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ABSTRACT 

For any type of structure a foundation is required and hence soil-structure interaction is an 
inevitable problem, which has to be tackled. Most often for the analysis, as well as design 
purpose the linear soil-structure interaction is employed. But it is far away from reality. The 
actual situation seldom provides such as easy problem. 

In the present, work, the soil structure interaction has been studied taking the nonlinear behavior 
of soil. For this purpose, the Von Mises yield criteria has been employed. The foundation taken 
for the study is a footing of width (B=2.0 m) resting on the surface of clay in an undrained state 
subjected to centrally inclined loading. The finite element problem has been taken as a plane 
strain problem. 

The iteration for load settlement has been performed by a program written using MATLAB. 

The shallow foundation may be subjected to eccentric inclined load. For designing and 
proportioning such type of foundations, the main criteria to be considered are bearing capacity, 
settlement, tilt and horizontal displacement. 

Since soil behavior is usually nonlinear, the nonlinear constitutive laws are commonly employed. 
For this, the material parameters depend upon the state of stress. To encounter this, an 
incremental approach is often used, which requires a separate solution process for each 
increment of load. 

In the present investigation, analysis and study of the behavior of strip footing, resting on the 
surface of uniform clay in an undrained state subjected to centrally-inclined load with the finite 
element analysis has been carried out by using incremental theory of plasticity. The yield criteria 
which is employed is Von Mises Criteria. 

Pressure versus vertical settlement curves for strip footing (B=2.0 m), resting on various type of 
clays have been obtained for values of load inclination i = 00, 100, 200, 300. All the pressure-
settlement characteristics display an initial linear elastic behavior followed by inelastic behavior 
till failure during which large settlements occur for every successive pressure increment. It has 
been found that ultimate bearing capacity is significant in the high consistency range of clay. 

Similar to the pressure vertical settlement characteristics, the change of average, horizontal 
displacement is less at low- pressure but as the pressure increases and approaches the failure, the 
horizontal displacements increases rapidly. It can be seen also that as the inclination of load 
increases, the horizontal displacements at the failure also increase. 

The bearing capacity factor, Nc value, decreases with the increase of load inclination. The Nc 
values from finite element analysis have been compared with experimental results of Agrawal 
(1986), and these values are somewhat on the higher side for i >100, and on the lower side when i 
<100. 
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CHAPTER-1 
INTRODUCTION 

 

1.1 GENERAL 

Shallow foundation is a common type of substructure provided to support the structure 

constructed above the ground. The foundation may be subjected to eccentric-inclined 

load, e.g. in the case of the foundation of  retaining walls, abutments, columns, 

stanchions, portal framed buildings etc.  For designing and proportioning such 

foundation, the main criteria to be considered are bearing capacity, settlement, tilt and 

horizontal displacement. 

 

Deformation behavior of soil is influenced by a number of factors, such as physical 

structure, porosity, density, stress history, loading characteristics, existence and 

movement of fluid in pores, and time-dependence of soil skeleton and the pore fluid. 

These factors render the stress deformation behavior of soil highly complex and 

nonlinear. No available analytical solution can handle them all. Numerical methods, such 

as finite element method have proved successful in approximating the effects of many of 

these factors. 

 

Since soil behavior is usually nonlinear the nonlinear constitutive laws are commonly 

employed. For this, the material parameters depend upon the state of stress. To encounter 

this, an incremental approaches often used, which requires a separate solution process for 

each increment of load. 

 

In the analysis of footing subjected to centrally inclined load in clay soil, several theories 

presented, model and field tests have been conducted and published. The bearing 

capacity, load settlement characteristics, non-dimensional factors for bearing capacity 

have also been produced and published by earlier investigators. 
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This work tries to analyze and study the behavior of strip footing, resting on the surface 

of uniform clay in an undrained state. The strip footing –soil system is subjected to 

centrally –inclined load. Finite element analysis has been carried out by using 

incremental theory of plasticity. The yield criteria which is employed is Von Mises 

criteria. 

 

1.2    SOIL-STRUCTURE INTERACTION IN SHALLOW FOUNDATIONS  

 The term soil-structure interaction usually refers to the mechanics of interaction and 

interdependence forces between soil-foundation treated as a system and the 

superstructure as another system. However, when one attempts to study the behavior of 

the foundation in relation to soil, study of mechanics of interaction and interdependence 

of forces between the two components, namely soil and the foundation which acts as a 

structure has to be considered. 

The behavior of any foundation in relation to that soil depends upon whether the interface 

between the two is rough orb smooth. In case the contact is rough, then there is no 

relative slip between the two and the shear strength at the interface is not overcome. 

However, if the contact surface is smooth or partially smooth, then there occurs relative 

slip between any points of the soil mass. 

 

1.3    PROBLEM IDENTIFICATION 

In the present work, it is proposed to study: 

(i) The pressure settlement characteristics of strip footings under centrally applied 

inclined loading. This has been attempted on basis of elasto-plastic finite element 

analysis. 

(ii) The elasto-plastic finite element analysis of strip footing to predict the ultimate 

bearing capacity. 

(iii) The elasto-plastic finite element analysis to obtain the value of cohesive bearing 

capacity factor, Nc. 
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1.4 ORGANIZATION OF THESIS 

 Available pertinent literature on the subject related to this thesis has been reviewed and 

discussed in chapter 2.This includes the following aspects: 

(i)   Bearing capacity of footing on sand and for the centrally vertical and inclined 

loading. 

(ii)    Pressure settlement characteristics of footings on sand and clay for the centrally 

vertical and inclined loading. 

 

Chapter 3 deals with the theoretical part and assumptions used in the elasto-plastic finite 

element analysis of soil. This includes the following aspects:  

(i) Yield criteria for soils 

(ii) Plastic flow rule  

(iii) Elasto-plastic stress-strain matrix 

(iv) Elasto-plastic stiffness matrix 

(v) Nonlinear solution strategy 

(vi) Convergence criterion 

(vii) The elasto-plastic finite element analysis software. 

 

The interpretation and discussions of results have been presented in Chapter 4.The thesis 

has been concluded in chapter 5.All the references, figures have been given at the end of 

the thesis.     
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CHAPTER - 2 

REVIEW OF LITERATURE 
 

 

2.1 GENERAL 

In this chapter, a brief review of literature pertaining to the behavior of the footing under 

inclined load is presented. First, some theory and results obtained from model tests and 

analytical solution for computing bearing capacity of soil under central vertical and 

inclined load has been discussed, and then the work related to pressure settlement 

characteristics of footing under central vertical and inclined loads on sand and clay soil 

has been presented. 

 

2.2 ULTIMATE BEARING CAPACITY 

Prandtl (1920) made use of mathematical theory of plasticity in analyzing the plastic 

failure of metals due to punching. A special case of his solution is applicable to 

foundations. Prandtl was mainly concerned with the penetration of punches into metals 

where the movement of the punches was guide. A basic assumption in his solution is that 

a loaded footing of width B and great length L will sink vertically downward into the 

underlying material, thereby producing shear failure on both sides of the footing. Further, 

it was assumed that the base of footing was smooth and the soil is homogeneous, 

isotropic and weightless. 

According to Prandtl’s theory, the bearing pressure qu on the surface is transmitted 

through the soil wedge and the plastic zone according to Pascal’s law in all the directions. 

His expression for ultimate bearing capacity for clays is as follows: 

qu = (π + 2) c = 5.14 c ---------------- (2.1) 

   where, 

qu = ultimate bearing capacity of clay at the surface. 

c = cohesion of soil 

 

Terzaghi (1943) extended Prandtl’s theory for c-φ soil for shallow foundations (D ≤ B) 

considering base of the footing as rough. Two propounded  case of failure were: 
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(a) General shear failure, when clay is stiff, and 

(b) Local shear failure, when clay is soft. 

 

Further, shear strength of soil above the base of the footing was neglected. However, the 

surcharge has been taken as γDf. the following equation were proposed: 

(a) General Shear Failure: 

(i) For strip footing,                         qnd = 5.7 c                ----------------(2.2) 

(ii) For circular and square footing   qnd = 7.4 c                 -------------- (2.3) 

  (iii) For rectangular footing              qnd = 5.7 c (1 + 0.3 B/L) -----------(2.4) 

 

(b) Local Shear Failure. 

(i) for strip footing,                        qnd = 3.8 c             ---------- (2.5) 

(ii) for circular and square footing   qnd = 4.94 c          -----------(2.6) 

(iii) for rectangular footing              qnd = 3.8 c (1+ 0.3 B/L) ----(2.7) 

 

 

       where, 

       qnd = net ultimate bearing capacity. 

 

Meyerhof’s (1951), further extended the Prandtl’s theory and considered the shear 

strength of the soil above base of the footing as well. It was claimed that his theory was 

valid for shallow as well as deep foundations. The theoretical results are summarized as 

follows:   

(a) Strip footing  

                      qnd = c Ncq   ------------- (2.8) 

Where,  

                            Ncq = 5.14, for a surface footing. 

                                   = 8.28, for a smooth shaft and deep footing. 

                                   = 8.85, for a rough shaft and deep footing.  

(b) Circular footing 

 qnd = c Ncqr      ----------- (2.9) 
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Where,  

Ncqr = 6.18, for a surface footing. 

        = 9.34, for a deep and smooth footing. 

        = 9.74, for a deep and rough footing.              

(c) Square footing 

qnd = c Ncqs  ---------- (2.10) 

 

As stated by Meyerhof (1953) there is no theoretical solution is available for square 

footing but there is hardly any difference between square and circular footings. 

Therefore, the bearing capacity factor, Ncqs of a square footing can be taken equal to that 

of circular footing (Ncqr). 

Saran (1971), developed analytical solution for the bearing capacity of strip footings 

subjected to oblique loads. The results were presented in the form of bearing capacity 

factors charts, Nc, Nq, and Nγ, and which depend on the angle of internal friction (φ) and 

local inclination. (Fig. 2.1, 2.2, 2.3) 

 
 

Figure 2.1, Nγ Vs Ф (Saran, 1971) 
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Figure 2.2, Nb Vs Ф (Saran, 1971) 

 
Figure 2.3, Nc Vs Ф (Saran, 1971) 
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Saran (1971), Prakash and Saran (1971) studied the problem of bearing capacity of 

eccentrically loaded footings. The results were presented in the form of non- linear 

factors Nc, Nq, and Nγ, which depend on the angle of internal friction φ and e/B ratio, 

where e = eccentricity of load and B = width of footing. (Fig 2.4, 2.5, 2.6) 

 

 
Figure 2.4, Nc Vs Ф for Different Value of e/B (Prakasn & Saran, 1971) 

 

Further, Agrawal (1986) has conducted the model tests for the eccentric-inclined footing. 

The results have also been verified by analytical solution using nonlinear constitutive 

laws. The bearing capacity factors were presented in the form of non-dimensional charts 

factor Nc, Nq, and Nγ, which depend on the angle of internal friction φ and e/B ratio. (Fig. 

2.7, 2.8. 2.9) 

 

Some empirical relations have also been suggested by various investigators to obtain the 

ultimate bearing capacity of footings subjected to central-inclined load, eccentric vertical 

load and eccentric inclined load. 
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Figure 2.5, Nq vs Ф for Different Value of e/B (Prakasn & Saran, 1971)   

 

 
Figure 2.6, Nγ vs Ф for Different Value of e/B (Prakasn & Saran, 1971) 
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Figure 2.7, Ncei vs Ф for different value of e/B (Saran & Agrawal, 1986) 
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Figure 2.8, Nqei vs Ф for different value of e/B (Saran & Agrawal, 1986) 

 

 

11 
 



 
 

Figure2.9, Nγ vs Ф for different value of e/B (Saran & Agrawal, 1986) 
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 Hansen (1961), proposed to use the general bearing capacity equation with certain 

correction factors to account for the load inclination. The equations are: 

- for granular soil: 
2

1 1 0.3 1 1.5 1 0.1 1 0.1 1 1.5
2

fh h
u f q

v v

DQ QB Bq BN D N
L Q L Bγγ γ

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= − − + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠Q

--

(2.11) 

 

- for cohesive equation 

5 1 0.2 1 0.2 1 1.3f h
u f

v

D QBq c D
L B Q

γ
⎛ ⎞⎛ ⎞⎛ ⎞= + + − +⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
   ------------- (2.12) 

 

Limitations: B≤L, Df ≤ 2.5 B, Qh < 0.4 Qv. 

Where, 

Qh = horizontal component of inclined load. 

Qv = vertical component of inclined load. 

B = width of footing. 

L = length of footing. 

Df = depth of foundation below ground level. 

γ = unit weight of soil. 

c = unit cohesion. 

 

Mayerhof (1963) also suggested the following empirical relation to get the bearing 

capacity of footing subjected to inclined load. 

 
22 2 11 1 1

90 90 2u C q
i iq cN qN BNγγ i

ϕ
⎛⎛ ⎞ ⎛ ⎞= − + − + −⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎞
⎟      --------------  (2.13) 

Where:  

i = load inclination in degrees. 
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2.3 CONSTITUTIVE LAW OF SOIL 

Since the soil behavior is nonlinear, the nonlinear constitutive laws are more commonly 

employed. To represent the nonlinear stress-strain curve, two methods can be used, i.e. in 

the form of tabular form or in the of mathematical function. 

Kondner (1963) and Kondner and Zelasko (1963) have found that the nonlinear stress-

strain behavior of both clay and sand in a triaxial state of stress can be represented by the 

hyperbolic function. (Fig. 2.10) 

1 3

a bε ε
σ σ

= +
−

        ------- (2.14) 

or, 

( )
( )

1 3

1 31
a

b
σ σ

ε
σ σ
−

=
− −

    ------------ (2.15) 

Where, 

ε = axial strain 

a, b = constants of hyperbola. 
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Figure 2.10, Nonlinear Stress-Strain Behavior Represented by the Hyperbolic    

Function, (Kondner (1963), and Kondner & Zelasko (1963)) 

 

Duncan and Chang (1970) have used the hyperbolic form of function to simulate the 

stress-strain behavior in terms of shear strength and initial tangent modules as given 

below: 

( )( ) 2
1 3

3

1 sin
1

2 sin 2 cos
f

t t

R
E E

c
σ σ ϕ
σ ϕ ϕ

− −⎡ ⎤
= −⎢ ⎥+⎣ ⎦

  ----------- (2.16) 

Where, 

Et = tangent modules. 

and 

( )1 3 failure ratiof
fR

u

σ σ

σ

−
= =    ----------- (2.17) 

The behavior of soil can also be represented as the elasto-plastic material. In this, we can 

use the linear elastic formulations for the behavior prior to the proportional limit. In the 

zone of proportional limit and the yield point, the material exhibits nonlinear elastic 

behavior, and we can employ the piecewise linear approximation,. For this elasto-plastic 

analysis, we have to describe a yield criterion at which yielding is considered to begin. 
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We also need a flow rule to explain the post yielding behavior. There are five major yield 

criteria which are employed in the analysis of soil behavior. 

(i) Von Mises criterion 

(ii) Tresca criterion 

(iii) Mohr-Coulomb criterion 

(iv) Drucker- Prager criterion 

(v) Critical state model. 

(vi) The Mohr-Coulomb criterion for two dimensional state of stress is: 

( ) ( )3 1 1 3 1
1 1 0
2 2

f Fσ σ σ σ⎡= − − − =⎢⎣ ⎦
⎤
⎥  ----------------- (2.18) 

Where F1 is a function of σ1, σ3, and φ. The Mohr-Coulomb condition accounts for both 

the cohesive strength c and the frictional strength φ of the material. 

 

 

 

 

 The above review deals with the theoretical aspects of the problem but the practical work 

carried by the various researchers are as presented below:           

 

• Professor John Carter et al ( 2001) 

Experimental investigations of footings on clay under combined loading were led by COFS 

research fellow Dr Conleth O’Loughlin and Associate Professor Dr Barry Lehane. In 

collaboration with visiting scholar Dr David White from Cambridge University in the UK, 

Conleth and Barry have used two recently developed optical methods to measure soil 

displacement patterns under model footings during loading to failure. 

 

The methods have been used to measure soil displacement patterns for the case of a strip 

footing founded on dense calcareous clay subject to vertical loading either centrally, or at 

various eccentricities. The tests were performed in a 700 x 450 x 200 mm plane strain tank 

with a glass plate at its front face to facilitate the optical measurements. 

The first of the methods employed a ‘video-extensometer’ (Messphysik, 1996) to track the 

position of the centroid of several discrete target markers on a contrasting background. The 
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second method used Particle Image Velocimetry (PIV), which is a velocity measurement 

technique originally developed in experimental fluid mechanics and recently adapted to 

obtain planar soil deformation measurements by Dr David White. A benefit of the PIV 

method is that it removes the need for discrete target markers by tracking the inherent texture 

(i.e. spatial variation of brightness) of soil grains through a series of images captured at 

discrete time intervals using a high resolution digital camera. 

 

Both the monochrome video camera used in the video-extensometer system and the digital 

camera used for the PIV analysis were securely mounted on a tripod along a common vertical 

axis displacement vectors at increasing values of applied stress (and hence foundation 

settlement) facilitate the observance of the soil failure mechanism. Such information allows 

current constitutive soil models to be rigorously and rationally verified. It is envisaged that 

during 2003 the optical measurement methods will be employed for centrifuge tests on a 

variety of foundations subjected to combined vertical, horizontal and moment loading. 

 

. 

 
Figure 2.11, Failure Mechanism for an Eccentrically Loaded Strip footing 

(Carter et al, 2001) 
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Figure 2.12, Vertical Displacement beneath centrally Loaded Footing 

(Carter et al, 2001) 

• Bose S.K. and Das S.C. (1995) 

A Nonlinear finite element analysis was carried out by the authors to investigate the 

stress distribution and load-settlement behavior of footings of absolute rigidity and 

absolute flexibility. An absolutely rigid footing was modeled by simulating the footing as 

a rigid body undergoing equal vertical displacements at the contact points. The 

nonlinearity of the stress-strain curve of soil was taken into account by adopting a 

"piecewise" linear model. A hyperbolic stress-strain relationship of the soil was assumed, 

and Mohr-Coulomb yield criterion was chosen for analysis. An analysis was carried out 

under conditions simulating the experimental setup of the model footing tests, performed 

on two different types of soil media. Theoretical observations were compared with 

experimental ones and good agreement between the above two was found. Thus, 

reasonable predictions of the effect of relative rigidity of footing in the nonlinear range of 

soil mass could be obtained and a set of conclusions are arrived at from the investigation. 
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Good agreement of the theoretical and experimental results can lead one to conclude that 

it is possible to predict the contact stress distribution, stress distribution and deformation 

characteristics of an absolutely rigid footing in the nonlinear range. The rigidity of 

footings influences the stress distribution up to a depth of two to three times the loading 

radius. The contact stress distribution of a perfectly rigid footing is saddle shaped and at 

different load levels the nature of distribution gets altered 

 

Figure 2.13, Load Settlement Curve of Footing on Kaolin Clay                                                

 
• Houlby G.T. & Purzin A.M. (1998) 
They studied various aspects of bearing capacity of strip footing under combined loading 

and tried to give solution for the problem of its failure on undrained clay subjected to 

combined vertical moment and horizontal loading. The idea used in this study is that clay 

which is in contact with the footing is unable to sustain tension, which complicates the 

problem considerably. 

According to authors it is not possible to find the exact bearing capacity of the soil under 

aforesaid condition, therefore approximate solution is found out using numerical analysis 

giving solution in a range (between lower bound and upper bound). They said that upper 

bound and lower bound theorem of plasticity theory are not sufficient to find the solution. 

They gave certain hypothesis in each theorem to rationalize the solution in which the 

upper-bound solution does not involve contact-breaking at the soil-footing interface, and 

the lower-bound solution does not involve tensile stress on the soil-footing interface. 
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Figure 2.14, Solution Presented as Contours at Constant Eccentricity  

(Houlby G.T. & Purzin A.M. (1998)) 
 

Based on this analysis a solution is presented in the form of contours of constant 

eccentricity in v-h (vertical horizontal) plane. As shown in Fig.2.14.  These contours are 

derived by intersecting the apparent lower- and apparent upper-bound surfaces by planes 

containing the h-axis. Apparent lower- and apparent upper-bound estimates coincide on 

the (m = 0)-plane and along the surfaces derived by scaling or the effective-width concept 

from solutions for slip along the surface. In these cases, it is reasonable to assume the 

existence of unique working solutions. For the portions of the surfaces that do not 

coincide, the bound estimates give a reasonably narrow band for the possible location of 

the working yield surface. 

 

• Massin D.Y.A., Hachem E.E. & Soubra A.H. (2005) 

Massih et al determined bearing capacity of strip foundation for inclined load and 

eccentric load for layered soil consisting of clay and sand. They used upper bound 

approach of limit analysis theory. 

Authors studied failure mechanism of foundation for inclined and eccentric load. For 

inclined load a translation failure is observed. Fig 2.15 In this mechanism, each radial 
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surface separating two adjacent rigid blocks consist of two lines inclined at an angle of ‘f’ 

to each other in order to respect the normality condition. 

 

  
Figure 2.15, Collapse Mechanism for Inclined Load (Massih et al, 2005) 

 

Similarly, for eccentric load a rotational mechanism a rotational mechanism is obtained 

Fig 2.16. This mechanism is a generalization of the traditional log-spiral mechanism 

considered in the stability analysis of a homogeneous soil mass. In the present 

mechanism however, the log-spiral reduces to a circle when its passes through the clay 

layer. 
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Figure 2.16, Collapse Mechanism for Eccentric Load (Massih et al, 2005) 

 

Further, they equated the rate of energy dissipation to the rate of work done by the 

external forces for the two mechanisms presented above they obtained work equation as 

1
2

u u
q

p CqN N
B Bγγ γ γ
= ⋅ + ⋅ + ⋅

⋅ ⋅ cN
B⋅

 ……….. 2.19 

Numerical analysis was done for different angle of inclination and eccentricity and 

obtained design charts. Fig 2.17 shows design charts for angler of inclination (α) = 5o and 

no surcharge (q = 0). The critical depth is accounted for in the charts. As expected, the 

limit pressure increases with an increase in the depth of the sand layer. It also increases 

with the clay strength. For most cases, the limit pressure reaches a constant value and 

further increase in the clay strength does not improve the bearing capacity. This limit is 

equal to the bearing capacity of the granular soil. Only when the clay is strong and the 

layer of sand overlying the clay is thin relative to the footing breadth can the bearing 

capacity increase beyond that expected for a homogeneous granular soil. 
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Figure 2.17, Design Charts for Bearing Pressure (Massih et al, 2005) 
 
 

2.4 JUSTIFICATION OF PROBLEM 

The critical review of literature suggests that the most of the work related to strip footings 

subjected to centrally applied inclined load and eccentrically applied inclined load has 

been carried out for estimating the bearing capacity of such footing either on sand or clay. 

However, not much work has been done in the area of pressure settlement characteristics 

of such footing using the constitutive laws. An attempt therefore been made in this thesis 

to estimate pressure settlement characteristics of strip footings on clays considering their 

elasto-plastic behavior. 

    

 

 

 

  

 

 

23 
 



 

CHAPTER - 3 

THEORITICAL ANALYSIS 

3.1 GENERAL 

Although nonlinear elastic constitutive relations have been applied in finite element analysis and 

especially soil mechanics application (e.g. Duncan and Chang, 1970), the main physical feature 

of nonlinear material behavior is usually the phenomenon is to be found in the Theory of 

Plasticity (e.g. Hill, 1950). The simplest stress-strain law of this type that could be implemented 

in a finite element analysis involves elastic-perfectly plastic material behavior (Fig. 3.1, 3.2, 3.3). 

But it is more convenient in solid mechanics to introduce yield surface in principal stress space 

which separates stress states that give rise to elastic and to plastic (irrecoverable) strains. 

 

Figure 3.1, Non Linear Elastic & Plastic Behavior of Soil 
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Figure 3.2, Ideal Plasticity Behavior of Soil 

 

Figure 3.3, Strain Hardening Plasticity Behavior of Soil 
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3.2 ELASTO-PLASTIC ANALYSIS 

The elasto-plastic behavior and its application to finite element analysis will be discussed herein.  

3.2.1 Yield Criteria  

Algebraically, the ultimate yield surfaces are expressed in terms of a yield or failure function F. 

This function, which has units of stress, depends on the material strength and invariant 

combinations of the stress components. The function is designed such that it is negative within 

the yield or failure surface and zero on the yield failure surface. Positive values of F imply 

stresses lying outside the yield or failure surface which are hypothetical and which must be 

redistributed via the iterative process sot that yield point always lies on the yield surface. 

During plastic straining, the material may follow an associated flow theory involving normality 

principle and a plastic flow rule that is the vector of plastic strain increment will be normal to the 

yield surface. The material may as well follow with non-associated flow theory. Associated flow 

rule leads to various mathematically attractive simplifications and when applied to the Von 

Mises or Tresca failure criteria, correctly predicts zero plastic volume change during yield of 

undrained clays. For frictional materials, whose ultimate state is described by the Mohr-Coulomb 

criterion, associated flow rule leads to physically unrealistic volumetric expansion or dilation 

during yield. In such cases, non-associated flow rules must be preferred in which plastic straining 

is described by a plastic potential function, Q. This function friction angle Φ is replaced by 

dilation angle ψ. Before outlining the failure criteria and their representation in principal stress 

space, some useful stress-invariant expressions are briefly reviewed. 

The Cartesian stress tensor defining the Stress conditions at a point within a loaded body is given 

by: 

{ }x y z xy yz zxσ σ σ τ τ τ                                   ……..(3.1) 
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where,  

 σx ,σy ,σz = normal stress acting along x, y, z-axes respectively. 

xyτ , xyτ , xyτ = shear stress acting on xy ,yz ,zx plane respectively. 

which can be shown to be equivalent to three principal stresses acting on orthogonal planes  

{ }1 2 3σ σ σ                                                  …….(3.2) 

Principal stress space is obtained by treating the principal stresses as 3-D coordinates and such a 

plot represents a useful means of defining the stresses acting at a point. It may be noted that 

although principal stress space defines the magnitudes of the principal stresses, no indication is 

given of their orientation in physical space.  

Instead of defining a point in principal stress space with coordinates{ }1 2 3σ σ σ , it is often 

more convenient to use invariants (s, t, θ) where 

1 (
3

)x y ys σ σ σ= + +           …..….(3.3) 

2 2 2 2 21 [( ) ( ) ( ) 6 6 6
3

2 ]x y y z z x xy yzt zxσ σ σ σ σ σ τ τ τ= − + − + − + + +        ….(3.4) 

3
3

3 6
1/ 3arcsin( )

J
t

θ
−

=                      ….(3.5) 

where, 

2 2 2
3 2x x x x yz y zx z zy xy yz zxJ S S S S S Sτ τ τ τ τ= − − − + τ   ………….….(3.5a) 

is the third stress invariants, and   

(2 ) / 3x x y zS σ σ σ= − −  , etc         ……..(3.5b) 
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As shown in Fg. 3.4 gives the distance from the origin to the π plane in which the stress point lies 

and t represents the perpendicular distance of the stress point from the space diagonal. The lode 

angle θ, is a measure of the angular position of the stress point within the π plane. It may be 

noted that in plane strain equations (3.3) are simplified because 0yx zxτ τ= = . 

 

 

Figure 3.4, Principal Stress Space 

Several failure criteria have been proposed as suitable for representing the strength of soils as 

engineering material. For soils possessing both frictional and cohesive components of shear 

strength, the best known criterion is undoubtedly that due to Mohr-Coulomb and takes the form 

of an irregular hexagonal cone in principal stress space.  

For undrained clays which behave in a frictionless (Фu=0) manner, cylindrical failure criteria are 

appropriate. These are the simplest criteria, which do not depend on the first stress invariant, s 

(or σm). The Tresca criterion, in fact, does not require separate treatment mathematically because 
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it is a special case of the Mohr-Coulomb criterion. Alternatively, the Von Mises criterion may be 

used. The difference in strengths predicted by the two criteria does not exceed by about 15%. 

As shown in Fig. 3.3, Von Mises criterion takes the form of a right circular cylinder lying along 

the space diagonal. Only one of the three invariants, namely t (or σ), is of any significance when 

determining whether a stress state has reached the limit of elastic behavior. The onset of yield in 

a Von Mises material is not dependent upon invariants, s or θ. 

 

Figure 3.5 Mises and Tresca Failure Criteria 

The symmetry of the Von Mises criterion when viewed in the π plane indicates why it is not 

ideally suited to correlations with traditional soil mechanics concepts of strength. The criterion 

gives equal weight to all three principal stresses, so if it is to be used to model undrained clay 

behavior, consideration must be given to the value of the intermediate principal stress, σ2 at 

failure. 

 For plane strain application, it can be shown that at failure 
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1
2 2

3σ σσ +
=   ………………….(3.6) 

Hence, the failure criterion is given by  

3 uF cσ
−

= −         …………….….(3.7) 

Where cu = undrained cohesion of the soil.  

Under triaxial conditions, where at all times  

σ 2 = σ 3    ……………….….(3.8) 

The criterion is given by : 

F = σ – 2cu   …….(3.9) 

Both of these expressions ensure that at failure  

1

2uc 3σ σ−
=           ……………..(3.10) 

3.3 NON-LINEAR SOLUTION STRATEGY   

In practical finite element analysis, mainly two procedures can adopted to model material non-

linearity. The first approach involves constant stiffness iterations in which nonlinearity is 

introduced by iteratively modifying the right-hand side “load” vectors. The (usually elastic) 

global stiffness matrix in such an analysis is formed only once. Each iteration thus represents an 

elastic analysis. Convergence is said to occur when stresses generated by the loads satisfy some 

stress-strain law or yield or failure criterion within prescribed tolerances. The load vectors at 

each iteration consist of externally applied loads and self-equilibrating body loads. The body-

loads have the effect of redistributing stresses within the system, but as they are self-

equilibrating, they do not alter the net loading on the system. The constant stiffness method is 

shown diagrammatically in fig 3.4. For load-controlled problems, more iteration may be required 

for convergence as failure is approached because the elastic (constant) global stiffness matrix 
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starts to seriously overestimate the actual material stiffness. The numbers in parentheses in the 

Fig. 3.6 indicate the number of iterations which might typically be required to reach 

convergence.  

 

Figure 3.6, Constant Stiffness Method 

Less iterations per load step are required if the second approach, namely the variable or tangent 

stiffness method, is adopted. This method, shown in Fig. 3.5, takes account of the reduction in 

stiffness of the material as failure is approached. If small enough load steps are taken, the method 

can become equivalent to a simple Euler Explicit method. In practice, the global stiffness matrix 

may be updated periodically and body-loads iterations employed to achieve convergence. In 

contrasting the two methods, the extra effort of reforming and factorizing the global stiffness 

matrix in the variable stiffness method is offset by reduced numbers of iterations, especially as 

failure is approached. A further possibility is the implicit integration of the rate equations which 
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rather reduce the explicit methods just described. This helps to further reduce the number of 

iterations for convergence. 

 

 

 

Figure 3.7, Variable Stiffness Method 

Constant stiffness methods of the type described in this analysis use repeated elastic solutions to 

achieve convergence by iteratively varying the loads on the system. Within each load increment, 

the system of equations  

K δi = pi          ….(3.11) 

must be solved for the displacement increments δi, where i represents the iteration number , K 

the global stiffness and pi the external loads. 
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The element displacement increments, ui are extracted from δi , and these lead to total strain 

increments via the element strain-displacement relationships: 

33 

ii BuεΔ =           ….(3.12) 

Assuming the material is yielding, the strains will contain both elastic and (visco) plastic 

components; thus  

(i e )p iε ε εΔ = Δ + Δ  ….(3.13) 

It is only the elastic strain increments eεΔ  that generate stresses through the elastic stress-strain 

matrix; hence  

( )i D e iσ εΔ = Δ  ….(3.14) 

These stress increments are added to stresses already existing from the previous load step and the 

updated stresses substituted into the failure criterion.  

If stress redistribution; is necessary, this is done by altering the load increment vector pi  in 

equation (3.11). In general, this vector holds two types of load, as given by: 

pi = pa + pi
b  ….(3.15) 

Where pa is the actual applied load increment that is required and  is the body-loads vector that 

varies from one iteration to the next. The  vector must be self-equilibrating so that the net 

loading on the system is not affected by it.  

i
bp

i
bp

 

 

 



 

CHAPTER -4 

RESULTS & DISCUSSION 

 

4.1 GENERAL  

In this chapter, an attempt has been made to analyze and study the behavior of a strip footing 

resting on the surface of uniform clay soil in an undrained state. The strip footing-soil system is 

subjected to centrally applied inclined load. The problem has been idealized as a plane strain 

problem (Figure 4.1, 4.2). An elasto-plastic finite element analysis has been carried out using 

incremental theory of plasticity. The clay soil in an undrained state has been assumed to yield 

according to Von Mises criterion.  

The elasto-plastic analysis of soil-strip footing system has been carried out to predict; 

• Pressure-settlement characteristics for eccentric loading of the footing  

• Ultimate bearing capacity of strip footing, and 

• the value of bearing capacity factor, Nc 

 

Figure 4.1, Strip Footing as a Plain Strip Footing 
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Figure 4.2, Surface Footing with Inclined Loading Strip 

 

4.2 PARAMETER CONSIDERED IN ANALYSIS 

The type of soil which will be analyzed is clay soil with Ф = 0 as it is in an undrained state. All 

the six states of consistency have been considered. The elasto-plastic state has been described by 

three parameters, namely the elastic properties, Es, ν, and the undrained cohesion cu. Table 4.1 

displays numerical values of these properties corresponding to different states of consistency. 

The values of inclination of load considered for analysis of soil-footing system are i = 00, 100, 

200, 300. The width of footing considered is 2.0 m. The values has been taken from ‘Behavior of 

Eccentrically Loaded Footing in Clay’ by C. Prakash, University of Roorkee, (1975)  

4.3 FINITE ELEMENT MESH 

 For finite element analysis using 2-D plane strain state, the eight-noded isoparametric parabolic 

elements have been used. A 2 x 2 Gaussian quadrature scheme has been used for numerical 

integration. The footing supports a uniform stress, q, which is increased incrementally to failure. 

Fig. 4.3 shows the finite element mesh used in the analysis. It has: 
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Number of elements: 64 elements  

Number of nodal points : 233 nodal points  

Number of restrained nodes: 49 nodes. 

For this elasto-plastic analysis, the load was increased proportionally using the load increments. 

It is usual in the problem of this type to make load increments smaller as the failure load is 

Table 4.1 Parameters of Clay Used in the Analysis. 

Type of Clay 

(Consistency) 

Undrained Cohesion, 

cu, (kN/m2) 

Initial Tangent Modulus, 

Es 

(kN/m2) 

Poisson Ratio 

(ν) 

Hard 200 100000 0.1 

Very Stiff 150 80000 0.15 

Stiff 75 60000 0.2 

Medium 37.5 40000 0.2 

Soft 18.75 15000 0.25 

Very Soft 10 10000 0.3 

 

approached. At load levels well before failure, convergence should occur in relatively few 

iterations. In the data provided in this analysis, the limit of iterations is set to 250 iterations in 

each load increment. This value will become the maximum number of iterations allowed within 

one load increment. The tolerance provided for convergence in this is 0.001. 
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Figure 4.3, Typical Mesh for Idealization of Soil Mass & Eight Noded Isoparametric 

Element 

 

 

 

 

 



 

 

 

4.4 DISCUSSION OF RESULTS  

4.4.1 Pressure Vs Elasto-Plastic Vertical Settlement Characteristics 

Pressure versus vertical settlement curves for a strip footing (B = 2.0 m), resting on various type 

of clays (Table 4.1) have been obtained of values of load inclination i = 00, 100, 200, 300. Fig. 4.4 

to Fig. 4.9 show pressure-settlement characteristics of a centrally loaded strip footing for load 

inclination i = 00, i.e. for the case of centrally vertical loading. 

The curves have been plotted for footing resting on hard clay, stiff clay and soft clay 

respectively. The values of ultimate bearing capacity of strip footing obtained by double tangent 

method are respectively 1025 kN/m2, 385 kN/m2, and 94 kN/m2. 

Similarly plots have been presented for pressure-settlement behavior of strip footing resting on 

clay stratum having six states of consistency for load inclination i = 10o, 20o, 30o (Fig. 4.10 to 

Fig. 4.27)  

All the pressure-settlement characteristics display an initial linear elastic behavior followed by 

inelastic behavior till failure during which large settlement occurs for every successive pressure 

increment.  

The number of iterations needed to achieve convergence in each load increment also varies for 

successive load increments. For example, for case of medium clay and i = 300, it is seen that the 

convergence was achieved for the 9th load increment, when q = 154 kN/m2 in 59 iterations. For 

the 9th load increment when q = 162 kN/m2, the number of iterations needed to achieve 

convergence jumped up to 203 iterations, but the convergence could not be achieved within the 

upper limit of 250 iterations when the load was incremented to 168 kN/m2. This significant 

change of number of iterations needed to achieve convergence indicates that the soil failure has 

approached, and the corresponding displacement increments at this stage were also very high. 

These conditions have been observed typically for all cases of soil and loading.  
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It has been found that the values of ultimate bearing capacity decrease with the decrease of 

consistency of clay from hard to very soft. As the inclination of load increases, the values of 

ultimate bearing capacity and failure load decrease. This reduction of ultimate bearing capacity is 

significant in the high consistency range of clay. 
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Hard Clay 
Es = 100000 kN/m2

cu = 200  kN/m2 

ν = 0.1 
B = 2.0m 
i = 00

 
Figure 4.4, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 

Centrally Vertical Load 
 

 

Very Stiff Clay 
Es = 80000 kN/m2

cu = 150  kN/m2 

ν = 0.15 
B = 2.0m 
i = 00

 
Figure 4.5, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 

Centrally Vertical Load 
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Stiff Clay 
Es = 60000 kN/m2

cu = 75  kN/m2 

ν = 0.2 
B = 2.0m 
i = 00

 
Figure 4.6, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 

Centrally Vertical Load 
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Medium Clay 
Es = 40000 kN/m2

cu = 37.5  kN/m2 

ν = 0.2 
B = 2.0m 
i = 00

 
Figure 4.7, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 

Centrally Vertical Load 
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Soft Clay 
Es = 15000 kN/m2

cu = 18.75  kN/m2 

ν = 0.25 
B = 2.0m 
i = 00

 
Figure 4.8, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 

Centrally Vertical Load 
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Very Soft Clay 
Es = 10000 kN/m2

cu = 10  kN/m2 

ν = 0.3 
B = 2.0m 
i = 00

Figure 4.9, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 
Centrally Vertical Load 
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Hard Clay 
Es = 100000 kN/m2

cu = 200  kN/m2 

ν = 0.1 
B = 2.0m 
i = 100

Figure 4.10, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 
Centrally Vertical Load 
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Very Stiff Clay 
Es = 80000 kN/m2

cu = 150  kN/m2 

ν = 0.15 
B = 2.0m 
i = 100

 
Figure 4.11, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 

Centrally Inclined Load 
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Stiff Clay 
Es = 60000 kN/m2

cu = 75  kN/m2 

ν = 0.2 
B = 2.0m 
i = 100

Figure 4.12, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 
Centrally Inclined Load 
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Medium Clay 
Es = 40000 kN/m2

cu = 37.5  kN/m2 

ν = 0.2 
B = 2.0m 
i = 100

Figure 4.13, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 
Centrally Inclined Load 
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Soft Clay 
Es = 15000 kN/m2

cu = 18.75  kN/m2 

ν = 0.25 
B = 2.0m 
i = 100

Figure 4.14, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 
Centrally Inclined Load 
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Very Soft Clay 
Es = 10000 kN/m2

cu = 10  kN/m2 

ν = 0.3 
B = 2.0m 
i = 100

Figure 4.15, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 
Centrally Inclined Load 
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Hard Clay 
Es = 100000 kN/m2

cu = 200  kN/m2 

ν = 0.1 
B = 2.0m 
i = 200

 
Figure 4.16, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 

Centrally Inclined Load 
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Very Stiff Clay 
Es = 80000 kN/m2

cu = 150  kN/m2 

ν = 0.15 
B = 2.0m 
i = 200

 
Figure 4.17, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 

Centrally Inclined Load 
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Stiff Clay 
Es = 60000 kN/m2

cu = 75  kN/m2 

ν = 0.2 
B = 2.0m 
i = 200

Figure 4.18, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 
Centrally Inclined Load 

0 20 40 60 80 100 120 140 160
-35

-30

-25

-20

-15

-10

-5

0

Pressure (kN/m2)

S
et

tle
m

en
t (

m
m

)

 

Medium Clay 
Es = 40000 kN/m2

cu = 37.5  kN/m2 

ν = 0.2 
B = 2.0m 
i = 200

 
Figure 4.19, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 

Centrally Inclined Load 
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Soft Clay 
Es = 15000 kN/m2

cu = 18.75  kN/m2 

ν = 0.25 
B = 2.0m 
i = 200

Figure 4.20, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 
Centrally Inclined Load 
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Very Soft Clay 
Es = 10000 kN/m2

cu = 10  kN/m2 

ν = 0.3 
B = 2.0m 
i = 200

 
Figure 4.21, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 

Centrally Inclined Load 
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Hard Clay 
Es = 100000 kN/m2

cu = 200  kN/m2 

ν = 0.1 
B = 2.0m 
i = 300

Figure 4.22, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 
Centrally Inclined Load 

 

Very Stiff Clay 
Es = 80000 kN/m2

cu = 150  kN/m2 

ν = 0.15 
B = 2.0m 
i = 300

Figure 4.23, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 
Centrally Inclined Load 
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Stiff Clay 
Es = 60000 kN/m2

cu = 75  kN/m2 

ν = 0.2 
B = 2.0m 
i = 300

Figure 4.24, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 
Centrally Inclined Load 
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Medium Clay 
Es = 40000 kN/m2

cu = 37.5  kN/m2 

ν = 0.2 
B = 2.0m 
i = 300

Figure 4.25, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 
Centrally Inclined Load 
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Soft Clay 
Es = 15000 kN/m2

cu = 18.75  kN/m2 

ν = 0.25 
B = 2.0m 
i = 300

Figure 4.26, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 
Centrally Inclined Load 
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Very Soft Clay 
Es = 10000 kN/m2

cu = 10  kN/m2 

ν = 0.3 
B = 2.0m 
i = 300

Figure 4.27, Pressure Vs Elasto-plastic Settlement Curve of Strip Footing under 
Centrally Inclined Load 
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Hard Clay 
Es = 100000 kN/m2

cu = 200  kN/m2 

ν = 0.1 
B = 2.0m 
i = 100

Figure 4.28, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 
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Very Stiff Clay 
Es = 80000 kN/m2

cu = 150  kN/m2 

ν = 0.15 
B = 2.0m 
i = 100

Figure 4.29, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 
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Stiff Clay 
Es = 60000 kN/m2

cu = 75  kN/m2 

ν = 0.2 
B = 2.0m 
i = 100

Figure 4.30, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 
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Medium Clay 
Es = 40000 kN/m2

cu = 37.5  kN/m2 

ν = 0.2 
B = 2.0m 
i = 100

Figure 4.31, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 
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Soft Clay 
Es = 15000 kN/m2

cu = 18.75  kN/m2 

ν = 0.25 
B = 2.0m 
i = 100

Figure 4.32, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 
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Very Soft Clay 
Es = 10000 kN/m2

cu = 10  kN/m2 

ν = 0.3 
B = 2.0m 
i = 100

Figure 4.33, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 
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Hard Clay 
Es = 100000 kN/m2

cu = 200  kN/m2 

ν = 0.1 
B = 2.0m 
i = 200

Figure 4.34, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 
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Very Stiff Clay 
Es = 80000 kN/m2

cu = 150  kN/m2 

ν = 0.15 
B = 2.0m 
i = 200

Figure 4.35, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 

55 
 



0 50 100 150 200 250 300 350 400
-40

-35

-30

-25

-20

-15

-10

-5

0

Pressure (kN/m2)

H
or

iz
on

ta
l S

et
tle

m
en

t (
m

m
)

 

Stiff Clay 
Es = 60000 kN/m2

cu = 75  kN/m2 

ν = 0.2 
B = 2.0m 
i = 200

Figure 4.36, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 
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Medium Clay 
Es = 40000 kN/m2

cu = 37.5  kN/m2 

ν = 0.2 
B = 2.0m 
i = 200

 
Figure 4.37, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 

Footing under Centrally Inclined Load 
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 Figure 4.38, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 

Soft Clay 
Es = 15000 kN/m2

cu = 18.75  kN/m2 

ν = 0.25 
B = 2.0m 
i = 200
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Very Soft Clay 
Es = 10000 kN/m2

cu = 10  kN/m2 

ν = 0.3 
B = 2.0m 
i = 200

Figure 4.39, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 
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Figure 4.40, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 

Hard Clay 
Es = 100000 kN/m2
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ν = 0.1 
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i = 300
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Very Stiff Clay 
Es = 80000 kN/m2

cu = 150  kN/m2 

ν = 0.15 
B = 2.0m 
i = 300

Figure 4.41, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 
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Stiff Clay 
Es = 60000 kN/m2

cu = 75  kN/m2 

ν = 0.2 
B = 2.0m 
i = 300

Figure 4.42, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 
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Medium Clay 
Es = 40000 kN/m2

cu = 37.5  kN/m2 

ν = 0.2 
B = 2.0m 
i = 300

Figure 4.43, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 
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Soft Clay 
Es = 15000 kN/m2

cu = 18.75  kN/m2 

ν = 0.25 
B = 2.0m 
i = 300

Figure 4.44, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 
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Very Soft Clay 
Es = 10000 kN/m2

cu = 10  kN/m2 

ν = 0.3 
B = 2.0m 
i = 300

Figure 4.45, Pressure Vs Elasto-plastic Horizontal Settlement Curve of Strip 
Footing under Centrally Inclined Load 
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4.4.2 Pressure vs Elasto-Plastic Horizontal Settlement Characteristics 

Pressure versus horizontal displacement plots for the strip footing for six different states of 

consistency of clay corresponding to load inclination i = 100,   200, 300. 

Similarly to the pressure-vertical settlement characteristics, the change of average horizontal 

displacement is less at the low pressure but at he pressure increases and approaches the failure, 

the horizontal displacements increase rapidly. This is indicated by the quite smooth graph at low-

pressure, and curves suddenly drop down as the failure is approached. 

From these graph, it can also be seen that as the inclination of load increases, the horizontal 

displacements at the failure also increase. This is obvious because by increasing the inclination 

of loading towards horizontal, the component of horizontal load which is acting on the soil mass 

also increases. For the same inclination of load, the values of the horizontal displacement 

decrease as the soil consistency changes from hard to very soft. The horizontal displacements, at 

the same level of pressure for the same load inclination of loading, increase as the consistency of 

clay decreases. 

 

4.4.3 Settlement Profiles of Footing  

The nodal points which represent the loaded nodes are 5 nodal points. The direction of loading in 

the modal is given towards the right side of footing from the center line.  

In order to understand whether the strip footing behaves as a rigid footing or as a flexible 

footing, the vertical settlement profiles of the footings have been plotted. Fig 4.46 a  to 4.46 l  

show the vertical settlement profiles for the case of strip footing on hard clay carrying central 

vertical load (i = 00) corresponding to various load increments. It can be seen from these plots 

that: 

(i) Settlement profile of the footing is symmetric non-uniform 

(ii) The profile is parabolic in shape for the first few load increments, and  
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(iii)The parabolic profile changes to trapezoidal profile at higher pressure intensities. 

Figure 4.46, Settlement Profile of Footing under Centrally Vertical Loading
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Figure 4.47, Settlement Profile of Footing under Centrally Vertical Loading
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Figure 4.48, Settlement Profile of Footing under Centrally Vertical Loading
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Figure 4.49, Settlement Profile of Footing under Centrally Vertical Loading
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Figure 4.50, Settlement Profile of Footing under Centrally Vertical Loading
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Figure 4.51, Settlement Profile of Footing under Centrally Vertical Loading
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Figure 4.52, Settlement Profile of Footing under Centrally Vertical Loading
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Figure 4.53, Settlement Profile of Footing under Centrally Vertical Loading
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Figure 4.54, Settlement Profile of Footing under Centrally Vertical Loading
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Figure 4.55, Settlement Profile of Footing under Centrally Vertical Loading
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Figure 4.56, Settlement Profile of Footing under Centrally Vertical Loading
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Figure 4.57, Settlement Profile of Footing under Centrally Vertical Loading
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Figure 4.58, Settlement Prifile of Strip Footing under Centrally Applied Inclined 
Loading
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Figure 4.59, Settlement Prifile of Strip Footing under Centrally Applied 
Inclined Loading
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Figure 4.60, Settlement Prifile of Strip Footing under Centrally Applied Inclined 
Loading
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Figure 4.61, Settlement Prifile of Strip Footing under Centrally Applied Inclined 
Loading

-30

-25

-20

-15

-10

-5

0

Nodes

Se
ttl

em
en

t (
m

m
)

Hard Clay
Es =100 Mpa
cu = 200 kpa
v = 0.1
B = 2.0 m
i = 30
q = 630 kN/m2

Figure 4.62, Settlement Prifile of Strip Footing under Centrally Applied 
Inclined Loading

-30

-25

-20

-15

-10

-5

0

Nodes

Se
ttl

em
en

t (
m

m
) Hard Clay

Es =100 Mpa
cu = 200 kpa
v = 0.1
B = 2.0 m
i = 30
q = 695 kN/m2

 

 

 

 

70 

 



 

Figure 4.63, Settlement Prifile of Strip Footing under Centrally Applied Inclined 
Loading
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Figure 4.64, Settlement Prifile of Strip Footing under Centrally Applied 
Inclined Loading

-40

-35

-30

-25

-20

-15

-10

-5

0

Nodes

Se
ttl

em
en

t (
m

m
)

Hard Clay
Es =100 Mpa
cu = 200 kpa
v = 0.1
B = 2.0 m
i = 30
q = 795 kN/m2

 

 

71 

 



 

Figure 4.65 Settlement Prifile of Strip Footing under Centrally Applied 
Inclined Loading
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Figure 4.66 Settlement Prifile of Strip Footing under Centrally Applied Inclined 
Loading
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Figure 4.67 Settlement Prifile of Strip Footing under Centrally Applied Inclined 
Loading
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Figure 4.68 Settlement Prifile of Strip Footing under Centrally Applied Inclined 
Loading
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However, the settlement profiles for the same strip footing on hard clay, when plotted for various 

load increments corresponding to load inclination i = 300, and i = 300, (Figure 4.42 a to 4.42 k) 

show that: 

(i) Settlement profile is symmetric non-uniform 

(ii) The profile is parabolic in shape for the first few load increments 

(iii)The profile pattern for higher pressure increments no more remains parabolic, and gets          

distorted. 

(iv) The maximum settlement occurs not below the point of application of inclined load, but 

the point at which maximum settlement occurs moves in the direction of the load 

inclination. 

 

4.4.4 Comparison of Nc values  

The bearing capacity factor, Nc corresponding to cohesion of the strip surface footing resting on 

clay (Ф = 0) and carrying the inclined load has been obtained by dividing the ultimate load at 

soil bearing failure by the corresponding value of undrained cohesion cu. The values Nc for 

various inclinations of loading and clay consistency can be seen in Table.4.2. The values of Nc

Under vertical load (i = 0) range from 5.000 to 4.144. These well compared with Prandtl Theory 

(Nc = 5.14), Meyerhof Theory (Nc = 5.14), Skempton Theory (Nc = 5.14), or Teraghi Theory (Nc 

= 5.14). The values obtained by using this elasto-plastic finite element analysis are little on the 

lesser side. 

It can be seen that the Nc values for the values of i >0 decreases with the increase in the load 

inclination. These values and tendency are agree with the results obtained from experiments 

results by Saran and Agrawal, 1986. The values obtained from experimental results for inclined 

loading (e/B = 0, Ф = 0) are:  

for  i = 100  Nc = 5.00 
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for  i = 200 Nc = 3.33 

for  i = 300 Nc = 3.077 

The values obtained in present study are lesser for i = 100, and somewhat bigger for i > 100. 

Table 4.2 Values of Bearing Capacity and Nc Values Obtained 

i = 00

Consistency of 

Clay Hard 

Very 

Stiff Stiff Medium Soft 

Very 

Soft 

Cu (Kpa) 200 150 75 37.5 18.75 10 

qfailure(kN/m2) 1060 795 400 205 100 53 

qultimate (kN/m2) 1025 750 385 192 94 50 

Nc factor 5.125 5 5.133 5.12 5.013 5 

 

i = 100

Consistency of 

Clay Hard 

Very 

Stiff Stiff Medium Soft 

Very 

Soft 

Cu (Kpa) 200 150 75 37.5 18.75 10 

qfailure(kN/m2) 995 730 375 183 92.5 49.5 

qultimate (kN/m2) 880 650 340 170 83 44 

Nc factor 4.4 4.333 4.533 4.533 4.427 4.4 
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i = 200

Consistency of 

Clay Hard 

Very 

Stiff Stiff Medium Soft 

Very 

Soft 

Cu (Kpa) 200 150 75 37.5 18.75 10 

qfailure(kN/m2) 925 700 365 173 86.5 46.5 

qultimate (kN/m2) 810 625 325 159 80 42 

Nc factor 4.05 4.167 4.333 4.24 4.267 4.2 

 

i = 300

Consistency of 

Clay Hard 

Very 

Stiff Stiff Medium Soft 

Very 

Soft 

Cu (Kpa) 200 150 75 37.5 18.75 10 

qfailure(kN/m2) 865 650 335 166 82 45.5 

qultimate (kN/m2) 800 590 300 155 76 40 

Nc factor 4 3.933 4 4.133 4.053 4 

 

4.4.5 Influence of Load Inclination  

It can be seen that as the inclination of load increases, the value o vertical settlement at the same 

level of pressure increases. This can be seen clearly in soil with low consistency, but in soil with 
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high consistency, this tendency can not be seen clearly. For the same inclination of loading, the 

settlement at the same level of pressure increases as the consistency of clay moves from higher 

consistency to lower consistency.  

It can also be seen that as the load inclination increases, the horizontal displacement at failure is 

also increases. 

 

4.5 CRITICAL COMMENTS 

      In general, it has been found that:  

(i) The settlement profile of the strip footing is, in general, non-uniform and parabolic. 

(ii) The strip footing on clay with different consistency behaves as a flexible footing. 

(iii)As load inclination increases, the settlement profile becomes more unsymmetrical. 

(iv) Ultimate load carrying capacity of the strip footing decreases with the increase in load 

inclination. 

(v) The values of bearing capacity factor, Nc, lesser than those given by earlier investigators 

for i ≤100, and somewhat bigger for i > 100. 
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CHAPTER-5 

CONCLUSIONS 

 
5.1 SUMMARY 

The behavior of strip footing subjected to central loading has been studied by using 

elasto-plastic finite element analysis so as to obtain the ultimate bearing capacity, the 

pressure-vertical settlement characteristics the pressure-horizontal displacement 

characteristics, and the settlement profile. The investigation has been conducted for all 

states of clay consistency, and for various inclinations of load. 

 

5.2 CONCLUSIONS 

(i) Based on the results of analysis, the following conclusions have been drawn: 

The  ultimate  bearing  capacity  of  strip  footing  under  inclined  load decreases 

with load inclination .For the same inclination of load, the ultimate bearing capacity 

of soil decreases as the consistency of soil decreases. 

(ii) By using the incremental elasto-plastic finite element analysis and the Von Mises 

criterion, the settlements of footing in every increment of load have been monitored 

and plotted. Typically, it has been found that the increase of vertical displacement is 

less at the low pressure intensity. But as the bearing failure of soil approaches, the 

displacements rapidly increase. 

(iii) The bearing capacity factor, Nc value, decreases with increasing of load inclination. 

The Nc values from finite element analysis have been compared with experimental 

results of Saran and Agrawal (1986), and these values lesser for i ≤100, and 

somewhat bigger for i > 100. 

(iv) The profile of the settlement of the footing indicates that footing behaves as a 

flexible footing. At the 00 of loading the maximum value of displacement occurs in 

the centre point of footing. At the initial stage of loading, the settlement profile is 

smooth parabolic, and then finally becomes more asymmetric curve when the soil 

failure approaches.  
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 5.3 SCOPE FOR FURTHER RESEARCH 

 

(i) Finite element analysis can be carried our for other type of soil (non-cohesive 

soil) with other relevant yield criteria such as Mohr-Coulomb, Tresca Criteria 

and using the critical state model. 

(ii) The analysis can also be done by taking the eccentricity of loading into account. 

(iii) A more reliable model in the finite element analysis would be, the analysis of 

footing embedded in soil mass, and with the joint element between the footing 

and the soil. The interface behavior can alter the results. True interaction can be 

represented only when interface behavior is taken into account.  

(iv) Further studies could be done on the strip footing resting on clay stabilized with 

geogrids.  
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