CHAPTER 1

INTRODUCTION
1.1 Data Mining
Database Management Systems have continually evolved from primitive file systems to sophisticated and powerful relational and object oriented models. Present day systems implement various constructs in the form of query optimizing modules, event-condition action rules to trigger events of interest and other mechanisms that have made their use imperative in most applications. The implicit and unknown patterns in the underlying data can be effectively utilized in decision-making. The process of gleaning important information from data is known as Data Mining.

Architectures and techniques for optimizing mining algorithms for relational as well as object oriented databases are being explored with a view to tightly integrate mining into data warehouses. A multi-database system [1, 2] is a federation of autonomous and heterogeneous database systems. Most of the organizations today have multiple data sources distributed at different locations, which need to be analyzed to generate interesting patterns and rules. An effective way to deal with multiple data sources (where data to be mined is distributed among several relations on different database management systems (DBMSs)) is to mine the association rules at different sources and forward the rules to a centralized system rather than sending the data to be mined which is likely to be very large.

This would provide a great boost to the database and information industry, and make available large data repositories for transaction management, information retrieval, and data analysis. A data warehouse is an information repository that is a complete and consistent store of data obtained from various sources. Data mining [1, 3, 8, 9, 10, 18, 20, 25] has attracted a great deal of attention due to the wide availability of huge amounts of data and the imminent need for turning such data into useful information. The knowledge gained can be used for applications ranging from business management, production control, and market analysis, to engineering design and science exploration.

Interactive mining has been proposed as a way to bring decision makers into the loop to enhance the utility of mining and to support goal oriented mining. Data mining is also known as knowledge discovery in databases [3]. It is the automated extraction of implicit, understandable, previously unknown and potentially useful information from large databases. In other words, data mining is the act of drilling through huge volumes of data to discover relationships, or answer queries too generalized for traditional query tools.
In general, data mining tasks can be classified into two categories:

Descriptive mining: It is the process of drawing the essential characteristics or general properties of the data in the database. Clustering, Association and Sequential mining are some of the descriptive mining techniques.

Predictive mining: This is the process of inferring patterns form data to make predictions. Classification, Regression and Deviation detection are predictive mining techniques.

1.2 Data Mining Techniques

1.2.1 Association Rule

Association rule mining [3-6] is a data mining technique used to find interesting associations among a large set of data items. A typical application of association rule mining is market-basket analysis. In market-basket analysis, buying habits of customers are analyzed to find associations between the different items that customers place in their “shopping baskets”. The discovery of such associations can help retailers develop marketing and placement strategies as well as plan on logistics for inventory management. Items that are frequently purchased together by customers can be identified. An attempt is made to associate a product “A” with another product “B” so as to infer “whenever A is bought, B is also bought”, with high confidence (i.e., the number of times B occurs when A occurs).

1.2.2 Classification

Classification [3, 4] is the process of partitioning a given dataset into disjoint classes using a class attribute. For example, in determining a store location, the success of a store is determined by its neighborhood. The company is interested in identifying neighborhoods that would constitute its primary candidates. A model is built based on the values of all attributes to classify each item into a particular class. The goal of classification is to analyze the training set and to develop an accurate description or model for each class using the attributes presented in the data. Many classifications models have been developed such as neural networks, genetic models, and decision trees etc.

1.2.3 Clustering

Clustering [3] is the process of grouping the data into clusters with high intra-cluster similarity and low inter-cluster similarity. A similarity measure needs to be defined and the quality of the cluster, to a large extent, depends on the appropriateness of the similarity measure for the data set or the domain of application. The technique of clustering, for example, can be used to divide the market into distinct groups, so that each group can be targeted with a different strategy. There are several clustering techniques: partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model based methods.

The basic difference between classification and clustering is that classification is a supervised learning method, which assumes predefined class labels, while clustering is an unsupervised learning method that does not assume any knowledge of classes.

1.2.4 Prediction

Prediction techniques are based on some continuous valued attributes. Previous history of the attributes is used to build the model. This technique is commonly used for predicting product sales.

1.2.5 Deviation analysis

This technique compares current data with previously defined normal values to detect anomalies. Deviation analysis tools are useful in security systems, where authorities can be warned about deviation in resource utilization.
1.3 Partitioned Approach

The partition algorithm is a fast and efficient algorithm for mining association rules in large databases. The algorithm differs from the other mining algorithms in terms of the number of passes it makes over the database. The algorithm makes just 2 passes over the input database to generate the rules. The partition algorithm executes in two phases: In the first phase of the algorithm the database is divided into non-overlapping partitions and each of the partitions are mined individually to generate the local frequent itemsets.

At the end of the first phase the local frequent itemsets are merged to generate the global candidate itemsets. In the second phase of the algorithm the support is calculated for all the itemsets in the global candidate itemset and the global frequent itemsets are generated as the set of itemsets, which satisfy the support. The database is scanned completely once in each of the phases of the algorithm. The algorithm can be executed in parallel to utilize the capacity of many processors with each processor generating the rules for a particular set of transactions and merging the frequent itemsets obtained from all the processors.

1.4 Incremental Mining

Association rules represent an important class of knowledge that can be discovered from data warehouses [7-9]. As new data is added, previously discovered rules have to be verified and new rules may have to be added to the knowledge base. Changes to the data can also invalidate existing patterns. The task of deriving new rules for data sets that grow incrementally can be done in several ways. Re-executing the algorithms from scratch each time a database is updated can result in excessive computation and I/O. Re-execution is not an efficient process, since it ignores previously discovered rules and repeats the work that has already been done. Incremental mining is a useful technique for discovering new rules as the data distribution patterns change, obviating the need for recomputation of old rules.

Incremental mining is done by maintaining the negative border [10] along with the frequent itemsets. The negative border is used to decide when to scan the whole database.

The frequent itemsets for the increment database is computed. A full scan of the whole database is required when the negative border of the frequent itemsets expands, that is an

itemset outside the negative border gets added to the frequent itemsets or its negative border.
1.5 Architecture Alternatives

Various architecture schemes have been proposed for integrating the mining process with relational database systems. These alternatives are depicted in Figure 1.1 and are described below.

[image: image1.png]nning

Cache-Mine s domed ostonderailades.
Integrated win
Looso Stored SQLbased 'SaL queny.
Coupling Procedure jproach ‘engine.
Mining as Mining ac
ppiication an appication on Mining using Integrated
Clientiapp. semer databa oo serrer SQL+Extensions approach
Loose imearation > Tiant

Figure 1.1 Architectural Alternatives
Loose coupling or Cache-based Mining: This is an example of integrating mining

applications into the client in a client/server architecture or into the application server in a

multi- tier architecture. The mining kernel can be considered as the application server. The data is first fetched from the database and fed to the mining-kernel, which mines and pushes the results back to the database.

In loose coupling, the DBMS runs in a different address space from the mining process. Cache-based mining is a special case of the loose coupling approach, wherein data from the DBMS is read only once and the relevant data is cached into flat files on local disk.

Stored procedures and user-defined functions: This architecture is a representative of the case where the mining logic is embedded as an application on the database server. The applications are executed in the same address space as the DBMS. The flexibility in programming the stored procedure outweighs their development cost.

SQL-based approach: In this approach the mining algorithm is formulated as SQL queries, which are executed by the DBMS query processor. A mining-aware optimizer may be used to optimize these complex, long running queries based on the mining semantics. The DBMS support for check pointing and space management is especially valuable for long running mining algorithms on huge volumes of data.

Integrated Approach: This is the tightest form of integration that has no boundary between simple querying, OLAP, or mining. Mining operators or SQL, extended for mining is optimized by the underlying system without any hints from the user. The long-term goal is to extend the current query optimizers to cover OLAP and mining along with SQL queries.

1.6 Focus of Thesis
With increase in the use of RDBMS to store and manipulate data, mining directly on RDBMSs would be an advantage. Main memory imposes a limitation on the size of dataset that can be processed. In addition, data stored in a database has to be siphoned out into a flat file for processing. However, if mining is done directly over an RDBMS, the user/application can be freed from data size considerations, as this would be taken care of by the underlying buffer management system. In database mining, we assume that the data is already stored in tables in an underlying DBMS and use the SQL/MYSQL provided by the RDBMS for mining to produce association rules. Building mining algorithms to work on RDBMSs also provides the advantage of mining over very large datasets as RDBMSs have been built to manage such large volumes of data. File based mining algorithms are those that work on data outside the database. They generally have an upper limit on the number of transaction that can be mined.

For example, the DBMiner has an upper limit of 64K on the number of unique transactions that it can process for mining. With the users having a choice of RDBMS to use for their applications, the mining algorithms should be developed using such accepted standards so that the underlying system is not a limitation and should be portable to other RDBMSs. Keeping this in mind, focus has been placed on the use of SQL/MYSQL. The arbitrary relations are mapped to the (Tid, item) format and reconversion is done at the end of the rule generation. Data may be stored in multiple databases and the data in each of the databases may get updated frequently and independently. In this case either the intermediate results or the input data has to be transferred to a single database to perform mining. The goal of this thesis is to study approaches for mining association rules over multiple databases. In an organization, data is generally distributed over multiple databases (typically 2 or 3). One of the solutions to mining data in multiple databases is to move the relations to a single database and do mining. The other solution would be to apply a partitioned or an incremental approach to perform mining. In this case, some intermediate data has to be transferred to one database (most likely one o the databases) to combine the results obtained independently at different sources. This thesis mainly focuses on one of the two approaches for association rule mining over data stored in multiple relations in one or more databases. The partition approach [12], which mines the data in partitions and merges the results finally. These approaches may be extended to suit a multi-database environment that has autonomous and heterogeneous data sources. Due to the lack of availability of real datasets, artificial datasets have been used for performance evaluation. Nevertheless, the results are useful (as they are only based on cardinality, support and underlying RDBMS, not on the semantics of the data set) in understanding the approaches.

The rest of this thesis is organized as follows. CHAPTER 2 introduces the association rule mining algorithms and their SQL formulations. CHAPTER 3 discusses the partition-based approach for association rule mining. It covers in detail the implementation of the algorithm using the k-way join approach for support counting. CHAPTER 4 presents the proposed extensions to the partitioned algorithms. CHAPTER 5 concludes the thesis with emphasis on the future work.
CHAPTER 2

RELATED WORK

2.1 Background

The work on association rule mining began with the development of the AIS algorithm [6], and was further modified and extended in [5]. Since then, several attempts have been made to improve the performance of these algorithms. The partition algorithm [12] partitions the data into disjoint groups, processes each individually, and merges the intermediate results. It improves the overall performance by reducing the number of passes needed over the complete database to at most two. The turbo-charging algorithm [13] incorporates the concept of data compression to boost the performance of the mining

algorithm. The FP-Tree algorithm [14] builds a special tree structure in main memory to avoid multiple passes over database. However, most of these algorithms are applicable to data stored in flat files. The main characteristic of these algorithms is that they are main memory algorithms. In these algorithms, the data is either read directly from flat files or is first extracted from the DBMS and then processed in main memory. The algorithms implement their own buffer management schemes and the performance varies depending on the specialized data-structures used for buffer management.

A few attempts have been made to build database-based mining approaches. Work in the field of database mining has focused on integrating the mining functions with the database. Various extensions to the SQL have been proposed which overload the SQL with certain mining operators. SETM [15] showed how the data stored in RDBMS can be mined using SQL and the corresponding performance gain achieved by optimizing these queries. The Data Mining Query Language DMQL [16] proposed a collection of such operators for classification rules, characteristics rule, association rules, discriminant rules, etc. [17] proposed the MineRule operator for generating general/clustered/ordered association rules. [18] presents a methodology for tightly coupled integration of data mining applications with a relational database system. [19] has tried to highlight the implications of various architectural alternatives for coupling data mining with relational database systems. They have also compared the performance of the SQL-based approaches with SQL-OR-based approaches and the case when mining is done outside the database address space. The Incremental Mining algorithm [7-9] is another useful technique for speeding up the mining process when new data is added. [20] has developed an association rule visualization system, which includes a tabular form and a three-dimensional graphics to display the rules.

 [21] has formulated SQL queries to implement association rule mining algorithms and also compared and contrasted the performance of SQL-92 and SQL-OR approaches based on their performance over synthetically generated datasets. Some of the earlier research has focused on the development of SQL-based formulations for association rule mining. Most of these algorithms use the Apriori algorithm directly or indirectly with certain modifications of the same. [19] and [8] deal with the SQL implementation of the Apriori algorithm and have compared some of the optimizations to the basic k-way join algorithm for association rule mining but the relative performances and possible combinations for optimizations were not explored. [22] deals with the mapping of the arbitrary relations into the (tid, item) format and remapping them back to the original values.

 [21, 23, 24] deals with the performance evaluation of the SQL-92 and SQL-OR approaches. [1] Deals with a multi-database mining strategy to develop local pattern analysis for identifying novel and useful patterns. [2] presents a weighting model for synthesizing high- frequency association rules from different data sources.

2.2 Association Rule Mining Algorithms

Association rule mining makes correlation among items that are grouped into transactions, deducing rules that define relationships between item sets. The rules have a user-stipulated support, confidence, and length. Association rule mining has attracted tremendous attention from data mining researchers and as a result several algorithms have been proposed for it [8, 9, 14, 20, 21]. Let I = {i1, i2, …., im} be the collection of all the items and D be the set of database transactions where each transaction T is a set of items such that T I. Let A be a set of items. A transaction T is said to contain A if and only if A T. An association rule is an implication of the form A B, where A I, B I, and A B = .
They are two terms associated with association rules. These are Support and Confidence.

If the support of itemset {AB} is 30%, it means “30% of all the transactions contain

both the itemsets – itemset A and itemset B”.

Support of itemset {AB} = Count Of the transactions containing the itemsets A and B/

 Total Number of Transactions

If the confidence of the rule A B is 70%, it means “70% of all the transactions that

contain itemset A also contain itemset B”.

Confidence of the rule A B = Support({AB})/ Support({A})

An association rule-mining problem is broken down into two steps: 1) Generate all the item combinations (itemsets) whose support is greater than the user specified minimum support. Such sets are called the frequent itemsets and 2) Use the identified frequent itemsets to generate the rules that satisfy a user specified confidence. The frequent itemsets generation requires more effort and the rule generation is straightforward.

2.2.1 Apriori Algorithm
The apriori algorithm [6] is based on the above-mentioned steps of frequent itemsets and rule generation phases. Frequent itemsets are generated in two steps. In the first step all possible combination of items, called the candidate itemset (Ck) is generated. In the second step, support of each candidate itemset is counted and those itemsets that have support values greater than the user-specified minimum support form the frequent itemset (Fk). In this algorithm the database is scanned multiple times and the number of scans cannot be determined in advance. The apriori algorithm is depicted below.

F1 = {frequent 1-itemsets}

for (k = 2; Fk-1 0; k++) do

Ck = generate(Fk-1)

for all transactions t D do

Ct = subset(Ck, t)

for all candidates, c Ct do

c.count++

end for

end for

Fk = { c Ck | c.count minsup}

end for

Answer = k{Fk}

The AprioriTid algorithm [5] uses the above algorithm to determine the candidate itemsets before each pass begins. The interesting feature of this algorithm is that it does not use the database for support counting after the first pass. It uses a set Ck of the form {TID, Xk} where Xk is the potentially large k- itemsets present in the transaction with the identifier TID. For k=1, C1 will be the database. If a transaction does not contain a k- itemset then Ck will not have an entry for that transaction. Set Oriented Mining, SETM [15] uses the SQL join operation for candidate generation.

The candidate itemset with the TID of the generating transaction is stored as a sequential structure, which is used for support counting. The problem with the above two algorithms is that they generate too many candidates that turn out to be small (or not frequent) resulting in wasted effort. AprioriTid is better for the later passes where the size of Ck is small when compared to the size of the database. Based on the above observations the Apriori Hybrid [5] algorithm was proposed. It uses Apriori for the earlier passes and switches to the AprioriTid when the size of Ck becomes small enough to fit in memory.

2.2.2 Parallel Mining of Association Rules
[24] discusses the problem of mining association rules in a shared-nothing multiprocessor. Three algorithms were proposed to explore the spectrum of trade-offs between computation, communication and memory usage as follows:

Count Distribution Algorithm: The count distribution algorithm minimizes the communication at the expense of carrying out redundant duplicate computations in parallel. These communications are carried out on the idle processors. This algorithm does not use the memory of the system effectively.

Data Distribution Algorithm: The data distribution algorithm attempts to utilize the aggregate main memory of the system effectively depending on the number of processors. The downside of this algorithm is that every processor must broadcast its local data to all other processors in every pass. This algorithm would be viable only on a machine with very fast communication.

Candidate Distribution Algorithm: This algorithm exploits the semantics of the particular problem at hand to reduce the synchronization between the processors and to segment the database based on the patterns the different transactions support. The count distribution algorithm performed the best among the three algorithms. It exhibited linear scale-up and excellent speed-up and size up behavior.

2.2.3 Incremental Mining

The Incremental mining algorithm [7, 8] is used to find new frequent itemsets with minimal recomputation when new transactions are added to or deleted from the transaction database. The algorithm uses the negative border concept for this. The negative border [Toivonen, 1996 #28] consists of all itemsets that were candidates, which did not have the minimum support. During each pass of the apriori algorithm, the set of candidate itemsets Ck is computed from the frequent itemsets Fk-1 in the join and prune steps of the algorithm.

The negative border is the set of all those itemsets that were candidates in the kth pass but did not satisfy the user specified support, that is (NBd(Fk)) = Ck – Fk. The algorithm uses a full scan of the whole database only if the negative border of the frequent itemsets expands. The algorithm for updating the frequent itemsets is as follows:

function Update-Frequent-Itemset(FDB, NBd(FDB),db)

//DB and db denote the number of transactions in the original database and the increment database respectively.

Compute Fdb

for each itemset s FDB NBd(FDB) do

 tdb(s) = number of transactions in db containing s

 FDB+ = 

for each itemset s FDB do

 if (tDB(s) + tdb(s)) > minsup * (DB + db)

 then FDB+ = FDB+ s

for each itemset s Fdb do

 if s FDB and s NBd(FDB) and (tDB(s) + tdb (s)) >

 minsup * (DB + db)

 then FDB+ = FDB+ s

if FDB FDB+ then

 NBd(FDB+) = negativeborder-gen(FDB+)

else NBd(FDB+) = NBd(FDB)

if FDB NBd(FDB) FDB+ NBd(FDB+) then

 S = FDB+

repeat

 compute S = S NBd(S)

until S does not grow

FDB+ = {x S | support(x) > minsup}

//support(x) is the support count of x in DB db

NBd(FDB+) = negativeborder-gen(FDB+)

2.3 SQL-OR And SQL-92 Based Approaches

The k-way join approach [8, 21-23] is the SQL-92 approach for support counting. Here in any pass k, k copies of the input table are joined with the candidate itemsets Ck followed by a group by on the itemsets. The k copies of the input table are needed to compare the k items in the candidate itemset Ck with one item from each of the k-copies of the input table. The group by clause on the k items is done to identify all itemsets whose count is greater than the user specified support value, as frequent items, which are then used for the rule generation phase. The SQL statement used for support counting in the k-way join approach is shown below.

Insert into Fk

Select item1, … , itemk, count(*)

From Ck, T t1, … , T tk

Where t1.item = Ck.item1 and

:

tk.item = Ck.itemk and

t1.tid = t2.tid and

:

tk-1.tid = tk.tid

Group by item1, item2, … ,itemk

Having count(*) > minsup

The following are the optimizations that turned out to be the best [21, 23] for the k-way

Join approach:

2.3.1 Second Pass Optimization

In general, because of the immense size of C2, the cost of support counting for C2 is very high. In addition, for candidate sets of length 2, as all the subsets of length 1 are known to be frequent, there is no gain from pruning during candidate generation. Also there are no rules associated with F1. Hence the process of generating F1 and then C2 followed by the support counting phase can be replaced by directly generating F2. F2 is generated by joining two copies of the input table such that, the item from first copy of the input table is less than the item from the second copy of the input table and both items belong to same transaction.

The SQL for the same is as follows:

Insert into F2 select t1.item, t2.item, count(*)

From InputTable T1, InputTable T2

Where T1.tid = T2.tid and T1.item < T2.item

Group by T1.item, T2.item.

Having count(*) > minsup

2.3.2 Reuse of Item Combinations

This optimization aims to reduce the cost of support counting, in any pass k, by avoiding the join of k copies of input table with the set of candidate itemsets Ck. Joining k copies of the input table is avoided by materializing the frequent itemsets obtained from a particular transaction in pass k-1, and using it for support counting in the kth pass. This approach proves to be very effective for cases where the length of the frequent itemset is large since the sequence of joins done in the earlier passes are avoided. So in kth pass for support counting, a relation Combk, having the following attributes (tid, item1, item2, …, itemk) is created. The tuples in Combk is the result of the join between Combk-1, T and Ck to select all those transactions in T which contains 1-extensions to the frequent itemsets of length k-1.

The SQL for this is given below:

Insert into Combk

Select T1.tid, T1.item1, T1.item2,…, T1.itemk-1,T2.item
From Ck, Combk-1 T1, T T2
Where T1.item1 = Ck.item1 and

:

:

T1.itemk-1 = Ck.itemk-1 and

T2.item = Ck.itemk and

T1.tid = T2.tid

Fk is then generated from Combk by grouping on k items (item1, item2, …, itemk) and selecting those that satisfy the minimum support criteria.

The SQL for this given below:

Insert into Fk

Select item1, item2, …, itemk

From Combk

Group by item1, item2, …, itemk

Having count(*) > minsup

2.3.3 Vertical-Tid Approach

The Vertical-Tid approach [24] uses SQL-OR constructs (such as CLOBs) for better representation of input data. For Oracle, all stored procedures have been implemented as a Java stored procedures and for IBM DB2/UDB, the same has been implemented as user

defined functions (or UDFs) using Java.

Here, the representation of input data is changed and the transactions are inserted in a different relation (TidListTable) having the following attributes: (Item, TidList). For every unique item id in the input dataset, the TidListTable has only one tuple. This tuple represents the item id and the list of all the transactions in which that item was bought. Each list of transactions is represented as a CLOB and stored in the TidList column of the TidListTable.

For the purpose of support counting, procedures are used to read these CLOBs and for each item combination (itemset), the numbers of same transaction ids that are present in the TidList of each item id in that itemset are counted.

The SQL for generation of frequent itemsets is given below.

Insert into Fk

Select item1, item2, …, itemk

From (Select item1, item2,…, itemk,

CountAndK(I1.TidList,I2.TidList, … ,

Ik.TidList) as cnt

From Ck, TidListTable I1, TidListTable I2,…,

TidListTable Ik,

Where Ck.item1 = I1.item And

Ck.item2 = I2.item And

:

:

Ck.itemk = Ik.item) as temp

Where cnt > minsup.

Here CountAndK is a procedure that in pass k, accepts k TidLists and returns the count of transactions that are common to each of them.

2.4 Multi-Database Mining

Many organizations end up using multiple databases due to acquisitions and merger. These are used in a federated manner and are independently, maintained. If one were to mine on data present in multiple databases, there are two options. The first one is to transfer data to a single database and mine it on that database. The second option is to mine them independently and still generate association rules for the combination of the data in multiple databases.[1]. A large majority of organizations have computerized all or a part of their daily activities. Let us consider a company, which has several branches in different locations with each branch having its own database. The main branch or top level within the organizational hierarchy is responsible for development and decision making within the entire company. Let us consider the following multi-database environment shown in Figure 2.1.

[image: image2.png]

Figure 2.1 A Multi-Database Environment

The development of multi-database association rule mining is a challenging and critical task since it requires knowledge of all the data stored at different locations and the ability to combine partial results from individual RDBMS's into a single result. The individual databases have to be analyzed to generate rules to make local decisions. It would be easier for the organization to make decisions based on the rules generated by the individual branches, rather than using the raw data. If the raw data from each of the The development of multi-database association rule mining is a challenging and critical task since it requires knowledge of all the data stored at different locations and the ability to combine partial results from individual RDBMS's into a single result. The individual databases have to be analyzed to generate rules to make local decisions. It would be easier for the organization to make decisions based on the rules generated by the individual branches, rather than using the raw data. If the raw data from each of the individual databases were sent to a single database to generate the rules, certain useful rules, which would aid in making decisions about local branches, would be lost.
For example a rule such as “50% of the branches in the north saw a 10% increase in the purchase of printers when Digital cameras and memory cards were purchased together” would not be generated if the raw data was transferred. If the raw data from all the databases were transferred to a single database then each of the individual branches would not be generating the rules with respect to its data. In such a case the organization may miss out certain rules that were prominent in certain branches and were not found in the other branches similar to the above example. Generating such rules would aid in making decisions about specific branches.

[2] Presents a weighting model for synthesizing high-frequency association rules from different sources. A high- frequency rule is the one that is supported by most of the data sources. High- frequency rules are preferred for two reasons. First, a company headquarter is interested in the rules supported by most of its branches for corporate profitability. Second, high frequency rules have larger chances to become valid rules in the union of all data sources than the low- frequency rules do. The proposed model assigns a high-weight to a data source that supports/votes more high- frequency rules and a lower weight to a data source that supports/votes less high- frequency rules. A relative synthesizing model using clustering is used when the data source is unknown (e.g., collected from the web, journals and books).

This model is different form parallel and distributed mining and metalearning because they do not produce a global learning model from classifiers from different data sources. Although a multi-relational database can be transformed into a single universal relation, practically this can lead to many issues such as universal relations of unmanageable sizes, infiltration of uninteresting attributes, loss of useful relation names, unnecessary join operations, and inconvenience for distributed processing. [1] Discusses a new multi-database mining process. The patterns in multi-databases are divided into the following classes:

Local patterns: Local branches need to consider the original raw data in their datasets

so they can identify local patterns for local decisions.

High-vote patterns: These are the patterns that are supported by most of the branches

and are used for making global decisions.

Exceptional patterns: These patterns are strongly supported by only a few branches and are used to create policies for specific branches. The mining strategy used in [1] identifies two types of patterns, high- vote patterns and exceptional patterns. The discovery of these patterns can capture certain distributions of local patterns and assist global decision-making within a large company.
CHAPTER 3 PARTITIONED APPROACH TO ASSOCIATION RULE
 MINING
3.1 Introduction

Discovering association rules between items over basket data was introduced in [l]. Basket data typically consists of items bought by a customer along with the date of transaction, quantity, price, etc. Such data may be collected, for example, at supermarket checkout counters. Association rules identify the set of items that are most often purchased with another set of items. For example, an association rule may state that “95% of customers who bought items A and B also bought C: and D.” Association rules may be

used for catalog design, ‘store layout, product placement, target marketing, etc.
Many algorithms have been discussed in the literature for discovering, association rules [l, 8, 21]. One of the key features of all the previous algorithms is that they require multiple passes over the database. For disk resident databases, this requires reading the database completely for each pass resulting in a large number of disk I/OS. In these algorithms, the effort spent in performing just the I/O may be considerable for large databases. Apart from poor response times, this approach also places a huge burden on the I/O subsystem adversely affecting other users of the system. The problem can be even worse in a client-server environment.
 In this paper, we describe an algorithm called Partition that is fundamentally different from all the previous algorithms in that it reads the database at most two times to generate all significant association rules. Contrast this with the previous algorithms, where the database is not only scanned multiple times but the number of scans cannot even be determined in advance. Surprisingly, the savings in I/O is not achieved at the cost of increased CPU overhead. We have performed extensive experiments and compared our algorithm with one of the best previous algorithms. Our experimental study shows that for computationally intensive cases, our algorithm performs better than the previous algorithm in terms of both CPU and I/O overhead.
3.2 Problem Description

This section is largely based on the description of the problem in [l] and [2]. Formally, the problem can be stated as follows: Let I = {i l, ia, . . , im} be a set of m. distinct literals called items. D is a set of variable length transactions over I. Each transaction contains a set. of items il, ia, . . , im (I. A transaction also has an associated unique identifier called TID. An association rule is an implication of the form X (Y, where X, Y (I, and X (Y = Ø. X is called the antecedent and Y is called the consequent of the rule. In general, a set of items (such as the antecedent or the consequent of a rule) is called an itemset. The number of items in an itemset is called the length of an itemset. Itemsets of some length k are referred to as k-itemsets. For an itemset X.Y, if Y is an m-itemset then Y is called an m-extension of X. Each itemset has an associated measure of statistical significance called support. For an itemset X (I, Support(x) = s, if the fraction of transactions in 2, containing X equals s. A rule has a measure of its strength called confidence defined as the ratio support(X U Y) / support(X). The problem of mining association rules is to generate all rules that have support and confidence greater than some user specified minimum support and minimum confidence thresholds, respectively.
This problem can be decomposed into the following sub problems:

1. All itemsets that have support above the user specified minimum support are generated. These itemset are called the large itemsets. All others are said to be small.

2. For each large itemset, all the rules that have minimum confidence are generated as follows: for a large itemset X and any Y (X, if support(X)/support(X - Y) >= minimum-confidence, then the rule X - Y (Y is a valid rule.

For example, let Tl = {A, B, C}, T2 = {A. B, D}, T3 = {A, D,E} and T4 = {A,B. D} be the only transactions in the database. Let, the minimum support and minimum confidence be 0.5 and 0.8 respectively. Then the large itemsets are the following:

{A}, {B}, {D}, {AB}, {AD} and {ABD}. The valid rules are B (A and D (A.
The second sub problem, i.e., generating rules given all large itemsets and their supports, is relatively straightforward. However, discovering all large itemsets and their supports is a nontrivial problem if the cardinality of the set of items, (I (, and the database, D, are large. For example, if (I (= m, the number of possible distinct itemsets is 2m. The problem is to identify which of this large number of itemsets has the minimum support for the given set of transactions. For very small values of m, it is possible to setup 2m counters, one for each distinct itemset, and count the support for every itemset by scanning the database once. However, for many applications m can be more than 1,000. Clearly, this approach is impractical. To reduce the combinatorial search space, all algorithms exploit the following property: any subset of a large itemset must also be large. Conversely, all extensions of a small itemset are also small. This property is used

by all existing algorithms for mining association rules as follows: initially support for all itemsets of length 1 (1-itemsets) are tested by scanning the database. The itemsets that are found to be small are discarded. A set of 2-itemsets called candidate itemsets are generated by extending the large 1-itemsets generated in the previous pass by one (l-extensions) and their support is tested by scanning the database. Itemsets that are found to be large are again extended by one and their support is tested. In general, some kth iteration contains the following steps:

1. The set of candidate k-itemsets is generated by lextensions of the large (K - l)-itemsets generated in the previous iteration.

2. Supports for the candidate k-itemsets are generated by a pass over the database.

3. Itemsets that do not have the minimum support are discarded and the remaining itemsets are called large k-itemsets.

This process is repeated until no more large itemsets are found.

3.3 Partition Algorithm

The idea behind Partition algorithm is as follows. Recall that the reason the database needs to be scanned multiple number of times is because the number of possible itemsets to be tested for support is exponentially large if it must be done in a single scan of the database. However, suppose we are given a small set, of potentially large itemsets, say a few thousand itemsets. Then the support for them can be tested in one scan of the database and the actual large itemsets can be discovered. Clearly, this approach will work only if the given set contains all actual large itemsets. Partition algorithm accomplishes this in two scans of the database. In one scan it generates a set of all potentially large itemsets by scanning the database once. This set is a superset of all large itemsets, i.e., it, may contain false positives. But no false negatives are reported. During the second scan, counters for each of these itemsets are set, up and their actual support is measured in one scan of the database.
The algorithm executes in two phases. In the first phase, the Partition algorithm logically divides the database into a number of non-overlapping partitions. The partitions are considered one at a time and all large itemsets for that partition are generated. At the end of phase I, these large itemsets are merged to generate a set of all potential large itemsets. In phase II, the actual support for these itemsets are generated and t,he large itemsets are identified. The partition sizes are chosen such that each partition can be accommodated in the main memory so that the partitions are read only once in each phase. We assume the transactions are in the form (TID, i j ,i k………..i n). The items in a transaction are assumed to be kept sorted in the lexicographic order. Similar assumption is also made in [2]. It is straightforward to adapt the algorithm to the case where the transactions are kept normalized in (TID, item) form. We also assume that the TIDs are monotonically increasing. This is justified considering the nature of the application. We further assume the database resides on secondary storage and the approximate size of the database in blocks or pages is known in advance.

3.3.1 Definition

A partition p (D of the database refers to any subset of the transactions contained in the database D. Any two different partitions are non-overlapping, i.e., pi (pi = Ø,i ≠ j. We define local support for an itemset as the fraction of transactions containing that itemset in a partition. We define a local candidate itemset to be an itemset, that is being tested for minimum support within a given partition. A local large itemset is an itemset whose local support, in a partition is at; least the user defined minimum support. A local large itemset may or may not be large in the context of the entire database. We define global support, global large itemset, and global candidate itemset as above except they are in the context of the entire database D. Our goal is to find all global large itemsets.

We use the notation shown in below table in this paper.
Cpk -----Set, of local candidate k-itemsets in partition p

Lpk -----Set of local large k-itemsets in partition p

Lp ------Set, of all local large itemsek in partition p

CGk ------Set of global candidate k-itemsets

CG -----Set of all global candidate itemsets

LGk -----Set of global large k-itemsets

Table 1(Notations Used For Partitioned Approach)
Individual itemsets are represented by small letters and sets of itemsets are represented by capital letters. When there is no ambiguity we omit the partition number when referring to a local itemset. We use the notation c[l].c[2]. . .c[K] to represent a k-itemset c consisting of items c[l], c[2], . ., c[K].

3.3.2 Algorithm The Partition algorithm is shown in the figure below. Initially the database is logically partitioned into n partitions. Phase I of the algorithm takes n iterations. During iteration i only partition pi is considered. The function gen-large-itemsets takes a partition pi as input and generates local large itemsets of all lengths,Li1 Li2 ,……. Lil as the output.
1) P = partition-database(D)

2) n = Number of partitions

3) for i = 1 to n begin // Phase I

4) read_in_partition(p i (P)

5) L’ = gen_large_itemsets

6) end

7) for (i = 2; L j i # Ø, j = 1, 2, . . , n; i++) do

8) C i j =U j=1,2,…n L j i // Merge Phase

10) for i = 1 to n begin // Phase II

11) read_in_partition(pi (P)

12) for all candidates c (CG gen-count(c, pi)

13) end

14) LG = {c (CG (c.count, >= minSup}

Figure 3.1: Partition Algorithm

 In the merge phase the local large itemsets of same lengths from all n partitions are combined to generate the global candidate itemsets. In phase II, the algorithm sets up counters for each global candidate itemset, and counts their support for the entire database and generates the global large itemsets. The Algorithm reads the entire database once during phase I and once during phase II.

procedure gen_largeitemsets(p: database partition)

1) L p i= {large l:itemsets along with their tidlists}

2)
for (k = 2; L p k # Ø; k++) do begin

3)
forall itemsets 11 (L p k-1 do begin

4)
forall itemsets 12 (L p k-1 do begin

5)
 if 11[1] = 12[1] (11[2] = L2[2] (.. (

 11[k - 21 = l2[k – 2] (11[k - l] < l2[li - 1] then

6)
 c = 11 [l] . 11[2] . . .l1 [k – 1] . l2[k - l]

7) if c cannot be pruned then

8)
 c.tidlist = 11 .tidlist (l2 .tidlist,

9)
 if (c.tidlist (/ (p(>= minSup then

10)
 L p k = L p k ({c}
11) end

12) end

13) end

14) return UkLpk
Figure 3.2: gen_large_itemsets
3.3.3. Generation of Local Large Itemsets

The procedure gen_large_itemsets takes a. partition and generates all large itemsets (of all lengths) for that partition. The procedure is shown in Figure 3.2. Lines 3-8 show the candidate generation process. The prune step is performed as follows:
prune(c: k-itemset)

forall (Ic - 1)-subsets s of c do

if s (Lk-1 then

return “c can be pruned”

The prune step eliminates extensions of (k - l)- itemsets which are not found to be large, From being considered for counting support. For example, if L3P: is found to be ((1 2 3}, (1 2 4}, (1 3 4}, (1 3 5}, (2 3 4}}, the candidate generation initially generates the itemsets (1 2 3 4) and {1 3 4 5). However, itemset { 1 3 4 5) is pruned since { 1 4 5) is not in L3P. This technique is same as the one described in [2] except in our case, as each candidate itemset is generated, its count is determined immediately. The counts for the candidate itemsets are generated as follows. Associated with every itemset, we define a structure called as tidlist. A tidlist for itemset l contains the TIDs of all transactions that contain the itemset 1 wit,hin a given partition. The TIDs in a tidlist are kept in sorted order. Clearly, the cardinality of the tidlist, of an itemset divided by the total number of transactions in a partition gives the support for that itemset, in that partition.
1) forall 1-itemsets do

2) generate the tidlist

3) for(k = 2; CGk # Ø; k++) do begin

4) forall k-itemset c (CGk do begin

5) templist = c[l].tidlist (c[2].tidlist (. . . (c[k].t,idlist

6) c.count = c.count +(templist (
7) end

8) end

Figure 3.3: Procedure gen-final-counts

Initially, the tidlists for 1-itemsets are generated directly by reading the partition. The Tidlist for a candidate k-itemset, is generat,ed by joining the tidlists of the t,wo (k - l)- itemsets that were used to generate the candidate k-itemset. For example. in the above case the tidlist for the candidate itemset (1 2 3 4) is generated by joining the tidlists of itemsets (1 2 3) and (12 4).
The global candidate set is generated as the union of all local large itemsets from all partitions. In phase II of the algorithm, global large itemsets are determined from the global candidate set. This phase also takes n (number of partitions) iterations. Initially, a counter is set up for each candidate itemsets and initialized to zero. Next, for each partition, tidlists for all l-itemsets are generated. The support for a candidate itemset in that partition is generated by intersecting the tidlists of all l-subsets of that itemset. The cumulative count gives the global support for the itemsets. The procedure gen-final-counts is given in Figure 3.3. Any other technique such as the subset operation described in [2], can also be used to generate global counts in phase II.

3.3.4 Discovering Rules

Once the large itemsets and their supports are determined, the rules can be discovered in a straight forward manner as follows: if I is a large itemset, then for every subset a of I, the ratio support (l) / support (a) is computed. If the ratio is at least equal to the user specified minimum confidence, them the rule a ((1- a) is output. A more efficient algorithm is described in [2].

As mentioned earlier, generating rules given the large itemsets and their supports is much simpler compared to generating the large itemsets. Hence we have not attempted to improve this step further.

3.3.5 Choosing the Number of Partitions

We have described how partitioning can be effectively used for reducing the disk I/O. However, how do we choose the number of partitions? In this section we describe how to estimate the partition size from system parameters and compute the number of partitions for a given database size. For a small database, we may process the entire database as a single partition. As the database size grows, the size of the tidlists also grows and we may no longer be able to fit in main memory the tid1ist.s that are being joined. This leads to thrashing and degradation in performance.
We must choose the partition size such that at least those itemsets (and their tidlists) that are used for generating the new large itemsets can fit in main memory. As noted in Section 3.6, in iteration k we need to keep in main memory at least all large (k - 1)-itemsets in which the first k - 2 items are common. We assume the number of such itemsets is at most a few thousand. We use heuristics to estimate the partition size based on the available main memory size and the average length of transactions. Sampling can also be used to estimate the number of large itemsets and their average support. We are exploring this approach as part of the future work.

3.3.6 Generating Final Counts

The data structures used for the final counting phase are similar to those used during phase I. Initially, a counter is set up for each itemset in the global candidate set. The tidlists for all 1-itemsets are generated directly by reading in a partition. The local count,

for an itemset is generated by joining the tidlists of all 1-itemsets contained in that itemset. For example, to generate the count for (1 2 3 4) the tidlists of itemsets {l}, {2}, (3) and (4) are joined. The cumulative count from all partitions gives the support for the itemset in the database. To optimize the number of joins performed during this step, the counts for the longest itemsets are generated first. The intermediate join results are used to set the counts for the corresponding itemsets. For example, while generating the count for (1 2 3 4}, the counts for itemsets { 1 2) and { 1 2 3) are also set. The itemset,s are kept in a hash table to facilitate efficient lookup.

Unlike phase I, the partitions for this phase can be obtained by reading the database blocks sequentially. Additionally, the size of the partitions may be different from those used in phase I.

3.3.7 Buffer Management

A key objective of the Partition algorithm is to reduce disk I/O as much as possible. To achieve this objective, the partitions are chosen such that all data structures can be accommodated in the main memory. However, the number of large itemsets that will be generated cannot be estimated accurately. In some situations it may be necessary to write the temporary data to disk. The buffer management technique in phase I is similar to the one described in [a]. However, in Partition algorithm there is no separate step for counting the supports. As each local candidate k-itemset is generated, its count is also immediately generated. Hence in some iteration k, we need storage for the large (k-1)-itemsets that were generated in the previous iteration and their associated tidlists. Among these, only those itemsets for which the first L - 2 items are the same are needed in main memory.

For the merge phase, we need space for at least those global candidate itemsets and local large itemsets that are of same length and have items in common. For phase II, we need space for the tidlists of only 1-itemsets and the the global candidate set, we try to choose the partition sizes such that they can be accommodated in the available buffer space.

3.3.8 Size of the Global Candidate Set

The global candidate set contains many itemsets which may not have global support (false candidates). The fraction of false candidates in the global candidate set must be as small as possible otherwise much effort may be wasted in finding the global supports for those itsemsets. The number of false candidates depends on many factors such as the characteristics of the data, how the data is partitioned, number of partitions, and so on. In this session we study the effects of partition size and data skew on the size of the global candidate set. As the number of partitions is increased, the number of false candidates also increases and hence the global candidate size also increases.
 However, its size is bounded by n times the size of the largest set of local large itemsets, where n is the number of partitions. The local large itemsets are generated for the same minimum support as specified by the user. Hence this is equivalent to generating large itemsets with that minimum support for a database which is same as the partition. So, for sufficiently large partition sizes, the number of local large itemsets is likely to be comparable to the number of large itemsets generated for the entire database.
Additionally, if the data characteristics are uniform across partitions, then a large number of the itemsets generated for individual partitions may be common. Hence the global candidate set may be smaller than the above limit. In Table 2 we show the variation in the size of the local large itemsets and the global candidate sets for varying the number of partitions from 2 to 30. The database contained 100,000 transactions3. The minimum support was set at 0.75 %. It can be seen from the table that as the number of partitions increases, both the variation in the sizes of local large sets and the size of the global candidate set increases. However, there is a large overlap among the local large itemsets. For example, consider the case where number of partitions is set to 10. The number of large itemsets for all partitions combined is 109.1 x 10 = 1091.
However, the union of these itemsets (global candidate set) is only 170. It should be noted that when the partition sizes are sufficiently large, the local large itemsets and the global candidate itemsets are likely to be very close to the actual large itemsets as it tends to eliminate the effects of local variations in data. For example, when the number of partitions is 30 in Table 2, each partition contains 100,000 / 30 = 3,333 transactions, which is too small and hence the large variation.

	Number of partitions
	Size of largest L p
	Average size of L p
	Size of CG

	2
	91
	89.0
	93

	4
	100
	82.5
	108

	7
	131
	97.0
	144

	10
	149
	109.1
	170

	20
	273
	211.9
	381

	30
	463
	344.1
	673

Table 2 (Variation of Global and Local sets against the number of partitions)
3.3.9 Performance Analysis
Figure 3.4 and Figure 3.5 show the performance of apriori algorithm for 2 and 4 partitions of T5I4D100K dataset respectively for different support values. For 2 partitions time taken in frequent itemsets generation by the algorithm is more as compared to time taken for 4 partitions for each support value. As the support increases from 0.45% to 0.75% time taken by the algorithm decreases. But the difference between the time taken by the algorithm for 0.45% and 0.60% support values is less than as compared to the difference between the time taken for 0.60% and 0.75% support values.

[image: image3.emf]0

200

400

600

800

1000

1200

1400

1600

0.45% 0.60% 0.75%

Minimum Support

Time in secs

Figure 3.4(2 partitions)

[image: image4.emf]0

200

400

600

800

1000

1200

1400

0.45% 0.60% 0.75%

Minimum Support

Time in secs

Figure 3.5(4 partitions)

[image: image5.emf]0

5000

10000

15000

20000

0.20% 0.15% 0.10%

Minimum Support

Time in secs

Figure 3.6 (2 partitions)
Figure 3.6 shows the performance of the TIDLIST approach for a T5I2D1000K dataset. The dataset is divided into two equal partitions each of size 500K. The analysis of the time taken for the different phases shows that the Phase II is the most time consuming.

[image: image6.emf]0

10000

20000

30000

40000

50000

60000

70000

0.30% 0.45% 0.60%

Minimum Support

Time in secs

Figure 3.7 (4 partitions)
The above figure 3.7 shows the performance of partition algorithm for T5I4D100K dataset for four partitions. It is obvious form the figure that the time taken by the algorithm is very high and is not acceptable. The very bad performance of T5I4D100K dataset is due to the fact that candidate 2-itemsets generated are very large and their support counting takes too much time.

Chapter 4

Proposed Extensions to Partition Algorithm
This section discusses two approaches Approach I and Approach II that have been proposed for the partition algorithm useful for multiple databases. The following notation is used in the remainder of the thesis.

[image: image7.png]Notation Meaning
Cx Local Candidate Ttemsets:
Set of local candidate k-itemsets in partition P.
Fx Local Frequent Itemsets:
Set of local frequent k-itemsets in partition P.
% Global Candidate Itemsets:
Set of global candidate k-itemsets.
F Global Frequent Itemsets:
Set of global frequent k-itemsets.
NBd(F’x) || Negative Border:

Set of local nor frequent k-itemsets in partition P.

Table 3(Notations Used For extension of Partitioned Approach)
The negative border of frequent k-itemsets corresponds to those itemsets that did not satisfy the support in pass k. That is NBd(FP K) = CP K – FP K. Given a collection F (P(R) of sets, closed with respect to set inclusion relation, the NBd(F) of F consists of the minimal itemsets X (R not in F.

4.1 Approach I

In the TIDLIST approach, the TIDLIST was created as a CLOB. In Approach I TIDLIST is not at all created and the k-way join approach is used instead. Some of the k – way join optimizations reported in [21] have been used. The two k-way join optimizations used are: Second-pass Optimization (SPO) and Reuse of Item Combinations (RIC). In a multiple database scenario, each of the individual databases is considered as a partition and the merging is done by choosing one of the databases. The changes made to the partition algorithm are described below.

Phase I

In this phase the frequent itemsets FP K are generated for each of the partitions. Along with the frequent itemsets in each of the partitions, the negative border of the frequent 2- itemsets NBd(FP2) is also retained. These itemsets are used for counting the support in the Phase II of the algorithm. Only the negative border of the 2-itemsets is retained because when the second pass optimization is used, the generation of the 2-itemsets is the first step in each partition. Since the 2-itmeset generation is the first pass, there is no loss of information and the negative border of the 2- itemsets will have all possible 2- itemsets, which did not satisfy the support.

The other optimization for the k-way join -- Prune the Input table (PI) -- was not used during the implementation even though the combination of all the optimizations yielded better performance. This was because in the pruned input optimization, the input table would be pruned by elimination all the records of those single itemsets whose support was less than the user specified support value. If this were done then the negative border of the 2-itemsets would not contain all the possible non-frequent 2- itemsets. After the frequent itemsets from all the partitions (databases) are generated, the frequent itemsets and the negative border of the frequent 2- itemsets from all the partitions are shipped to one database to do the remaining computation. This step is shown as an edge with label “1” in Figure 3.3. Merging the frequent itemsets from all the partitions generates the global candidate itemsets CG1, CG2…CGK.

[image: image8]
Figure 4.1: Data Transfer Using Approach I

Phase II

In this phase, the global frequent itemsets -- itemsets that are large in all the partitions – are generated. Merging the count obtained from the negative border and the frequent 2- itemsets from all the partitions generates the count for the remaining 2- itemsets in CG2. The itemsets satisfying the support are added to FG 2. FG2 and (k=3 to n CGK are shipped to all the databases to generate the counts of the remaining candidate itemsets. This is shown as an edge with label “2” in Figure 4.1.

Each of the databases generates a materialized table from the global frequent 2- itemsets using the Reuse of item combination optimization. The materialized table is used in the successive passes to generate the counts of the itemsets in the global candidate itemsets.

Once the counts are generated in all the partitions they are shipped back to one database to do the final counting. This is shown as an edge with label “3” in Figure 4.1.
The figure 4.1 shows the data transferred in each of the steps. Database 1 and Database 2 are considered the 2 partitions. Database 2 is chosen for merging the frequent itemsets from all the partitions to global candidate itemset and for generating the final cumulative count of all frequent itemsets obtained from all the partitions in step “3”.

4.1.1 Performance Analysis

Performance experiments were done on datasets of different sizes. Each data set was divided into 2 or 3 non-overlapping partitions.

[image: image9.emf]0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.20% 0.15% 0.10%

Minimum support

Time in secs

Figure 4.2
Figure 4.2 shows the performance of a T5I2D1000K dataset divided into 2 equal sized partitions each of size 500K. It is seen from the graph that the improvement in performance of Approach I compared to TIDLIST approach is 58% for a support values of 0.20% and the improvement increases to about 78% for a support value of 0.10%. As the support value decreases the percentage improvement in the performance increases.

[image: image10.emf]0

200

400

600

800

1000

1200

0.30% 0.25% 0.20%

minimum Support

Time in secs

Figure 4.3
Figure 4.3 shows the performance for a T5I2D500K dataset divided into 2 partitions of size 250K each. The improvement in performance was 35% for 0.20% support and it increased to 61% as support decreased to 0.10%.

4.1.2 Data Transfer

The table 3 shows the number of records transferred between the databases in each step. The input data denotes the transactional data. It is assumed that the dataset is divided into 2 equal sized partitions. The numbers in the Table 3 indicate the number of records transferred. For example, for the T5I2D10K dataset the input data has 2700 records and the total records transferred using approach I between the two databases is 5184. It is observed that transferring the intermediate results is better for the datasets, which have more than 100K transactions.
	Dataset
	Input Data Records
	Step 1

[F1Kand NBd (F12)]

	Step 2
[FG2 and U k=3 to N C G K]
	Step 3
[U k=3 to N

CG k]
	Total Records

	T5I2D10K
	2700
	5036
	139
	86
	5184

	T5I2D100K
	27300
	19945
	456
	94
	20034

	T5I2D500K
	136850
	31967
	347
	79
	32039

Table 4 Data Transferred Using Approach I
In Approach I only the negative border of the frequent 2- itemsets were retained in all the partitions. In the Phase II, a materialized table was created to do the support counting. The time taken to create a materialized table increases as the size of the dataset increases. In this approach the data is transferred 3 times between the partitions. Approach II was proposed to overcome the above drawbacks.

4.2 Approach II

In the Phase I of this approach the negative border of all the frequent itemsets in each of the partitions were retained as compared to the previous approach where only the negative border of the frequent 2- itemsets were retained. When the frequent itemsets are generated the data is transferred to one of the partitions to form the global candidate itemsets and the global frequent itemsets. The global frequent k-itemsets are generated by merging the counts of the frequent k- itemsets and the negative border of the frequent k- itemsets. Figure 4.4 shows the data transfer in Approach II.

Approach II is different from Approach I with regard to the number of times data is transferred between the databases and the itemsets that are retained. In Approach I only the negative border of the frequent 2- itemsets is retained. Since retaining the negative border does not require any additional computation, in Approach II, the negative border of all the frequent itemsets are retained for all the databases. In Phase II of Approach I, the global frequent 2-itemsets are generated using the local frequent 2-itemsets and their negative border from all the databases. The results have to transferred to the individual databases to generate the remaining (3-k) – itemsets, which requires the scanning the input data in each of the databases to generate the counts. But in Approach II, all the global frequent itemsets are generated using the local frequent itemsets and their negative border from all the databases. An additional scan of the database is not required and the intermediate results are transferred only once as compared to 3 times in Approach I.

[image: image11]
Figure 4.4 : Data Transfer In Approach II

4.2.1 Performance Analysis
The fig 4.5 and fig 4.6 shows the performance comparison of the TIDLIST, Approach I and Approach II. A T5I2D1000K dataset was divided into 2 partitions of size 500K each. From the graph it is noted that the performance improved from 16% to 18% as the support value decreased from 0.20% to 0.10%.

[image: image12.emf]0

1000

2000

3000

4000

5000

6000

7000

8000

TID Approach 1 Approach 2

minimum Support(0.20%)

Time in secs

Figure 4.5

[image: image13.emf]0

5000

10000

15000

20000

TID Approach 1 Approach 2

minimum Support(0.10%)

Time in secs

Figure 4.6
Table 4 shows the number of records transferred between the partitions. For the datasets T5I2D100K and above transferring the intermediate relations would be better.
	Dataset
	Input Data Records
	Step 1

[F1Kand NBd (F12)]

	Total Records

	T5I2D10K
	2700
	5048
	5048

	T5I2D100K
	27300
	19952
	19952

	T5I2D500K
	136850
	31974
	31974

Table 5 Data Transferred Using Approach II
The table 5 compares the number of records transferred in the case of Approach I and Approach II. It is noted that the data transfer in Approach II is slightly less for all the datasets. The data transferred in both the approaches showed a slight difference only because the frequent 2- itemsets and their negative border constitute a large number of records and they were transferred in both the approaches. In Approach I the global candidate (3-k)- itemsets and the global frequent (3-k)-itemsets were transferred which did not comprise a large number of records when compared to Approach II where the frequent (3-k)–itemsets and their negative border were transferred. It was noted that Approach II performed better than TIDLIST and Approach I for almost all the cases. This was because the creation of materialized table was eliminated and retaining the negative border does not require any additional computation.
However there is a tradeoff associated with the Approach II. This approach may miss out the count of itemsets, which are globally large but locally small in a few partitions. The count of some k-itemsets whose subset did not appear either in the frequent itemsets or its negative border in the earlier passes may be misses. Approach I and Approach II columns specify the number of records in the dataset.
	Dataset
	Input Data Records
	Approach I

	Approach II

	T5I2D10K
	2700
	5184
	5048

	T5I2D100K
	27300
	20034
	19952

	T5I2D500K
	136850
	32039
	31974

Table 6 Comparison Of Data Transfer For Approach I And Approach II
Chapter 5

 CONCLUSIONS AND FUTURE WORK

In this thesis, we have focused on the partitioned and incremental approach to association rule mining useful for multiple databases. We have presented a partitioned approach to association rule mining, which is appropriate to mine data stored in multiple DBMSs. The partition algorithm described provides an efficient way of discovering association rules in large database. It is convenient to use this algorithm when there are multiple databases because the amount that has to be transferred by using this approach is comparatively less than transferring all the raw data to a single DBMS for performing mining. The TIDLIST approach, which was used in the main-memory based partition algorithm, had drawbacks when used in the database approach. This thesis presented two

extensions -- Approach I and Approach II using the negative border concept, which are suitable for multiple databases. Some of the future enhancements of the thesis are presented below:

• The work presented in the thesis can be extended for multi-level association rule
mining.

• The work can be enhanced to generate multi-dimensional association rules.

• A tool for generating association rules can be developed. This tool can choose the

approach for frequent itemsets mining according to the properties of the dataset to be
mined.

REFERENCES
1. Wu, X. and S. Zhang. Synthesizing High-Frequency Rules from Different Data Sources. in IEEE Transactions on Knowledge and Data Engineering. 2003.

2. Han, J. and M. Kamber, Data Mining : Concepts and Techniques. 2001: Morgan Kaufmann Publishers.

3. Thomas, S., et al. An Efficient Algorithm for the partition of Association Rules in Large Databases. in Knowledge Discovery and Data Mining. 1997.

4. Thomas, S., Architectures and optimizations for integrating Data Mining algorithms

with Database Systems, in CSE. 1998, University of Florida: Gainesville.

5. Thomas, S. and S. Chakravarthy. Incremental Mining of Constrained Associations. in

In Proc. of the 7th Intl. Conf. of High Performance Computing (HiPC). 2000.

6.. Thuraisingham, B., A Primer for Understanding and Applying Data Mining. IEEE,

2000. Vol. 2, No.1: p. 28-31.

7. Agrawal, R., T. Imielinski, and A. Swami. Mining Association Rules between sets of
items in large databases. in ACM SIGMOD International Conference on the Management of Data. 1993. Washington, D.C.

8. Savasere, A., E. Omiecinsky, and S. Navathe. An efficient algorithm for mining association rules in large databases. in 21st Int'l Cong. on Very Large Databases(VLDB). 1995. Zurich, Switzerland.

9.Chen, Y., An Efficient Parallel Algorithm for Mining Association Rules in Large Databases. 1998, Georgia Institute of Technology: Atlanta.

10 Shenoy, P., et al. Turbo-charging Vertical Mining of Large Databases. in ACM SIGMOD Int'l Conference on Management of Data. 2000. Dallas.

11. Han, J., J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation. in ACM SIGMOD Int'l Conference on Management of Data. 2000. Dallas.

12. Houtsma, M. and A. Swami. Set-Oriented Mining for Association Rules in Relational

Databases. in 11th International Conference on Data Engineering (ICDE). 1995.

13. Han, J., et al. DMQL: A data mining query language for relational database. in ACM

SIGMOD workshop on research issues on data mining and knowledge discovery. 1996. Montreal.

14. Agrawal, R. and K. Shim, Developing tightly-coupled Data Mining Applications on a

Relational Database System. 1995, IBM Almaden Research Center: San Jose, California.

15. Sarawagi, S., S. Thomas, and R. Agrawal. Integrating Association Rule Mining with

Relational Database System: Alternatives and Implications. in ACM SIGMOD Int'l

Conference on Management of Data. 1998. Seattle, Washington.

16 Hongen, Z., Mining and Visualization of Association Rules over Relational DBMSs,

in CSE. 2000, UFL: Gainesville.

17. Dudgikar, M., A Layered Optimizer or Mining Association Rules over RDBMS, in

CSE Department. 2000, University of Florida: Gainesville.

18. Mishra, P. and S. Chakravarthy. Performance Evaluation and Analysis of SQL-92 Approaches for Association Rule Mining. in BNCOD Proc. 2003. Toivonen, H. Sampling Large Databases for Association Rules. in In Proc. 1996 Int Conf. Very Large Data Bases. 1996: Morgan Kaufman.

19. Mishra, P. and S. Chakravarthy, Evaluation of K-way Join and its variants for Association Rule Mining. 2002, Information and Technology Lab at The University of Texas at Arlington, TX.
20. H.V and S Chakravarthy. Association Rule Mining over Multiple Databases: Partitioned and Incremental approaches, 2003.
21. H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient Algorithms for Disg Association Rules. In AAAI Workshop on Knowledge Discovery in Databases(KDD-94),1994.
22. J.L. Lin and M. H. Dunham. Mining Association Rules: Anti-skew algorithms. ternational Conference on Data Engineering, February 1998.

23.Frequent Itemset Mining Dataset Repository: http://fimi.cs.helsinki.fi/data/

24. M. Dudgikar. A Layered Optimizer or Mining Association Rules over RDBMS. In CSE Department. 2000, University of Florida: Gainesville.

25. H. Toivonen. Sampling Large Databases for Association Rules. In Proceedings of the 22nd international Conference on Very Large Databases (VLDB), 1996.
	
	

	
	

Database 1

Database 2

2. FG2 and U k=3 to N C G K

1. F1Kand NBd (F12)

3. U k=3 to N CG k

F2K and NBd (F22)

F1K and NBd (F12)

Database 1

Database 2

1. F1Kand NBd(F1K)

F2K and NBd(F2 K)

F1K and NBd(F1K)

PAGE
54

- 54 -

_1264081251

_1264081423

_1264083402

_1264081559

_1264081339

_1263906698

_1263906752

_1263906678

