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Abstract 
 
Clustering is the unsupervised classification of patterns into groups (clusters). Clustering 

technique aims at identifying groups of similar objects and, therefore helps to discover dis-

tribution of patterns and interesting relations in large data sets. It has been subject of wide 

research since it arises in many application domains in engineering, business and social 

sciences. Especially, in the last few years the availability of huge transactional and 

experimental data sets and the arising requirements for data mining created needs for 

clustering algorithms that scale and can be applied in diverse domains. This thesis introduces 

the fundamental concepts of clustering while it surveys the widely known clustering algo-

rithms.  

In this thesis we have implemented different approaches to take advantage of clustering 

technique and performed an empirical study evaluating clustering results using gene-

expression datasets. We have tested several different clustering algorithms and similarity 

measure combinations on the same datasets & evaluated the clustered datasets.  

Keywords: clustering algorithms, unsupervised learning, genes, microarrays 
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Chapter 1 
                                     Introduction 

 
 
1.1 Introduction 
The biggest problem of today’s Information society is over abundance of information on any 

one topic; this presents a challenge for the information professional as well as the user of 

information. Moreover, for many information users of different levels, the problem is a lack 

of appropriate information, namely, one which they can easily comprehend, assimilate and 

make use of with a certain amount of confidence and reliability within the framework of their 

own environment. Hence, the crux of the problem lies in the improper packaging of 

information not the overabundance; the information needs to be packaged in a form that 

should be useful to different groups of users. This only can ensure fruitful use of existing 

information. Thesis report is one such kind of information product. 

 
Clustering as a subject has been making waves since the time of its evolution as a 

complementary technique to statistics and computer analysis and then its later development 

as a full-fledged application science. This thesis is an attempt to survey the evolution of 

clustering as a subject, the core concepts and techniques arising from clustering methodology 

and the important works done therein.  It aims to provide a snapshot view of the rich history 

of clustering techniques and its development as a mature field that is making important 

contributions to application areas in different subjects. 

 
1.2 Thesis Work 
The thesis has been undertaken with the purpose of preparing a clustering technique. As a 

part of the thesis requirement, I have tried to compile this report as an extensive information 

source on clustering techniques and have concentrated on the most recent developments in 

the subject area specially document clustering. 

 
1.2.1 Objectives of the Thesis: 

• To visualize the structure and development of the clustering as a subject especially in 

the relation to other subjects. 

• To provide a comprehensive document for background reading about clustering 

techniques. 
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• To alert the expert regarding the work that has been already done as well as the 

forthcoming ones in various areas of clustering. It should help in avoiding the 

duplication of the work and thereby conserve the intellectual’s potential. 

 
1.2.2 Purpose of the Thesis: 

• To provide a ready-made reference to the developments of a discipline over a certain 

period of time, to the researchers and their professionals. 

• To serve as a general source of information for the professionals already working in 

the area of clustering and to bring out the present trends, latest developments and 

subsequent applications, thereby aiding in the further research. 

 
1.2.3 Methodology Adopted 

Preparation of thesis and Report requires skills and knowledge to make the product an up-to-

date source on the given topic, viz., the familiarity with the different aspects of a subject, the 

user requirements and also the knowledge of the helpful methods of presentation of ideas. 

 So, a review of relevant literature was conducted to assess clustering concepts, 

clustering technologies, techniques and researches in this field. Various books, journals, 

articles and papers available on the Internet pertaining to the subject matter and its related 

fields were reviewed to prepare report. 

 

1.3 Steps of the Thesis and Report Preparation 
The scope of the subject was determined in terms of a framework determined by studying the 

subject hierarchy. 

1.3.1 Data collection:  

The next step was data collection, for this the core journals containing articles on and related 

to clustering were identified. Secondary journals were also consulted along with primary 

journals. Numerous websites, portals, discussion forums, magazines, newsletters were also 

referred for data collection. 

 
1.3.2 Analysis:  

The collected data needs to be analyzed for making a comprehensive study of the 

evolutionary trends in the subject. For the purpose, each micro-document was analyzed to 

mark it with appropriate subject proposition. There were documents that dealt with more than 
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one topic; in these cases multiple entries of document were made and appropriate subject 

proposition was assigned at the top of the entries. 

 
1.3.3 Arrangement:  

After analysis, each entry was arranged under different headings according to subject 

proposition. The advantage of this arrangement is that the entries on the same topic come 

together. Then each group of entries was checked to ascertain their appropriateness and their 

subject grouping within each part. 

 
1.3.4 Consolidation:  

This step entails taking the entries of one aspect under the part and then consolidation of the 

abstract into a readable text; here, the references are given using serial number of the entries.  

 
1.3.5 Organization of the Thesis: 

In this thesis, chapter 1 covers objective, purpose and various Steps of the thesis and Report 

preparation. Chapter 2 covers introduction of clustering, which includes Definition and 

Requirements and steps of clustering. Chapter 3 covers Clustering Techniques which 

includes Division and subdivision of clustering, Partition based clustering, Hierarchy based 

clustering, Self Organizing Maps, and Principal Component Analysis. Chapter 4 covers 

Implementation Issues which includes Distance function, Calculating the distance between 

clusters, Finding the cluster centroid and choosing the distance measure. Chapter 5 covers 

Applications of clustering in Biology and Marketing research. Chapter 6 covers experimental 

results. Chapter 7 covers Conclusions.  
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Chapter 2 
                                     Introduction to Clustering  

 
 
2.1 Introduction to Clustering 
With the increasing demand for rich, deep, digitized content, the volume of data required by 

organizations has become overwhelming, and has almost surpassed current capabilities of 

most database technologies. Now with the increased prevalence of Internet and widespread 

development of additional methods of content-delivery, the volume of information is 

increasing in explosive proportions and presenting challenges to the information 

professionals for proper packaging and delivery of significant information. 

 
Clustering has been used since long for grouping together entities with similar traits and 

classifying objects but in present context it has acquired new dimensions as a solution to the 

chaos that we have on Internet, voluminous databases, and information repositories.  The 

reason for its increased significance is that it relies on finding natural groups in the existing 

data rather than classifying them on the basis of some externally imposed artificial criteria.  

 
Clustering techniques are applied only when there is no class to be predicted, rather when we 

need to divide the instances into natural groups. These clusters presumably reflect some 

mechanism at work in the domain from which instances are drawn; the mechanism causes 

some instances to bear a stronger resemblance to one another than they do to the remaining 

instances. However, clustering requires different techniques to the classification and 

association learning methods.  

 
There are two straightforward ways how gene expression matrices can be studied [1]  

• Comparing expression profiles of genes by comparing rows in the expression 

matrix and  

• Comparing expression profiles of experiments by comparing columns in the 

matrix. 

 
Additionally, if the data normalization allows it, combinations of both are possible. We can 

look either on similarities or differences. If two genes (rows) are similarly expressed, we can 

hypothesize that the respective genes are co-regulated and possibly functionally related 
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(Guild by Association) [2]. The comparison of experiments can provide us with the 

information, which genes are differentially expressed in two conditions and this enables us to 

study, for example, effects various compounds have on an investigated condition. 

 
Clustering can be defined as the process of separating a set of objects into several subsets on 

the basis of their similarity [8]. The aim is generally to define clusters that minimize 

intracluster variability while maximizing intercluster distances, i.e. finding clusters, which 

members are similar to each other, but distant to members of other clusters in terms of gene 

expression based on the used similarity measurement. Two clustering strategies are possible: 

supervised (based on existing knowledge) or unsupervised. 

 
 
Figure1: Supervised and unsupervised data analysis.  

In the unsupervised case (left) we are given data points in n-dimensional space (n=2 in the 

example) and we are trying to find ways how to group together points with similar features. 

For instance, there are three natural clusters in the example, each consisting of data points 

close to each other in a sense of Euclidean distance. A clustering algorithm should identify 

all these clusters. In the supervised case (right), the objects are labeled (e.g. we have magenta 

and blue points in the example), and the task is to find a set of classification rules allowing us 

to discriminate between these points as precisely as possible. For instance, dotted line in the 

drawing [1]. 

 

 

 

2.2 Definition and Scope 
2.2.1 Definition: 
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In general, the word clustering is almost synonymous with classification. But literally, 

clustering is the grouping of similar objects.  Such classification occurs constantly in thought 

and speech. Objects that differ in insignificant details are given the same name, can be 

treated the same, and can be expected to act the same.  For example, a wife notices that the 

man coming in the door differs only in insignificant details fro her husband that left in the 

morning, and so she expects him to answer to the same name.  

Clustering is a nonlinear activity that generates ideas, images and feelings around a stimulus 

word. As students cluster, their thoughts tumble out, enlarging their word bank for writing 

and often enabling them to see patterns in their ideas. Clustering may be a class or an 

individual activity.  

 

 
 

Figure2: A diagrammatic representation of clustering of similar ideas/objects into different nodes. 

 
Other way to define is that clustering algorithms find groups of items that are similar. To 

explain the above diagram, clustering could be used by an insurance company to group 

customers into different nodes according to income, age, types of policies purchased and 

prior claims experience. The above diagram divides a data set so that records with similar 

content are in the same group, and groups are as different as possible from each other. Since 

the categories are unspecified, this is sometimes referred to as unsupervised learning [3].  

 
Further, it may also be defined as the technique of grouping records together based on their 

locality and connectivity within the n-dimensional space. This is an unsupervised learning 

technique [4].  
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So, clustering is the process of grouping a set of physical or abstract objects into classes of 

similar objects.  A cluster is a collection of data objects that are similar to one another with 

the same cluster and are dissimilar to the objects in other clusters. A cluster of data objects 

can be treated collectively as one group in many applications. 

 
Clustering is a form of learning by observation rather than learning by examples. Cluster 

analysis is an important human activity in which we indulge since childhood when we learn 

to distinguish between animals and plants etc by continuously improving subconscious 

clustering schemes.  This has been widely used in numerous applications, including pattern 

recognition, data analysis, image processing, and market research etc. 

2.2.2 Scope 

Clustering is a very important application area but widely interdisciplinary in nature, that 

makes it very difficult to define its scope. It is used in several research communities to 

describe methods for grouping of unlabeled data, now, these communities have different 

terminologies and assumptions for the components of the clustering process and the contexts 

in which clustering is used.  The area of clustering can be comprehended in the following 

way: 

Cluster analysis has been studied extensively for years, focusing mainly on distance-based 

cluster analysis. Many clustering tools were made based on k-means, k-medoids, and some of 

the methods were incorporated in many statistical analysis software a [packages or systems 

like S-plus, SPSS, and SAS. In machine learning, clustering is termed as an example of 

unsupervised learning. These do not rely on predefined classes and class-labeled training 

examples unlike classification. 

 
The present active themes of research in this area focus on the scalability of clustering 

methods, the effectiveness of methods for clustering complex shapes and types of data, high-

dimensional clustering techniques, and methods for clustering mixed numerical and 

categorical data in large databases. 

 
However, clustering, as a subject is still vulnerable on two fronts, i.e., the classifications 

delivered are not sufficiently compelling to convince the experts always, they believe that 

detailed knowledge is more important than fancy manipulation; and the second is the 



 

 9

techniques themselves are not based on sound probability model and the results many times 

are poorly evaluated or turn unstable when evaluated. 

 

2.3 Requirements and Steps of Clustering 
 
2.3.1 Basic Requirements for Clustering are following [5]: 

Scalability: 

Many clustering algorithms work well on small data sets that contain less than 200 data 

objects; however a large database may contain millions of objects. In that case clustering on a 

sample of a given large data set may lead to biased results; and highly scalable clustering 

algorithms are needed for the purpose. 

 
Ability to deal with different types of attributes: 

Many algorithms are designed to cluster interval-based (numerical) data. However, 

applications may require clustering other types of data, viz. binary, categorical (nominal), 

and ordinal data, or mixtures of these data types. 

 
Discovery of clusters with arbitrary shape: 

Many clustering algorithms determine clusters based on Euclidean or Manhattan distance 

measures. Algorithms based on such distance measures tend to find spherical clusters with 

similar size and density.  However, a cluster could be of any shape, it is important to develop 

algorithms that can detect clusters of arbitrary shape. 

 
Minimal requirements for domain knowledge to determine input parameters: 

Many clustering algorithms require users to input certain parameters in cluster analysis (such 

as the number of desired cluster).  The clustering results can be quite sensitive to input 

parameters. Parameters are often hard to determine, especially for data sets containing high-

dimensional objects.  This not only burdens users but also makes the quality of clustering 

difficult to control. 

 
Ability to deal with noisy data: 

Most real-world databases contain outliers or missing, unknown or erroneous data. Some 

clustering algorithms are sensitive to such data and may lead to clusters of poor quality. 

 
Insensitivity to the order of input records: 
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Some clustering algorithms are sensitive to the order of input data; fro example, the same set 

of data, when presented with different orderings to such an algorithm, may generate 

dramatically different clusters. It is important to develop algorithms that are insensitive to eh 

order of input. 

 

High dimensionality: 

A database or data warehouse can contain several dimensions or attributes. Many clustering 

algorithms are good at handling low-dimensional data, involving only two to three 

dimensions. Human eyes are good at judging the equality of clustering for up to three 

dimensions. It is challenging to cluster data objects in high-dimensional space, especially 

considering that such data can be very sparse and highly skewed. 

 
Constraint –based clustering: 

Real world applications may need to perform clustering under various kinds of constraints.  

If one has to choose the locations for a given number of new automatic cash-dispensing 

machines in a city hen to decide upon this we may cluster households while considering 

constraints such as the city’s rivers and highway networks, and customer requirements per 

region.  A challenging task is to find groups of data with good clustering behavior that satisfy 

specified constraints. 

 
Interoperability and usability: 

Users expect clustering results to be interpretable comprehensible, and usable. That is, 

clustering may need to be tied up with specific semantic interpretations and applications. It is 

important to study how an application goal may influence the selection of clustering 

methods. 

 
2.3.2 Clustering steps [6]: 

Preprocessing and feature selection 

Most clustering models assume that all data items are represented by n-dimensional feature 

vectors. This first step therefore involves choosing appropriate features, and doing 

appropriate preprocessing and feature extraction on data items to measure the values of the 

chosen feature set. It will often be desirable to choose a subset of all the features available, to 

reduce the dimensionality of the problem space. This step often requires a good deal of 

domain knowledge and data analysis.  
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Similarity measure 

This is a function, which takes two sets of data items as input, and returns as output a 

similarity measure between them. Item-set versions use any item-item version as subroutines 

and include max / min / average distance; another approach looks at the distance from the 

item to the distance to the cluster representative of the set, where point representatives are 

chosen as the mean vector / mean center / median center of the set, and hyperplane or 

hyperspherical representatives of the set can also be used. Set-set versions include max / min 

average distance, as well as item-item versions applied to the two set representatives.  

 
Clustering algorithm 

 Clustering algorithms are general schemes which use particular similarity measures as 

subroutines. The particular choice of clustering algorithms depends on the desired properties 

of the final clustering, e.g. what are the relative importances of compactness, parsimony, and 

inclusiveness? Other considerations include the usual time and space complexity.  

 
Result interpretation and application 

 Typical applications of clustering include data compression (via representing data samples 

by their cluster representative), hypothesis generation (looking for patterns in the clustering 

of data), hypothesis testing (e.g. verifying feature correlation or other data properties through 

a high degree of cluster formation), and prediction (once clusters have been formed from data 

and characterized, new data items can be classified by the characteristics of the cluster to 

which they would belong). 

  
 Motivation 

Data analysis underlies many computing applications, either in a design phase or as part of 

their on-line operations. Data analysis procedures can be dichotomized as either exploratory 

or confirmatory, based on the availability of appropriate models for the data source, but a key 

element in both types of procedures (whether for hypothesis formation or decision-making) is 

the grouping, or classification of measurements based on either (i) goodness-of-fit to a 

postulated model, or (ii) natural groupings (clustering) revealed through analysis. Cluster 

analysis is the organization of a collection of patterns (usually represented as a vector of 

measurements, or a point in a multidimensional space) into clusters based on similarity. 
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The variety of techniques for representing data, measuring proximity (similarity) between 

data elements, and grouping data elements has produced a rich and often confusing 

assortment of clustering methods. 

 

It is important to understand the difference between clustering (unsupervised classification) 

and discriminate analysis (supervised classification). In supervised classification, we are pro-

vided with a collection of labeled (reclassified) patterns; the problem is to label a newly 

encountered, yet unlabeled, pattern. Typically, the given labeled (training) patterns are used 

to learn the descriptions of classes which in turn are used to label a new pattern. In the case 

of clustering, the problem is to group a given collection of unlabeled patterns into meaningful 

clusters. In a sense, labels are associated with clusters also, but these category labels are data 

driven; that is, they are obtained solely from the data. 

 
Clustering is useful in several exploratory pattern-analysis, grouping, decision-making, and 

machine-learning situations, including data mining, document retrieval, image segmentation, 

and pattern classification. However, in many such problems, there is little prior information 

(e.g., statistical models) available about the data, and the decision-maker must make as few 

assumptions about the data as possible. It is under these restrictions that clustering 

methodology is particularly appropriate for the exploration of interrelationships among the 

data points to make an assessment (perhaps preliminary) of their structure. The term 

"clustering" is used in several research communities to describe 

 
Methods for grouping of unlabeled data:  

 These communities have different terminologies and assumptions for the components of the 

clustering process and the contexts in which clustering are used. Thus, we face a dilemma 

regarding the scope of this survey. The production of a truly comprehensive survey would be 

a monumental task given the sheer mass of literature in this area. The accessibility of the 

survey might also be questionable given the need to reconcile very different vocabularies and 

assumptions regarding clustering in the various communities. 

The goal is to survey the core concepts and techniques in the large subset of cluster analysis 

with its roots in statistics and decision theory. Where appropriate, references will be made to 

key concepts and techniques arising from clustering methodology in the machine-learning 

and other communities. 
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The audience for this paper includes practitioners in the pattern recognition and image 

analysis communities (who should view it as a summarization of current practice), 

practitioners in the machine-learning communities (who should view it as a snapshot of a 

closely related field with a rich history of well understood techniques), and the broader 

audience of scientific professionals (who should view it as an accessible introduction to a 

mature field that is making important contributions to computing application areas). 

 
 

2.3.3 Microarrays 

Microarray technology [7] is one very promising approach for high throughput analysis and 

gives the opportunity to study gene expression patterns on a genomic scale. It all began about 

a quarter century ago, with Ed Southern’s key insight that labeled nucleic acid molecules 

could be used to interrogate nucleic acid molecules attached to a solid support. Today, 

thousands or even tens of thousands of genes can be spotted on a microscope slide. Applied 

to functional genetics and mutation screening, microarrays give us the opportunity to 

determine thousands of expression values in hundreds of different conditions, allowing the 

contemplation of genetic processes on a whole genomic scale to determine genetic 

contributions to complex polygenic disorders and to screen for important changes in potential 

disease genes. 

 
Because of the vast amount of data produced by a microarray experiment, sophisticated 

software tools are used to normalize and analyze the data. First the scanned images are 

analyzed using image analysis software, which evaluates the expression of a gene.  

The next step is to extract the fundamental patterns of gene expression inherent in the data in 

a mathematical process called clustering, which organizes the genes into biological relevant 

clusters with similar expression patterns genes.  

 
The interest is in how gene expression is changed by various diseases or compound 

treatments, respectively. For example one can investigate the differences in gene expression 

between a normal and a cancer cell. Several clustering techniques were recently developed 

and applied to analyze microarray data [8]. However, to the best of my knowledge, there is 

no single tool, which integrates the common clustering methods. Such a tool would be 

valuable for comparison and evaluation of clustering algorithms and their result and would 
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help biologists to gain biological meaningful information out of microarray datasets in a less 

costly way. 
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Chapter 3 
                                     Clustering Techniques 

 
3.1 Divisions and Subdivisions of Clustering 
Clustering is an applied science and very methodical in approach, so, its divisions and 

subdivisions can’t be defined in as concrete manner as is the case with other conventional 

subjects.   

However, the different methods that are applied for clustering and further analysis are used 

as a basis to define its subdivisions. 

 

                   
 
Figure3: Division and subdivision of clustering 

 

To explain the above diagram, there were broadly two main subdivisions i.e., hierarchical 

and non-hierarchical but in due course of time new subdivisions evolved from the above 

divisions like density based methods, grid-based methods, model-based methods etc. These 

subdivisions were ramifications of above main divisions only but they developed to become 

independent divisions of the subject gradually [9].  
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3.2 Partition based clustering: 
3.2.1 Introduction 

K-means [20-23] is a commonly used clustering method because it is based on a very simple 

principle and provides good results. It is very similar to SOM, unsupervised, and can be seen 

as a Bayesian (maximum likelihood) approach to clustering. 

 
The basic idea is to maintain two estimates: 

1. An estimate of the center location for each cluster and 

2. A separate estimate of the partition of the data points according to which one goes into 

which cluster. 

One estimate can be used to refer the other. If we have an estimate of the center locations, 

then (with reasonable prior assumptions) the maximum likelihood solution is that each data 

point should belong to the cluster with the nearest center. Hence, we can compute a new 

partition: from a set of center locations. 

 
It constructs k partitions of the data given a database on n objects or data tuples; here each 

partition represents a cluster and k<= n. so, it classifies the data into k groups, which together 

satisfy the following requirements: Each group must contain at least one object, and  Each 

object must belong to exactly one group The general criterion of a good partition is that 

objects in the same cluster are “close” or related to each other, whereas objects of different 

clusters are “far apart” or very different. There are various other criteria for judging the 

quality of partitions.  Partition-based clustering requires the exhaustive enumeration of all of 

the possible partitions to achieve global optimality but the clustering applications generally 

adopt the popular heuristic methods. These are further divided to following types: 

 

3.2.2 k-Means Method: Centroid-Based Technique 

It takes the input parameter, k, and partitions a set of n objects into k clusters so that the 

resulting intracluster similarity is high but the intercluster similarity is low. Cluster similarity 

is measured in regard to the mean value of the objects in a cluster, which can be viewed as 

the cluster’s center of gravity. 

 
But, this works well only when the mean of a cluster is defined which may not be the case in 

some applications, such as when data with categorical attributes are involved. So, the 

necessity for users to specify k, the number of clusters, in advance is actually a disadvantage.  
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The k-means method was not suitable for discovering clusters with non-convex shapes or 

clusters of very different size.  Moreover, it is sensitive to noise and outlier data points since 

a small number of such data can substantially influence the mean value. 

Here is step by step k means clustering with flow chart: 

Step 1 Begin with a decision on the value of k = number of clusters  

Step 2 Put any initial partition that classifies the data into k clusters. You may assign the 

training samples randomly, or systematically as the following:  

1. Take the first k training sample as single-element clusters  

2. Assign each of the remaining training samples to the cluster with the nearest centroid. 

After each assignment, recomputed the centroid of the gaining cluster.  

 

Figure 4: Flow chart of k-mean 

Step 3 Take each sample in sequence and compute its distance from the centroid of each of 

the clusters. If a sample is not currently in the cluster with the closest centroid, switch this 

sample to that cluster and update the centroid of the cluster gaining the new sample and the 

cluster losing the sample.  

Step 4 Repeat step 3 until convergence is achieved, that is until a pass through the training 

sample causes no new assignments.  

 

 

http://people.revoledu.com/kardi/tutorial/kMean/NumericalExample.htm
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3.2.3 K-means Clustering Algorithm 

 The essence of the k-means clustering algorithm is now to minimize the cost function of all 

clusters by executing the following steps: 

1. Put each vector Xi of X in one of the k clusters. 

2. Calculate the mean for each of the k clusters. 

3. Calculate the distance between an object and the mean of a cluster. 

4. Allocate an object to the cluster whose mean is the nearest to the object.  

5. Re-calculate the mean of the clusters affected by the reallocation. 

6. Repeatedly perform the operations (3) to (5) until no more reallocations occur. 

 
If the number of data is less than the number of cluster then we assign each data as the 

centroid of the cluster. Each centroid will have a cluster number. If the number of data is 

bigger than the number of cluster, for each data, we calculate the distance to all centroid and 

get the minimum distance. This data is said belong to the cluster that has minimum distance 

from this data. 

 
Since we are not sure about the location of the centroid, we need to adjust the centroid 

location based on the current updated data. Then we assign all the data to this new centroid. 

This process is repeated until no data is moving to another cluster anymore. Mathematically 

this loop can be proved to be convergent. The convergence will always occur if the following 

condition satisfied:  

1. Each switch in step 2 the sum of distances from each training sample to that training 

sample's group centroid is decreased.  

2. There are only finitely many partitions of the training examples into k clusters.  

 
3.2.4 Properties 

The k-means algorithm has the following important properties: 

It is efficient in processing large data sets, due to the fact that the computational complexity 

of the algorithm is O(tkmn), where n is the number of vectors in X, m is the dimension of the 

vectors Xi, k is the number of clusters and t is the number of iterations over the whole data 

set. Usually, k, m, t« n It takes usually just a few seconds to calculate even datasets with 

10000 elements and more, making it a valuable tool for the investigation of datasets that are 

too big for hierarchical clustering for instance. 
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Another big advantage is the moderate memory requirement for k-means clustering. Since 

there is no similarity matrix to calculate the memory requirements rise with O(n). The 

clusters have convex shapes. Therefore, it is difficult to use the k-means algorithm to 

discover clusters with non-convex shapes. It often terminates at a local optimum. To find the 

global optimum, techniques such as deterministic annealing and generic algorithms can be 

incorporated with the k-means algorithm. 

 

The major drawback of the k-means algorithm is that the number of clusters has to be 

specified in advance. However, this is the only input needed for the clustering besides an 

abortion criterion to prevent infinite calculation, like an input for the maximum number of 

iterations to compute. 

 
An additional advantage of k-means is the possibility to create fuzzy clusters, where one 

vector can belong to more than one cluster. This is a better model for the regulatory system 

that controls gene expression in a cell. One gene affects more than one other gene, i.e. it can 

be part of many different pathways and therefore has to belong to different clusters or no one. 

 

3.3 Hierarchy Based Clustering 
3.3.1   Introduction 

Hierarchical clustering [12-14] is an unsupervised procedure of transforming a distance 

matrix, which is a result of pair wise similarity measurement between elements of a group, 

into a hierarchy of nested partitions. The hierarchy can be represented with a tree-like 

dendrogram in which each cluster is nested into the next cluster. Hierarchical algorithms can 

be further categorized into two kinds: 

 
3.3.2 Two Basic Types of Hierarchical Clustering 

There are two types of hierarchical clustering - agglomerative and divisive. Agglomerative 

clustering takes each entity (i.e. gene) as a single cluster to start off with and then builds 

bigger and bigger clusters by grouping similar entities together until the entire dataset is 

encapsulated into one final cluster. Divisive hierarchical clustering works the opposite way 

around - the entire dataset is first considered to be one cluster and is then broken down into 

smaller and smaller subsets until each subset consists of only a single entity. 
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Only the agglomerative method will be explained in detail in this tutorial since it is the most 

commonly used in microarray analyses. The reasons for this is mainly computational - 

divisive clustering is more computationally expensive when it comes to making decisions in 

dividing a cluster in two given all possible choices. On the other hand, the divisive approach 

retains the 'super-structure' (i.e. the overall structure) of the data: what this means is that one 

can confidently say that the root or 'upper' levels of the dendrogram are highly representative 

of the original structure of the data. This does not mean to say that the agglomerative 

approach is not as robust, however. 

(1) Agglomerative procedures: This procedure starts with n clusters (each object forms a 

cluster containing only itself) and iteratively reduces the number of clusters by merging the 

two most similar objects or clusters, respectively, until only one cluster is remaining. 

(n 1). 

It starts by placing each object in its own cluster and then merges these atomic clusters into 

larger and larger clusters, until all to the objects are in a single cluster or until certain 

termination conditions are satisfied. Most hierarchical clustering methods belong to this 

category; they differ only in their definition of intercluster similarity. 

For example, suppose this data is to be clustered. Where euclidean distance is the distance 

metric. 

 
Raw data 

The hierarchical clustering dendrogram would be as such: 

 

http://en.wikipedia.org/wiki/Image:Clusters.PNG
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Figure 5: hierarchical clustering dendrogram 

 

Traditional Representation  

This method builds the hierarchy from the individual elements by progressively merging 

clusters. Again, we have six elements {a} {b} {c} {d} {e} and {f}. The first step is to 

determine which elements to merge in a cluster. Usually, we want to take the two closest 

elements, therefore we must define a distance d(element1,element2) between elements. 

Suppose we have merged the two closest elements b and c, we now have the following 

clusters {a}, {b, c}, {d}, {e} and {f}, and want to merge them further. But to do that, we 

need to take the distance between {a} and {b c}, and therefore define the distance between 

two clusters. Usually the distance between two clusters and is one of the following: 

The maximum distance between elements of each cluster (also called complete linkage 

clustering):  

 
The minimum distance between elements of each cluster (also called single linkage 

clustering):  

 
the mean distance between elements of each cluster (also called average linkage clustering):  

 
The sum of all intra-cluster variance  

The increase in variance for the cluster being merged (Ward's criterion)  
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Each agglomeration occurs at a greater distance between clusters than the previous 

agglomeration, and one can decide to stop clustering either when the clusters are too far apart 

to be merged (distance criterion) or when there is a sufficiently small number of clusters 

(number criterion). 

 
(2) Divisive procedures: This procedure starts with 1 cluster and iteratively splits a cluster, 

so that the heterogeneity is reduced as far as possible (1  n). If it is possible to find a 

reasonable distance definition between clusters, agglomerative procedures are less 

computationally expensive than divisive procedures, since in one step two out of maximum n 

elements have to be chosen for merging, whereas in divisive procedures, fundamentally all 

subsets have to be analyzed so that divisive procedures have an algorithmic complexity in 

the magnitude of O(2n). Agglomerative procedures have the drawback that an incorrect 

merging of clusters in an early stage often yields results, which are far away from the real 

cluster structure. Divisive procedures immediately start with interesting cluster arrangements 

and are therefore much more robust. Usually agglomerative procedures are used because of 

their efficiency. 

 
It does the reverse of agglomerative clustering; starts with all objects in one cluster. Then, it 

subdivides the cluster into smaller and smaller pieces, until each object forms a cluster on its 

won or until it satisfies certain termination conditions, such as a desired number of clusters 

obtained or the distance between the two closest clusters is above a certain threshold 

distance. 

 

3.3.3 Hierarchical clustering Algorithm 

The procedures of agglomerative hierarchical clustering execute the following basic steps: 

1.  Calculate the distance between all objects and construct the similarity distance matrix. 

Each object represents one cluster, containing only itself. 

2. Find the two clusters rand s with the minimum distance to each other.

3.   Merge the clusters r and s and replace r with the new cluster. Delete s and recalculate all 

distances, which have been affected by the merge. 

4.    Repeat step (2) and (3) until the total number of clusters become one. 

 
3.3.4 Amalgamation or linkage rules 

At the first step, when each object represents its own cluster, the distances between those 
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objects are defined by the chosen distance measure. However, once several objects have 

been linked together, a linkage or amalgamation rule is needed to determine if two clusters 

are sufficiently similar to be linked together. There are numerous linkage rules that have 

been proposed. Here are some of the most commonly used: 

 
3.3.4.1 Single linkage (Minimum or nearest  neighbor Method )                      

In this method the distance between two clusters is determined by the distance of the two 

closest objects (nearest neighbors) in the different clusters. If there are several equal 

minimum distances between clusters during merging, single linkage is the only well defined 

procedure. Its greatest drawback is the tendency for chain building: Only one (random) 

small distance is enough to enforce the amalgamation of two otherwise very different 

clusters. Therefore, the resulting clusters tend to represent long "chains”. The dissimilarity 

between 2 clusters is the minimum dissimilarity between members of the two clusters. This 

method produces long chains which form loose, straggly clusters. This method has been 

widely used in numerical taxonomy. 

 

Figure 6: nearest neighbor linkage graph 

 
3.3.4.2 Complete linkage (Maximum or furthest neighbor Method) 

In this method, the distances between clusters are determined by the greatest distance 

between any two objects in the different clusters (i.e., by the "furthest neighbors"). Complete 

linkage usually performs quite well in cases when the objects actually form naturally distinct 

data clouds in the multidimensional space. If the clusters tend to be somehow elongated or 

of a "chain" type nature, then this method is inappropriate. Since only one (random) large 
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distance is enough to pretend two clusters from merging, clusters tend to be small and 

merged together very late with a great error value. The dissimilarity between 2 groups is 

equal to the greatest dissimilarity between a member of cluster i and a member of cluster j. 

This method tends to produce very tight clusters of similar cases.  

 

Figure 7: furthest neighbor linkage graph 

3.3.4.3 Average linkage method 

In this method, the distance between two clusters is calculated as the average distance 

between all pairs of objects in the two different clusters. This method is very efficient when 

the objects form natural distinct "clumps," however, it performs equally well with elongated, 

"chain" type clusters. Since the distance between two clusters lies between the minimum 

formation of single linkage and the maximum formation of complete linkage this procedure 

empirically shows no tendencies to either extreme described above, and is therefore more  

stable to  unknown data point distributions. Admittedly, if there are several equal distances, 

the sequence of   the amalgamation is critical. Note that the abbreviation UPGMA is used as 

well to refer to this method as unweighted pair-group method using arithmetic averages. 

 
This method is identical to the unweighted pair-group average method, except that in the 

computations, the size of the respective clusters (i.e., the number of objects contained in 

them) is used as a weight. Thus, this method (rather than the previous method) should be 

used when the cluster sizes are suspected to be greatly uneven.  

 
The dissimilarity between clusters is calculated using average values. Unfortunately, there 
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are many ways of calculating an average. The most common (and recommended if there is 

no reason for using other methods) is UPGMA - Unweighted Pair-Groups Method 

Average. The average distance is calculated from the distance between each point in a 

cluster and all other points in another cluster. The two clusters with the lowest average 

distance are joined together to form the new cluster. 

 

Figure 7: Average linkage graph 

The + signs mark the centers of the two clusters. 

3.3.4.4 Centroid linkage method 

The centroid of a cluster is the average point in the multidimensional space defined by the 

dimensions. In a sense, it is the center of gravity for the respective cluster. In this method, the 

distance between two clusters is determined as the difference between centroids. 

This method is identical to the previous one, except that weighting is introduced into 

computation to take into consideration differences in cluster sizes. There are other methods 

based on CENTROID and MEDIAN averages. Centroid, or UPGMC (Unweighted Pair-

Groups Method Centroid), uses the group centroid as the average. The centroid is defined as 

the centre of a cloud of points. A problem with the centroid method is that some switching 

and reversal may take place, for example as the agglomeration proceeds some cases may 

need to be switched from their original clusters. This makes interpretation of the dendrogram 

quite difficult. 

http://obelia.jde.aca.mmu.ac.uk/multivar/dend.htm


 

 26

 

 

Figure 9: centroid linkage graph 

The + signs mark the centres of the two clusters. 

3.3.5 Properties 

Hierarchical clustering is the most commonly used clustering strategy for gene expression 

analysis at the moment. The biggest advantage is that aside: from a choice of the 

amalgamation rule and the type of similarity distance measurement, no further parameters 

have to be specified. The result is a reordered set of genes and/or experiments, where similar 

vectors are close to each other in the tree structure and the distance between vectors and 

clusters is encoded in the branch length of a sub tree. This not only allows estimation of the 

similarity of neighboring genes, but also of the distance between distant vectors. This is 

helpful if someone is more interested in distances rather than similarities between two or 

more investigated conditions. 

 
Hierarchical clustering just rearranges the dataset to a new, better ordered set of data vectors, 

therefore clusters have to be specified by the user by selecting a subtree as a cluster. A 

second drawback is the computational complexity. Large datasets are difficult or impossible 

to calculate due to the vast amount of necessary memory for the similarity matrix and the 

calculation time needed. Datasets with more than 20.000 vectors are manageable just by 

very advanced computer hardware. 

 
The software discussed in this paper is able to calculate Single Linkage, Complete Linkage 
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and Unweighted Average Linkage Clustering on both the genes and the experiments. 

 

 

3.4 Self Organizing Maps 
3.4.1 Introduction 

One of the most popular neural network models today is the principle of a Self-

Organizing Map (SOM)[15-19], developed by professor Kohonen at the University of 

Helsinki. A SOM is basically a multidimensional scaling method, which thesis data 

from input space to a lower dimensional output space. The SOM algorithm is based on 

unsupervised competitive learning, which means that the training is entirely data-driven 

and needs no further information. 

 
A SOM is formed of neurons located in a regular, usually 1- or 2-dimensional grid. 

Each neuron i of the SOM is represented by an n-dimensional weight or reference 

vector. The neurons of the map are connected to adjacent neurons by a neighborhood 

relation dictating the structure of the map. Usually the map topology is rectangle or 

hexagonal. The number of neurons determines the granularity of the resulting mapping, 

which affects the accuracy and the generalization capability of the SOM. 

 

 
 

Figure 10: In the 2-dimensional case the neurons of the map can be arranged either on a 

rectangular or hexagonal lattice. Neighborhoods (size 1, 2 and 3) of the unit marked with 

black dot. 
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3.4.2 Initialization 

In the basic SOM algorithm, the topological relations and the number of neurons are fixed 

from the beginning. The number of neurons should be the number of clusters expected, with 

the neighborhood size controlling the smoothness and generalization of the mapping. Before 

the training phase, initial values are given to a weight vector, defined for each neuron. The 

SOM is robust regarding the initialization, but properly accomplished, it allows the algorithm 

to converge faster to a better solution. The two following initialization procedures are used: 

• Random initialization, where the weight vectors are initialized with small 

random values between the minimum and maximum values of the vector. 

• Random Gene initialization, where the weight vectors are initialized with 

random sample vectors from the training dataset. 

 
3.4.3 SOM - Architecture 

Lattice of neurons (‘nodes’) accepts and responds to set of input signals. Responses 

compared; ‘winning’ neuron selected from lattice. Selected neuron activated together with 

‘neighbourhood’ neurons. Adaptive process changes weights to more closely resemble inputs 

 

2d array of neurons

Set of input signals 
(connected to all neurons in lattice) 

Weighted synapses 

x1 x2 x3 xn...

wj1 wj2 wj3 wjn

jj  

 
Figure 11: SOM-Lattice of neurons 

3.4.4 Self Organizing Maps Algorithm: 

1. Randomly initialise all weights 

2. Select input vector x = [x1, x2, x3, … , xn]  

3. Compare x with weights wj for each neuron j to determine winner 

4. Update winner so that it becomes more like x, together with the winner’s neighbours 

5. Adjust parameters: learning rate & ‘neighbourhood function’ 
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6. Repeat from (2) until the map has converged (i.e. no noticeable changes in the 

weights) or pre-defined no. of training cycles have passed. 

 

Initialisation 

(i) Randomly initialise the weight vectors wj for all nodes j: 

Input vector 

(ii) Choose an input vector x from the training set: 

Finding a Winner  

(iii) Find the best-matching neuron w(x), usually the neuron whose weight vector has 

smallest Euclidean distance from the input vector x: 

The winning node is that which is in some sense ‘closest’ to the input vector 

‘Euclidean distance’ is the straight line distance between the data points, if they were plotted 

on a (multi-dimensional) graph. 

Euclidean distance between two vectors a and b, a = (a1,a2,…,an), b = (b1,b2,…bn), is 

calculated as: 

 

 
( )∑ −=
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Weight Update-SOM Weight Update Equation 

wj(t +1) = wj(t) + μ(t) λω(x)(j,t) [x - wj(t)] 

“The weights of every node are updated at each cycle by adding 

Current learning rate × Degree of neighbourhood with respect to winner × Difference 

between current weights and input vector to the current weights”  

 
3.5 Principal Component Analysis 
3.5.1 Introduction 

Principal Component Analysis (PCA) [24-26], also known as Singular Value Decomposition 

(SVD) is an exploratory multivariate statistical technique that allows the identification of 

key variables (or combinations of variables) in a multidimensional data set that best explains 

the differences between observations. Given m observations (experiments) on n variables 

(genes), the goal of PCA is to reduce the dimensionality of the data matrix by finding r<=n 

new variables. These r principal components account together for as much of the variance in 
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the original n variables as possible while remaining mutually uncorrelated and orthogonal.  

 

3.5.2 Mathematical background 

Consider m observations on n random variables represented by the matrix X. D is a distance 

matrix of the input matrix X. Let P denote a (m x m) matrix of unknown coefficients such 

that the quadratic form PTDP is maximized subject to the constraint pTp = I. This is 

equivalent to maximizing the Lagrangean expression 

    
 

Differentiating with respect to P and setting the equation to zero we are receiving 

    
The normal equations yield estimates for Eigenvalues and Eigenvectors. To compute the 

principal components, the m Eigenvalues and their corresponding Eigenvectors are 

calculated from the (m x m) distance matrix D using for example Singular Value 

Decomposition (SVD). When D is nonsingular, all latent roots are strictly positive and each. 

Eigenvector defines a principal component. 

 

SVD methods are based on the following theorem of linear algebra: Any (n x m) matrix A 

whose number of rows n is greater than or equal to its number of columns m, can be written 

as the product of a (n x m) column-orthogonal matrix U, a (m x m) diagonal matrix W with 

positive or zero elements (the singular values), and the transpose of an (m x m) orthogonal 

matrix V. 

SVD now explicitly constructs orthonormal bases for the nullspace and range of a matrix. 

Specifically, the columns of U whose same-numbered elements Wj are nonzero are an 

orthonormal set of basis vectors that span the range; the columns of V whose same-
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numbered elements Wj are zero are an orthonormal basis for the nullspace. 

 
The matrices U and V are each orthogonal in the sense that their columns are 

orthonormal. 

UTU = VTV=VVT=1 

The vectors of U contain our Eigenvectors and the diagonal elements of W contain the 

corresponding Eigenvalues. Now the Eigenvectors of U are ordered regarding the value of 

their corresponding Eigenvalues. Each Eigenvector defines a principal component. Principal 

Component 1 (PC1) is the Eigenvector with the greatest Eigenvalue; PC2 is the Vector with 

the 2nd largest Eigenvalue and so on. 

 
The new ordered U matrix is the requested matrix P of equation; W contains the Eigenvalues 

00.1. Since U is an orthonormal matrix, it can be seen as a Transformation matrix, which 

transforms a vector from the input space into the space spanned by the Principal 

Components. 

Y=XU 

 
Each component can be viewed as a weighted sum of conditions, where the coefficients of 

the Eigenvectors are the weights. The decision of gene i along the axis defined by the jth 

principal component is: 

                                       

 

Where utj is the tth coefficient for the jth principal component; Xif is the expression 

measurement for gene i under the tth condition. Y represents the data in terms of principal 

components and is a rotation of the data: from the original space of observations to a new 

space with principal component axes (PC Space). 

 

The variance accounted for by each of the components is its associated Eigenvalue; it is the 

variance of a component over all genes. Consequently, the Eigenvectors with large 

Eigenvalues are the ones that contain most of the information; Eigenvectors with small 

Eigenvalues are uninformative. 
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3.5.3 Properties 

Principal Component Analysis can be used to retrieve the basic patterns of gene expression 

contained in a given study. It eliminates the noise part of the dataset and concentrates on the 

most variant aspects of the investigated observation. PCA can also be applied to study 

clusters of genes from other calculations in PC space. If the clusters are well self-contained, 

they are usually better than clusters that are spread across the PC Space. It has to be 

mentioned at this place, that normalizing data adjustments remove a lot of the variation in the 

dataset and therefore impair the PCA. Normalization tends to thesis the genes/experiments on 

a circular or spherical shape in the PC Space. Since this is an exact mathematical calculation, 

no parameters have to be specified. 
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Chapter 4 
Implementation Issues 

 
 

Clustering is widely used in gene expression data analysis. By grouping genes together based 

on the similarity between their gene expression profiles, functionally related genes may be 

found. Such a grouping suggests the function of presently unknown genes. 

 
The Clustering is a collection of numerical routines that implement the clustering algorithms 

that are most commonly used. The routines can be applied both to genes and to arrays. The 

clustering algorithms are: 

• Hierarchical clustering (pairwise centroid-, single-, complete-, and average-

linkage); 

• k-means clustering; 

• Self-Organizing Maps; 

• Principal Component Analysis. 

To measure the similarity or distance between gene expression data, eight distance measures 

are available: 

• Pearson correlation; 

• Absolute value of the Pearson correlation; 

• Uncentered Pearson correlation (equivalent to the cosine of    the angle 

between two data vectors) ; 

• Absolute uncentered Pearson correlation (equivalent to the cosine of the 

smallest angle between two data vectors); 

• Spearman's rank correlation; 

• Kendall's T; 

• Euclidean distance; 

• Harmonically summed Euclidean distance; 

• City-block distance. 
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4.1 Distance Function 
In order to cluster gene expression data into groups with similar genes or microarrays, we 

should first define what exactly we mean by similar. In the C Clustering Library, eight 

distance functions are available to measure similarity, or conversely, distance [27]: 

'c' 

'a' 

Pearson correlation coefficient; 

Absolute value of the Pearson correlation 

coefficient; 

'u' 

 

'x'

Uncentered Pearson correlation (equivalent to the cosine of the angle between 

two data vectors); 

Absolute uncentered Pearson correlation; 

's' 

'k' 

Spearman's rank correlation;  

Kendall's T; 

'e' 

'h' 

Euclidean distance; 

Harmonically summed Euclidean 

distance; 

'b' City-block distance. 

 
The first six of these distance measures are related to the correlation coefficient, while the 

remaining three are related to the Euclidean distance. The characters in front of the distance 

measures are used as mnemonics to be passed to various routines in the Clustering. 

One of the properties one would like to see in a distance function is that it satisfies the 

triangle inequality: 

In everyday language, this equation means that the shortest distance between two points is a 

straight line. Correlation-based distance functions usually define the distance d in terms of 

the correlation r as 

                                                  d = 1 – r; 

 
All correlation-based similarity measures are converted to a distance using this definition. 

Note that this distance function does not satisfy the triangle inequality. As an example, try 

u= (1, 0,-1); 

v = (1, 1, 0); 

w = (0, 1, 1); 
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Using the Pearson correlation, we find d (u, w) = 1.8660 while d (u, v) + d (v, w) = 1.6340. 

None of the distance functions based on the correlation coefficient satisfy the triangle in-

equality; this is a general characteristic of the correlation coefficient. The Euclidean distance 

and the city-block distance, which are metrics, do satisfy the triangle inequality. The 

correlation-based distance functions are sometimes called semi-metric. 

 
4.2 Data Handling 
The input to the distance functions contains two arrays and two row or column indices, 

instead of two data vectors. This makes it easier to calculate the distance between two 

columns in the gene expression data matrix. If the distance functions would require two 

vectors, we would have to extract two columns from the matrix and save them in two vectors 

to be passed to the distance function. In order to specify if the distance between rows or 

between columns is to be calculated, each distance function has a flag transpose. If transpose 

==0, then the distance between two rows is calculated. Otherwise, the distance between two 

columns is calculated. 

 
4.3 Weighting 
For most of the distance functions available in the Clustering, a weight vector can be applied. 

The weight vector contains weights for the elements in the data vector. If the weight for 

element i is Wi, then that element is treated as if it occurred Wi times in the data. The weights 

do not have to be integers. For the Spearman rank correlation and Kendall's T, discussed 

below, the weights do not have a well-defined meaning and are therefore not implemented. 

 
4.4 Missing Values 
Often in microarray experiments, some of the data values are missing. In the distance 

functions, we therefore use an additional matrix mask which shows which data values are 

missing. If mask [i] [j] ==0, then data [i] [j] is missing, and is not included in the distance 

calculation. 

 
4.5 The Pearson Correlation Coefficient 
The Pearson correlation [11] coefficient is defined as 
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in which x, yare the sample mean of X and y respectively, and (lx, (ly are the sample standard 

deviation of x and y. The Pearson correlation coefficient is a measure for how well a straight 

line can be fitted to a scatterplot of x and y. If all the points in the scatterplot lie on a straight 

line, the Pearson correlation coefficient is either +1 or -1, depending on whether the slope of 

line is positive or negative. If Pearson correlation coefficient is equal to zero, there is no 

correlation between x and y. The Pearson distance is then defined as 

 
As the Pearson correlation coefficient lies between -1 and 1, the Pearson distance lies 

between 0 & 2. The Pearson correlation automatically centers the data by subtracting the 

mean, and normalizes them by dividing by the standard deviation. While such normalization 

may be useful in some situations (e.g., when clustering gene expression levels directly 

instead of gene expression ratios), information is being lost in this step. In particular, the 

magnitude of changes in gene expression is being ignored. This is in fact the reason that the 

Pearson distance does not satisfy the triangle inequality. 

 

4.6 Absolute Pearson Correlation 
By taking the absolute value of the Pearson correlation, we find a number between zero and 

one. If the absolute value is one, all the points in the scatter plot lie on a straight line with 

either a positive or a negative slope. If absolute value is equal to zero, there is no correlation 

between x and y. The distance is defined as usual as 

 
where r is the Pearson correlation coefficient. As the absolute value of the Pearson corre-

lation coefficient lies between 0 and 1, the corresponding distance lies between 0 and 1 as 

well. In the context of gene expression experiments, note that the absolute correlation is 

equal to one if the gene expression data of two genes microarray have a shape that is either 

exactly the same or exactly opposite. The absolute correlation coefficient should therefore be 

used with care. 

 

4.7 Uncentered Correlation (cosine of the angle) 
In some cases, it may be preferable to use the uncentered correlation instead of the regular 

Pearson correlation coefficient. The uncentered correlation is defined as 
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This is the same expression as for the regular Pearson correlation coefficient, except that the 

sample means x, y are set equal to zero. The uncentered correlation may be appropriate if 

there is a zero reference state. For instance, in the case of gene expression data given in terms 

of log-ratios, a log-ratio equal to zero corresponds to the green and red signal being equal, 

which means that the experimental manipulation did not affect the gene expression. 

The distance corresponding to the uncentered correlation coefficient is defined as 

where ru is the uncentered correlation. As the uncentered correlation coefficient lies between 

-1 and 1, the corresponding distance lies between 0 and 2. 

The uncentered correlation is equal to the cosine of the angle of the two data vectors in n-

dimensional space, and is often referred to as such. (From this viewpoint, it would make 

more sense to define the distance as the arc cosine of the uncentered correlation coefficient). 

 

4.8 Absolute uncentered correlation 
As for the regular Pearson correlation, we can define a distance measure using the absolute 

value of the uncentered correlation: 

 
where ru is the uncentered correlation coefficient. As the absolute value of the uncentered 

correlation coefficient lies between 0 and 1, the corresponding distance lies between 0 and 1 

as well. Geometrically, the absolute value of the uncentered correlation is equal to the cosine 
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between the supporting lines of the two data vectors (i.e., the angle without taking the 

direction of the vectors into consideration). 

 
4.9 Spearman rank correlation 
The Spearman rank correlation is an example of a non-parametric similarity measure. It is 

useful because it is more robust against outliers than the Pearson correlation. 

To calculate the Spearman rank correlation, we replace each data value by their rank if we 

would order the data in each vector by their value. We then calculate the Pearson correlation 

between the two rank vectors instead of the data vectors. 

 
Weights cannot be suitably applied to the data if the Spearman rank correlation is used, 

especially since the weights are not necessarily integers. The calculation of the Spearman 

rank correlation in the C Clustering Library therefore does not take any weights into con-

sideration. As in the case of the Pearson correlation, we can define a distance measure 

corresponding to the Spearman rank correlation as 

Where rs is the Spearman rank correlation. 

 

4.10   Kendall's T 
Kendall's T is another example of a non-parametric similarity measure. It is similar to the 

Spearman rank correlation, but instead of the ranks themselves only the relative ranks are 

used to calculate T. As in the case of the Spearman rank correlation, the weights are ignored 

in the calculation. We can define a distance measure corresponding to Kendall's T as 

 

As Kendall's T is defined such that it will lie between -1 and 1, the corresponding distance 

will be between 0 and 2. 

 

4.11 Euclidean distance 
The Euclidean distance is a true metric, as it satisfies the triangle inequality. The Euclidean 

distance is defined as 
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In this formula, the expression data Xi and Yi are subtracted directly from each other. We 

should therefore make sure that the expression data are properly normalized when using the 

Euclidean distance, for example by converting the measured gene expression levels to log-

ratios. Unlike the correlation-based distance functions, the Euclidean distance takes the mag-

nitude of the expression data into account.  

 

4.12 Harmonically summed Euclidean distance 
The harmonically summed Euclidean distance is a variation of the Euclidean distance, where 

the terms for the different dimensions are summed inversely (similar to the harmonic mean): 

The harmonically summed Euclidean distance is more robust against outliers compared to the 

Euclidean distance. Note that the harmonically summed Euclidean distance is not a metric. 

For example, consider 

 

 

4.13 City-block distance 
The city-block distance, alternatively known as the Manhattan distance, is related to the 

Euclidean distance. Whereas the Euclidean distance corresponds to the length of the shortest 

path between two points, the city-block distance is the sum of distances along each 

dimension: 
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This is equal to the distance you would have to walk between two points in a city, where you 

have to walk along city blocks. The city-block distance is a metric, as it satisfies the triangle 

inequality. As for the Euclidean distance, the expression data are subtracted directly from 

each other, and we should therefore make sure that they are properly normalized. 

 

4.14 Calculating the distance between clusters 
In the hierarchical clustering methods, the distance matrix between all genes or microarrays 

is first calculated, and at successive steps of the algorithm the new distance matrix is calcu-

lated from the previous distance matrix. In some cases, however, we would like to calculate 

the distance between clusters directly, given their members. For this purpose, the function 

clusterdistance can be used. This function can also be used to calculate the distance between 

two genes and microarrays by defining two clusters consisting of one gene/microarray each. 

The distance between two clusters can be defined in several ways. The distance between the 

arithmetic means of the two clusters is used in pairwise centroid-linkage clustering and in k-

means clustering. For the latter, the distance between the medians of the two clusters can be 

used alternatively. The shortest pairwise distance between elements of the two clusters is 

used in pairwise single-linkage clustering, while the longest pairwise distance is used in 

pairwise maximum-linkage clustering. In pairwise average-linkage clustering, the distance 

between two clusters is defined as the average over the pairwise distances. 
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4.15 Random Number Generator 

The random number generator in the Clustering is used to initialize the kmeans clustering 

algorithm and Self-Organizing Maps (SOMs), as well as to randomly select a gene or 

microarray in the calculation of a SOM. This random number generator needs two seeds for 

initialization, for which we used the standard C random number generator srand. We 
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initialize srand with the epoch time in seconds. The first two random numbers generated by 

srand are then used as seeds for the ranlib random number generator. 

 

4.16 The Distance Matrix 
The first step in clustering problems is usually to calculate the distance matrix. This matrix 

contains all the distances between the items that are being clustered. As the distance 

functions are symmetric, the distance matrix is also symmetric. Furthermore, the elements on 

the diagonal are zero, as the distance of an item to itself is zero. The distance matrix can 

therefore be stored as a ragged array, with the number of columns in each row equal to the 

(zero-offset) row number. The distance between items i and j is stored in location 

[i] [j] if j < i, in [j] [i] if j > i, while it is zero if j = i. Note that the first row of the distance 

matrix is empty. It is included for computational convenience, as including an empty row 

requires minimal storage. 

 

4.17 Partitioning Algorithms 
 Partitioning algorithms divide items into k clusters such that the sum of distances over the 

items to their cluster centers is minimal. The number of clusters k is specified by the user. In 

the C Clustering Library, three partitioning algorithms are available: 

•  k-means clustering 

•  k-medians clustering 

•  k-medoids clustering 

 

Prototype 
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These algorithms differ in how the cluster center is defined. In k-means clustering, the cluster 

center is defined as the mean data vector averaged over all items in the cluster. Instead of the 

mean, in k-medians clustering the median is calculated for each dimension in the data vector. 

Finally, in k-medoids clustering the cluster center is defined as the item which has the 

smallest sum of distances to the other items in the cluster. This clustering algorithm is 

suitable for cases in which the distance matrix is known but the original data matrix is not 

available, for example when clustering proteins based on their structural similarity. 

The expectation-maximization (EM) algorithm is commonly used to find the partitioning into 

k groups. The first step in the EM algorithm is to create k clusters and randomly assign items 

(genes or microarrays) to them. We then iterate: 

• Calculate the centroid of each cluster; 

• For each item, determine which cluster centroid is closest;  

• Reassign the item to that cluster. 

  

The iteration is stopped if no further item reassignments take place. 
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As the initial assignment of items to clusters is done randomly, usually a different clustering 

solution is found each time the EM algorithm is executed. To find the optimal clustering 

solution, the k-means algorithm is repeated many times, each time starting from a different 

initial random clustering. The sum of distances of the items to their cluster center is saved for 

each run, and the solution with the smallest value of this sum will be returned as the overall 

clustering solution. 

 

How often the EM algorithm should be run depends on the number of items being clustered. 

As a rule of thumb, we can consider how often the optimal solution was found. This number 

is returned by the partitioning algorithms as implemented in this library. If the optimal 

solution was found many times, it is unlikely that better solutions exist than the one that was 

found. However, if the optimal solution was found only once, there may well be other 

solutions with a smaller within-cluster sum of distances. 

 

4.17.1 Initialization 

The k-means algorithm is initialized by randomly assigning items (genes or microarrays) to 

clusters. Special care should be taken to ensure that no empty clusters are produced. This is 

done by first choosing k items randomly and assigning each of them to a different cluster. 

The remaining items are then randomly assigned to clusters. Each cluster is thus guaranteed 

to contain at least one item. 

 

4.18 Finding the Cluster Centroid 

The centroid of a cluster can be defined in different ways. For k-means clustering, the 

centroid of a cluster is defined as the mean over all items in a cluster for each dimension 



 

 

separately. For robustness against outliers, in k-medians clustering the median is used 

instead of the mean. In k-medoids clustering, the cluster centroid is the item with the 

smallest sum of distances to the other items in the cluster. The C Clustering Library provides 

routines to calculate the cluster mean, the cluster median, and the cluster medoid. 

 

4.18.1 Finding the cluster mean 

The routine getclustermean calculates the centroids of the clusters by calculating the mean 

for each dimension separately over all items in a cluster. Missing data values are not 

included in the calculation of the mean. Whether the cluster means have a missing value is 

stored in an array cmask. If for cluster i the data values for dimension j are missing for all 

items, then cmask [i] [j] (or cmask [j] [i] if transpose==1) is set equal to zero. Otherwise, it 

is set equal to one. 
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4.18.2 Finding the Cluster Median 

The routine getclustermedian calculates the centroids of the clusters by calculating the 

median for each dimension separately over all items in a cluster. Missing data values are 

not included in the calculation of the median. Whether the cluster medians have a missing 

value is stored in an array cmask. If for cluster i the data values for dimension j are 

missing for all items, then cmask [i] [j] (or cmask [j] [i] if transpose ==1) is set equal to 

zero. Otherwise, it is set equal to one. Calculating the median may take significantly 

longer than calculating the mean. 
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4.18.3 Finding the Cluster Medoid 

The cluster medoid is defined as the item which has the smallest sum of distances to the 

other items in the cluster. The getclustermedoid routine calculates the cluster centroids, 

given to which cluster each item belongs. The centroid is defined as the item with the 

smallest sum of distances to the other items. 
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4.19 The EM Algorithm 
The EM algorithm as implemented in the Clustering first randomly assigns items to clusters 

using randomassign, followed by iterating to find a clustering solution with a smaller within-

cluster sum of distances. During the iteration, first we find the centroids of all clusters, where 

the centroids are defined in terms of the mean, the median, or the medoid. The distances of 

each item to the cluster centers are calculated, and we determine for each item which cluster 

is closest. We then reassign the items to their closest clusters, and recalculate the cluster 

centers. 

All items are first reassigned before recalculating the cluster centroids. This has two 

consequences: 

• If unchecked, clusters may become empty if all their items are reassigned. For k-

means and k-medians clustering, the EM routine therefore keeps track of the number 

of items in each cluster at all times, and prohibits an item to be reassigned to a 

different cluster if that would cause its current cluster to become empty. For k-

medoids clustering, such a check is not needed, as the item that functions as the 

cluster centroid has a zero distance to itself, and would therefore not be reassigned to 

a different cluster anyway. 

• In principle, the order in which items are reassigned to clusters does not matter. 

However, since we force an item to stay in a cluster if it is the last remaining item, 

for k-means and k-medians clustering we need to randomize the order anyway to 

ensure that not always the same items are forced to stay in a cluster. For k-medoids 

clustering, no such randomization is needed. 
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The EM algorithm terminates when no further reassignments take place. We noticed, 

however, that for some sets of initial cluster assignments, the EM algorithm fails to converge 

due to the same clustering solution reappearing periodically after a small number of iteration 

steps. In the EM algorithm as implemented in the Clustering, the occurrence of such periodic 

solutions is checked for. After a given number of iteration steps, the current clustering result 

is saved as a reference. By comparing the clustering result after each subsequent iteration 

step to the reference state, we can determine if a previously encountered clustering result is 

found. In such a case, the iteration is halted. If after a given number of iterations the 

reference state has not yet been encountered, the current clustering solution is saved to be 

used as the new reference state. Initially, ten iteration steps are executed before resaving the 

reference state. This number of iteration steps is doubled each time, to ensure that periodic 

behavior with longer periods can also be detected. 

 

4.19.1 Finding the Optimal Solution 

 K-means and k-medians 

The optimal solution is found by executing the EM algorithm repeatedly and saving the best 

clustering solution that was returned by it. This can be done automatically by calling the 

routine kcluster. This procedure first initializes ranlib's random number generator. The 

routine to calculate the cluster centroid and the distance function are selected based on the 

arguments passed to kcluster. 

 
The EM algorithm is then executed repeatedly, saving the best clustering solution that was 

returned by these routines. In addition, kcluster counts how often the EM algorithm found 

this solution. If it was found many times, we can assume that there are no other solutions 

possible with a smaller within-cluster sum of distances. If, however, the solution was found 

only once, it may well be that better clustering solutions exist. 
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4.19.2   k-medoids 
 

The kmedoids routine performs k-medoids clustering on a given set of elements, using 

the distance matrix and the number of clusters passed by the user. Multiple passes are 

being made to find the optimal clustering solution, each time starting from a different 

initial clustering. 
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4.20 Choosing the Distance Measure 

Whereas all eight distance measures are accepted for k-means, k-medians, and k-medoids 

clustering, using a distance measure other than the Euclidean distance or city-block 

distance with k-means or k-medians is in a sense inconsistent. When using the distance 

measures based on the Pearson correlation, the data are effectively normalized when 

calculating the distance. However, no normalization is applied when calculating the 

centroid in the kmeans or k-medians algorithm. From a theoretical viewpoint, it is best to 

use the Euclidean distance for the k-means algorithm, and the city-block distance for k-

medians. 

 
4.21 Hierarchical Clustering 
In hierarchical clustering there are various methods. 

4.21.1 Hierarchical clustering methods 

Hierarchical clustering methods are inherently different from the k-means clustering method. 

In hierarchical clustering methods, gene expression data are described in terms of a tree 

structure. While the existence of such a tree structure may be debatable, the hierarchical 

clustering methods are quite popular in the analysis of gene expression data. 

The first step in hierarchical clustering is to calculate the distance matrix, specifying all the 

distances between the items to be clustered. Next, we create a node by joining the two 

closest items. Subsequent nodes are created by pairwise joining of items or nodes based on 
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the distance between them, until all items belong to the same node. A tree structure can then 

be created by retracing which items and nodes were merged. Unlike the EM algorithm, 

which is used in k-means clustering, the complete process of hierarchical clustering is 

deterministic. 

Several flavors of hierarchical clustering exist, which differ in how the distance between 

subnodes is defined in terms of their members. In the C Clustering Library, pairwise single, 

maximum, average, and centroid linkage are available. 

• In pairwise single-linkage clustering, the distance between two nodes is defined as 

the shortest distance among the pairwise distances between the members of the 

two nodes. 

• In pairwise maximum-linkage clustering, alternatively known as pairwise 

complete linkage clustering, the distance between two nodes is defined as the 

longest distance among the pairwise distances between the members of the two 

nodes. 

• In pairwise average-linkage clustering, the distance between two nodes is defined 

as the average over all pairwise distances between the elements of the two nodes. 

• In pairwise centroid-linkage clustering, the distance between two nodes is defined 

as the distance between their centroids. The centroids are calculated by taking the 

mean over all the elements in a cluster. As the distance from each newly formed 

node to existing nodes and items need to be calculated at each step, the computing 

time of pairwise centroid-linkage clustering may be significantly longer than for 

the other hierarchical clustering methods. Another peculiarity is that (for a 

distance measure based on the Pearson correlation), the distances do not 

necessarily increase when going up in the clustering tree, and may even decrease. 

This is caused by an inconsistency between the centroid calculation and the 

distance calculation when using the Pearson correlation: Whereas the Pearson 

correlation effectively normalizes the data for the distance calculation, no such 

normalization occurs for the centroid calculation. 

 
For pairwise single-, complete-, and average-linkage clustering, the distance between two 

nodes can be found directly from the distances between the individual items. Therefore, the 

clustering algorithm does not need access to the original gene expression data, once the 

distance matrix is known. For pairwise centroid-linkage clustering, however, the centroids of 
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newly formed subnodes can only be calculated from the original data and not from the 

distance matrix. 

 
Straightforward implementation of pairwise single-linkage clustering. The clustering result 

produced by this algorithm is identical to the clustering solution found by the conventional 

single-linkage algorithm. The single-linkage hierarchical clustering algorithm implemented 

in this library can be used to cluster large gene expression data sets, for which conventional 

hierarchical clustering algorithms fail due to excessive memory requirements and running 

time. 

 
The treecluster routine described below implements pairwise single-, complete, average-, 

and centroid-linkage clustering. A pointer distmatrix to the distance matrix can be passed as 

one of the arguments to treecluster; if this pointer is NULL, the treecluster routine will 

calculate the distance matrix from the gene expression data using the arguments data, mask, 

weight, and dist. For pairwise single-, complete-, and average-linkage clustering, the 

treecluster routine ignores these four arguments if distmatrix is given, as the distance matrix 

by itself is sufficient for the clustering calculation. For pairwise centroid-linkage clustering, 

the arguments data, mask, weight, and dist are always needed, even if distmatrix is available. 

The treecluster routine will complete faster if it can make use of a previously calculated 

distance matrix passed as the distmatrix argument. Note, however, that newly calculated 

distances are stored in the distance matrix, and its elements may be rearranged during the 

clustering calculation. Therefore, in order to save the original distance matrix, it should be 

copied before treecluster is called. The memory that was allocated by the calling routine for 

the distance matrix will not be deallocated by treecluster, and should be deallocated by the 

calling routine after treecluster returns. If distmatrix is NULL, however, treecluster takes 

care both of the allocation and the deallocation of memory for the distance matrix. In that 

case, treecluster may fail if not enough memory can be allocated for the distance matrix, in 

which case treecluster returns o. 
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4.21.2 Cutting a hierarchical clustering tree 

The tree structure generated by the hierachical clustering routine treecluster can be further 

analyzed by dividing the genes or microarrays into n clusters, where n is some positive 

integer less than or equal to the number of elements that were clustered. This can be 

achieved by ignoring the top n - 1 linking events in the tree structure, resulting in n 

separated subnodes. The elements in each subnode are then assigned to the same cluster. 

The routine cuttree determines to which cluster each element is assigned, based on the 

hierarchical clustering result stored in the tree structure. 
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4.22 Self-Organizing Maps 
4.22.1 Introduction 

Self-Organizing Maps (SOMs) were invented by Kohonen to describe neural networks (see 

for instance Kohonen, 1997). Tamayo (1999) first applied Self-Organizing Maps to gene 

expression data. 

 
SOMs organize items into clusters that are situated in some topology. Usually a rectangular 

topology is chosen. The clusters generated by SOMs are such that neighboring clusters in the 

topology are more similar to each other than clusters far from each other in the topology. 

The first step to calculate a SOM is to randomly assign a data vector to each cluster in the 

topology. If genes are being clustered, then the number of elements in each data vector is 

equal to the number of microarrays in the experiment. 

 
An SOM is then generated by taking genes one at a time, and finding which cluster in the 

topology has the closest data vector. The data vector of that cluster, as well as neighboring 

clusters is adjusted using the data vector of the gene under consideration. The adjustment is 

given by 
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in which T init is the initial value of T as specified by the user, i is the number of the current 

iteration step, and n is the total number of iteration steps to be performed. While changes are 

made rapidly in the beginning of the iteration, at the end of iteration only small changes are 

made. 

 
All clusters within a radius R are adjusted to the gene under consideration. This radius 

decreases as the calculation progresses as 

 
where (Nx, Ny) are the dimensions of the rectangle defining the topology. 

The routine somcluster carries out the complete SOM algorithm. First it initializes the 

random number generator. The distance function to be used is specified by dist. The node 

data are then initialized using the ranlib random number generator. The order in which genes 

or microarrays are used to modify the SOM is also randomized. The total number of 

iterations is specified by niter, given by the user. 
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to identify the horizontal and vertical position of a cell in the grid for each gene or 

microarray. Gene or microarrays are assigned to clusters in the rectangular grid by 

determining which cluster in the rectangular topology has the closest data vector. Space for 

the c1usterid argument should be allocated before calling somcluster. If c1usterid is NULL, 

the somcluster routine ignores this argument and does not return the cluster assignments. 

Dimension: [nrows] if transpose ==0; [ncolumns]  if transpose ==1. 

 

4.23 Principal Component Analysis 
Principal Component Analysis (PCA) is a widely used technique for analyzing 

multivariate data. In PCA, the data vectors are written as a linear sum over principal 

components. The number of principal components is equal to the number of dimensions 

of the data vectors. 

 
The principal components are chosen such that they maximally explain the variance in the 

data vectors. For example, in case of 3D data vectors, the data can be represented as an 

ellipsoidal cloud of points in three dimensional spaces. The first principal component 

would be the longest axis of the ellipsoid, the second principal component would be the 

second longest axis of the ellipsoid, and the third principal component would be the 

shortest axis. In other words, the principal components are ordered by the amount of 

variance they explain. 

 
Each data point can be reconstructed by a suitable linear combination of the principal 

components. However, in order to reduce the dimensionality of the data, usually only the 

most important principal components are used. The remaining variance present in the data 

is then regarded as unexplained variance. The principal components can be found by 

calculating the eigenvectors of the covariance matrix of the data. The corresponding 

eigenvalues determine how much of the variance present in the data is explained by each 

principal component. 

 
The eigenvectors are found by calculating the singular value decomposition of the data 

matrix. For this purpose, we have included a routine to calculate the singular value de-

composition of a matrix.  
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Chapter 5 
Experimental result 

 

 
Clustering technique provide a computational environment for analyzing data from 

microarray experiments, or other genomic datasets. Clustering program organizes and 

analyzes the data in a number of different ways. The first step in using Cluster is to import 

data. Cluster input tables rows represent genes and columns represent samples or 

observations. For a simple timecourse, a Cluster input file would look like this: 

5.1 Input file: 

 
 
Each row (gene) has an identifier that always goes in the first column. Each column (sample) 

has a label that is always in the first row; here the labels describe the time at which a sample 

was taken. The remaining cells in the table contain data for the appropriate gene and sample. 

Missing values are acceptable and are designated by empty cells. 

 

 5.2 Hierarchical Clustering: 
The Hierarchical Clustering allows you to perform hierarchical clustering on your data. This 

is an incredibly powerful and useful method for analyzing all sorts of large genomic datasets.  
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Cluster currently performs four types of binary, average, complete, and centroid clustering. 

The basic idea is to assemble a set of items (genes or arrays) into a tree, where items are 

joined by very short branches if they are very similar to each other, and by increasingly 

longer branches as their similarity decreases. 

 

Similarities/Distances: 

The first choice that must be made is how “similarity” is to be defined. There are many ways 

to compute how similar two series of numbers are, and Cluster provides a small number of 

options. The most commonly used similarity metrics are based on Pearson correlation. The 

Pearson correlation coefficient between any two series of number  

X={ X , X , , X N 1 2 K } and Y={ N Y ,Y , ,Y 1 2 K } is defined as 

 

 
where X is the average of values in X, and X is the standard deviation of these values. 

There are many ways of conceptualizing the correlation coefficient. Cluster provides two 

similarity metrics that are the absolute value of these two correlation functions, which 

consider two items to be similar if they have opposite expression patterns; the standard 

correlation coefficients consider opposite genes are being very distant. 

Clustering process: 

With any specified metric, the first step in the clustering process is to compute the distance 

between of all pairs of items to be clustered (e.g. the set of genes in the current dataset). Once 

this matrix of distances is computed, the clustering begins. The process used by Cluster is 

agglomerative hierarchical processing, which consists of repeated cycles where the two 

closest remaining items (those with the smallest distance) are joined by a node/branch of a 

tree, with the length of the branch set to the distance between the joined items. The two 

joined items are removed from list of items being processed replaced by a item that 

represents the new branch. The distances between this new item and all other remaining 

items are computed, and the process is repeated until only one item remains.  
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Output File: 

The result of a clustering run is a tree or pair of trees (one for genes one for arrays). When 

Cluster joins two items, it randomly places one item on the top branch and the other on the 

bottom branch. It is possible to guide this process to generate the “best” ordering consistent 

with a given tree. This is done by using the GORDER (gene order) and EORDER 

(experiment order) parameters in the input file, 

 

 

 
 

Array group 

 

 
NODE1X ARRY1X ARRY0X 1.000000 

NODE2X ARRY2X NODE1X 0.261253 

NODE3X ARRY3X NODE2X 0.140240 

NODE4X ARRY4X NODE3X -0.017618 

 

 

Gene group 

 
NODE1X GENE12X GENE10X 1.000000 

NODE2X GENE72X GENE24X 1.000000 

NODE3X GENE73X GENE26X 1.000000 

NODE4X GENE80X GENE36X 1.000000 

NODE5X GENE1X GENE0X 1.000000 

NODE6X GENE3X NODE5X 1.000000 
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NODE7X GENE84X NODE6X 1.000000 

NODE8X GENE83X NODE7X 1.000000 

NODE9X GENE82X NODE8X 1.000000 

NODE10XGENE4X NODE9X 1.000000 

NODE11XGENE6X NODE10X1.000000 

NODE12XGENE79XNODE11X1.000000 

NODE13XGENE78XNODE12X1.000000 

NODE14XGENE11XNODE13X1.000000 

NODE15XGENE76XNODE14X1.000000 

 

 

5.3 K-mean Clustering: 
K-means clustering is a simple, but popular, form of cluster analysis. The basic idea is that 

you start with a collection of items (e.g. genes) and some chosen number of clusters (k) you 

want to find. The items are initially randomly assigned to a cluster. K-means clustering 

proceeds by repeated application of a two-step process where: 

1. The mean vector for all items in each cluster is computed 

2. Items are reassigned to the cluster whose center is closest to the item 

The parameters that control k-means clustering are 

1. The number of clusters (K) 

2. The maximum number of cycles 

 

The output is simply an assignment of items to a cluster. The implementation here simply 

rearranges the rows and/or columns based on which cluster they were assigned to in the final 

cycle. Cluster also implements a slight variation on k-means clustering known as k-mediod 

clustering in which the median instead of the mean of items in a node are used.  

Output files 
ARRAY GROUP 

15hours 0 

0  1 

15min  2 

1hour  3 

6hours  4 

 

 
GENE  GROUP 

sll0617 0 

sll1807 0 
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sll1743 0 

sll1579 0 

slr0329 0 

slr1835 0 

slr0452 1 

sll1260 1 

sll1097 1 

slr0839 1 

sll0144 2 

sll0680 2 

slr1350 2 

sll0901 2 

sll1327 2 

sll1712 2 

sll1694 3 

sll0851 3 

slr1128 3 

sll0262 3 

sll0854 3 

slr0374 3 

sll1802 3 

sll0416 3 

sll0519 4 

ssl1533 4 

sll1029 4 

slr1963 4 

slr0642 4 

slr0208 4 
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5.4 Self-Organizing Maps: 
Self-Organizing Maps (SOMs) is a method of cluster analysis that are somewhat related to k-

means clusterins. SOMs were invented in by Teuvo Kohonen in the early 1980s, and have 

recently been used in genomic analysis (see Chu 1998, Tamayo 1999 and Golub 1999 in 

references). The Tamayo paper contains a simple explanation of the methods. A more 

detailed description is available in the book by Kohonen, Self-Organizing Maps1997. 

The current implementation varies slightly from that of Tamayo et al., in that it restricts the 

analysis one-dimensional SOMs along each axis, as opposed to a two-dimensional network. 

The one-dimensional SOM is used to reorder the elements on whichever axes are selected. 

The result is similar to the result of k-means clustering, except that, unlike kmeans, the nodes 

in a SOM are ordered. This tends to result in a relatively smooth transition between groups. 

The options for SOMs are  

1. Whether or not you will organize each axis,  

2. The number of nodes for each axis (the default is the square-root of the number of items) 

and the number of iterations to be run. 

Output file 

Array group: 

 
 

Gene group: 
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5.5 Principal Component Analysis: 
Cluster will perform principal component analysis on data. The output is very simple in this 

version and consists of two files that contain the principal components and the loadings of 

each gene on the principal components.  

Output files: 
EIGVALUE 0  15min  1hour  6hours  15hours 

5.377381  0.000000  -0.805762  0.387468  0.328947  0.303991 

3.760803  0.000000  0.021068  0.649631  -0.011371  -0.759873 

3.297019  0.000000  -0.133927  -0.519809  0.708132  -0.458705 

2.017373  0.000000  -0.576513  -0.397048  -0.624671  -0.346081 

0.000000  1.000000  0.000000  0.000000  0.000000  0.000000 
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Chapter 6 
Applications 

 
 

The various applications of clustering techniques are listed below: 

6.1 Biology 
In biology have two main applications in the fields of computational biology and 

bioinformatics. 

• In transcriptomics, clustering is used to build groups of genes with related expression 

patterns. Often such groups contain functionally related proteins, such as enzymes for a 

specific pathway, or genes that are co-regulated. High throughput experiments using 

expressed sequence tags (ESTs) or DNA microarrays can be a powerful tool for 

genome annotation, a general aspect of genomics.  

• In sequence analysis, clustering is used to group homologous sequences into gene 

families. This is a very important concept in bioinformatics, and evolutionary biology 

in general. See evolution by gene duplication. 

  

6.2 Marketing research 
Cluster analysis is widely used in market research when working with multivariate data from 

surveys and test panels. Market researchers use cluster analysis methods to partition the 

general population of consumers into market segments and to better understand the 

relationships between different groups of consumers/potential customers. 

• Segmenting the market and determining target markets  

• Product positioning  

• New product development  

• Selecting test markets  

 

6.3 Other applications 
Social network analysis: In the study of social networks, clustering may be used to recognize 

communities within large groups of people. 
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Image segmentation: Clustering can be used to divide a digital image into distinct regions for 

border detection or object recognition. 

 
Data mining: Many data mining applications involve partitioning data items into related 

subsets; the marketing applications discussed above represent some examples. Another 

common application is the division of documents, such as World Wide Web pages, into genres. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 72

Chapter 7 
Conclusions 

 
 

To summarize, a clustering algorithm can be defined by a set of objects (e.g. documents) and a 

vague description of the set, A. The goal of clustering is to divide the object set into objects 

belonging to A and a second set not in A. So, in this clustering problem, one needs to 

determine first what features are relevant in describing objects in A (intra-cluster similarity) 

and second, what features distinguish objects in A from objects not belonging to A (inter-

cluster similarity). 

 Alternatively, a cluster problem can also be formulated by a set of objects and a 

similarity or distance function. Here, the object set is divided into a number of subsets 

(clusters) that best reveal the structure of the object set; these subdivisions can take the form of 

partitions or a hierarchically organized taxonomy. 

 

The Clusters should be highly internally homogeneous i.e. members being similar to one 

another and highly externally heterogeneous as well i.e. members should be unlike members of 

other clusters. Clustering algorithms are distinguished on the basis of a number of features such 

as unsupervised or supervised; divisive or agglomerative; incremental or partitioning; iterative 

or noniterative; single link, grouped average, or complete link clustering.  Interestingly, no 

clustering algorithm has been shown to be notably better than others when producing the same 

number of clusters. However, one can experience that some choices seem to fit some kinds of 

data better than others and there have been “bakeoffs” between clustering approaches 

(comparing single link, complete link, Ward’s trace, centroid, and so forth) that suggest that 

some approaches are more reliable than others for generic data sets.  

 

The subject of clustering evolved with the early attempts to categorize objects or phenomena 

on the basis of inherent similarities. The application of clustering techniques started in the 

discipline of astronomy and medicine and gradually permeated to almost all the fields of study. 

But the most wonderful application of clustering techniques was found in the area of 

information retrieval and thus, document clustering. 



 

 73

 

In recent times, the clustering techniques have migrated from data mining into text mining. In 

the case of text mining, clustering is used to segment a document collection into subsets; where 

the members of each subset are similar with respect to certain features. The use of this 

technique makes text mining different from a simple search engine. As such, retrieval of text   

references is not a difficult task but the problem is of the large volume of retrieved documents; 

the sheer volume makes it difficult for users to find relevant information. While searching, the 

user naturally moves from one document to another looking for dominant themes or similar 

documents in a collection and the application of clustering helps in this process further. But, 

clustering tries to enforce a structure onto naturally unstructured documents, here, the 

challenge is to find a method that is simple and efficient and which provides enough structure 

to reveal interesting information. 

 
Clustering depends on the discovery of some measure of interdocument similarity. In 

this area, one approach is to represent them as vectors of equal length; where each component 

of a vector is associated with one of the unique content works in the document collection.  

Now, the vector component may indicate the frequency, normalized or not, of a word in the 

document. Single linkage hierarchical clustering is a commonly used method for the purpose. 

However it is too slow for even moderately large document collections. The reason is 

beginning with individual documents, single-linkage hierarchical clustering iteratively 

agglomerates the most similar pairs of clusters into a new cluster. So, when it goes for global 

consideration of all pair wise similarities at each stage of clustering, then it leads to extensive 

computer run times. 

    

 Clustering has emerged as a full-fledged discipline from the days of its evolution as an 

application tool. There has been positive growth of the literature in the area of clustering since 

the day of its evolution as a mere categorization tool. Evolution of clustering is typical as it has 

maintained its unique status along with its interdisciplinary nature during the process.  It has 

been widely applied in the areas of science, engineering, health care, education, social sciences 

and business.  In the recent years, there has been a paradigm shift in research, as clustering is 

now applied for the purpose of information retrieval and document clustering on WWW.  The 

subject has to still grow towards the realization of its full potential. 
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