders. Receiver try to listen to one or more streams matching their capacity, thus 

effectively realizing a partitioning of the set of receivers into different groups. This 

approach is suitable to both audio and video streams, and to reliable data transfer by using 

proper coding techniques [15]. 

 

The advantage of multi-rate schemes is that receivers with different needs can be served at a 

rate closer to their needs, rather than having to match the speed of the slowest receiver in 

the group. This flexibility is paid in terms of coding costs, some bandwidth inefficiency, 

and possibly a more coarse match of source and receiver data rate. The most noticeable 

among them are recently developed Fine-Grained Layered Multicast [6] and STAIR [7]. 

However, the multi-rate schemes are closely coupled with routing and IGMP, which implies 

some potential problems. Aggregated multicast trees do not necessarily prune trees 

dynamically and hence break the assumptions of the multi-rate schemes. The slackness of 

response to congestion due to long leave latency continues to be an issue. Besides, frequent 

group joins and leaves can introduce significant load at routers.  
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2.3 Additive increase and multiplicative decrease (AIMD) 

 

 TCP maintains a new state variable for each connection-- CongestionWindow---which is 

used by the source to limit how much data it is allowed to have in transit at a given time. The 

congestion window is congestion control's counterpart to flow control's advertised window. TCP 

is modified to have no more than the minimum of the congestion window and the advertised 

window bytes of unacknowledged data. Thus, using the variables TCP's effective window is 

revised as follows:  

MaxWindow=MIN(CongestionWindow,AdvertisedWindow) 
EffectiveWindow = MaxWindow - (LastByteSent - LastByteAcked) 

That is, MaxWindow replaces AdvertisedWindow in the calculation of EffectiveWindow. Thus, 

a TCP source is allowed to send no faster than the slowest component---the network or the 

destination host---can accommodate.  

The problem, of course, is how TCP comes to learn an appropriate value for 

CongestionWindow. Unlike the AdvertisedWindow, which is sent by the receiving side of the 

connection, there is no one to send a suitable CongestionWindow to the sending side of TCP. 

The answer is that the TCP source sets the CongestionWindow based on the level of congestion 

it perceives to exist in the network. This involves decreasing the congestion window when the 

level of congestion goes up, and increasing the congestion window when the level of congestion 

goes down. Taken together, the mechanism is commonly called additive increase/multiplicative 

decrease.  

The key question, then, is how does the source determine that the network is congested and it 

should decrease the congestion window? The answer is based on the observation that the main 

reason packets are not delivered, and a timeout results, is that a packet was dropped due to 

congestion. It is rare that a packet is dropped because of an error during transmission. Therefore, 

TCP interprets timeouts as a sign of congestion, and reduces the rate at which it is transmitting. 

Specifically, each time a timeout occurs, the source sets CongestionWindow to half of its 

previous value. This halving of the CongestionWindow for each timeout corresponds to the 

``multiplicative decrease'' part of the mechanism.  
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Although CongestionWindow is defined in terms of bytes, it is easiest to understand 

multiplicative decrease if we think in terms of whole packets. For example, suppose the 

CongestionWindow is currently set to 16 packets. If a loss is detected, CongestionWindow is set 

to 8. (Normally, a loss is detected when a timeout occurs, but as we see below, TCP has another 

mechanism to detect dropped packets.) Additional losses cause CongestionWindow to be 

reduced to 4, then 2, and finally 1 packet. CongestionWindow is not allowed to fall below the 

size of a single packet, or in TCP terminology, the maximum segment size (MSS).  

  Source   Destination 

   

 

 

 

 

 

 

 
 

Figure 2: Packets in transit during additive increase: add one packet each RTT. 

A congestion control strategy that only decreases the window size is obviously too conservative. 

We also need to be able to increase the congestion window to take advantage of newly available 

capacity in the network. This is the ``additive increase'' part of the mechanism, and it works as 

follows. Every time the source successfully sends a CongestionWindow's worth of packets---that 

is, each packet sent out during the last RTT has been ACK'ed---it adds the equivalent of one 

packet to CongestionWindow. This linear increase is illustrated in Figure 2. Note that in 

practice, TCP does not wait for an entire window's worth of ACKs to add one packet's worth to 

the congestion window, but instead increments CongestionWindow by a little for each ACK that 

arrives. Specifically, the congestion window is incremented as follows each time an ACK 

arrives:  
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Increment=(MSS*MSS)/CongestionWindow 
CongestionWindow += Increment  
 
That is, rather than incrementing CongestionWindow by an entire MSS each RTT, we 

increment it by a fraction of MSS every time an ACK is received. Assuming each ACK 

acknowledges the receipt of MSS bytes, then that fraction is MSS/CongestionWindow.  

 

This pattern of continually increasing and decreasing the congestion window continues 

throughout the lifetime of the connection. In fact, if you plot the current value of 

CongestionWindow as a function of time, you get a ``sawtooth'' pattern. The important 

thing to understand about additive increase/multiplicative decrease is that the source is 

willing to reduce its congestion window at a much faster rate than it is willing to increase its 

congestion window. This is in contrast to an additive increase/additive decrease strategy in 

which the window in incremented by 1 packet when an ACK arrives and decreased by 1 

when a timeout occurs. It is has been shown that additive increase/multiplicative decrease is 

a necessary condition for a congestion control mechanism to be stable.  

 

Finally, since a timeout is an indication of congestion, triggering multiplicative decrease, TCP 

needs the most accurate timeout mechanism it can afford. The two main things to remember 

about that mechanism are that (1) timeouts are set as a function of both the average RTT and the 

standard deviation in that average, and (2) due to the cost of measuring each transmission with 

an accurate clock, TCP only samples the round trip time once per RTT (rather than once per 

packet) using a coarse-grain (500ms) clock. 
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2.3.1. Definitions 
 
   This section provides the definition of several terms that will be used throughout the 

remainder of this document. 

 

 

SEGMENT: 

      A segment is ANY TCP/IP data or acknowledgment packet (or both). 

 

SENDER MAXIMUM SEGMENT SIZE (SMSS):   

      The SMSS is the size of the largest segment that the sender can transmit.  This value   can be 

based on the maximum transmission unit of the network, the path MTU discovery algorithm, 

RMSS (see next item), or other factors.  The size does not include the TCP/IP headers and 

options. 

 

RECEIVER MAXIMUM SEGMENT SIZE (RMSS):   

      The RMSS is the size of the largest segment the receiver is willing to accept.  This is the 

value specified in the MSS option sent by the receiver during connection startup. Or, if the MSS 

option is not used, 536 bytes.  The size does not include the TCP/IP headers and options. 

 

FULL-SIZED SEGMENT:  

      A segment that contains the maximum number of data bytes permitted (i.e., a segment 

containing SMSS bytes of data). 

 

RECEIVER WINDOW (rwnd): 

      The most recently advertised receiver window. 

 

CONGESTION WINDOW (cwnd):   

      A TCP state variable that limits the amount of data a TCP can send.  At any given time, a 

TCP MUST NOT send data with a sequence number higher than the sum of the highest 

acknowledged sequence number and the minimum of cwnd and rwnd. 
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INITIAL WINDOW (IW):  

  The initial window is the size of the sender's congestion window after the three-way 

handshake is completed. 

 

LOSS WINDOW (LW):  

  The loss window is the size of the congestion window after a TCP sender detects loss 

using its retransmission timer. 

 

RESTART WINDOW (RW):  

  The restart window is the size of the congestion window after a TCP restarts 

transmission after an idle period  

 

FLIGHT SIZE:  

  The amount of data that has been sent but not yet acknowledged. 

 

2.3.2  Slow Start 
   
The additive increase mechanism just described is the right thing to do when the source is 

operating close to the available capacity of the network, but it takes too long to ramp up a 

connection when it is starting from scratch. TCP therefore provides a second mechanism, 

ironically called slow start that is used to increase the congestion window rapidly from a cold 

start. Slow start effectively increases the congestion window exponentially, rather than linearly.  

Specifically, the source starts out by setting CongestionWindow to one packet. When the ACK 

for this packet arrives, TCP adds one packet to CongestionWindow and then sends two packets. 

Upon receiving the corresponding two ACKs, TCP increments CongestionWindow by two---one 

for each ACK---and next sends four packets. The end result is that TCP effectively doubles the 

number of packets it has in transit every RTT. Figure 3 shows the growth in the number of 

packets in transit during slow start. Compare this to the linear growth of additive increase 

illustrated in Figure 2.  
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    Source   Destination 

   

 

 

 

 

 

 

 
 

Figure 3: Packets in transit during slow start. 

Why any exponential mechanism would be called ``slow'' is puzzling at first, but can be 

explained if put in the proper historical context. We need to compare slow start not against the 

linear mechanism of the previous subsection, but against the original behavior of TCP. Consider 

what happens when a connection is established and the source first starts to send packets; i.e., it 

currently has no packets in transit. If the source sends as many packets as the advertised window 

allows---which is exactly what TCP did before slow start was developed---then even if there is a 

fairly large amount of bandwidth available in the network, the routers may not be able to 

consume this burst of packets. It all depends on how much buffer space is available at the 

routers. Slow start was therefore designed to space packets out so that this burst does not occur. 

In other words, even though its exponential growth is faster than linear growth, slow start is 

much ``slower'' than sending an entire advertised window's worth of data all at once.  

 

There are actually two different situations in which slow start runs. The first is at the very 

beginning of a connection, at which time the source has no idea how many packets it is going to 

be able to have in transit at a given time. (Keep in mind that TCP runs over everything from 

9600bps links to 2.4Gbps links, so there is no way for the source to know the network's 

capacity.) In this situation, slow start continues to double CongestionWindow each RTT until 
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there is a loss, at which time a timeout causes multiplicative decrease to divide 

CongestionWindow by two.  

The second situation where slow start is used is a bit more subtle; it occurs when the connection 

goes dead waiting for a timeout to occur. Recall how TCP's sliding window algorithm works---

when a packet is lost, the source eventually reaches a point where it has sent as much data as the 

advertised window allows, and so it blocks waiting for an ACK that will not arrive. Eventually, 

a timeout happens, but by this time there are no packets in transit, meaning that the source will 

receive no ACKs to ``clock'' the transmission of new packets. The source will instead receive 

one big cumulative ACK that reopens the entire advertised window, but as explained above, the 

source uses slow start to restart the flow of data rather than dumping a window's worth of data 

on the network all at once.  

 

Although the source is using slow start again, it now knows more information than it did at the 

beginning of a connection. Specifically, the source has the current value of CongestionWindow, 

which because of the timeout, has already been divided by two. Slow start is used to rapidly 

increase the sending rate up to this value, and then additive increase is used beyond this point. 

Notice that we have a tiny bookkeeping problem to take care of, in that we want to remember 

the ``target'' congestion window resulting from multiplicative decrease, as well as the ``actual'' 

congestion window being used by slow start. To address this problem, TCP introduces a 

temporary variable, typically called CongestionThreshold that is set equal to the 

CongestionWindow resulting from multiplicative decrease. Variable CongestionWindow is then 

reset to one packet, and it is incremented by one packet for every ACK that is received until it 

reaches CongestionThreshold, at which point is incremented by one packet per RTT.  

In other words, TCP increases the congestion window as defined by the following code 

fragment:  

{ 
    u_int    cw = state->CongestionWindow; 
    u_int    incr = state->maxseg; 
 
    if (cw > state->CongestionThreshold) 
        incr = incr * incr / cw;   
    state->CongestionWindow = MIN(cw + incr, TCP_MAXWIN); 
} 
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where state represents the state of a particular TCP connection and TCP_MAXWIN defines an 

upper bound on how large the congestion window is allowed to grow.  

 Ttraces how TCP's CongestionWindow increases and decreases over time, and serves to 

illustrate the interplay of slow start and additive increase/multiplicative decrease. This trace was 

taken from an actual TCP connection, and traces the current value of CongestionWindow---the 

thick grey line---over time. The graph also depicts other information about the connection:  

• the vertical bars show when a packet that was eventually retransmitted was first 

transmitted,  

• the small hash marks at the top of the graph show the time when each packet is 

transmitted, and  

• the circles at the top of the graph show when a timeout occurs.  

There are several things to notice about this trace. The first is the rapid increase in the 

congestion window at the beginning of the connection. This corresponds to the initial slow start 

phase. The slow start phase continues until several packets are lost at about 0.4 seconds into the 

connection, at which time CongestionWindow flattens out at about 34KB. (Why so many 

packets are lost during slow start is discussed below.) The reason the congestion window flattens 

is that there are no ACKs arriving, due to the fact that several packets were lost. In fact, no new 

packets are sent during this time, as denoted by the lack of tick marks at the top of the graph. A 

timeout eventually happens at approximately 2 seconds, at which time the congestion window is 

divided by two (i.e., cut from approximately 34KB to around 17KB), and CongestionThreshold 

is set to this value. Slow start then causes CongestionWindow to be reset to one packet, and start 

ramping up.  

There is not enough detail in the trace to see exactly what happens when a couple of packets are 

lost just after 2 seconds, so we jump ahead to the linear increase in the congestion window that 

occurs between 2 and 4 seconds. This corresponds to additive increase. At about 4 seconds, 

CongestionWindow flattens out, again due to a lost packet. Now, at about 5.5 seconds  

• a timeout happens, causing the congestion window to be divided by two, dropping it 

from approximately 22KB to 11KB, and CongestionThreshold is set to this amount;  

• CongestionWindow is reset to one packet, as the sender enters slow start;  

• slow start causes CongestionWindow to grow exponentially until it reaches 

CongestionThreshold;  

• CongestionWindow then grows linearly.  
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The same pattern is repeated at around 8 seconds when another timeout occurs.  

We now return to the question of why so many packets are lost during the initial slow start 

period. What TCP is attempting to do here is learn how much bandwidth is available on the 

network. This is a very difficult task. If the source is not aggressive at this stage, for example 

only increasing the congestion window linearly, then it takes a long time for it to discover how 

much bandwidth is available. This can have a dramatic impact on the throughput achieved for 

this connection. On the other hand, if the source is aggressive at this stage, as is TCP during 

exponential growth, then the source runs the risk of having half a window's worth of packets 

dropped by the network.  

To see what can happen during exponential growth, consider the situation where the source was 

just able to successfully send 16 packets through the network, and then doubles its congestion 

window to 32. Suppose, however, that the network just happens to have enough capacity to 

support only 16 packets from this source. The likely result is that 16 of the 32 packets sent under 

the new congestion window will be dropped by the network; actually, this is the worst case 

outcome, since some of the packets will be buffered in some router. This problem will become 

increasing severe as the delay* bandwidth product of networks increases. For example, a 

delay*bandwidth product of 500KB means that each connection has the potential to lose up to 

500KB of data at the beginning of each connection. Of course, this assumes both the source and 

destination implement the ``big windows'' extension.  

Some have proposed alternatives to slow start whereby the source tries to estimate the available 

bandwidth through more clever means of sending out a bunch of packets and seeing how many 

make it through. A technique called packet-pair is representative of this general strategy. In 

simple terms, the idea is to send a pair of packets with no spacing between them. Then, the 

source sees how far apart the ACKs for those two packets are. The gap between the ACKs is 

taken as a measure of how much congestion there is in the network, and therefore, how much 

increase in the congestion window is possible. The jury is still out on the effectiveness of 

approaches such as this, although the results are promising.  
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2.3.3 Fast Retransmit and Fast Recovery 
   

The mechanisms described so far were part of the original proposal to add congestion control to 

TCP. It was soon discovered, however, that the coarse-grain implementation of TCP timeouts 

led to long periods of time during which the connection went dead waiting for a timer to expire. 

Because of this, a new mechanism, called fast retransmit, was added to TCP. Fast retransmit is a 

heuristic that sometimes triggers the retransmission of a dropped packet sooner than the regular 

timeout mechanism. The fast retransmit mechanism does not replace regular timeouts, it just 

enhances that facility.  

The idea of fast retransmits it straightforward. Every time a data packet arrives at the receiving 

side, the receiver responds with an acknowledgement, even if this sequence number has already 

been acknowledged. Thus, when a packet arrives out of order---that is, TCP cannot yet 

acknowledge the data it contains because earlier data has not yet arrived---TCP resends the same 

acknowledgement it sent last time. This second transmission of the same acknowledgement is 

called a duplicate ACK. When the sending side sees a duplicate ACK, it knows that the other 

side must have received a packet out of order, which suggests that an earlier packet might have 

been lost. Since it is also possible that the earlier packet has only been delayed rather than lost, 

the sender waits until it sees some number of duplicate ACKs, and then retransmits the missing 

packet. In practice, TCP waits until it has seen three duplicate ACKs before retransmitting the 

packet.  

            Segment 1       Ack1 

           Segment 2     Ack2 

           Segment 3     Ack3 

              Segment 4     Ack4 

           Segment 5     Ack5 

 

          Segment 6      Ack6 

 

Figure 4: Fast retransmit based on duplicate ACKs. 
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Figure 4, illustrates how duplicate ACKs leads to a fast retransmit. In this example, the 

destination receives packets 1 and 2, but packet 3 is lost in the network. Thus, the destination 

will send a duplicate ACK for packet 2 when packet 4 arrives, again when packet 5 arrives, and 

so on. (To simplify this example, we think in terms of packet 1, 2, 3, and so on, rather than 

worrying about the sequence numbers for each byte.) When the sender sees the third duplicate 

ACK for packet 2---the one sent because the receiver had gotten packet 6---it retransmits packet 

3. Note that when the retransmitted copy of packet 3 arrives at the destination, it then sends a 

cumulative ACK for everything up to and including packet 6 back to the source.  

The behavior of a version of TCP with the fast retransmit mechanism. It is interesting to 

compare the trace , where fast retransmit was not implemented---the long periods during which 

the congestion window stays flat and no packets are sent has been eliminated. In general, this 

technique is able to eliminate about half of the coarse-grain timeouts on a typical TCP 

connection, which results in roughly a 20% improvement in the throughput over what could 

have otherwise been achieved. Notice, however, that the fast retransmit strategy does not 

eliminate all coarse-grained timeouts. This is because for a small window size, there will not be 

enough packets in transit to cause enough duplicate ACKs to be delivered. Given enough lost 

packets---for example, as happens during the initial slow start phase---the sliding window 

algorithm eventually blocks the sender until a timeout occurs. Given the current 64KB 

maximum advertised window size, TCP's fast retransmit mechanism is able to detect up to three 

dropped packets per window in practice.  

Finally, there is one last improvement we can make. When the fast retransmit mechanism 

signals congestion, rather than drop the congestion window all the way back to one packet and 

run slow start, it is possible to use the ACKs that are still in the pipe to clock the sending of 

packets. This mechanism, which is called fast recovery, effectively removes the slow start phase 

that happens between when fast retransmit detects a lost packet and additive increase begins. In 

other words, slow start is only used at the beginning of a connection and whenever a coarse-

grain timeout occurs. At all other times, the congestion window is following a pure additive 

increase/multiplicative decrease pattern.  
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3) ESMCC 
As we have mentioned in the introduction, in ESMCC, receivers send their average TROCs back 

to the sender whenever necessary, and the sender dynamically chooses a representative (CR) out 

of them and use only its TROCs to adjust the sending rate. In this section, we will present the 

details of how the whole scheme works. We will first present operations at an ESMCC receiver 

and at the source, followed by a list of the key features of ESMCC. 

 

3.1 ESMCC Receiver  
 
Receivers in ESMCC perform two major functions: (i) calculation and maintenance of TROC 

and average TROC, and (ii) proper generation and suppression of feedbacks to the source. The 

former function is crucial since TROC is used to help the source in rate adaptation as well as in 

deciding which receiver will be the CR. The latter function is also important in that it determines 

scalability of ESMCC in terms of two well-known single-rate multicast problems: feedback-

implosion, and slowest receiver tracking. 

 

3.1.1 Throughput Rate On Congestion (TROC) - µ ω( ), ( ), ( )t t tΩ  
 
Upon detection of a packet loss at a receiver in ESMCC, that receiver measures explicit output 

rate TROC Ω( )t   and updates the average TROCµ( )t . We represent TROC measured at time t at 

receiver i asΩi t( ) . Measurement of TROC is done over a small time period ∆t  which we take as 

1 second for all cases.  

Thus, measurement of average TROC µ( )t  includes two levels of averaging. The first 

averaging is done to measure the TROC, which can be expressed as averaging of instantaneous 

output rateω( )t . So, TROC at receiver i at time t is calculated as:  

 

 

Ω
∆

∆

i i i
t

t t

t E t
t

t d t( ) [ ( ) ] ( )= =
+zω ω1

 
The second level of averaging is done by a moving average function Φ()  (i.e. EWMA) with an 

exponential weighting factor ofα . The value of α  determines importance of the previous TROC 

values in the resulting average. So, given that the previous packet loss happened at time to, 

average TROC at receiver i at time t1 is calculated by a recursive relationship: 
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µ φ µ α
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To distinguish these measures for CR we will use a hat on the notation for the rest of the paper. 

So, µ( ), ( )t tΩ , and ω( )t  represents the average TROC, the TROC and the instantaneous output 

rate for the current CR of the multicast session. 

  

Data Packet at t arrives 

    With < >µ,Ω  
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               Data Packet at t arrives 

    With < >µ,Ω  

 

 
(b)the current  CR receiver 

 
Fig.5:Operations at ESMCC receiver 

 
Similar to average TROC, another important metric to keep track of is the deviation of TROC, 

because it plays a crucial role in feedback suppression as well as selection of CR which will be 

detailed in Sections 3.2.1 and 3.1.3 respectively. We represent the deviation of TROC as σ i t( ) , 

and calculate it again by means of the EWMA functionΦ(): 
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3.1.2 Feedback Handler  
 
In ESMCC, as shown in Figure 5-a, feedbacks are generated only when a packet loss is detected. 

Consider a data packet A at the arrival of which, receiver i detects that some data packets have 

been lost. The feedback generated by this receiver will contain: (i) the sequence number of the 

lastly received data packet A, (ii) the TROC,Ωi t( ) , measured at the arrival of A, and (iii) the 

average TROC, µ i t( ) So, the feedback will be a tuple of three items. When the feedback arrives 

at the source, the first item will be used for making RTT estimation for CR, the second item will 

be used for adjusting the transmission rate, and the last item will be used in the decision-making 

process of CR selection.  

 

Regarding the meaning of feedbacks in ESMCC, there are two different situations for two 

different purposes: 

  

 

• Required Feedback from the CR: As shown in Figure 5-b, when the CR detects a packet 

loss, it needs to send congestion indication as a feedback to the source; so that the source can 

adjust the transmission rate. Since the feedback includes TROCΩ( )t , it also serves as a 

congestion indication since it is measured up on detection of congestion .  

 

• Optional Feedback: As shown in Figure 5-a, a non-CR receiver detects a packet loss and 

generates a feedback only when it thinks that it is slower than the current CR. For receiver i, 

the necessary condition for sending a feedback isµ µ σi t t t( ) ( ) ( )< − . Each non-CR receiver 

performs this comparison to make effective suppression of unnecessary feedbacks, which we 

will discuss next.  
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3.1.3 Feedback Suppression 

 
Effective feedback suppression can reduce the risk of feedback implosion, and allow a 

multicast congestion control scheme to be used for large groups. In ESMCC, the source conveys 

the average TROC µ( )t  and the deviation σ( )t  of the CR's TROC to receivers whenever the CR 

is updated or µ( )t  and σ( )t  are changed. The source conveys these statistics about the current 

CR by attaching them to the data packets. A receiver will send feedbacks, only if its own 

average TROC is less than the current average TROC of the CR by an amount at least the 

standard deviation of the CR's TROC. That is, for receiver i the necessary condition for sending 

a feedback is µ µ σi t t t( ) ( ) ( )< − . Note that we do not use a weaker condition of µ µi t t( ) ( )≤  to 

be conservative and keep CR stable. 

If needed, the source can use this behavior of the receivers to obtain feedbacks from all 

receivers. µ( )t  and σ( )t  conveyed by the source can be changed to large or smaller values so 

that receivers can send feedbacks. This is needed when the current CR is inactive and the source 

needs to trigger feedbacks from all receivers for new CR selection (Figure 9). To remedy the 

possibility of feedback implosion, the source can change these µ( )t  and σ( )t  thresholds to 

obtain feedback from a portion of receivers at a time.  

Clearly, no timer is involved in our feedback suppression; no knowledge of the whole 

group is needed. Unlike other probabilistic timer-based feedback suppression schemes, 

feedbacks are not scheduled at all before being suppressed. Yet, it is effective since the amount 

of feedbacks sent to the source is independent of the total number of receivers. 

 There is one situation which might be of concern. When the current CR is absent and the 

source needs to choose a new CR, all receivers seeing congestion of similar degree may send 

feedback at the same time. However, this situation will last at most one RTT, because the new 

CR will be chosen in one RTT. Besides, in reality, due to the heterogeneity of the network, 

many  receivers will get the information of the new CR before they can send out feedbacks for 

CR re-selection. Therefore, the total number of feedbacks sent under this situation is limited, and 

we do not deem it as a problem. 
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3.2 ESMCC Source  
 
In a single-rate multicast congestion control protocol, the source is responsible for several major 

functions. These include: (i) proper and scalable selection of the CR that represents the slowest 

receiver(s) in the multicast session, (ii) proper adaptation of the transmission rate so that 

available bandwidth utilized as much as possible while assuring that the slowest receiver(s) is 

not overloaded, and (iii) estimation and maintenance of necessary statistics such as RTT. In 

order to perform the first function, ESMCC employs a set of CR Selection criteria as well as a 

CR Mode Control module that operates at every RTT. Similarly, to perform the second function, 

ESMCC has a Rate Increase module that operates at every RTT and a Rate Decrease module 

that operates at every congestion indication from the receivers.  

 

As it is shown in Figure 6, an ESMCC source has six major functions and modules, each of 

which has a specific purpose. In the following subsections, we will describe each of these 

functions and modules in detail.  

 

3.2.1 CR Selection: Tracking of the Slowest Receiver  
 
 
ESMCC compares average TROC of all receivers to locate the slowest ones, and chooses one of 

them as the Congestion Representative (CR). By using a metric like TROC (which is based on 

explicit output rate), it avoids computing TCP throughput formula [11] [10] which requires per 

receiver RTT and packet loss rate. 

 

ESMCC receivers help the source to select a receiver with the lowest average TROC by sending 

in feedbacks only if their average TROCs is low enough to qualify them as CR. It is imperative 

that the receivers do not send more than necessary or less than enough feedbacks, which 

necessitates proper and effective suppression of feedbacks. Details of how receivers suppress the 

feedbacks were covered in Section 3.1.3. 
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Thus, to make selection of the slowest receiver as the CR, two types of comparisons take place in the 

system: 

 

1) Comparison at receivers: Each receiver checks whether it thinks itself as a potential CR. If 

so, it sends feedback to compete for being the CR. 

2) Comparison at the source: The source compares the feedbacks from those receivers who 

think they are qualified, and makes the final decision of which should be the CR.  

 

 

These comparisons are shown in detail in Feedback Handler part of Figure 5-a and CR Selection 

part of Figure 8. 

 

Network conditions always keep changing, and we need to continuously keep our choice of CR 

up-to-date. There are mainly two situations under which CR needs to be updated: 

 Case 1: A non-CR receiver worsens. The situations of some non-CR receivers change so 

that one of them sees more severe congestion than the current CR does. 

 Case 2: CR improves or leaves. While the situations of all non-CR receivers remain 

unchanged, the previously most congested path is improved so that the current CR sees less 

congestion than other receivers, or it leaves the multicast session.  

 

 

Tracking the slowest receiver by examining average TROCs can deal with Case 1, but to cope 

with Case 2 needs more effort. Under this situation, there can be no feedbacks from the current 

CR. Recall that the source only considers the feedbacks from the CR for rate adaptation and 

ignores all other feedbacks. 
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Fig.6:Source Operations as a block diagram 
 
 
 
If the source does not change CR in time, the transmission rate will be out of control. To detect 

this situation, we estimate an upper bound (denoted as T max) of the idle time (denoted as T) 

before the source receives the first feedback from the CR when the bottleneck is fully loaded. 

Notice that T is indeed response time of CR during a congestion epoch, so we named it CR 

Response Time. We will give a detailed description of measurement of T later in Section 3.2.4. 
 

   

                   

As shown in CR Selection part of Figure 8, the source in ESMCC defines two modes for the 

CR, Active or Inactive, which reflect validity of the CR. At every RTT, the source updates the 

mode of CR. We will detail the update of CR's operation mode in the next Section 3.2.2.  

 

There is one small trick we use to bias the choice of CR towards those receivers with higher 

RTTs. As shown in CR Inactive Mode part of the CR Selection in Figure 8, right after a new CR 

is chosen, we start a longer-RTT period of 2RTTmax, where RTTmax is the maximum RTT the 

source has ever seen. Later within this period, as shown in CR Active Mode part of the CR  
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Figure7  :At every RTT , the source attempts to increase the transmission rate and updates the 

operating mode of the source as either CR active or CR inactive  
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Selection in Figure 8, if the source receives a feedback from another receiver with similar 

average TROC as that of the CR, it will update CR to this receiver, since this one tends to have 

longer RTT. Notice that the longer-RTT period is not reset after CR switches within the longer-

RTT period. 

3.2.2 CR Mode Control  
 
To determine whether or not the selected CR is active, the source uses two measures: (i) an 

estimate of the time when the bottleneck becomes fully loaded, and (ii) Tmax, an estimate of the 

time it would maximally take the current CR to respond during congestion. Basically, the source 

starts to count when it detects the time corresponding to the first estimate above. And then, it 

identifies the CR as Inactive when the count reaches the second time estimate above. In other 

words, suppose we somehow detect that the bottleneck is fully loaded at time t. If there has been 

no feedback from the current CR until t + Tmax, we can say that the current CR is now inactive 

and needs to be changed. Indeed, this is sort of a timeout on TROC of the current CR. This 

process of mode determination can be seen in the flowchart shown in CR Mode Control part of 

Figure 7.  

 

 

To see this mode control process on a timeline, let's look at Figure 9. When the CR is still 

active, we measure samples of T at the source, using feedback packets only from CR. When the 

transmission rate reaches µ σ( ) ( )t t+ 4  3, we assume that bottleneck becomes fully loaded and 

start to count. Let the current time be to. At a later time tl, suppose the first feedback from the 

CR arrives at the source. Then, tl - to is a sample of T and we update the average and deviation 

of T again with EWMA just like we did for the TROC in (2) and (3).Tmax is the average value of 

T plus eight times its deviation 4, i.e. 



 
 

 42

 
T E T Tmax [ ]= +8 σ  

 
 
 
 
The bottleneck is assumed to       The bottleneck is assumed        The source sends 
       Become fully loaded                             to become fully loaded              invalid µ σ&  
           

 
New CR is               
selected 

 
 

 
 
 
 
 
 
            The CR send feedback                                     Non CR receivers  

             send feedback 
 
  

                  CR is active                      CR is inactive and need to be changed 
 
 

Fig.9. Sketch of updating congestion Representative(CR). 
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When the CR is not active, for the duration of Tmax since we start to count, no feedback will be 

received by the source. The source then requests feedback from other receivers for new CR 

selection, as described in Section 3.1.3.  

 
 
 
 
 

 
 

 
Figure 10: Handling of data packets at the source: Source keeps attaching 

µ σ&  to every data packet. 
 
 
 
 

3 According to Chebychev's Inequality, about 94% of the random samples are less than this value.  
4 We choose the value of 8 to be conservative.  
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3.2.3 Rate Adaptation 

 
Since TROCs are measured at receivers upon packet losses, they indicate how much 

bandwidth a flow can get out of the fully loaded bottleneck, assuming congestion is the only 

reason for packet losses. The less it can get, the more congested the bottleneck is. Therefore, we 

choose one receiver with the lowest average TROC as the CR, and let the source only consider 

the feedbacks from that receiver for rate adaptation.  

 

ESMCC is a rate-based scheme, using the policy of additive increase and multiplicative decrease 

(AIMD). As shown in Rate Increase part of Figure 7, if there are no feedbacks from the CR, the 

transmission rate is increased by s / RTT per RTT, where s is the packet size; RTT is that 

between the source and the CR. If a feedback is received from the CR at time tl, let the TROC in 

this feedback be µ( )t , we adjust the transmission rate to the minimum of ; βµ( )t  and the current 

rate. Feedbacks from other non-CR receivers will be ignored, and at most one rate cut is allowed 

per RTT. This is shown in Rate Decrease part of Figure 8.  

 
 

Thus, adaptation of the source rate λ( )t  is done according to the following AIMD-like method:  
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Where the feedback µ( )t  arrives at source between to and tl, i.e. t t t0 1< ≤ . 

 

 

The rate reduction factor β  is an important parameter of ESMCC. The larger theβ , the more 

aggressive is ESMCC. To keep ESMCC TCP-friendly, we will see that β  must be at least 0.5. 

Moreover, the exact value of β  depends on how ESMCC is implemented. According to the 

simulation and experiment results, we suggest β  = 0.65 for implementation on user level, and 

β  = 0.75 for implementation in system kernel. The reason is that, if ESMCC is implemented on 

user level, due to the coarseness of timers, its traffic is more bursty than that of TCP running in 

kernel. To cancel that effect, β  should be set lower. 
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3.2.4 Update of Statistics 

 
ESMCC source needs to maintain sets of statistics for the purposes of (i) estimating the RTT 

between the source and the CR, (ii) estimating response time of the CR during congestion 

epochs, and (iii) keeping track of the TROC of the CR. Flowchart of how these statistics are 

updated is shown in Update Statistics part of Figure 8. We now briefly describe how each of 

these sets of statistics is updated:  

 
 
 
RTT Estimation: Unlike a NAK, which includes the sequence number of a lost packet, a 

feedback in ESMCC includes the sequence number of a packet upon the arrival of which packet 

losses are detected. The source calculates the difference between the sending time of this packet 

and the arriving time of this feedback to get a sample of RTT. By doing this, we avoid the 

unnecessary delay between the supposed arriving time of a lost packet and the time of its loss 

being detected. Nevertheless, since feedbacks are sent only when packet losses occur, RTT 

estimated by these feedbacks includes the maximum bottleneck queuing delay and thus is still 

the upper bound. On the other hand, ACKs as those in TCP mayor may not include bottleneck 

queuing delay. Therefore, on average, RTT estimated by ESMCC's feedbacks is larger than that 

by ACKs under the same situation. In fact, this is the reason why we set β  to some value higher 

than 0.5.  

 

ESMCC maintain the following two values regarding RTT: (i)RTT, estimate of the RTT 

between the source and the CR, and (ii) RTTmax, the maximum RTT estimate RTT that was ever 

seen by the source. As shown in Figure 8, upon receipt of a feedback from receiver i, the source 

updates RTT and RTTmax when either (i) the receiver i is the CR or (ii) the feedback caused the 

CR to be changed. Notice that this method calculates the RTT only from the samples when 

congestion exists.      

   
 
 
CR Response Time: Another statistic that ESMCC source needs is the time, Tmax, it would 

maximally take the current CR to respond during a congestion epoch. This is a crucial measure 

since it is used to determine whether or not the current CR is still active or not, as it can so 
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happen that the CR may leave the system. The value of Tmax is composed of E[T] and Tσ  which 

are average value of T and its deviation respectively. The composition we use is 

T E t Tmax [ ]= +8 σ , which means the source needs to measure and maintain the values of E[T] and 

Tσ . As it can be seen from Update Statistics part of Figure 8, the source updates E[T] and Tσonly 

upon receipt of a feedback from the current CR within the time period that started when the 

bottleneck is estimated to be fully loaded after a rate increase.  

 

 
 
CR's TROC: As described in (2), average TROC is calculated by means of an EWMA 

function, which we represent as φ(). In addition to average TROC, the source also maintains the 

deviation of TROC, σ , for the current CR. CR's average TROC, µ , and deviation of CR's 

TROC, σ , are crucial statistics since they represents the maximum possible transmission rate for 

the current session and are directly used for the process of CR selection. As shown in Figure 8, 

upon receipt of a feedback from receiver i, the source updatesµ  and σ  when either (i) the receiver 

i is the CR or (ii) the feedback caused the CR to be changed.  
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3.2.5 Data Packet Handler  

 
 
Receivers in ESMCC must be informed about the current value of CR's TROC, µ , and its 

deviation, σ . In order to convey µ  and σ  to the receivers, ESMCC source attaches them to the 

data packets. As shown in Figure 8, the source specifically sets µ = 0 and σ = ∞  when the CR is 

Inactive mode. The purpose of this is to make the receivers send their current TROC values, so 

that a new CR can be elected. 

 

 

Even though we have not implemented in the simulations of this dissertation, it is also possible 

to set µ  and σ , so that only those receivers with TROC very close to the latest CR's TROC will 

send feedback. Such a strategy is particularly needed when the total number of receivers is too 

large.  

 

3.3 Key Features of ESMCC  

 
As we can see from the details above, ESMCC has the following features:  

 

• 0(1) Memory Complexity: The amount of memory needed to maintain the state 

information at source and receivers is 0(1). That is, the number of states is constant and 

independent of the number of receivers in a multicast session.  

• Practical Operations: Operations of source and receivers are all simple, without requiring 

intense computation. In particular, there is no need to do per-receiver RTT estimation. 

• Effective Feedback Suppression: With our non-probabilistic-timer-based feedback 

suppression mechanism in place, the amount of feedbacks is independent othe total number of 

receivers.  
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4) Simulations and Experiments  
  
We have run simulations on ns-2.28 to validate the performance of ERMCC. The ns-2 
simulations checked the TCP -Friendliness, Drop-to-zero avoidance, Effective feedback 
suppression. 

 

We used a star topology to generate asynchronous and independent congestion on different 
paths. There are 33 ends nodes in the topology. Between each pair of source i and receiver i (i 
= 1 ... 16), there are one TCP flow and one single-receiver ERMCC flow. Furthermore, there is 
a multireceiver ERMCC flow from source 17 to all upto 33 receivers. Therefore, on a path 
between the router and any receiver, the multi-receiver ERMCC flow competes with a TCP flow 
and a single-receiver ERMCC flow.  
 

We have randomly chosen a three node 4.1, 7.1 and 14.1 and draw a graph from the data sheet 
which is generated from the simulation. First of we draw a graph for the rate vs. time. 
 

Snapshot of the Data Sheet for the Generation of Rate vs Time graph 
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Figure 11: Graph plotted between Rate vs Time for the three nodes 

 
This graph is constructed between the  Rate vs Time for the three nodes. The rate is measured in 

Mbps and time in second. The rate is increased from the above given formula in the Rate 

increased module(λ λ← + s RTT/ ) whenever the rate is increased from the λ µ σ≥ + 4  the rate 

decresed occur. This graph shows that the TCP-friendliness maintained and avoids Drop-to-

zero. 
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Snapshot of the Data Sheet for the Generation of RTT update vs Time graph 

 
 
This is the snapshot data sheet of the RTT update of the one of the node . With the help of these  

datasheet for the three different nodes we have created the graph between the RTT update and 

time .  
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Figure 12: Graph plotted between RTT update  vs Time for the three nodes 
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Snapshot of the Data Sheet for the Generation of RTT Deviation  vs Time graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
This is the snapshot data sheet of the RTT deviation  of the one of the node . With the help  of 

these  datasheet for the three different nodes we have created the graph between the RTT 

deviation  and time .  
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Figure 13: Graph plotted between RTT Deviation  vs Time for the three nodes 
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Snapshot of the Data Sheet for the Generation of CI suppressed vs Receiver graph 
 

 
 
With the help of this datasheet we have created a graph between the receiver and CI suppressed 
and also created a graph between the receiver and the CI sent.  
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Figure 14: Graph plotted between Receiver  vs CI suppressed 
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Figure 15: Graph plotted between Receiver  vs CI sent 
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Feedback Suppression 

 
To check the effectiveness of the feedback suppression mechanism in ESMCC, we refer back to 

the simulation of TCP-friendliness and drop-to-zero avoidance. In this  simulations, the average 

total number of feedbacks sent by all receivers is 182, the average total number of suppressed 

feedbacks is 615. The average number of feedbacks would have been sent by a receiver if 

without suppression, is (615 + 182)/32 ~ 24, realistic measurement error can lead to a little bit 

more feedbacks. The high ratio of feedbacks suppressed, 615/(615 + 182) x 100% ~ 77.7%, 

shows that our feedback suppression is very effective.  
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5) Conclusion  
 
In this dissertation, we have proposed a enhancement of the single-rate multicast congestion 

control scheme, which uses a conventional concept of representative named Congestion 

Representative (CR). However, by leveraging a new metric TROC, the ESMCC scheme is 

capable of effectively addressing the problems of TCP friendliness, drop-to-zero, slowest 

receiver tracking and feedback suppression. The states maintained by source and receivers are 

0(1); operations of source and receivers are all simple without requiring intense computation. In 

particular there is no need to measure RTTs between all receivers and the source. ESMCC also 

shows that non-probabilistic-timer-based feedback suppression is highly effective. To confirm 

the performance of ESMCC, we have not only provided theoretical analysis, but also performed 

simulations. Both simulation and implementation results show ESMCC's excellent performance.  

 

We believe that further studies of ESMCC-like schemes will benefit the area of multicast 

congestion control. A point that deserves further investigation is the EWMA smoothing 

technique used at various places of the scheme. Particularly, it is worthwhile to study averaging 

techniques that can use the timestamp differences of arriving data packets at the receiver. Also, 

adaptive tuning of various parameters (e.g. less that 4σ  in determining slowest receiver with its 

average TROC) can provide incremental improvements to ESMCC. 
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7) Appendix 
 
A) Algorithm 
 
 A.l Operations at Source  

 

Some of the following operations take place when either a feedback packet from a receiver r is 

received, or an RTT time period has been completed: 

 

Variables:  

 

                r : The receiver sending the received feedback 

     λ : Current transmission rate at the source 

Ω r  : Throughput rate at congestion (TROC) in the received feedback             

        from r 

                          µ , : Average TROC of the CR 

                                            σ  : Deviation of TROC of the CR 

                              s : Packet size 

                  RTT max : Maximum RTT 

    RTT: RTT between the source and the CR 

        T : CR response time when the bottleneck is fully loaded 

                        E[T] : Average of T 

                                           Tσ  : Deviation of T 

                cr_valid : Indicates whether the CR is valid 

  cr_response_timer : Indicates whether the bottleneck is estimated to be full 

     to : The estimated time bottleneck started to fill up 

      t : Current time 
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Initialization: 

 

   cr_valid = false  

   RTTmax = 0  

    to = 0  

   cr_response_timer = false  

 

 

 

 

 

 

 

Event everyRTT: 

          if there is no rate reduction within the recent RTT then  

                  λ λ← + s RTT/  

                 if λ µ σ≥ + 4  and cr_response_timer is false then  

                         t t0 ←  
             cr_response_timer ← true 

                 endif 

          endif 

          if t t E T] T then [  − ≥ +0 8 σ  
                cr_valid←false 

                cr_response_timer ← false 

          endif 

     

Send packet: 

          if cr_valid is true then 

              Send a packet with real µ  and σ  

endif 
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Subroutine : CutRate() 

if λ  has not been cut within the most recent RTT then 

           λ λ← min( , . )0 75Ω r  
           cr_valid← true 

           cr_response_timer ← false 

endif 

 

 

Subroutine:UpdateStats() 

      Update µ  and σ  with Ω r  

      Update RTT with RTTr  

      if RTT max < RTT then 

             RTT max  ←RTT 

      Endif 

 

 

Event upon receipt of feedback from r: 

   if r is CR then  

        if cr_response_timer is true then  

            Update E[T] and Tσ  with (t-t0) 

        endif 

        do UpdateStats() 

        do CutRate() 

        return 

   endif  

 

 

/* The feedback is NOT from CR*/ 

    if cr_valid is false then 

        Choose r as the CR 

        Start CR grace period as 2 RTT max 

     else if In CR grace period then  

          if RTT RTTr >  then  

              Choose r as the CR 
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          Endif 

 

/* NOT in longer RTT period */ 

     else if Ω r < −µ σ  then 

             Choose r as the CR 

   endif 

  

    

if CR has been changed at the receipt of this feedback then  

        do UpdateStats() 

         do CutRate() 

endif 
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A.2 Operations at Receiver i 

 

 

 

The following operations take place when a data packet is received at receiver i: 

 

 

 Variables: 

 

 

 
Ωi  : A throughput rate on congestion (TROC) sample 

 µ i  : Average TROC of this receiver  

 µ  : Average TROC of the CR  

  σ : Deviation of TROC at the CR  

 

 

 

Event upon receipt of a packet:  

 

if µ  andσ  has been changed then 

      Update the local copy of µ , and σ  

endif  

if This packet indicates packet losses then 

       MeasureΩi  and update µ i  

 if µ  andσ are invalid or µ µ σi < − then  

     Send a feedback to the source  

endif  

endif  
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B) Coding  
 
This program is used to generate the data sheet of the ESMCC .In this program we update 

statistics, also cut the rate when the rate is increased beyond the threshold. There is one more 

functioning which is perform by this program is up update of the RTT. 

 
#include <stdlib.h> 

#include <sys/types.h> 

#include <math.h> 

#include <assert.h> 

#include <float.h> 

#include <iostream.h> 

#include "Esmcc.h" 

 

int hdr_Esmcc::offset_; 

int hdr_Esmcc_ci::offset_; 

 

//operator overloading to be used to enhance the funcitionaliy of operator  

 

 

ostream & operator<< (ostream & o, ns_addr_t & nsAddr) //  

  o << nsAddr.addr_ << '.' << nsAddr.port_; 

  return o; 

} 

 

int operator!= (ns_addr_t a, ns_addr_t b) 

{ 

  return (a.addr_ != b.addr_ || a.port_ != b.port_); 

} 

 

int SqnGT (unsigned int s1, unsigned int s2) { 

  return (((int) ((s1 > s2) ? (s1 - s2) : (s2 - s1))) >= 0) ? 

    (s1 > s2) : (!(s1 > s2)); 

} 

int SqnGE (unsigned int s1, unsigned int s2) { 

  return (((int) ((s1 > s2) ? (s1 - s2) : (s2 - s1))) >= 0) ? 

    (s1 >= s2) : (!(s1 >= s2)); 

} 

int SqnLT (unsigned int s1, unsigned int s2) { 

  return (((int) ((s1 > s2) ? (s1 - s2) : (s2 - s1))) >= 0) ? 

    (s1 < s2) : (!(s1 < s2)); 

} 

int SqnLE (unsigned int s1, unsigned int s2) { 

  return (((int) ((s1 > s2) ? (s1 - s2) : (s2 - s1))) >= 0) ? 

    (s1 <= s2) : (!(s1 <= s2)); 

} 
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//This is used to provide the connectivity  for the NS-2  

 

static class ESMCCHeaderClass : public PacketHeaderClass { 

public: 

  ESMCCHeaderClass() : PacketHeaderClass("PacketHeader/ESMCC", 

         sizeof(hdr_Esmcc)) { 

      bind_offset(&hdr_Esmcc::offset_); 

  } 

} class_Esmcchdr; 

 

static class ESMCC_CIHeaderClass : public PacketHeaderClass { 

public: 

  ESMCC_CIHeaderClass() : PacketHeaderClass("PacketHeader/ESMCC_CI", 

         sizeof(hdr_Esmcc_ci)) { 

      bind_offset(&hdr_Esmcc_ci::offset_); 

  } 

} class_Esmcc_cihdr; 

 

static class EsmccClass : public TclClass { 

public: 

    EsmccClass() : TclClass("Agent/ESMCC") {} 

    TclObject* create(int, const char*const*) { 

        return (new EsmccAgent()); 

    } 

} class_Esmcc; 

 

static class EsmccSinkClass : public TclClass { 

public: 

    EsmccSinkClass() : TclClass("Agent/ESMCCSink") {} 

    TclObject* create(int, const char*const*) { 

         return (new EsmccSinkAgent()); 

    } 

} class_EsmccSink;  

 

 

/*********************************** 

 ESMCC  T I M E R 

 ***********************************/ 

 

 

void EsmccTimer::expire (Event *) 

{ 

  agent_->TimeOut (timerType_); 

} 

 

 

/*********************************** 

 ESMCC  S O U R C E 

 ***********************************/ 

 

 

EsmccAgent::EsmccAgent() : Agent(PT_ESMCC), 

  rateIncrTimer_ (this, ESMCC_RATE_INCR_TIMER), 
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  congEpochTimer_ (this, ESMCC_CONG_EPOCH_TIMER), 

  sendPktTimer_ (this, ESMCC_SEND_PKT_TIMER), 

  crGracePeriodTimer_ (this, ESMCC_CR_GRACE_PERIOD_TIMER), 

  crRespTimer_ (this, ESMCC_CR_RESPONSE_TIMER) 

{ 

  bind ("packetSize_", &size_); 

  bind ("minRate_", &minRate_); 

  bind ("initRate_", &initRate_); 

  bind ("initRtt_", &initRtt_);   

} 

 

int EsmccAgent::command(int argc, const char*const* argv) { 

  if (argc == 2) { 

    if (strcmp (argv[1], "start") == 0) { 

      Start(); 

      return TCL_OK; 

    } 

    if (strcmp (argv[1], "stop") == 0) { 

      Stop (); 

      return TCL_OK; 

    } 

    if (strcmp (argv[1], "print-statistics") == 0) { 

      PrintStat (); 

      return TCL_OK; 

    } 

  } 

  return (Agent::command (argc, argv)); 

} 

 

 

void EsmccAgent::PrintStat () 

{ 

  /* Statistic */ 

  cout << "Source at " << here_ << " statistics: CI received = " 

    << ciRcvd_ << '\n'; 

} 

 

 

void EsmccAgent::Start () 

{ 

  crGone_ = 1; 

  cr_ = here_; 

  sqn_ = 0; 

  rate_ = initRate_; 

  rttAvg_ = initRtt_; 

  rttDev_ = 0; 

  maxRtt_ = 0; 

  crTracAvg_ = -1; 

  crTracDev_ = 0; 

  crChkBegTime_ = -1; 

  crRespTimeAvg_ = 100; /* Set to large so that it won't time out */ 

  crRespTimeDev_ = -1; 

  newCrRtt_ = -1; 
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  active_ = 1; 

  ciRcvd_ = 0; 

   

  SendPkt (); 

  sendPktTimer_.resched (size_ / rate_); 

  rateIncrTimer_.resched (rttAvg_); 

} 

 

 

void EsmccAgent::Stop () 

{ 

  active_ = 0; 

   

  rateIncrTimer_.force_cancel (); 

  congEpochTimer_.force_cancel (); 

  sendPktTimer_.force_cancel (); 

  crGracePeriodTimer_.force_cancel (); 

  crRespTimer_.force_cancel (); 

} 

 

 

void EsmccAgent::SendPkt () 

{ 

  if (! active_) return; 

 

  double now = Scheduler::instance().clock(); 

  Packet * p = allocpkt (); 

  hdr_cmn * ch = HDR_CMN (p); 

  hdr_Esmcc * oh = hdr_Esmcc::access (p); 

  oh->cr_ = cr_; 

  oh->timestamp_ = now; 

  oh->sqn_ = sqn_ ++; 

  oh->crTracAvg_ = crGone_ ? -1 : crTracAvg_; 

  oh->crTracDev_ = crTracDev_; 

   

  /* For measuring realistic throughput rate */ 

  hdr_ip * ih = HDR_IP (p); 

  static p_info pinfo; 

  cout << now << " : " << here_ << " -> " << ih->dst_ 

    << " , " << pinfo.name (ch->ptype ()) 

    << " , size = "  << ch->size_; 

     

  #ifdef ESMCC_DATA_PKT_DEBUG 

  cout << " , sqn = " << oh->sqn_; 

  #endif     

     

  cout  << '\n'; 

 

  send (p, 0); 

} 

 

 

void EsmccAgent::recv (Packet * p, Handler *) 
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{ 

  if (! active_) { 

    Packet::free (p); 

    return; 

  } 

 

  ++ ciRcvd_; 

   

  hdr_Esmcc_ci * och = hdr_Esmcc_ci::access (p); 

  double err, now = Scheduler::instance().clock(); 

  double rttSample = now - och->timestampEcho_; 

 

  int cutRate = 0, changeCr = 0; 

  int reason;   /* for debugging */ 

     

  if (maxRtt_ < rttSample) maxRtt_ = rttSample; 

 

  #ifdef ESMCC_CI_DEBUG 

  cout << now 

    << " : at " << here_ 

    << " CI arrived from " << och->ciSrc_ 

    << " , CR = " << cr_ 

    << '\n'; 

  #endif 

 

  #ifdef ESMCC_RTT_DEBUG 

  cout << now 

    << " : at " << here_ 

    << " RTT sample from " << och->ciSrc_ 

    << " = " << rttSample 

    << '\n'; 

  #endif 

 

  /* 

   * Fileter CIs, update CR / cut rate if necessary 

   */   

  do { 

    /* Initialization or CCI is gone. */ 

    if (crGone_ && och->ciSrc_ != cr_) { 

      reason = 1; 

      changeCr = 1; 

      break; 

    } 

     

    /* CI is from CR */ 

    if (och->ciSrc_ == cr_) { 

      crGone_ = 0; 

      err = och->trac_ - crTracAvg_; 

      crTracAvg_ += TRAC_EWMA_FACTOR * err; 

      crTracDev_ += TRAC_EWMA_FACTOR * (fabs (err) - crTracDev_); 

      cutRate = 1; 

      UpdateRtt (rttSample); 
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      if (crChkBegTime_ < 0) break; 

       

      if (crRespTimeDev_ < 0) { 

        crRespTimeAvg_ = now - crChkBegTime_; 

        crRespTimeDev_ = 0; 

      } 

      else { 

        err = (now - crChkBegTime_) - crRespTimeAvg_; 

        crRespTimeAvg_ += 0.125 * err; 

        crRespTimeDev_ += 0.125 * (fabs (err) - crRespTimeDev_); 

      } 

      crChkBegTime_ = -1; 

      if (crRespTimer_.status () == TIMER_PENDING) crRespTimer_.cancel (); 

       

      break; 

    } 

     

    if (crGracePeriodTimer_.status () == TIMER_PENDING) { 

      if (rttSample + SMALL_FLOAT < rttAvg_ + 2 * rttDev_) break; 

      changeCr = 1; 

      reason = 2; 

      break; 

    } 

     

    if (och->trac_ + SMALL_FLOAT 

        < crTracAvg_ - crTracDev_ / COMPARE_TRAC_FACTOR) { 

      changeCr = 1; 

      reason = 3; 

      break; 

    } 

  } while (0); 

   

  /* 

   * Update CR 

   */ 

  if (changeCr) { 

    if (crTracAvg_ < 0) { 

      cout << now << " : at " << here_ 

        << " CR is initialized as " << och->ciSrc_ << '\n'; 

    } 

    else { 

      cout << now << " : at " << here_ 

        << " CR is changed from " << cr_ << " to " << och->ciSrc_ 

        << ". "; 

      #ifndef ESMCC_CR_DEBUG 

      cout << '\n'; 

      #else 

      switch (reason) { 

      case 1: 

        cout << "Current CR is inactive.\n"; 

        break; 

      case 2: 

        cout << "CI with larger RTT sample within grace period." 
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          << now - och->timestampEcho_ 

          << " > " << rttAvg_ << " + 2 * " << rttDev_ << " = " 

          << rttAvg_ + 2 * rttDev_<< '\n'; 

        break; 

      case 3: 

        cout << "New lower average TRAC. " 

          << och->trac_ / 125000 

          << " < " << crTracAvg_ / 125000 << " - " << crTracDev_ / 125000 

          << " / " << COMPARE_TRAC_FACTOR << " = "  

          << (crTracAvg_ - crTracDev_ / COMPARE_TRAC_FACTOR) / 125000 << '\n'; 

        break; 

      } 

      #endif 

    } 

     

    if (crChkBegTime_ > 0 && crGracePeriodTimer_.status () == TIMER_IDLE) { 

      if (crRespTimeDev_ < 0) { 

        crRespTimeAvg_ = now - crChkBegTime_; 

        crRespTimeDev_ = 0; 

      } 

      else { 

        err = (now - crChkBegTime_) - crRespTimeAvg_; 

        crRespTimeAvg_ += 0.125 * err; 

        crRespTimeDev_ += 0.125 * (fabs (err) - crRespTimeDev_); 

      } 

    } 

 

    crChkBegTime_ = -1; 

    if (crRespTimer_.status () == TIMER_PENDING) { 

      crRespTimer_.cancel (); 

    } 

     

    UpdateRtt (newCrRtt_ = rttSample);     

    if (crGracePeriodTimer_.status () == TIMER_IDLE) { 

      crGracePeriodTimer_.resched (2 * maxRtt_); 

    } 

    crGone_ = 0;     

    cr_ =  och->ciSrc_; 

    cutRate = 1; 

    crTracAvg_ = och->trac_; 

  } 

   

  if (congEpochTimer_.status () == TIMER_PENDING) { 

    cutRate = 0; 

  } 

         

  if (cutRate) { 

    if (rate_ > 0.75 * och->trac_) rate_ = 0.75 * och->trac_; 

    if (rate_ < minRate_) rate_ = minRate_; 

    congEpochTimer_.resched (rttAvg_ + 4 * rttDev_); 

    /* For rate tracing */ 

    cout << now 

      << " : at " << here_ 
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      << " , Rate decreased = " << rate_ / 125000 << " Mbps\n"; 

  } 

  Packet::free (p); 

} 

 

 

void EsmccAgent::TimeOut (int type) 

{ 

  double srtt, now, oldRate; 

 

  switch (type) { 

  case ESMCC_RATE_INCR_TIMER: 

    rateIncrTimer_.resched (srtt = rttAvg_ + 2 * rttDev_); 

    if (congEpochTimer_.status () == TIMER_PENDING) break; 

    oldRate = rate_; 

    rate_ += size_ / srtt; 

     

    now = Scheduler::instance().clock(); 

    if (crTracAvg_ > 0  

        && oldRate < crTracAvg_ + 4 * crTracDev_ 

        && rate_ >= crTracAvg_ + 4 * crTracDev_ 

        && crChkBegTime_ < 0) { 

      crChkBegTime_ = now; 

      crRespTimer_.resched (crRespTimeAvg_ + 8 * crRespTimeDev_); 

      #ifdef ESMCC_CR_DEBUG 

      cout << now 

        << " : at " << here_ 

        << " CR check starts. " 

        << " CR resp time avg = " << crRespTimeAvg_ 

        << " , dev = " << crRespTimeDev_ 

        << " , a + 8d = " << crRespTimeAvg_ + 8 * crRespTimeDev_ 

        << '\n'; 

      #endif 

    } 

     

    /* For rate tracing */ 

    cout << now 

      << " : at " << here_ 

      << " , Rate increased = " << rate_ / 125000 << " Mbps\n"; 

    break; 

  case ESMCC_CONG_EPOCH_TIMER: 

    break; 

  case ESMCC_SEND_PKT_TIMER: 

    SendPkt (); 

    sendPktTimer_.resched (size_ / rate_); 

    break; 

  case ESMCC_CR_GRACE_PERIOD_TIMER: 

    break; 

  case ESMCC_CR_RESPONSE_TIMER: 

    #ifdef ESMCC_CR_DEBUG 

    cout << Scheduler::instance().clock() 

      << " : at " << here_ 

      << " CR is absent.\n"; 
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    #endif 

    crGone_ = 1; 

    break; 

  default: 

    cout << "Unknow ESMCC timer.\n"; 

    cout.flush (); 

    abort (); 

  }; 

} 

 

 

void EsmccAgent::UpdateRtt (double sample) 

{ 

  double err = sample - rttAvg_; 

  rttAvg_ += 0.125 * err; 

  rttDev_ += 0.125 * (fabs (err) - rttDev_); 

 

  /* For RTT tracing */ 

  cout << Scheduler::instance().clock() 

    << " : at " << here_  

    << " , RTT updated = " << rttAvg_  

    << " , RTT dev = " << rttDev_ 

    << '\n'; 

} 

 

 

/*********************************** 

 ES M C C  R E C E I V E R 

 ***********************************/ 

 

 

EsmccSinkAgent::EsmccSinkAgent() : Agent(PT_ESMCC_CI) 

{ 

  bind("packetSize_", &size_); 

  ciSent_ = ciSupp_ = 0; 

  rateSmoother_ = NULL; 

} 

 

 

EsmccSinkAgent::~EsmccSinkAgent () 

{ 

  if (rateSmoother_ != NULL) delete rateSmoother_; 

} 

 

 

int EsmccSinkAgent::command(int argc, const char*const* argv) { 

  if (argc == 2) { 

    if (strcmp (argv[1], "start") == 0) { 

      Start(); 

      return TCL_OK; 

    } 

    if (strcmp (argv[1], "stop") == 0) { 

      Stop (); 
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      return TCL_OK; 

    } 

    if (strcmp (argv[1], "print-statistics") == 0) { 

      PrintStat (); 

      return TCL_OK; 

    } 

  } 

  return (Agent::command (argc, argv)); 

} 

 

 

void EsmccSinkAgent::Start () 

{ 

  cr_ = here_; 

  rate_ = tracAvg_ = crTracAvg_ = lastPktTime_ = -1; 

  crTracDev_ = 0; 

  lastCont_ = 0; 

  rateSmoother_ = new RateSmoother (RATE_SMOOTH_TIME); 

} 

 

 

void EsmccSinkAgent::Stop () 

{ 

  delete rateSmoother_; 

  rateSmoother_ = NULL; 

} 

 

 

void EsmccSinkAgent::PrintStat () 

{ 

  /* Statistic */ 

  cout << "Receiver at " << here_ << " statistics: CI sent = " 

    << ciSent_ << " , CI suppressed = " << ciSupp_ << '\n'; 

} 

 

 

void EsmccSinkAgent::recv (Packet * p, Handler * h) 

{ 

  double now = Scheduler::instance().clock(), err; 

  hdr_cmn * ch = hdr_cmn::access (p); 

  hdr_Esmcc * oh = hdr_Esmcc::access (p); 

  hdr_Esmcc_ci * och; 

  Packet * np; 

  double rateSample; 

     

  if (lastPktTime_ < 0) {  /* Initialization */ 

    lastCont_ = oh->sqn_ - 1; 

    rateSample = ch->size_ / (lastPktTime_ = now); 

    rate_ = rateSmoother_->GetSample (rateSample, now); 

  } 

  else { 

    rateSample = ch->size_ / (now - lastPktTime_); 

    rate_ = rateSmoother_->GetSample (rateSample, now); 
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    lastPktTime_ = now; 

  } 

   

  #ifdef ESMCC_DATA_PKT_DEBUG 

  cout << now 

    << " : at " << here_ 

    << " rcvd pkt sqn = " << oh->sqn_ 

    << " , rate = " << rate_ / 125000 

    << " , rate sample = " << rateSample / 125000 

    << '\n'; 

  #endif     

     

  cr_ = oh->cr_; 

  crTracAvg_ = oh->crTracAvg_; 

  crTracDev_ = oh->crTracDev_; 

   

  if (oh->sqn_ == lastCont_ + 1) { 

    ++ lastCont_; 

    Packet::free (p); 

    return; 

  } 

 

  /* For simplicity, assume no out-of-order packets */ 

  if (SqnLE (oh->sqn_, lastCont_)) { 

    Packet::free (p); 

    return; 

  } 

 

  /* Now there are some losses */ 

  lastCont_ = oh->sqn_; 

   

  if (tracAvg_ < 0) { 

    /* Use crTracAvg_ to avoid unnecessary CR switch */ 

    tracAvg_ = crTracAvg_ < 0 ? rate_ : crTracAvg_; 

  } 

  else { 

    tracAvg_ = (1 - TRAC_EWMA_FACTOR) * tracAvg_ + TRAC_EWMA_FACTOR * rate_; 

  } 

   

  #ifdef ESMCC_TRAC_DEBUG 

  cout << now 

    << " : at " << here_ 

    << " TRAC avg = " << tracAvg_ / 125000 

    << " , sample = " << rate_ / 125000; 

     

  if (crTracAvg_ > 0) { 

    cout << " , CR TRAC avg = " << crTracAvg_ / 125000 

      << " , dev = " << crTracDev_ / 125000 

      << " , avg - d / " << COMPARE_TRAC_FACTOR << " = "  

      << (crTracAvg_ - crTracDev_ / COMPARE_TRAC_FACTOR) / 125000 

      << '\n'; 

  } 

  else { 



 
 

 77

    cout << " , invalid CR TRAC\n"; 

  }  

  #endif 

   

  if (cr_ == here_ || crTracAvg_ < 0  

      || tracAvg_ + SMALL_FLOAT  

         < crTracAvg_ - crTracDev_ / COMPARE_TRAC_FACTOR) { 

    np = allocpkt (); 

    och = hdr_Esmcc_ci::access (np); 

    och->trac_ = rate_; 

    och->ciSrc_ = here_; 

    och->timestampEcho_ = oh->timestamp_; 

    send (np, 0);     

    ++ ciSent_; 

  } 

  else { 

    ++ ciSupp_; 

  } 

 

  Packet::free (p); 

} 

 

 

/*********************************** 

 R A T E   S M O O T H E R 

 ***********************************/ 

 

 

RateSmoother::RateSmoother (double span) 

 : span_ (span), totalData_ (0) 

{ 

  tail_ = &head_; 

} 

 

 

RateSmoother::~RateSmoother () 

{ 

  struct RateSample * cur = head_.next_, * tmp; 

   

  while (cur != NULL) { 

    tmp = cur->next_; 

    delete cur; 

    cur = tmp; 

  } 

} 

 

 

/** 

 * Get a sample and calculate smoothened rate 

 * Return smoothened rate. 

 */ 

double RateSmoother::GetSample (double rate, double time) 

{ 
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  struct RateSample * sample = new struct RateSample, * secondLatest, 

                    * earliest; 

  sample->time_  = time; 

  sample->rate_ = rate; 

  sample->next_ = NULL; 

  tail_->next_ = sample; 

  secondLatest = tail_; 

  tail_ = sample; 

   

  if (sample == head_.next_) return rate; 

   

  totalData_ += rate * (time - secondLatest->time_); 

   

  earliest = head_.next_; 

  if (time - earliest->time_ > span_ + SMALL_FLOAT) { 

    totalData_ -= (earliest->next_->time_ - earliest->time_) 

                  * earliest->next_->rate_; 

    head_.next_ = earliest->next_; 

    delete earliest; 

    earliest = head_.next_; 

  } 

   

  return totalData_ / (time - earliest->time_); 

} 

 
// program  generate the data sheet 
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TCL SCRIPT 
 
This TCL script is used to provide the interfacing In this program we first of all set up the source 
and receiver  
 
//Set up of the source 
 
proc SetupEsmccSrc {ns startTime stopTime node} { 

  set group [Node allocaddr] 

  set src [new Agent/ESMCC] 

  $src set dst_addr_ $group 

  $src set dst_port_ 0 

  $ns attach-agent $node $src 

  $ns at $startTime "$src start" 

  $ns at $stopTime "$src stop; $src print-statistics" 

   

  return $src 

} 

 

//setup of the recevier 

proc SetupEsmccRcv {ns src startTime stopTime node} { 

  set group [$src set dst_addr_] 

  set rcv [new Agent/ESMCCSink] 

  $ns attach-agent $node $rcv 

  $rcv set dst_addr_ [$src set agent_addr_] 

  $rcv set dst_port_ [$src set agent_port_] 

 

  $ns at $startTime "$rcv start; $node join-group $rcv $group" 

  $ns at $stopTime \ 

    "$rcv stop; $rcv print-statistics; $node leave-group $rcv $group" 

 

  return $rcv 

} 

 

//setup of the FTP agent  

proc SetupFtp {ns type pktSize startTime stopTime srcNode rcvrNode} { 

  switch -- $type \ 

  Sack { 

    set tcp [new Agent/TCP/FullTcp/Sack] 

    set sink [new Agent/TCP/FullTcp/Sack] 

    $sink listen 

  } Reno { 

    set tcp [new Agent/TCP/Reno] 

    $tcp set class_ 2 

    set sink [new Agent/TCPSink] 

  } Newreno { 

    set tcp [new Agent/TCP/Newreno] 

    set sink [new Agent/TCPSink]   

  } Vegas { 

    set tcp [new Agent/TCP/Vegas] 
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    $tcp set window_ 1000000 

    set sink [new Agent/TCPSink] 

  }  default { 

    puts "Unknown TCP type" 

    exit 0 

  } 

     

  $tcp set packetSize $pktSize  

     

  $ns attach-agent $srcNode $tcp 

  $ns attach-agent $rcvrNode $sink 

  $ns connect $tcp $sink 

  set ftp [new Application/FTP] 

  $ftp attach-agent $tcp 

  $ns at $startTime "$ftp start" 

  $ns at $stopTime "$ftp stop" 

   

  return $ftp 

} 

 

# NOTE: there should be "ms" or "s" in burstTime and idleTime 

proc SetupParetoUDP {ns rng rate pktSize burstTime idleTime startTime stopTime srcNode rcvrNode} { 

  set udp [new Agent/UDP] 

  $ns attach-agent $srcNode $udp 

  set sink [new Agent/Null] 

  $ns attach-agent $rcvrNode $sink 

   

  $ns connect $udp $sink 

     

  set pareto [new Application/Traffic/Pareto] 

  $pareto use-rng $rng 

  $pareto set packetSize_ $pktSize 

  $pareto set burst_time_ ${burstTime} 

  $pareto set idle_time_  ${idleTime} 

  $pareto set rate_ $rate 

  $pareto attach-agent $udp 

  

  $ns at $startTime "$pareto start" 

  $ns at $stopTime "$pareto stop" 

   

  return $pareto 

} 

 

//Agent TCP Pareto is setup  

proc SetupParetoTCP {ns rng type pktSize burstTime idleTime startTime stopTime srcNode rcvrNode} { 

  switch -- $type \ 

  Sack { 

    set tcp [new Agent/TCP/FullTcp/Sack] 

    set sink [new Agent/TCP/FullTcp/Sack] 

    $sink listen 

  } Reno { 

    set tcp [new Agent/TCP/Reno] 

    $tcp set class_ 2 
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    set sink [new Agent/TCPSink] 

  } Newreno { 

    set tcp [new Agent/TCP/Newreno] 

    set sink [new Agent/TCPSink]   

  } Vegas { 

    set tcp [new Agent/TCP/Vegas] 

    $tcp set window_ 1000000 

    set sink [new Agent/TCPSink] 

  }  default { 

    puts "Unknown TCP type" 

    exit 0 

  } 

     

  $tcp set packetSize $pktSize  

     

  $ns attach-agent $srcNode $tcp 

  $ns attach-agent $rcvrNode $sink 

  $ns connect $tcp $sink 

  set ftp [new Application/FTP] 

  $ftp attach-agent $tcp 

   

  set r [new RandomVariable/Pareto] 

  $r use-rng $rng 

     

  set t $startTime 

  set run 1 

  while {$t < $stopTime} { 

    if {$run} { 

      $ns at $t "$ftp start" 

      $r set avg_ $burstTime 

    } else { 

      $ns at $t "$ftp stop" 

      $r set avg_ $idleTime 

    } 

    set d [$r value] 

    set t [expr $t + $d] 

    set run [expr ($run + 1) % 2] 

  } 

 

  if {$run == 0} { 

    $ns at $stopTime "$ftp stop" 

  } 

   

  return $ftp 

} 

 


