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ABSTRACT 

 
A diffuser is a device for converting the kinetic energy of an incoming fluid into 

pressure. As the flow proceeds through the diffuser there is continuous retardation of 

the flow resulting in conversion of kinetic energy into pressure energy. Such a process 

is termed as diffusion. Diffuser forms an important part in flow machinery and 

structures. The present study involves the CFD analysis for the prediction of flow 

characteristics using various mathematical models. The annular diffuser considered in 

the present case has straight hub with varying extension length. The characteristic 

quantities such as static pressure distribution at hub and casing walls, velocity profiles 

at various sections and flow patterns have been presented for studying. Standard 

turbulence models are studied in the present study. 
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NOMENCLATURE 
A  Area  

AR   Area ratio  

B  blockage factor 

C  Constants  

C
P   

Pressure recovery co-efficient  

C
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Ideal pressure recovery co-efficient  

D
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G
   

generation of turbulence kinetic energy  
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K   Total pressure loss co-efficient  

k   Turbulent kinetic energy  

P   Static pressure  

P
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S
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U
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Y
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