Introduction

1.1 Computer Security

The networks are computer networks, both public and private, that are used every day to conduct transactions and communications among businesses, government agencies and individuals. The networks are comprised of "nodes", which are "client" terminals (individual user PCs) and one or more "servers" and/or "host" computers. They are linked by communication systems, some of which might be private, such as within a company and others which might be open to public access [1]. The obvious example of a network system is Local Area Network.

The term Local Area Network (LAN) was invented in the early 1980’s with the popularity of the Personal Computer. PC’s gave new processing freedom to users and allowed them to perform their work independent of traditional mainframes or mini-computers. As the numbers of PC’s grew, the demand to connect them together soon gave birth to new companies such as Novell, Banyan Vines, and Microsoft - accelerating PC networks and making connectivity easier.

Before the birth of the Personal Computer, computers were terminal based with the central processing unit contained in the mainframe or mini. Guarding corporate data resources was much simpler - usernames and passwords helped authenticate the users, directory and file permissions with access control lists guarded access to information, and physical security was mainly guarding one set of mainframes in a centralized location.

PC’s brought new challenges to data security when they became part of the infrastructure. With freedom of processing came heightened data security challenges:

• PC users were able to store files locally on their hard disks.

• Information could be copied to removable media and taken off premise without permission.

• Foreign applications could be loaded and run without permission.

• Backing up critical intellectual property became much more difficult to do.

• A generation of new malicious software known as viruses and Trojans were born.

• Physical security of data became a distributed model verses a centralized model.

The popularity of the Internet with the World Wide Web gave us the freedom to search and access information all over the world and the Dot Com era in the 1990’s provided the ability to easily conduct business over the Internet - changing the way we conduct business forever. Now more than ever, IT Managers and Security Managers are challenged with designing, maintaining, and securing data infrastructure and services that must be available 24 hours a day, 7 days a week, and 365 days a year.

Along this evolution, LANs have become a necessity for every modern business. They are the “glue” that tie all of our computing resources together to allow us to share information in near real-time environments with speeds ranging from 10Mbs to 10Gbs. The amount of information available is becoming immeasurable with advent of the Internet and computer literacy. The applications available to us are growing each day giving us more and more choices on how to create, exchange, and use information.

As technology advances and becomes easier to implement and use, the need to control and secure our information becomes more challenging – requiring IT and security professionals to layer defenses in every facet of the business.[2]

“Security research is sometimes referred to as the ‘Humanities of Computer Science’ because, too frequently ‘secure’ systems are built using equal measures of folklore and black arts”(Greenwald et al, 2003)

Network security involves all activities that organizations, enterprises, and institutions undertake to protect the value and ongoing usability of assets and the integrity and continuity of operations. An effective network security strategy requires identifying threats and then choosing the most effective set of tools to combat them.[1]

1.2 Characteristics of Network Security

There are many different kinds of networks, and network technologies used to create them. The proliferation of networking methods has generally occurred for a very good reason: different needs require different solutions. The drawback of this is that there are so many different types of protocols and technologies for the networking student to understand! Before you can really compare these approaches, you need to understand some of the basic characteristics that make networks what they are. While network types may be quite dissimilar, they are often described and even contrasted on the basis of a number of common attributes.

Five such generalizations follow. There will be other characteristics of a secure service that apply in specific instances, in addition to these more general characteristics; figuring out the security pain points of your particular service is a definite necessity for providing the best, most secure service possible.
Manage the actual secure service on infrastructure that is distinct and separate from other business infrastructure (e.g., the public-facing web site). This ensures that security breaches affecting the company’s it infrastructure in other areas will not provide easy access to customer data.
Create and manage a mechanism for transparent two-way communication with customers regarding security matters. This can take the form of a public bug tracking system, for instance, so that people have an easy way to inform you of technical issues, to see what issues might currently affect them as customers, and to follow your progress in addressing these issues. To the extent you actually care about customers’ security needs, security notifications should be handled transparently.

Pay particular attention to making sure customers know how to interact securely with the service, and to providing a secure procedure for interacting with the service that makes it easier for the customer to do the right thing than to do the wrong thing. Interface design is security design, after all.
These are the sorts of security policy points you should employ when designing an online service for customers, if that service handles any sensitive data. Keep them in mind if you are a service provider reading this article. When you’ve put together what you are sure is a sound plan for offering a service whose security can be verified by the customer, make sure you do not forget to let the customers know how they can verify that security. [3]

1.3 Challenges of Networks Security

Security as it is traditionally defined in organizations is one of the most pervasive problems that an organization must address. Rarely has there been an organizational issue, problem, or challenge that requires the mobilization of everyone in the organization to solve. (In this case, the Y2K effort comes to mind with one significant distinction— security is an ongoing issue that must be managed well beyond New Year’s Eve!) The sheer expanse of any problem that traverses the entire organization poses many management challenges, particularly when the focus is security.

First, the most important areas of the organization must be identified and targeted. This requires the organization to take an inventory to determine what needs to be protected and why. In a large, complex organization, this can result in the identification of hundreds of assets that are important to strategic drivers. Second, to secure this collection of organizational assets requires many skills and resources that are typically scattered throughout the organization. Because security is a problem for the whole organization, it simply is no longer effective or acceptable to manage it from the information technology department.

Chief Security Officers have the one of the most difficult jobs in executive-level management because their success depends on utilizing many of the organization’s skills and resources. In effect, CSOs must mobilize many disparate parts of the organization to work together and to expand their core responsibilities to include security. This is not unlike a similar problem faced by U. S. automakers in the early 1980s. Faced with the need to improve quality to compete with their Asian counterparts, some U. S. automakers wisely focused on quality as a core element of their mission. As a result, quality became a part of every worker’s core responsibilities and was integrated into key business processes, and thus, the entire organization worked together to overcome these deficiencies.

1.3.1 Complexity is pervasive

Connecting to a complex operational environment is not a choice for today’s organizations. If the organization wants to compete and thrive, it must be willing to expose itself to operational and technical networks that enable it but also put it at risk. These networks are constantly changing and evolving, increasing the organization’s exposure (but also its potential for growth). This problem is not limited to large organizations—virtually any organization that uses a modern operating system on its desktop computers or servers has inherited a complex and dynamically changing environment that must be actively managed.5

This presents another challenge for managing security because the security strategy must be sufficiently dynamic to keep pace with the rate of organizational and technical change. On balance, security management must support the organization’s quest to be sensing, flexible, and adaptive to its environment and must be able to make a measurable contribution to the organization’s bottom-line and long-term resiliency.

1.3.2 Security as an investment

Dealing with a complex operating environment is costly and can significantly impact an organization’s profitability. Protecting the financial condition and stability of an organization is one of the most important issues for management. The resulting pressures from managing to the bottom line are a rich source of challenges for many activities throughout an organization, especially for security management. Expenditures receive much of the focus in organizations because they directly affect the organization’s bottom line. Responsible financial managers scrutinize all expenses and make implicit, if not direct, risk-versus-reward decisions. Security management is no exception—it is often an expense-driven activity that can directly affect an organization’s profitability. It is no wonder then that organizations are reluctant to view security as an investment that can generate benefits to the bottom line.

The view of security as overhead is an unfortunate outgrowth of the lack of inclusion of measurement and metrics as an essential element of security management. Organizations do not routinely require return on investment calculations on security investments, nor do they attempt to measure or gather metrics on the performance of security investments. Absent a set of established and accepted metrics for measuring security ROI, there is little an organization can do on its own in this area other than perform measurement in the context of incident avoidance or impact of a realized risk (i.e., the impact costs less than the control, and therefore provides a return). And organizations are faced with another problem: Which security investments should be measured? Technical controls, monitoring software, security staff, CSOs?7 The measurement dilemma is pervasive across the entire security community, and lacking specific guidance, organizations have become comfortable characterizing security activities as an expense on their balance sheets.

1.3.3 Technological biases

The view of security as a financial impediment for the organization is often a consequence of the tendency of organizations to consider security as a technology-driven activity. The security industry itself contributes greatly to this characterization. Framing security in technical terms is a logical outgrowth of the expansive (and ever-increasing) number of technical products and services that are available to “help” organizations get a handle on security management. Worse yet, there is a propensity for organizations to frame security problems in technical terms, often ignoring the management and operational weaknesses that are root causes or contributing factors. The bias toward technological solutions or the framing of security issues in technical terms has done a great disservice to organizations in their pursuit of adequate security.

1.3.4 Security is a business problem

Security is a business or organizational problem that must be framed and solved in the context of the organization’s strategic drivers. However, many organizations adopt a technology-centric approach to security by default. There are several reasons why this has occurred. As stated previously, the largest contributor to the technology-centric view of security is the industry itself—there is a strong technology bias to security approaches and solutions, and even in the selection of skilled security personnel. Not only has this made organizations more likely to view security as a technical specialty, but it has also corrupted them into misplacing their most prized security resources in the IT department, further alienating them from connecting to and aligning with the organization’s strategic drivers.

The evolution of a risk-based paradigm for security has made it clear that a secure organization does not result from securing technical infrastructure alone. A security approach that is mission-centric (i.e., based on strategic drivers) strives to secure the organization’s critical assets and processes regardless of where they “live.” This can be illustrated by examining the importance of information as an organizational asset. Information is frequently stored, transported, and processed through technical means, and therefore is considered a technical asset. However, this characterization is a distortion that can lead organizations inappropriately to a technical security approach.

For example, an organization may store its product designs on paper or keep its medical records in paper form—both of which may be critical for meeting the organization’s mission. Securing the organization’s technical infrastructure will not provide a proper level of protection for these assets, nor will it protect many other information assets that are in no way dependent on technology for their existence or protection. Thus, the organization would be lulled into a false sense of security if they relied on protecting their technical infrastructure alone.

In the end, the “network” that most matters is the one that defines the organization and its related boundaries. The importance of the organization’s technical network is established in its role in enabling the organization’s assets and processes, but it provides little context for which of these assets and processes matter most to strategic drivers. It is only in the organizational network where the context for the importance of each asset and process is found, as well as the rationale for what needs to be protected and why it is provided.

1.3.5 Regulatory biases

A final consideration for security management is the organization’s regulatory environment. Just as the organization must expose itself to its environment to operate, so must it be willing to accept some of the limitations imposed on like organizations that operate in its competitive space. This brings another level of challenges that affects the organization’s ability to be effective at security management.

Regulations reflect the need for organizations in a particular industry to look critically at their protection needs and to implement corresponding security strategies and controls. While this has had a positive effect in elevating the need to focus on security, for some organizations it can also be deleterious in that regulations can become an organization’s security strategy by default. Regulations can draw the organization’s focus away from organizational drivers and on to the compliance requirements of the moment. Complying with regulations is certainly an important activity in an organization, but it cannot substitute for a mission-focused, strategic security management process. Regulation is intended to improve the core industries on which it is focused, but compliance activities can give organizations a false sense of the overall effectiveness of their security programs.

For example, compliance with HIPAA regulations may improve the security over core assets that are subject to the regulations, but other assets and processes are left unprotected. A compliance-driven approach to security can also cause costly and inefficient investments in protection mechanisms and controls to protect those assets and processes that are subject to regulation, when in fact this may not be the best use of limited resources for the organization. Organization-centric approaches to security management consider the impact of risks and their effect on the organization to determine which security activities and practices are best for them. In effect, this allows the organization to focus on their true security needs. Security management that is subsumed by a need to comply with regulations can detour an organization from this strategy by diverting their attention away from what is best for their unique organizational context.

1.3.6 Security as a core competency

Organizations want to focus their energy on their core competencies—those functions and activities that define the organization’s existence and its value to stakeholders. The upsurge in outsourcing of horizontal business functions by organizations supports this claim.9 For many functions, such as payroll processing or benefits administration, this may be perfectly acceptable—if an organization cannot realize a strategic and competitive advantage from excelling at payroll processing, it may not make sense to develop a core competency in this area. However, this is why organizations may need to develop a core competency in security management based on their strategic drivers. Security is so inextricably tied to the success of the organization in accomplishing its mission and improving its resiliency that it is in the organization’s best interest to be competent at securing itself.

Conventional Security Methodology
The Internal Network is just as critical to secure as the Perimeter when it comes to security concerns. This network layer is protected by the Perimeter layer and contains the servers, workstations, storage systems, and information that your company requires to conduct business. Because the Internal Network is deemed “trusted”, it is often overlooked during security design phases – leaving it in a non-secure state that is open to attacks. With modern networks having full access to the public Internet, the Internal Network’s security requirements need to be reviewed more than ever.

Many studies now reveal that internal security threats are just as prevalent as external security threats. Viruses, worms, trojans, destructive applications, password crackers, malicious web applications are just a few tools hackers use to infiltrate the Internal Network. Applications that seem perfectly harmless are downloaded by employees and loaded onto their workstations. Some of these applications are trojan horses in disguise; opening the workstation up to malicious intents ranging from remote reconnaissance, destruction of information, to unauthorized access and possibly remote administrative control of the host. The threat to the Internal Network doesn’t have to come from a disgruntle employee or an external intruder - it can come accidentally from an uneducated or careless employee.

Computer and network security is a new and fast moving Technology and as such, is still being defined and most probably will always be “still defined”. Security incidents are rising at an alarming rate every year. As the complexity of the threats increases, so do the security measures required to protect networks. Data center operators, network administrators, and other data center professionals need to comprehend the basics of security in order to safely deploy and manage networks today.

Securing the modern business network and IT infrastructure demands an end-to-end approach and a firm grasp of vulnerabilities and associated protective measures. While such knowledge

2.1 FOCUS ON SECURITY
The Network Security program emphasizes to secure a network. The following background information in security helps in making correct decisions. Some areas are concept-oriented:

· Attack Recognition: Recognize common attacks, such as spoofing, man-in-the-middle, (distributed) denial of service, buffer overflow, etc.

· Encryption techniques: Understand techniques to ensure confidentiality, authenticity, integrity, and no repudiation of data transfer. These must be understood at a protocol and at least partially at a mathematics or algorithmic level, in order to select and implement the algorithm matching the organization’s needs.

· Network Security Architecture: Configure a network with security appliances and software, such as placement of firewalls, Intrusion Detection Systems, and log management.

To secure a network, certain skills must also be practiced:

· Protocol analysis: Recognize normal from abnormal protocol sequences, using sniffers.

· Protocols minimally include: IP, ARP, ICMP, TCP, UDP, HTTP, and encryption protocols: SSH,SSL, IPSec.

· Access Control Lists (ACLs): Configure and audit routers and firewalls to filter packets accurately and efficiently, by dropping, passing, or protecting (via VPN) packets based upon their IP and/or port addresses, and state.

· Intrusion Detection/Prevention Systems (IDS/IPS): Set and test rules to recognize and report attacks in a timely manner.

· Vulnerability Testing: Test all nodes (routers, servers, clients) to determine active applications, via scanning or other vulnerability test tools – and interpret results.

· Application Software Protection: Program and test secure software to avoid backdoor entry via SQL injection, buffer overflow, etc.

· Incident response: Respond to an attack by escalating attention, collecting evidence, and performing computer forensics. The last three skills incorporate computer systems security, since they are required to counteract internet hacking. Network security applies business decisions in a technical manner. Business requirements drive security Implementations.

Business-related skills include:

· Security Evaluation: Use risk analysis to determine what should be protected and at what cost.

· Security Planning: Prepare a security plan, including security policies and procedures.

· Audit: Prepare an Audit Plan and Report.

· Legal response: Understanding and interpreting the law regarding responding to computer/network attacks, corporate responsibility (e.g., Sarbanes-Oxley), and computer forensics.

Network security involves all activities that organizations, enterprises, and institutions undertake to protect the value and ongoing usability of assets and the integrity and continuity of operations. An effective network security strategy requires identifying threats and then choosing the most effective set of tools to combat them.

2.1.1 Threats to network

Threats to network security include:

· Viruses : Computer programs written by devious programmers and designed to replicate themselves and infect computers when triggered by a specific event

· Trojan horse programs : Delivery vehicles for destructive code, which appear to be harmless or useful software programs such as games

· Vandals : Software applications or applets that cause destruction

· Attacks : Including reconnaissance attacks (information-gathering activities to collect data that is later used to compromise networks); access attacks (which exploit network vulnerabilities in order to gain entry to e-mail, databases, or the corporate network); and denial-of-service attacks (which prevent access to part or all of a computer system)

· Data interception : Involves eavesdropping on communications or altering data packets being transmitted

· Social engineering : Obtaining confidential network security information through nontechnical means, such as posing as a technical support person and asking for people's passwords

2.2 Network security tools

Network security tools include:

· Antivirus software packages: These packages counter most virus threats if regularly updated and correctly maintained.

· Secure network infrastructure: Switches and routers have hardware and software features that support secure connectivity, perimeter security, intrusion protection, identity services, and security management.

· Dedicated network security hardware and software-Tools such as firewalls and intrusion detection systems provide protection for all areas of the network and enable secure connections.

· Virtual private networks: These networks provide access control and data encryption between two different computers on a network. This allows remote workers to connect to the network without the risk of a hacker or thief intercepting data.

· Identity services: These services help to identify users and control their activities and transactions on the network. Services include passwords, digital certificates, and digital authentication keys.

Artificial Neural Network

3.1 Introduction

Artificial neural networks are, as their name indicates, computational networks which attempt to simulate, in a gross manner, the networks of nerve cell (neurons) of the biological (human or animal) central nervous system. This simulation is a gross cell-by-cell (neuron-by-neuron, element-by-element) simulation. It borrows from the neurophysiologic knowledge of biological neurons and of networks of such biological neurons. It thus differs from conventional (digital or analog) computing machines that serve to replace, enhance or speed-up human brain computation without regard to organization of the computing elements and of their networking. Still, we emphasize that the simulation afforded by neural networks is very gross.

 Why then should we view artificial neural networks (denoted below as neural networks or ANNs) as more than an exercise in simulation? We must ask this question especially since, computationally (at least), a conventional digital computer can do everything that an artificial neural network can do.

The answer lies in two aspects of major importance. The neural network, by its simulating a biological neural network, is in fact novel computer architecture and novel algorithmization architecture relative to conventional computers. It allows using very simple computational operations (additions, multiplication and fundamental logic elements) to solve complex, mathematically ill-defined problems, nonlinear problems or stochastic problems. A conventional algorithm will employ complex sets of equations, and will apply to only a given problem and exactly to it. The ANN will be

(a) Computationally and algorithmically very simple and

(b) It will have a self-organizing feature to allow it to hold for a wide range of problems.

 For example, if a house y avoids an obstacle or if a mouse avoids a cat, it certainly solves no differential equations on trajectories, nor does it employ complex pattern recognition algorithms. Its brain is very simple, yet it employs a few basic neuronal cells that fundamentally obey the structure of such cells in advanced animals and in man. The artificial neural network's solution will also aim at such (most likely not the same) simplicity. Albert Einstein stated that a solution or a model must be as simple as possible to the problem at hand. Biological systems, in order to be as efficient and as versatile as they certainly are despite their inherent slowness (their basic computational step takes about a millisecond versus less than a nanosecond in today's electronic computers), can only do so by converging to the simplest algorithmic architecture that is possible. Whereas high level mathematics and logic can yield a broad general frame for solutions and can be reduced to specific but complicated algorithmization, the neural network's design aims at utmost simplicity and utmost self-organization. A very simple base algorithmic structure lies behind a neural network, but it is one which is highly adaptable to a broad range of problems. We note that at the present state of neural networks their range of adaptability is limited. However, their design is guided to achieve this simplicity and self-organization by its gross simulation of the biological network that is (must be) guided by the same principles.

Another aspect of ANNs that is different and advantageous to conventional computers, at least potentially, is in its high parallelism (element-wise parallelism). A conventional digital computer is a sequential machine. If one transistor (out of many millions) fails, then the whole machine comes to a halt. In the adult human central nervous system, neurons in the thousands die out each year, whereas brain function is totally unaffected, except when cells at very few key locations should die and this in very large numbers (e.g., major strokes). This insensitivity to damage of

3.1.1 Basic Principles of ANN Design

The basic principles of the artificial neural networks (ANNs) were first formulated by McCulloch and Pitts in 1943, in terms of five assumptions, as follows:

(1) The activity of a neuron (ANN) is all-or-nothing.

(2) A certain fixed number of synapses larger than 1 must be excited within a given interval of neural addition for a neuron to be excited.

(3) The only significant delay within the neural system is the synaptic delay.

(4) The activity of any inhibitory synapse absolutely prevents the excitation of the neuron at that time.

(5) The structure of the interconnection network does not change over time.

By assumption (1) above, the neuron is a binary element.

Whereas these are probably historically the earliest systematic principles, they do not all apply to today's state-of-the-art of ANN design.

The Hebbian Learning Law (Hebbian Rule) due to Donald Hebb (1949) is also a widely applied principle. The Hebbian Learning Law states that:”When an axon of cell A is near-enough to excite cell B and when it repeatedly and persistently takes part in firing it, then some growth process or metabolic change takes place in one or both these cells such that the efficiency of cell A [Hebb, 1949] is increased" (i.e. the weight of the contribution of the output of cell A to the above firing of cell B is increased).

The Hebbian rule can be explained in terms of the following example: Suppose that cell S causes salivation and is excited by cell F which, in turn, is excited by the sight of food. Also, suppose that cell L, which is excited by hearing a bell ring, connects to cell S but cannot alone cause S to fire.

Now, after repeated _ring of S by cell F while also cell L is firing, then L will eventually be able to cause S to fire without having cell F fire. This will be due to the eventual increase in the weight of the input from cell L into cell S. Here cells L and S play the role of cells A, B respectively, as in the formulation of the Hebbian rule above.

However, the employment of weights at the input to any neuron of an ANN, and the variation of these weights according to some procedure is common to all ANNs. It takes place in all biological neurons. In the latter, weights variation takes place through complex biochemical processes at the dendrite side of the neural cell, at the synaptic junction, and in the biochemical structures of the chemical messengers that pass through that junction. It is also influenced by other biochemical changes outside the cell's membrane in close proximity to the membrane.

3.1.2 Basic Network Structures

(1) Historically, the earliest ANNs are “The Perceptron”, proposed by the psychologist Frank Rosenblatt (Psychological Review, 1958).

(2) The Artron (Statistical Switch-based ANN) due to R. Lee (1950s).

(3) The Adeline (Adaptive Linear Neuron, due to B. Widrow, 1960). This artificial neuron is also known as the ALC (adaptive linear combiner), the ALC being its principal component. It is a single neuron, not a network.

(4) The Madeline (Many Adeline), also due to Widrow (1988). This is an ANN (network) formulation based on the Adaline above.

Principles of the above four neurons, especially of the Perceptron, are common building blocks in later ANN developments. Three later fundamental networks are:

1. The Back-Propagation network, A multi-layer Perceptron-based ANN, giving an elegant solution to hidden-layers learning [Rumelhart et al., 1986 and others].

2. The Hopfield Network, due to John Hopfield (1982). This network is different from the earlier four ANNs in many important aspects, especially in its recurrent feature of feedback between neurons. Hence, although several of its principles have not been incorporated in ANNs based on the earlier four ANNs, it is to a great extent an ANN-class in itself.

3. The Counter-Propagation Network [Hecht-Nielsen, 1987] | where Kohonen's Self-Organizing Mapping (SOM) is utilized to facilitate unsupervised learning (absence of a “teacher").
3.1.3 Why use neural networks ?

Neural networks, with their ability to derive meaning from complicated or imprecise data, can be used to get patterns and detect trends that are too complex to be noticed by either humans or other computer techniques. A trained neural network can be thought of as an "expert" in the category of information it has been given to analyze. This expert can then be used to provide projections given new situations of interest and answer "what if" questions. Other advantages include:

1. Adaptive learning: An ability to learn how to do tasks based on the data given for training or initial experience.

2. Self-Organization: An ANN can create its own organization or representation of the information it receives during learning time.

3. Real Time Operation: ANN computations may be carried out in parallel, and special hardware devices are being designed and manufactured which take advantage of this capability.

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a network leads to the corresponding degradation of performance. However, some network capabilities may be retained even with major network damage.

3.1.4 Neural networks versus conventional computers

Neural networks take a different approach to problem solving than that of conventional computers. Conventional computers use an algorithmic approach i.e. the computer follows a set of instructions in order to solve a problem. Unless the specific steps that the computer needs to follow are known the computer cannot solve the problem. That restricts the problem solving capability of conventional computers to problems that we already understand and know how to solve. But computers would be so much more useful if they could do things that we don't exactly know how to do.

Neural networks process information in a similar way the human brain does. The network is composed of a large number of highly interconnected processing elements (neurones) working in parallel to solve a specific problem. Neural networks learn by example. They cannot be programmed to perform a specific task. The examples must be selected carefully otherwise useful time is wasted or even worse the network might be functioning incorrectly. The disadvantage is that because the network finds out how to solve the problem by itself, its operation can be unpredictable.

On the other hand, conventional computers use a cognitive approach to problem solving; the way the problem is to solved must be known and stated in small unambiguous instructions. These instructions are then converted to a high level language program and then into machine code that the computer can understand. These machines are totally predictable; if anything goes wrong is due to a software or hardware fault.

Neural networks and conventional algorithmic computers are not in competition but complement each other. There are tasks are more suited to an algorithmic approach like arithmetic operations and tasks that are more suited to neural networks. Even more, a large number of tasks, require systems that use a combination of the two approaches (normally a conventional computer is used to supervise the neural network) in order to perform at maximum efficiency.
3.1.5 How the Human Brain Learns?

Much is still unknown about how the brain trains itself to process information, so theories abound. In the human brain, a typical neuron collects signals from others through a host of fine structures called dendrites. The neuron sends out signals of electrical activity through a long, thin stand known as an axon, which splits into thousands of branches. At the end of each branch, a structure called a synapse converts the activity from the axon into electrical effects that inhibit or excite activity in the connected neurons. When a neuron receives excitatory input that is sufficiently large compared with its inhibitory input, it sends a spike of electrical activity down its axon. Learning occurs by changing the effectiveness of the synapses so that the influence of one neuron on another changes.

[image: image20.bmp]
From Human Neurons to Artificial Neurons

We conduct these neural networks by first trying to find the essential features of neurones and their interconnections. We then typically program a computer to simulate these features. However because our knowledge of neurones is incomplete and our computing power is limited, our models are necessarily gross idealizations of real networks of neurones.

[image: image2.emf]
3.2 An engineering approach

 3.2.1 A simple neuron

An artificial neuron is a device with many inputs and one output. The neuron has two modes of operation; the training mode and the using mode. In the training mode, the neuron can be trained to fire (or not), for particular input patterns. In the using mode, when a taught input pattern is detected at the input, its associated output becomes the current output. If the input pattern does not belong in the taught list of input patterns, the firing rule is used to determine whether to fire or not.

[image: image3.png]yi=f(net;)

3.2.2 Firing rules

The firing rule is an important concept in neural networks and accounts for their high flexibility. A firing rule determines how one calculates whether a neuron should fire for any input pattern. It relates to all the input patterns, not only the ones on which the node was trained.

A simple firing rule can be implemented by using Hamming distance technique. The rule goes as follows:

Take a collection of training patterns for a node, some of which cause it to fire (the 1-taught set of patterns) and others which prevent it from doing so (the 0-taught set). Then the patterns not in the collection cause the node to fire if, on comparison, they have more input elements in common with the 'nearest' pattern in the 1-taught set than with the 'nearest' pattern in the 0-taught set. If there is a tie, then the pattern remains in the undefined state.

3.2.3 A more complicated neuron

The previous neuron doesn't do anything that conventional computers don't do already. A more complicated neuron (figure 2) is the McCulloch and Pitts model (MCP). The difference from the previous model is that the inputs are 'weighted', the effect that each input has at decision making is dependent on the weight of the particular input. The weight of an input is a number which when multiplied with the input gives the weighted input. These weighted inputs are then added together and if they exceed a pre-set threshold value, the neuron fires. In any other case the neuron does not fire….

[image: image4.emf]
In mathematical terms, the neuron fires if and only if;

X1W1 + X2W2 + X3W3 + ... > T

The addition of input weights and of the threshold makes this neuron a very flexible and powerful one. The MCP neuron has the ability to adapt to a particular situation by changing its weights and/or threshold. Various algorithms exist that cause the neuron to 'adapt'; the most used ones are the Delta rule and the back error propagation. The former is used in feed-forward networks and the latter in feedback networks.

3.3 Architecture of neural networks

3.3.1 Feed-forward networks
Feed-forward ANNs (figure 4-1) allow signals to travel one way only; from input to output. There is no feedback (loops) i.e. the output of any layer does not affect that same layer. Feed-forward ANNs tend to be straight forward networks that associate inputs with outputs. They are widely used in pattern recognition. This type of organization is also referred to as bottom-up or top-down.

3.3.2 Feedback networks

Feedback networks (figure 4-2) can have signals travelling in both directions by introducing loops in the network. Feedback networks are very powerful and can get extremely complicated. Feedback networks are dynamic; their 'state' is changing continuously until they reach a balanced point. They remain at the balanced point until the input changes and a new equilibrium needs to be found.

Feedback architectures are also referred to as interactive or recurrent, although the latter term is often used to denote feedback connections in single-layer organizations.

[image: image5.png]13
g
g
3
3
B
o

Hidden layer

Input Layer

[image: image6.emf]
3.3.3 Network layers
The commonest type of artificial neural network consists of three groups, or layers, of units: a layer of "input" units is connected to a layer of "hidden" units, which is connected to a layer of "output" units. (Figure 4.1)

· The activity of the input units represents the raw information that is fed into the network.

· The activity of each hidden unit is determined by the activities of the input units and the weights on the connections between the input and the hidden units.

· The behavior of the output units depends on the activity of the hidden units and the weights between the hidden and output units.

This simple type of network is interesting because the hidden units are free to construct their own representations of the input. The weights between the input and hidden units determine when each hidden unit is active, and so by modifying these weights, a hidden unit can choose what it represents.

We also distinguish single-layer and multi-layer architectures. The single-layer organization, in which all units are connected to one another, to form the most general case and is of more potential computational power than hierarchically structured multi-layer organizations. In multi-layer networks, units are often numbered by layer, instead of following a global numbering.

3.3.4 Perceptions

The most effective thing on the work on neural nets in the 60's went under the heading of 'perceptrons' a term coined by Frank Rosenblatt. The perceptron (figure 4.4) turns out to be an MCP model (neuron with weighted inputs) with some additional, fixed, pre--processing. Units labeled A1, A2, Aj , Ap are called association units and their task is to extract specific, localized featured from the input images. Perceptrons mimic the basic idea behind the mammalian visual system. They were mainly used in pattern recognition even though their capabilities extended a lot more.

[image: image7.emf]
In 1969 Minsky and Papert wrote a book in which they described the limitations of single layer Perceptrons. The impact that the book had was tremendous and caused a lot of neural network researchers to loose their interest. The book was very well written and showed mathematically that single layer perceptrons could not do some basic pattern recognition operations like determining the parity of a shape or determining whether a shape is connected or not. What they did not realised, until the 80's, is that given the appropriate training, multilevel perceptrons can do these operations.

3.4 The Learning Process

The memorization of patterns and the subsequent response of the network can be categorized into two general paradigms:

1. Associative mapping in which the network learns to produce a particular pattern on the set of input units whenever another particular pattern is applied on the set of input units. The associative mapping can generally be broken down into two mechanisms:

a. Auto-association: an input pattern is associated with itself and the states of input and output units coincide. This is used to provide pattern competition, i.e. to produce a pattern whenever a portion of it or a distorted pattern is presented. In the second case, the network actually stores pairs of patterns building an association between two sets of patterns.

b. Hetero-association: is related to two recall mechanisms:

i. Nearest-neighbor recall, where the output pattern produced corresponds to the input pattern stored, which is closest to the pattern presented, and

ii. Interpolative recall, where the output pattern is a similarity dependent interpolation of the patterns stored corresponding to the pattern presented. Yet another paradigm, which is a variant associative mapping is classification, i.e. when there is a fixed set of categories into which the input patterns are to be classified.

2. Regularity detection in which units learn to respond to particular properties of the input patterns. Whereas in associative mapping the network stores the relationships among patterns, in regularity detection the response of each unit has a particular 'meaning'. This type of learning mechanism is essential for feature discovery and knowledge representation.

Every neural network possesses knowledge which is contained in the values of the connections weights. Modifying the knowledge stored in the network as a function of experience implies a learning rule for changing the values of the weights.

[image: image8.emf]
Information is stored in the weight matrix W of a neural network. Learning is the determination of the weights. Following the way learning is performed, we can distinguish two major categories of neural networks:

· Fixed networks in which the weights cannot be changed, ie dW/dt=0. In such networks, the weights are fixed a priori according to the problem to solve.

· Adaptive networks which are able to change their weights, ie dW/dt not= 0.

All learning methods used for adaptive neural networks can be classified into two major categories:

· Supervised learning which incorporates an external teacher, so that each output unit is told what its desired response to input signals ought to be. During the learning process global information may be required. Paradigms of supervised learning include error-correction learning, reinforcement learning and stochastic learning.

An important issue conserving supervised learning is the problem of error convergence, ie the minimization of error between the desired and computed unit values. The aim is to determine a set of weights which minimizes the error. One well-known method, which is common to many learning paradigms, is the least mean square (LMS) convergence.

· Unsupervised learning uses no external teacher and is based upon only local information. It is also referred to as self-organization, in the sense that it self-organizes data presented to the network and detects their emergent collective properties. Paradigms of un-supervised learning are Hebbian learning and competitive learning.

3.5 Transfer Function

The behavior of an ANN (Artificial Neural Network) depends on both the weights and the input-output function (transfer function) that is specified for the units. This function typically falls into one of three categories:

· Linear (or ramp)

· Threshold

· Sigmoid

For linear units, the output activity is proportional to the total weighted output.

For threshold units, the outputs are set at one of two levels, depending on whether the total input is greater than or less than some threshold value.

For sigmoid units, the output varies continuously but not linearly as the input changes. Sigmoid units bear a greater resemblance to real neurones than do linear or threshold units, but all three must be considered rough approximations.

To make a neural network that performs some specific task, we must choose how the units are connected to one another (see figure 4.1), and we must set the weights on the connections appropriately. The connections determine whether it is possible for one unit to influence another. The weights specify the strength of the influence. We can teach a three-layer network to perform a particular task by using the following procedure:

1. We present the network with training examples, which consist of a pattern of activities for the input units together with the desired pattern of activities for the output units.

2. We determine how closely the actual output of the network matches the desired output.

3. We change the weight of each connection so that the network produces a better approximation of the desired output.

3.6 The back-propagation Algorithm
The back propagation (BP) algorithm was proposed in 1986 by Rumelhart, Hinton and Williams for setting weights and hence for the training of multi-layer perceptrons. This opened the way for using multi-layer ANNs, nothing that the hidden layers have no desired (hidden) outputs accessible. Once the BP algorithm of Rumelhart et al. was published, it was very close to algorithms proposed earlier by Werbos in his Ph.D. dissertation in Harvard in 1974 and then in a report by D. B. Parker at Stanford in 1982, both unpublished and thus unavailable to the community at large. It goes without saying that the availability of a rigorous method to set intermediate weights, namely to train hidden layers of ANNs gave a major boost to the further development of ANN, opening the way to overcome the single-layer shortcomings that had been pointed out by Minsky and which nearly dealt a death blow to ANNs.

To illustrate the process of backpropagation algorithm, the three layer neural network with two inputs and one output, which is shown in the picture below, is used:

[image: image9.png]

Each neuron is composed of two units. First unit adds products of weights coefficients and input signals. The second unit realize nonlinear function, called neuron activation function. Signal e is adder output signal, and y = f(e) is output signal of nonlinear element. Signal y is also output signal of neuron.

[image: image10.png]summing
Junction

©=X,W, #X,

non-inear
element

fe)

y=f(e)
>

To teach the neural network we need training data set. The training data set consists of input signals (x1 and x2) assigned with corresponding target (desired output) z. The network training is an iterative process. In each iteration weights coefficients of nodes are modified using new data from training data set. Modification is calculated using algorithm described below: Each teaching step starts with forcing both input signals from training set. After this stage we can determine output signals values for each neuron in each network layer. Pictures below illustrate how signal is propagating through the network, Symbols w(xm)n represent weights of connections between network input xm and neuron n in input layer. Symbols yn represents output signal of neuron n.

[image: image11.png]

Propagation of signals through the hidden layer. Symbols wmn represent weights of connections between output of neuron m and input of neuron n in the next layer.

Propagation of signals through the output layer.

In the next algorithm step the output signal of the network y is compared with the desired output value (the target), which is found in training data set. The difference is called error signal d of output layer neuron.

[image: image12.png]

It is impossible to compute error signal for internal neurons directly, because output values of these neurons are unknown. For many years the effective method for training multiplayer networks has been unknown. Only in the middle eighties the backpropagation algorithm has been worked out. The idea is to propagate error signal d (computed in single teaching step) back to all neurons, which output signals were input for discussed neuron.

[image: image13.png]

[image: image14.png]W= Wy +170

W= Wes +775

de
de

Va

Vs

Coefficient h affects network teaching speed. There are a few techniques to select this parameter. The first method is to start teaching process with large value of the parameter. While weights coefficients are being established the parameter is being decreased gradually. The second, more complicated, method starts teaching with small parameter value. During the teaching process the parameter is being increased when the teaching is advanced and then decreased again in the final stage. Starting teaching process with low parameter value enables to determine weights coefficients signs.

C#: Programming

4.1 Introduction

C# (pronounced "see sharp") is a multi-paradigm programming language encompassing imperative, functional, generic, object-oriented (class-based), and component-oriented programming disciplines. It was developed by Microsoft within the .NET initiative and later approved as a standard by Ecma (ECMA-334) and ISO (ISO/IEC 23270). C# is one of the programming languages designed for the Common Language Infrastructure.

C# is intended to be a simple, modern, general-purpose, object-oriented programming language.[6] Its development team is led by Anders Hejlsberg. The most recent version is C# 4.0, which was released on April 12, 2010.

4.2 Design goals

The ECMA standard lists these design goals for C#: [6]

· C# language is intended to be a simple, modern, general-purpose, object-oriented programming language.

· The language, and implementations thereof, should provide support for software engineering principles such as strong type checking, array bounds checking, detection of attempts to use uninitialized variables, and automatic garbage collection.

· Software robustness, durability, and programmer productivity are important.

· The language is intended for use in developing software components suitable for deployment in distributed environments.

· Source code portability is very important, as is programmer portability, especially for those programmers already familiar with C and C++.

· Support for internationalization is very important.

· C# is intended to be suitable for writing applications for both hosted and embedded systems, ranging from the very large that use sophisticated operating systems, down to the very small having dedicated functions.

· Although C# applications are intended to be economical with regard to memory and processing power requirements, the language was not intended to compete directly on performance and size with C or assembly language.

The name "C sharp" was inspired by musical notation where a sharp indicates that the written note should be made a half-step higher in pitch.[7] This is similar to the language name of C++, where "++" indicates that a variable should be incremented by 1.

By coincidence, the sharp symbol resembles four conjoined plus signs. This reiterates Rick Mascitti's tongue-in-cheek use of '++' when naming 'C++': where C was enhanced to create C++, C++ was enhanced to create C++++ (that is, C#).

Due to technical limitations of display (standard fonts, browsers, etc.) and the fact that the sharp symbol (♯, U+266F, MUSIC SHARP SIGN) is not present on the standard keyboard, the number sign (#, U+0023, NUMBER SIGN) was chosen to represent the sharp symbol in the written name of the programming language.[8] This convention is reflected in the ECMA-334 C# Language Specification.[6] However, when it is practical to do so (for example, in advertising or in box art[9]), Microsoft uses the intended musical symbol.

The "sharp" suffix has been used by a number of other .NET languages that are variants of existing languages, including J# (a .NET language also designed by Microsoft which is derived from Java 1.1), A# (from Ada), and the functional F#.[10] The original implementation of Eiffel for .NET was called Eiffel#,[11] a name since retired since the full Eiffel language is now supported. The suffix has also been used for libraries, such as Gtk# (a .NET wrapper for GTK+ and other GNOME libraries), Cocoa# (a wrapper for Cocoa) and Qt# (a .NET language binding for the Qt toolkit).

4.2.1 History

During the development of the .NET Framework, the class libraries were originally written using a managed code compiler system called Simple Managed C (SMC).[12][13][14] In January 1999, Anders Hejlsberg formed a team to build a new language at the time called Cool, which stood for "C-like Object Oriented Language".[15] Microsoft had considered keeping the name "Cool" as the final name of the language, but chose not to do so for trademark reasons. By the time the .NET project was publicly announced at the July 2000 Professional Developers Conference, the language had been renamed C#, and the class libraries and ASP.NET runtime had been ported to C#.

C#'s principal designer and lead architect at Microsoft is Anders Hejlsberg, who was previously involved with the design of Turbo Pascal, Embarcadero Delphi (formerly CodeGear Delphi and Borland Delphi), and Visual J++. In interviews and technical papers he has stated that flaws[citation needed] in most major programming languages (e.g. C++, Java, Delphi, and Smalltalk) drove the fundamentals of the Common Language Runtime (CLR), which, in turn, drove the design of the C# programming language itself.

James Gosling, who created the Java programming language in 1994, and Bill Joy, a co-founder of Sun Microsystems, the proprietor of Java, called C# an "imitation" of Java; Gosling further claimed that "[C# is] sort of Java with reliability, productivity and security deleted."[2][16] Klaus Kreft and Angelika Langer (authors of a C++ streams book) stated in a blog post that "Java and C# are almost identical programming languages. Boring repetition that lacks innovation," "Hardly anybody will claim that Java or C# are revolutionary programming languages that changed the way we write programs," and "C# borrowed a lot from Java - and vice versa. Now that C# supports boxing and unboxing, we'll have a very similar feature in Java." [17] Anders Hejlsberg has argued that C# is "not a Java clone" and is "much closer to C++" in its design.[18]

Program structure

4.3 Basic of C#

Like C++, C# is case-sensitive. Semi colon (;) is the statement separator. Unlike C++, there are no separate declaration (header) and implementation (CPP) files in C#. All code (class declaration and implementation) is placed in one file with extension cs.

Have a look at this Hello world program in C#.

using System;

namespace MyNameSpace

{

class HelloWorld

{

 static void Main(string[] args)

 {

 Console.WriteLine ("Hello World");

 }

}

}

Everything in C# is packed into a class and classes in C# are packed into namespaces (just like files in a folder). Like C++, a main method is the entry point of your program. C++'s main function is called main whereas C#'s main function starts with capital M and is named as Main. No need to put a semi colon after a class block or struct definition. It was in C++, C# doesn't require that.

Namespace

Every class is packaged into a namespace. Namespaces are exactly the same concept as in C++, but in C# we use namespaces more frequently than in C++. You can access a class in a namespace using dot (.) qualifier. MyNameSpace is the namespace in hello world program above. Now consider you want to access the HelloWorld class from some other class in some other namespace.

using System;

namespace AnotherNameSpace

{

 class AnotherClass

 {

 public void Func()

 {

 Console.WriteLine ("Hello World");

 }

 }

}

Now from your HelloWorld class you can access it as:

using System;

using AnotherNameSpace; // you will add this using statement

namespace MyNameSpace

{

class HelloWorld

{

 static void Main(string[] args)

 {

 AnotherClass obj = new AnotherClass();

 obj.Func();

 }

}

}

In .NET library, System is the top level namespace in which other namespaces exist. By default there exists a global namespace, so a class defined outside a namespace goes directly into this global namespace and hence you can access this class without any qualifier. You can also define nested namespaces.

Using The #include directive is replaced with using keyword, which is followed by a namespace name. Just as using System as above. System is the base level namespace in which all other namespaces and classes are packed. The base class for all objects is Object in the System namespace.

Variables

Variables in C# are almost the same as in C++ except for these differences:

Variables in C# (unlike C++), always need to be initialized before you access them, otherwise you will get compile time error. Hence, it's impossible to access an un-initialized variable. You can't access a “dangling” pointer in C#. An expression that indexes an array beyond its bounds is also not accessible. There are no global variables or functions in C# and the behavior of globals is achieved through static functions and static variables.

Data types

All types of C# are derived from a base class object. There are two types of data types:

· Basic/ built-in types

· User-defined types

Following is a table which lists built-in C# types:

	Type
	Bytes
	Description

	byte
	1
	unsigned byte

	sbyte
	1
	signed byte

	short
	2
	signed short

	ushort
	2
	unsigned short

	int
	4
	signed integer

	uint
	4
	unsigned integer

	long
	8
	signed long

	ulong
	8
	unsigned long

	float
	4
	floating point number

	double
	8
	double precision number

	decimal
	8
	fixed precision number

	string
	
	Unicode string

	char
	
	Unicode char

	bool
	true, false
	boolean

User defined types includes:

Classes

Structs

Interfaces

Memory allocation of the data types divides them into two types:

· Value types

· Reference types

Value types

Values types are those data types which are allocated in stack. They include:

All basic or built-in types except strings

· Structs

· Enum types

Reference types

Reference types are allocated on heap and are garbage collected when they are no longer being used. They are created using new operator, and there is no delete operator for these types unlike C++ where user has to explicitly delete the types created using delete operator. In C#, they are automatically collected by garbage collector.

Reference types include:

· Classes

· Interfaces

Collection types like Arrays

String

Enumeration: Enumerations in C# are exactly like C++. Defined through a keyword enum.

Classes and structs

Classes and structs are same as in C++, except the difference of their memory allocation. Objects of classes are allocated in heap, and are created using new, where as structs are allocated in stack. Structs in C# are very light and fast data types. For heavy data types, you should create classes.

Examples:

struct Date

{

 int day;

 int month;

 int year;

}

class Date

{

 int day;

 int month;

 int year;

 string weekday;

 string monthName;

 public int GetDay()

 {

 return day;

 }

 public int GetMonth()

 {

 return month;

 }

 public int GetYear()

 {

 return year;

 }

 public void SetDay(int Day)

 {

 day = Day ;

 }

 public void SetMonth(int Month)

 {

 month = Month;

 }

 public void SetYear(int Year)

 {

 year = Year;

 }

 public bool IsLeapYear()

 {

 return (year/4 == 0);

 }

 public void SetDate (int day, int month, int year)

 {

 }

 ...

}

Properties

If you are familiar with the object oriented way of C++, you must have an idea of properties. Properties in above example of Date class are day, month and year for which in C++, you write Get and Set methods. C# provides a more convenient, simple and straight forward way of accessing properties.

So above class can be written as:

using System;

class Date

{

 public int Day{

 get {

 return day;

 }

 set {

 day = value;

 }

 }

 int day;

 public int Month{

 get {

 return month;

 }

 set {

 month = value;

 }

 }

 int month;

 public int Year{

 get {

 return year;

 }

 set {

 year = value;

 }

 }

 int year;

 public bool IsLeapYear(int year)

 {

 return year%4== 0 ? true: false;

 }

 public void SetDate (int day, int month, int year)

 {

 this.day = day;

 this.month = month;

 this.year = year;

 }

}

Here is the way you will get and set these properties:

class User

{

 public static void Main()

 {

 Date date = new Date();

 date.Day = 27;

 date.Month = 6;

 date.Year = 2003;

 Console.WriteLine

 ("Date: {0}/{1}/{2}", date.Day, date.Month, date.Year);

 }

}

Modifiers

You must be aware of public, private and protected modifiers that are commonly used in C++. I will here discuss some new modifiers introduced by C#.

Readonly

Readonly modifier is used only for the class data members. As the name indicates, the readonly data members can only be read, once they are written either by directly initializing them or assigning values to them in constructor. The difference between the readonly and const data members is that const requires you to initialize with the declaration that is directly. See example code:

class MyClass

{

 const int constInt = 100; //directly

 readonly int myInt = 5; //directly

 readonly int myInt2;

 public MyClass()

 {

 myInt2 = 8; //Indirectly

 }

 public Func()

 {

 myInt = 7; //Illegal

 Console.WriteLine(myInt2.ToString());

 }

}

Sealed

Sealed modifier with a class don't let you derive any class from it. So you use this sealed keyword for the classes which you don't want to be inherited from.

sealed class CanNotbeTheParent

{

 int a = 5;

}

Unsafe

You can define an unsafe context in C# using unsafe modifier. In unsafe context, you can write an unsafe code, example: C++ pointers etc. See the following code:

public unsafe MyFunction(int * pInt, double* pDouble)

{

 int* pAnotherInt = new int;

 *pAnotherInt = 10;

 pInt = pAnotherInt;

 ...

 *pDouble = 8.9;

}

Interfaces

If you have an idea of COM, you will immediately know what I am talking about. An interface is the abstract base class containing only the function signatures whose implementation is provided by the child class. In C#, you define such classes as interfaces using the interface keyword. .NET is based on such interfaces. In C#, where you can't use multiple class inheritance, which was previously allowed in C++, the essence of multiple inheritance is achieved through interfaces. That's your child class may implement multiple interfaces.

using System;

interface myDrawing

{

 int originx

 {

 get;

 set;

 }

 int originy

 {

 get;

 set;

 }

 void Draw(object shape);

}

class Shape: myDrawing

{

 int OriX;

 int OriY;

 public int originx

 {

 get{

 return OriX;

 }

 set{

 OriX = value;

 }

 }

 public int originy

 {

 get{

 return OriY;

 }

 set{

 OriY = value;

 }

 }

 public void Draw(object shape)

 {

 ... // do something

 }

 // class's own method

 public void MoveShape(int newX, int newY)

 {

 }

}

{

 return val1 + val2;

}

public int Subtract (int val1, int val2)

{

 return val1- val2;

}

public void Perform()

{

 Operation Oper;

 Console.WriteLine("Enter + or - ");

 string optor = Console.ReadLine();

 Console.WriteLine("Enter 2 operands");

 string opnd1 = Console.ReadLine();

 string opnd2 = Console.ReadLine();

 int val1 = Convert.ToInt32 (opnd1);

 int val2 = Convert.ToInt32 (opnd2);

 if (optor == "+")

 Oper = new Operation(Add);

 else

 Oper = new Operation(Subtract);

 Console.WriteLine(" Result = {0}", Oper(val1, val2));

}

Inheritance and polymorphism

Only single inheritance is allowed in C#. Multiple inheritance can be achieved using interfaces.

Example:

class Parent{

}

class Child : Parent

Virtual functions: Virtual functions to implement the concept of polymorphism are same in C#, except you use the override keyword with the virtual function implementation in the child class. The parent class uses the same virtual keyword. Every class which overrides the virtual method will use override keyword.

class Shape

{

 public virtual void Draw()

 {

 Console.WriteLine("Shape.Draw") ;

 }

}

class Rectangle : Shape

{

 public override void Draw()

 {

 Console.WriteLine("Rectangle.Draw");

 }

}

class Square : Rectangle

{

 public override void Draw()

 {

 Console.WriteLine("Square.Draw");

 }

}

class MainClass

{

 static void Main(string[] args)

 {

 Shape[] shp = new Shape[3];

 Rectangle rect = new Rectangle();

 shp[0] = new Shape();

 shp[1] = rect;

 shp[2] = new Square();

 shp[0].Draw();

 shp[1].Draw();

 shp[2].Draw();

 }

}

Output:

Shape.Draw

Rectangle.Draw

Square.Draw

You can define in a child class a new version of a function, hiding the one which is in base class. A keyword new is used to define a new version. Consider the example below, which is a modified version of above example and note the output this time, when I replace the keyword override with a keyword new in Rectangle class.

class Shape

{

 public virtual void Draw()

 {

 Console.WriteLine("Shape.Draw") ;

 }

}

class Rectangle : Shape

{

 public new void Draw()

 {

 Console.WriteLine("Rectangle.Draw");

 }

}

class Square : Rectangle

{

 //wouldn't let u override it here

 public new void Draw()

 {

 Console.WriteLine("Square.Draw");

 }

}

class MainClass

{

 static void Main(string[] args)

 {

 Console.WriteLine("Using Polymorphism:");

 Shape[] shp = new Shape[3];

 Rectangle rect = new Rectangle();

 shp[0] = new Shape();

 shp[1] = rect;

 shp[2] = new Square();

 shp[0].Draw();

 shp[1].Draw();

 shp[2].Draw();

 Console.WriteLine("Using without Polymorphism:");

 rect.Draw();

 Square sqr = new Square();

 sqr.Draw();

 }

}

Output:

Using Polymorphism

Shape.Draw

Shape.Draw

Shape.Draw

Using without Polymorphism:

Rectangle.Draw

Square.Draw

See how the polymorphism doesn't take the Rectangle class's Draw method as a polymorphic form of the Shape's Draw method, instead it considers it a different method. So in order to avoid the naming conflict between parent and child, we have used new modifier.

Note: you can not use in the same class the two versions of a method, one with new modifier and other with override or virtual. Like in above example, I can not add another method named Draw in Rectangle class which is a virtual or override method. Also in the Square class, I can't override the virtual Draw method of Shape class.

Calling base class members

If the child class has the data members with same name as that of base class, in order to avoid naming conflicts, base class data members and functions are accessed using a keyword base. See in examples how the base class constructors are called and how the data members are used.

public Child(int val) :base(val)

{

 myVar = 5;

 base.myVar;

}

OR

public Child(int val)

{

 base(val);

 myVar = 5 ;

 base.myVar;

}

4.5 The Socket Programming

In this application you have 3 components, the server (Where the Neural network implemented) (a class file), the communication component (a class file) and the client (which transmit the current process) application. We will look at all 3 of these components individually, and how the can combine to create your basic neuron application. The first component, the neuron server, is where the messages are sent back and forth between the client and the server. Before writing any methods you need to add the following references to your class.

using System.IO;

using System.Net;

using System;

using System.Threading;

using Neuron.System.Net;

using System.Collections;

I know some of you are going to look at the 5th reference and ask questions regarding Neuron = System.Net. When adding references in C# you are allowed to add aliases to your references, thus allowing you to have multiple uses of the same Namespace at the same time, acting as 2 different objects.

NOTE: To use Aliases for the Namespace reference it has to be in conjunction with the Using Statement.

The first thing we do in our Server class is create 3 global variables, 2 are Hashtable variables, and the third is a TCPListener variable, which is used to listen for connections from TCP Clients.

System.Net.Sockets.TcpListener neuronServer;

public static Hashtable nickName;

public static Hashtable nickNameByConnect;

These three variables will be used throughout our NeuronServer.cs class file. Next, is the Public NeuronServer() method, this is where we start the neuron server and connect. We will then use our TCPListener object to check if there are any pending connection requests. If there are pending requests we then create a new connection, let the user know they're connected, then create our DoCommunication Object.

We'll get to the DoCommunication object later in this tutorial. Here is the code for this method

public NeuronServer()

{

 //create our nickname and nickname by connection variables

 nickName = new Hashtable(100);

 nickNameByConnect = new Hashtable(100);

 //create our TCPListener object

 neuronServer = new System.Net.Sockets.TcpListener(4296);

 //check to see if the server is running

 //while (true) do the commands

 while (true)

 {

 //start the neuron server

 neuronServer.Start();

 //check if there are any pending connection requests

 if (neuronServer.Pending())

 {

 //if there are pending requests create a new connection

 Neuron.Sockets.TcpClient neuronConnection = neuronServer.AcceptTcpClient();

 //display a message letting the user know they're connected

 Console.WriteLine("You are now connected");

 //create a new DoCommunicate Object

 DoCommunicate comm = new DoCommunicate(neuronConnection);

 }

 }

}

Next, since this is a basic neuron application, we need a method for sending our messages to all that are connected. Here we create a StreamWriter object, used to write our messages to the neuron window, a TcpClient Array, to hold all the TcpClients for all connected users, then we copy the users nickname to the neuron server window. After that we create a loop, looping through all the TcpClients, we check if the message eing sent is empty or that index of our TcpClient array is empty. From there we send our message to the neuron window, and flush to make sure the buffer is empty.

In your Catch, of our Try...Catch block, is where we handle the Exception that is caused when a user leaves or disconnects. We display a message letting the users know that that person has disconnected, we remove that nickname from the list, then dispose of that users TcpClient instance. Here is the code for this method

public static void SendMsgToAll(string nick, string msg)

{

 //create a StreamWriter Object

 StreamWriter writer;

 ArrayList ToRemove = new ArrayList(0);

 //create a new TCPClient Array

Neuron.Sockets.TcpClient[] tcpClient = new Neuron.Sockets.TcpClient[NeuronServer.nickName.Count];

 //copy the users nickname to the NeuronServer values

 NeuronServer.nickName.Values.CopyTo(tcpClient, 0);

 //loop through and write any messages to the window

 for (int cnt = 0; cnt < tcpClient.Length; cnt++)

 {

 try

 {

 //check if the message is empty, of the particular

 //index of out array is null, if it is then continue

 if (msg.Trim() == "" || tcpClient[cnt] == null)

 continue;

 //Use the GetStream method to get the current memory

 //stream for this index of our TCPClient array

 writer = new StreamWriter(tcpClient[cnt].GetStream());

 //white our message to the window

 writer.WriteLine(nick + ": " + msg);

 //make sure all bytes are written

 writer.Flush();

 //dispose of the writer object until needed again

 writer = null;

 }

 //here we catch an exception that happens

 //when the user leaves the neuronroow

 catch (Exception e44)

 {

 e44 = e44;

 string str = (string)NeuronServer.nickNameByConnect[tcpClient[cnt]];

 //send the message that the user has left

 NeuronServer.SendSysMsg("** " + str + " ** Has Left The Room.");

 //remove the nickname from the list

 NeuronServer.nickName.Remove(str);

 //remove that index of the array, thus freeing it up

 //for another user

 NeuronServer.nickNameByConnect.Remove(tcpClient[cnt]);

 }

 }

}

The next method we introduce is a way to send a system message, this method is almost identical to the SendMsgToAll method, except here we dont dispose of the TcpClient instance, since the message is being sent by the system, not a user.

public static void SendSystemMessage(string msg)

{

 //create our StreamWriter object

 StreamWriter writer;

 ArrayList ToRemove = new ArrayList(0);

 //create our TcpClient array

 Neuron.Sockets.TcpClient[] tcpClient = new Neuron.Sockets.TcpClient[NeuronServer.nickName.Count];

 //copy the nickname value to the neuron servers list

 NeuronServer.nickName.Values.CopyTo(tcpClient, 0);

 //loop through and write any messages to the window

 for (int i = 0; i < tcpClient.Length; i++)

 {

 try

 {

 //check if the message is empty, of the particular

 //index of out array is null, if it is then continue

 if (msg.Trim() == "" || tcpClient[i] == null)

 continue;

 //Use the GetStream method to get the current memory

 //stream for this index of our TCPClient array

 writer = new StreamWriter(tcpClient[i].GetStream());

 //send our message

 writer.WriteLine(msg);

 //make sure the buffer is empty

 writer.Flush();

 //dispose of our writer

 writer = null;

 }

 catch (Exception e44)

 {

 e44 = e44;

 NeuronServer.nickName.Remove(NeuronServer.nickNameByConnect[tcpClient[i]]);

 NeuronServer.nickNameByConnect.Remove(tcpClient[i]);

 }

 }

}

Believe it or not, thats the entirety of the NeuronServer Class, simple isnt it. Working with Tcp objects can be fun, as you can do so much with them. In this simple application you could add the functionality to send files back and forth between users, and more. That may be the end of the NeuronServer Class, but its not the end of creating our application.

The next component to look at is the DoCommunicate Class. This is the component that does the work for our server. For a neuron application to work efficiently, and work as people expect a neuron application to work, it needs to be a multi-threaded application. Meaning each user is running in their own thread, which allows for the messages to be sent and received in real time. Multi threading gives the illusion that multiple activities are happening at the same time.

The main purpose of multi threading is to improve performance. With each user in the neuron application operating on their own thread, users don't have to wait for one user to be finished to send their message, they're able to send them simultaneously. C# has some powerful items in the System.Threading Namespace, which is used for, you guessed it, running multiple threads and synchronizing them.

For our DoCommunicate.cs class file we need the following references

using System.IO;

using System.Net;

using System;

using System.Threading;

using Neuron = System.Net;

using System.Collections;

using PC;
private static void NeuronClient_Closing(object s, CancelEventArgs e)

{

 e.Cancel = false;

 //exit the application

 Application.Exit();

 //call the ExitProcess API

 ExitProcess(0);

}

When the form closes, it calls the Application.Exit Method, then the call to the ExitProcess Function.

Next we have the code for the Control.KeyUp Event, which is what sends our messages to the neuron window. In this method, we create a StreamWriter for writing to the current stream. To do this we call the GetStream Method of the System.Net.Sockets.TcpClient class. GetStream retrieves the current NetworkStream, used for sending and receiving messages across a network.

private static void key_up(object s, KeyEventArgs e)

{

 //create our textbox value variable

 TextBox txtNeuron = (TextBox)s;

 //check to make sure the length of the text

 //in the TextBox is greater than 1 (meaning it has text in it)

 if (txtNeuron.Lines.Length > 1)

 {

 //create a StreamWriter based on the current NetworkStream

 StreamWriter writer = new StreamWriter(tcpClient.GetStream());

 //write our message

 writer.WriteLine(txtNeuron.Text);

 //ensure the buffer is empty

 writer.Flush();

 //clear the textbox for our next message

 txtNeuron.Text = "";

 txtNeuron.Lines = null;

 }

}

Next we have the code for our run method. This creates a StreamReader Object, using GetStream to retrieve the current NetworkStream, this will be used for reading the messages in the stream. We then append the value in the current stream, line by line, to the neuron window.

private static void run()

{

 //create our StreamReader Object, based on the current NetworkStream

 StreamReader reader = new StreamReader(tcpClient.GetStream());

 while (true)

 {

 //call DoEvents so other processes can process

 //simultaneously

 Application.DoEvents();

 //create a TextBox reference

 TextBox txtNeuron = (TextBox)client.Controls[0];

 //append the current value in the

 //current NetworkStream to the neuron window

 txtNeuron.AppendText(reader.ReadLine() + "\r\n");

 //place the cursor at the end of the

 //text in the textbox for typing our messages

 txtNeuron.Selectionstart = txtNeuron.Text.Length;

 }

}
Neuron

5.1 Introduction

New approach for the dedicated network security system in based on usages pattern tracking using neural network. Because of the use of neural network the name of this new innovative system is “Neuron”; single element of a neural network. This contains two parts:

· Neuron Server

· Neuron Client
5.2 Neuron Server

This is main part of the “Neuron”, at this end we implement an artificial neural network and a control system. This module is very complex module which deal with following tasks

a. Server (Socket communication)

b. Artificial Neural Network

c. Decision tacking

d. Control multi-threaded neuron clients

The startup panel of Neuron Server is as shown in fig. 5,1

[image: image15.png]Fle Edt View Favortes Took Help

O - © - (B Dsomen 2 roies |- | 8 rotsne

Adress | C:\Documents and SettingsiKapi Sarasmat|Deskioplother trick|ChatServer|ChatserverlpiniDebug

File and Folder Tasks ﬁ el fles D cracan

2 ke a e Folder

@ Pubish thisFlder tothe ewron server Neuron Server
e Aplcaton Manifest Meuron server
2 share this older 2

Neuron Server.vshost Neuron Server.vshost
’ Applcation Maniest vshast.eve

Other Places 28 Mierosoft Corporation

& bin

) My Documerts
& shared Documents
My Computer

EB Neuron Server.
&3ty Network Places

User Name

Details @) Password

Debug

File Folder

Date Modied: Today, June 30,
2010, 4:22PM

(!

bug

[d | e

achmiristrator

P —— e
FRFEST f'EE Co Web Dccument

1ke a7KE

Newran Server Newran Servr cxc manfest
POE Fil ‘ MANIFEST Fle
(35 e

eeee

B«

The first startup panel of neuron server is the login page which is used to authenticate the neuron server administrator. With the help of this approach we can secure the server from hackers and crackers. This is very simple GUI and appears in every startup/ rebooting of the computer.

Following code is to be used for the startup page.

using Microsoft.Win32;

RegistryKey rkApp =
Registry.CurrentUser.OpenSubKey("SOFTWARE\\Microsoft\\Windows\\CurrentVersion
\\Run", true);

 public pass()

 {

 InitializeComponent();

 rkApp.SetValue("MyApp", Application.ExecutablePath.ToString());

 }
With the help of above code the authentication page will appear in every boot up. Here the application path will save in the executable path.

When the administrator successfully enter the password then the another main form will appear ant this contain the main theme of this Neuron server. This is shown in figure 5.2

[image: image16.png]Fle Edt View Favortes

Tools

Help

© 3] Dsenen 2 rotes |- | (G rotsne

adress [§ my Computer

System Tasks

[View system nformation
25 Add or remove programs
B change a settng

Other Places

& Wy etk Places
) My Documerts
& shared Documents
B Controlpanel

Details

My Computer
System Folder

&)

(]

D Drive (I:) DVD-RAM Drive (H:) = Local Disk (C:)
2 (O Sl
= Local Disk (F:) - Removable Disk (G:)

i USB video Device
Digtsl camers

EB Neuron Server.

50NGS (£1)
LacalDisk.

kapils Documents
Fi Folder

<
]

DATA (0:)
LocalDisk

Shared Documents
File Folder

Nevion Server Monitoring for connections.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.Threading;

using System.Net;

using System.Net.Sockets;

using System.IO;

using Microsoft.Win32;

using Microsoft.VisualBasic;

namespace NeuronServer

{

 public partial class Form1 : Form

 {

With the help of following code the registry of the server edited for the IP address.

 RegistryKey reg = Registry.CurrentUser.CreateSubKey("SOFTWARE\\NeuronServer\\Test");

 private delegate void UpdateStatusCallback(string strMessage);

following code is used for the initialization of the neuron server main command page.

 public Form1()

 {

 InitializeComponent();

 inttt();

 }

Following code is used for the test the IP address and calling value of IP from registry.

 public void inttt()

 {

 string ipadd;

 string strt = (string)reg.GetValue("START");

 if (strt == "set")

 {

 ipadd = (string)reg.GetValue("IPAddr");

 }

 else

 {

 reg = Registry.CurrentUser.OpenSubKey("SOFTWARE\\NeuronServer\\Test", true);

 reg.SetValue("START", "set");

 ipadd = Interaction.InputBox("Enter the Server IP here!", "First time Server start!", "192.168.0.7", 10, 10);

 reg.SetValue("IPAddr", ipadd);

 reg.Close();

 }

 IPAddress ipAddr = IPAddress.Parse(ipadd);

 NeuronServer mainServer = new NeuronServer(ipAddr);

 NeuronServer.StatusChanged += new StatusChangedEventHandler(mainServer_StatusChanged);

 mainServer.StartListening();

 txtLog.AppendText("Neuron Server Monitoring for connections...\r\n");

 }

Rest of code is for the event command for the GUI event handeling.

 private void btnListen_Click(object sender, EventArgs e)

 {

 this.Close();

 }

 public void mainServer_StatusChanged(object sender, StatusChangedEventArgs e)

 {

 this.Invoke(new UpdateStatusCallback(this.UpdateStatus), new object[] { e.EventMessage });

 }

 private void UpdateStatus(string strMessage)

 {

 txtLog.AppendText(strMessage + "\r\n");

 }

 private void button1_Click(object sender, EventArgs e)

 {

 NeuronServer.SendAdmincommandMessage("t");

 }

 private void button2_Click(object sender, EventArgs e)

 {

 NeuronServer.SendAdmincommandMessage("r");

 }

 private void trainingToolStripMenuItem_Click(object sender, EventArgs e)

 {

 NeuronServer.SendAdmincommandMessage("t");

 }

 private void runToolStripMenuItem_Click(object sender, EventArgs e)

 {

 NeuronServer.SendAdmincommandMessage("r");

 }

 private void exitToolStripMenuItem_Click(object sender, EventArgs e)

 {

 this.Close();

 }

 private void aboutToolStripMenuItem_Click(object sender, EventArgs e)

 {

 AboutBox1 abt = new AboutBox1();

 abt.Show();

 }

 private void helpToolStripMenuItem_Click(object sender, EventArgs e)

 {

 System.Diagnostics.Process.Start("help.htm");

 }

 }

}

5.2.1 Socket Programming

The power of network programming in .NET platform cannot be denied. Socket programming is the core of network programming in Windows and Linux, and today the .NET platform implements it in a powerful way. In “Neuron” we created a client and a command server, to communicate between a remote Neuron server and up to 30 clients; and also can be exceeded; and send the specified commands to them.

In socket-based network programming, you don't directly access the network interface device to send and receive packets. Instead, an intermediary connector is created to handle the programming interface to the network. Assume that a socket is a connector that connects your application to a network interface of your computer. For sending and receiving data to and from the network you should call the socket's methods.

The 'System.Net.Sockets' namespace contains the classes that provide the actual .NET interface to the low-level Winsock APIs. In network programming, apart from which programming language to use there are some common concepts like the IP address and port. IP address is a unique identifier of a computer on a network and port is like a gate through which applications communicate with each other. In brief, when we want to communicate with a remote computer or a device over the network, we should know its IP address. Then, we must open a gate (Port) to that IP and then send and receive the required data.

5.2.2 IP addresses in C#

One of the biggest advantages you will notice in the .NET network library is the way IP address/port pairs are handled. It is a fairly straightforward process that presents a welcome improvement over the old, confusing UNIX way. .NET defines two classes in the System.Net namespace to handle various types of IP address information:

· IPAddress

· IPEndPoint

An IPAddress object is used to represent a single IP address. This value is then used in various socket methods to represent the IP address. The default constructor for IPAddress is as follows:

public IPAddress(long address)

The default constructor takes a long value and converts it to an IPAddress value. In practice, the default is almost never used. Instead, several methods in the IPAddress class can be used to create and manipulate IP addresses. The Parse() method is often used to create IPAddress instances:

IPAddress newaddress = IPAddress.Parse("192.168.1.1");

The .NET Framework uses the IPEndPoint object to represent a specific IP address/port combination. An IPEndPoint object is used when binding sockets to local addresses, or when connecting sockets to remote addresses.

5.2.2.1 Connection-oriented and connectionless sockets

The world of IP connectivity revolves around two types of communication: connection-oriented and connectionless. In a connection-oriented socket, the TCP protocol is used to establish a session (connection) between two IP address endpoints. There is a fair amount of overhead involved with establishing the connection, but once it is established, the data can be reliably transferred between the devices.

Connectionless sockets use the UDP protocol. Because of that no connection information is required to be sent between the network devices and it is often difficult to determine which device is acting as a "server", and which is acting as a "client". We will focus on the first type of socket programming in this article.

5.2.2.2 Using connection-oriented sockets

In the .NET Framework, you can create connection-oriented communications with remote hosts across a network. To create a connection-oriented socket, separate sequences of functions must be used for server programs and client programs:

[image: image17.png]Server

socket()
bind()

Tlisten()

accept()
recv()
sendO)

close()

Client

socket()

connect()
send()
recv()

close()

5.2.3 Server

You have four tasks to perform before a server can transfer data with a client connection:

1. Create a socket.

2. Bind the socket to a local IPEndPoint.

3. Place the socket in listen mode.

4. Accept an incoming connection on the socket.

5.2.3.1 Creating the server

The first step to constructing a TCP server is to create an instance of the Socket object. The other three functions necessary for successful server operations are then accomplished by using the methods of Socket object. The following C# code snippet includes these steps:

IPEndPoint localEndPoint = new IPEndPoint(IPAddress.Any, 8000);

Socket newsock = Socket(AddressFamily.InterNetwork,

 SocketType.Stream, ProtocolType.Tcp);

newsock.Bind(localEndPoint);

newsock.Listen(10);

Socket client = newsock.Accept();

The Socket object created by the Accept() method can now be used to transmit data in either direction between the server and the remote client.

5.2.4 Client

Now that you have a working TCP server, you can create a simple TCP client program to interact with it. There are only two steps required to connect a client program to a TCP server:

1. Create a socket.

2. Connect the socket to the remote server address.

5.2.4.1 Creating the client

As it was for the server program, the first step for creating the client program is to create a Socket object. The Socket object is used by the socket Connect() method to connect the socket to a remote host:

 IPEndPoint ipep =

 new IPEndPoint(Ipaddress.Parse("127.0.0.1"), 8000);

Socket server = new Socket(AddressFamily.InterNetwork,

 SocketType.Stream, ProtocolType.Tcp);

server.Connect(ipep);

This example attempts to connect the socket to the server located at address 127.0.0.1.This is the IP address of the local host (current computer) and is a loopback IP for testing a network application without a network. Of course, you can also use hostnames along with the Dns.Resolve() method in a real network. (Dns is in System.Net namespace). Once the remote server TCP program accepts the connection request, the client program is ready to transmit data with the server using the standard Send() and Receive() methods.

5.2.4.2 Blocking problem of network applications

Sockets are in blocking mode by default. In this mode they will wait forever to complete their functions, holding up other functions within the application program until they are complete. Many programs can work quite competently in this mode, but for applications that work in the Windows programming environment, this can be a problem. There are some ways to solve this problem. The first thing that comes to a programmer's mind is multi threading. I chose this solution in my application too. This is a simple way when compared to asynchronous network programming or the old 'Non-Blocking sockets' way.

Following is a code for the socket implementation in neuron server. This is a multi-threaded server implementation and there is a command which is used for the command transmission and data reception.

using System;

using System.Collections.Generic;

using System.Text;

using System.Net;

using System.Net.Sockets;

using System.IO;

using System.Threading;

using System.Collections;

namespace NeuronServer

{

 public class StatusChangedEventArgs : EventArgs

 {

 private string EventMsg;

 public string EventMessage

 {

 get

 {

 return EventMsg;

 }

 set

 {

 EventMsg = value;

 }

 }

 public StatusChangedEventArgs(string strEventMsg)

 {

 EventMsg = strEventMsg;

 }

 }

 public delegate void StatusChangedEventHandler(object sender, StatusChangedEventArgs e);

 class NeuronServer

 {

 public static Hashtable htUsers = new Hashtable(30); // 30 users at one time limit

 public static Hashtable htConnections = new Hashtable(30); // 30 users at one time limit

 private IPAddress ipAddress;

 private TcpClient tcpClient;

 public static event StatusChangedEventHandler StatusChanged;

 private static StatusChangedEventArgs e;

 public NeuronServer(IPAddress address)

 {

 ipAddress = address;

 }

 private Thread thrListener;

 private TcpListener tlsClient;

 bool ServRunning = false;

 public static void AddUser(TcpClient tcpUser, string strUsername)

 {

 NeuronServer.htUsers.Add(strUsername, tcpUser);

 NeuronServer.htConnections.Add(tcpUser, strUsername);

 }

 public static void RemoveUser(TcpClient tcpUser)

 {

 if (htConnections[tcpUser] != null)

 {

 NeuronServer.htUsers.Remove(NeuronServer.htConnections[tcpUser]);

 NeuronServer.htConnections.Remove(tcpUser);

 }

 }

 public static void OnStatusChanged(StatusChangedEventArgs e)

 {

 StatusChangedEventHandler statusHandler = StatusChanged;

#endregion

#region PERSISTANCE IMPLEMENTATION

Save the Neural Network in a binary formated file

public void save(string file)

{

IFormatter binFmt = new BinaryFormatter();

Stream s = File.Open(file, FileMode.Create);

binFmt.Serialize(s, this);

s.Close();

}

Load a neural network from a binary formated file

public static NeuralNetwork load(string file)

{

NeuralNetwork result;

try

{

IFormatter binFmt = new BinaryFormatter();

Stream s = File.Open(file, FileMode.Open);

result = (NeuralNetwork)binFmt.Deserialize(s);

s.Close();

}

catch(Exception e)

{

throw new Exception("NeuralNetwork : Unable to load file "+file +" : "+e);

}

return result;

}

#endregion

}

}

5.2.6 Activation Function

using System;

namespace NeuralNetwork

{

Interface of the activation function of a neuron.

public interface ActivationFunction

{

Compute function value

float Output(float x);

Compute the diff of the function

float OutputPrime(float x);

}

#region SIGMOID ACTIVATION FUNCTION

The sigmoid activation function. Here is the definition of the sigmoid activation function

 1

f(x) = ----------------- beta > 0

 1 + e^(-beta*x)

f'(x) = beta * f(x) * (1 - f(x))

[Serializable]

public class SigmoidActivationFunction : ActivationFunction

{

The beta parameter of the sigmoid

protected float beta = 1.0f;

Get or set the beta parameter of the function(beta must be positive)

public float Beta

{

get { return beta; }

set { beta = (value>0)?value:1.0f; }

}

Get the name of the activation function

public string Name

{

get { return "Sigmoid"; }

}

 1

f(x) = ----------------- beta > 0

 1 + e^(-beta*x)

public virtual float Output(float x)

{

return (float)(1 / (1 + Math.Exp(-beta * x)));

}

 f'(x) = beta * f(x) * (1 - f(x))

public virtual float OutputPrime(float x)

{

float y = Output(x);

return (beta * y * (1 - y));

}

}

#endregion

#region LINEAR ACTIVATION FUNCTION

The linear activation function

 |1 if x > 0.5/A

f(x) = |A * x + 0.5 if 0.5/A > x > -0.5/A

 |0 if -0.5/A > x

}

Get the diff function value

public virtual float OutputPrime(float x)

{

if (x>threshold) return 0;

else if (x< -threshold) return 0;

else return a;

}

}

#endregion

#region HEAVISIDE ACTIVATION FUNCTION

The heaviside activation function

 f(x) = 0 if 0>x

 f(x) = 1 if x>0

[Serializable]

public class HeavisideActivationFunction : ActivationFunction

{

Get the name of the activation function

public string Name

{

get { return "Heaviside"; }

}

Get the heaviside function value

public virtual float Output(float x)

{

if (x>0) return 1;

else return 0;

}

Get the derivative function value Simulate an impulse at origin...

public virtual float OutputPrime(float x)

{

if (Math.Abs(x)<0.0001) return float.MaxValue;

else return 0;

}

}

#endregion

#region GAUSSIAN ACTIVATION FUNCTION

The gaussian activation function

 1 -(x-mu)^2 / (2 * sigma^2)

 f(x) = -------------------- * e

 sqrt(2 * pi * sigma)

 f'(x) = y(x) * -2*K*(x - mu)

To implement a more efficient computation :

 C = 1/sqrt(2 * pi * sigma)

 K = 1/(2 * sigma^2)

[Serializable]

public class GaussianActivationFunction : ActivationFunction

{

throw new Exception("LearningAlgorithme : inputs and
outputs size does not match : learning aborded ");

ins = inputs;

outs = expected_outputs;

}

#endregion

}

#region BackPropagationLearningAlgorithm

Implementation of stockastic gradient backpropagation learning algorithm

 PROPAGATION WAY IN NN

 ------------------------->

 o ----- Sj = f(WSj) ----> o ----- Si = f(WSi) ----> o

 Neuron j Neuron i Neuron k

 (layer L-1) (layer L) (layer L+1)

 For the neuron i :

 W[i,j](n+1) = W[i,j](n) + alpha * Ai * Sj + gamma * (W[i,j](n) - W[i,j](n-1))

 T[i](n+1) = T[i](n) - alpha * Ai + gamma * (T[i](n) - T[i](n-1))

with :

Ai = f'(WSi) * (expected_output_i - si) for output layer

Ai = f'(WSi) * SUM(Ak * W[k,i]) for others

NOTE : This is stockastic version of the algorithm because the error is back-propaged after every learning case. There is another version of this algorithm which works on global error.

[Serializable]

public class BackPropagationLearningAlgorithm : LearningAlgorithm

{

#region PRETECTED FIELDS

the alpha parameter of the algorithm

protected float alpha = 0.5f;

the gamma parameter of the algorithm

protected float gamma = 0.2f;

the error vector

protected float[] e;

#endregion

#region PUBLIC ACCES TO PARAMETERS OF ALGORITHM

get or set the alpha parameter of the algorithm between 0 and 1, must be >0

public float Alpha

{

get { return alpha; }

set { alpha = (value>0)?value:alpha; }

}

get or set the gamma parameter of the algorithm (Rumelhart coef) between 0 and 1.

public float Gamma

{

get { return gamma; }

set { gamma = (value>0)?value:gamma; }

}

#endregion

#region CONSTRUCTOR

Build a new BackPropagation learning algorithm instance with alpha = 0,5 and gamma = 0,3

public BackPropagationLearningAlgorithm(NeuralNetwork nn) : base(nn)

{

 }

#endregion

#region LEARNING METHODS

To train the neuronal network on data. inputs[n] represents an input vector of the neural network and expected_outputs[n] the expected ouput for this vector.

public override void Learn(float[][] inputs, float[][] expected_outputs)

{

base.Learn(inputs, expected_outputs);

float[] nout;

float err;

iter = 0;

do

{

error = 0f;

e = new float[nn.N_Outputs];

for(int i=0; i<ins.Length; i++)

{

err = 0f;

nout = nn.Output(inputs[i]);

for(int j=0; j<nout.Length; j++)

{

e[j] = outs[i][j] - nout[j];

err += e[j] * e[j];

}

err /= 2f;

error += err;

ComputeA(i);

setWeight(i);

}

iter++;

}

while(iter < MAX_ITER && this.error > ERROR_THRESHOLD);

}

Compute the "A" parameter for each neuron of the network

protected void ComputeA(int i)

{

float sk;

int l = nn.N_Layers-1;

// For the last layer

for (int j=0; j<nn[l].N_Neurons; j++)

nn[l][j].A = nn[l][j].OutputPrime * e[j];

// For other layer

for(l--; l>=0; l--)

{

for (int j=0; j<nn[l].N_Neurons; j++)

{

sk = 0f;

{

ArrayList result = new ArrayList();

population.Sort();

result.Add(population[0]);

int index = 1;

while(index < POPULATION_SIZE)

{

result.Add(CrossOver(RandSelectionIndex, RandSelectionIndex));

index++;

}

population = result;

}

Computes square error for each GeneticNeuralNetwork in population

protected void ComputeErrors()

{

float[] nout;

float err;

float[] e = new float[nn.N_Outputs];

foreach(GeneticNeuralNetwork ind in population)

{

ind.setWeights();

ind.Error = 0f;

for(int i=0; i<ins.Length; i++)

{

err = 0f;

nout = nn.Output(ins[i]);

for(int j=0; j<nout.Length; j++)

 {

e[j] = outs[i][j] - nout[j];

err += e[j] * e[j];

}

err /= 2f;

ind.Error += err;

}

}

}

#endregion

#region PUBLIC METHODS AND CONSTRUCTOR

GeneticLearningAlgorithm constructor

public GeneticLearningAlgorithm(NeuralNetwork nn) : base(nn)

{

population = new ArrayList();

for(int i=0; i<POPULATION_SIZE; i++)

population.Add(Muted_NeuralNetwork);

}

Make a new random population

public void RandomizePopulation()

{

for (int i=0; i<population.Count; i++)

{

nn.randomizeAll();

population[i] = Muted_NeuralNetwork;

}

}

To train the neuronal network on data. inputs[n] represents an input vector of the neural network and expected_outputs[n] the expected ouput for this vector.

public override void Learn(float[][] inputs, float[][] expected_outputs)

{

base.Learn(inputs, expected_outputs);

iter = 0;

do

{

if(iter != 0)

makeNewGeneration();

ComputeErrors();

population.Sort();

error = ((GeneticNeuralNetwork)population[0]).Error;

iter++;

}

while(iter < MAX_ITER && this.error > ERROR_THRESHOLD);

((GeneticNeuralNetwork)population[0]).setWeights();

}

#endregion

#region GeneticNeuralNetwork

Representation of a neural network for the genetic algorithm

[Serializable]

protected class GeneticNeuralNetwork : IComparable

{

The genes : all neurons weight and threshold

protected float[] genes;

The global square error of the neuron

protected float sq_err = -1f;

The neural network of the Genetic Neural Network

protected NeuralNetwork nn;

Get or set the genes value

public float this[int index]

{

get { return genes[index]; }

set { genes[index] = value; }

}

Get or set the square error of the Network

public float Error

{

get { return sq_err; }

set {sq_err = value;}

}

Get the number of genes of the Genetic Neural Network

public int N_Genes

{

get {return genes.Length; }

}

Build a new Genetic NeuralNetwork from the Neural Network given as parameter

public GeneticNeuralNetwork(NeuralNetwork n)

{

nn = n;

int size = 0;

for(int i=0; i<nn.N_Layers; i++)

size += (nn[i].N_Inputs+1) * nn[i].N_Neurons;

genes = new float[size];

}

Initialize Genetic network from Neural Network

public void Init()

{

int index = 0;

int i,j,k;

for (i=0; i<nn.N_Layers; i++)

for (j=0; j<nn[i].N_Neurons; j++)

{

for(k=0; k<nn[i][j].N_Inputs;k++)

genes[index++] = nn[i][j][k];

genes[index++] = nn[i][j].Threshold;

}

}

Set Genetic neural network weights to the real neural network

public void setWeights()

{

int index = 0;

int i,j,k;

for (i=0; i<nn.N_Layers; i++)

for (j=0; j<nn[i].N_Neurons; j++)

{

for(k=0; k<nn[i][j].N_Inputs;k++)

nn[i][j][k] = genes[index++];

nn[i][j].Threshold = genes[index++];

}

}

Compare 2 genetic neural network on their square error

public int CompareTo(Object other)

{

return sq_err.CompareTo(((GeneticNeuralNetwork)other).Error);

}

}

#endregion

}

#endregion

}

5.3 Neuron Client

The Neuron Client is the simplest Socket Based client which sends the data from client computer to the Neuron Server. In Neuron Client there is no command button or text box is required. Figure 5.3 shows the panel of neuron client.

[image: image18.png]Fle Edt View Projct Buld Debug Data Fomat Took Window Help

S 5= [3 Hex

AP Y @ chatcient S AFBR O uaa
pe! y Tshl | a2 & 2l =

Dissssembly | Formi Designer.cs & Formi.cs [Designla | Formt.cs - x

[Neuron Client

EB Neuron Client
ErrorList - B X [Calstack v B X
@ 0Errors| [1 Warning] ()0 Messages Name | Lang!
Desarption Fie Line Comn Project
41 The variableex'is decered but never used Formt s 100 El Chatclent

ol [

247281

3 Eror st [ocals g watch 1]

Ready
(Runming)

15, 15

Following is the code for the Neuron Client. There is also a socket programming for the communication.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.Net;

using System.Net.Sockets;

using System.IO;

using System.Threading;

using System.Management;

using System.Diagnostics;

using Microsoft.Win32;

using System.Runtime.InteropServices;

using Microsoft.VisualBasic;

namespace NeuronClient

{

 public partial class Form1 : Form

 {

 RegistryKey rkApp =
Registry.CurrentUser.OpenSubKey("SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run", true);

private string UserName = "Client#1";

 RegistryKey reg =
Registry.CurrentUser.CreateSubKey("SOFTWARE\\NeuronClient\\Test");

 [DllImport("user32.dll")]

 private static extern bool LockWorkStation();

 private StreamWriter swSender;

 private StreamReader srReceiver;

 TcpClient tcpServer = new TcpClient();

 private delegate void UpdateLogCallback(string strMessage);

 private delegate void CloseConnectionCallback(string strReason);

 private Thread thrMessaging;

 private IPAddress ipAddr;

 private bool Connected;

 public Form1()

{

 Application.ApplicationExit += new EventHandler(OnApplicationExit);

 rkApp.SetValue("MyApp", Application.ExecutablePath.ToString());

 InitializeComponent();

 connection_tcp();

 }

 public void OnApplicationExit(object sender, EventArgs e)

 {

 if (Connected == true)

 {

 Connected = false;

 swSender.Close();

 srReceiver.Close();

 tcpServer.Close();

 }

 }

 private void connection_tcp()

 {

 if (Connected == false)

 {

 InitializeConnection();

 }

 else

 {

 CloseConnection("Disconnected at user's request.");

 }

 }

 private void InitializeConnection()

 {

 string ipadd;

 string strt = (string)reg.GetValue("START");

 if (strt == "set")

 {

 ipadd = (string)reg.GetValue("IPAddr");

 }

 else

 {

 reg =
Registry.CurrentUser.OpenSubKey("SOFTWARE\\NeuronClient\\Test", true);

 reg.SetValue("START", "set");

 ipadd = Interaction.InputBox("Enter the Server IP here!", "First time Client start", "192.168.0.7", 10, 10);

 reg.SetValue("IPAddr", ipadd);

 reg.Close();

 }

 ipAddr = IPAddress.Parse(ipadd);

 while (!connecttcp(tcpServer, ipadd)) ;

 Connected = true;

 swSender = new StreamWriter(tcpServer.GetStream());

 swSender.WriteLine(UserName);

 swSender.Flush();

 thrMessaging = new Thread(new ThreadStart(ReceiveMessages));

 thrMessaging.Start();

 }

 static bool connecttcp(TcpClient tc, String serverName)

 {

 try

 {

 tc.Connect(serverName, 1234);

 return true;

 }

 catch (Exception ex)

 {

 LockWorkStation();

 return false;

 }

 }

 private void read_command()

 {

 srReceiver = new StreamReader(tcpServer.GetStream());

 string ConResponse = srReceiver.ReadLine();

 }

 private void ReceiveMessages()

 {

 srReceiver = new StreamReader(tcpServer.GetStream());

 string ConResponse = srReceiver.ReadLine();

 if (ConResponse[0] == '1')

 {

 this.Invoke(new UpdateLogCallback(this.UpdateLog), new object[] { "Connected Successfully!" });

 }

 else

 {

 string Reason = "Not Connected: ";

 Reason += ConResponse.Substring(2, ConResponse.Length - 2);

 this.Invoke(new CloseConnectionCallback(this.CloseConnection), new object[] { Reason });

 return;

 }

 while (Connected)

 {

 this.Invoke(new UpdateLogCallback(this.UpdateLog), new object[] { srReceiver.ReadLine() });

 }

 }

 private void UpdateLog(string strMessage)

 {

 if (strMessage == "t")

 data_tx();

 else

 if(strMessage=="r")

 checkit();

 }

 private void CloseConnection(string Reason)

 {

 Connected = false;

 swSender.Close();

 srReceiver.Close();

 tcpServer.Close();

 }

 private void SendMessagep(string dataa)

 {

 if (dataa.Length >= 1)

 {

 swSender.WriteLine(dataa);

 swSender.Flush();

 }

 }

 public void data_tx()

 {

 bool aa;

 int j = 0;

 aa = false;

 while (!aa)

 {

 StreamWriter sw = new StreamWriter(fs);

 foreach (Process p in Process.GetProcesses("."))

 {

 if (p.MainWindowTitle.Length > 0)

 {

 string proname = p.ProcessName.ToString();

 SendMessagep(proname);

 }

 }

 System.Threading.Thread.Sleep(100);

 j = j + 1;

 if (j > 500)

 {

 aa = true;

 string proname1 = "End";

 SendMessagep(proname1);

 }

 }

 }

 public void checkit()

 {

 while (true)

 {

 foreach (Process p in Process.GetProcesses("."))

 {

 if (p.MainWindowTitle.Length > 0)

 {

 string proname = p.ProcessName.ToString() + Environment.NewLine;

 }

 }

 }

 }

 }

}
Future Work and Scope
"Neuron" is a innovative apporach for the computer network security. At present this is inplemented for a local area network and it works successfully with windows plateform.Further we make this a plateform independent and open source. To make this more secure we also inplement a dedicated firewall on it. Also we Implement this software for MAN and WAN networks. So that we can track the INTERNET activities. Presently "Neuron" is depends on administrator's "set of rule" but we want to make it a robust self-configured system, an fully autonomus system. At present this is inplemented on a dedicated computer, further this can be implemented on a dedicated embedded system so that the cost of system can be reduced.

This is very innovative product, which solve the administrator's problem. Its reconfigurable and robust architecture makes it a very affordable, low cost and efective solution for a small/large networks.

CONCLUSION

This report presents an attempt to design an security system based on usages pattern recognition using ANN type. The proposed “Neuron” system has been tested for various numbers of training iterations and for diﬀerent numbers of computers, input data and within different computer network. The measured results have shown a very good result, with relatively better performance than the other dedicated security software methods.

The computing world has a lot to gain from neural networks. Their ability to learn by example makes them very flexible and powerful. Furthermore there is no need to devise an algorithm in order to perform a specific task; i.e. there is no need to understand the internal mechanisms of that task. They are also very well suited for real time systems because of their fast response and computational times which are due to their parallel architecture.

Neural networks also contribute to other areas of research such as neurology and psychology. They are regularly used to model parts of living organisms and to investigate the internal mechanisms of the brain.

Perhaps the most exciting aspect of neural networks is the possibility that someday 'conscious' networks might be produced. There are a number of scientists arguing that consciousness is a 'mechanical' property and that 'conscious' neural networks are a realistic possibility. The presented “neuron” will checked with 10 computers where the presented dedicated security rules are perfectly work with windows operating system ant tested with widely used windows operating systems i.e. windows xp/me/home, windows 2007/2003/2000, windows 2007.

Finally, I would like to state that though presented approach, the securities of computer network will significantly improved so un-authorized person cannot access the system. And with the help of neural network the system is robust and reconfigurable.

Bibliography​​
1. Christopher J. Alberts and Audrey J. Dorofee. An introduction to the OCTAVE method. http://www.cert.org/octave/methodintro.html, January 30, 2001.

2. Christopher J. Alberts and Audrey J. Dorofee. Managing Information Security Risks: The OCTAVE. Approach. Addison-Wesley, June 2002.
3. Edward G. Amoroso. Fundamentals of computer security technology. Prentice Hall, Englewood Cliffs, New Jersey, 1994.

4. Alison Anderson, Dennis Longley, and Lam For Kwok. Security modeling for organisations. In Proceedings of the 1994 ACM Conference on Computers and Communications Security, November 1994.
5. Alison M. Anderson. Comparing risk analysis methodologies. In David T. Lindsay and Wyn L. Price, editors, Proceedings of the IFIP TC11, Seventh International Conference on Information Security, IFIP/Sec ’91, IFIP Transactions, pages 301–311. Elsevier, May 15–17, 1991.

6. Ross J. Anderson. Security Engineering: A Guide to Building Dependable Distributed Systems. John Wiley & Sons, Inc., first edition, 2001.
7. Ross J. Anderson. Why information security is hard, an economic perspective. In 17th Annual Computer Security Applications Conference, December 2001.

8. James Bamford. Body of Secrets: Anatomy of the Ultra-Secret National Security Agency. Random House, New York, NY, April 2001.

9. Steve Beattie, Seth Arnold, Crispin Cowan, Perry Wagle, Chris Wright, and Adam Shostack. Timing the application of security patches for optimal uptime. In Proceedings of The 16th USENIX Systems Administration Conference (LISA 2002), November 3–8, 2002
10. Bob Blakley. An imprecise but necessary calculation. Secure Business Quarterly: Special Issue on Return on Security Investment, 1(2), Q4, 2001. A publication of stake
11. Bob Blakley. The measure of information security is dollars. In The First Workshop on Economics and Information Security, May 16-17, 2002.
12. Robert M. Brady, Ross J. Anderson, and Robin C. Ball. Murphy’s law, the fitness of evolving species, and the limits of software reliability. http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/babtr.pdf, 1999.

13. Phillip J. Brooke and Richard F. Paige. Fault trees for security system design and analysis. Computers & Security, 22(3):256–264, 2003.

14. Hilary K. Browne, William A. Arbaugh, John McHugh, and William L. Fithen. A trend analysis of exploitations. In Proceedings of the IEEE Symposium on Security and Privacy, pages 214–229, May 2001.

15. Tracey Budd. Burglary of domestic dwellings: Findings from the british crime survey. Technical report, United Kingdom Home Office Crime Reduction Programme Unit, April 1999.

16. Shawn A. Butler, P. Chalasani, Somesh Jha, Orna Raz, and Mary Shaw. The potential of portfolio analysis in guiding software decisions. In Proceedings of the First Workshop on Economics-Driven Software Engineering Research (EDSER- 1), May 1999.
17. William J. Caelli, Dennis Longley, and Alan B. Tickle. A methodology for describing information and physical security architectures. In Guy G. Gable and William J. Caelli, editors, Proceedings of the IFIP TC11, Eigth International Conference on Information Security, IFIP/Sec ’92, volume A-15 of IFIP Transactions, pages 277–296. Elsevier, May 27–29, 1992.
18. L. Jean Camp and Catherine Wolfram. Pricing security. In Proceedings of the CERT Information Survivability Workshop, pages 31–39, October 24-26, 2000.
19. Leonardo Chiariglione and The Secure Digital Music Initiative. An open letter to the digital community. http://www.sdmi.org/pr/OL Sept 6 2000.htm,September 6, 2000.

20. Computer Security Institute. Fourth annual CSI/FBI computer crime and security survey, 1998,1999.2003

21. Don Coppersmith. Small solutions to polynomial equations, and low exponent rsa vulnerabilities. Journal of Cryptology, 10(4):233–260, November 1997.

31 Russell R. and Cunningham S. (2000), Hack Proofing Your Network: Internet Tradecraft, Rockland, MA: Syngress Media, ISBN: 1-928994-15-6

32 Wagner D., Froster J., Brewer E.and Aiken A (2000), A first step toward automated detection of buffer over-run vulnerabilities, In Proceedings of the year 2000 Network and Distributed system Security Symposium (NDSS), San Diego, CA.

33 An introduction to neural computing. Aleksander, I. and Morton, H. 2nd edition

34 Neural Networks at Pacific Northwest National Laboratory
http://www.emsl.pnl.gov:2080/docs/cie/neural/neural.homepage.html

35 Applications of Neural Networks (research reports Esprit, I.F.Croall, J.P.Mason)

36 Pattern Recognition of Pathology Images
http://kopernik-eth.npac.syr.edu:1200/Task4/pattern.html
37 Neural computers, NATO ASI series, Editors: Rolf Eckmiller Christoph v. d. Malsburg

 SHAPE * MERGEFORMAT

13

[image: image1.emf][image: image19]