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Abstract

Clustering is the unsupervised classification of patterns into groups (clusters). Clustering
technique aims at identifying groups of similar objects and, therefore helps to discover dis-
tribution of patterns and interesting relations in large data sets. It has been subject of wide
research since it arises in many application domains in engineering, business and social
sciences. Especially, in the last few years the availability of huge transactional and
experimental data sets and the arising requirements for data mining created needs for
clustering algorithms that scale and can be applied in diverse domains. This thesis introduces
the fundamental concepts of clustering while it surveys the widely known clustering algo-

rithms.

In this thesis we have implemented different approaches to take advantage of clustering
technique and performed an empirical study evaluating clustering results using gene-
expression datasets. We have tested several different clustering algorithms and similarity

measure combinations on the same datasets & evaluated the clustered datasets.

Keywords: clustering algorithms, unsupervised learning, genes, microarrays



Chapter 1
Introduction

1.1 Introduction

The biggest problem of today’s Information society is over abundance of information on any
one topic; this presents a challenge for the information professional as well as the user of
information. Moreover, for many information users of different levels, the problem is a lack
of appropriate information, namely, one which they can easily comprehend, assimilate and
make use of with a certain amount of confidence and reliability within the framework of their
own environment. Hence, the crux of the problem lies in the improper packaging of
information not the overabundance; the information needs to be packaged in a form that
should be useful to different groups of users. This only can ensure fruitful use of existing
information. Thesis report is one such kind of information product.

Clustering as a subject has been making waves since the time of its evolution as a
complementary technique to statistics and computer analysis and then its later development
as a full-fledged application science. This thesis is an attempt to survey the evolution of
clustering as a subject, the core concepts and techniques arising from clustering methodology
and the important works done therein. It aims to provide a snapshot view of the rich history
of clustering techniques and its development as a mature field that is making important

contributions to application areas in different subjects.

1.2 Thesis Work

The thesis has been undertaken with the purpose of preparing a clustering technique. As a
part of the thesis requirement, | have tried to compile this report as an extensive information
source on clustering techniques and have concentrated on the most recent developments in

the subject area specially document clustering.

1.2.1 Objectives of the Thesis:
e To visualize the structure and development of the clustering as a subject especially in
the relation to other subjects.
e To provide a comprehensive document for background reading about clustering

techniques.



e To alert the expert regarding the work that has been already done as well as the
forthcoming ones in various areas of clustering. It should help in avoiding the

duplication of the work and thereby conserve the intellectual’s potential.

1.2.2 Purpose of the Thesis:
e To provide a ready-made reference to the developments of a discipline over a certain
period of time, to the researchers and their professionals.
e To serve as a general source of information for the professionals already working in
the area of clustering and to bring out the present trends, latest developments and

subsequent applications, thereby aiding in the further research.

1.2.3 Methodology Adopted
Preparation of thesis and Report requires skills and knowledge to make the product an up-to-
date source on the given topic, viz., the familiarity with the different aspects of a subject, the
user requirements and also the knowledge of the helpful methods of presentation of ideas.

So, a review of relevant literature was conducted to assess clustering concepts,
clustering technologies, techniques and researches in this field. Various books, journals,
articles and papers available on the Internet pertaining to the subject matter and its related

fields were reviewed to prepare report.

1.3 Steps of the Thesis and Report Preparation

The scope of the subject was determined in terms of a framework determined by studying the
subject hierarchy.

1.3.1 Data collection:

The next step was data collection, for this the core journals containing articles on and related
to clustering were identified. Secondary journals were also consulted along with primary
journals. Numerous websites, portals, discussion forums, magazines, newsletters were also

referred for data collection.

1.3.2 Analysis:

The collected data needs to be analyzed for making a comprehensive study of the
evolutionary trends in the subject. For the purpose, each micro-document was analyzed to
mark it with appropriate subject proposition. There were documents that dealt with more than



one topic; in these cases multiple entries of document were made and appropriate subject

proposition was assigned at the top of the entries.

1.3.3 Arrangement:

After analysis, each entry was arranged under different headings according to subject
proposition. The advantage of this arrangement is that the entries on the same topic come
together. Then each group of entries was checked to ascertain their appropriateness and their

subject grouping within each part.

1.3.4 Consolidation:
This step entails taking the entries of one aspect under the part and then consolidation of the

abstract into a readable text; here, the references are given using serial number of the entries.

1.3.5 Organization of the Thesis:

In this thesis, chapter 1 covers objective, purpose and various Steps of the thesis and Report
preparation. Chapter 2 covers introduction of clustering, which includes Definition and
Requirements and steps of clustering. Chapter 3 covers Clustering Techniques which
includes Division and subdivision of clustering, Partition based clustering, Hierarchy based
clustering, Self Organizing Maps, and Principal Component Analysis. Chapter 4 covers
Implementation Issues which includes Distance function, Calculating the distance between
clusters, Finding the cluster centroid and choosing the distance measure. Chapter 5 covers
Applications of clustering in Biology and Marketing research. Chapter 6 covers experimental

results. Chapter 7 covers Conclusions.



Chapter 2
Introduction to Clustering

2.1 Introduction to Clustering

With the increasing demand for rich, deep, digitized content, the volume of data required by
organizations has become overwhelming, and has almost surpassed current capabilities of
most database technologies. Now with the increased prevalence of Internet and widespread
development of additional methods of content-delivery, the volume of information is
increasing in explosive proportions and presenting challenges to the information

professionals for proper packaging and delivery of significant information.

Clustering has been used since long for grouping together entities with similar traits and
classifying objects but in present context it has acquired new dimensions as a solution to the
chaos that we have on Internet, voluminous databases, and information repositories. The
reason for its increased significance is that it relies on finding natural groups in the existing
data rather than classifying them on the basis of some externally imposed artificial criteria.

Clustering techniques are applied only when there is no class to be predicted, rather when we
need to divide the instances into natural groups. These clusters presumably reflect some
mechanism at work in the domain from which instances are drawn; the mechanism causes
some instances to bear a stronger resemblance to one another than they do to the remaining
instances. However, clustering requires different techniques to the classification and

association learning methods.

There are two straightforward ways how gene expression matrices can be studied [1]
e Comparing expression profiles of genes by comparing rows in the expression
matrix and
e Comparing expression profiles of experiments by comparing columns in the

matrix.

Additionally, if the data normalization allows it, combinations of both are possible. We can
look either on similarities or differences. If two genes (rows) are similarly expressed, we can

hypothesize that the respective genes are co-regulated and possibly functionally related
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(Guild by Association) [2]. The comparison of experiments can provide us with the
information, which genes are differentially expressed in two conditions and this enables us to

study, for example, effects various compounds have on an investigated condition.

Clustering can be defined as the process of separating a set of objects into several subsets on
the basis of their similarity [8]. The aim is generally to define clusters that minimize
intracluster variability while maximizing intercluster distances, i.e. finding clusters, which
members are similar to each other, but distant to members of other clusters in terms of gene
expression based on the used similarity measurement. Two clustering strategies are possible:

supervised (based on existing knowledge) or unsupervised.

Figurel: Supervised and unsupervised data analysis.

In the unsupervised case (left) we are given data points in n-dimensional space (n=2 in the
example) and we are trying to find ways how to group together points with similar features.
For instance, there are three natural clusters in the example, each consisting of data points
close to each other in a sense of Euclidean distance. A clustering algorithm should identify
all these clusters. In the supervised case (right), the objects are labeled (e.g. we have magenta
and blue points in the example), and the task is to find a set of classification rules allowing us
to discriminate between these points as precisely as possible. For instance, dotted line in the

drawing [1].

2.2 Definition and Scope
2.2.1 Definition:



In general, the word clustering is almost synonymous with classification. But literally,
clustering is the grouping of similar objects. Such classification occurs constantly in thought
and speech. Objects that differ in insignificant details are given the same name, can be
treated the same, and can be expected to act the same. For example, a wife notices that the
man coming in the door differs only in insignificant details fro her husband that left in the
morning, and so she expects him to answer to the same name.

Clustering is a nonlinear activity that generates ideas, images and feelings around a stimulus
word. As students cluster, their thoughts tumble out, enlarging their word bank for writing
and often enabling them to see patterns in their ideas. Clustering may be a class or an

individual activity.

2

Figure2: A diagrammatic representation of clustering of similar ideas/objects into different nodes.

Other way to define is that clustering algorithms find groups of items that are similar. To
explain the above diagram, clustering could be used by an insurance company to group
customers into different nodes according to income, age, types of policies purchased and
prior claims experience. The above diagram divides a data set so that records with similar
content are in the same group, and groups are as different as possible from each other. Since
the categories are unspecified, this is sometimes referred to as unsupervised learning [3].

Further, it may also be defined as the technique of grouping records together based on their
locality and connectivity within the n-dimensional space. This is an unsupervised learning

technique [4].



So, clustering is the process of grouping a set of physical or abstract objects into classes of
similar objects. A cluster is a collection of data objects that are similar to one another with
the same cluster and are dissimilar to the objects in other clusters. A cluster of data objects

can be treated collectively as one group in many applications.

Clustering is a form of learning by observation rather than learning by examples. Cluster
analysis is an important human activity in which we indulge since childhood when we learn
to distinguish between animals and plants etc by continuously improving subconscious
clustering schemes. This has been widely used in numerous applications, including pattern

recognition, data analysis, image processing, and market research etc.

2.2.2 Scope

Clustering is a very important application area but widely interdisciplinary in nature, that
makes it very difficult to define its scope. It is used in several research communities to
describe methods for grouping of unlabeled data, now, these communities have different
terminologies and assumptions for the components of the clustering process and the contexts
in which clustering is used. The area of clustering can be comprehended in the following

way:

Cluster analysis has been studied extensively for years, focusing mainly on distance-based
cluster analysis. Many clustering tools were made based on k-means, k-medoids, and some of
the methods were incorporated in many statistical analysis software a [packages or systems
like S-plus, SPSS, and SAS. In machine learning, clustering is termed as an example of
unsupervised learning. These do not rely on predefined classes and class-labeled training

examples unlike classification.

The present active themes of research in this area focus on the scalability of clustering
methods, the effectiveness of methods for clustering complex shapes and types of data, high-
dimensional clustering techniques, and methods for clustering mixed numerical and

categorical data in large databases.

However, clustering, as a subject is still vulnerable on two fronts, i.e., the classifications
delivered are not sufficiently compelling to convince the experts always, they believe that

detailed knowledge is more important than fancy manipulation; and the second is the
8



techniques themselves are not based on sound probability model and the results many times

are poorly evaluated or turn unstable when evaluated.

2.3 Requirements and Steps of Clustering

2.3.1 Basic Requirements for Clustering are following [5]:

Scalability:

Many clustering algorithms work well on small data sets that contain less than 200 data
objects; however a large database may contain millions of objects. In that case clustering on a
sample of a given large data set may lead to biased results; and highly scalable clustering

algorithms are needed for the purpose.

Ability to deal with different types of attributes:

Many algorithms are designed to cluster interval-based (numerical) data. However,
applications may require clustering other types of data, viz. binary, categorical (nominal),

and ordinal data, or mixtures of these data types.

Discovery of clusters with arbitrary shape:

Many clustering algorithms determine clusters based on Euclidean or Manhattan distance
measures. Algorithms based on such distance measures tend to find spherical clusters with
similar size and density. However, a cluster could be of any shape, it is important to develop
algorithms that can detect clusters of arbitrary shape.

Minimal requirements for domain knowledge to determine input parameters:

Many clustering algorithms require users to input certain parameters in cluster analysis (such
as the number of desired cluster). The clustering results can be quite sensitive to input
parameters. Parameters are often hard to determine, especially for data sets containing high-
dimensional objects. This not only burdens users but also makes the quality of clustering
difficult to control.

Ability to deal with noisy data:

Most real-world databases contain outliers or missing, unknown or erroneous data. Some

clustering algorithms are sensitive to such data and may lead to clusters of poor quality.

Insensitivity to the order of input records:




Some clustering algorithms are sensitive to the order of input data; fro example, the same set
of data, when presented with different orderings to such an algorithm, may generate
dramatically different clusters. It is important to develop algorithms that are insensitive to eh
order of input.

High dimensionality:

A database or data warehouse can contain several dimensions or attributes. Many clustering
algorithms are good at handling low-dimensional data, involving only two to three
dimensions. Human eyes are good at judging the equality of clustering for up to three
dimensions. It is challenging to cluster data objects in high-dimensional space, especially

considering that such data can be very sparse and highly skewed.

Constraint —based clustering:

Real world applications may need to perform clustering under various kinds of constraints.
If one has to choose the locations for a given number of new automatic cash-dispensing
machines in a city hen to decide upon this we may cluster households while considering
constraints such as the city’s rivers and highway networks, and customer requirements per
region. A challenging task is to find groups of data with good clustering behavior that satisfy

specified constraints.

Interoperability and usability:

Users expect clustering results to be interpretable comprehensible, and usable. That is,
clustering may need to be tied up with specific semantic interpretations and applications. It is
important to study how an application goal may influence the selection of clustering

methods.

2.3.2 Clustering steps [6]:
Preprocessing and feature selection

Most clustering models assume that all data items are represented by n-dimensional feature
vectors. This first step therefore involves choosing appropriate features, and doing
appropriate preprocessing and feature extraction on data items to measure the values of the
chosen feature set. It will often be desirable to choose a subset of all the features available, to
reduce the dimensionality of the problem space. This step often requires a good deal of
domain knowledge and data analysis.

10



Similarity measure

This is a function, which takes two sets of data items as input, and returns as output a
similarity measure between them. Item-set versions use any item-item version as subroutines
and include max / min / average distance; another approach looks at the distance from the
item to the distance to the cluster representative of the set, where point representatives are
chosen as the mean vector / mean center / median center of the set, and hyperplane or
hyperspherical representatives of the set can also be used. Set-set versions include max / min

average distance, as well as item-item versions applied to the two set representatives.

Clustering algorithm

Clustering algorithms are general schemes which use particular similarity measures as
subroutines. The particular choice of clustering algorithms depends on the desired properties
of the final clustering, e.g. what are the relative importances of compactness, parsimony, and

inclusiveness? Other considerations include the usual time and space complexity.

Result interpretation and application

Typical applications of clustering include data compression (via representing data samples
by their cluster representative), hypothesis generation (looking for patterns in the clustering
of data), hypothesis testing (e.g. verifying feature correlation or other data properties through
a high degree of cluster formation), and prediction (once clusters have been formed from data
and characterized, new data items can be classified by the characteristics of the cluster to

which they would belong).

Motivation

Data analysis underlies many computing applications, either in a design phase or as part of
their on-line operations. Data analysis procedures can be dichotomized as either exploratory
or confirmatory, based on the availability of appropriate models for the data source, but a key
element in both types of procedures (whether for hypothesis formation or decision-making) is
the grouping, or classification of measurements based on either (i) goodness-of-fit to a
postulated model, or (ii) natural groupings (clustering) revealed through analysis. Cluster
analysis is the organization of a collection of patterns (usually represented as a vector of

measurements, or a point in a multidimensional space) into clusters based on similarity.

11



The variety of techniques for representing data, measuring proximity (similarity) between
data elements, and grouping data elements has produced a rich and often confusing

assortment of clustering methods.

It is important to understand the difference between clustering (unsupervised classification)
and discriminate analysis (supervised classification). In supervised classification, we are pro-
vided with a collection of labeled (reclassified) patterns; the problem is to label a newly
encountered, yet unlabeled, pattern. Typically, the given labeled (training) patterns are used
to learn the descriptions of classes which in turn are used to label a new pattern. In the case
of clustering, the problem is to group a given collection of unlabeled patterns into meaningful
clusters. In a sense, labels are associated with clusters also, but these category labels are data
driven; that is, they are obtained solely from the data.

Clustering is useful in several exploratory pattern-analysis, grouping, decision-making, and
machine-learning situations, including data mining, document retrieval, image segmentation,
and pattern classification. However, in many such problems, there is little prior information
(e.g., statistical models) available about the data, and the decision-maker must make as few
assumptions about the data as possible. It is under these restrictions that clustering
methodology is particularly appropriate for the exploration of interrelationships among the
data points to make an assessment (perhaps preliminary) of their structure. The term

"clustering™ is used in several research communities to describe

Methods for grouping of unlabeled data:

These communities have different terminologies and assumptions for the components of the
clustering process and the contexts in which clustering are used. Thus, we face a dilemma
regarding the scope of this survey. The production of a truly comprehensive survey would be
a monumental task given the sheer mass of literature in this area. The accessibility of the
survey might also be questionable given the need to reconcile very different vocabularies and
assumptions regarding clustering in the various communities.

The goal is to survey the core concepts and techniques in the large subset of cluster analysis
with its roots in statistics and decision theory. Where appropriate, references will be made to
key concepts and techniques arising from clustering methodology in the machine-learning

and other communities.

12



The audience for this paper includes practitioners in the pattern recognition and image
analysis communities (who should view it as a summarization of current practice),
practitioners in the machine-learning communities (who should view it as a snapshot of a
closely related field with a rich history of well understood techniques), and the broader
audience of scientific professionals (who should view it as an accessible introduction to a

mature field that is making important contributions to computing application areas).

2.3.3 Microarrays

Microarray technology [7] is one very promising approach for high throughput analysis and
gives the opportunity to study gene expression patterns on a genomic scale. It all began about
a quarter century ago, with Ed Southern’s key insight that labeled nucleic acid molecules
could be used to interrogate nucleic acid molecules attached to a solid support. Today,
thousands or even tens of thousands of genes can be spotted on a microscope slide. Applied
to functional genetics and mutation screening, microarrays give us the opportunity to
determine thousands of expression values in hundreds of different conditions, allowing the
contemplation of genetic processes on a whole genomic scale to determine genetic
contributions to complex polygenic disorders and to screen for important changes in potential

disease genes.

Because of the vast amount of data produced by a microarray experiment, sophisticated
software tools are used to normalize and analyze the data. First the scanned images are
analyzed using image analysis software, which evaluates the expression of a gene.

The next step is to extract the fundamental patterns of gene expression inherent in the data in
a mathematical process called clustering, which organizes the genes into biological relevant

clusters with similar expression patterns genes.

The interest is in how gene expression is changed by various diseases or compound
treatments, respectively. For example one can investigate the differences in gene expression
between a normal and a cancer cell. Several clustering techniques were recently developed
and applied to analyze microarray data [8]. However, to the best of my knowledge, there is
no single tool, which integrates the common clustering methods. Such a tool would be

valuable for comparison and evaluation of clustering algorithms and their result and would

13



help biologists to gain biological meaningful information out of microarray datasets in a less

costly way.
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Chapter 3
Clustering Techniques

3.1 Divisions and Subdivisions of Clustering

Clustering is an applied science and very methodical in approach, so, its divisions and
subdivisions can’t be defined in as concrete manner as is the case with other conventional
subjects.

However, the different methods that are applied for clustering and further analysis are used

as a basis to define its subdivisions.

Agglomerative

__ Hierarchical | FHMonotheti
Dirvisive ‘

Polythetic
___ Single-pass

| Relocation
| Non-hierarchical

| Mearest Neighbor

| Others
(e.g. Density Estimation,
Simulated Annealing
Mixture Resolution)

Figure3: Division and subdivision of clustering

To explain the above diagram, there were broadly two main subdivisions i.e., hierarchical
and non-hierarchical but in due course of time new subdivisions evolved from the above
divisions like density based methods, grid-based methods, model-based methods etc. These
subdivisions were ramifications of above main divisions only but they developed to become

independent divisions of the subject gradually [9].
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3.2 Partition based clustering:

3.2.1 Introduction

K-means [20-23] is a commonly used clustering method because it is based on a very simple
principle and provides good results. It is very similar to SOM, unsupervised, and can be seen

as a Bayesian (maximum likelihood) approach to clustering.

The basic idea is to maintain two estimates:

1. An estimate of the center location for each cluster and

2. A separate estimate of the partition of the data points according to which one goes into
which cluster.

One estimate can be used to refer the other. If we have an estimate of the center locations,
then (with reasonable prior assumptions) the maximum likelihood solution is that each data
point should belong to the cluster with the nearest center. Hence, we can compute a new
partition: from a set of center locations.

It constructs k partitions of the data given a database on n objects or data tuples; here each
partition represents a cluster and k<= n. so, it classifies the data into k groups, which together
satisfy the following requirements: Each group must contain at least one object, and Each
object must belong to exactly one group The general criterion of a good partition is that
objects in the same cluster are “close” or related to each other, whereas objects of different
clusters are “far apart” or very different. There are various other criteria for judging the
quality of partitions. Partition-based clustering requires the exhaustive enumeration of all of
the possible partitions to achieve global optimality but the clustering applications generally

adopt the popular heuristic methods. These are further divided to following types:

3.2.2 k-Means Method: Centroid-Based Technique

It takes the input parameter, k, and partitions a set of n objects into k clusters so that the
resulting intracluster similarity is high but the intercluster similarity is low. Cluster similarity
IS measured in regard to the mean value of the objects in a cluster, which can be viewed as

the cluster’s center of gravity.

But, this works well only when the mean of a cluster is defined which may not be the case in
some applications, such as when data with categorical attributes are involved. So, the

necessity for users to specify k, the number of clusters, in advance is actually a disadvantage.
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The k-means method was not suitable for discovering clusters with non-convex shapes or
clusters of very different size. Moreover, it is sensitive to noise and outlier data points since
a small number of such data can substantially influence the mean value.
Here is step by step k means clustering with flow chart:
Step 1 Begin with a decision on the value of k = number of clusters
Step 2 Put any initial partition that classifies the data into k clusters. You may assign the
training samples randomly, or systematically as the following:

1. Take the first k training sample as single-element clusters

2. Assign each of the remaining training samples to the cluster with the nearest centroid.

After each assignment, recomputed the centroid of the gaining cluster.

’
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Distance objects to
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Y
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Figure 4: Flow chart of k-mean

Step 3 Take each sample in sequence and compute its distance from the centroid of each of
the clusters. If a sample is not currently in the cluster with the closest centroid, switch this
sample to that cluster and update the centroid of the cluster gaining the new sample and the
cluster losing the sample.

Step 4 Repeat step 3 until convergence is achieved, that is until a pass through the training

sample causes no new assignments.
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3.2.3 K-means Clustering Algorithm

The essence of the k-means clustering algorithm is now to minimize the cost function of all
clusters by executing the following steps:

1. Put each vector Xi of X in one of the k clusters.

2. Calculate the mean for each of the k clusters.

3. Calculate the distance between an object and the mean of a cluster.

4. Allocate an object to the cluster whose mean is the nearest to the object.

5. Re-calculate the mean of the clusters affected by the reallocation.

6. Repeatedly perform the operations (3) to (5) until no more reallocations occur.

If the number of data is less than the number of cluster then we assign each data as the
centroid of the cluster. Each centroid will have a cluster number. If the number of data is
bigger than the number of cluster, for each data, we calculate the distance to all centroid and
get the minimum distance. This data is said belong to the cluster that has minimum distance

from this data.

Since we are not sure about the location of the centroid, we need to adjust the centroid
location based on the current updated data. Then we assign all the data to this new centroid.
This process is repeated until no data is moving to another cluster anymore. Mathematically
this loop can be proved to be convergent. The convergence will always occur if the following
condition satisfied:
1. Each switch in step 2 the sum of distances from each training sample to that training
sample’s group centroid is decreased.

2. There are only finitely many partitions of the training examples into k clusters.

3.2.4 Properties

The k-means algorithm has the following important properties:

It is efficient in processing large data sets, due to the fact that the computational complexity
of the algorithm is O(tkmn), where n is the number of vectors in X, m is the dimension of the
vectors Xi, k is the number of clusters and t is the number of iterations over the whole data
set. Usually, k, m, t« n It takes usually just a few seconds to calculate even datasets with
10000 elements and more, making it a valuable tool for the investigation of datasets that are

too big for hierarchical clustering for instance.
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Another big advantage is the moderate memory requirement for k-means clustering. Since
there is no similarity matrix to calculate the memory requirements rise with O(n). The
clusters have convex shapes. Therefore, it is difficult to use the k-means algorithm to
discover clusters with non-convex shapes. It often terminates at a local optimum. To find the
global optimum, techniques such as deterministic annealing and generic algorithms can be

incorporated with the k-means algorithm.

The major drawback of the k-means algorithm is that the number of clusters has to be
specified in advance. However, this is the only input needed for the clustering besides an
abortion criterion to prevent infinite calculation, like an input for the maximum number of

iterations to compute.

An additional advantage of k-means is the possibility to create fuzzy clusters, where one
vector can belong to more than one cluster. This is a better model for the regulatory system
that controls gene expression in a cell. One gene affects more than one other gene, i.e. it can

be part of many different pathways and therefore has to belong to different clusters or no one.

3.3 Hierarchy Based Clustering

3.3.1 Introduction

Hierarchical clustering [12-14] is an unsupervised procedure of transforming a distance
matrix, which is a result of pair wise similarity measurement between elements of a group,
into a hierarchy of nested partitions. The hierarchy can be represented with a tree-like
dendrogram in which each cluster is nested into the next cluster. Hierarchical algorithms can

be further categorized into two kinds:
3.3.2 Two Basic Types of Hierarchical Clustering

There are two types of hierarchical clustering - agglomerative and divisive. Agglomerative
clustering takes each entity (i.e. gene) as a single cluster to start off with and then builds
bigger and bigger clusters by grouping similar entities together until the entire dataset is
encapsulated into one final cluster. Divisive hierarchical clustering works the opposite way
around - the entire dataset is first considered to be one cluster and is then broken down into

smaller and smaller subsets until each subset consists of only a single entity.
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Only the agglomerative method will be explained in detail in this tutorial since it is the most
commonly used in microarray analyses. The reasons for this is mainly computational -
divisive clustering is more computationally expensive when it comes to making decisions in
dividing a cluster in two given all possible choices. On the other hand, the divisive approach
retains the 'super-structure’ (i.e. the overall structure) of the data: what this means is that one
can confidently say that the root or 'upper' levels of the dendrogram are highly representative
of the original structure of the data. This does not mean to say that the agglomerative

approach is not as robust, however.

(1) Agglomerative procedures: This procedure starts with n clusters (each object forms a
cluster containing only itself) and iteratively reduces the number of clusters by merging the
two most similar objects or clusters, respectively, until only one cluster is remaining.

(n-21).

It starts by placing each object in its own cluster and then merges these atomic clusters into
larger and larger clusters, until all to the objects are in a single cluster or until certain
termination conditions are satisfied. Most hierarchical clustering methods belong to this
category; they differ only in their definition of intercluster similarity.

For example, suppose this data is to be clustered. Where euclidean distance is the distance

metric.

® @
® ®9

Raw data

The hierarchical clustering dendrogram would be as such:
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Figure 5: hierarchical clustering dendrogram

Traditional Representation

This method builds the hierarchy from the individual elements by progressively merging
clusters. Again, we have six elements {a} {b} {c} {d} {e} and {f}. The first step is to
determine which elements to merge in a cluster. Usually, we want to take the two closest
elements, therefore we must define a distance d(elementl,element2) between elements.
Suppose we have merged the two closest elements b and ¢, we now have the following
clusters {a}, {b, c}, {d}, {e} and {f}, and want to merge them further. But to do that, we
need to take the distance between {a} and {b c}, and therefore define the distance between
two clusters. Usually the distance between two clusters A and B is one of the following:
The maximum distance between elements of each cluster (also called complete linkage
clustering):

max{d(z,y):zc A, yc B}

The minimum distance between elements of each cluster (also called single linkage
clustering):

min{d(z,y):x €A, yc B}

the mean distance between elements of each cluster (also called average linkage clustering):

The sum of all intra-cluster variance

The increase in variance for the cluster being merged (Ward's criterion)
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Each agglomeration occurs at a greater distance between clusters than the previous
agglomeration, and one can decide to stop clustering either when the clusters are too far apart
to be merged (distance criterion) or when there is a sufficiently small number of clusters

(number criterion).

(2) Divisive procedures: This procedure starts with 1 cluster and iteratively splits a cluster,
so that the heterogeneity is reduced as far as possible (1 = n). If it is possible to find a
reasonable distance definition between clusters, agglomerative procedures are less
computationally expensive than divisive procedures, since in one step two out of maximum n
elements have to be chosen for merging, whereas in divisive procedures, fundamentally all

subsets have to be analyzed so that divisive procedures have an algorithmic complexity in

the magnitude of O(2"). Agglomerative procedures have the drawback that an incorrect
merging of clusters in an early stage often yields results, which are far away from the real
cluster structure. Divisive procedures immediately start with interesting cluster arrangements
and are therefore much more robust. Usually agglomerative procedures are used because of

their efficiency.

It does the reverse of agglomerative clustering; starts with all objects in one cluster. Then, it
subdivides the cluster into smaller and smaller pieces, until each object forms a cluster on its
won or until it satisfies certain termination conditions, such as a desired number of clusters
obtained or the distance between the two closest clusters is above a certain threshold

distance.

3.3.3 Hierarchical clustering Algorithm

The procedures of agglomerative hierarchical clustering execute the following basic steps:

1. Calculate the distance between all objects and construct the similarity distance matrix.
Each object represents one cluster, containing only itself.

2. Find the two clusters rand s with the minimum distance to each other.
3. Merge the clusters r and s and replace r with the new cluster. Delete s and recalculate all
distances, which have been affected by the merge.

4. Repeat step (2) and (3) until the total number of clusters become one.

3.3.4 Amalgamation or linkage rules

At the first step, when each object represents its own cluster, the distances between those

22



objects are defined by the chosen distance measure. However, once several objects have
been linked together, a linkage or amalgamation rule is needed to determine if two clusters
are sufficiently similar to be linked together. There are numerous linkage rules that have
been proposed. Here are some of the most commonly used:

3.3.4.1 Single linkage (Minimum or nearest neighbor Method )

In this method the distance between two clusters is determined by the distance of the two
closest objects (nearest neighbors) in the different clusters. If there are several equal
minimum distances between clusters during merging, single linkage is the only well defined
procedure. Its greatest drawback is the tendency for chain building: Only one (random)
small distance is enough to enforce the amalgamation of two otherwise very different
clusters. Therefore, the resulting clusters tend to represent long “chains”. The dissimilarity
between 2 clusters is the minimum dissimilarity between members of the two clusters. This
method produces long chains which form loose, straggly clusters. This method has been

widely used in numerical taxonomy.

Nearest g
Neighbour " 4
(Single Linkage) .

Figure 6: nearest neighbor linkage graph

3.3.4.2 Complete linkage (Maximum or furthest neighbor Method)

In this method, the distances between clusters are determined by the greatest distance
between any two objects in the different clusters (i.e., by the "furthest neighbors™). Complete
linkage usually performs quite well in cases when the objects actually form naturally distinct
data clouds in the multidimensional space. If the clusters tend to be somehow elongated or

of a "chain" type nature, then this method is inappropriate. Since only one (random) large
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distance is enough to pretend two clusters from merging, clusters tend to be small and
merged together very late with a great error value. The dissimilarity between 2 groups is
equal to the greatest dissimilarity between a member of cluster i and a member of cluster j.

This method tends to produce very tight clusters of similar cases.

urthest .
eighbour .
Complete Linkage) T

Figure 7: furthest neighbor linkage graph

3.3.4.3 Average linkage method

In this method, the distance between two clusters is calculated as the average distance
between all pairs of objects in the two different clusters. This method is very efficient when
the objects form natural distinct "clumps,” however, it performs equally well with elongated,
"chain” type clusters. Since the distance between two clusters lies between the minimum
formation of single linkage and the maximum formation of complete linkage this procedure
empirically shows no tendencies to either extreme described above, and is therefore more
stable to unknown data point distributions. Admittedly, if there are several equal distances,
the sequence of the amalgamation is critical. Note that the abbreviation UPGMA is used as

well to refer to this method as unweighted pair-group method using arithmetic averages.

This method is identical to the unweighted pair-group average method, except that in the
computations, the size of the respective clusters (i.e., the number of objects contained in
them) is used as a weight. Thus, this method (rather than the previous method) should be

used when the cluster sizes are suspected to be greatly uneven.

The dissimilarity between clusters is calculated using average values. Unfortunately, there
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are many ways of calculating an average. The most common (and recommended if there is
no reason for using other methods) is UPGMA - Unweighted Pair-Groups Method
Average. The average distance is calculated from the distance between each point in a
cluster and all other points in another cluster. The two clusters with the lowest average

distance are joined together to form the new cluster.

Average o

(only shown for

2 cases) N
g ¥
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Figure 7: Average linkage graph
The + signs mark the centers of the two clusters.
3.3.4.4 Centroid linkage method

The centroid of a cluster is the average point in the multidimensional space defined by the
dimensions. In a sense, it is the center of gravity for the respective cluster. In this method, the

distance between two clusters is determined as the difference between centroids.

This method is identical to the previous one, except that weighting is introduced into
computation to take into consideration differences in cluster sizes. There are other methods
based on CENTROID and MEDIAN averages. Centroid, or UPGMC (Unweighted Pair-
Groups Method Centroid), uses the group centroid as the average. The centroid is defined as
the centre of a cloud of points. A problem with the centroid method is that some switching
and reversal may take place, for example as the agglomeration proceeds some cases may
need to be switched from their original clusters. This makes interpretation of the dendrogram

quite difficult.
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Figure 9: centroid linkage graph
The + signs mark the centres of the two clusters.

3.3.5 Properties

Hierarchical clustering is the most commonly used clustering strategy for gene expression
analysis at the moment. The biggest advantage is that aside: from a choice of the
amalgamation rule and the type of similarity distance measurement, no further parameters
have to be specified. The result is a reordered set of genes and/or experiments, where similar
vectors are close to each other in the tree structure and the distance between vectors and
clusters is encoded in the branch length of a sub tree. This not only allows estimation of the
similarity of neighboring genes, but also of the distance between distant vectors. This is
helpful if someone is more interested in distances rather than similarities between two or

more investigated conditions.

Hierarchical clustering just rearranges the dataset to a new, better ordered set of data vectors,
therefore clusters have to be specified by the user by selecting a subtree as a cluster. A
second drawback is the computational complexity. Large datasets are difficult or impossible
to calculate due to the vast amount of necessary memory for the similarity matrix and the
calculation time needed. Datasets with more than 20.000 vectors are manageable just by

very advanced computer hardware.

The software discussed in this paper is able to calculate Single Linkage, Complete Linkage
26



and Unweighted Average Linkage Clustering on both the genes and the experiments.

3.4 Self Organizing Maps
3.4.1 Introduction

One of the most popular neural network models today is the principle of a Self-
Organizing Map (SOM)[15-19], developed by professor Kohonen at the University of
Helsinki. A SOM is basically a multidimensional scaling method, which thesis data
from input space to a lower dimensional output space. The SOM algorithm is based on

unsupervised competitive learning, which means that the training is entirely data-driven

and needs no further information.

A SOM is formed of neurons located in a regular, usually 1- or 2-dimensional grid.
Each neuron i of the SOM is represented by an n-dimensional weight or reference
vector. The neurons of the map are connected to adjacent neurons by a neighborhood
relation dictating the structure of the map. Usually the map topology is rectangle or

hexagonal. The number of neurons determines the granularity of the resulting mapping,

which affects the accuracy and the generalization capability of the SOM.
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(a) Hexagonal grid (b) Rectangular grid

Figure 10: In the 2-dimensional case the neurons of the map can be arranged either on a

rectangular or hexagonal lattice. Neighborhoods (size 1, 2 and 3) of the unit marked with

black dot.
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3.4.2 Initialization
In the basic SOM algorithm, the topological relations and the number of neurons are fixed
from the beginning. The number of neurons should be the number of clusters expected, with
the neighborhood size controlling the smoothness and generalization of the mapping. Before
the training phase, initial values are given to a weight vector, defined for each neuron. The
SOM is robust regarding the initialization, but properly accomplished, it allows the algorithm
to converge faster to a better solution. The two following initialization procedures are used:
e Random initialization, where the weight vectors are initialized with small
random values between the minimum and maximum values of the vector.
e Random Gene initialization, where the weight vectors are initialized with
random sample vectors from the training dataset.

3.4.3 SOM - Architecture
Lattice of neurons (‘nodes’) accepts and responds to set of input signals. Responses
compared; ‘winning’ neuron selected from lattice. Selected neuron activated together with

‘neighbourhood’ neurons. Adaptive process changes weights to more closely resemble inputs
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2d array of neurons

)/ g g\\) Weighted synapses

x, Set of input signals

(connected to all neurons in lattice)

Figure 11: SOM-Lattice of neurons
3.4.4 Self Organizing Maps Algorithm:
1. Randomly initialise all weights
2. Select input vector x = [x1, X2, X3, ..., Xn]
3. Compare x with weights wj for each neuron j to determine winner
4. Update winner so that it becomes more like x, together with the winner’s neighbours
5

. Adjust parameters: learning rate & ‘neighbourhood function’
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6. Repeat from (2) until the map has converged (i.e. no noticeable changes in the

weights) or pre-defined no. of training cycles have passed.

Initialisation

(i) Randomly initialise the weight vectors wj for all nodes j:

Input vector

(if) Choose an input vector x from the training set:

Finding a Winner

(iii) Find the best-matching neuron w(x), usually the neuron whose weight vector has
smallest Euclidean distance from the input vector x:

The winning node is that which is in some sense “closest’ to the input vector

‘Euclidean distance’ is the straight line distance between the data points, if they were plotted
on a (multi-dimensional) graph.

Euclidean distance between two vectors a and b, a = (al,a2,...,an), b = (b1,b2,...bn), is

calculated as:

Weight Update-SOM Weight Update Equation

Wj(t +1) = wj(t) + p(t) Ao(x)(.t) [x - wj(t)]

“The weights of every node are updated at each cycle by adding

Current learning rate x Degree of neighbourhood with respect to winner x Difference

between current weights and input vector to the current weights”

3.5 Principal Component Analysis

3.5.1 Introduction

Principal Component Analysis (PCA) [24-26], also known as Singular Value Decomposition
(SVD) is an exploratory multivariate statistical technique that allows the identification of
key variables (or combinations of variables) in a multidimensional data set that best explains
the differences between observations. Given m observations (experiments) on n variables
(genes), the goal of PCA is to reduce the dimensionality of the data matrix by finding r<=n

new variables. These r principal components account together for as much of the variance in
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the original n variables as possible while remaining mutually uncorrelated and orthogonal.

3.5.2 Mathematical background

Consider m observations on n random variables represented by the matrix X. D is a distance
matrix of the input matrix X. Let P denote a (m x m) matrix of unknown coefficients such
that the quadratic form PTDP is maximized subject to the constraint pTp = I. This is

equivalent to maximizing the Lagrangean expression

®=PDP-AI(P'P-T)

Differentiating with respect to P and setting the equation to zero we are receiving

E}E:ED—;’/’LP=0
dP

(D-AI)P=0

The normal equations yield estimates for Eigenvalues and Eigenvectors. To compute the
principal components, the m Eigenvalues and their corresponding Eigenvectors are
calculated from the (m x m) distance matrix D using for example Singular Value
Decomposition (SVD). When D is nonsingular, all latent roots are strictly positive and each.

Eigenvector defines a principal component.

SVD methods are based on the following theorem of linear algebra: Any (n x m) matrix A
whose number of rows n is greater than or equal to its number of columns m, can be written
as the product of a (n x m) column-orthogonal matrix U, a (m x m) diagonal matrix W with
positive or zero elements (the singular values), and the transpose of an (m x m) orthogonal

matrix V.
A=TwWV?

SVD now explicitly constructs orthonormal bases for the nullspace and range of a matrix.
Specifically, the columns of U whose same-numbered elements Wj are nonzero are an

orthonormal set of basis vectors that span the range; the columns of V whose same-
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numbered elements Wj are zero are an orthonormal basis for the nullspace.

The matrices U and V are each orthogonal in the sense that their columns are
orthonormal.

uTu =vTv=vvT=1
The vectors of U contain our Eigenvectors and the diagonal elements of W contain the
corresponding Eigenvalues. Now the Eigenvectors of U are ordered regarding the value of
their corresponding Eigenvalues. Each Eigenvector defines a principal component. Principal
Component 1 (PC1) is the Eigenvector with the greatest Eigenvalue; PC2 is the Vector with

the 2nd largest Eigenvalue and so on.

The new ordered U matrix is the requested matrix P of equation; W contains the Eigenvalues
00.1. Since U is an orthonormal matrix, it can be seen as a Transformation matrix, which
transforms a vector from the input space into the space spanned by the Principal
Components.

Y=XU

Each component can be viewed as a weighted sum of conditions, where the coefficients of
the Eigenvectors are the weights. The decision of gene i along the axis defined by the jth

principal component is:
L
.1| if = Z '1'.".'“”
r=.

Where Ut is the tth coefficient for the jth principal component; Xj is the expression

measurement for gene i under the tth condition. Y represents the data in terms of principal
components and is a rotation of the data: from the original space of observations to a new

space with principal component axes (PC Space).

The variance accounted for by each of the components is its associated Eigenvalue; it is the
variance of a component over all genes. Consequently, the Eigenvectors with large
Eigenvalues are the ones that contain most of the information; Eigenvectors with small

Eigenvalues are uninformative.
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3.5.3 Properties

Principal Component Analysis can be used to retrieve the basic patterns of gene expression
contained in a given study. It eliminates the noise part of the dataset and concentrates on the
most variant aspects of the investigated observation. PCA can also be applied to study
clusters of genes from other calculations in PC space. If the clusters are well self-contained,
they are usually better than clusters that are spread across the PC Space. It has to be
mentioned at this place, that normalizing data adjustments remove a lot of the variation in the
dataset and therefore impair the PCA. Normalization tends to thesis the genes/experiments on
a circular or spherical shape in the PC Space. Since this is an exact mathematical calculation,
no parameters have to be specified.
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Chapter 4
Implementation Issues

Clustering is widely used in gene expression data analysis. By grouping genes together based

on the similarity between their gene expression profiles, functionally related genes may be

found. Such a grouping suggests the function of presently unknown genes.

The Clustering is a collection of numerical routines that implement the clustering algorithms

that are most commonly used. The routines can be applied both to genes and to arrays. The

clustering algorithms are:

Hierarchical clustering (pairwise centroid-, single-, complete-, and average-
linkage);

k-means clustering;

Self-Organizing Maps;

Principal Component Analysis.

To measure the similarity or distance between gene expression data, eight distance measures

are available:

Pearson correlation;

Absolute value of the Pearson correlation;

Uncentered Pearson correlation (equivalent to the cosine of the angle
between two data vectors) ;

Absolute uncentered Pearson correlation (equivalent to the cosine of the
smallest angle between two data vectors);

Spearman'’s rank correlation;

Kendall's T;

Euclidean distance;

Harmonically summed Euclidean distance;

City-block distance.
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4.1 Distance Function
In order to cluster gene expression data into groups with similar genes or microarrays, we
should first define what exactly we mean by similar. In the C Clustering Library, eight

distance functions are available to measure similarity, or conversely, distance [27]:

'c’ Pearson correlation coefficient;
a’ Absolute value of the Pearson correlation
coefficient;
u' Uncentered Pearson correlation (equivalent to the cosine of the angle between

two data vectors);

X Absolute uncentered Pearson correlation;

's' Spearman'’s rank correlation;

k' Kendall's T;

‘e’ Euclidean distance;

'h' Harmonically summed Euclidean
distance;

b’ City-block distance.

The first six of these distance measures are related to the correlation coefficient, while the
remaining three are related to the Euclidean distance. The characters in front of the distance
measures are used as mnemonics to be passed to various routines in the Clustering.

One of the properties one would like to see in a distance function is that it satisfies the

triangle inequality:

d{uw.v) <d(ww)+d(ww) for all n, v, w.

In everyday language, this equation means that the shortest distance between two points is a
straight line. Correlation-based distance functions usually define the distance d in terms of

the correlation r as
d=1-r;

All correlation-based similarity measures are converted to a distance using this definition.

Note that this distance function does not satisfy the triangle inequality. As an example, try

u= (11 01'1)’
v=(1,10)
w=(0,1,1);
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Using the Pearson correlation, we find d (u, w) = 1.8660 while d (u, v) + d (v, w) = 1.6340.
None of the distance functions based on the correlation coefficient satisfy the triangle in-
equality; this is a general characteristic of the correlation coefficient. The Euclidean distance
and the city-block distance, which are metrics, do satisfy the triangle inequality. The

correlation-based distance functions are sometimes called semi-metric.

4.2 Data Handling

The input to the distance functions contains two arrays and two row or column indices,
instead of two data vectors. This makes it easier to calculate the distance between two
columns in the gene expression data matrix. If the distance functions would require two
vectors, we would have to extract two columns from the matrix and save them in two vectors
to be passed to the distance function. In order to specify if the distance between rows or
between columns is to be calculated, each distance function has a flag transpose. If transpose
==0, then the distance between two rows is calculated. Otherwise, the distance between two

columns is calculated.

4.3 Weighting

For most of the distance functions available in the Clustering, a weight vector can be applied.
The weight vector contains weights for the elements in the data vector. If the weight for
element i is Wi, then that element is treated as if it occurred Wi times in the data. The weights
do not have to be integers. For the Spearman rank correlation and Kendall's T, discussed
below, the weights do not have a well-defined meaning and are therefore not implemented.

4.4 Missing Values

Often in microarray experiments, some of the data values are missing. In the distance
functions, we therefore use an additional matrix mask which shows which data values are
missing. If mask [i] [j] ==0, then data [i] [j] is missing, and is not included in the distance

calculation.

4.5 The Pearson Correlation Coefficient

The Pearson correlation [11] coefficient is defined as

lew/{z;— T Yy — 1
F.:_Z(w )( )
n Oz oy
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in which x, yare the sample mean of X and y respectively, and (Ix, (ly are the sample standard
deviation of x and y. The Pearson correlation coefficient is a measure for how well a straight
line can be fitted to a scatterplot of x and y. If all the points in the scatterplot lie on a straight
line, the Pearson correlation coefficient is either +1 or -1, depending on whether the slope of
line is positive or negative. If Pearson correlation coefficient is equal to zero, there is no
correlation between x and y. The Pearson distance is then defined as

iipEl—J"‘.

As the Pearson correlation coefficient lies between -1 and 1, the Pearson distance lies
between 0 & 2. The Pearson correlation automatically centers the data by subtracting the
mean, and normalizes them by dividing by the standard deviation. While such normalization
may be useful in some situations (e.g., when clustering gene expression levels directly
instead of gene expression ratios), information is being lost in this step. In particular, the
magnitude of changes in gene expression is being ignored. This is in fact the reason that the

Pearson distance does not satisfy the triangle inequality.

4.6 Absolute Pearson Correlation

By taking the absolute value of the Pearson correlation, we find a number between zero and
one. If the absolute value is one, all the points in the scatter plot lie on a straight line with
either a positive or a negative slope. If absolute value is equal to zero, there is no correlation

between x and y. The distance is defined as usual as
da=1—|r|.

where r is the Pearson correlation coefficient. As the absolute value of the Pearson corre-
lation coefficient lies between 0 and 1, the corresponding distance lies between 0 and 1 as
well. In the context of gene expression experiments, note that the absolute correlation is
equal to one if the gene expression data of two genes microarray have a shape that is either
exactly the same or exactly opposite. The absolute correlation coefficient should therefore be

used with care.

4.7 Uncentered Correlation (cosine of the angle)

In some cases, it may be preferable to use the uncentered correlation instead of the regular
Pearson correlation coefficient. The uncentered correlation is defined as
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This is the same expression as for the regular Pearson correlation coefficient, except that the
sample means x, y are set equal to zero. The uncentered correlation may be appropriate if
there is a zero reference state. For instance, in the case of gene expression data given in terms
of log-ratios, a log-ratio equal to zero corresponds to the green and red signal being equal,
which means that the experimental manipulation did not affect the gene expression.

The distance corresponding to the uncentered correlation coefficient is defined as

(4'1.[_'. =1- 11,

where ru is the uncentered correlation. As the uncentered correlation coefficient lies between
-1 and 1, the corresponding distance lies between 0 and 2.

The uncentered correlation is equal to the cosine of the angle of the two data vectors in n-
dimensional space, and is often referred to as such. (From this viewpoint, it would make

more sense to define the distance as the arc cosine of the uncentered correlation coefficient).

4.8 Absolute uncentered correlation

As for the regular Pearson correlation, we can define a distance measure using the absolute

value of the uncentered correlation:
'(I.'—\L.U =1- |i"{_r| .

where ru is the uncentered correlation coefficient. As the absolute value of the uncentered
correlation coefficient lies between 0 and 1, the corresponding distance lies between 0 and 1

as well. Geometrically, the absolute value of the uncentered correlation is equal to the cosine
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between the supporting lines of the two data vectors (i.e., the angle without taking the
direction of the vectors into consideration).

4.9 Spearman rank correlation

The Spearman rank correlation is an example of a non-parametric similarity measure. It is
useful because it is more robust against outliers than the Pearson correlation.

To calculate the Spearman rank correlation, we replace each data value by their rank if we
would order the data in each vector by their value. We then calculate the Pearson correlation

between the two rank vectors instead of the data vectors.

Weights cannot be suitably applied to the data if the Spearman rank correlation is used,
especially since the weights are not necessarily integers. The calculation of the Spearman
rank correlation in the C Clustering Library therefore does not take any weights into con-
sideration. As in the case of the Pearson correlation, we can define a distance measure

corresponding to the Spearman rank correlation as

ds =1—rg

Where rgis the Spearman rank correlation.

410 Kendall'sT

Kendall's T is another example of a non-parametric similarity measure. It is similar to the
Spearman rank correlation, but instead of the ranks themselves only the relative ranks are
used to calculate T. As in the case of the Spearman rank correlation, the weights are ignored

in the calculation. We can define a distance measure corresponding to Kendall's T as

dg =1 —T.

As Kendall's T is defined such that it will lie between -1 and 1, the corresponding distance

will be between 0 and 2.

4.11 Euclidean distance

The Euclidean distance is a true metric, as it satisfies the triangle inequality. The Euclidean
distance is defined as
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In this formula, the expression data Xi and Yi are subtracted directly from each other. We
should therefore make sure that the expression data are properly normalized when using the
Euclidean distance, for example by converting the measured gene expression levels to log-

ratios. Unlike the correlation-based distance functions, the Euclidean distance takes the mag-
nitude of the expression data into account.

4.12 Harmonically summed Euclidean distance

The harmonically summed Euclidean distance is a variation of the Euclidean distance, where

the terms for the different dimensions are summed inversely (similar to the harmonic mean):

e

i=1

The harmonically summed Euclidean distance is more robust against outliers compared to the
Euclidean distance. Note that the harmonically summed Euclidean distance is not a metric.

For example, consider

This vields d (w., v) = 1 while d (w. w) 4+ d (w.v) = 0,

4.13 City-block distance

The city-block distance, alternatively known as the Manhattan distance, is related to the
Euclidean distance. Whereas the Euclidean distance corresponds to the length of the shortest
path between two points, the city-block distance is the sum of distances along each

dimension:

n
d = Z |z — s -
i=1
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This is equal to the distance you would have to walk between two points in a city, where you
have to walk along city blocks. The city-block distance is a metric, as it satisfies the triangle
inequality. As for the Euclidean distance, the expression data are subtracted directly from

each other, and we should therefore make sure that they are properly normalized.

4.14 Calculating the distance between clusters

In the hierarchical clustering methods, the distance matrix between all genes or microarrays
is first calculated, and at successive steps of the algorithm the new distance matrix is calcu-
lated from the previous distance matrix. In some cases, however, we would like to calculate
the distance between clusters directly, given their members. For this purpose, the function
clusterdistance can be used. This function can also be used to calculate the distance between
two genes and microarrays by defining two clusters consisting of one gene/microarray each.
The distance between two clusters can be defined in several ways. The distance between the
arithmetic means of the two clusters is used in pairwise centroid-linkage clustering and in k-
means clustering. For the latter, the distance between the medians of the two clusters can be
used alternatively. The shortest pairwise distance between elements of the two clusters is
used in pairwise single-linkage clustering, while the longest pairwise distance is used in
pairwise maximum-linkage clustering. In pairwise average-linkage clustering, the distance
between two clusters is defined as the average over the pairwise distances.

Prototype

deubls clusterdistance (int arews, lnt ncelumms, deubles# data, lnt#= mask,
deubls welight[1, int ai, int 22, int Indexi [0, int imdex2[], c¢har dist, char

method, 18t transpose);
returns the distanee between two clusters,

Arguments
* 1Lt Rrows:

The puaber of rows in the date matvix. equal to the number of penes n the gene
expression experiment.
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¢ 1Nt ReolUmNRS;
The number of eoluwnns in the date matyix, eqmal to the nmnber of mivosrrars in the
gene AxRpression axperiment,

¢ deoublet® data;
The data array eemtaining the sene sspression daka Gienes are skores] rerr-wise. while
mioroarreys ave stoved colunm-wise, Dimension: [arews 1 meelvmne].

e intkE mask;
This aray shows which elments in the dafa srvey, if any. are missing,. If
mask [1] [11==0, then data [i] [J] is missing. Dimension: [arews] [acolumns].

e deuble welght[1;
The weights that are need to caleulate the distanee. Dimension: [neelumne] if traas-
pose==0; [rews] if transparse==1.

¢ int pl;
‘Ihe nomber of elements in the first eluster,

e 1nt n2;
The nunber of elements in the second elnster,

¢ int indexill;
Contains the indeces of the elements belonging to the fivst eluster, Dimension: [all.

4.15 Random Number Generator

¢ 1ut Index2(1;:

Comtaing the indecss of the elements belonging to the secend eluster, Dimensions [22].
¢ char dist:;

Specities which distance measure is used, See Chapter 2 [Distance functions], page 2.
¢ char method;

Specilles how the distance between olusters is deflned:

‘a Distonee hefwesn the fwo eluster centraids tarithmetio mesn);

o Distonee hetwesn the fwo eluster centroids (median);

gl Shertest pairwise distance between elements in the iwo elusters;

4 Lemgest pairwize distance between elements in the two clusters:

w Avernge over the paliwise distances betbween elements in the two elusters,

¢ 1ut tramspeose;
If transpose==0, the distances between pows in the date matrix are eclouated. Oth.
erwige, the distances Detween columns are ealoulsted,

The random number generator in the Clustering is used to initialize the kmeans clustering
algorithm and Self-Organizing Maps (SOMs), as well as to randomly select a gene or
microarray in the calculation of a SOM. This random number generator needs two seeds for
initialization, for which we used the standard C random number generator srand. We
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initialize srand with the epoch time in seconds. The first two random numbers generated by

srand are then used as seeds for the ranlib random number generator.

4.16 The Distance Matrix

The first step in clustering problems is usually to calculate the distance matrix. This matrix
contains all the distances between the items that are being clustered. As the distance
functions are symmetric, the distance matrix is also symmetric. Furthermore, the elements on
the diagonal are zero, as the distance of an item to itself is zero. The distance matrix can
therefore be stored as a ragged array, with the number of columns in each row equal to the
(zero-offset) row number. The distance between items i and j is stored in location

[i] [j1if j <i, in [j] [i] if j > i, while it is zero if j = i. Note that the first row of the distance
matrix is empty. It is included for computational convenience, as including an empty row

requires minimal storage.

4.17 Partitioning Algorithms
Partitioning algorithms divide items into k clusters such that the sum of distances over the
items to their cluster centers is minimal. The number of clusters k is specified by the user. In

the C Clustering Library, three partitioning algorithms are available:

o k-means clustering

o k-medians clustering

o k-medoids clustering
Prototype
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doublet® distancematrix (int arews. int neelumns, doublet* data, lnts+ mask,
double weighs [, char dist, int transpesel:
retirns the distanse wakvis stoved as o enssed arvap

Arguments

v ARt arows
The nmnber of rows in the dota matviz. equal to the mumwer of genss in the gme
expression experiment.

¢ 10t ncolumns:
The pomber of eolwnmns in the data matyiz. equal to the pmuber of microarrays in the
gee expression experiment,

¢ double#® data;
The data arrop confaining the gene expression date. Genes are stored row-wise, while
wierearrars are seved rolmane-wise. Thmension: Inrewa] [ncelumnal.

¢ IntEE mask:
This arroy shows which elements in the defe avey, If anp. ave missing, If
masgk [11 [11==0. then data (1] [}] is missing. Dimension: [crews] [(acelumns].

¢ deuble weight [1;
The waights that are nsed o enkulate the distance, Dhmension: lacelumnz] if trans-
pese==0; [arews] if transpose=—L1.

¢ char dist:
Specifies which distance measure Is used, See Chapter 2 [Distance funetiond. page 2,

e 1nt tramnspese:;
If transpose==0Q, the distances Detween the s in the data makvix e ealoulated,
Otherwrise, the distances between the colunmns are calmlated,

These algorithms differ in how the cluster center is defined. In k-means clustering, the cluster
center is defined as the mean data vector averaged over all items in the cluster. Instead of the
mean, in k-medians clustering the median is calculated for each dimension in the data vector.
Finally, in k-medoids clustering the cluster center is defined as the item which has the
smallest sum of distances to the other items in the cluster. This clustering algorithm is
suitable for cases in which the distance matrix is known but the original data matrix is not
available, for example when clustering proteins based on their structural similarity.
The expectation-maximization (EM) algorithm is commonly used to find the partitioning into
k groups. The first step in the EM algorithm is to create k clusters and randomly assign items
(genes or microarrays) to them. We then iterate:

e Calculate the centroid of each cluster;

e For each item, determine which cluster centroid is closest;

e Reassign the item to that cluster.

The iteration is stopped if no further item reassignments take place.
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As the initial assignment of items to clusters is done randomly, usually a different clustering
solution is found each time the EM algorithm is executed. To find the optimal clustering
solution, the k-means algorithm is repeated many times, each time starting from a different
initial random clustering. The sum of distances of the items to their cluster center is saved for
each run, and the solution with the smallest value of this sum will be returned as the overall

clustering solution.

How often the EM algorithm should be run depends on the number of items being clustered.
As a rule of thumb, we can consider how often the optimal solution was found. This number
is returned by the partitioning algorithms as implemented in this library. If the optimal
solution was found many times, it is unlikely that better solutions exist than the one that was
found. However, if the optimal solution was found only once, there may well be other

solutions with a smaller within-cluster sum of distances.

4.17.1 Initialization

The k-means algorithm is initialized by randomly assigning items (genes or microarrays) to
clusters. Special care should be taken to ensure that no empty clusters are produced. This is
done by first choosing k items randomly and assigning each of them to a different cluster.
The remaining items are then randomly assigned to clusters. Each cluster is thus guaranteed

to contain at least one item.

Prototype
vold rapdemassign (int pclusters, 1Nt nelements, IRt clusterid([1):

Arguments

¢ 1Nt nclusters:
The number of clusters.

* 1INt nelements:
The mumber of elemnents (genes or microarrays) to he cluskered.

e 1t clusterid[];
The eluster mumbey o which each elenent was assioned, Space for this airay shonld
b allocated before calling randemassign. Dhmension: [nelemental.

4.18 Finding the Cluster Centroid

The centroid of a cluster can be defined in different ways. For k-means clustering, the

centroid of a cluster is defined as the mean over all items in a cluster for each dimension
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separately. For robustness against outliers, in k-medians clustering the median is used
instead of the mean. In k-medoids clustering, the cluster centroid is the item with the
smallest sum of distances to the other items in the cluster. The C Clustering Library provides

routines to calculate the cluster mean, the cluster median, and the cluster medoid.

4.18.1 Finding the cluster mean

The routine getclustermean calculates the centroids of the clusters by calculating the mean
for each dimension separately over all items in a cluster. Missing data values are not
included in the calculation of the mean. Whether the cluster means have a missing value is
stored in an array cmask. If for cluster i the data values for dimension j are missing for all
items, then cmask [i] [j] (or cmask [j] [i] if transpose==1) is set equal to zero. Otherwise, it

is set equal to one.
Prototype

vold cetolustermean (IRt nelusters, IRG nrewe. IRt poclumms, doubles+ data,
intty Bask, 1ot clusterid (), doublett cdata, 10T+t CRasE, 1IN ransposec );

Arguments

o IOt nclusters:
The numbsy of elusters,

* IRt Drowe;
The mumber of rovs in the data matilx, egual te the mmbes of genes In the gome

cepression experiment.
. nooluams |

The number of eolumnns in the data matiz, equal to the puaber of wicrearmes in the
genie expression sxperinent.

o doubletd datal
The data sitay containing the geme sxpreszion dasa. Cenes are stored row-wise, while
microarrays are stoved eolmmrwise. THmension: lorowe] [peeluns].

* intet Bask )
This srrey slwws whith elenwnts in the dete armg, f ane are mising. If
mask L2 L37==q, then darali10] & missing Dinension: Conrews) lreolumms].

« int elusterddOl;
The claster number to swhich ezch item belongs, Each emment in thils arrse should
e Detwern 0 and pelusters-1 inclusive. Dimewsion: [arews] il transpose=-0, w
lopeelumns] if transpese=—-1.

¢ doublett odata;
Thiz matyix stores the eentreld {nformation. Bpace for this matix should be alle
eated before caling gevelustermsan. Dimension: (pelusters) locolumms) if trans-
pose==0 (row-wise clustering), or Corows) aelusters] if transpese=1 feolumn-
wizr clusterings,

« Intes omask s
Thiz matilx stores which walus o edeta are wissing. I cmask (L1 Cil==(, then

gdatati1 01 ¥ wmisslg, Space for omask should b alleeated before eallingS
getelustermean. Dimension: [melusters]lneclumns] if transpese==0 (tow-wise

elustesing), oF larews] [nelusters) if sramspese==1 (coumun-wis elustering).



* IRG Granspese !
This flag indicates whether row-wke tgone) o eolumn-wise (mieromiray! clustering
iz being performed. X transpose=0. jows (genest aje being clustered. Otherwise,
eolumans (mderosipars! are being clusteged,

4.18.2 Finding the Cluster Median

The routine getclustermedian calculates the centroids of the clusters by calculating the
median for each dimension separately over all items in a cluster. Missing data values are
not included in the calculation of the median. Whether the cluster medians have a missing
value is stored in an array cmask. If for cluster i the data values for dimension j are
missing for all items, then cmask [i] [j] (or cmask [j] [i] if transpose ==1) is set equal to
zero. Otherwise, it is set equal to one. Calculating the median may take significantly

longer than calculating the mean.

Prototype

vold gevelustereedian (nt nelusters, ot nrows, int ooelume, double=+ data,
inves magh, inv elusterid D , douklest cdava, 104+ Cmasi, 10T ranspess);

46



Arguments

* iRV aelusters:
The numbsy of elusters.

* IRt DEOWE;
The number of rovs in the data matiix, equal to the muuber of genes in the gene
expression experiment,

s IRt Dol USRS ;
The numbes of eolumns in the data matiix, equal to the mumbes of mierosrres in the

geme expression expesiment.

o doublett datal
The datas syvay containing the gene cgpyession data, GQenes are steyed row-wise, while
mieroarrags ave stored eolumn-wise, DHuension: [arews] Cucolumms].

* IntEs mask !
Thiz arrey shows which elments i the date arrey If any are mising, I
gagk G 031=—=%, then datalil 0] i& missing. Dimension (arows) [Reclumns].

e Int clusteridO;
The cluster number to which each itemn belengs, Hach olement in this arre shieuld
b between 0 and pelusters-1 inclusive. Dimeision: [arews) if trapspose==0. oF
lneeluame] if transpose==1.

e doublett gdata;

Thiz matrlx stores the eentrold information. Space for this matrix should be alloeated
before calling eetelusternedian. Dimension: [nelusters) [peclumms) if trams-

poge==¢ (row-wise elustering), or Carowsl [eolusters] if transpese=—1 feolunnr
wise clusteringl,

+ 1t transposs )
Tais flag indizates whether mor-ve (gene) of eolunm-wise fmicroairay! clustering
iz being perfeemed. L transpose=—0, 1ows (zenes) aie belng clustered. Otherwise.

celwmns {microavays! are being clustered,

4.18.3 Finding the Cluster Medoid

The cluster medoid is defined as the item which has the smallest sum of distances to the
other items in the cluster. The getclustermedoid routine calculates the cluster centroids,
given to which cluster each item belongs. The centroid is defined as the item with the

smallest sum of distances to the other items.

Frototype

veld getclustermedeidiint pclusters, iRt pelements, doublsss distancs, iat
elpsatorid] « Int gcentrolids ] . denble errora ] X
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Argumeits

¢ 10T Dol usters H
The mumber of elusters.

& 10T nelsments !
The total number of elements that are being clusteged.

o doubless diztmatrix:
The distanes matriz. The distance matiix b= srmmetrie and has zevos on the diagonal,
To save space, the distanes matyix = stored as 2 ragged array. Dimersion: [pele-
ments] [ as a ragged sivar. The munber of eolumns in each yow Is equal to the yow

nmumbes (stayting from zesol. Aecordingly, the first jow aleaws has zevo eolumns.

e 1ot clusterid [;
The clustey mumbes to which cach odoment belenge, Dimension: [nelonsens].

s 10t cemtroidl;
Foy each custer, the clement of the item that was determined te be s centyodd. Di
menslon: jeefustors],

« int errors [
For each eluster, the sum of distances betweon the ibeins belonging to the clster and
the cluster contyoid. Dimension: [nefusterd].

4.19 The EM Algorithm

The EM algorithm as implemented in the Clustering first randomly assigns items to clusters

using randomassign, followed by iterating to find a clustering solution with a smaller within-

cluster sum of distances. During the iteration, first we find the centroids of all clusters, where

the centroids are defined in terms of the mean, the median, or the medoid. The distances of

each item to the cluster centers are calculated, and we determine for each item which cluster

is closest. We then reassign the items to their closest clusters, and recalculate the cluster

centers.

All items are first reassigned before recalculating the cluster centroids. This has two

consequences:

If unchecked, clusters may become empty if all their items are reassigned. For k-
means and k-medians clustering, the EM routine therefore keeps track of the number
of items in each cluster at all times, and prohibits an item to be reassigned to a
different cluster if that would cause its current cluster to become empty. For k-
medoids clustering, such a check is not needed, as the item that functions as the
cluster centroid has a zero distance to itself, and would therefore not be reassigned to
a different cluster anyway.

In principle, the order in which items are reassigned to clusters does not matter.
However, since we force an item to stay in a cluster if it is the last remaining item,
for k-means and k-medians clustering we need to randomize the order anyway to
ensure that not always the same items are forced to stay in a cluster. For k-medoids

clustering, no such randomization is needed.
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The EM algorithm terminates when no further reassignments take place. We noticed,
however, that for some sets of initial cluster assignments, the EM algorithm fails to converge
due to the same clustering solution reappearing periodically after a small number of iteration
steps. In the EM algorithm as implemented in the Clustering, the occurrence of such periodic
solutions is checked for. After a given number of iteration steps, the current clustering result
is saved as a reference. By comparing the clustering result after each subsequent iteration
step to the reference state, we can determine if a previously encountered clustering result is
found. In such a case, the iteration is halted. If after a given number of iterations the
reference state has not yet been encountered, the current clustering solution is saved to be
used as the new reference state. Initially, ten iteration steps are executed before resaving the
reference state. This number of iteration steps is doubled each time, to ensure that periodic
behavior with longer periods can also be detected.

4.19.1 Finding the Optimal Solution

K-means and k-medians

The optimal solution is found by executing the EM algorithm repeatedly and saving the best
clustering solution that was returned by it. This can be done automatically by calling the
routine Kkcluster. This procedure first initializes ranlib's random number generator. The
routine to calculate the cluster centroid and the distance function are selected based on the

arguments passed to kcluster.

The EM algorithm is then executed repeatedly, saving the best clustering solution that was
returned by these routines. In addition, kcluster counts how often the EM algorithm found
this solution. If it was found many times, we can assume that there are no other solutions
possible with a smaller within-cluster sum of distances. If, however, the solution was found

only once, it may well be that better clustering solutions exist.

Prototy¥pe

void keluster (it HG‘IHE-EE‘PE-, inw EoWa . in% EQO‘IWEF Adoullet % G&Eﬁ.’, Intss
mBask, deuble weight [0, int trapspese, 10t apass, cher method, char dist, int
plusterid O, double++ odata, doublet error, Int+ Ifoumd);

Arguments
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o imc nelusters:
The namil=s of elusters &
* 10T OFows;

The uumber of vows {n the data matiix, equal te the mmber of genes la the ge
expression sxperinient.

e 10t DoOLUEDS,
‘L'he numbes of columns in the data matiix, equal to the mumbes of mierearrag= in the
g enpression expstimant.

« doubles+ data;
The data ayyay eontaining the gene expression data. Genes are stoyed row-wise, while
wlerverrays are sloves] eolusm- wh=e, Dimeasion: [oeowe] moolonns].

o I1ntes Dagk
This ariay shows which elements in the deta amey, if auy, are wissing. If
gmask (11 0)1==a, then data (1] 03] & missing. Dimension: [arews] [Reolumns] .

o duulde weleghiO;
The weights that aye nsed to calenlate the distance. Dimension: [peolumms] if trams-
pose==0; [nrows] if transpose==1.

e INC transpose;
Thiz Hlag indieates whethey rov—wlee (gone) o eolumn-wise (mieroasray) clustering
i being performed. K transpose=0, rows tgenest are being elusteyed. Otherwise,
eolmmns (mieroarrarst are being elusteyed,

* 1Ot npass;
The munber of thmes the EM aleorithm should e yun. 1 npass » ©. exeh run of the
Eb] algorithm wees a different (random) initial elustering. U npass =— 9, then the
EM aleoritlun b= yun with ao nicisl odwstering, speviliad by obmeakl For ppass = 0,
ftesis are resssigned to clustess in a randomized ordes. Sinee the eluster eentredds
aye yeealeulated only onee after all items have been considered for reassimmment, the
widlesy of Jiem remsslgmnenl s redevani ooly when e last e oo clusler s alsul Lo

be reassiened to & diffesent clustes. Th prevent clustess fiom beeoming empty, such
reassimments sge not allewed: which items se reassioned may therefore depend on
the order I which Items are eousidered. For npass==0, the BN algorithm is yun only
opee, without yandomizing the opder n whieh items are yeassiened to elusters, wing



the inftial ehstering as speeifled by efusterid. The order in which items are yeassigned
iz Identieal to the ovder in which items ave given in the dats matiix.

s char pethod:
Specifles whether the arithmetic mean (marhod=="5 "} ar the median (method==n"}
should be usesd to caleulate the chstey centes.

e char dist;
Hpeeifies which distance funetion sheuld ke used. The eharactes should eorrespond
to one of the distanes functions that aye available in the € Clustesing Library. See
Chaptes 2 [[Hstanee lnetions], page 2.

s int clusteridll;
Thiz srray will be vsod to store the elustor mumber to whish each Ttem was assigned
b the clustesing algosithm. Space for elusteria should be alloeated hefose eall
ing keluster. I npass==9, then the contents of clisterdd on nput s used as the
initis] asslemment of oms to clusters: on output, dusterdd contains the opthmal cus
teying solution found by the EX algorithm, Dimension: [arows] if transpose==0, o
[peolusms] if trapsposo==],

® doulelesey efala;
This matyix steves the eentrold information. Space for edata shonld he alloeated hefore

eallng zeluster. IHmensisn: [nclusters)] [mcolusms] If tramspose==0 (jow-wise
elugtesing), of [orove] [pelusters] if transpose==1 (column-vise elusiering).

& Qoubles gEEQE ]
The s of disktanees of che ftems to Ehedr elnstes eenter aftes means clnstesing, whieh
eall be waed as & eriterion to eommpare chstesing solutions produced in different ealls to
kelogter.

= 1pt+ Ifcumnd;
Hetnrns how often the eptimal dustesing sohotion was found.

4.19.2 k-medoids

The kmedoids routine performs k-medoids clustering on a given set of elements, using
the distance matrix and the number of clusters passed by the user. Multiple passes are
being made to find the optimal clustering solution, each time starting from a different
initial clustering.

Arguments

¢ 1t nolusters:
The muntesr of elusters o be o,
* 1pt oolomonts
The munber of elements to be elustered.
o doubless distmarrix:
The distanes matilc. The distanee mairix & symmetiie and has zesos on the diagonal.
To save space, the distanes matsly s steved &5 a ragged wray. Dimeasion: pele-

ments] [ as & ragged mvay. The mumber of eolumns i esch jow s egnal te the yow
b=y (starting om zeso). Accordingly, the Mist yow alwars las geve colnmmns.



« 1ot npass;
Thie wanlrer of tapes the BRD algecithun sheuld be yun. I opaze = 0, eaell run of e
ER] algorithm uees & diffevent (random) initial elustering. If ppase == 0, then the ER]
algorithin & run with an imtial clustering speeified by elusterid. The order in whieh
items are reassigned ¥ ientdeal to the ofder in which tems are given in the distanes
matric,

¢ Int clusterid(l;
This asray will be used to store the eluster mumbes to which eaneh item was assigned
be the elustering slgorithm. Spaes for clusterid shemld be allocated before calling
keluster. Ou input, if ppass=—0, then custerid contalis the initial elustering assizn-
ment fiom which the custering algovithm starts; all numbess in clusterid should be
betwreen O and nelepente—1 inclusive, If ppace '=0, alistepid i= Ionored on input. On
output, elusterid eontains the mumber of the eluster to which eaeh item was assigned
in the optimal clusteying solution. On output, the mumbey of a clustes & deflned as the
{temn smmber of the centrold of the chiter. Dimenslon: [pelemental.

e doublet eEror:
The sum of distanees of the items o their cluster eonter after Fineans chisbesing., which
ean be used as & eriterion to compare clustering solutions produced n differsut ealls to
kuedeids.

s 1nts IIound;
Returns how oftem e optimal elustesing sohition was Jound.

4.20 Choosing the Distance Measure

Whereas all eight distance measures are accepted for k-means, k-medians, and k-medoids
clustering, using a distance measure other than the Euclidean distance or city-block
distance with k-means or k-medians is in a sense inconsistent. When using the distance
measures based on the Pearson correlation, the data are effectively normalized when
calculating the distance. However, no normalization is applied when calculating the
centroid in the kmeans or k-medians algorithm. From a theoretical viewpoint, it is best to
use the Euclidean distance for the k-means algorithm, and the city-block distance for k-

medians.

4.21 Hierarchical Clustering
In hierarchical clustering there are various methods.

4.21.1 Hierarchical clustering methods

Hierarchical clustering methods are inherently different from the k-means clustering method.
In hierarchical clustering methods, gene expression data are described in terms of a tree
structure. While the existence of such a tree structure may be debatable, the hierarchical
clustering methods are quite popular in the analysis of gene expression data.

The first step in hierarchical clustering is to calculate the distance matrix, specifying all the
distances between the items to be clustered. Next, we create a node by joining the two

closest items. Subsequent nodes are created by pairwise joining of items or nodes based on
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the distance between them, until all items belong to the same node. A tree structure can then
be created by retracing which items and nodes were merged. Unlike the EM algorithm,
which is used in k-means clustering, the complete process of hierarchical clustering is
deterministic.

Several flavors of hierarchical clustering exist, which differ in how the distance between
subnodes is defined in terms of their members. In the C Clustering Library, pairwise single,
maximum, average, and centroid linkage are available.

e In pairwise single-linkage clustering, the distance between two nodes is defined as
the shortest distance among the pairwise distances between the members of the
two nodes.

e In pairwise maximum-linkage clustering, alternatively known as pairwise
complete linkage clustering, the distance between two nodes is defined as the
longest distance among the pairwise distances between the members of the two
nodes.

e In pairwise average-linkage clustering, the distance between two nodes is defined
as the average over all pairwise distances between the elements of the two nodes.

e In pairwise centroid-linkage clustering, the distance between two nodes is defined
as the distance between their centroids. The centroids are calculated by taking the
mean over all the elements in a cluster. As the distance from each newly formed
node to existing nodes and items need to be calculated at each step, the computing
time of pairwise centroid-linkage clustering may be significantly longer than for
the other hierarchical clustering methods. Another peculiarity is that (for a
distance measure based on the Pearson correlation), the distances do not
necessarily increase when going up in the clustering tree, and may even decrease.
This is caused by an inconsistency between the centroid calculation and the
distance calculation when using the Pearson correlation: Whereas the Pearson
correlation effectively normalizes the data for the distance calculation, no such

normalization occurs for the centroid calculation.

For pairwise single-, complete-, and average-linkage clustering, the distance between two
nodes can be found directly from the distances between the individual items. Therefore, the
clustering algorithm does not need access to the original gene expression data, once the

distance matrix is known. For pairwise centroid-linkage clustering, however, the centroids of
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newly formed subnodes can only be calculated from the original data and not from the

distance matrix.

Straightforward implementation of pairwise single-linkage clustering. The clustering result
produced by this algorithm is identical to the clustering solution found by the conventional
single-linkage algorithm. The single-linkage hierarchical clustering algorithm implemented
in this library can be used to cluster large gene expression data sets, for which conventional
hierarchical clustering algorithms fail due to excessive memory requirements and running

time.

The treecluster routine described below implements pairwise single-, complete, average-,
and centroid-linkage clustering. A pointer distmatrix to the distance matrix can be passed as
one of the arguments to treecluster; if this pointer is NULL, the treecluster routine will
calculate the distance matrix from the gene expression data using the arguments data, mask,
weight, and dist. For pairwise single-, complete-, and average-linkage clustering, the
treecluster routine ignores these four arguments if distmatrix is given, as the distance matrix
by itself is sufficient for the clustering calculation. For pairwise centroid-linkage clustering,

the arguments data, mask, weight, and dist are always needed, even if distmatrix is available.

The treecluster routine will complete faster if it can make use of a previously calculated
distance matrix passed as the distmatrix argument. Note, however, that newly calculated
distances are stored in the distance matrix, and its elements may be rearranged during the
clustering calculation. Therefore, in order to save the original distance matrix, it should be
copied before treecluster is called. The memory that was allocated by the calling routine for
the distance matrix will not be deallocated by treecluster, and should be deallocated by the
calling routine after treecluster returns. If distmatrix is NULL, however, treecluster takes
care both of the allocation and the deallocation of memory for the distance matrix. In that
case, treecluster may fail if not enough memory can be allocated for the distance matrix, in

which case treecluster returns o.
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Prototype
int treecluster (int nrows, int ncolumns, double** data, int** mask, double

weight []1, int transpose, char dist, char method, int result[] [2], double
linkdist [], double*#* distmatrix);

Arguments

e int nrows;
The number of rows in the data matrix, equal to the number of genes in the gene
expression experiment.

e int ncolumns;
The number of columns in the data matrix, equal to the number of microarrays in the
gene expression experiment.

e doublex*#* data;
The data array containing the gene expression data. Genes are stored row-wise, while
microarrays are stored column-wise. Dimension: [arows] [ncolumns].

e int** mask;
This array shows which elements in the data array, if any, are missing. If
mask [1]1 [j1==0, then data [1] [j] is missing. Dimension: [nrows] [ncelumns].

» double welght [1;

The weights that are nsed to caleulate the distance., Dimension: [ncelumns] if trams—

pose==i; [nrows] if transpoge==1.
+ int transpose;

This flag indicates whethey row-wise {gene) or colump-wise {microarvay) clustering
is being performed. If transpose==0, vows {genes) are being clustered. Otherwise,

columns Ouicroarays) are being clistered.
+ char dist;

Specifies which distance measure is used. See Chapter 2 [Distance funetions], page 2.

¢ char methed;
Specilies which tvpe of hierarchical clustering is used:

‘g pairwise single-linlege elustering

»

* ‘m’; pairwise maximimn- (or ecmplete-} linkage elustering
* 'a’; pairwise averagelinkage clustering
* ‘g’ pairwise centroid-linkase clnstering
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e int result [l i
The clusteving selution. Each row in the matrix deseribes one linking event., The two
eolumns contain the nmubers of the nodes that were joined, The original elements are
munbered 40, ... nelemente~1}. nodes are yumbered {=1. ..., ~{nelements~-117F.
Note that the monber of nodes is ene less than the nmmber of elements. Space for this
array should be allocated before ealling treecluster. Dimension: [arews-111021 if
transpose==0: [acelumns-11[2] if transpose==L.

¢+ deuble Iinkdist [];
For ench node, the distanee between the tvo subnodes that were joined. Dimension:
[orews-1] if transpese==0: [ncolumns-11 if transpose==1.

¢+ doubleds diztmatrix;
The distance matrix, stored as a ragged array, This argmment is optional; if the distanee
matrix is not available, it con be passed as HULL. In that ease. treecluster will allocate
memeryv space for the distanee matrix, calenlate it froan the gene expression data. and
denlloente the memory space before returning. If the distance matrix happens to be
available, the hieparchieal elustering ealonlation con be completed faster by passing it
as the distmatelx srgument, Nete that the comtents of the distonce matrix will be
medifled by the clustering algorithin in treecluster. The memory that was alloeated
for the distance matrix should be dealloented by the ealling remtine after treecluster
returns. Dimension: Ragged arvey. [nrews] [ if transpese==0, ex [ncolumns] [ if
transpese==1. In hoth cases. the number of colmns in each row is equal to the row
munber (starting from zevol, Accordingly. the first row alwars has zero eahmns,

If tregcluster suceesds, it veturns 1. If it fails due to insuffleient memeory. it veturns 0,

4.21.2 Cutting a hierarchical clustering tree

The tree structure generated by the hierachical clustering routine treecluster can be further
analyzed by dividing the genes or microarrays into n clusters, where n is some positive
integer less than or equal to the number of elements that were clustered. This can be
achieved by ignoring the top n - 1 linking events in the tree structure, resulting in n
separated subnodes. The elements in each subnode are then assigned to the same cluster.
The routine cuttree determines to which cluster each element is assigned, based on the
hierarchical clustering result stored in the tree structure.
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Prototype
veld cuttree (int nelements. int tree[112], int nclusters, Int clusteridll};

Argunients

¢ int nelements;
The munber of elements whose clustering results ave stored In the tree hierarchical
elustering resulf.

e int treel] [2];

The hierarchical elusteving solntion. Each row in the matrix desevibes one linking
event. The two columns contain the mowbers of the nodes that were joined. The
original elements are immbered {0, . ... nelements -1}, nodes ave nmnbered {=1. ...,
~(nelements~-12Y. Note that the nmnber of nodes s one less than the mmmber of
elements, The cuttree rontine pevforms some error checking of the strusture of the
tree argumert in order to ovoid segmentation fanlts, However, errors in the struetare
of tree that would not result in sepmentadlon foults will m general not be detected,
Dimension: [nelements=-11 [Z2].

¢ int nelusters;
The desived nmunber of clusters, The munber of elusters should be positive. and less
than or equal to nelamnents.

e int clusterid(l;
The eluster nmunber to which ench element is assigned. Memory space for eusterid
should be allocated before cutiree is ealled. Dimension: [nelementsl.

4.22 Self-Organizing Maps

4.22.1 Introduction

Self-Organizing Maps (SOMs) were invented by Kohonen to describe neural networks (see
for instance Kohonen, 1997). Tamayo (1999) first applied Self-Organizing Maps to gene

expression data.

SOMs organize items into clusters that are situated in some topology. Usually a rectangular
topology is chosen. The clusters generated by SOMs are such that neighboring clusters in the
topology are more similar to each other than clusters far from each other in the topology.

The first step to calculate a SOM is to randomly assign a data vector to each cluster in the
topology. If genes are being clustered, then the number of elements in each data vector is

equal to the number of microarrays in the experiment.

An SOM is then generated by taking genes one at a time, and finding which cluster in the
topology has the closest data vector. The data vector of that cluster, as well as neighboring
clusters is adjusted using the data vector of the gene under consideration. The adjustment is

given by
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The parameter T is a parameter that decreases at each iteration step. We have used a
simple linear function of the iteration step:

T = Tinit ° 1 - — !>
T

in which T init is the initial value of T as specified by the user, i is the number of the current
iteration step, and n is the total number of iteration steps to be performed. While changes are
made rapidly in the beginning of the iteration, at the end of iteration only small changes are

made.

All clusters within a radius R are adjusted to the gene under consideration. This radius
decreases as the calculation progresses as

R:R'ma_x' (l_i)
T

in which the maximum radius is defined as

Roex = 1/ N2+ N2,

where (Nx, Ny) are the dimensions of the rectangle defining the topology.

The routine somcluster carries out the complete SOM algorithm. First it initializes the
random number generator. The distance function to be used is specified by dist. The node
data are then initialized using the ranlib random number generator. The order in which genes
or microarrays are used to modify the SOM is also randomized. The total number of
iterations is specified by niter, given by the user.

Prototype

void somcluster (int nrows, int ncolumns, double#** data, int*#* mask, double
weight [], int transpose, int nxgrid, int nygrid, double inittau, int niter,
char dist, double*** celldata, int clusterid []1[2]);

58



Arguments

int nrows;
The number of rows in the data matrix, equal to the number of genes in the gene
expression experiment.

int ncelumns ;
The number of columns in the data matrix, equal to the number of microarrays in the
gene expression experiment.,

double** data;
The data array containing the gene expression data. Genes are stored row-wize, while
microarrays are stored column-wise. Dimension: [nrows] [ncolumns].

int** mask;
This array shows which elements in the data array, if any, are missing. If
mask [1] [j]1==0, then data [i] [j] is missing. Dimension: [nrows] [ncolumns].

double weight [];
The weights that are used to caleulate the distance. Dimension: [ncolumns] if trans-

pose==0; [nrows] if transpose==1.

int transpose,;

This flag indicates whether row-wise (gene) or column-wise [microarray) clustering
is being performed. If transpose==0, rows (genes) are being clustered. Otherwise,
columns (microarrays) are being clustered.

int nxgrid;

The number of cells horizontally in the rectangular topology containing the clusters.
int nygrid;

The number of cells vertically in the rectangular topology containing the clusters.

double inittau;
The initial value for the parameter T that is used in the SOM algorithm. A typical
value for inittau is 0.02,

int niter;
The total mumber of iterations.

char dist
Specifies which distance measure is used.

double*** celldata;

The data vectors of the clusters in the rectangular topology that were found by the
SOM algorithm. These correspond to the cluster centroids. The first dimension is the
horizontal position of the cluster in the rectangle, the second dimension is the vertical
position of the clnster in the rectangle, while the third dimension is the dimension along
the data vector. The somcluster routine does not allocate storage space for the celldata
array. Space should be allocated before calling somcluster. Alternatively, if celldata
is equal to NULL, the somcluster routine allocates space for celldata and frees it before
returning. In that case, somcluster does not return the data vectors of the clusters
that were found. Dimension: [nxgrid] [nygrid] [ncolumns] if transpose==0, or
[nxgrid] [nygrid] [nrows] if transpose==1.

int clusterid [1[2];
Specifies the cluster to which a gene or microarray was assigned. using two integers
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to identify the horizontal and vertical position of a cell in the grid for each gene or
microarray. Gene or microarrays are assigned to clusters in the rectangular grid by
determining which cluster in the rectangular topology has the closest data vector. Space for
the clusterid argument should be allocated before calling somcluster. If clusterid is NULL,
the somcluster routine ignores this argument and does not return the cluster assignments.

Dimension: [nrows] if transpose ==0; [ncolumns] if transpose ==1.

4.23 Principal Component Analysis

Principal Component Analysis (PCA) is a widely used technique for analyzing
multivariate data. In PCA, the data vectors are written as a linear sum over principal
components. The number of principal components is equal to the number of dimensions

of the data vectors.

The principal components are chosen such that they maximally explain the variance in the
data vectors. For example, in case of 3D data vectors, the data can be represented as an
ellipsoidal cloud of points in three dimensional spaces. The first principal component
would be the longest axis of the ellipsoid, the second principal component would be the
second longest axis of the ellipsoid, and the third principal component would be the
shortest axis. In other words, the principal components are ordered by the amount of

variance they explain.

Each data point can be reconstructed by a suitable linear combination of the principal
components. However, in order to reduce the dimensionality of the data, usually only the
most important principal components are used. The remaining variance present in the data
is then regarded as unexplained variance. The principal components can be found by
calculating the eigenvectors of the covariance matrix of the data. The corresponding
eigenvalues determine how much of the variance present in the data is explained by each

principal component.

The eigenvectors are found by calculating the singular value decomposition of the data
matrix. For this purpose, we have included a routine to calculate the singular value de-

composition of a matrix.
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Prototype

void svd (int nrows, int ncolumns, double** U, double S[], double** V, int*
ierror):

calculates the singular value decomposition Uppw = Uswipwer S - VT, Householder
bidiagonalization and a variant of the QR algorithm are nsed.

Arguments

e int nrows
The number of rows in U. The number of rows should be greater than or equal to the

number of columns.

e int ncolumns
The number of columns in U and the order of V.

e double#*x [J;
On input: [ is the rectangular matrix to be decomposed. On output: The contents of
U is replaced such that Uppus = Udyipue S - V7T, Dimension: [nrows] [ncolumns].

e double* S;
The neolumns non-negative singular values of the matrix U, unordered. If an error exit
is made, the singular values should be correct for indices { *ierror, *ierror+1, ...,
ncolumns-1}. Dimension: [ncolumns].

e double**x V;
The orthogonal matrix V of the decomposition. If an error exit is made, the columns
of V corresponding to indices of correct singular values should be correct. Dimension:
[ncolumns] [ncolumns].

e 1int* ierror;
Error exit: *ierror==0 for normal return, and *ierror==k if the k** singular value
has not been determined after 30 iterations.
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Chapter 5
Experimental result

Clustering technique provide a computational environment for analyzing data from
microarray experiments, or other genomic datasets. Clustering program organizes and
analyzes the data in a number of different ways. The first step in using Cluster is to import
data. Cluster input tables rows represent genes and columns represent samples or

observations. For a simple timecourse, a Cluster input file would look like this:
5.1 Input file:

gene o 15min 1hour &hours 1chaoursD

5110617 0.0 -0.141164092921 -0.564656371686 -0.2193937639051 -0. 5o'«‘9¢‘3‘3485172
s1ro452 0.0 -0.124988599702 -0.4999543985807 0.195680498436

s1ri513 0.0 0.78854715823¢6 0.228554732282 0.255819396258

5111471 0.0 70355431265 -1.10115338201 -1.00807440632 . s
s111694 0.0 239937586 -2.1803 914 -1.184544471 -1.387600412730
5110430 0.0 .57611545933 0.920296714116 0.331897478085 0.35395846720430
5110851 0.0 ~0.2604B8607867 -1.04135443147 -0.870951657169 -0.5631466634320
5111260 0.0 0.488375211397 7&B086 1.05B808458732 1.102575018970
51110321 0.0 2.77¢‘¢090710 08006 1.22441048661 1.135561921420
5111097 0.0 0.62 6566464 1.39B8580458748 1.13826716858C
s1r1853 0.0 -0. G7511005794 -0.579158937711 .272B12836139 0.278610146630
s1r1856 0.0 -1.48647925428 -1.15482923751 -0.788491289432 -0.1290829828950
5111807 0.0 -0.00351865963644 1,6220065 1,2103168751 1,406639215450
s1rizs80 0.0 1.68363550419 0.570482993127 0.452252082077 0.239436442188C
5111578 0.0 -2.08646119875 -4.16618882331 -2.95371220804 -0.7712543005670
5110927 0.0 1.53540350362 0.994485177541 1.06558243705 1.19355750417C
5111028 0.0 2.66231034349 1.02053065748 1.07291269701 1.167200368160
s110170 0.0 2.49213251019 0.8 BE2E56332 -0.181000866758 -0.08860248292020
5110020 0.0 0.622961311166 0.1077693392589 0.00B823295222619 -0.1709325444870
s1r112z5 0.0 -0.586091367103 -0. 23113608 -0.33489639532 -0.72167265856080
s1r1687 0.0 1.53531583449 0 4720306 0.228540131559 -0.280744128185C0
s1ri986 0.0 -2.45180941179 - 064191349 -1.632298755815 -0.376249913B8750
5111091 0.0 -2.22018219109 - 088225644 -1.36642505311 01095327 8E5C
s1ro0o1l 0.0 7 0 70189015 0.583475556557

s111816 0.0 1 3E553483 1.04715754859

s1r1655 0.0 -2.7999910113 -2.20032491329

s1r0833 0.0 0.36 & 0. Jlﬁﬁ 5106928 -0.022663603088

s110262 0.0 0.792040285896 0.692818192651 0.0313375710134

s1rig41 0.0 2.5839423066687 0.551559514181 -0.150705464209

5110854 0.0 0.609030206082 0.545338052749 0.120323697197 i
s1r0o151 0.0 -0.989349574879 -0.964206703429 -0.796587560432 731030270
s1ro476 0.0 1.51215261659 0.0821117222648 0.0400809926852 743205580
5111614 0.0 0.702656762339 0.0659783997373 0.12124636938 0.2207287147350
s1ro374 0.0 -0.735627268934 -1.18538074714 s -1.742566393220
s1ro737 0.0 -3.25510704118 E]

s1ri718 0.0 722 0.268555463231

s1ri604 0.0 2.1572537861 0.7256393167 G1 01048212 .

s111002 0.0 0.508059527897 —0.0882211347302 -0.3954714431550
5110814 0.0 1.8783237538 &7 0.703832500504 0.06B850759727830
5110521 0.0 1.24736478909 0.24533127‘3252 -0.260997355485 0.203910618354C
s1r2051 0.0 -2.30444924968 -2.882550258204 -2.13B877779485 -0.3967387317303C

Each row (gene) has an identifier that always goes in the first column. Each column (sample)
has a label that is always in the first row; here the labels describe the time at which a sample
was taken. The remaining cells in the table contain data for the appropriate gene and sample.

Missing values are acceptable and are designated by empty cells.

5.2 Hierarchical Clustering:

The Hierarchical Clustering allows you to perform hierarchical clustering on your data. This

is an incredibly powerful and useful method for analyzing all sorts of large genomic datasets.
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Cluster currently performs four types of binary, average, complete, and centroid clustering.
The basic idea is to assemble a set of items (genes or arrays) into a tree, where items are
joined by very short branches if they are very similar to each other, and by increasingly

longer branches as their similarity decreases.

Similarities/Distances:

The first choice that must be made is how “similarity” is to be defined. There are many ways
to compute how similar two series of numbers are, and Cluster provides a small number of
options. The most commonly used similarity metrics are based on Pearson correlation. The
Pearson correlation coefficient between any two series of number
X={X,X,,XN12K}and Y={NY,Y,,Y 12K }is defined as

1 X,-X\r-v
r=—2
N == Oy Ty

where X is the average of values in X, and X is the standard deviation of these values.

There are many ways of conceptualizing the correlation coefficient. Cluster provides two
similarity metrics that are the absolute value of these two correlation functions, which
consider two items to be similar if they have opposite expression patterns; the standard
correlation coefficients consider opposite genes are being very distant.

Clustering process:

With any specified metric, the first step in the clustering process is to compute the distance
between of all pairs of items to be clustered (e.g. the set of genes in the current dataset). Once
this matrix of distances is computed, the clustering begins. The process used by Cluster is
agglomerative hierarchical processing, which consists of repeated cycles where the two
closest remaining items (those with the smallest distance) are joined by a node/branch of a
tree, with the length of the branch set to the distance between the joined items. The two
joined items are removed from list of items being processed replaced by a item that
represents the new branch. The distances between this new item and all other remaining

items are computed, and the process is repeated until only one item remains.
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Output File:

The result of a clustering run is a tree or pair of trees (one for genes one for arrays). When
Cluster joins two items, it randomly places one item on the top branch and the other on the
bottom branch. It is possible to guide this process to generate the “best” ordering consistent
with a given tree. This is done by using the GORDER (gene order) and EORDER
(experiment order) parameters in the input file,

GID gene NAME GWEIGHT | 0 ismin 1hour shours
ATD ARRNY 10X ARRNY 12X ARRY 22X ARRY 32X
EWEIGHT 0. 200000 0.500000 0.500000 0. 500000
GENEZ7X 5110262 5110262 0.028292 1.0415841 1.317773 -2.7924659 0.388140
GEMEZ9X s110854 5110854 0.030000 0.476533 0.786057 -1.037304 -0.269402
GENEZ20X s1r16587 s1r1687 0.025241 0.941367 -0.184204 -0.994032

GENE15X 5110020 5110020 0.026077 2.413863 0.351636 =3.002425

GENES&X 5111626 5111626 0.021452 -0.090577 0.597631

GEMEZ1X s1r0476 s1r0476 0.025441 2,636406 -1.097437 -1.775EZE

GEMEZEX s1ri604 s1rl&04 0.025142 0.797615 -0.305228 -0.729256

GENESOX 5111712 511171z 0.020811 -0.407231 0.914335

GENESX 5110430 5110430 0.023505 1.315816 0.299817 -0.815276& -0.845071
GENE16X 5111028 =111028 0.0257584 0.460634 -0.453696 -0.025214 -0.026439
GENEZX s51ri1513 s1ri1513 0.024362 0.685026 -0.632350 -0.113748 0.016357
GENETOX s1r1350 s1ri350 0.024395 1.140264 -0.922179 -0,275024 0.012224
GEMEZ23X s1r0011 sT1r0011 0.023256 0.629323 -0.748667 -0.104538 0.179227
GEME3Z2X 5111614 5111614 0.023702 1.394146 -1.549580 -0.315435 0.426154
GENE46X 5110414 5110414 0.023477 1.290809 -1.550935 -0.274273 0.4835E84
GENE339X 5110521 5110521 0.02 E 1.142586 -0.7344865 -0.767735
GENESX 5111021 =111031 0.027573 0.149467 -0.187086 0.112165 -0.1192&1
GENE42X 5110519 5110519 0.024532 0.5852173 -1.124359 -0.087428
GENEZEX s1ri1641 s1ris41 0.021585 0.685337 -1.237166

GEMEZ7X s111002 s1711002 0.021379 0.501100 -1.3528&8

Array group

NODE1X ARRY1X ARRYO0X 1.000000
NODE2X ARRY2X NODE1X 0.261253
NODE3X ARRY3X NODE2X 0.140240
NODE4X ARRY4X NODE3X -0.017618

Gene group

NODE1X GENE12X GENE10X1.000000
NODE2X GENE72X GENE24X1.000000
NODE3X GENE73XGENE26X1.000000
NODE4X GENE80X GENE36X1.000000
NODE5X GENE1X GENEOX 1.000000
NODE6X GENE3X NODE5X 1.000000
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NODE7X GENE84XNODE6X 1.000000
NODE8X GENE83XNODE7X 1.000000
NODE9X GENE82XNODES8X 1.000000
NODE10XGENE4X NODE9X 1.000000
NODE11XGENE6X NODE10X1.000000
NODE12XGENE79XNODE11X1.000000
NODE13XGENE78XNODE12X1.000000
NODE14XGENE11XNODE13X1.000000
NODE15XGENE76XNODE14X1.000000

5.3 K-mean Clustering:

K-means clustering is a simple, but popular, form of cluster analysis. The basic idea is that
you start with a collection of items (e.g. genes) and some chosen number of clusters (k) you
want to find. The items are initially randomly assigned to a cluster. K-means clustering
proceeds by repeated application of a two-step process where:

1. The mean vector for all items in each cluster is computed

2. Items are reassigned to the cluster whose center is closest to the item

The parameters that control k-means clustering are

1. The number of clusters (K)

2. The maximum number of cycles

The output is simply an assignment of items to a cluster. The implementation here simply
rearranges the rows and/or columns based on which cluster they were assigned to in the final
cycle. Cluster also implements a slight variation on k-means clustering known as k-mediod
clustering in which the median instead of the mean of items in a node are used.

Output files

ARRAY GROUP
15hours 0

0

15min

lhour

B WD P

6hours

GENE GROUP
sllo617 0
sl11807 0
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sl11743
sl11579
slr0329
sIr1835
slr0452
sl11260
sl11097
sIr0839
sll0144
5110680
slr1350
s110901
sll1327
sll1712
sl11694
sl10851
slr1128
sl10262
5110854
slr0374
s111802
sl10416
sll0519
ss11533
sl11029
slr1963
slr0642

sIr0208

gene
EWEIGHT
s110617
111807
5111575
s1ri986
5111816
sTri6cs
s1roisi
s1ri7is
s1r2051
51r1459
1711580
5111214
=17180%9
5513093
5111577
5111801
51711745
s1ris34
5110819
111206
5111743
z171573
s1ro3z9
s1ri1835
s1ro45z2
5111260
5111097
51ros39

A D A B D B WO WWWWWWW N DNMNDNDNDNDNDMNNPREPR P PR PR O O o o

NAME

s110617
1711807
51115758
s1ri986
5111816
sTri6Es
s1rois1
s1r1718
51r2051
51r1459
1711580
5171214
171809
5513093
5111577
5111801
5111745
51ris34
5110819
=1711z206
5111743
171573
s1ro3z9
s1ri835
s1ro452
5111260
s111097
s1ros39

GWEIGHT

I N N Ty

« 000000
. 00000
« 000000
« 000000
. 000000
« 000000
. 000000
« 000000
. 000000
« 000000
« 000000
« 000000
« 000000
. 000000
« 000000
. 000000
« 000000
. 00000
« 000000
« 000000
« 000000
« 000000
. 000000
« 000000
. 000000
« 000000
. 00000
« 000000
« 000000

i5hours
1.000000
0.113285
-0.092271
-0.108338
-0.108338
-0.078732
-0.108338
-0.108338

-0.108338
-0.108338
-0.108238
-0.108338
-0.051269
-0.108338
-0.108338
=0.014023
-0.081575
-0.044502
-0.108338
-0.108238
-0.068756
-0.108238
-0.108338
-0.105278
0.036024

-0.044904
-0.136676
=0.292276

0

1.
-0.206899

0.
0.1114592
0.
0.
-0.228633
1114592
«111492
«1114592
«111492

[ R s} [ R L o

[ s}

0.

000000

1114392

111432
111432

111492
111452

.139712
«111492
«1114592

111452
«111492
114345
0.237612

047581

15min

1

-0.0006320

0

0.

0

-0.113911

0

-0.032060

-0.077733

0
0

« 000000

.1748653

.187424

188702
. 179605

.1838639

. 074903
120192

1hour
1.000000

-0.

=0.

027816

050160

0.061329

=0.
-0.

. 088227

130320
0456938

064938

0.233413
0.243267
0.147545
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5.4 Self-Organizing Maps:

Self-Organizing Maps (SOMs) is a method of cluster analysis that are somewhat related to k-
means clusterins. SOMs were invented in by Teuvo Kohonen in the early 1980s, and have
recently been used in genomic analysis (see Chu 1998, Tamayo 1999 and Golub 1999 in
references). The Tamayo paper contains a simple explanation of the methods. A more
detailed description is available in the book by Kohonen, Self-Organizing Maps1997.

The current implementation varies slightly from that of Tamayo et al., in that it restricts the
analysis one-dimensional SOMs along each axis, as opposed to a two-dimensional network.
The one-dimensional SOM is used to reorder the elements on whichever axes are selected.
The result is similar to the result of k-means clustering, except that, unlike kmeans, the nodes
in a SOM are ordered. This tends to result in a relatively smooth transition between groups.
The options for SOMs are

1. Whether or not you will organize each axis,

2. The number of nodes for each axis (the default is the square-root of the number of items)

and the number of iterations to be run.

Output file

Array group:

gene WODE(D, O} WODE(O, 1) WODE(1, 07} WODE(1,1)
110617 s110617 1.730755 -1.457651 0.2573E58 =-1.285020
5111471 5111471 -0.137257 -0.587144 1.762228 1.012613

5111694 5111694 -0.357031 0.863323 1.455827 0.521108

110851 =110851 -0.343753 -1.6845346 1.824535 0.047196

5171031 =1711031 1.176949 -0.570412 1.402724 0.&864748

s1r1856 s1r1856 -1.702877 -0.039562 -0.3181580 =-1.191374
111807 =111807 -0.374723 -0.362707 1.235850 0.039530

5111578 5111578 -1.25843¢6 0.&8583984 0.3043902 -1.439&87
£1r1128 =1r1138 1. 868674 1.012916 1.225371 =1.2463905
s1ris8s s1ri1986 -0.388513 0.113391 -1.6&85035 0.5970521

51711091 5111091 0.691131 -1.624711 -0.358331 -0.025036
s1r1685 =1r1655 -1.029111 -0.540430 -1.453358 -0.192964
s1roi1si s1r0oi51 1.051216 1.541162 0.734078 1.026542

s1rd374 s1r0374 0.348632 -0.473244 -1.6836336 -1.168801
s1r0737 s1r0737 -1.025573 -1.5354E8 -1.353362 -1.444224
s1r1718 s1r1718 1.578550 0.708810 -0.6897371 1.134982

s1r2051 =1r2051 0.430272 -0.82E8489 =1.190&75 0.0686259

s110418 s110416 0.773856 -0.913905 -1.&08086 -1.132521
51r1459 s1r1459 0.272154 -1.364496 -0. 840161 -1.236999
5111580 =111580 -1.000283 -0.914856 -1.699793 1.566451

51711214 =111214 -1.323208 0. 639065 0.453490 0.174235

5111096 5111096 -0.043023 —-0. 4007 66 -1.192326 -1.327047
1711809 =111809 -1.054999 -1.237855 -1.08&9307 -0.345910
s1r1793 s1r1793 -0.817566 -1.074328 0.124374 =0. 823870
5110185 =110185 -0.332946 1.028911 0. 449250 1.2902E89

5513093 5513093 -1.837708 1.019821 -0.25911858 0.042972

5111577 5111577 0.063011 =-0.196513 -0.834622 1.6748390

5111745 111745 1.101964 0.&5B426 -1.5263950 -0.151099
5511533 5511533 -0. 830337 -1.331985 0.917225 0. 440430

51711023 5111029 0.164612 1.373470 1.048942 -0.477636
Gene group:

67



gene NAME
EWEIGHT
5110617 5110617
5111471 5111471
51711694 51711694
s110851 5110851
51711031 5171031
s1riB56 s1ri85e
5111807 s111807
=11 =11157
. 3

=

=

0
1.851BE7
0.2332416
0.761992
=0.950247
-0.228793
-1.138504
1.06590%5
1.430087
0.4826937
0.313286
-1.1533581
-0.092276
0.6323393
1.727998
0.822352
-0.175110

GWEIGHT

-011111
-011111
-011111
-0111311
027573
-0111311
-025114
011111
011111
011111
011111
011111
011111
-011111
-011111
- 028960
-011111
-029935
-011111
-011111
-011111
022975
027219
-011111
. 027027
-011111
-0111311
026130

I e e e e e e

1cmin 1hour
-0.8658695 O.401134
-0.337389 -1.194766
-1.391301 -0.316617
-0.3945377 -0.764077
-0.302028 1.506431
0.1853976 -0.008185
1.2213909 -0.782265
0.248281 -0.441109
1.306174 -0.778593
1.339533 -1.049303
-0.802552 -0.388169
1.815518 -0.214534
0.E854348 -1.105317
-0.201758 1.176331
0.0412581 0.126975
1.336729 1.503015
o &hours
0. 200000 0. 500000
0.112165 -0.119261
0.101812 0.155335
0.318658 -0.225409
-0.143243 -0.423207
0. 480039 0.231683
-0.030324 0.153767
-0.716193
0.051050 0.214828

5.5 Principal Component Analysis:

.911362
071195
-1.205435
-1.415852

0.255313
0.3200430
-1.212710
-0.046365

1shours
0. 500000

0.149467

—0.345537

—-0.6463583

1chours

-0.974152
1.483199
-0.962230
1.334554
-1.167E813
-1.300499
-0.960136
1.245461
1.000816
-0.023915
0.088101
-0.346071
-1.601177
-0. 706590
1.607079
-0.3953837

15min
0. 500000

189101
342241

1.125707

0.193806

Cluster will perform principal component analysis on data. The output is very simple in this

version and consists of two files that contain the principal components and the loadings of

each gene on the principal components.

Output files:

EIGVALUE
5.377381
3.760803
3.297019
2.017373
0.000000

0

0.000000
0.000000
0.000000
0.000000
1.000000

15min
-0.805762
0.021068
-0.133927
-0.576513
0.000000

lhour
0.387468
0.649631
-0.519809
-0.397048
0.000000

6hours
0.328947
-0.011371
0.708132
-0.624671
0.000000

15hours
0.303991
-0.759873
-0.458705
-0.346081
0.000000

68



gene
5110617
51ro452
51r1513
5111471
5111694
5110430
5110851
5111260
5111031
5111097
51r1853
51r1856
5111807
51r1280
5111578
5110927
5111028
5110170
5110020
s1r1123
s1ri1687
s1r1986
51711091
s1rooll
s111816
s1ri1658
s1r0839
s110262
s1rig4l

MAME

5110617
s1ro4s2
51r1513
5111471
5111694
5110430
5110851
5111260
5111031
5111097
s1r1853
s1ri1856
5111807
s1r1z80
5111578
5110927
51110258
5110170
s110020
s1ri125
s1r16587
s1r1386
51110391
slrooll
111816
s1r1655
s1r0835
s110262
sirig4l

GWEIGHT

CDoOoOOoOOoOoOoOoOoOOOOOOOOOOOOOO0O00000

.0111131
.D23345
024362
.011111
.011111
. 029808
.011111
022659
.027573
023205
.014085
011111
.025114
028993
011111
.028173
.025784
.0232680
-026077
-01111131
.025241
-01111131
-01111131
.023256
.022282
.0111313
024691
. 028292
.021588

377381
0. 000000
0.030622
—0.164207
0. 000000
0. 000000
-0.152726
0. 000000
0.179054
-0.123269
0.181971
0.0565321
0.000000
0.1059397
-0.148233
0.000000
0.0502659
-0.1617
-0.115
—0.134427
0. 000000
—-0.155741
0. 000000
0. 000000
—-0.144535
0.184220
0. 000000
0.115574
—0.064001
—-0.135644

3.760803
0. 000000
0.0845859
-0.115353
0. 000000
0. 000000
0.1235939
0. 000000
-0.051468
-0.026620
-0.000451
-0.202051
0. 000000
-0.03924¢
0.142547
0. 000000
-0.224738
-0.108663
-0.162033
0.021546
0. 000000
-0.017041
0. 000000
0. 000000
-0.161725
-0.018526
0. 000000
-0.065134
0.0493815
-0.148384

. 297019
. 000000
. 253560
. 048081
. 000000
. 000000
-0.088464
0. 000000
0.048855
0.221001
0.057152
-0.139127
0. 000000
-0.114882
0.071131
0. 000000
0.139472
0.078881
0.136623
-0.206377
0. 000000
-0.161212
. 000000
. 000000
- 045079
. 006324
. 000000
. 092755
-0.275408
0.118226

000 00w

[ sl s s s ]

2.017373
0. 000000
-0.204672
-0.031404
=0, 000000
0. 000000
-0.021027
0. 000000
0.048258
-0.0639515
0.041413
-0,171551
0. 000000
-0.353949
-0.073902
0. 000000
0.016562
-0.046327
095963
-044113
. 000000
.054318
. 000000
. 000000
0.030860
. 057155
. 000000
- 336280
. 073435
.033672

QOO O0 | O00000

QOOOOOoOOO0O0O00O0O00000000000000kK O

- 000000
- 000000
- 000000
- 000000
- 000000
- 000000
- 000000
- 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
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Chapter 6
Applications

The various applications of clustering techniques are listed below:

6.1 Biology

In biology have two main applications in the fields of computational biology and
bioinformatics.

e In transcriptomics, clustering is used to build groups of genes with related expression
patterns. Often such groups contain functionally related proteins, such as enzymes for a
specific pathway, or genes that are co-regulated. High throughput experiments using
expressed sequence tags (ESTs) or DNA microarrays can be a powerful tool for
genome annotation, a general aspect of genomics.

e In sequence analysis, clustering is used to group homologous sequences into gene
families. This is a very important concept in bioinformatics, and evolutionary biology

in general. See evolution by gene duplication.

6.2 Marketing research
Cluster analysis is widely used in market research when working with multivariate data from
surveys and test panels. Market researchers use cluster analysis methods to partition the
general population of consumers into market segments and to better understand the
relationships between different groups of consumers/potential customers.

e  Segmenting the market and determining target markets

e  Product positioning

e  New product development

e  Selecting test markets
6.3 Other applications

Social network analysis: In the study of social networks, clustering may be used to recognize

communities within large groups of people.
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Image segmentation: Clustering can be used to divide a digital image into distinct regions for

border detection or object recognition.

Data mining: Many data mining applications involve partitioning data items into related
subsets; the marketing applications discussed above represent some examples. Another
common application is the division of documents, such as World Wide Web pages, into genres.
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Chapter 7
Conclusions

To summarize, a clustering algorithm can be defined by a set of objects (e.g. documents) and a
vague description of the set, A. The goal of clustering is to divide the object set into objects
belonging to A and a second set not in A. So, in this clustering problem, one needs to
determine first what features are relevant in describing objects in A (intra-cluster similarity)
and second, what features distinguish objects in A from objects not belonging to A (inter-
cluster similarity).

Alternatively, a cluster problem can also be formulated by a set of objects and a
similarity or distance function. Here, the object set is divided into a number of subsets
(clusters) that best reveal the structure of the object set; these subdivisions can take the form of

partitions or a hierarchically organized taxonomy.

The Clusters should be highly internally homogeneous i.e. members being similar to one
another and highly externally heterogeneous as well i.e. members should be unlike members of
other clusters. Clustering algorithms are distinguished on the basis of a number of features such
as unsupervised or supervised; divisive or agglomerative; incremental or partitioning; iterative
or noniterative; single link, grouped average, or complete link clustering. Interestingly, no
clustering algorithm has been shown to be notably better than others when producing the same
number of clusters. However, one can experience that some choices seem to fit some kinds of
data better than others and there have been *“bakeoffs” between clustering approaches
(comparing single link, complete link, Ward’s trace, centroid, and so forth) that suggest that

some approaches are more reliable than others for generic data sets.

The subject of clustering evolved with the early attempts to categorize objects or phenomena
on the basis of inherent similarities. The application of clustering techniques started in the
discipline of astronomy and medicine and gradually permeated to almost all the fields of study.
But the most wonderful application of clustering techniques was found in the area of

information retrieval and thus, document clustering.

72



In recent times, the clustering techniques have migrated from data mining into text mining. In
the case of text mining, clustering is used to segment a document collection into subsets; where
the members of each subset are similar with respect to certain features. The use of this
technique makes text mining different from a simple search engine. As such, retrieval of text
references is not a difficult task but the problem is of the large volume of retrieved documents;
the sheer volume makes it difficult for users to find relevant information. While searching, the
user naturally moves from one document to another looking for dominant themes or similar
documents in a collection and the application of clustering helps in this process further. But,
clustering tries to enforce a structure onto naturally unstructured documents, here, the
challenge is to find a method that is simple and efficient and which provides enough structure

to reveal interesting information.

Clustering depends on the discovery of some measure of interdocument similarity. In
this area, one approach is to represent them as vectors of equal length; where each component
of a vector is associated with one of the unique content works in the document collection.
Now, the vector component may indicate the frequency, normalized or not, of a word in the
document. Single linkage hierarchical clustering is a commonly used method for the purpose.
However it is too slow for even moderately large document collections. The reason is
beginning with individual documents, single-linkage hierarchical clustering iteratively
agglomerates the most similar pairs of clusters into a new cluster. So, when it goes for global
consideration of all pair wise similarities at each stage of clustering, then it leads to extensive

computer run times.

Clustering has emerged as a full-fledged discipline from the days of its evolution as an
application tool. There has been positive growth of the literature in the area of clustering since
the day of its evolution as a mere categorization tool. Evolution of clustering is typical as it has
maintained its unique status along with its interdisciplinary nature during the process. It has
been widely applied in the areas of science, engineering, health care, education, social sciences
and business. In the recent years, there has been a paradigm shift in research, as clustering is
now applied for the purpose of information retrieval and document clustering on WWW. The

subject has to still grow towards the realization of its full potential.
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