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 ABSTRACT

                       The purpose of this dissertation is to describe a technique to enhance the search

used for location of the codevectors during the process of Multistage Vector Quantization (MSVQ). Faster location of the codevectors in MSVQ is done by devising a search methodology based on codebooks which are designed by incorporating number of smaller codebooks in a structured manner at every stage. Binary tree is used for making this structure. Tree structure applied at each stage is independent of each other and is developed separately .We try to reduce the computational complexity which is the measured in terms of number of distance computations carried to reach the final quantized vector. For designing the stage codebook sequential design algorithm for MSVQ is used. Various parameters like dimension of vector, codebook size, number of stages, number of tree codebooks is kept into account while designing the required structure. To apply the search procedure an indexing of tree nodes is required for which an index assignment procedure is followed. Different stage codebook sizes, tree codebook parameters are tried for reaching the appropriate results. Comparison with multipath sequential search is also shown. This is comparatively raw area with ample scope of further research. This work provides scope for trying different techniques with varying combinations in forming alternative trees for further reducing the complexity. 

CONTENTS

1   Introduction







1

1.1 Contribution of the dissertation : 




4

1.2 Organization of the dissertation:




4

2   Quantization

2.1 Introduction







5

2.2 Structure of quantizer






6

2.3 Types of quantization 






8

2.4 Scalar Quantization




                        8

2.5 Vector Quantization






10

2.5.1 Basic Definition 




           10

2.5.2 VQ design






12

2.5.3 Advantages and Disadvantages of VQ  


15

2.5.4 VQ techniques 






17

3   Multistage VECTOR QUANTIZATION




32

3.1 DESIGN OF MSVQ






33
3.2 SEARCH STRATEGIES





36

                       3.2.1 Sequential search 





36

                      3.2.2. Exhaustive search or Full-Search 



38

                      3.2.3 Mutipath  Sequential Search



           38

4   DESIGN MODEL







41

5   proposed search TECHNIQUE 





46

6   RESULTS AND PERFORMANCE ANALYSIS 



48

7   CONCLUSION AND FUTURE WORK 




57

References









59

     Appendix (Source Code)






           61
 List of Figures

FIG-1.1 VECTOR QUANTIZER






2

FIG .2.1 A NON-UNIFORM QUANTIZER





5

FIG 2.2 PRIMARY STRUCTURE OF A QUANTIZER



6

FIG 2.3 STRUCTURAL DIAGRAM FOR THE CODER AND DECODER

7

FIG 2.4 TYPES OF QUANTIZATION





8

FIG 2.5 UNIFORM SCALAR QUANTIZATION




9

FIG 2.6 NON-UNIFORM SCALAR QUANTIZATION



9

FIG 2.7 K MEANS ALGORITHM






14
FIG 2.8 BINARY SPLITTING INTO EIGHT CELLS




21

FIG 2.9 A TWO-STAGE CASCADED VECTOR QUANTIZER


23

FIG 2.10 TWO PART SPLIT VECTOR QUANTIZER



25

FIG 2.11 GAIN-SHAPE VECTOR QUANTIZER




26

FIG 2.12 ADAPTIVE VQ







28

FIG 2.13 A 3-BIT TREE STRUCTURE 





30

FIG 3.1  MULTISTAGE VECTOR QUANTIZATION



34

FIG 3.2 SEQUENTIAL SEARCH





            37

FIG 3.3STEPS IN AN M-BEST SEARCH





39

FIG 4.1 OVERALL DESIGN


                                                           41

FIG  5.1 LOCATING CODEVECTORS AT A STAGE 



47

FIG 6.1     1ST STAGE OF MSVQ






52

FIG 6.2    2ND STAGE OF MSVQ






53

FIG 6.3    MULTIPATH SEQUENTIAL SEARCH




54

FIG 6.4 GRAPH SHOWING COMPLEXIY OF MSS AND PROPOSED SEARCH  56

[image: image9.png]




CHAPTER 1

Introduction

                            Data compression is the conversion of a stream of analog or very high rate discrete data into a stream of relatively low rate data for communication over a digital communication link or storage in a digital memory. As digital communication and secure communication have become increasingly important, the theory and practice of data compression have received increased attention. While it is true that in many systems bandwidth is relatively inexpensive, e.g., fiber optic and cable TV links, in most systems the growing amount of information that users wish to communicate or store necessitates some form of compression for efficient, secure, and reliable, use of the communication or storage medium. A prime example arises with image data, where simple schemes require bit rates too large for many communication links or storage devices. Another example where compression is required results from the fact that if speech is digitized, the resulting signal will no longer have a small enough bandwidth to fit on ordinary telephone channels. That is, digitization (which may be desirable for security or reliability) causes bandwidth expansion. Hence data compression will be required if the original communication channel is to be used. The conversion of relatively high rate data to lower rate data virtually always increase the distortion. Hence a fundamental goal of data compression is to transmit the data with the highest possible quality at a given rate or, to minimize the bit rate at given distortion level. There are techniques like waveform coding, transform coding predictive coding etc. for encoding the data. These techniques are quite popular because of their simplicity and good performance. All of these techniques share a fundamental property: The actual quantization or coding or conversion of continuous quantities into discrete quantities is done on scalars, e.g., on individual real-valued samples of waveforms or pixels of images. In waveform coding each successive input is encoded using a rule that does not depend on any past inputs or outputs of the encoder. Transform coding does it by first taking block transforms of a vector and then scalar coding the coordinates of the transformed vector. Predictive coding does it by quantizing an error term formed as the difference between the new sample and a prediction of the new sample based on past coded outputs.

                       Scalar quantization coding   maps a large set of numbers to a smaller one and includes such operations as "rounding to the nearest integer," although in general the quantization levels do not have to be either integers or evenly spaced. Vector quantization rounds off (or quantizes) groups of numbers together instead of one at a time. These groups of numbers are called input vectors, and the quantization levels are called reproduction vectors. Another way of depicting this system is in Fig. 1.1, which shows a VQ that operates directly on image pixel blocks. 


FIG-1.1 Vector Quantizer

The input image is parsed into a sequence of groups of pixels, possibly 2 X 2 squares as shown in the figure above, but larger squares and rectangles and other shapes are often used. The encoder views an input vector X and applies its mapping rule to select one of the N possible reproduction vectors from its codebook. The chosen reproduction vector Yi is also called a codeword and is (usually) a gray-scale pixel block code, of the same dimension as the input block. The index i of Yi is a binary vector. If the code has a fixed rate of b bits per input vector, then i has length b. With a variable rate the indices i have variable length, and b is their average length. The compressed image is represented by these indices i, and the compressed representation requires fewer bits. For example, for an 8-bit per pixel (bpp) original image, the input block requires 4 x 8 = 32 bits. For a fixed rate code with 256 codewords in the codebook, each codeword has an 8-bit index. Thus the compression ratio is 32 : 8, or 4: 1. The decoder also has a copy of the codebook, and it operates as a simple table lookup. Upon receiving an index i, the decoder puts out the stored codeword Yi. The operation of the decoder is thus completely described once we have specified the codebook. The operation of the encoder requires a choice of the mapping rule. A fundamental result of Shannon’s rate distortion theory (the branch of information theory denote to data compression) is that quantizing a vector of data points is more efficient than quantizing individual scalar values, in the rate-distortion sense. According to asymptotic Shannon theory, when the dimension of the vectors is   arbitrarily large, the operational rate-distortion function of the vector quantizer can approach the Shannon limit. Some studies have shown that even for a small, finite number of dimensions, the vector quantizer is indeed optimal. Therefore, the vector quantizer can achieve the lowest distortion of any quantization scheme for a given bit-rate, or conversely, require the least number of bits to quantize at a fixed distortion. With the availability of non-variational design algorithms such as the LBG algorithm , vector quantization has become a powerful tool and its application has been frequently reported in the speech and image coding literature. Despite its theoretical rate-distortion optimality, the vector quantiser has its own inherent limitations, specifically the computational and memory requirements for codebook searching and storage, respectively. There are many applications which require high bit-rates and/or large dimensionality and this leads to an exponential increase in the complexity of the vector quantizer.

                        Typically, the efficiency of qunatizer is positively correlated with encoding complexity. Finding the best tradeoff between encoded data quality and complexity is a key issue is the design process. The practical solution to this "curse of dimensionality" is to constrain the code structure. This solution results in codes that are not mathematically optimal, but it will likely provide better performance with implement-able codes for a given rate. There are many common constrained code structures, including lattice-based codes, classified VQ, multi-step VQ, product codes (gain/shape and mean removed), predictive VQ, finite-state VQ, and tree-structured VQ. 

                         If a good search strategy is used along with these constrained code structures then complexity can be further reduced. MSVQ is one such constrained code structure which generally gives good performance for a given rate .MSVQ is basically Multistage vector quantization. The basic idea of MSVQ is to divide the encoding task into suc​cessive stages, where the first stage performs a relatively crude quantization of the input vector using a small codebook. Then, a second stage quantizer operates on the error vector between the original and quantized first stage output. The quantized error vector then provides a second approximation to the original input vector thereby leading to a refined or more accurate representation of the input. A third stage quantizer may then be used to quantize the second stage error vector to provide a further refinement and so on. However, the structural constraints imposed by product codes result in a loss of quantization performance (in terms of bit-rate and distortion); hence there is a trade-off with the computational complexity and memory requirements.

1.1 CONTRIBUTION OF THE DISSERTATION : 

                 In this dissertation we describe a method to reduce the computational complexity required to locate the codevectors during encoding in multistage vector quantization (MSVQ). Comparison with multipath sequential search is also presented to show the effectiveness of the method described.

1.2 ORGANIZATION OF THE DISSERTATION:

Chapter 2 Describes the general concepts of quantization. Vector quantization is discussed in   

                 detail along with various VQ techniques that are generally used .

Chapter 3 In this chapter a constrained vector quantization technique named multistage vector 

                 quantization is dicussed in detail. 

Chapter 4 Describes the design model required for implementing  the proposed search technique.  

                 Addition of tree structure to basic MSVQ model is described in detail.

Chapter 5 Describes the proposed search technique

Chapter 6 Results are presented

Chapter 7 Conclusions and future work are discussed  

CHAPTER -2

Quantization
2.1 INTRODUCTION

                      The dictionary definition of quantization is the division of a quantity into a discrete number of small parts, often assumed to be integral multiples of a common quantity. The oldest example of quantization is rounding off, which was first analyzed by Sheppard  for the application of estimating densities by histograms. Any real number x can be rounded off to the nearest integer, say q( x), with a resulting quantization error e = q( x) - x so that q(x) = x + e. More generally, we can define a quantizer as consisting of a set of intervals or cells S = {Si; i є I}, where the index set I is ordinarily a collection of consecutive integers beginning with 0 or 1, together with a set of reproduction values or points or levels C = {Yi; i є I}, so that the overall quantizer q is defined by q(x) = Yi  for x є Si, which can be expressed concisely as 

                                    
     q(x) =  ΣyLsi (x)

where the indicator function Ls(x) is 1 if x є S and 0 otherwise. For this definition to make sense we assume that S is a partition of the real line. That is, the cells are disjoint and exhaustive. The general definition reduces to the rounding off 
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Fig .2.1. A non-uniform quantizer

Example: if Si = (i -1/2, i + ½) and Yi = i for all integers i. More generally, the cells might take the form Si = (ai-ai-1), where the ai's, which are called thresholds, form and increasing sequence. The width of a cell Si is its length ai - ai-1. The function q(x) is often called the quantization rule. A simple quantizer with five reproduction levels is depicted in Fig.2.1 as a collection of intervals bordered by thresholds along with the levels for each interval. 

2.2 Structure of quantizer

A quantizer is uniquely determined by its partition and output set. The encoder is specified by the partition of the input and the decoder is specified by the set of output values. The job of encoder is simply to make a statement of the form: “the current value lies in the cell 27 of the partition.” This operation is conventionally modeled by equation mentioned above. The decoder’s job on receiving the index 27 is to look up the 27th entry in the table and announce the reproduction values corresponding to the index. From the equation above we can say that for any given input value, x, only of term of the sum is non zero. The representation of the over all quantization operation is depicted in the figure 2.2 and will be referred to as the first canonical form or the primary structural decomposition of a quantizer.

[image: image3]
FIG 2.2 -Primary structure of a quantizer

In the above figure each L box is a memory less nonlinear operation on the input value; also the multipliers indicated by circles, have weight values given by the given output point for that index value.

To separate explicitly the encoder and decoder functions of a quantizer, we modify the primary structural description .Define the address generator operation A as the mapping 

A: BN →I and its inverse ,the address decoder A-1 :I→ BN, where BN denote the set of N binary N-tuple b=(b1,b2,….bN) where bi є {0,1} and only one component is unity (the vector has a hamming weight of one in coding parlance),that is 

b=[L1(x),L2(x),….LN(x)]

Then A (b) =i if bi=1 and bj=0 for j not equals i. With these definitions the encoder operation can be written as 

ε (x)= A(L1(x),L2(x),…..LN(x))

and the decoder operation is given by:

D(i) = ΣykA-1(i)k
Where A-1(i)=(A-1(i)1,….,A-1(i)N) є BN .The corresponding structural diagram for the coder and decoder are shown in figure  2.4 below .

[image: image4]
FIG 2.3: Structural diagram for the coder and decoder

This representation emphasizes that the decoder can be considered as being “linear” in the sense that it is a simple summation, while the encoder has no such simple form and can in general be quite complicated unless the selector functions happen to have additional simplifying structure.

2.3 TYPES OF QUANTIZATION :



                                            

FIG-2.4 Types of Quantization

2.4 Scalar Quantization :

                            The function of a quantizer is to map many input or even a continuous function into a smaller ,finite number of output levels. A scalar quantizer [11] functions by mapping value at a time.  


Each sampled value of the continuous  input data, is compared against a finite set of values and the closest value from the finite set is chosen to represent that input value.  The distance between the finite set of values is called the quantizer step size.  Each finite set value xi is represented by a codeword C(n) for transmission purposes.  The codeword C(n) indicates to the de-quantizer, which is usually at the receiver, which discrete value is to be used.  


Assuming all of the finite set  values in the quantizer are represented by the same number of bits B and the sampling frequency is fs, the  transmission bit rate is given by, 






Tc = Bfs 
bits / second



Given a fixed sampling frequency, the only way to reduce the bit rate Tc by reducing the length of the codeword C(n).  However, a reduced length C(n) means a smaller set of discrete values separated by larger    and, hence, larger differences between the input  and finite set values after quantization, which reduces the quality of reconstructed data.  In order to reduce the bit rate while maintaining good quality, various types of scalar quantizer have been designed and used in practice.  
Saclar quantization are of two types :

a) Uniform  
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FIG 2.5 Uniform Scalar Quantization

It uses scaler value to quantize the number  of possibilities to a smaller number of possibilities, requiring less bits to represent.

b) Non-uniform
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FIG 2.6 Non-Uniform Scalar Quantization

It is useful when the probability for sampling values from one interval is greater than sampling them from another interval. It assigns more reconstruction levels to the higher probability areas.

2.5 Vector Quantization

                        Vector quantization (VQ) is a generalization of scalar quantization to the quantization of a vector, an ordered set of real numbers.  The jump from one dimension to multiple dimensions is a major step and allows a wealth of new ideas, concepts, techniques, and applications to arise that often have no counterpart in the simple case of scalar quantization.  While scalar quantization is used primarily for analog-to-digital conversation, VQ is used with sophisticated digital signal processing, where in most cases the input signal already has some form of digital representation and the desired output is a compressed version of the original signal.  VQ is usually, but not exclusively, used for the purpose of data compression.  Nevertheless, there are interesting parallels with scalar quantization and many of the structural models and analytical and design techniques used in VQ are natural generalizations of the scalar case.

2.5.1 Basic Definition


A vector quantizer Q of dimension n and size L is a mapping form a vector (or a “point”) in n-dimensional Euclidean space, Rn, into a finite set C containing L output or reproduction points, called code vectors or codewords. Thus, 

Q : Rn →C

                                                 where          C = (Yl,Y2,…….,YL)  

                                                                    Yi є Rn for each i є I == {1,2,...,L}

 The set C is called the codebook or the code and has size L, meaning it has L distinct elements, each a vector in Rn. The resolution, code rate or, rate of a vector quantizer is

r = (log2 L)/n

 which measures the number of bits per vector component used to represent the input vector and gives an indication of the accuracy or precision that is achievable with a vector quantizer if the codebook is well-designed. It is important to recognize that for a fixed dimension n the resolution is determined by the size L of the codebook and not by the number of bits used to numerically  specify the code vectors stored in the codebook. The codebook is typically  implemented as a table in a digital memory and the number of bits of precision used to represent each component of each code vector does not affect the resolution or the bit-rate of the vector quantizer; it is of concern only in connection with storage space limitations and with the question of  adequate precision in describing a well-designed codebook.

Associated with every L point vector quantizer is a partition of Rn into L regions or cells, Ri for i  є I. The ith cell is defined by

Ri = (x є Rn : Q(x) = yi)


From the definition of the cells, it follows that

U Ri = Rn   and Ri  ∩ Rj = Φ for i # j,




        i

so that the cells form a partition of Rn.

       A vector quantizer can be decomposed into two component operations, the vector encoder and the vector decoder. The encoder E  is the mapping from Rn to the index set J, and the decoder D maps the index set I into the reproduction set C. Thus,

E : Rn  → I

and      D : I→ Rn
A given partition of the space into cells fully determines how the encoder will assign an index to a given input vector. On the other hand, a given codebook fully determines how the decoder will generate a decoded output vector from a given index. The task of the encoder is either implicitly or explicitly to identify in which of L geometri​cally specified regions of n space the input vector lies. 

       The overall operation of VQ can be regarded as the cascade or compo​sition of two operations:

Q(x) = D. E(x) = D(E(x)).

In the context of a digital communication system, the encoder of a vector quantizer performs the task of selecting (implicitly or explicitly) an appropriately matching code vector Yi to represent, an input vector x. The index i of the selected code vector is transmitted (as a binary word) to the receiver where the decoder performs a table-lookup procedure and generates the reproduction Yi, the quantized approximation of the original input vector. If a sequence of input vectors is to be quantized and transmitted, then the bit-rate or transmission rate R, in bits per vector, is given by R = nr, where r is the resolution and n the vector dimension. 

2.5.2 VQ design:

Overview of steps:

The following are the steps involved in basic VQ 

1.Codebook generation 

i. Construct an initial codebook  :

ii. Improve the codebook by using an iterative algorithm

2. Encoding operations 

iii. Divide the data to be coded into vectors or blocks 

iv. Vector quantize each block by searching the codebook and finding the codeword that matches the  block with the least distortion 

v. Transmit the index of the selected codeword

3.Decoding operations 

vi. At the decoder, retrieve the codeword that corresponds to the received index 

vii. The data is reconstructed when all the codewords have been retrieved.

Details of the steps

Step1→ codebook generation

1. Constructing an initial codebook
 VQ is basically a pattern matching process. Each vector, for example an image block consisting of 2 x 2 pixels, is compared to a codebook that consists of a number of 2 x 2 codewords. The total number of codewords is L. The codebook can then be referred to as Yi, i = 1,2,..., L. An important parameter to be defined is the distortion measure where d(X, Y) denotes the distortion value between the original vector X and the codeword Y. n is the variable assigned to the length of the vector dimension. For codewords of size 2 x 2 pixels, n = 4. The most common distortion measure used is the mean square error; ie., 

d(X,Y) = (Σ (xi-yi)2)/n

where xi → ith component of input vector 

The key to high image reconstruction quality is to have a codebook that matches the average image to be coded well. For this reason, codebook construction is a very important component of VQ. 

              Codebook design commonly requires a big set of training data . Factors to be considered are the number of training vectors , the number of codewords in the codebook, and the dimension of the vector. Each of these represent a trade off between a pair of these parameters: quality, bit rate, compression time, and memory requirements. 

              The construction of an initial codebook is an important procedure because a good initial codebook will help ensure that an efficient resulting codebook will be produced after the K-means algorithm of the next step. There are a number of ways to construct an initial codebook  

1. A simple technique is to choose a subset of the training vectors. The selection criteria should filter out similar vectors or abnormal ones. 

2. Another straightforward technique is to use a coarse scalar quantiser on the individual vector components. The resolution of the quantiser will be dependent on the number of resulting codewords. Such a codebook is also known as product codebook. 

3. The splitting algorithm operates by adding codewords to a codebook until a sufficiently low distortion value is obtained. It starts by calculating the centroid of the entire training set. This codeword is then split to form a pair of codewords. The generalised Lloyd (GL) algorithm is then executed to optimise these two codewords. This process continues in a similar manner, which is: given K codewords, generate 2K codewords by perturbing each codeword and then execute the GL algorithm to optimise the new codewords. This algorithm produces an initial codebook and also improves it, while the previous two methods can only create an initial codebook. 

2. Codebook improvement: k-means algorithm:

1 - Begin with the initial set:

_ A set of training vectors, Xi 
_ An initial codebook Ri1, i = 1;2; : : : ;L.

_ An initial iterator l = 1, and distortion D0 = large value.

2 - Examine the change in coding distortion of the training set from the previous codebook vector adjustments:

_ Encode the training set by mapping each vector Xi in the training set to its nearest

code vector Rlj , and place Xi into the cluster Klj .

_ Calculate the resulting average coding distortion, Dl .

_ If the fractional change in distortion from the previous iteration is less than or equal

to a threshold:

                                                 Dl-1-Dl  / Dl-1 ≤ Є

then convergence has been achieved, and the algorithm terminates. Otherwise continue

to step 3.

3 - Adjust the previous set of codevectors in an attempt to reduce the distortion with the

training vectors.

_ For each cluster, Kli and its corresponding code vector, Rli:

– Replace the codebook vector Rli with a new codebook vector, Rl+1i , that reduces

the overall distortion for each of the vectors contained in Kli .

_ Increment the iterator, l = l+1, and goto step 2.

               For the MSE distortion measure, the best replacement codebook vector is simply the

average of the corresponding subset of training vectors.

FIG 2.7 K means Algorithm

Step 2 > Encoding operations

                       After a locally optimal codebook has been generated, the next step is to divide the data to be coded into the correct block or vector dimension. This block size is dependent on the block size of the codewords. Each  input vector is then vector quantised by searching the codebook for its nearest neighbour. The nearest neighbour is the codeword that matches image vector with the least distortion. The index of the nearest neighbour codeword is then retrieved and transmitted to the receiver channel. 

                         The encoding operations can be very lengthy, depending on the vector dimension and the size of the codebook. The search technique is known as exhaustive searching since every codeword is compared to the image vector. For the MSE distortion criterion, each comparison can be mathematically described as: 

d(X,Y) = (Σ (xi-yi)2)/m    i= 1 to  m
where d(X, Y) is the distortion measure and m is the vector dimension. 

                         The nearest neighbour codeword for an image vector is found when its d(X, X') value is lower than any other codeword in the codebook. 

Step 3 >Decoding operations

                         The decoding operations are simple in VQ. The decoder also has a copy of the codebook used by the encoder. For each index received from the transmitter, the decoder retrieves its corresponding codeword. This is a simple table look up operation. The retrieved  block is then used a part of the reconstructed data. These simple operations permit VQ to operate at very high decompression rates. 

2.5.3 Advantages and Disadvantages of VQ

Advantages of VQ

The advantages of VQ are as follows: 

1. Very high compression ratio and quality can be achieved.

2. The bit rate of a vector quantiser is given by 

             R=log2L/ n   bits/pixel

           where  L is the number of codewords in the codebook 

           ‘n’ is the dimension of the codeword

                           Theoretically, the performance can be close to the rate distortion bound as n                          tends to infinity. In practice,  the codebook storage and search complexity would make a         design with very large n unfeasible. On the other hand, fairly good performance can be achieved with modest vector dimensions. 

3. Image decompression is very quick since it consists mainly of a table look up operation. In a typical type of image database application, an image is compressed once when it is first archived into the system. It is subsequently decompressed many times each time the user retrieves the image. For such applications, the benefits of a fast decompression time far outweighs inconvenience of slow compression. 

4. Since VQ is a technique that has only relatively recently been popularised, there is still much room for improvement. This is manifested by the high concentration of research in this area. Another reason for its popularity is that it can be relatively easily combined with other techniques. 

5. Because vectors, and not scalars, are being coded, it is possible to have fractional bit allocation. 

6. We can incorporate image processing techniques such as enhancement and classification into the encoder so that these tasks can be achieved together with image compression. 

Disadvantages of VQ

        Most of the disadvantages of VQ  stem from the need to use a codebook. The disadvantages become more and more imposing as the vector dimension increases or the size of the codebook increases. 

1. The encoding process can be very computationally intensive and slow. This complexity increases exponentially with the vector dimension. On the other hand, a performance drop will occur with small vector dimensions since the non-stationarity nature of the image cannot be taken into account and the bit rate will be high. 

2. Memory storage requirement for the codebook also increases rapidly with increasing vector dimension and codebook size. 

3. Codebook generation is a very lengthy process, especially with large vector dimensions and codebooks. However, since codebook generation is done offline, this disadvantage is somewhat allayed. 

4. Images that are different from the training images cannot be coded with good level of accuracy. For example, if the training set consists mainly of head and shoulder type images, it will not be effective for coding an image of a building. To ensure that the training set is a good representation, a sufficiently large number of appropriate training images should be used. 

 2.5.4 VQ techniques
                     Vector quantization can offer substantial performance over scalar quantization at very low bit-rates.  However, these advantages are obtained at considerable computational and storage costs. The unconstrained vector quantiser is the optimal quantiser for achieving the lowest distortion at a given bitrate and dimension, its exponentially-growing computational complexity and memory requirements often render it impractical for applications where a high bitrate is required. A b bit, n-dimensional vector quantiser will possess a codebook of 2b code-vectors. In terms of the memory requirements and computational complexity, this vector quantiser needs to store n2b floating point values. For image coding applications, blocks of 8×8 = 64 are typically quantised by transform coders such as JPEG and this is considered the optimum block size. Quantising each block using a full search, unconstrained vector quantiser at a bitrate of 0.25 bits/pixel, and 4.2 million floats of memory for storing the codebook.  Another problem related to vector quantiser design is that at high bitrates and dimensionality, where the codebook is large, the LBG algorithm will require a larger amount of training vectors in order to design a codebook that is representative of the source. Otherwise, there will be too much ‘over-fitting’ of the training set [11]. In general, vector quantisers possess a number of attributes: bitrate, distortion, computational complexity, and memory requirement. For a given bitrate, exhaustive search vector quantisers generally achieve the lowest distortion but, they also require a large amount of searching and memory at high bitrates. In order to alleviate this computational and memory burden, we can apply structural constraints to the vector quantiser. With tree-structured vector quantisers (TSVQ), the search complexity is very low, though they require more memory than full search VQ and, due to suboptimal searching, quantisation performance is degraded [12]. Product code vector quantisers, such as split and multistage, reduce the computational complexity and  memory requirements by designing and operating independent vector quantizer, either of smaller dimension or consisting of more stages respectively. However the structural constraint degrade their quantization performance.

 In order to compromise between the computation and storage costs, and quantizer performance, a number of codebook types have been developed and so is the number of VQ technique. Some codebooks are pre-computed and do not change while being used; others may be updated during quantization.  Here, we will briefly explain some of the VQ techniques.

FULL SEARCH VECTOR QUANTIZATION

                     In full-search vector quantization, the distortion or error between an input vector (group of data samples) and all words in an unstructured codebook is computed. The codebook is a collection of codewords or possible reproduction vectors and the full search guarantees the best possible representation of the input vector. The code words are indexed from 0 to N - 1, where N is the number of codewords in the codebook. The index or label of the codeword measuring the minimum distortion is determined and sent over a channel or stored.

                      The computation and storage requirements of a typical full search codebook can be calculated as follows.  If each vector in a full search codebook is represented by B=Rn bits for transmission, then the number of vectors in the codebook is given by, 

L=2B = 2Rn
                       where n is the vector dimension in the codebook

In many applications, computing the absolute value of the quantization error may not be necessary as the main concern is to select the best performing vector.  So a relative performance rather than absolute error is required. It is therefore possible to compute the similarity rather than the difference between the input vector and the codebook vectors.  Therefore, assuming that the cross-correlation of the input vector with each of the codebook candidates is computed and the one resulting in the highest cross-correlation value is selected as the quantized value of the input vector, the computation cost  is given by, 

Comfs = n2Rn
multiply – add per input vector

From this, we can also calculate the storage required for the codebook vectors as, 

Mfs = nL = n2B = n2Rn    locations


From the above expressions it can be concluded that the computation and storage requirements of a full search codebook are exponentially related to the number of bits in the codewords.  

                            Using the K-means algorithm, a full search codebook can be optimized (trained) in two possible ways.



Method 1:
The process starts with two initial vectors which may be chosen randomly or calculated as centroids of the two halves of the large training database.  The K-means algorithm is used to optimize the initial vectors.  After the optimization of each of the two initial vectors v1={v11, v12, v13,…,v1n} and v2 = {v21, v22, v23,…, v2n} with dimensions n, each is split into two further vectors as, 

V3=V1-E1
V4=V1+e1
V5=v2-e2
V6=v2+e2

where 

E1=(e11,e12,e13,……e1n)

and  

E2=(e21,e22,e23,……..e2n)

In most of the cases 

E1=E2

                             The vectors from the second stage are again optimized using the K-means algorithm and split into further vectors and so on until the number of optimized vectors is equal to the desired number.  The optimization process can also be terminated by comparing the overall quantization noise performance of the codebook against a threshold.  

                              During the optimization of a full search codebook using the above method, it is important to check that all of the optimized vectors are in the densely-populated areas and do not diverge into outer areas where their use will be wasted.  In such cases the perturbation vector    is modified to change the direction of the resultant vector.  

Method 2:
The second method of optimization starts with randomly-selected vectors from the training database.  The number of initial vectors is larger than the final desired number of vectors in the codebook.  Using the K-means algorithm these vectors are optimized. After the first optimization process, the least used vectors are discarded from the codebook.  The remaining vectors are then optimized and the least used vectors are again discarded from the optimized codebook.  This process continues until the final size of the codebook is reached.  Here, the number of vectors discarded at each sage and the number of optimization iterations may vary with the application but the initial size of the codebook should at least be 1.5 times the final and the number of discarding stages should not be fewer than five or six.  The number of vectors discarded in each stage should be reduced to increase the accuracy of optimization.
BINARY SEARCH VECTOR QUANTIZATION

Vector Quantization technique based on the binary search codebook is called binary search VQ. Binary search is a method for partitioning space in such a way that the search for the minimum distortion code-vector is proportional to log2 L rather than L. Binary search codebooks are also called tree codebooks or tree search codebooks.

              In a binary search codebook, N dimensional space is first divided into two regions (using the K-means algorithm with two initial vectors), then each of two regions is further divided into two subregions, and so on, until the space is divided into L regions or cells.  Here, L is restricted to be a power of 2 ,L=2B,where bB is an integer number ob=f bits.

Each region is associated with a centroid.  Figure 2.8 shows the division of space into L=8 cells.  At the first binary division V1 and V2 are calculated as the centroids of the two halves of the total space to be covered.  At the second binary division four centroids are calculated as V3 to V6.  The centroids of the regions after the third binary division are the actual codebook vectors yi.  An input vector x is quantized, searching the tree along a path that gives the minimum distortion at each node in the path. Again assuming N multiply-adds for each distortion computation, the computation cost will be, 
Combs = 2n log2 L=2nB 
multiply – add per input vector

At each stage, the input vector is compared against only two candidates.  This makes the computation cost a linear function of the number of bits in the codewords.

The total storage cost, on the other hand, has gone up significantly,

Mbs = 2n (L-1)
locations 

FIG 2.8 Binary splitting into eight cells

A tree search codebook need not be a binary search codebook.  In other words the number of splitting stages may be less than the number of bits, B in the codeword.  In this case, each vector from the previous stage may point to more than two vectors in the current stage.  This can be treated as a compromise between the extreme cases of low computation cost with high storage (binary codebook) and high computation cost with low storage requirement (full search codebook).


During the training of a binary codebook at each stage of splitting using the K-means algorithm and method 1, the resultant optimum codebooks are stored.  The database is also split into sections represented by each of the resultant vectors.  When the vectors are further split, each new pair of vectors is optimized using the section of the database represented by their mother vector.  This process continues until the final size codebook is reached and optimized.

PRODUCT CODE VECTOR QUANTISERS

           In order to make vector quantisers practical for large dimension and high bitrates, a structure can be imposed on the codebook to decrease the search complexity and/or storage requirements. One way of achieving this is to use decompose the codebook into a Cartesian product of smaller codebooks[2,12]. The idea of using product codes was first introduced by Sabin and Gray [8] with the shape-gain vector quantiser, in which vectors are quantised using both a shape codebook and gain codebook. Indices for each codebook are then transmitted to the decoder, which reconstructs the vector using its stored shape and gain codebook.

The definition of a product code vector quantiser is one with a codebook, C = {yi }Si=1, that consists of k codebooks,
{Ci }ki=1,

where 

Ci = {ui,j }Sij=1,

 such that [12] :

C = C1 ×C2 ×···×Ck , 
where x symbolises the Cartesian product. The code-vectors, u, in each of the smaller codebooks, combine in a permutative fashion to form the product code-vectors, y. Therefore, the effective size of the product codebook is [12]:

k

S =(Si
     i=1

However, the actual size of the product codebook, which consists of the sum of the individual codebook sizes, is generally smaller than that of the effective product codebook :
   k

S ((Si
     i=1

The advantages are that with smaller codebooks, code-vector searches are reduced and in most cases, the memory requirements are reduced as well. These come at the cost of suboptimal coding performance as the product code vector quantiser codebook has structural constraints [12]. Also, the lowest complexity product code-vector quantisers typically use sequential or independent searching and design and this leads to suboptimal product code-vectors being chosen or generated [12]. Also the issue of bit allocation among the various codebooks arises, which can often complicate design and lead to further suboptimality.Cascaded and Split vector quantizers are the two types of product code vector quantizers.

CASCADED VECTOR QUANTIZATION

The major advantage of a binary search VQ is the substantial decrease in its computational cost, relative to a full search VQ, with a relatively small decrease in performance.  However, the storage required for a binary search codebook relative to a full search codebook is nearly doubled.  Cascaded vector quantization is a method intended to reduce storage as well as 

FIG 2.9 A two-stage cascaded vector quantizer

computational costs.  A two-stage cascaded vector quantization is shown in Figure 2.9 Cascaded vector quantization consists of a sequence of vector quantization stages, each operating on the error signal of the previous stage.  The input vector X is first quantized using a B1 bit L1 level vector quantizer and the resulting error signal is then used in the input to a B2 bit L2 level second vector quantizer.  The sum of the two quantized vectors results in the quantized value of the input vector X.


The computation and storage costs for a k-stage cascaded vector quantization are respectively, 

Comcc = n (L1+L2 + … + Lk)
multiply – add per input vector

Mcc= Nn(L1 + L2 + … + Lk) locations
Assuming L1 = 2B1, L2 = 2B2 and Lk = 2Bk and the total number of bits per input vector B = B1+B2… + Bk, we can conclude that the number of candidate vectors searched in a cascaded cascaded codebook for each input vector is less than in a full search codebook,

(2Bi<2B
if 

B=(Bi ,

where 

i =1 to k and  k >1

The storage of a cascaded codebook is less than that required by a binary codebook,

N{(2Bi}<n{(2i}, where i =1 to k and k >1,j=1 to B





       i

j

    
Given the condition that the total number of bits used at various stages of a cascaded codebook is B, both computation and storage requirements reduce with an increase in the number of stages.

SPLIT VECTOR QUANTAIZATION

               In all of the above vector quantization types an n dimensional input vector is directly matched with n dimensional codebook entries.  In a split vector quantization scheme[8,13], an n dimensional input vector is first split into P parts where P>1.  For each part of the split vector a separate codebook is used and each part may be vector quantized independently of the other parts using Bp bits.  Assuming a vector is split into P equal parts and vector quantized using Bp bits for each part, the computation and storage requirements can be calculated as follows:

Comss=n/p (L1+L2+………..+LP) multiply-add per input vector

                                         where Lp = 2Bp for p = 1, 2,…, P. 

 Similarly, the storage is given by:

Mss= n/p (L1+L2+………..+LP) Locations


     The usefulness of a split vector quantization is in its flexibility in choosing the dimension of each split part and in the allocation of the overall bits per input vector to these parts according to the perceptual importance of the vector elements contained in each split part.

FIG 2.10Two part split vector quantizer

GAIN SHAPE CODEBOOKS

                   The variance of the input signal affected the performance of the vector quantizer [15].  This is also true in the case of a vector quantizer.  For example, if the input signal variance is fixed at a certain value, all of the codebook entries will have the same variance and differ only in the shape of vector elements.  In addition, if we assume that the same number of shape combinations is repeated with another variance level at the input, the number of codebook entries would have to be doubled to cover the vector shapes at two different energy levels.  Therefore, if the input vectors have a large dynamic range, the required codebook size may be too large for practical implementation in both computation and storage.  This problem can be overcome by using the same idea that is used in scalar quantization: each input vector is normalized to a certain variance level (usually unity), and then its unit variance shape is vector quantized using a shape codebook containing candidate vectors with unity variance.  The original variance of the input vector is separately quantized and transmitted to the de-quantizer for correct scaling.  This process is called gain-shape vector quantization.  A block diagram of a gain-shape vector quantizer is shown in Figure 2.11.  the gain of the input vector is usually calculated and quantized using a scalar quantizer either before or during the search of the shape codebook.


If the gain of the input vector is to be calculated and quantized before finding its shape then the quantized gain is calculated as:

                                                                

(x =Q[ ( (((xi2)/N)]

where    Q [.] denotes quantization operation


FIG 2.11 Gain-shape vector quantizer

The shape codebook is then searched and the codebook vector which minimizes the expression,
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                                                     Dk=∑(xi-(xyki)2  



 (2.1)


  i










  where 

           k=1,2,…….,L






                                and   i=1 to n

is chosen for transmission.  This search scheme, called open loop, is not optimum. Better performance can be achieved with a closed loop scheme where the shape is first found and then the corresponding gain is quantized before computing the final error.  

Here, we assume an optimum gain ok to be used for each of the L shape codebook entries and compute the corresponding distortion Dk as:

Dk=((xi-(kyki)2    



(2.2)





          i

where 

k=1,2,…….,L

                                                i=1,……n


We have to find a vector Yk from the shape codebook with a gain value of σk  such that the corresponding distortion Dk is minimized.  However, we have two unknowns, namely, yk and σk. To find σk in terms of yk we differentiate (2.2) with respect to ok   and set it to zero for minimum error gain.  This gives the following σk for the codebook vector yk in relation to an input vector x,

(k = (xiyki  / (y2ki   




(2.3)

 where 

i=1 to n     




If we substitute (2.3) into (2.2) we can write the distortion Dk independently of  σk as, 

Dk=((xi)2-   {(xiyki}2        k=1,2,3,….L


(2.4)


(y2ki

The first term of Dk in equation (2.4) does not change with K, and hence it is not computed during the search of the shape. The shape is found by maximizing only the second term in (2.4).  During the codebook search process, the most likely shape values are found by maximizing the second term in equation  (2.4). Then, corresponding gain values given by (2.3) are computed and quantized.  Finally, each shape vector scaled by its quantized gain is compared with the input vector.  This whole process can be simplified with only a small increase in the quantization error by computing the second part of equation (2.4) for all k to select the best shape vector without quantizing its gain (assuming that gain quantization error will not, in general, render other vectors more favourable). In this case only one shape vector is considered which does not require further comparisons after the gain quantization process.

ADAPTIVE VECTOR QUANTIZATION


The above discussed codebooks do not vary with time.  Therefore, it is extremely important to train these codebooks for optimal performance with varying time and hence varying input vector characteristics.  One way of making a codebook track the input vector 

FIG 2.12 Adaptive VQ

characteristics with time is to make the codebook adaptive.  As in the case of an adaptive scalar quantizer, the adaptation of a codebook can be achieved using either forward or backward schemes. 


In a forward adaptive vector quantizer [14], the codebook is updated with respect to the input vectors before the quantization process, which requires some side information to be transmitted to the de-quantizer for compatible adaptation necessary for correct recovery of the signal.

In the case of a backward adaptive quantizer, the codebook is updated the appropriately transformed most recent quantizer output vectors.  In this case, no side information is needed since the same update process can be performed at the de-quantizer using the previously recovered vectors.


An adaptive codebook is usually used in cascade with other (generally, fixed) codebooks, which provide the initial vectors to the adaptive codebook as well as helping to speed up adaptation when significant signal variations occur.  An adaptive codebook in a two-stage cascaded vector quantizer is shown in Figure 2.12.  The first stage can be an adaptive codebook followed by a fixed second stage codebook.  The adaptive codebooks used in these configurations are called predictor codebooks and the whole process is called predictive or differential vector quantization. 

TREE STRUCTURED VECTOR QUANTISERS

The tree structured vector quantiser (TSVQ) [5], as shown in Fig. 2.13 enforces a tree structure on the vector quantiser codebook[8]. By doing so, the number of code-vector searches is considerably reduced. The greedy method of designing a TSVQ is to recursively run the LBG algorithm on training vectors that are classified to each branch [2]. To quantise a vector, x, it is firstly compared with the code-vector in each branch node. The branch node code-vector which is closest to x determines the path through the tree until we reach the code-vector at the leaf node, which completes the search. For a b bit TSVQ, only 2b distortion calculations are required, as opposed to 2b searches in an unconstrained, exhaustive search vector quantiser. Therefore, the computational complexity of TSVQ is very low .However, the memory requirements of the TSVQ codebook are higher than the unconstrained vector quantiser. For an n-dimensional, b bit TSVQ, the total memory requirement is:

                        b

memoryTSVQ = n(2i
i=1


FIG 2.13 A 3-Bit Tree Structure

The performance of TSVQ is generally suboptimal due to the sequential searching algorithm and the structural constraint on the codebook. The path that is chosen through minimizing the distortion at each stage does not necessarily terminate at the optimum code-vector. Also, the greedy method of designing the TSVQ does not necessarily produce an optimal TSVQ codebook either. 

Chapter 3

Multistage VECTOR QUANTIZATION

                 Multisatge vector quantization is a type constrained vector quantization. The technique is also sometimes referred to as residual vector quantization, cascaded vector quantization. Multistage VQ (MSVQ) [14] is to divide the encoding task into suc​cessive stages, where the first stage performs a relatively crude quantization of the input vector using a small codebook. Then, a second stage quantizer operates on the error vector between the original and quantized first stage output. The quantized error vector then provides a second approximation to the original input vector thereby leading to a refined or more accurate representation of the input. A third stage quantizer may then be used to quantize the second stage error vector to provide a further refinement and so on.

     In the multistage approach, the input vector is represented as the sum of two or more vectors of the same dimension as the original, where each successive term of the sum can be considered as a refinement or successive approximation improvement of the previous terms. The reproduction vector is computed in the following form:


X= X1 + E2 + . . . + Ek



(3.1)

for the case of k stage vector quantizer. The first stage quantizer Q1 approximates X with X1 using a codebook C1 of size stages L1. The second stage quantizer Q2 is used to approximate the quantization error vector E2 = X - Xl using a codebook C2 so that


X2 = Xl + E2




(3.2)

is an improved approximation to X. Similarly, the third stage quantizer approximates the quantization error vector E3 = X - Xl - E2 associated with the second stage using the codebook C3 to obtain

                                              

X3   = Xl + E2 + E3 = X2 + E3,

(3.3)

which provides a further refinement to X; and so on, until the complete approximation is produced by adding the K vectors. There is a separate codebook Ci for each of the k vectors that form the reproduction vector. The overall codeword is the concatenation of codewords or indices chosen from each of these codebooks. The encoder transmits indexes I1 ,I2,……. Ik  to the decoder, which then performs a table-lookup in the respective code​books and forms the sum given in equation 1. Thus this is a product code where the composition function g of the decoder is simply a summation of the reproductions from the different VQ decoders.

The complexity is reduced from     
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L = Π  Li  to Σ Li
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where i=1to k

and the equivalent product codebook is generated from the Cartesian product C1 x C2 x……. Ck. Thus both the complexity and storage requirements can be greatly reduced using multistage VQ.

3.1 DESIGN OF MSVQ

Following are the two design algorithm which are generally used for MSVQ. For MSVQ there are several codebook design algorithms which attempt to minimize overall distortion.

SEQUENTIAL DESIGN:

Codebook design for multistage VQ is performed in stages. First, the original training set T is used to generate the first stage codebook of the desired size in the conventional manner. Next, a new training set T1 is generated by applying the training set to the first stage VQ and generating the set of error vectors that represent the statistics of the vectors applied to the second stage. This training set is of the same size as the original and the vectors are of the same dimension. The process is repeated for successive stages. Note that the codebook design complexity is reduced here compared to the design for a single stage VQ of dimension L.

This codebook design procedure is not optimal in the sense that it does not find the best set of code books for sequentially encoding a vector stage​by-stage with the multistage structure. It is, however, greedy in the sense that it finds the codebook for the first stage that would be optimal if there were only one stage. Then it finds the best codebook for the second stage given the first-stage codebook and assuming there are only two stages. Similarly, each successive stage is optimal given all previous stage codebooks and assuming that it is the last stage.


FIG 3.1  Multistage vector quantization

Joint design: 

         The conventional stage-by-stage design for sequential search MSVQ [14] can be improved by joint design [31] where the stage codebooks are reoptimized iteratively and alternately to minimize the overall distortion objective. The iterative algorithm is somewhat similar to the GLA. However, unlike the GLA, it does not necessarily produce a non-increasing sequence of distortion values. Suppose we have a training set T, consisting of T training vectors xt , t = 1,2, . . . , T, that are statistically representative of the random vector source X. The use of a training set is  equivalent to replacing the pdf of the source with a probability mass function where each training vector has equal probability. The overall MSE distortion measure can then be approximated by the MSE incurred in quantizing the training set 


                                      D{d(X,X)}= Σ ll xt - xt ll 2  


(3.4)

where xt are the quantized training vectors. We will use the parenthesized superscript (n) to indicate variables in the nth iteration of the design procedure with initial value of n = 0. Suppose we have initial codebooks Y(0)and Z(0) for the first and second stages, respectively. These initial codebooks can readily be obtained from the traditional stage-by-stage MSVQ design. For monitoring the performance associated with the codebooks Y(n) and Z(n) at the nth iteration, let dn+1 denote the MSE value in above equation  computed using these codebooks. A very large value is assigned to d0. The initial codebooks are optimized by the following algorithm [31]. 

Enhanced Design Algorithm

1) Encode and Partition Training Set: Encode each vector xt in the training set T with the current (nth) set of stage codebooks. Let i*(t) and j*(t) denote the indexes obtained in encoding xt .  For i=1, .. . , N, let  Ri(n+1) be the set of training vectors assigned indexes i*= i. Compute dn+1, the MSE incurred in encoding T according to (3.4)
2) Test: If the quotient ldn-dn+1l / dn, is less than a predetermined small positive threshold ∂ or if n has reached a predetermined upper limit, the algorithm is terminated. The

final codebooks are then taken as Y(n*) and Z(n*) where n* is such that d(n*) ≤ d(n) for all n.

3) Update Codebook 1: Each code vector in stage 1 is replaced by the conditional centroid . The new code vectors yi(n+1), for i = 1,. . . , N , constitute the new codebook Y(n+l) for stage 1.
4) Encode and Repartition Training Set: Encoding is performed again as in step 1, but using Y(n+l) instead of Y(n),to produce a new set of index labels i*(t) and j * ( t ) for the training vectors. The vectors are thereby partitioned into M sets, Sj(n+l),where j = 1, . . . , M, with all vectors having the same j* index assigned to the set Sj*(n+l).

5) Update Codebook 2: A new second stage codebook Z(n+l) is obtained by replacing the jth code vector, j = 1. . . . , M, with the conditional centroid .

6) Increment: Increment n by 1 and go to Step 1. 

The enhanced MSVQ design algorithm[31] above applies the necessary optimality conditions at step(3) and at step 5, to improve the stage codebooks. This algorithm is somewhat similar to GLA. However ,GLA is strict decent algorithm as at each  step it either decreases or leaves unchanged the overall MSE. In the enhanced MSVQ algorithm , the sequential encoding at step 1 and 4 leads to sub-optimal partitions. If MSE is computed at step 4 then it is possible to get a larger value than that computed in step 1.

3.2 SEARCH STRATEGIES: 

Following are the three search strategies generally used for MSVQ.

3.2.1 Sequential search : 

                  In sequential search each stage is sequentially search and keep one codevector per stage is kept. The performance  of this method is relatively low, at low complexity. In this search, the input vector f is first approximated by the ith vector from the first codebook Co which minimizes:

d(  f , f ) = Σjp  wj(fj –( yoio  )j)2

The index for the first codebook io is then fixed and the quantization error f – yoio is then quantized using the ith vector from the second codebook Ci which minimizes:


d(  f , f ) = Σjp  wj ((fj –( yoio  )j )  - (  y1i1)j)2

This process is repeated for each stage in the codebook. The complexity of this search is the sum of the complexity of a full search through each codebook, given by,

C = n  (k=1k (2Bk)

          where K is the number of stages, each with Bk bits 

                    n is the length of the input vector 

                  This search is, however, nonoptimal as there is no guarantee that the set of codebook vectors giving the lowest intermediate distortion will also result in the best overall distortion.


FIG 3.2 Sequential Search

3.2.2. Exhaustive search or Full-Search 

             In full-search MSVQ exhaustive search [18] for all combination of codevectors at all stages  to reach the final result is carried out. That is, every combination of codebook vectors ​​​​x = y0i0 + y1i1 ……………..+yi(k-1)k-1  ​​​​​​​​​​​​​​​is tested against the original input vector. The full search guarantees the best possible representation of the input vector but with very high complexity.

                                           C=N2( Bk         k=1 to k=k

Where n= length of vector,

           K= number of stages with bits Bk bits

The only advantage of the full-search MSVQ over a standard full search vector quantizer is the reduced storage requirement. However, it is possible to obtain most of the advantages of the full search over the sequential search, while still maintaining, a reasonable level of complexity, by using a tree-search algorithm (TS), such as an M-best tree search or mutipath search.

3.2.3 Mutipath  Sequential Search

 An M-best tree search operates by exploring a certain number, M, of paths in the quantizer tree. Starting with the first codebook, the M code-vectors giving the lowest distortion when compared with the input are kept, as well as the M quantization error vectors resulting from these vectors. The second codebook is then searched M times, once for each of these error vectors, and the M paths which achieve the lowest overall distortion are kept. This procedure is performed for each stage of the codebook. Finally, for the last stage, the path giving the lowest overall distortion is selected. This process is illustrated in Figure above. For this example, M has been set to 2 and the codebook consists of three stages of 3 bits each. In Figure a, the first codebook CO is searched to find the M vectors that best match the original input vector. In Figure b, the second codebook is searched to best match the difference between the original input vector and the selected vector from the first codebook. This is performed for each of the M selected vectors in the first codebook. The M best paths are selected for the next stage. Figure c shows the same process repeated for the third and final codebook. Finally, Figure d shows the final M best paths. Out of these, the path with the lowest overall distortion is selected. Experiments show that such a tree search can give performance close to that of a full search even with a small value of M . 


FIG 3.3Steps in an M-best Search

The complexity of this search is given by:

                                          C = n( 2Bo+ M Σk2 2Bk  )

For M = I, this equates to the complexity of the sequential search. It can be seen that the M factor does not apply to the complexity of the first codebook search. This can be exploited in designing the structure of the codebook. For example, if we have three stages for a total of 25 bits, it is significantly less complex to have a {9, 8, 8} structure than a {8, 9, 8} structure, whereas storage is the same and performance is expected to be similar.

CHAPTER 4

DESIGN MODEL
                                 For the enhancement in search methodology generally used in MSVQ , we have to make certain structural changes at stage level. For this we add number of smaller codebooks in a manner so as to support a tree structure at every stage . So, the overall codebook design of MSVQ now consists of two steps :

1. Design of stage code book

2. Addition of Binary tree at each stage

Design of stage code book:

For designing the stage codebooks for MSVQ, we use sequential design algorithm [chapter 3].       

Steps followed are:


1. A sufficient number of  vectors are stored in training database

2. An initial codebook is formed by randomly choosing vectors from the training database

3. Apply K-means algorithm to improve the initial codebook

4. Find residual training set

5. Apply K-means algorithm again to find next stage codebook. Repeat the same procedure from Step 4 by taking now, the last obtained codebook as the initial codebook until we reach last stage.

The overall idea is: Code vector of a stage are found assuming the codebooks of all previous stage are fixed.

Addition of Binary tree at each stage

      Structural Details :

                        With every stage we associate a stage codebook and a binary tree structure. At each level of binary tree we place one small codebook [16]. All the leaves of this kind tree are present at stage codebook that is the stage codebook is the deepest level of the binary tree. These tree codebooks along with the stage codebook formed the design that we needed for implementing proposed search technique. The figure below shows the overall design:



FIG 4.1 Overall Design
Development of tree codebooks 

Let 


L:- size of code book C


r:- Resolution=Log nL


yi:-i=0 to L-1   ith code vector


 Ri:- cell associated with code vector yi

The development of tree codebooks starts by designing highest resolution tree codebooks. In structural details we defined that stage codebook is the highest level of binary of tree . From this stage codebook we started merging groups of N cells to get one cell of lower level tree. The N cells to be merged were selected according to

         Rit=RNi t+1 U RNi t+1 U ………..U RNi+(N-1) t+1    ……………………..(4.1)

Where Ri(t) is cell associated with ith codevector at resolution t 

The centroid of the resultant was calculated according to

yit = (yt+1Ni   + yt+1Ni +1   + ………..  + yt+1Ni + (N-1) ) /N………………….(4.2)

                Merging and centroid calculation are done in such a manner so as to minimize squared Euclidean distance,at a particular resolution . By minimizing these distances i.e. between higher and lower resolution codevectors ,we produce tree codebooks which when used for locating codevectors at stage codebook gives good results. For the minimization of these distances ,a need for finding the best arrangement for the stage codebook of highest level codevectors was there (steps are given below)[20]. After finding such arrangement of lower level codevectors are founded  by using equation(4.1) and (4.2) 

Steps for finding the  best arrangement of stage codebook [20]:-

Step1: Initialize  m=r 

Step2: select ‘N’ cells for merging and form an index  set like 

    {   i1, i2,i3,………iN }

where




 i1=0 to Nm-1

i2= i1+1  to Nm-1

i3= i3+1  to Nm-1

.       .          .

.       .          .

.       .          .

iN  = iN-1+1  to Nm-1

(all the indices in one set must be different)

step3: calculate centroid for every index set found  at step2 by using 

Z(i1,i2,i3,……………in)=yi1m+ yi2m+ yi3m+…………… yinm





N

where i1=0 to Nm-1

           i2= i1+1  to Nm-1

           i3= i3+1  to Nm-1

           .       .          .

           .       .          .

           .       .          .

          iN  = iN-1+1  to Nm-1

step 4 calculate distances by using 

D (i1, i2,i3,………iN) =  ((Z(i1, i2,i3,………iN) – y(m)i1    ((2 

                                      +   ((Z(i1, i2,i3,………iN) – y(m)i1    ((2





.





.





.

 


  +   ((Z(i1, i2,i3,………iN) – y(m)i1    ((2

Step 5 Make a sorted list of all the entries on the basis of distances calculated at step 4 in ascending order 

Step 6 

1.Start from the  first entry in the list , since it is least distance value ,keep it as it is and eliminate all other entries which contain the same index as this entry.

2.Repeat the process with next entry in the list till we reach the end of the list or only Nm-1

entries are left

Step7 Codevectors which  are associated with Nm-1 entries are labeled as yim-1 where i=0 to Nm-1

Step8  Set m=m-1, if m=1 then goto step 9

Else goto step 2

Step9 Merge all the ‘N’ cells at level m=1to find the cenroid and store it at m=0

Step 10 Find the index for each codevector by following the Binary tree formed 

The overall  design thus obtained was then used as the basis for implementing proposed search

Chapter 5

proposed search TECHNIQUE

                 Among the main search technique available for multistage vector quantization multipath search is considered as good one in terms of reducing  computational complexity preference [6]. The search methodology we are presenting , tries to further reduce the computational complexity .We will use design model which we have developed earlier[chapter4].

Let number of stage codebook = k

Size of  codebook =Li  ;    i=1 to K

Number of codewords selected from a tree codebook that will become input of next tree codebook=Vt

Number of codewords selected from a stage codebook that will become input of next stage codebook=Vs

Proposed  Search Algorithm is: 

Step1:Check whether the number of stages (K) is more than 3 or not . If  no then Go

           to  Step 2  else set vt = 1 for the last stage.

                       [ When the number of stages in MSVQ are more, the last stage codebook contains smaller values as compared to others. If  Vt is large then the number of vectors which will become the input for the last stage is more, and hence the number of distance computation  is more. If we set Vt to a minimum value at only ,last stage, good number of distance computations are saved. This saving is done at the expense of reduced performance i.e. mean square error will slightly increased.]

Step 2: Start from the first stage(i=1) and follow the steps mentioned below

· For ith stage  :     For a given input vector , we locate a total of 2Vt codevectors at ith stage codebook and they will become input for the next stage(i+1th). Check if 2Vt < Vs .If yes ,then the  2Vt output codevectors become the input of next stage (i+1th), otherwise 2Vt distance computations are executed where the Vs codevectors having the lowest distances are taken.A total number of  2Vt or Vs (whichever is less ) codevectors are passed to next (i+1th) stage.

· For (i+1)th stage: The input vector is subtracted from the output  of the previous(ith) stage to create a set of min(2Vt, Vs) target vectors, the search process is executed for each target, leading to a total of min(2Vt, Vs)2Vt, possibilities, and only the min(min(2Vt, Vs)2Vt,Vs)) are kept. This procedure repeats until the last stage codebook is reached, at that point the final result is determined, where the indices for all the stage codebooks are found.


                                         FIG  5.1 Locating codevectors at a stage

             In the above figure the search starts at the tree codebook of size 4, assume that codevectors1and 2 are selected. For the next tree codebook , the codevectors to consider are 2, 3, 4, and 5; if the codevectors 3 and 4 produce the lowest distances, then the codevectors to consider for the stage codebook are 6,7,8, and 9.

CHAPTER 6

RESULTS AND PERFORMANCE ANALYSIS

               All results shown here are calculated by taking following parameter set:

Training Data Set = 500 vectors

Testing data set    =50

Size of stage codebook = 16 or 32

Number of stages=2,3, or 4

Number of codevectors selected from a tree codebook that will become input of next tree codebook=Vt =1,2 or 3

Number of codevectors selected from a stage codebook that will become input of next stage codebook=Vs=3 or 4 or 5

Vector dimension= 2

RESULT A .Following are the stepwise result of codebook design process:

Step 1: A total of 16 vectors are taken at random from the training set of 500 vectors to form an initial codebook for the 1st stage .

Initial codebook generated:

[46.000000           82.000000]

[232.000000          179.000000]

[146.000000          122.000000]

[36.000000           173.000000]

[239.000000          160.000000]

[129.000000          22.000000]

[17.000000           143.000000]

[22.000000           64.000000]

[217.000000         104.000000]

[24.000000           9.000000]

[29.000000            37.000000]

[211.000000          12.000000]

[193.000000          105.000000]

[236.000000          7.000000]

[22.000000           138.000000]

[213.000000          141.000000]

step2: Final codebook for 1st stage is obtained by applying K-means alogorithm to the above initial codebook. Codebook thus obtained is :

Final codebook 1st stage 

[94.157898         137.210526]

[149.550003       144.949997]

[142.000000       126.133331]

[29.833334          164.500000]

[109.750000        95.208336]

[144.000000        127.666664]

[121.461540        174.153839]

[130.681824        146.045456]

[206.000000        68.666664]

[125.545456        126.545456]

[74.777779          102.000000]

[132.199997        124.400002]

[132.315796        122.684212]

[141.416672        156.333328 ]

[47.500000          171.187500]

[162.476196         156.571426]

Step 3: With the help of 1st stage codebook and training data set, residual training set is obtained .From this residual set 16 vector are taken at random and an initial codebook for 2nd stage is formed .Again ,K-means algorithm is applied to this initial codebook and 2nd stage’s final codebook is obtained. 

2nd stage final codebook :

[18.444445          71.000000]

[11.900000          95.500000]

[21.133333          75.800003]

[45.843750          35.062500]

[126.714287         84.500000]

[57.500000          76.000000]

[89.388885          115.222221]

[118.533333        130.000000]

[31.647058          108.941177]

[86.857140          21.964285]

[114.866669         37.733334]          

[55.315788          130.368423]

[93.699997          90.199997]

[64.533333          94.866669]

[84.833336          55.083332]

[105.666664         64.111115]

Step 4: Tree codebooks are then generated from stage 1 and stage2 and index assignment is done according to design model [Chapter 4]. 

Tree codebooks of 1st stage:

3rd level Tree codebook

[92.263885     98.604172]

[133.772736   126.339394]

[89.907898     146.935852]

[61.995617     150.855255]

[140.875000   134.675003]

[136.049255   151.189392]

[175.000000   98.166664]

[141.968872  165.362640]

2nd level  Tree book

[77.129753          124.729713]

[115.391449          140.805420]

[134.910995          138.764389]

[158.484436          131.764648]

1ST LEVEL TREE CODEBOOK

[96.260605          132.767563]

[146.697723          135.264526]

Tree codebooks of 2nd stage:

 3rd level  TREE CODEBOOK

[74.683334          74.974998]

[66.350449           28.513393]

[19.788889           73.400002]

[99.683334           77.155556]

[73.256866           73.337257]

[34.700001           85.750000]

[86.924561           130.184204]

[108.051590          99.861115]

2nd level tree code book

43.069668           50.956696

54.691666           80.362503

97.488075           115.022659

86.470100           75.246407

1st Level tree book

48.880669           65.659599

91.979088           95.134537

RESULT B:                            

               We have obtained codebooks that  are required for implementing  our proposed search algorithm, so we take test vectors from testing data set and apply  proposed search technique for 

finding the quantized vaule for the given test vector. We always start search from tree codebook whose size  > Vt.  

Case 1: When  No. of stage codebooks=2  (taking Vt=2  ,Vs=5)

Since Vt is 2 ,at first tree codebook both the entries will be selected. So,starts at tree codebook 2



FIG 6.1     1ST STAGE OF MSVQ


FIG 6.2    2ND STAGE OF MSVQ

Number of distance computations for Ist stage= 4+4 = 8

Number of distance computations for 2nd stage= 4*8 + 16=48

(Here 16 extra computations are carried out because 2Vt > Vs, so to select Vs entries extra computations were done) 

Computational complexity = 8+48= 56.      (when proposed search is used).

Computing complexity of Multipath Sequential Search :

For the same set of parameters i.e. Vs=5 and Number of stages=2, we calculate the computational complexity of Multipath Sequential Search.



5 x



=80

FIG 6.3    MULTIPATH SEQUENTIAL SEARCH

Number of  computations for Ist stage= 16

Number of  computations for 2nd stage= 5*16 =80

Computational complexity = 80+16 = 96  (when MSS is used)

Case2 :When No. of stage codebooks=4 or more (taking Vs=5 and                                                                           

                       stage codebook size=32) 

        2a) When the same tree parameters are applied to all the stages(Vt= 4)


   Number of distance computations for Ist stage  = (8+8)+8          =  24

   Number of distance computations for 2nd stage= 5*(8+8)+40    =120

   Number of distance computations for 3rd stage  = 5*(8+8)+40   =120

   Number of distance computations for 4th stage = 5*(8+8)+40   =120

                                                         Computational complexity  =384 

       2b)When the same tree parameters are applied to all the stages but not on last:

                                                                                      (Vs=5 ,Vt = 4  upto 3rd stage

                                                                                                    Vt =1 for last stage)                                                                                 

               Number of distance computations for Ist stage  = (8+8)+8                =  24

   Number of distance computations for 2nd stage= 5*(8+8)+40          =120

   Number of distance computations for 3rd stage  = 5*(8+8)+40         =120

   Number of distance computations for 4th stage = 5*(2+2+2+2)+10 =  50

 




              Computational complexity   =314

Thus we save here 70 computations but there is a very small increase in mean square error 

when  compared with the one obtained for case (2a) .

RESULT C: Following  are the observations ,given  the training set and testing set, no. of stages =2,vector dimension =2

	           Vs       

Vt         
	5


	3
	Percentage change for  MSE w.r.t.

corresponding value in MSS
	Multipath

Sequential

Search



	1
	18
	22
	94.281%
	96

	2
	56
	48
	25.23%
	64


	Vs
	Computational complexity

For proposed search
	Computational Complexity for 

Multipath sequential search

	1
	24
	32

	2
	36
	48

	3
	48
	64

	4
	56
	80

	5
	56
	96

	6
	56
	112
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 FIG 6.4 GRAPH SHOWING COMPLEXIY OF MSS AND PROPOSED SEARCH

CHAPTER 7

CONCLUSION AND FUTURE WORK

                       Multistage vector quantization is promising technique for reducing the complexity. The basic idea of MSVQ is to divide the encoding task into suc​cessive stages, where the first stage performs a relatively crude quantization of the input vector using a small codebook. Then, a second stage quantizer operates on the error vector between the original and quantized first stage output. The quantized error vector then provides a second approximation to the original input vector thereby leading to a refined or more accurate representation of the input. A third stage quantizer may then be used to quantize the second stage error vector to provide a further refinement and so on.

                       It is shown in this dissertation that by adding number of smaller codebooks in a structured manner at every stage of a standard MSVQ(Binary tree is used for making this structure), reduction in search complexity can be achieved at small performance degradation. Therefore the method is highly suitable for those applications where computational power is limited and small performance degradation can be tolerated.

                            For codebook design, we rely on the sequential design and to generate the stage codebooks, K-means algorithm is used to refine the codebooks, then the tree codebooks are found using a cell-merging process. A large training set is used to train the codebook. Complexity is measured in terms of the total number of distance computations carried out in reaching from first to last stage of MSVQ.  

                    Tree structure at every stage is developed independently of other stages. This fact is exploited when number of stages increase. At last stage of MSVQ, the number of vector selected from a tree codebook (Vt) is set to a lower value i.e. Vt = 1 . By reducing the number of vectors selected from tree codebook of last stage ,number of distance computation required are further reduced .This leads to reduction in overall search complexity.

                        The efficiency of the proposed search technique  is a direct consequence of the incorporation of the tree codebooks within the framework of MSVQ, allowing fast location of the codevectors at the stage codebooks.  Comparison with Multipath sequential search shows the effectiveness of the proposed search method .

FUTURE WORK: 

               The ideas from work presented in this dissertation can be extended to the fields of image and speech processing. Joint design algorithm can be used for designing stage codebooks as an alternative to the method used in this dissertation .There is a scope of further research in the usage of different kinds of tree structure with varying permutations and combinations. This of course, needs revalidation through testing of parameters like storage & search  complexity, quantization error, etc.
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Appendix

Source Code

K_MEANS.C

#include<stdio.h>

#include<conio.h>

#include<math.h>

#define MAX 50

//256 600 2 16

//256 600 3 16

main()

{

int *sec_array_p,*array_p/*[24]={4,7,6,7,8,6,8,9,4,9,10,10,1,4,8,3,7,1,3,2,2,8,5,6}*/,*cluster[MAX],*choice;

int q,m,n,x,k,y,min,i,size_pixel,no_comp,size_book,j,count=0,range,*temp,sec_p;

float avg_dist,prev_avg_dist,*code_book;/*[6]={1,6,9,7,4,3};*/

FILE 
*Ptr;

clrscr();

printf("Please enter the range ....");

scanf("%d",&range);

//range=333;

//size_pixel=24;

printf("Enter size of array for pixel matrix : ");

scanf("%d",&size_pixel);

array_p=(int *)malloc(size_pixel*sizeof(int));

temp=(int *)malloc(no_comp*sizeof(int));

sec_array_p=(int *)malloc(size_pixel*sizeof(int));

for(i=0;i<size_pixel;i++)

{

array_p[i]=rand()%range;

 printf("%d ",array_p[i]);

 }

printf("\n");

printf("Enter the no. of components of vector: ");

scanf("%d",&no_comp);

printf("Enter the size of codebook (for trail now its 3): ");

scanf("%d",&size_book);

printf("Enter the code vectors for code book ....");

code_book=(float *)malloc(size_book*no_comp*sizeof(float));

//size_book=3;

for(i=0;i<size_book*no_comp;i++)

{

code_book[i]=rand()%range;

printf("%f ",code_book[i]);

//scanf("%",&code_book[i]);

}

printf("\n");

for(i=0;i<MAX;i++)

{ cluster[i]=(int*)malloc(size_pixel*sizeof(int)); }

Ptr = fopen("/msvq/intial_1.txt", "w");

printf("\n\n Initial Code Book \n\n");

for(i=0;i<size_book*no_comp;i=i+no_comp)

{

printf("\n");

for(j=0;j<no_comp;j++)

{

printf("%f ",code_book[i+j]);

fprintf(Ptr, "%f\n",code_book[i+j]);

}

}

fclose(Ptr);

choice=(int*)malloc(size_book*sizeof(int));

//void kmean(

do

{

for(i=0;i<MAX;i++) {for(j=0;j<size_pixel;j++){cluster[i][j]=range;}} // store 1000 at cluster

count++;

for(i=0;i<size_pixel;i=i+no_comp)

{

       q=0;

     for(j=0;j<size_book*no_comp;j=j+no_comp)


{


  choice[q]= pow((code_book[j]-array_p[i]),2)+pow((code_book[j+1]-array_p[i+1]),2);


  q++;


 }

      min=choice[0];

      y=0;

     for(j=1;j<size_book;j++) { if(min>choice[j]) { min=choice[j]; y=j; } }

     x=0;

     while(cluster[y][x] != range)

     { x++; }

     for(k=0;k<no_comp;k++)

     {

     cluster[y][x++]=array_p[i+k];//prob comp

     }

     //cluster[y][x+1]=array_p[i+1];

}

/*     for(j=0;j<size_book*no_comp;j=j+no_comp)

                    {


  printf("%d ",choice[j]);


 }

*/

printf("\n");printf("\n");

for(i=0;i<size_book;i++)

{

printf("\n%d-> ",i+1);

for(j=0;cluster[i][j]!=range;j++)

printf("%d  ",cluster[i][j]);

printf("\n");printf("\n");

if(i%6==0)

getch();

}

avg_dist=0;

q=0;

for(i=0;i<size_book*no_comp;i=i+no_comp)

{

  for(j=0;j<size_pixel;j++)

  {

   if(cluster[q][j]==range) break;

   }

   for(k=0;k<j;k=k+2)

  {

   avg_dist=avg_dist+ pow((cluster[q][k] - code_book[i]),2) + pow((cluster[q][k+1] - code_book[i+1]),2);

//      printf("AVG_DIST = %f\n",avg_dist);

   }

   q++;

}

avg_dist=avg_dist*no_comp/size_pixel;

//printf("total AVG_DIST = %f",avg_dist);

getch();

q=0;

for(i=0;i<size_book*no_comp;i=i+no_comp)

{

  m=0,n=0;

  for(j=0;j<size_pixel;j++)

  {

   if(cluster[q][j]==range) break;

   }

  for(k=0;k<j;k=k+no_comp)

  {

    m=m+cluster[q][k];

  }

  for(k=1;k<j;k=k+no_comp)

  {

    n=n+cluster[q][k];

  }

//    printf("m=%d , n=%d ,j=%d",m,n,j);

    if(j!=0)

    {

    code_book[i]=(float)no_comp*m/j;

    code_book[i+1]=(float)no_comp*n/j;

    }

   q++;

}

//   printf("\nCODE BOOK CHECK +%d  %d",code_book[i],code_book[i+1]);

prev_avg_dist=avg_dist;

}while(count==1 || abs(prev_avg_dist-avg_dist)>1);

printf("\n\n\n\n----Final CODE BOOK-----\n\n\n");

/*for(i=0;i<size_book*no_comp;i=i+no_comp)

{ printf("%f %f\n",code_book[i],code_book[i+1]); }*/

Ptr = fopen("/msvq/final_1.txt", "w");

for(i=0;i<size_book*no_comp;i=i+no_comp)

{

printf("\n");

for(j=0;j<no_comp;j++)

{

printf("%f ",code_book[i+j]);

fprintf(Ptr, "%f\n",code_book[i+j]);

}

}

fclose(Ptr);

//----------------------------2nd level code book generation-------------

sec_p=0;

for(i=0;i<size_book;i++)

{

  x=0;

  while(cluster[i][x++]!=range);

  for(j=0;j<x;j=j+no_comp)

  {

   for(k=0;k<no_comp;k++)

    {

    sec_array_p[sec_p++]=abs(cluster[i][j+k]-code_book[i+k]);

    }

  }

}

Ptr = fopen("/msvq/output.txt", "w");

for(i=0;i<sec_p;i++)

{

if(i%2==0) printf(" -- ");

if(i%50==0) printf("\n");

fprintf(Ptr, "%d\n",sec_array_p[i]);

//printf(" %d",sec_array_p[i]);

}

  fclose(Ptr);

/*Ptr = fopen("/msvq/final_1.txt", "w");

//printf("\n\n Initial Code Book \n\n");

for(i=0;i<size_book*no_comp;i=i+no_comp)

{

//printf("\n");

for(j=0;j<no_comp;j++)

{

//printf("%f ",code_book[i+j]);

fprintf(Ptr, "%f\n",code_book[i+j]);

}

}

fclose(Ptr);

  */

getch();

return 0;

}

K_MEAN2S.C

#include<stdio.h>

#include<conio.h>

#include<math.h>

#include<string.h>

#define MAX 50

//256 600 2 16

//256 600 3 16

main()

{

int *sec_array_p,*array_p/*[24]={4,7,6,7,8,6,8,9,4,9,10,10,1,4,8,3,7,1,3,2,2,8,5,6}*/,*cluster[MAX],*choice;

int p,xy,q,m,n,x,k,y,min,i,size_pixel,no_comp,size_book,j,count=0,range,*temp,sec_p;

float avg_dist,prev_avg_dist,*code_book;/*[6]={1,6,9,7,4,3};*/

FILE 
*Ptr;

clrscr();

printf("Please enter the range ....");

scanf("%d",&range);

//range=333;

//size_pixel=24;

printf("Enter size of array for pixel matrix : ");

scanf("%d",&size_pixel);

array_p=(int *)malloc(size_pixel*sizeof(int));

temp=(int *)malloc(no_comp*sizeof(int));

sec_array_p=(int *)malloc(size_pixel*sizeof(int));

/*for(i=0;i<size_pixel;i++)

{

array_p[i]=rand()%range;

 printf("%d ",array_p[i]);

 }

*/

// ---------------file access------------------

printf("\n -----FILE---- \n");

Ptr = fopen("/msvq/output.txt", "r");

fseek(Ptr,0L,SEEK_SET);

  xy=0;

  while(xy++ != size_pixel)

/* Get data from stdin */

  {

    fscanf(Ptr,"%d",&array_p[xy]);
/* Send data to file.  */

  printf("%d ",array_p[xy]);

  }

printf("\nxy is ---%d",xy);

  fclose(Ptr);

  getch();

/*for(i=0;i<size_pixel;i++)

printf("%d ",array_p[i]);*/

printf("\n");

printf("Enter the no. of components of vector: ");

scanf("%d",&no_comp);

printf("Enter the size of codebook (for trail now its 3): ");

scanf("%d",&size_book);

printf("Enter the code vectors for code book ....");

code_book=(float *)malloc(size_book*no_comp*sizeof(float));

//size_book=3;

for(i=0;i<size_book*no_comp;i=i+no_comp)

{

p=size_pixel/(no_comp*size_book);

if(p%2!=0)

p++;

code_book[i]=array_p[i*p]; //rand()%range;

code_book[i+1]=array_p[i*p+1]; //rand()%range;

//printf("%f ",code_book[i]);

//scanf("%",&code_book[i]);

}

printf("\n");

for(i=0;i<MAX;i++)

{ cluster[i]=(int*)malloc(size_pixel*sizeof(int)); }

printf("\n\n Initial Code Book \n\n");

for(i=0;i<size_book*no_comp;i=i+no_comp)

{

printf("\n");

for(j=0;j<no_comp;j++)

{

printf("%f ",code_book[i+j]);

}

}

choice=(int*)malloc(size_book*sizeof(int));

//void kmean(

do

{

for(i=0;i<MAX;i++) {for(j=0;j<size_pixel;j++){cluster[i][j]=range;}} // store 1000 at cluster

count++;

for(i=0;i<size_pixel;i=i+no_comp)

{

       q=0;

     for(j=0;j<size_book*no_comp;j=j+no_comp)


{


  choice[q]= pow((code_book[j]-array_p[i]),2)+pow((code_book[j+1]-array_p[i+1]),2);


  q++;


 }

      min=choice[0];

      y=0;

     for(j=1;j<size_book;j++) { if(min>choice[j]) { min=choice[j]; y=j; } }

     x=0;

     while(cluster[y][x] != range)

     { x++; }

     for(k=0;k<no_comp;k++)

     {

     cluster[y][x++]=array_p[i+k];//prob comp

     }

     //cluster[y][x+1]=array_p[i+1];

}

/*     for(j=0;j<size_book*no_comp;j=j+no_comp)


{


  printf("%d ",choice[j]);


 }

*/

printf("\n");printf("\n");

for(i=0;i<size_book;i++)

{

printf("\n%d-> ",i+1);

for(j=0;cluster[i][j]!=range;j++)

printf("%d  ",cluster[i][j]);

printf("\n");printf("\n");

if(i%6==0)

getch();

}

avg_dist=0;

q=0;

for(i=0;i<size_book*no_comp;i=i+no_comp)

{

  for(j=0;j<size_pixel;j++)

  {

   if(cluster[q][j]==range) break;

   }

   for(k=0;k<j;k=k+2)

  {

   avg_dist=avg_dist+ pow((cluster[q][k] - code_book[i]),2) + pow((cluster[q][k+1] - code_book[i+1]),2);

//      printf("AVG_DIST = %f\n",avg_dist);

   }

   q++;

}

avg_dist=avg_dist*no_comp/size_pixel;

//printf("total AVG_DIST = %f",avg_dist);

getch();

q=0;

for(i=0;i<size_book*no_comp;i=i+no_comp)

{

  m=0,n=0;

  for(j=0;j<size_pixel;j++)

  {

   if(cluster[q][j]==range) break;

   }

  for(k=0;k<j;k=k+no_comp)

  {

    m=m+cluster[q][k];

  }

  for(k=1;k<j;k=k+no_comp)

  {

    n=n+cluster[q][k];

  }

//    printf("m=%d , n=%d ,j=%d",m,n,j);

    if(j!=0)

    {

    code_book[i]=(float)no_comp*m/j;

    code_book[i+1]=(float)no_comp*n/j;

    }

   q++;

}

//   printf("\nCODE BOOK CHECK +%d  %d",code_book[i],code_book[i+1]);

prev_avg_dist=avg_dist;

}while(count==1 || abs(prev_avg_dist-avg_dist)>1);

printf("\n\n\n\n----Final CODE BOOK-----\n\n\n");

/*for(i=0;i<size_book*no_comp;i=i+no_comp)

{ printf("%f %f\n",code_book[i],code_book[i+1]); }*/

Ptr = fopen("/msvq/codebook.txt", "w");

for(i=0;i<size_book*no_comp;i=i+no_comp)

{

printf("\n");

for(j=0;j<no_comp;j++)

{

printf("%f ",code_book[i+j]);

fprintf(Ptr,"%f\n",code_book[i+j]);

}

}

fclose(Ptr);

//----------------------------2nd level code book generation-------------

sec_p=0;

for(i=0;i<size_book;i++)

{

  x=0;

  while(cluster[i][x++]!=range);

  for(j=0;j<x;j=j+no_comp)

  {

   for(k=0;k<no_comp;k++)

    {

    sec_array_p[sec_p++]=abs(cluster[i][j+k]-code_book[i+k]);

    }

  }

}

  Ptr = fopen("/msvq/output.txt", "w");

for(i=0;i<sec_p;i++)

{

if(i%2==0) printf(" -- ");

if(i%50==0) printf("\n");

//fwrite(sec_array_p[i],sizeof(int),1,Ptr);

fprintf(Ptr, "%d\n",sec_array_p[i]);

//printf(" %d",sec_array_p[i]);

}

  fclose(Ptr);

getch();

return 0;

}

TREE.C

#include<stdio.h>

#include<conio.h>

#include<math.h>

#define size 9

struct ed

{

int i,j,l;

float dist;

};

main()

{

int range;

int mini,minj,minl,l,mint,x,k,i,no_comp,size_book,j,del_count_i,del_count_j,del_count_ij,del_count_ji;//,**u;

float **u[size],**d[size],*code_book,*u_new;

struct ed *ecl_d,temp;

FILE 
*Ptr,*p,*Ptr1;

clrscr();

/*

printf("Enter range....");

scanf("%d",&range);

printf("Enter no_comp....");

scanf("%d",&no_comp);

printf("Enter size_book....");

scanf("%d",&size_book);


   */

range=256;

size_book=9;

no_comp=2;

u_new=(float*)malloc((size_book/3)*no_comp*sizeof(float));

for(i=0;i<size;i++)

{

  for(j=0;j<size;j++)

   {


u[i][j]=(float*)malloc(size_book*no_comp*sizeof(float));


d[i][j]=(float*)malloc(size_book*sizeof(float));

    }

}

code_book=(float*)malloc(size_book*no_comp*sizeof(float));

Ptr = fopen("/msvq/final_1.txt", "r");

p = fopen("/msvq/d_1.txt", "w");

printf("\n\n Final Code Book was...\n\n");

for(i=0;i<size_book*no_comp;i=i+no_comp)

{

printf("\n");

for(j=0;j<no_comp;j++)

{

fscanf(Ptr,"%f",&code_book[i+j]);

//printf("%f ",code_book[i+j]);

}

}

fclose(Ptr);

getch();

for(i=0;i<size_book;i++)

{

  for(j=0;j<size_book;j++)

   {

      for(l=0;l<size_book*no_comp;l++)

      {

      u[i][j][l]=256.0;

   printf("i= %d j= %d l= %d %f\n",i,j,l,u[i][j][l]);

      }

    }

}

printf("________________________");

getch();

Ptr = fopen("/msvq/u_1.txt", "w");

x=0;

for(i=0;i<size_book;i++)

{ printf("\n");

  for(j=i+1;j<size_book;j++)

  {

    for(l=(j+1)*no_comp;l<size_book*no_comp;l=l+no_comp)

    {

     for(k=0;k<no_comp;k++)

      {

      u[i][j][l+k]=abs(code_book[i+k]+code_book[2*j+k]+code_book[l+k])/3;

      printf("%f ",u[i][j][l+k]);

     // getch();


    fprintf(Ptr, "%d->%d#%d#%d %f\n",x++,i,j,l+k,u[i][j][l+k]);

      }

     }

  }

}

fclose(Ptr);

//Ptr = fopen("/msvq/final_2.txt", "w");

x=0;

for(i=0;i<size_book;i++)

{

  for(j=i+1;j<size_book;j++)

  {

      for(l=(j+1)*no_comp;l<size_book*no_comp;l=l+no_comp)

      {

       d[i][j][l/no_comp]=0.0;

       for(k=0;k<no_comp;k++)

       {

       d[i][j][l/no_comp]+=pow(u[i][j][l+k]-code_book[2*i+k],2)/size_book; //+ pow(u[i][j][l+k]-code_book[i+1],2)/size_book;

       d[i][j][l/no_comp]+=pow(u[i][j][l+k]-code_book[2*j+k],2)/size_book; //+ pow(u[i][j][l+k]-code_book[i+1],2)/size_book;

       d[i][j][l/no_comp]+=pow(u[i][j][l+k]-code_book[l+k],2)/size_book; //+ pow(u[i][j][l+k]-code_book[i+1],2)/size_book;

       printf("%f--",d[i][j][l/no_comp]);

       }

      }

       fprintf(p, "%f\n",d[i][j][l/no_comp]);

      x++;

   }

}

ecl_d=(struct ed *)malloc(x*sizeof(struct ed));

x=0;

for(i=0;i<size_book;i++)

{

  for(j=i+1;j<size_book;j++)

  {

   for(l=(j+1)*no_comp;l<size_book*no_comp;l=l+no_comp)

    {

      for(k=0;k<no_comp;k++)

      {

       ecl_d[x].i=i;

       ecl_d[x].j=j;

       ecl_d[x].l=l/no_comp;

       ecl_d[x].dist=d[i][j][l/no_comp];

       }

       //fprintf(Ptr,"i=%d j=%d d=%f\n",ecl_d[x].i,ecl_d[x].j,ecl_d[x].dist);

     }

       x++;

  }

}

//------------------sorting------------------

//min=ecl_d[0];

for(i=0;i<x;i++)

{

 for(j=i+1;j<x;j++)

 {

  if(ecl_d[i].dist>ecl_d[j].dist)

  {

    temp=ecl_d[i];

    ecl_d[i]=ecl_d[j];

    ecl_d[j]=temp;

    }

}

}

/*for(i=0;i<x;i++)

{

fprintf(Ptr,"i=%d\tj=%d\td=%f\n",ecl_d[i].i,ecl_d[i].j,ecl_d[i].dist);

} */

//---------------------delete duplicate

del_count_i=0;

for(i=0;i<x-del_count_i;i++)

{

 mini=ecl_d[i].i;

 minj=ecl_d[i].j;

 minl=ecl_d[i].l;

 for(j=i+1;j<x-del_count_i;j++)

 {

   if(ecl_d[j].i==mini || ecl_d[j].j==mini || ecl_d[j].l==mini || ecl_d[j].i==minj || ecl_d[j].j==minj || ecl_d[j].l==minj || ecl_d[j].i==minl || ecl_d[j].j==minl || ecl_d[j].l==minl )

   {

del_count_i++;

    for(k=j+1;k<x;k++)

     {

     ecl_d[k-1]=ecl_d[k];

      }

     j---;

    }

  }

}

Ptr1 = fopen("/msvq/eucl_1.txt", "w");

printf("\n x=%d i=%d  \n",x,del_count_i);//,del_count_j);

for(i=0;i<x-del_count_i;i++)

{

fprintf(Ptr1,"i=%d\tj=%d\tl=%d\td=%f\n",ecl_d[i].i,ecl_d[i].j,ecl_d[i].l,ecl_d[i].dist);

}

/*

for(i=0;i<size_book/2;i++)

{

  u_new[2*i]=(code_book[2*(ecl_d[2*i].i)] +code_book[2*(ecl_d[2*i+1].j)])/2;

  u_new[2*i+1]=(code_book[2*(ecl_d[i].i)+1] + code_book[2*(ecl_d[i].j)+1])/2;

fprintf(Ptr,"%f\n%f\n",u_new[2*i],u_new[2*i+1]);

}

*/

fclose(Ptr1);

fclose(Ptr);

fclose(p);

getch();

return 0;

}
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