# EFFECT OF VARYING EXTENSION LENTGH ON THE PRESSURE COEFFICIENT IN DIFFUSER

A major thesis submitted

In partial fulfillment for the requirements of the award of degree

of

#### **MASTER OF ENGINEERING**

In

#### THERMAL ENGINEERING

Submitted by:

VARUN GARG University Roll No. 10241

Under the Guidance of:

Dr. B. B. ARORA



DEPARTMENT OF MECHANICAL ENGINEERING DELHI COLLEGE OF ENGINEERING UNIVERSITY OF DELHI SESSION 2006-08

### **CANDIDATE'S DECLARATION**

I hereby declare that the work which being present in the major thesis entitled "EFFECT OF VARYING EXTENSION LENTGH ON PRESSURE COEFFICIENT IN DIFFUSER" in the partial fulfillment for the award of degree of MASTER of ENGINEERING with specialization in "THERMAL ENGINEERING" submitted to Delhi College of Engineering, University of Delhi, is an authentic record of my own work carried out under the supervisions of Dr. B. B. ARORA, Department of Mechanical Engineering, Delhi College of Engineering, University of Delhi. I have not submitted the matter in this dissertation for the award of any other Degree or Diploma or any other purpose what so ever.

VARUN GARG University Roll No. 10241 College Roll No. 13-THR-06

### **CERTIFICATE**

This is to certify that the above statement made by Mr. Varun Garg is true to the best of my knowledge and belief.

#### Dr. B. B. ARORA

Assistant Professor Department of Mechanical Engineering Delhi College of Engineering, Delhi

### **ACKNOWLEDGEMENT**

It is a great pleasure to have the opportunity to extent my heartiest felt gratitude to everybody who helped me throughout the project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my learned supervisor **Dr. B. B. ARORA**, Assistant Professor, Department of Mechanical Engineering, Delhi College of Engineering, for his invaluable guidance, encouragement and patient review. His continuous inspiration only has made me complete this dissertation.

I am also grateful to Professor S. Maji, HOD (Department of Mechanical Engineering), Delhi College of Engineering and other faculty members for providing necessary guidance and support from the department.

I am thankful to my friends and classmates for their unconditional support and motivation for this dissertation.

VARUN GARG University Roll No.10241

College Roll No. 13-THR-06

#### **ABSTRACT**

A diffuser is a device for converting the kinetic energy of an incoming fluid into pressure. As the flow proceeds through the diffuser there is continuous retardation of the flow resulting in conversion of kinetic energy into pressure energy. Such a process is termed as diffusion. Diffuser forms an important part in flow machinery and structures. The present study involves the CFD analysis for the prediction of flow characteristics using various mathematical models. The annular diffuser considered in the present case has straight hub with varying extension length. The characteristic quantities such as static pressure distribution at hub and casing walls, velocity profiles at various sections and flow patterns have been presented for studying. Standard turbulence models are studied in the present study.

# CONTENTS

|    | Cand  | idate's I | Declaration | on        | •        | •        | •        | •        | •   | • | ii    |
|----|-------|-----------|-------------|-----------|----------|----------|----------|----------|-----|---|-------|
|    | Certi | ficate    |             | •         |          | •        |          |          |     | • | ii    |
|    | Ackn  | owledge   | ement       |           |          |          |          |          |     |   | iii   |
|    | Absti | ract      |             | •         |          | •        |          |          |     |   | iv    |
|    | Conte | ents      | •           |           | •        | •        | •        | •        |     |   | v     |
|    | Lists | of Figur  | es          | •         | •        | •        | •        | •        | •   | • | viii  |
|    | Nom   | enclature | e.          | •         | •        | •        | •        | •        | •   |   | viii  |
| 1. | INTI  | RODUC     | TION        |           |          |          |          |          |     |   | 1-12  |
|    | 1.1   | Axial     | Diffuser    |           |          |          |          |          |     |   | 3     |
|    | 1.2   | Radia     | l Diffuse   | er        |          | •        | •        |          | •   |   | 4     |
|    | 1.3   | Curve     | d Wall I    | Diffuser  | •        | •        | •        | •        | •   | • | 4     |
|    | 1.4   | Annul     | ar Diffu    | ser       | •        | •        | •        | •        | •   | • | 5     |
|    | 1.5   | Diffus    | er Perfo    | rmance    | Parame   | eters    |          | •        | •   | • | 6     |
|    |       | 1.5.1     | Geome       | etric Par | ameter   | •        | •        | •        | •   | • | 6     |
|    |       |           | 1.5.1.1     | Aerody    | ynamic   | Blocka   | age      |          |     |   | 7     |
|    |       |           | 1.5.1.2     | Reynol    | lds num  | nber     |          |          |     |   | 7     |
|    |       |           | 1.5.1.3     | Inlet M   | Iach nu  | mber     | •        |          |     | • | 7     |
|    |       |           | 1.5.1.4     | Inlet T   | urbulen  | ice inte | ensity   |          |     | • | 7     |
|    |       |           | 1.5.1.5     | Effect    | of Com   | pressil  | oility   | •        |     | • | 8     |
|    |       | 1.5.2     | Design      | Perform   | mance    | Parame   | eters    | •        |     | • | 8     |
|    |       |           | 1.5.2.1     | Static I  | Pressure | e Reco   | very Co  | efficien | ıt. | • | 8     |
|    |       |           | 1.5.2.2     | Diffuse   | er Effec | tivene   | SS       | •        | •   | • | 9     |
|    |       |           | 1.5.2.3     | Total F   | Pressure | e Loss ( | Coeffici | ent      | •   | • | 9     |
|    |       |           | 1.5.2.4     | Ideal P   | ressure  | Recov    | very     | •        | •   | • | 10    |
|    |       | 1.5.3     | Swirlin     | ng Flow   | •        | •        | •        | •        | •   | • | 10    |
|    |       |           | 1.5.3.1     | Physic    | s of Sw  | irling a | and Rota | ating Fl | ows | • | 10    |
|    |       |           | 1.5.3.2     | Metho     | d of sw  | irl gen  | eration  | •        | •   | • | 11    |
|    | 1.6   | Motiv     | ation       | •         | •        | •        | •        | •        | •   | • | 11    |
| 2. | LITH  | ERATUI    | RE SUR      | VEY       | •        | •        | •        | •        | •   | • | 13-22 |
|    | 2.1   | Effect    | of Geor     | netric P  | aramet   | ers      | •        | •        | •   | • | 16    |
|    |       | 2.1.1     | Passag      | e Diver   | gence a  | and Ler  | ngth     | •        | •   |   | 16    |

|    |                   | 2.1.2                                             | Wall Contouring            | •          | •        | •    | • | • | 17          |
|----|-------------------|---------------------------------------------------|----------------------------|------------|----------|------|---|---|-------------|
|    | 2.2               | Effect                                            | Effects of Flow Parameters |            |          | •    | • |   | 17          |
|    |                   | 2.2.1                                             | Aerodynamic Block          | age        |          |      | • |   | 17          |
|    |                   | 2.2.2                                             | Inlet Swirl .              | •          |          |      | • |   | 18          |
|    |                   | 2.2.3                                             | Inlet Turbulence           |            |          |      |   |   | 19          |
|    |                   | 2.2.4                                             | Mach number Influe         | ence       | •        |      |   |   | 20          |
|    |                   | 2.2.5                                             | Reynolds Number In         | nfluence   | •        |      | • |   | 20          |
|    |                   | 2.2.6                                             | Boundary Layer Par         | ameter     | •        |      |   |   | 21          |
|    |                   | 2.2.7                                             | Boundary Layer Suc         | ction      | •        |      | • |   | 21          |
|    |                   | 2.2.8                                             | Blowing and Injection      | on.        | •        | •    | • | • | 22          |
| 3. | CFD               | CFD ANALYSIS                                      |                            |            |          |      |   |   | 23-31       |
|    | 3.1               | Why U                                             | Jse CFD for Analysis       |            |          |      |   |   | 23          |
|    | 3.2               | Progra                                            | am Capabilities .          | •          | •        | •    | • |   | 24          |
|    | 3.3               | Planning CFD Analysis                             |                            |            |          |      |   |   | 26          |
|    |                   | 3.3.1                                             | Definition of the Mo       | odeling (  | Goals    |      |   |   | 26          |
|    |                   | 3.3.2                                             | Grid Generation and        | l its Inde | penden   | ce   |   |   | 26          |
|    |                   | 3.3.3                                             | Choice of the Comp         | utational  | l Model  |      |   |   | 26          |
|    |                   | 3.3.4                                             | Choice of Physical M       | Models     | •        |      |   |   | 26          |
|    |                   | 3.3.5                                             | Determination of the       | e Solutio  | n Proce  | dure |   |   | 26          |
|    | 3.4               | Discre                                            | etization.                 |            |          |      |   |   | 27          |
|    | 3.5               | Conve                                             | Convergence Criteria       |            |          |      |   |   | 28          |
|    | 3.6               | Implei                                            | mentation of boundary      | y conditi  | ons      |      | • |   | 28          |
|    |                   | 3.6.1                                             | Inlet boundary cond        | ition      | •        | •    | • |   | 29          |
|    |                   | 3.6.2                                             | Outlet boundary con        | dition     | •        |      | • | • | 29          |
|    |                   | 3.6.3                                             | Wall boundary cond         | ition      | •        |      | • |   | 29          |
|    | 3.7               | Simula                                            | ation Procedure .          | •          | •        | •    | • | • | 30          |
| 4. | <b>MAT</b><br>4.1 | MATHEMATICAL MODELLING.4.1Conservation principles |                            |            |          |      |   | • | 32-43<br>32 |
|    |                   | 4.1.1                                             | The Mass Conservat         | tion Equ   | ation    |      |   |   | 33          |
|    |                   | 4.1.2                                             | Momentum Conserv           | vation Ec  | quations |      | • |   | 33          |
|    | 4.2               | Turbu                                             | lence Modeling             | •          |          |      | • |   | 34          |
|    |                   | 4.2.1                                             | Choosing a Turbule         | nce Mod    | lel      |      |   |   | 35          |

|   | 4.3                         | The Standard, RNG, and Realizable k- $\epsilon$ Models              | 36    |  |  |  |  |  |
|---|-----------------------------|---------------------------------------------------------------------|-------|--|--|--|--|--|
|   |                             | 4.3.1 The Standard k- $\varepsilon$ Model                           | 36    |  |  |  |  |  |
|   |                             | 4.3.2 Transport Equations for the Standard k- $\varepsilon$ Model . | 37    |  |  |  |  |  |
|   |                             | 4.3.3 Modeling the Turbulent Viscosity                              | 37    |  |  |  |  |  |
|   |                             | 4.3.4 The Model Constants                                           | 38    |  |  |  |  |  |
|   |                             | 4.3.5 The RNG k- $\epsilon$ Model                                   | 38    |  |  |  |  |  |
|   |                             | 4.3.6 Transport Equations for the RNG k- $\varepsilon$ Model        | 38    |  |  |  |  |  |
|   |                             | 4.3.7 Modeling the Effective Viscosity                              | 39    |  |  |  |  |  |
|   |                             | 4.3.8 The Realizable k- $\varepsilon$ Model                         | 40    |  |  |  |  |  |
|   |                             | 4.3.9 Transport Equations for the Realizable k-ε Model . 4          |       |  |  |  |  |  |
|   |                             | 4.3.10 Modeling the Turbulent Viscosity                             | 41    |  |  |  |  |  |
|   |                             | 4.3.11 Model Constants                                              | 42    |  |  |  |  |  |
|   | 4.4                         | Turbulence Modeling in Swirling Flows                               | 42    |  |  |  |  |  |
| 5 | RESU                        | ILT AND DISCUSSION                                                  | 43-70 |  |  |  |  |  |
| 6 | CONCLUSION AND FUTURE SCOPE |                                                                     |       |  |  |  |  |  |
|   | REFERENCES                  |                                                                     |       |  |  |  |  |  |
|   | APPI                        | NDIX                                                                | 76    |  |  |  |  |  |

# **LIST OF FIGURES**

| Figure 1-12         | Velocity and Pressure contours | 45-50 |
|---------------------|--------------------------------|-------|
| <b>Figure</b> 13-28 | Longitudinal Velocity          | 50-58 |
| Figure 29-38        | Pressure Coefficient           | 59-63 |

## NOMENCLATURE

| А               | Area                                               |
|-----------------|----------------------------------------------------|
| AR              | Area ratio                                         |
| В               | blockage factor                                    |
| С               | Constants                                          |
| C <sub>P</sub>  | Pressure recovery co-efficient                     |
| C <sub>PI</sub> | Ideal pressure recovery co-efficient               |
| D               | Diameter                                           |
| G               | generation of turbulence kinetic energy            |
| g               | acceleration due to gravity                        |
| Κ               | Total pressure loss co-efficient                   |
| k               | Turbulent kinetic energy                           |
| Р               | Static pressure                                    |
| P <sub>t</sub>  | Total pressure                                     |
| Re              | Reynolds number                                    |
| S               | Swirl Number of flow                               |
| S <sub>m</sub>  | Mass added                                         |
| U               | Velocity                                           |
| W               | Swirl velocity                                     |
| x,y,z           | Cartesian coordinate system                        |
| Y <sub>M</sub>  | fluctuating dilatation in compressible turbulence. |

## Symbols

| $\overline{\overline{	au}}$ | Stress tensor                             |
|-----------------------------|-------------------------------------------|
| μ                           | Laminar viscosity                         |
| $\mu_t$                     | Turbulent viscosity                       |
| 20                          | Equivalent cone angle                     |
| Γ                           | Circulation                               |
| 3                           | Turbulent kinetic energy dissipation rate |
| η                           | Diffuser effectiveness                    |
| θ                           | Wall angle                                |
| ν                           | Kinematics viscosity                      |
| ξ                           | Total pressure loss co-efficient          |
| ρ                           | Density                                   |
| Σ                           | Turbulent Prandtl no.                     |

## Subscript

| В   | Blocked                |
|-----|------------------------|
| ci  | casing inlet           |
| со  | casing outlet          |
| Е   | Effiective             |
| eq  | Equivalent flow        |
| hi  | hub inlet              |
| ho  | hub outlet             |
| in  | inlet                  |
| m   | maximum                |
| out | outlet                 |
| r   | radial direction       |
| t   | tangential direction   |
| Х   | longitudinal direction |