CHAPTER– 1

INTRODUCTION & OVERVIEW

1.1 INTRODUCTION 
Today as the demand for power is increasing day by day Economic Load Dispatch method plays an important role as it help to schedule power generator outputs with respect to the load demands and to operate a power system economically, so as to minimize the operation cost of the power system. To solve the economic load dispatch problem many techniques were proposed such as classical techniques, linear programming (LP), nonlinear programming (NLP), Quadratic Programming (QP), swarm optimization, evolutionary programming, tabu search, genetic algorithm, etc. In this work we have used genetic algorithm (GA) technique to solve economic load dispatch problem for IEEE 5, 14 & 30 Bus System. Genetic algorithms are search algorithms based on the mechanics of natural selection and natural genetics they combine survival of the fittest among structures with a structured yet randomized information exchange to form a search algorithm with some of the innovative flair of human search. 
1.2 How Are Genetic Algorithms Different From Classical Algorithms
1.2.1 Classical Algorithms
They generate a single point at each iteration. The sequence of points approaches an optimal solution. It also selects the next point in the sequence by a deterministic computation.
1.2.2 Genetic Algorithm

It generates a population of points at each iteration. The best point in the population approaches an optimal solution. GA work with a coding of the parameter set not the parameter themselves. GA use payoff (objective function) information, not derivatives or other auxiliary knowledge.

GA use probabilistic transition rules not deterministic rules. GA have been developed by John Holland his colleagues and his students at the University of Michigan.
1.3 Objectives and Methodology

Our objective in this work is to solve economic load dispatch problem using genetic algorithm. For this IEEE 5, 14 & 30 bus systems have been considered. GA is based on the technique of natural selection. It helps to get the global optimum solutions. To achieve the Target point or the best compromise solution as per the satisfaction level and requirements of the operator Surrogate worth tradeoff technique has been applied. The work has been carried out in the following order: 
1.3.1 Exploring and Analyzing the Tools of Genetic Algorithm in Matlab
In Matlab GA operations are explored in many ways to get the global optimal points like, running the GA from the Command prompt for constrained, unconstrained and parameterized functions. GAtool is executed by opening it in a separate window for solving constrained and unconstrained problems. We have varied different parameters in Genetic Algorithm to understand its influence in getting the accuracy and Final Generation. Here Final Generation stands for the generation where we get the global optimal points. Different parameters like Population Size, Initial range, Initial Population, Stopping conditions etc are varied and the corresponding graphs are drawn between these parameters and the (accuracy of the optimal points and final generation) for predicting the results.

1.3.2 Performing Constrained & Unconstrained Minimization:

We have taken various problems regarding constrained and unconstrained minimization of functions both single objective and Multiobjective. Multiobjective function minimization has been done with the help of weighted method. Results have been analyzed and accuracy has been checked by varying the various stopping criterion.

1.3.3 Economic Load Dispatch of IEEE 5, 14 & 30 Bus Systems:

After this we have applied GA in solving economic load dispatch problem for IEEE 5, 14 & 30 bus systems. Adequate results have been obtained on which Surrogate Worth Tradeoff Technique has been applied to obtain the Target Point. 
1.4 SURVEY OF LITERATURE
1.4.1 GENETIC ALGORITHM:

A genetic algorithm (GA) is a search technique used in computing to find exact or approximate solutions to optimization and search problems. Genetic algorithms are categorized as global search heuristics. Genetic algorithms are a particular class of evolutionary algorithms that use techniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover (also called recombination). Zalzala et al.[8A] made the review on the current development techniques in genetic algorithm. It explains theoretical aspects of genetic algorithms and genetic algorithm applications. Theoretical topics under review include genetic algorithm techniques, genetic operator technique, niching techniques, genetic drift, and method of benchmarking genetic algorithm performances, measurement of difficulty level of a test-bed function, population genetics and developmental mechanism in genetic algorithms. According to zalzala et al. there were two types of genetic algorithm earlier one was Breeder genetic algorithm and the other was simple genetic algorithm. Breeder Genetic Algorithm (BGA) is first introduced by Miihleiibein and Schlierkamp-Voosen (1993). The major difference between simple genetic algorithm and BGA is the method of selection. Generally, truncation selection is used in BGA. Genetic drift is an important phenomenon in genetic algorithm search. Once the algorithm is converged, the size of original gene pool is reduced to the size of found solution(s) gene pool. This leads to genetic drift. Two niching techniques - simple sub-population scheme and deterministic crowding are being reviewed. Many traditional optimization algorithm suffer from myopia for highly complex search spaces spaces, leading them to less than desirable performance (both in terms of execution speed and fraction of time they need to find an optimal solution)[8B]. This paper helps us in understanding application of genetic algorithm on multiple fault diagnosis problems. It is seen that in a MFD problem the problem is that in many regions of the search space there is little information to direct the search (e.g., in a flat valley). Consequently, local search algorithms may exhibit less than desirable performance. To handle irregular search spaces, such heuristics should adopt a global strategy and rely heavily on intelligent randomization. Genetic algorithms follow just such a strategy. Following the model of evolution, they establish a population of individuals, where each individual corresponds to a point in the search space. An objective function is applied to each individual to rate their fitness. Using well conceived operators, a next generation is formed based upon the survival of the fittest. Therefore, the evolution of individuals from generation to generation tends to result in fitter individuals, solutions, in the search space.

1.4.2 ECONOMIC LOAD DISPATCH:

Economic load dispatch (ELD) is a method to schedule power generator outputs with respect to the load demands and to operate a power system economically, so as to minimize the operation cost of the power system. The input-output characteristics of modern generators are nonlinear by nature because of the valve-point loadings and rate limits. Thus the characteristics of ELD problems are multimodal, discontinuous and highly nonlinear. Ling et al. [8C] proposed particle swarm optimization approach to solve economic load dispatch problem. A new hybrid particle swarm optimization (PSO) that incorporates a wavelet theory based mutation operation for solving economic load dispatch was proposed in this. It applies a wavelet theory to enhance PSO in exploring solution spaces more effectively for better solutions. Particle swarm optimization (PSO) is a recently proposed population based stochastic optimization algorithm, which is inspired by the social behaviors of animals like fish schooling and bird flocking. We have used genetic algorithm technique since it helps us to find global maxima for a large search space even as discussed earlier. It is seen that particle swarm optimization converges sharply in the earlier stages of the searching process, but it saturates or even terminates in the later stages. It behaves like the traditional local searching methods that trap in local optima. S.H.Ling et al.[8D] presented an algorithm for economic load dispatch with valve point loadings. But they have not considered power loss in that theory. In this paper, an improved genetic algorithm for economic load dispatch is proposed. New genetic operations of crossover and mutation are introduced. On realizing the crossover operation, the offspring spreads over the domain so that a higher chance of reaching the global optimum can be obtained. On realizing the mutation, each gene will have a chance to change its value. Consequently, the search domain will become smaller when the training iteration number increases in order to realize a fine-tuning process. Operating at absolute minimum cost can no longer be the only criterion for dispatching electric power due to increasing concern over the environmental considerations. The economic-emission load dispatch (EELD) problem which accounts for minimization of both cost and emission is a multiple, conflicting objective function problem. Goal programming techniques are most suitable for such type of problems. In the paper ‘Economic-Emission Load Dispatch through Goal Programming Techniques’ Nanda et al.[8E] solved the economic-emission load dispatch problem through linear and non-linear goal programming algorithms. The application and validity of the proposed algorithms are demonstrated for a sample system having six generators. In reality, the ELLD problem is a multiple objective problem with conflicting objectives because minimum pollution is conflicting to minimum cost of generation. In the paper the EELD problem is solved for the first time, to the best of the authors' knowledge, using a linear goal programming (LGP) technique. A maiden attempt is made to solve this conflicting, Multiobjective problem with the use of LGP technique as well as with NLGP technique. 
In our work many solutions have been obtained by GA for IEEE 5, 14 and 30 bus systems. The best compromise solution or the Target Point can be obtained by Minimum Distance Method, Goal Programming, optimal weights, Surrogate worth Tradeoff Technique, Sequential Goal Programming etc. We have used surrogate worth tradeoff technique. Paper on Surrogate worth Trade-off Technique for Multi-Objective Power Flow [8F] proposed surrogate worth tradeoff technique to achieve the best compromise between cost of generation and system transmission losses and the results were compared with the existing method. In that paper, multiple objectives for the optimal power flow solution are considered as cost of generation (FC) and system transmission losses (FL). In economic load dispatch, cost of generation is considered as the objective function to be minimized. In the surrogate worth trade-off technique (SWT), the solutions are generated with the constraint method. Given a problem with h objectives, h-2 of them are set at predetermined values and one of the remaining two objectives is minimized with the other objective constrained at varying levels (e.g. if Z1 is to be minimized, Z2 is varied over some range of values, and Z3, Z4, ...Zh, are fixed at levels L3, L4, ..., Lh). In other words, the original h-objective problem is reduced to a two-objective problem. 
Another application where surrogate worth tradeoff technique has been applied is in power system operation in electricity markets proposed by A.Berizzi et al.[7G].His work is in regard to the  possible use of Multiobjective methodologies in order to improve the security and reliability of power systems during the short term planning and the operation stage. According to that the liberalization of electric energy markets has brought important changes in the economic and technical aspects of power system planning and operation: the grids have to be managed according to new economic principles but taking into account the “old” technical constraints. Therefore, it is necessary to change the perspective during power system optimization, and this requires an improvement in the methodologies and algorithms used. Steps mentioned by him to solve a Multiobjective problem were as: a) define the objectives; b) fmd the Pareto set and c) choose a solution from Pareto set.

1.5 Thesis Organization:

The material of this dissertation has been arranged in seven chapters. The contents of the chapters are briefly outlined as indicated below:
Chapter 1: Discusses the introduction to Genetic Algorithm and Research objectives of the thesis. Literature survey of the covered topics has also been presented.

Chapter 2: Presents the development of Genetic Algorithms and its applications.

Chapter 3: Explores the concepts of Genetic Algorithm in Matlab R2007b. Analysis of various constrained and Multiobjective problems have been done and results have been presented.

Chapter 4: Describes the economic load dispatch problem. Economic load dispatch problem neglecting losses has also been done using GA and results have been presented.

Chapter 5: Presents the surrogate worth tradeoff technique.

Chapter 6: Presents the application of economic load dispatch problem for IEEE 5, 14 & 30 bus systems. Results have been presented and Surrogate worth Tradeoff technique has been applied.
Chapter 7: Conclusion and Scope of Further Work.
References at the end of the thesis.
CHAPTER -2
INTRODUCTION TO GENETIC ALGORITHM
2.1 GENETIC ALGORITHM:
A global optimization technique known as genetic algorithm has emerged as a candidate due to its flexibility and efficiency for many optimization applications. It is a stochastic searching algorithm. The method was developed by John Holland (1975). GA is categorized as global search heuristics. These are particular class of evolutionary algorithms that use techniques inspired by genetics such as inheritance, mutation, selection and crossover. GA is search algorithms based on mechanics of natural selection and natural genetics. They combine Darwin’s theory of ‘survival of the fittest’ among string structures with a structured yet randomized information exchange to form a search algorithm with some of the innovative flair of human search. In every generation, a new set of artificial creatures (strings) is created using bits and pieces of the fittest of the old; an occasional new part is tried for good measure. Even though randomized, genetic algorithms are not simple walk algorithms. They efficiently exploit historical information to speculate on new search points with expected improved performance. The individuals in the population then go through a process of evolution. The advantages of the genetic algorithmic approach in terms of problem reduction, flexibility and solution methodology are also discussed. Some of the advantages and disadvantages with assumption are discussed which are used for solving our problem.

Advantages of GA:

Advantages of GA’s are given below as discussed in 
1.  Simple to understand and to implement, and early give a good near solution.
2. It solves problems with multiple solutions. 
3. Since the genetic algorithm execution technique is not dependent on the error surface, we can solve multi-dimensional, non-differential, non-continuous, and even non-parametrical problems. 
4. Is well suited for parallel computers.

5. Optimizes variables with extremely complex cost surfaces (they can jump out of a local minimum).

6. Provides a list of optimum variables, not just a single solution.

7. Can encode the variables so that the optimization is done with the encoded variables i.e. it can solve every optimization problem which can be described with the chromosome encoding. 
8. Works with numerically generated data, experimental data, or analytical functions. Therefore, works on a wide range of problems. For each problem of optimization in GAs, there are number of possible encodings. These advantages are intriguing and produce stunning results where traditional optimization approaches fail miserably. Due to various advantages as discussed above, GAs are used for a number of different application areas. 
In power system, the GAs has been used in following areas:

· Loss reduction using Active Filter

· Power system restoration planning

· Controllers

· Optimal load dispatch

· Voltage stability

Limitations of GA

In spite of its successful implementation, GA does posses some weaknesses leading to

1. Certain optimisation problems (they are called variant problems) cannot be solved by means of genetic algorithms. This occurs due to poorly known fitness functions which generate bad chromosome blocks in spite of the fact that only good chromosome blocks cross-over. 

2. There is no absolute assurance that a genetic algorithm will find a global optimum. It happens very often when the populations have a lot of subjects. 

3. Genetic algorithm applications in controls which are performed in real time are limited because of random solutions and convergence, in other words this means that the entire population is improving, but this could not be said for an individual within this population. Therefore, it is unreasonable to use genetic algorithms for on-line controls in real systems without testing them first on a simulation model. 

4. One well-known problem that can occur with a GA is known as premature convergence. If an individual that is more fit than most of its competitors emerges early on in the course of the run, it may reproduce so abundantly that it drives down the population's diversity too soon, leading the algorithm to converge on the local optimum that that individual represents rather than searching the fitness landscape thoroughly enough to find the global optimum. 
5. One type of problem that genetic algorithms have difficulty dealing with are problems with "deceptive" fitness functions, those where the locations of improved points give misleading information about where the global optimum is likely to be found.

The process of GA follows this pattern:

1. An initial population of a random solution is created.

2. Each member of the population is assigned a fitness value based on its evaluation against the current problem.

3. Solution with highest fitness value is most likely to parent new solutions during reproduction.

4. The new solution set replaces the old, a generation is completed and the process continues at step (2). Members of the population (chromosomes) are represented by a string of genes. Each gene represents a design variable and is symbolized by a binary number.

Then, GA operators are used which are:

· reproduction
· crossover 

· mutation
GA allows a population composed of many individuals to evolve under specified selection rules to a state that maximizes the “fitness” (i.e., minimizes the cost function). The different steps to perform GA are explained with the help of a simplified flowchart as shown below in GA work iteratively sustaining a set (population) of representative chromosomes of possible solutions to the problem domain at hand. As an optimization method, they evaluate and manipulate these chromosomes using stochastic evolution rules called Genetic Operators. During each iterative step, known as a generation, the representative chromosomes in the current population are evaluated for their fitness as optimal solutions. By comparing these fitness values, a new population of solution chromosomes is created using the genetic operators, known as reproduction, crossover and mutation.There are five components that are needed to implement a Genetic Algorithm.

[image: image1]
Fig 2.1 GA Flowchart
2.2    COMPONENTS OF GA

These five components listed below and are detailed in the following sections:

1. Representation

2. Initialization

3. Evaluation Function

4. Genetic Operators
5. Genetic Parameters

6. Termination
2.2.1 REPRESENTATION:

Genetic Algorithms are derived from a study of biological systems. In biological systems evolution takes place on organic devices used to encode the structure of living beings. These organic devices are known as chromosomes. A living being is only a decoded structure of the chromosomes. Natural selection is the link between chromosomes and the performance of their decoded structures. In GA, the design variables or features that characterize an individual are represented in an ordered list called a string. Each design variable corresponds to a gene and the string of genes corresponds to a chromosome.

Encoding:

The application of a genetic algorithm to a problem starts with the encoding.

The encoding specifies a mapping that transforms a possible solution to the problem into a structure containing a collection of decision variables that are relevant to the problem. A particular solution to the problem can then be represented by a specific assignment of values to the decision variables. The set of all possible solutions is called the search space and a particular solution represents a point in that search space. In practice, these structures can be represented in various forms, including among others, strings, trees, and graphs. There are also a variety of possible values that can be assigned to the decision variables, including binary, k-array, and permutation values.

Therefore, in order to implement GA for finding the solution of given optimization problem, variables are first coded in some structure. The strings are coded by binary representations having 0’s and 1’s. The string in GA corresponds to “chromosomes” and for power dispatch problems; firstly population of random numbers of 0’s and 1’s has been generated. The length of each string in this study has been assumed as 16. The population size has been taken as 20.

Decoding:

Decoding is the process of conversion of the binary structure of the chromosomes into decimal equivalents of the feature values. Usually this process is done after de-catenation of the entire chromosome to individual chromosomes. The decoded feature values are used to compute the problem characteristics like the objective function, fitness values, constraint violation and system statistical characteristics like variance, standard deviation and rate of convergence. The stages of selection, crossover, mutation etc are repeated till some termination condition is reached. There are several ways of selecting the termination conditions, which can be either the convergence of the total objective function or the satisfaction of the equality constraint or both. Since the genetic algorithm determines the above features independently, the satisfaction of both the conditions has to be considered for total absolute convergence. However, in situations of constraint violation, independent satisfaction of the above conditions have to be considered and in the order of occurrence to decide the feasibility of the solution.

String representation:

GA works on a population of strings consisting of a generation. A string consists of sub-strings, each representing a problem variable. In the present ELD problem, the problem variables correspond to the power generations of the units. Each string represents a possible solution and is made of sub-strings, each corresponding to a generating unit. The length of each sub-string is decided based on the maximum/minimum limits on the power generation of the unit it represents and the solution accuracy desired. The string length, which depends upon the length of each sub-string, is chosen based on a trade-off between solution accuracy and solution time. Longer strings may provide better accuracy, but result in higher solution time.
2.2.2 INITIALIZATION:

Initially many individual solutions are randomly generated to form an initial population. The population size depends on the nature of the problem, but typically contains several hundreds or thousands of possible solutions. Traditionally, the population is generated randomly, covering the entire range of possible solutions (the search space). Occasionally, the solutions may be "seeded" in areas where optimal solutions are likely to be found.
2.2.3 EVALUATION FUNCTION:

The evaluation function is a procedure for establishing the fitness of each chromosome in the population and is very much application orientated. Since Genetic Algorithms proceed in the direction of evolving the fittest chromosomes and the performance is highly sensitive to the fitness values. In the case of optimization routines, the fitness is the value of the objective function to be optimized. Penalty functions can also be incorporated into the objective function, in order to achieve a constrained problem.
Fitness function:

The Genetic algorithm is based on Darwin’s principle that “The candidates, which can survive, will live, others would die”. This principal is used to find fitness value of the process for solving maximization problems. Minimization problems are usually transferred into maximization problems using some suitable transformations. Fitness value f (x) is derived from the objective function and is used in successive genetic operations. The fitness function for maximization problem can be used the same as objective function F(X). Coming up with an encoding is the first thing in genetic algorithm user has to do. The next step is to specify a function that can assign a score to any possible solution or structure. The score is a numerical value that indicates how well the particular solution solves the problem. Using a biological metaphor, the score is the fitness of the individual solution. It represents how well the individual adapts to the environment. In case of optimization, the environment is the search space. The task of the GAs is to discover solutions that have fitness values among the set of all possible solutions.

In general, a fitness function F(x) is first derived from the objective function and used in successive genetic operations. Certain genetic operators require that the fitness function be non-negative. For maximization problems, the fitness function be considered to be the same as objective function or

F(X ) = f (X ) (3.1)
For minimization problems, the fitness function is an equivalent maximization problem chosen such that the optimum point remains unchanged. The following fitness function is often used in minimization problems:

F(x) = 1/ (1 f (X)) (3.2)

This information does not alter the location of the minimum, but converts a minimization problem to an equivalent maximization problem. The fitness function value of a string is known as the string’s fitness. The operation of GAs begins with a population of random strings representing design or decision variables. Thereafter, each string is evaluated to find the fitness value. The population is then operated by three operators- reproduction, crossover, and mutation to create a new population of points. The new population is further evaluated and tested for termination. If the termination criteria is not met, the population is iteratively operated by the above three operators and evaluated. This procedure is continued until the termination criterion is met. One cycle of these operations and the subsequent evaluation procedure is known as a generation in GA’s terminology. Implementation of power dispatch problem in GA is realized within the fitness function written in eqn. (3.2)
2.2.4 GENETIC OPERATORS:

Genetic operators are a set of random transition rules employed by a Genetic Algorithm. These operators are applied to a randomly chosen set of chromosomes during each generation, to produce a new and improved population from the old one.

A simple GA consists of three basic operators:

 Reproduction,

 Crossover,

 Mutation.

Reproduction:

The Reproduction is the straightforward copying of an individual to the next generation, otherwise known as Darwinian or asexual reproduction. Reproduction is usually first operator applied on a population. Reproduction selects good strings in a population and forms a mating pool. That is why the reproduction operator is sometimes known as the selection operator. There exist a number of reproduction operators in GA literature, but essential idea in all of them is that the above average strings are picked from the current population and their multiple copies are inserted in the mating pool in a probabilistic manner. The commonly used reproduction operator is the proportionate reproduction operator where a string is selected for the mating pool with a probability proportional to its fitness. Thus, the ith string in the population is selected with a probability proportional to fitness Fi. Since the population size is usually kept fixed in a simple GA, the sum of the probability of each string being selected for the mating pool must be one. Therefore, the probability for selecting the ith string is:

Pi = Fi / Σ Fi (3.3)

Where i=1, 2… n and where n is the population size.
Crossover:

The basic operator for producing new chromosome in the genetic algorithm is crossover. In the crossover operator, information is exchanged among strings of the mating pool to create new strings. In other words, crossover produces new individuals that have some parts of both parent’s genetic materials. It consists of taking two individuals A and B and randomly selecting a crossover point in each. The two individuals are then split at these points. The choice of crossover point is not always uniform. It is expected from the crossover operator that good substrings from the parent strings will be combined to form a better child offspring. At the molecular level what occurs is that a pair of Chromosomes bump into one another, exchange chunks of genetic information and drift apart. This is the recombination operation, which GA generally refers to as crossover because of the way that genetic material crosses over from one chromosome to another. The crossover operation happens in an environment, where the selection of who gets to mate is a function of the fitness of the individuals. How good the individual is at competing in its environment. Some Genetic Algorithms use a simple function of the fitness measure to select individuals (probabilistically) to undergo genetic operations such as crossover or asexual reproduction (the propagation of genetic material unaltered). This is fitness-proportionate selection. Other implementations use a model in which certain randomly selected individuals in a subgroup compete and the fittest is selected. This is called tournament selection and is the forms of selection we see in nature .The two processes that most contribute to evolution are crossover and fitness based selection/reproduction.

There are three forms of crossover: 
(1) one point crossover,

(2) multipoint crossover, and

(3) uniform crossover.
Mutation:

Mutation also plays a role in this process, although how important its role is, depends upon the conditions. It is also known as background operator .It plays dominant role in the evolutionary process. It cannot be stressed too strongly that the genetic Algorithm is not a random search for a solution to a problem for highly fit individual. It consists of randomly selecting a mutation point. The genetic algorithm uses stochastic processes, but the result is distinctly non-random. Genetic Algorithms are used for a number of different applications areas. An example of this would be multidimensional optimization problems in which the character string of the Chromosome can be used to encode the values for the different parameters being optimized. Mutation is an important operator, as newly created individuals have no new inheritance information, this process results in contraction of the population at one single point, which is wished one. Mutation operator changes 1 to 0 at only one place in the whole string with a small probability and vice versa. 

E.g. Child 1 101100

Let mutation is done at location 5 the new child will be

New child 101110
2.2.5 GENETIC PARAMETERS:

Genetic parameters are a means of manipulating the performance of a Genetic Algorithm. There are many possible implementations of Genetic Algorithms involving variations such as additional genetic operators, variable sized populations and so forth. Listed below are some of the basic genetic parameters:

(i) Population Size (N)

(ii) Crossover rate (C)

(iii) Mutation rate (M)

(i). Population Size (N): Population size affects the efficiency and performance of the algorithm. Using a small population size may result in a poor performance from the algorithm. This is due to the process not covering the entire problem space. A larger population on the other hand, would cover more space and prevent premature convergence to local minima. At the same time, a large population needs more evaluations per generation and may slow down the convergence rate.

(ii). Crossover rate (C): The crossover rate is the parameter that affects the rate at which the process of crossover is applied. In each new population, the number of strings that undergo the process of crossover can be depicted by a chosen probability. This probability is known as the crossover rate. A higher crossover rate introduces new strings more quickly into the population. If the crossover rate is too high, high performance strings are eliminated faster than selection can produce improvements. A low crossover rate may cause stagnations due to the lower exploration rate, and convergence problems may occur.

(iii). Mutation rate (M): Mutation rate is the probability with which each bit position of each chromosome in the new population undergoes a random change after the selection process. It is basically a secondary search operator which increases the diversity of the population. A low mutation rate helps to prevent any bit position from getting trapped at a single value, whereas a high mutation rate can result in essentially random search.
2.2.6 TERMINATION:

This generational process is repeated until a termination condition has been reached. Common terminating conditions are:

1. A solution is found that satisfies minimum criteria

2. Fixed number of generations reached

3. Allocated budget (computation time/money) reached

4. The highest ranking solution's fitness is reaching or has reached a plateau such that successive iterations no longer produce better results

5. Manual inspection

6. Combinations of the above.

The termination determines the convergence of the optimization process to achieve the optimal solution. The convergence criterion is given in the equation. If the convergence criterion is not achieved, the whole process will repeat.
Fitnessmax – Fitnessmin ≤ 0.0001 (3.5)
2.3 Some Applications of Genetic Algorithms :

(i) Pattern Recognition Applications

(ii) Robotics and Artificial life applications

(iii) Expert system applications

(iv) Electronic and Electrical applications

(v) Cellular Automata Applications

(vi) Applications in Biology and Medicine

CHAPTER – 3
EXPLORING THE TOOLS OF GENETIC ALGORITHM IN MATLAB
3.1 RUNNING GA FROM COMMAND PROMPT


To run the GA with the default options we have to call the GA with the syntax [x fval] = ga(@fitness function, nvars) where fitness function stands for the function which we want to optimize, nvars is the no:of variables of the fitness function. The fitness function must be written in a separate M-file. It should be imported at the command prompt when we use the GA from the command line.
The fitness function used here is a two variable function named as twofunc. The M-file for twofunc function is saved in a Matlab path. It is imported for running GA as and when required.  
The M-file for twofunc Function is as follows

function z=twofunc(x)

z=((x(1))^2+x(2)-11)^2+(x(1)+(x(2))^2-7)^2;

This is demonstrated by running the Ga from the command line

>> [ x fval ] = ga(@twofunc,2 )

Optimization terminated: average change in the fitness value less

 than options.TolFun.

x =

     3.0240    1.9833

fval =

          0.0182
Additional Output Arguments
To get more information about the performance of the genetic algorithm,
We  can call ga with the syntax  [x fval reason output population scores] = ga(@fitnessfcn, nvars)

Besides the optimal values, and the objective function values it can return the following as follows

Reason – Reason the algorithm is terminated.

Output – It gives the total no: of generations GA took to get the optimal point.

Scores – This gives fitnessfunction values for the final population.

Population – It gives the population of the final generation.

This is demonstrated for the two variable function 
 [ x fval reason output population  ] = ga(@twofunc ,2)
Optimization terminated: average change in the fitness value less than options.TolFun.

x =

    3.0019    1.9974

fval =

  1.4564e-004

reason = 1

output = 

      randstate: [625x1 uint32]

     randnstate: [2x1 double]

    generations: 64

      funccount: 1300

        message: 'Optimization terminated: average change in the fitness value less than options.TolFun.'

    problemtype: 'unconstrained'

population =

    3.0019    1.9974

    3.0019    1.9974

    3.0972    1.4451

    3.0019    1.9974

    3.0019    1.9974

    3.0019    1.9974

    3.0972    2.2776

    3.0019    1.9974

    3.0019    1.5743

    2.4790    1.7785

    3.0019    1.9974

    3.0019    1.9974

    3.0019    1.9974

    1.8300    2.6615

    3.0019    1.9974

    2.6747    1.6538

    2.9707    1.8944

    2.8774    2.3525

    3.2334    3.0486

    2.5524    2.0540

3.2 SETTING OPTIONS FOR GA AT COMMAND LINE 
You can specify any of the options that are available in the Genetic

  Algorithm Tool by passing an options structure as an input argument to GA  using the syntax

    [x fval] = ga(@fitnessfun, nvars, [],[],[],[],[],[],[],options)

    This syntax does not specify any linear equality, linear inequality,

    or nonlinear constraints. 

    It can create the options structure using the function gaoptimset.  options = gaoptimset

    This returns the structure options with the default values for its fields.  

    options = 

          PopulationType: 'doubleVector'

          
PopInitRange: [2x1 double]

          PopulationSize: 20

    
EliteCount: 2

     
CrossoverFraction: 0.8000

    
MigrationDirection: 'forward'

     
MigrationInterval: 20

    
MigrationFraction: 0.2000

          Generations: 100

          TimeLimit: Inf

          FitnessLimit: -Inf

          StallGenLimit: 50

          StallTimeLimit: 20

           TolFun: 1.0000e-006

           TolCon: 1.0000e-006

           InitialPopulation: []

           InitialScores: []

       
 InitialPenalty: 10

         
 PenaltyFactor: 100

       
 PlotInterval: 1

 CreationFcn: @gacreationuniform

 FitnessScalingFcn: @fitscalingrank

 SelectionFcn: @selectionstochunif

 
 CrossoverFcn: @crossoverscattered

  
 MutationFcn: @mutationgaussian

           HybridFcn: []

           Display: 'final'

           PlotFcns: []

           OutputFcns: []

           Vectorized: 'off'

3.3 HOW TO CHANGE THE OPTIONS
The function GA uses these default values if you do not pass in options as an input argument. The value of each option is stored in a field of the options structure, such as options.PopulationSize. You can display any of these values by entering options followed by the name of the field. For example, to display the size of the population for the genetic algorithm, 

enter  options.PopulationSize 

ans =    20

To create an options structure with a field value that is different from the default — for example to set PopulationSize to 100 instead

of its default value 20 —  enter

options = gaoptimset ('PopulationSize', 100)

This creates the options structure with all values set to their defaults except for PopulationSize, which is set to 100. If you now enter,ga(@fitnessfun,nvars,[],[],[],[],[],[],[],options)

GA runs the genetic algorithm with a population size of 100.

3.4 REPRODUCING YOUR RESULTS
Because the genetic algorithm is stochastic — that is, it makes random choices, we get slightly different results each time when we run the genetic algorithm. The algorithm uses the MATLAB uniform and normal random number generators, such as rand and randn, to make random choices at each iteration. Each time GA calls rand and randn, their states are changed, so that the next time when they are called, they return different random numbers. That is why the output of GA differs each time when we run it.
If you need to reproduce your results exactly, you can call GA   with an output argument that contains the current states of rand and randn and then reset the states to these values before running ga again.

For example to reproduce the output of GA applied to two variable functions, call ga with the syntax

[x fval reason output]=ga(@twofunc,2)

Optimization terminated: average change in the fitness value less than options.TolFun.

x =

    2.9973    1.9949

fval =

  9.7874e-004

reason =

     1

output = 

      randstate: [625x1 uint32]

     randnstate: [2x1 double]

    generations: 51

      funccount: 1040

        message: 'Optimization terminated: average change in the fitness value less than options.TolFun.'

    problemtype: 'unconstrained'

Then, reset the states, by entering 

rand('state', output.randstate);

randn('state', output.randnstate);

If you now run ga a second time, you get the same results.

 [ x fval ] = ga(@twofunc,2)

Optimization terminated: average change in the fitness value less than options.TolFun.

x =   2.9973    1.9949
fval =    9.7874e-004
Hence, the results obtained were same as obtained earlier.
3.5 RESUMING GA FROM FINAL POPULATION OF      PREVIOUS RUN
By default, ga creates a new initial population each time you run it. However, you might get better results by using the final population from a previous run as the initial population for a new run. To do so, you must have saved the final population from the previous run by calling ga with the syntax

[x, fval, reason, output, final_pop] = ga(@fitnessfcn, nvars);

Resuming ga from the Final Population of a Previous Run - continued

The last output argument is the final population. To run ga using final_pop as the initial population, enter

options = gaoptimset('InitialPop', final_pop);

[x, fval, reason, output, final_pop2] = ... 

   ga(@fitnessfcn, nvars,[],[],[],[],[],[],[],options);

You can then use final_pop2, the final population from the second run, as the initial population for a third run.

Resuming ga from the Final Population of a Previous Run - Demonstration

[ x fval reason output final_pop ] = ga(@twofunc,2)

Optimization terminated: average change in the fitness value less than options.TolFun.

x =

    2.9978    2.0096

fval =

    0.0013

reason =

     1

output = 

      randstate: [625x1 uint32]

     randnstate: [2x1 double]

    generations: 68

      funccount: 1380

        message: 'Optimization terminated: average change in the fitness value less than options.TolFun.'

    problemtype: 'unconstrained'

final_pop =

    2.9978    2.0096

    2.9978    2.0096

    2.9978    2.0096

    2.9446    2.1310

    2.9978    2.0096

    2.9978    1.2363

    2.9978    2.0096

    2.9978    2.0096

    2.9978    1.4147

    2.9978    2.0096

    2.9978    2.0180

    2.9978    2.0096

    3.5443    2.0096

    2.9978    2.0096

    2.9446    2.0096

    3.3255    1.7993

    2.9785    1.8566

    2.6437    2.8720

    2.9773    1.6690

    2.8753    2.0506
Resuming ga from the Final Population of a Previous Run – Demonstration continued

options = gaoptimset('Initialpop',final_pop);

[x fval reason output final_pop2] = ga(@twofunc, 2,[],[],[],[],[],[],[],options)

Optimization terminated: average change in the fitness value less than options.TolFun.

x =

      2.9978    2.0096

fval =
          0.0013
So, the results obtained by setting the final population of the previous run is same as obtained earlier.
3.6 ANALYZING THE ACCURACY BY CHANGING THE PARAMETERS:

Now we will change the various options or parameters in GA so as to analyze the accuracy and would see if the results are changed and if yes than by what extent.
Results obtained with default options:
[ x fval reason output] = ga(@twofunc,2)

Optimization terminated: average change in the fitness value less than options.TolFun.

x =

    2.9919    2.0185

fval =

    0.0053

reason =

     1

output = 

      randstate: [625x1 uint32]

     randnstate: [2x1 double]

    generations: 51

      funccount: 1040

        message: 'Optimization terminated: average change in the fitness value less than options.TolFun.'

    problemtype: 'unconstrained'        
On changing the options: changing population size from default 20 to 100; changing number of generations from 100 to 200; changing stall generation limit from 50 to 100; changing stall time limit from 20 to 100

On changing the above mentioned parameters result obtained is:

>> options=gaoptimset('PopulationSize',100)
>> options=gaoptimset(options,'Generations',200)
>> options=gaoptimset(options,'StallGenLimit',100)
>> options=gaoptimset(options,'StallTimeLimit',100)
options = 

        PopulationType: 'doubleVector'

          PopInitRange: [2x1 double]

        PopulationSize: 100

            EliteCount: 2

     CrossoverFraction: 0.8000

    MigrationDirection: 'forward'

     MigrationInterval: 20

     MigrationFraction: 0.2000

           Generations: 200

             TimeLimit: Inf

          FitnessLimit: -Inf

         StallGenLimit: 100

        StallTimeLimit: 100

                TolFun: 1.0000e-006

                TolCon: 1.0000e-006

     InitialPopulation: []

         InitialScores: []

        InitialPenalty: 10

         PenaltyFactor: 100

          PlotInterval: 1

           CreationFcn: @gacreationuniform

     FitnessScalingFcn: @fitscalingrank

          SelectionFcn: @selectionstochunif

          CrossoverFcn: @crossoverscattered

           MutationFcn: @mutationgaussian

             HybridFcn: []

               Display: 'final'

              PlotFcns: []

            OutputFcns: []

            Vectorized: 'off'
>> [x fval reason output]=ga(@twofunc,2,[],[],[],[],[],[],[],options)

Optimization terminated: average change in the fitness value less than options.TolFun.

x =

    2.9973    2.0027

fval =

  2.4535e-004 = 0.044
reason =

     1

output = 

      randstate: [625x1 uint32]

     randnstate: [2x1 double]

    generations: 101

      funccount: 10200

        message: 'Optimization terminated: average change in the fitness value less than options.TolFun.'

    problemtype: 'unconstrained'
Now we change the function tolerance from 1.000e-006 to 1.000e-004. Results obtained are: 

>> options=gaoptimset(options,'Tolfun',1.0000e-004)

options = 

        PopulationType: 'doubleVector'

          PopInitRange: [2x1 double]

        PopulationSize: 100

            EliteCount: 2

     CrossoverFraction: 0.8000

    MigrationDirection: 'forward'

     MigrationInterval: 20

     MigrationFraction: 0.2000

           Generations: 200

             TimeLimit: Inf

          FitnessLimit: -Inf

         StallGenLimit: 100

        StallTimeLimit: 100

                TolFun: 1.0000e-004

                TolCon: 1.0000e-006

     InitialPopulation: []

         InitialScores: []

        InitialPenalty: 10

         PenaltyFactor: 100

          PlotInterval: 1

           CreationFcn: @gacreationuniform

     FitnessScalingFcn: @fitscalingrank

          SelectionFcn: @selectionstochunif

          CrossoverFcn: @crossoverscattered

           MutationFcn: @mutationgaussian

             HybridFcn: []

               Display: 'final'

              PlotFcns: []

            OutputFcns: []

            Vectorized: 'off'
>> [x fval reason output]=ga(@twofunc,2,[],[],[],[],[],[],[],options)

Optimization terminated: average change in the fitness value less than options.TolFun.

x =

     3.0023    1.9964
fval =

  2.5005e-004

reason =

     1

output = 

      randstate: [625x1 uint32]

     randnstate: [2x1 double]

    generations: 101

      funccount: 10200

        message: 'Optimization terminated: average change in the fitness value less than options.TolFun.'

    problemtype: 'unconstrained'
Based on the changes done following results have been obtained which are shown in the tabulated form:

	Options 
	X(1)
	X(2)
	Fitness Value
	No. of Generation

	With default options
	2.9919
	2.0185
	0.0053
	51

	Changing population size from 20 to 100
	3.0011
	2.0113
	0.0025
	51

	Changing maximum number of generations from 100 to 200
	2.9966
	1.9979
	0.1197
	51

	Changing stall generation limit from 50 to 100
	2.9995
	2.0035
	0.034
	101

	Changing stall time limit from 20 to 100
	2.9965
	2.0014
	0.071
	101

	Changing function tolerance from 1.00e-006 to 1.00e-004
	3.0003
	2.0004
	0.0457
	101


It is found that after changing the above mentioned parameters the best fitness value of the function has increased from 0.0053 to 0.0449 & total number of generations taken by GA to obtain the final answer has also changed from 51 to 101.

It is seen that on changing the function tolerance there is not much change in the best fitness value. It has changed from 0.0449 to 0.0457

3.7 CONSTRAINED MINIMIZATION USING GA
The GA function assumes the constraint function will take one input x, where x has as many elements as the number of variables in the problem.  The constraint function computes the values of all the inequality and equality constraints and returns two vectors, c and ceq, respectively.

To minimize the fitness function, you need to pass a function handle to the fitness function as the first argument to the ga function, as well as specifying the number of variables as the second argument. Lower and upper bounds are provided as LB and UB respectively. In addition, you also need to pass a function handle to the nonlinear constraint function.

The syntax to implement the constraint minimization is as follows.

[x,fval] = ga(ObjectiveFunction, nvars,[],[],[],[],LB, UB,ConstraintFunction)

Suppose you want to minimize the simple fitness function of two variables x1 and x2,
min f(x) = 100*(x1^2 – x2)^2 + ( 1 – x1)^2.

subject to the following nonlinear inequality constraints and bounds 

x1.x2 + x1 – x2 + 1.5 <= 0

10 – x1.x2 <= 0

0 <= x1 <= 1

0 <= x2 <= 13

First, create an M-file named simple_fitness.m as follows:
function y = simple_fitness(x)

y = 100 * (x(1)^2 - x(2)) ^2 + (1 - x(1))^2;

The genetic algorithm function, ga, assumes the fitness function will take one input x, where x has as many elements as the number of variables in the problem. The fitness function computes the value of the function and returns that scalar value in its one return argument, y.

Create an M-file, simple_constraint.m, containing the constraints
function [c, ceq] = simple_constraint(x)

c = [1.5 + x(1)*x(2) + x(1) - x(2); -x(1)*x(2) + 10;x(1)-1;x(2)-13];

ceq = [];

For the constrained minimization problem, the ga function changed the mutation function to @mutationadaptfeasible. The default mutation function, @mutationgaussian, is only appropriate for unconstrained minimization problems.

Specify mutationadaptfeasible as the mutation function for the minimization problem by using the gaoptimset function.

options = gaoptimset('MutationFcn',@mutationadaptfeasible);

ObjectiveFunction = @simple_fitness;

nvars = 2;    % Number of variables

LB = [0 0];   % Lower bound

UB = [1 13];  % Upper bound

ConstraintFunction = @simple_constraint;

Next run the ga solver. 
[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB, UB,ConstraintFunction, options)

Optimization terminated: current tolerance on f(x) 1e-007 is less than options.TolFun and constraint violation is less than options.TolCon.

x =    0.8122   12.3122

fval =  1.3578e+004

3.8 PARAMETRIZING FUNCTIONS CALLED BY GA
Sometimes you might want to write functions that are called by ga that have additional parameters to the independent variable. For example, suppose you want to minimize the following function:
f(x) = ( a – bx1^2 + x1^4/3)*x1^2 + x1.x2 + ( -c + cx3^2)*x3^2
for different values of a, b, and c. Because ga accepts a fitness function that depends only on x, you must provide the additional parameters a, b, and c to the function before calling ga.

 Parameterizing Functions Using Anonymous Functions with ga

To parameterize your function, first write an M-file containing the following code:      

       function y = parameterfun(x,a,b,c)

   y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2)+(-c + c*x(3)^2)*x(3)^2);

Save the M- file as parameterfun.m in a directory on the MATLAB path.

Now, suppose you want to minimize the function for the parameter values a = 4, b =2.1,and c = 4. To do so, define a function handle to an anonymous function by entering the following commands at the MATLAB prompt:

>> a = 4; b = 2.1; c = 4;    % Define parameter values

fitfun = @(x) parameterfun(x,a,b,c);

NVARS = 3;

>> [x fval] = ga(fitfun , 3)

Optimization terminated: average change in the fitness value less than options.TolFun.

x = -0.1302    0.7170    0.2272

fval =   -1.0254

3.9 GA TOOL
Gatool is one of the features available in the Matlab. It performs the same functions as the ga from the command line. But the difference between them is gatool is not operated in the command prompt. 

Instead , once if we type the gatool at the command prompt, a new window is opened , where we can adjust the options and we can get the optimal points.
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Fig 3.1 GA Tool Sheet in MATLAB
Basic Operation of GA tool

Write a simple M-file which computes the objective function value, and import it in the gatool as follows @filename in the fitness function column.

Specify the no:of variables in the nvars column .

Then click the start button, you will get the output in the same window.

Possible Outputs to be Obtained in the GA tool

Linear inequalities of the form A*x = b are specified by the matrix A and the vector b.

Linear equalities of the form Aeq*x = beq are specified by the matrix Aeq and the vector beq.

Bounds are lower and upper bounds on the variables.                   

Lower = specifies lower bounds as a vector.

Upper = specifies upper bounds as a vector.

Nonlinear constraint function defines the nonlinear constraints. Specify the function as an anonymous function or as a function handle of the form @nonlcon, where nonlcon.m is an M-file that returns the vectors c and ceq. The nonlinear equalities are of the form ceq = 0, and the nonlinear inequalities are of the form c = 0.

3.10 DEMONSTRATION OF CONSTRAINTS IN GA
M-file of constraints

function [c, ceq] = nonlcon(x)

c = [1.5 + x(1)*x(2) + x(1) - x(2); -x(1)*x(2) + 10];

ceq = [];

Import it in the nonlinear constraint column by writing @noncolon
Then start running the gatool as same as the basic operation of the gatool.

Rosenbrok eqn is solved with the nonlinear constraints specified in the M-file

We got the output as follows

Fitness function value: 13578.18005695581

Optimization terminated: average change in the fitness value less than options.TolFun. And constraint violation is less than options.TolCon.

X = 0.8122 12.3122
3.11 PLOT FUNCTION IN GA TOOL
Plot functions enable you to plot various aspects of the genetic algorithm as it is executing. Each one will draw in a separate axis on the display window. Use the Stop button on the window to interrupt a running process.

Plot interval specifies the number of generations between successive updates of the plot.

Best fitness plots the best function value in each generation versus iteration number.

Score diversity plots a histogram of the scores at each generation.

Stopping plots stopping criteria levels.

Best individual plots the vector entries of the individual with the best fitness function value in each generation.

Genealogy plots the genealogy of individuals. Lines from one generation to the next are color-coded as follows:

Red lines indicate mutation children.

Blue lines indicate crossover children.

Black lines indicate elite individuals.

Max constraint plots the maximum nonlinear constraint violation.

Distance plots the average distance between individuals at each generation.

Range plots the minimum, maximum, and mean fitness function values in each generation.

Selection plots a histogram of the parents. This shows you which parents are contributing to each generation.

Run Solver in GA tool 

To run the solver, click Start under Run solver. When the algorithm terminates, the Status and results pane displays the reason the algorithm terminated. The Final point updates to show the coordinates of the final point.

Options in GA tool #

 Populations

Fitness scaling

Selection

Reproduction

Mutation 

Crossover

Stopping criteria

Output functions

Display to the command window

Vectorize

3.12 POPULATION OPTION IN GA TOOL
Population options specify options for the population of the genetic algorithm.

Population type specifies the type of the input to the fitness function. You can set Population type to be double vector, or Bit string, or Custom. If you select Custom, you must write your own creation, mutation, and crossover functions that work with your population type, and specify these functions in the fields Creation function, Mutation function, and Crossover function, respectively.

Important Note: Matlab uses the default population type as double vector, whereas all the standard textbooks use Bit string as the population type

Population size specifies how many individuals there are in each generation. If you set Population size to be a vector of length greater than 1, the algorithm creates multiple subpopulations. Each entry of the vector specifies the size of a subpopulation.

Creation function specifies the function that creates the initial population. The default creation function Uniform creates a random initial population with a uniform distribution. Custom enables you to provide your own creation function, which must generate data of the type that you specify in Population type.

Initial population enables you to specify an initial population for the genetic algorithm. If you do not specify an initial population, the algorithm creates one using the Creation function.

Initial scores enable you to specify scores for initial population. If you do not specify Initial scores, the algorithm computes the scores using the fitness function.

Initial range specifies lower and upper bounds for the entries of the vectors in the initial population. You can specify Initial range as a matrix with 2 rows and Initial length columns. The first row contains lower bounds for the entries of the vectors in the initial population, while the second row contains upper bounds. If you specify Initial range as a 2-by-1 matrix, the two scalars are expanded to constant vectors of length Initial length.

3.13 FITNESS SCALING OPTION IN GA TOOL
The scaling function converts raw fitness scores returned by the fitness function to values in a range that is suitable for the selection function. 

Scaling function specifies the function that performs the scaling. You can choose from the following function:

Rank scales the raw scores based on the rank of each individual, rather than its score. The rank of an individual is its position in the sorted scores. The rank of the fittest individual is 1, the next fittest is 2, and so on. Rank fitness scaling removes the effect of the spread of the raw scores.

3.14 SELECTION OPTION IN GA TOOL
The selection function chooses parents for the next generation based on their scaled values from the fitness scaling function.

You can specify the function that performs the selection in the Selection function field. 

The Roulette wheel selection is explained below

Roulette simulates a roulette wheel with the area of each segment proportional to its expectation. The algorithm then uses a random number to select one of the sections with a probability equal to its area.

3.15 REPRODUCTION OPTION IN GA TOOL 

Reproduction options determine how the genetic algorithm creates children at each new generation.

Elite count specifies the number of individuals that are guaranteed to survive to the next generation. Set Elite count to be a positive integer less than or equal to Population size.

Crossover fraction specifies the fraction of the next generation, other than elite individuals, that are produced by crossover.

Set Crossover fraction to be a fraction between 0 and 1, either by entering the fraction in the text box or moving the slider.

3.16 MUTATION OPTION IN GA TOOL 

Mutation functions make small random changes in the individuals in the population, which provide genetic diversity and enable the Genetic Algorithm to search a broader space. You can specify the function that performs the mutation in the Mutation function field.  The default option in Mutation function field is Gaussian. Gaussian is normally used for unconstrained problems. For constrained problems adapt feasible option is used. 

3.17 STOPPING CRITERION OPTION IN GA TOOL 

Stopping criteria determines what causes the algorithm to terminate.

Generations specifies the maximum number of iterations the genetic algorithm performs.

Time limit specifies the maximum time in seconds the genetic algorithm runs before stopping.

Fitness limit — If the best fitness value is less than or equal to the value of Fitness limit, the algorithm stops.

Stall generations — If the weighted average change in the fitness function value over Stall generations is less than Function tolerance, the algorithm stops.

Stall time limit — If there is no improvement in the best fitness value for an interval of time in seconds specified by Stall time limit, the algorithm stops.

Function tolerance — If the cumulative change in the fitness function value over Stall generations is less than Function tolerance, the algorithm stops.

Nonlinear constraint tolerance specifies the termination tolerance for the maximum nonlinear constraint violation.

3.18 OUTPUT FUNCTION OPTION IN GA TOOL
History to new window outputs the iterative history of the algorithm to a separate window.

Interval specifies the number of generations between successive outputs.

Custom enables you to write you own output function.

Display option in gatool

Level of display specifies the amount of information displayed in the MATLAB Command Window when you run the algorithm. Choose from the following:

Off — Display no output.

Iterative — Display information at each iteration of the algorithm. 

Diagnose — Information is displayed at each iteration. In addition, the diagnostic lists some problem information and the options that are changed from the defaults.

Final — Display only the reason for stopping at the end of the run.

Vectorize Option in GAtool

The vectorize option specifies whether the computation of the fitness function is vectorized.

Set Objective function is vectorized to On to indicate that the fitness function is vectorized.

When Objective function is vectorized is Off, the algorithm calls the fitness function on one individual at a time as it loops through the population.
3.19 MINIMIZATION PROBLEMS SOLVED
3.19.1 CONSTRAINED PROBLEMS:

PROBLEM I: Find the minimum of the function f = -3*x(1) + 2*x(2) 
                                                         subject to 

                                                                            0<x(1)<4

                                                                            1<x(2)<6

                                                                           x(1)+x(2)<=5

OBJECTIVE FUNCTION M-file:

function z=problemi(x)

z=-3*x(1)+2*x(2);

CONSTRAINT FUNCTION M-file:

function [c,ceq]=constraintproblemi(x)

c=[x(1)+x(2)-5;0];

ceq=[];

Solution on Command Window:

>> [x fval]=ga(@problemi,2,[],[],[],[],[0 1],[4 6],@constraintproblemi)

Optimization terminated: average change in the fitness value less than options.TolFun.

 and constraint violation is less than options.TolCon.

x = 4.0000    1.0000

fval = -9.9999
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Fig 3.2 Plot between Fitness value and Generation for constrained Problem I
PROBLEM II: Minimize the function f = x(1) – x(2) subject to constraint

g ( x(1), x(2) ) = 3*x(1)^2 – 2*x(1)*x(2) + x(2)^2 – 1< 0

OBJECTIVE FUNCTION M-file:

function z=problemv(x)

z=x(1)-x(2);

CONSTRAINT FUNCTION M-file:

function [c,ceq]=constraintproblemv(x)

c=[3*(x(1))^2-2*x(1)*x(2)+(x(2))^2-1;0];

ceq=[];

Solution on Command Window:

>> [x fval]=ga(@problemv,2,[],[],[],[],[],[],@constraintproblemv)

Optimization terminated: average change in the fitness value less than options.TolFun.

 and constraint violation is less than options.TolCon.

x =

    0.0710    1.0525

fval =

   -0.9815
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Fig 3.3 Plot between Fitness value and Generation for constrained Problem II
3.19.2 MULTIOBJECTIVE OPTIMIZATION:

In Matlab Genetic Algorithm Toolbox we can not solve multi-objective function as GA does not have the facility to solve more than one function. So in order to perform Multi-objective optimization we have converted more than one function into a single function with the help of Weighting Method.

PROBLEM I: This question has a two-objective fitness function f(x), where x is also two-dimensional. Minimize the function F(x) where f(1) & f(2) are stated as:
f(1) = x(1)^4 - 10*x(1)^2+x(1)*x(2) + x(2)^4 - (x(1)^2)*(x(2)^2);

f(2) = x(2)^4 - (x(1)^2)*(x(2)^2) + x(1)^4 + x(1)*x(2);

where x(1) & x(2) should lie within the interval -5 , 5.

OBJECTIVE FUNCTION M-file:

function z=multiobji(x)

for i=0:100

    for j=0:100

    z = (i*(x(1)^4-(10*x(1)^2)+x(1)*x(2)+(x(2)^4)-(x(1)^2)*(x(2)^2)))

       +(j*((x(2)^4)-(x(1)^2)*(x(2)^2)+(x(1)^4)+x(1)*x(2)));

   end

end

Solution on Command Window:

>> [x fval]=ga(@multiobji,2,[],[],[],[],[-5 -5],[5 5])

Optimization terminated: average change in the fitness value less than options.TolFun.

x =

   -1.9494    1.4885

fval =

 -2.1944e+003 

>> sys

enter the value of x1     -1.9494

enter the value of x2      1.4885

f(1) =  -29.9728

f(2) = 8.0288
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Fig 3.4 Plot between Fitness value and Generation for Multiobjective Problem I

PROBLEM II:   

Maximize the function Z (x(1) , x(2)) = [ Z1(x(1) , x(2)), Z2(x(1) , x(2))]

where   Z1(x(1) , x(2)) = 5*x(1) – 2*x(2)

             Z2(x(1) , x(2)) = -x(1) + 4*x(2)

Subject to:  -x(1)+x(2)< 3,       x(1)+x(2)< 8

                   x(1)< 6,                  x(2)< 4

                   x(1), x(2) > 0

OBJECTIVE FUNCTION M-file:

function z=multiobj(x)

for i=0:100

    for j=0:100

    z=(i*((-5*x(1))+(2*x(2))))+(j*(x(1)-(4*x(2))));

    end

end

CONSTRAINT FUNCTION M-file:

function [c,ceq]=constraintmultiobj(x)
c=[-x(1)+x(2)-3;x(1)+x(2)-8;x(1)-6;x(2)-4];
ceq=[];
Solution on Command Window:

>> [x fval]=ga(@multiobj,2,[],[],[],[],[0 0],[Inf Inf],@constraintmultiobj)

Optimization terminated: average change in the fitness value less than options.TolFun.

 and constraint violation is less than options.TolCon.

x =

 5.9501    2.0499

fval =

 -2.7900e+003

>> sys1

enter the value of x1 5.9501

enter the value of x2 2.0499

Z(1) = 25.6507

Z(2) =  2.2495
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Fig 3.5 Plot between Fitness value and Generation for Multiobjective Problem II
Results obtained from varying the weights i & j 
	I
	j
	x(1)
	x(2)
	Z(1)
	Z(2)

	1
	1
	5.89063
	2.10911
	25.2349
	2.5458

	1
	5
	2.24187
	4
	3.2094
	13.7581

	1
	10
	1
	4
	-3
	15

	1
	20
	-0.03018
	3
	-6.1509
	12.0302

	1
	50
	-0.27339
	2.7266
	-6.8201
	11.1798

	1
	100
	-0.0867
	2.91329
	-6.2601
	11.7399

	100
	100
	5.98091
	2.01901
	25.8665
	2.0951


From the above table we can analyze the best compromise solution at different weights. It is seen that best solution or maximum function value is obtained at weight (100,100).
CHAPTER – 4
ECONOMIC LOAD DISPATCH IN POWER SYSTEM
4.1 PURPOSE OF ECONOMIC LOAD DISPATCH:
The purpose of economic dispatch or optimal dispatch is to reduce fuel costs for the power system. Minimum fuel costs are achieved by the economic load scheduling of the different generating units or plants in the power system. By economic load scheduling we mean to find the generation of the different generators or plants so that the total fuel cost is minimum, and at the same time the total demand and the losses at any instant must be met by the total generation. In case of economic load dispatch the generations are not fixed but they are allowed to take values again within certain limits so as to meet a particular load demand with fuel consumption. This means economic load dispatch problem is really the solution of large number of load flow problems and choosing the one which is optimum in the sense that it needs minimum cost of generation. 
4.2 MATHEMATICAL MODELLING OF ECONOMIC LOAD DISPATCH PROBLEM:
From the unit commitment table of a given plant, the fuel cost curve of the plant can be determined in the form of a polynomial of suitable degree by the method of least squares fit.

Mathematically, the problem is defined as

Minimize   F (Pi) = ∑ ( aiPi2 + biPi + ci )  Rs/hr  where i is from 1 to n No. of generators.
Subject to 
(i) Energy balance equation ∑ Pi = PD + PL, where i is from 1 to n No. of generators.
(ii) The inequality constraints  Pimin ≤ Pi ≤ Pimax ( I = 1,2 … NG ) NG is the no: of generators.

ai, , bi , ci  are the cost coefficients.

PD is the load demand.

Pi is the real power generation and will act as decision variable.

PL is power transmission loss.

NG is the no: of generators.

One of the most important, simple but approximate methods of expressing transmission loss as a function of generator powers is through B- coefficients. This method uses the fact that under normal operating condition, the transmission loss is quadratic in the injected real powers. The general form of the loss formula using B-coefficients is

PL = ∑iNG∑jNG PiBijPj   MW

Where Pi, Pj  are the real power injections at the ith, jth buses.

Bij are loss coefficients which are constant under certain assumed conditions.

NG is number of generation buses.

The above constrained optimization problem is converted into an unconstrained one. Lagrange multiplier method is used in which a function is minimized (or maximized) subject to side conditions in the form of equality conditions. Using Lagrange multipliers, an augmented function is defined as

F = FT + λ( PD + PL - ∑iNG Pi ) where λ is the Lagrange multiplier.

Necessary conditions for the optimization problem are

∂F/∂Pi = ∂FT/∂Pi + λ(∂PL/∂Pi – 1) = 0 ………………..(1)

Rearranging the above equation 

dFi/dPi = λ (1- ∂PL/∂Pi)

Where ∂FT/∂Pi is the incremental cost of the ith generator (Rs/Mwh).

∂PL/∂Pi represents the incremental transmission losses.

By differentiating the transmission loss equation with respect to Pi, the incremental transmission loss can be obtained as

∂PL/∂Pi = ∑jNG 2BijPj (i = 1, 2 …, NG ) ……………..(2)

Also dFn/dPn = FnnPn + fn
Therefore, the coordination equation can be rewritten as

FnnPn + fn + λ ∑ 2BmnPm = λ

Collecting all coefficients of Pn, we obtain 

Pn(Fnn + 2λBnn) = - λ(∑2BmnPm) – fn + λ
Solving for Pn we obtain
Pn = 1 – {(fn/λ)∑2BmnPm}
            (Fnn/λ) + 2Bnn
But for this we did the minimization of the cost function given as:
F = C1 + C2 + ….. + Cn              n being the no. of generators

Subject to inequality constraint:

Pmin < Pi < Pmax
And equality constraint:

PD + PL - ∑nNGPn = 0

& ∑nNG∑nNG PnBnjPj – Specified Loss = 0

Where PL = ∑nNG∑jNG PnBnjPj      i=1, n=1 
4.3 PROBLEM FORMULATION:
To solve the economic load dispatch problem, we have formulated our problem in the following manner:

Minimize F(x) = C1 + C2 + C3 + …. + Cn  

Where n is the no. of generators & C1, C2…, Cn are the cost chracterstics

S.t.

 inequality constraint:

Pmin < Pi < Pmax
&

 equality constraint:

PD + PL - ∑nNGPn = 0

& ∑nNG∑nNG PnBnjPj – Specified Loss = 0

Where PL = ∑nNG∑jNG PnBnjPj     i=1, n=1 (Loss Formula using B-coefficient)

PD represents total load demand, PL represents losses, Bni represents B-coefficients.
Results are obtained for different values of specified or fixed loss. On the above results Surrogate worth Trade-off Technique  has been applied to obtain best compromise solution or target point.

4.4 ECONOMIC LOAD DISPATCH NEGLECTING LOSSES:
The economic load dispatch problem is defined as 

                 n               

Min FT = ∑ Fn                                                                                                   (i)
                n=1
                 n               

Subject to PD = ∑ Pn                                                                                      (ii)
                n=1
where FT is total fuel input to the system, Fn the fuel input to the nth unit, PD the total load demand and Pn the generation of nth unit.

By making use of Lagrangian multiplier the auxiliary function is obtained as

                          n               

F = FT + λ(PD - ∑ Pn)
                         n=1
where λ is Lagrangian multiplier.

Differentiating F with respect to generation Pn and equating to zero gives the condition for optimal operation of the system. 

∂F  =  ∂FT + λ(0-1) = 0

∂Pn       ∂Pn
             = ∂FT – λ

                ∂Pn
and therefore the condition for optimum operation is :

dF1 = dF2 = ……. = dFn = λ                                                               (iii)
dP1      dP2                 dPn
Here dFn = incremental production cost of plant n in Rs per MWhr.

        dPn
The incremental production cost of a given plant over a limited range is represented by:

                          dFn = Fnn Pn + fn
                          dPn 

where Fnn = slope of incremental production cost curve 

fn = intercept of incremental production cost curve.

The equations (iii) mean that the machines be so loaded that the incremental cost of production of each machine is same. It is to be noted here that the active power generation constraints are taken into account while solving the equations which are derived above. If these constraints are violated for any generator it is tied to the corresponding limit and the rest of the load is distributed to the remaining generator units according to the equal incremental cost of production. The simultaneous solution of equations (ii) and (iii) gives the economic operating schedule.

I: Let us consider a problem
There are two generators of 100 MW each with incremental characteristics: 
dF1 = 2 + 0.012 P1
dP1
dF2 = 1.5 + 0.015 P2
dP2
Minimum load on each unit is 10MW; total load to be supplied is 150 MW. 

Based on this the problem can be formulated as:

Minimize F(x) = (P1 + P2 – Total load demand) ^2
Subject to inequality constraint: 10 < P1, P2 <150
Here P1 = ((x-f1)/y1) & P2 = ((x-f2)/y2)
x: incremental production cost
f1: first intercept of incremental production cost curve
y1: first slope of incremental production cost curve

f2: second intercept of incremental production cost curve
y2: second slope of incremental production cost curve

p=input('enter the max. load demand');

disp(p)

q1=input('enter the min. power limit of first generator');

disp(q1)

q2=input('enter the max. power limit of first generator');

disp(q2)

q3=input('enter the min. power limit of second generator');

disp(q3)

q4=input('enter the max. power limit of second generator');

disp(q4)

f1=input('enter the first intercept of incremental production cost curve');

disp(f1)

f2=input('enter the second intercept of incremental production cost curve');

disp(f2)

y1=input('enter the first slope of incremental production cost curve');

disp(y1)

y2=input('enter the second slope of incremental production cost curve');

disp(y2)

Objective Function M-file:

function z = eco(x,p,f1,f2,y1,y2)

z = ((((x-f1)/y1) + ((x-f2)/y2)-p) ^2);

Constraint Function M-file:
function [c,ceq]=constrainteco(x)

c = [(-((x-2)/0.012)) + 10; (((x-2)/0.012)-100); (-((x-1.5)/0.015))+10; (((x- 1.5)/0.015)-100)];

ceq=[];

On entering the required specifications

>> question

enter the max. load demand150

   150

enter the min. power limit of first generator10

    10

enter the max. power limit of first generator10

    10

enter the min. power limit of second generator100

   100

enter the max. power limit of second generator100

   100

enter the first intercept of incremental production cost curve2

     2

enter the second intercept of incremental production cost curve1.5

    1.5000

enter the first slope of incremental production cost curve0.012

    0.0120

enter the second slope of incremental production cost curve0.015

    0.0150

Results obtained are:

 On GA sheet

Diagnostic information.


Fitness function = @(x)eco(x,p,f1,f2,y1,y2)


Number of variables = 1


nonlinear constraint function = @constrainteco


0 Inequality constraints


0 Equality constraints


0 Total number of linear constraints

Modified options:


options.MutationFcn = @mutationadaptfeasible


options.Display = 'diagnose'


options.OutputFcns = {  { @gatooloutput } { @gaoutputgen } }

End of diagnostic information.

                           Best       max        Stall

Generation  f-count        f(x)     constraint  Generations

    1        1041       17.3185            0      0

    2        2081    0.00359874            0      0

    3        3121   0.000175633            0      0

    4        4161   0.000175633            0      1

    5        5201   0.000175633            0      2

Optimization terminated: average change in the fitness value less than options.TolFun and constraint violation is less than options.TolCon.
x=2.7769= λ or Incremental Production Cost
Based on this P1 = 64.7416667

                      P2 = 85.1266666
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II: Let us consider another problem. The fuel inputs per hour of plants 1 & 2 are given as

                   F1 = 0.2P12 + 40P1 + 120 Rs per hr
                   F2 = 0.25P22 + 30P2 + 150 Rs per hr
Determine the economic operating schedule and the corresponding cost of generation if the maximum and minimum loading on each unit is 100 MW & 25 MW, the demand is 180 MW and transmission losses are neglected.

This problem can be formulated as:
Minimize F(x) = F1 + F2​

Subject to inequality constraint: 25 < P1, P2 < 100
And equality constraint P1 + P2 – Load Demand = 0
In this case load demand is 180 MW

Objective Function M-File:
function z = withoutloss(x)

z = ((0.2*(x(1)*x(1)))+(40*x(1))+120+(0.25*(x(2)*x(2)))+(30*x(2))+150);

Constraint Function M-File:
function [c,ceq]=constraintwithoutloss(x)

c=[-x(1)+25;x(1)-100;-x(2)+25;x(2)-100];

ceq=[x(1)+x(2)-180;0];

>> [x fval output]=ga(@withoutloss,2,[],[],[],[],[],[],@constraintwithoutloss)

Optimization terminated: stall generations limit exceeded

 but constraints are not satisfied.

x =

89.4549   90.5449

fval =

10214.57
output = 

        randstate: [625x1 uint32]

       randnstate: [2x1 double]

      generations: 90

        funccount: 94801

          message: [1x93 char]

      problemtype: 'nonlinearconstr'

    maxconstraint: 2.2241e-004
Hence, value of P1 = 89.4549 and P2 = 90.5449

Total Cost = Rs 10214.57/hr
CHAPTER – 5
SURROGATE WORTH TRADEOFF TECHNIQUE

5.1 INTRODUCTION
The Surrogate Worth Tradeoff Technique was developed by Haimes and Hall and Haimes et al. It was applied to water resource planning by Haimes. It is based on the levels of objectives and marginal rates of substitution (MRS) among objectives.

This technique uses modified form of constraint method for the generation of non inferior set. It is used to measure quantitatively the tradeoff (tcl) between cost of generation (FC) and system transmission losses (FL). The tradeoff implies the amount by which transmission losses would increase (decrease) by decreasing (increasing) cost of generation by one unit. The power system attaches a surrogate worth function (WCL) to each tradeoff which indicates the desirability of that tradeoff. If one is willing to sacrifice more than the tradeoff value, the surrogate worth function is positive and if less than tradeoff value, it is negative. WCL varies with the level of the objective function. It is ordinal i.e. it provides ordering of alternatives, but does not indicate the degree to which one alternative is preferred to another. It varies between the positive and negative values and the optimal tradeoff is obtained where WCL(FC) = 0. This is then used to identify the best compromise solution of one objective function say cost of generation. The Multiobjective Optimal Power Flow (MOPF) problem is again solved to get the minimum transmission losses by fixing the value of cost of generation that obtained at WCL (FC) = 0. 
5.2 THEORETICAL PROCEDURE:
In surrogate worth tradeoff technique, the solutions are generated with the help of a modified form of constraint method. Given a problem with h objectives, h-2 of them are set at predetermined values and one of remaining two objectives is minimized with the other objective constrained at varying levels, e.g. if Z1 is to be minimized, Z2 is varied over some range of values and Z3, Z4….. Zp are fixed at levels L3, L4….. Lp. The modified constrained problem is 

Minimize 

                Z1(X)                                                                   (5.1a)
Subject to 

     gi(X1, X2,…., Xn) <= 0         i=1,2,……,m                     (5.1b)

     Xj >=0                                   j=1,2,……,n                      (5.1c)

     Z2(X) <=L2                                                                      (5.1d)

     Zk-1(X) =Lk-1                                                                   (5.2a)

     Zk(X)   =Lk                                                                      (5.2b)

In other words, the original h objective problem is reduced to a two objective problem. The non inferior set is obtained by varying L2 as in eq. (5.3d). It is shown by Loci f in Fig. 5.1 Z1 and Z2 can be taken as the cost of generation (FC) and the system transmission losses (FL) respectively. Similarly, t12 can be taken as tradeoff between cost of generation and system transmission losses in the following discussion.
[image: image8.emf]
Fig 5.1 The Surrogate Worth Tradeoff Technique
From the non inferior set, the tradeoff t12 between Z1 & Z2 is discovered which tells the amount by which Z2 would increase (decrease) by decreasing (increasing) Z1 by one unit. Several values of t12 can be generated by using different values of L2 in e.q. (5.3d). The power system operator assigns a value to each tradeoff. The operator may or may not be willing to sacrifice more than t12 units or less than t12 of Z2 in order to increase one unit of Z1. The value that is assigned to a particular tradeoff t12 is W12 – the surrogate worth function. Since t12 varies with the level of Z1, W12 is also a function of Z1. It will generally have high values at low Z1, decreasing to negative values at high Z1. But, it is difficult to generalize the shape of W12 (Z1). The nature of surrogate worth function is explained below:
The Marginal Rate of Substitution (MRS) is defined as the amount of one objective that the power system operator is willing to sacrifice in order to gain on another objective. The surrogate worth tradeoff technique is based on the premise that given a non inferior solution of evaluation, an electric utility will compare the magnitude of t12, the tradeoff or slope of the non inferior set, with the marginal rate of substitution between Z1 and Z2 or the desirable tradeoff. The desirable tradeoff in this case has been defined later by e.q. (5.8). Consider Fig. 5.1. In this f is the portion of the non inferior set as obtained by constraint method. Curve 1 represents the required function envisaged by power system analyst. Consider Z1 = A and Z2 = B in fig. 5.1 t12 < MRS12 at both the levels of Z1 which means more than t12 units of Z2 can be sacrificed to reduce one unit of Z1. Therefore, W12(Z1) > 0 is obtained in both the cases. Also, W12(A) should be greater than W12(B) since 
{ MRS12(A) – t12(A)} > { MRS12(B) – t12(B)}.
By exploring the entire range of choice over a given non inferior set, the power system analyst is confident that both positive and negative values for the surrogate worth function are obtained. Then the following problem is solved.
Minimize 

                Z2(X)                                                                     (5.4a)
Subject to 

     gi(X1, X2,…., Xn) <= 0         i=1, 2,……, m                     (5.4b)

     Xj >=0                                   j=1, 2,……, n                      (5.4c)

     Z1(X) =Z1*                                                                        (5.4d)

The solution of this problem will give Z2* in one step by keeping Z1 = Z1*. So the best-compromise solution (Z1*, Z2*) is obtained.

[image: image9]
Fig. 5.2 A Possible Surrogate Worth Function
5.3 ACHIEVEMENT OF THE TARGET POINT
The ideal solution where one would like to operate the power system is one where all the objectives are minimum. Such a point is called the Ideal Point. However, it cannot be realized in practice. So, an attempt is made to achieve an operating point where one would at least be satisfied, and this is termed as Target Point. Such a point has been obtained by the use of Surrogate Worth Tradeoff Technique. The algorithm is given below: 
1. Formulate the constrained MOPF problem as defined by equation (6.2).

2. Minimize FC to obtain Fcmin and FLatFcmin.

3. Minimize FL to obtain FCatFLmin and FLatFcmin. The one point (FCmin, FLmin) is the ideal point.

4. Determine the range of L1 of equation (5.2b)

L1 = FLatFcmin – FLmin
5. Choose  ∆ FL = FLatFcmin – FLmin
                                  No. of steps

     and assume suitable no. of steps, say 15.

6. Set the index I=1; K=0.

7. Vary L1 starting from FLmin in steps of ∆ FL to get a portion of the non inferior set.
FLK = FLmin + K∆ FL and obtain the corresponding FCK using the formulation defined in e.q. (5.2).

8. Increment K by 1.

9. If K>=2; go to 10; else go to 7.

10. Compute the tradeoff function ‌׀ tCL ׀ between Fc and FL as:

     ׀ tCLI ׀ =   FLK+1 – FLK   =               ∆ FL 
                    FCK+1 – FCK         FCK+1- FCK  
11. Take the average value (F’C, F’L) of the interval in which ׀ tCLI ׀ is        constant.   
                               F’C = FCK+1 + FCK 

                                                   2

                               F’L = FLK+1 + FLK
                                                   2

12. Calculate the Marginal Rate of Substitution (MRSCL) as:

          MRSCLI = F’L – FLmin
                           F’C – FCmin
13. Compute the surrogate worth function as:

          WCLI  =  MRSCLI – 1


                          ׀ tCLI ׀
14. Increment I to I+1.

15. Check if I>=2. If yes, go to 16; else go to 7.

16. Check if WCLI has changed sign. If yes, go to 17; else go to 7.

17. Plot a graph between F’C and WCL and observe the point where it crosses F’C axis. This is the best-compromise solution i.e. FC*. Define the new MOPF problem as:

Minimize 

         n 

FL = ∑ Pp
        p=1
subject to equality and inequality constraint of the system.

FC = FC*

The solution of this gives the best-compromise solution (FC*, FL*).
CHAPTER – 6
ECONOMIC LOAD DISPATCH PROBLEM
6.1 IEEE 5 BUS SYSTEM
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Fig. 6.1 Bus-Code Diagram 5 Bus System
TABLE 1

LINE DATA or IMPEDANCE DATA (5 Bus System)
	LINE DESIGNATION
	*R (p.u.)
	*X (p.u.)
	LINE CHARGING

	1-2
	0.10
	0.4
	0.0

	1-4
	0.15
	0.6
	0.0

	1-5
	0.05
	0.2
	0.0

	2-3
	0.05
	0.2
	0.0

	2-4
	0.10
	0.4
	0.0

	3-5
	0.05
	0.2
	0.0


* The impedances are based on MVA as 100.

TABLE 2

BUS DATA or OPERATING CONDITIONS (5 Bus System)
	
	GENERATION
	GENERATION
	LOAD
	LOAD

	BUS NO.
	MW
	VOLTAGE MAGNITUDE
	MW
	MVAR

	1*
	-------
	1.02
	-------
	-------

	2
	-------
	-------
	60
	30

	3
	100
	1.04
	-------
	-------

	4
	-------
	-------
	40
	10

	5
	-------
	-------
	60
	20


*Slack Bus

TABLE 3

REGULATED BUS DATA (5 Bus System)
	BUS NO.
	VOLTAGE MAGNITUDE
	MINIMUM MVAR CAPABILITY
	MAXIMUM MVAR CAPABILITY
	MINIMUM MW CAPABILITY
	MAXIMUM MW CAPABILITY

	1
	1.02
	0.0
	60
	30
	120

	3
	1.04
	0.0
	60
	30
	120


The nodal load voltage inequality constraints are 0.9<= Vi <=1.05

Cost Characteristics
C1 = 50 P1^2 + 351 P1 + 44.4 $/hr
C3 = 50 P3^2 + 389 P3 + 40.6 $/hr

Here for the 5 bus system we have taken, the total load demand of the system is 160 MW. Maximum and minimum active power constraint on the generator bus for the given system is 120 MW and 30 MW respectively. Voltage magnitude constraint for generator bus 3 is 1.04
So, in order to minimize the cost we have formulated the problem in the following manner:

Minimize 
                F(x) = C1 + C2

Subject to inequality constraint 
                 30< Pi< 120 for i = 1, 2

And equality constraint 
                 PGeneration - PDemand – PLoss = 0 
                 PLoss – Specified loss value = 0

6.1.1 M-file For Calculating B- Coefficients:
clear
basemva=100;
accuracy=0.0001;
maxiter=10;
busdata=[1 1 1.02 0 0 0 0 0 0 60 0;2 0 1 0 60 30 0 0 0 0 0;3 2 1.04 0 0 0 82 0 0 60 0;4 0 1 0 40 10 0 0 0 0 0;5 0 1 0 60 20 0 0 0 0 0];
linedata=[1 2 0.10 0.4 0 1;1 4 0.15 0.6 0 1;1 5 0.05 0.2 0 1;2 3 0.05 0.2 0 1;2 4 0.10 0.4 0 1;3 5 0.05 0.2 0 1];  
disp(busdata)
disp(linedata)
mwlimits=[50 100;50 100];
lfybus
lfnewton
busout
bloss
B- Coefficients Calculated (based on equal intercept criterion)
B11 = 0.00035336

B12 = 0.0000103196
B21 = 0.0000103196
B22 = 0.000368992

6.1.2 M- File For 5 Bus Load Dispatch Problem: 
Objective Function File:

function z = optima5(x)

z = ((50*(x(1)/100)*(x(1)/100))+(351*(x(1)/100))              +44.4+(50*(x(2)/100)*(x(2)/100))+(389*(x(2)/100))+40.6);
Constraint Function File:
function [c,ceq]=constraintoptima5(x)

c= [-x(1)+30;x(1)-120;-x(2)+30;x(2)-120];

ceq=[x(1)+x(2)-0.00035336*x(1)*x(1)-2*0.0000103196*x(1)*x(2)-0.000368992*x(2)*x(2)-160;0];

TABLE 4
Readings Obtained on Running GA (5 Bus System)
	S No.
	P1 
MW
	P3

MW
	COST

$/hr
	LOSSES

MW

	1
	84.36938
	80.68547
	763.152
	5.01

	2
	84.36846
	80.68706
	763.150
	5.02

	3
	84.36758
	80.68865
	763.148
	5.03

	4
	84.36881
	80.6881
	763.145
	5.04

	5
	84.36554
	80.69207
	763.140
	5.05

	6
	85.93242
	79.12758
	762.65
	5.06

	7
	88.34767
	76.72234
	762.008
	5.07

	8
	89.7836
	75.29642
	761.697
	5.08

	9
	90.90966
	74.18035
	761.49
	5.09

	10
	91.86775
	73.23224
	761.34
	5.10

	11
	92.71821
	72.39176
	761.23
	5.11

	12
	93.49035
	71.62961
	761.14
	5.12

	13
	94.2054
	70.92459
	761.08
	5.13

	14
	94.87232
	70.26769
	761.034
	5.14

	15
	95.49442
	69.65555
	761.008
	5.15

	16
	96.08988
	69.07012
	760.977
	5.16

	17
	96.65536
	68.51464
	760.965
	5.17

	18
	97.19532
	67.98467
	760.960
	5.18


From the above table we have observed that:

Minimum loss is FLmin = 5.01 MW
Minimum cost is FCmin = 760.960 $/hr
Value of loss at minimum cost is FLatFcmin = 5.18 MW
Value of cost at minimum loss is FCatFL,min = 763.152 $/hr
TABLE 5:
Results obtained after applying Surrogate Worth Tradeoff Technique
	S No.
	FC
	FL
	׀tCL(FC)׀
	(F’C, F’L)
	MRSCL
	WCL

	1
	763.152
	5.01
	
	
	
	

	
	
	
	5
	763.151, 5.015
	0.0023
	-0.99954

	2
	763.150
	5.02
	
	
	
	

	
	
	
	5
	763.149, 5.025
	0.0069
	-0.99862

	3
	763.148
	5.03
	
	
	
	

	
	
	
	3.33
	763.1465, 5.035
	0.0114
	-0.9966

	4
	763.145
	5.04
	
	
	
	

	
	
	
	2
	763.1425, 5.045
	0.016
	-0.992

	5
	763.140
	5.05
	
	
	
	*

	
	
	
	0.02
	762.895, 5.055
	0.023
	0.15

	6
	762.65
	5.06
	
	
	
	

	
	
	
	0.016
	762.329, 5.065
	0.04
	1.5

	7
	762.008
	5.07
	
	
	
	

	
	
	
	0.032
	761.8525, 5.075
	0.073
	1.28

	8
	761.697
	5.08
	
	
	
	

	
	
	
	0.048
	761.5935, 5.085
	0.118
	1.46

	9
	761.49
	5.09
	
	
	
	

	
	
	
	0.06
	761.415, 5.095
	0.187
	2.117

	10
	761.34
	5.10
	
	
	
	

	
	
	
	0.09
	761.285, 5.105
	0.2923
	2.25

	11
	761.23
	5.11
	
	
	
	

	
	
	
	0.11
	761.185, 5.115
	0.467
	3.25

	12
	761.14
	5.12
	
	
	
	

	
	
	
	0.16
	761.11, 5.125
	0.767
	3.79

	13
	761.08
	5.13
	
	
	
	

	
	
	
	0.217
	761.057, 5.135
	1.289
	4.94

	14
	761.034
	5.14
	
	
	
	

	
	
	
	0.301
	761.0174, 5.145
	2.352
	6.81

	15
	761.0008
	5.15
	
	
	
	

	
	
	
	0.42
	760.9889, 5.155
	5.017
	10.95

	16
	760.977
	5.16
	
	
	
	

	
	
	
	0.833
	760.971, 5.165
	14.09
	15.91

	17
	760.965
	5.17
	
	
	
	

	
	
	
	2
	760.9625, 5.175
	66
	32

	18
	760.960
	5.18
	
	
	
	


*WCL changes sign here. 
The best compromise solution of F’C is obtained graphically at WCL tends to zero.
Here FC represents the cost in $/hr, FL represents the losses in MW. 

tCL represents trade off function given as:
׀  tCLI ׀ =   FLK+1 - FLK   =               ∆ FL 
                FCK+1 - FCK         FCK+1- FCK  

F’C, F’L represents the average value of the interval given as:
                               F’C = FCK+1 + FCK 

                                                  2

                               F’L = FLK+1 + FLK

                                                   2

MRSCL represents the marginal rate of substitution given as:
          MRSCLI = F’L – FLmin
                           F’C – Fcmin
WCL represents the surrogate worth function as:

          WCLI  =  MRSCLI – 1


                            tCLI
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Fig 6.2 Plot between WCL and F’C (5 BUS System)
Hence the value of F’C when WCL = 0 is F*C = 762.815 $/hr
Where F*C is the best compromise solution of FC 
Now to find the Losses at which we will have this cost we have to minimize the losses subject to fixed cost as 762.815 $/hr. Problem can be formulated as: 

Minimize F(x) = P1 + P2 - PLosses
Subject to inequality constraint 30 < P1, P2 < 120  
& equality constraint FC – F*C = 0

where FC = C1 + C2
The M-file for that would be

Objective Function File:

function z = xoptima5(x)

z = (x(1)+x(2)-0.00035336*x(1)*x(1)-2*0.0000103196*x(1)*x(2)-0.000368992*x(2)*x(2));
Constraint Function File:

function [c,ceq]=constraintxoptima5(x)

c= [-x(1)+30;x(1)-120;-x(2)+30;x(2)-120];

ceq=[((50*(x(1)/100)*(x(1)/100))+(351*(x(1)/100))              +44.4+(50*(x(2)/100)*(x(2)/100))+(389*(x(2)/100))+40.6)-762.815;0];

Result or Losses obtained is FL* = 5.044 MW
Hence the Target Point is (FC*, FL*) or (762.815, 5.044). 
6.2 IEEE 14 BUS SYSTEM:
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Fig. 6.3 Bus-Code Diagram 14 Bus System
TABLE 6
Impedance and Line-Charging Data (14 Bus System)
	Line Designation
	Resistance p.u.*
	Reactance p.u.*
	Line Charging
	Tap Setting

	1-2
	0.01938
	0.05917
	0.0264
	1

	1-5
	0.05403
	0.22304
	0.0246
	1

	2-3
	0.04699
	0.19797
	0.0219
	1

	2-4
	0.05811
	0.17632
	0.0187
	1

	2-5
	0.05695
	0.17388
	0.0170
	1

	3-4
	0.06701
	0.17103
	0.0173
	1

	4-5
	0.01335
	0.04211
	0.0064
	1

	4-7
	0
	0.20912
	0
	1

	4-9
	0
	0.55618
	0
	1

	5-6
	0
	0.25202
	0
	1

	6-11
	0.09498
	0.19890
	0
	1

	6-12
	0.12291
	0.25581
	0
	1

	6-13
	0.06615
	0.13027
	0
	1

	7-8
	0
	0.17615
	0
	1

	7-9
	0
	0.11001
	0
	1

	9-10
	0.03181
	0.08450
	0
	1

	9-14
	0.12711
	0.27038
	0
	1

	10-11
	0.08205
	0.19207
	0
	1

	12-13
	0.22092
	0.19988
	0
	1

	13-14
	0.17093
	0.34802
	0
	1


* Impedance and line-charging susceptance in p.u. on a 100 MVA base. Line charging one-half of total charging of line.
TABLE 7
BUS DATA or Operating Conditions (14 Bus System)
	
	
	
	Generation
	Generation
	Load
	Load

	Bus No.
	Magnitude p.u.
	Phase Angle deg.
	MW
	MVAR
	MW
	MVAR

	1*
	1.06
	0
	0
	0
	0
	0

	2
	1
	0
	40
	0
	21.7
	12.7

	3
	1
	0
	0
	0
	94.2
	19.0

	4
	1
	0
	0
	0
	47.8
	-3.9

	5
	1
	0
	0
	0
	7.6
	1.6

	6
	1
	0
	0
	0
	11.2
	7.5

	7
	1
	0
	0
	0
	0
	0

	8
	1
	0
	0
	0
	0
	0

	9
	1
	0
	0
	0
	29.5
	16.6

	10
	1
	0
	0
	0
	9.0
	5.8

	11
	1
	0
	0
	0
	3.5
	1.8

	12
	1
	0
	0
	0
	6.1
	1.6

	13
	1
	0
	0
	0
	13.5
	5.8

	14
	1
	0
	0
	0
	14.9
	5.0


* Slack Bus
TABLE 8

REGULATED BUS DATA(14 Bus System)
	Bus No.
	Voltage Magnitude p.u.
	Minimum MVAR capability
	Maximum MVAR capability

	2
	1.045
	-40
	50

	3
	1.010
	0
	40

	6
	1.070
	-6
	24

	8
	1.090
	-6
	24


Cost Characteristics:
C1 = 50 P1^2 + 245 P1 + 105 $/hr

C2 = 50 P2^2 + 351 P2 + 44.4 $/hr

C6 = 50 P6^2 + 389 P6 + 40.6 $/hr
Here for the 14 bus system we have taken, the total load demand of the system is 259 MW. Maximum and minimum active power constraint on the generator bus for the given system is 120 MW and 30 MW respectively. Voltage magnitude constraint for generator bus 2 is 1.045, for bus no. 6 is 1.070, for bus no. 3 is 1.010 & for bus no. 8 is 1.090

So, in order to minimize the cost we have formulated the problem in the following manner:

Minimize 

                F(x) = C1 + C2 + C6
Subject to inequality constraint 

                 50< Pi< 150 for i = 1, 2, 6
And equality constraint 

                 PGeneration - PDemand – PLoss = 0 

                 PLoss – Specified loss value = 0

6.2.1 M-file For Calculating B- Coefficients:
clear
basemva=100;
accuracy=0.0001;
maxiter=10;
busdata=[1 1 1.06 0 0 150 0 0 0 0 0;2 2 1.045 0 21.7 12.7 63.11 0 -40 50 0;3 0 1.01 0 94.2 19 0 0 0 40 0;4 0 1 0 47.8 -3.9 0 0 0 0 0;5 0 1 0 7.6 1.6 0 0 0 0 0;6 2 1.07 0 11.2 7.5 77.12 0 -6 24 0;7 0 1 0 0 0 0 0 0 0 0;8 0 1.09 0 0 0 0 0 -6 24 0;9 0 1 0 29.5 16.6 0 0 0 0 0;10 0 1 0 9 5.8 0 0 0 0 0;11 0 1 0 3.5 1.8 0 0 0 0 0;12 0 1 0 6.1 1.6 0 0 0 0 0;13 0 1 0 13.5 5.8 0 0 0 0 0;14 0 1 0 14.9 5 0 0 0 0 0];
linedata=[1 2 0.01938 0.05917 0.0264 1;1 5 0.05403 0.22304 0.0246 1;2 3 0.04699 0.19797 0.0219 1;2 4 0.05811 0.17632 0.0187 1;2 5 0.0595 0.17388 0.0170 1;3 4 0.06701 0.17103 0.0173 1;4 5 0.01335 0.04211 0.0064 1;4 7 0 0.20912 0 1;4 9 0 0.55618 0 1;5 6 0 0.25202 0 1;6 11 0.09498 0.19890 0 1;6 12 0.12291 0.25581 0 1;6 13 0.06615 0.13027 0 1;7 8 0 0.17615 0 1;7 9 0 0.11001 0 1;9 10 0.03181 0.08450 0 1;9 14 0.12711 0.27038 0 1;10 11 0.08205 0.19207 0 1;12 13 0.22092 0.19988 0 1;13 14 0.17093 0.34802 0 1];  
disp(busdata)
disp(linedata)
mwlimits=[50 150;50 150;50 150];
lfybus
lfnewton
busout
bloss
B-Coefficients Calculated are:
B11 = 0.0231
B12 = 0.0078

B13 = - 0.0007

B21 = 0.0078

B22 = 0.0182

B23 = 0.0022

B31 = - 0.0007

B32 = 0.0022

B33 = 0.0329
6.2.2 M- File For 14 Bus Load Dispatch Problem: 
Objective Function M-file:

function z = optima14(x) 
z = ((50*(x(1)/100)*(x(1)/100)) + (245*(x(1)/100)) + 105 + (50*(x(2)/100)*(x(2)/100)) + (351*(x(2)/100)) + 44.4 + (50*(x(3)/100)*(x(3)/100)) + (389*(x(3)/100)) + 40.6);

Constraint Function M-file:
function [c,ceq]=constraintoptima14(x)

c=[-x(1)+50;x(1)-150;-x(2)+50;x(2)-150;-x(3)+50;x(3)-150];

ceq=[(x(1)+x(2)+x(3))-259-(100*(((x(1)/100)*(x(1)/100)*0.0231) + (2*(x(1)/100)*(x(2)/100)*0.0078) + (2*(x(1)/100)*(x(3)/100) * ( -0.0007)+ ((x(2)/100)*(x(2)/100)*0.0182) + (2*(x(2)/100)*(x(3)/100)*0.0022) + ((x(3)/100)*(x(3)/100)*0.0329))); (100*(((x(1)/100)*(x(1)/100)*0.0231) + (2*(x(1)/100)*(x(2)/100)*0.0078) + (2*(x(1)/100)*(x(3)/100)*(-0.0007)) + ((x(2)/100)*(x(2)/100)*0.0182) + (2*(x(2)/100)*(x(3)/100)*0.0022) + ((x(3)/100)*(x(3)/100)*0.0329)))-7.83];

TABLE 9

Readings Obtained on Running GA
	S No.
	FL (Loss)

MW
	FC (Cost)

$/hr
	P1
	P2
	P6

	1
	7.13
	1183.692
	85.10672
	103.5842
	77.54929

	2
	7.23
	1183.663
	85.1076
	103.58003
	77.54653

	3
	7.33
	1163.412
	103.19644
	91.51966
	71.61389

	4
	7.43
	1157.2699
	112.08676
	79.36237
	74.98089

	5
	7.53
	1155.1103
	111.84638
	95.92393
	58.75969

	6
	7.63
	1151.4077
	123.53299
	67.29094
	75.80606

	7
	7.73
	1145.85
	128.37555
	71.52017
	66.83427

	8
	7.83
	1143.22
	130.42736
	77.08818
	59.31448

	9
	7.93
	1141.499
	134.12428
	74.99175
	57.81398

	10
	8.03
	1140.147
	136.95362
	74.7814
	55.29501

	11
	8.13
	1139.026
	141.11538
	70.25213
	55.76249

	12
	8.23
	1138.621
	145.41237
	64.3422
	57.47543

	13
	8.33
	1137.325
	145.82454
	70.46828
	51.03721

	14
	8.43
	1136.752
	148.7023
	68.63512
	50.09261

	15
	8.53
	1136.62
	150
	67.96
	50

	16
	8.63
	1136.597
	150
	67.47405
	50


From the above table we have observed that:

Minimum loss is FLmin = 7.13MW
Minimum cost is FCmin = 1136.597 $/hr
Value of loss at minimum cost is FLatFcMIN = 8.63 MW
Value of cost at minimum loss is FCatFLMIN = 1183.692 $/hr
TABLE 10:
Results obtained after applying Surrogate Worth Tradeoff Technique
	S No.
	FL (Loss)
	FC (Cost)
	׀tCL(FC)׀
	(F’C, F’L)
	MRSCL
	WCL

	1
	7.13
	1183.692
	
	
	
	

	
	
	
	3.448
	1183.6775,7.18
	0.00106
	-0.9996

	2
	7.23
	1183.663
	
	
	
	

	
	
	
	0.0049
	1173.5375,7.28
	0.00406
	-0.17

	3
	7.33
	1163.412
	
	
	
	

	
	
	
	0.017
	1160.5555,7.38
	0.0104
	-0.38

	4
	7.43
	1157.699
	
	
	
	

	
	
	
	0.038
	1156.7074,7.48
	0.0176
	-0.536

	5
	7.53
	1155.1103
	
	
	
	*

	
	
	
	0.027
	1153.259,7.58
	0.027
	0

	6
	7.63
	1151.4077
	
	
	
	

	
	
	
	0.018
	1148.629,7.68
	0.0457
	1.53

	7
	7.73
	1145.85
	
	
	
	

	
	
	
	0.038
	1144.535,7.78
	0.0818
	1.152

	8
	7.83
	1143.22
	
	
	
	

	
	
	
	0.058
	1142.3595,7.88
	0.1301
	1.243

	9
	7.93
	1141.499
	
	
	
	

	
	
	
	0.074
	1140.823,7.98
	0.2011
	1.718

	10
	8.03
	1140.147
	
	
	
	

	
	
	
	0.089
	1139.5865,8.08
	0.318
	2.573

	11
	8.13
	1139.026
	
	
	
	

	
	
	
	0.123
	1138.8235,8.18
	0.472
	2.83

	12
	8.23
	1138.621
	
	
	
	

	
	
	
	0.077
	1137.973,8.28
	0.835
	9.84

	13
	8.33
	1137.325
	
	
	
	

	
	
	
	0.174
	1137.025,8.38
	2.92
	15.78

	14
	8.43
	1136.752
	
	
	
	

	
	
	
	0.757
	1136.686,8.48
	15.169
	19.038

	15
	8.53
	1136.597
	
	
	
	

	
	
	
	4.35
	1136.6085,8.58
	126.086
	27.98

	16
	8.63
	
	
	
	
	


*WCL changes sign here
The best compromise solution of F’C is obtained graphically at WCL tends to zero.

Here FC represents the cost in $/hr, FL represents the losses in MW. 

tCL represents trade off function given as:
׀ tCLI ׀ =   FLK+1 - FLK   =               ∆ FL 
                FCK+1 - FCK         FCK+1- FCK  

F’C, F’L represents the average value of the interval given as:

                               F’C = FCK+1 + FCK 

                                                  2

                               F’L = FLK+1 + FLK

                                                   2

MRSCL represents the marginal rate of substitution given as:

          MRSCLI = F’L – FLmin
                           F’C – Fcmin
WCL represents the surrogate worth function as:

          WCLI  =  MRSCLI – 1


                            tCLI
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Fig 6.4 : Plot between WCL and F’C (14 Bus System)
Hence the value of F’C when WCL = 0 is F*C = 1153.259 $/hr
Where F*C is the best compromise solution of FC 

Now to find the Losses at which we will have this cost we have to minimize the losses subject to fixed cost as 1153.259 $/hr. Problem can be formulated as: 

Minimize F(x) = P1 + P2 + P3 - PLosses
Subject to inequality constraint 50 < P1, P2, P3 < 150  

& equality constraint FC – F*C = 0

where FC = C1 + C2 + C3
The M-file for that would be:

Objective Function File:

function z = optima14(x) 
z = (x(1)+x(2)+x(3))-259-(100*(((x(1)/100)*(x(1)/100)*0.0231)+ (2*(x(1)/100)*(x(2)/100)*0.0078)+(2*(x(1)/100)*(x(3)/100) * ( -0.0007)+ ((x(2)/100)*(x(2)/100)*0.0182) + (2*(x(2)/100)*(x(3)/100)*0.0022) + ((x(3)/100)*(x(3)/100)*0.0329))); (100*(((x(1)/100)*(x(1)/100)*0.0231) + (2*(x(1)/100)*(x(2)/100)*0.0078) + (2*(x(1)/100)*(x(3)/100)*(-0.0007)) + ((x(2)/100)*(x(2)/100)*0.0182) + (2*(x(2)/100)*(x(3)/100)*0.0022) + ((x(3)/100)*(x(3)/100)*0.0329)));

Constraint Function M-file:

function [c,ceq]=constraintoptima15(x)

c=[-x(1)+50;x(1)-150;-x(2)+50;x(2)-150;-x(3)+50;x(3)-150];

ceq= [((50*(x(1)/100)*(x(1)/100))+(245*(x(1)/100))+105 + (50*(x(2)/100)*(x(2)/100))+(351*(x(2)/100))+44.4 + (50*(x(3)/100)*(x(3)/100))+(389*(x(3)/100))+40.6) – 1153.259];

Result or Losses obtained is F*L = 7.32 MW
Hence the Target Point is (F*C, F*L) or (1153.259, 7.32). 
6.3 IEEE 30 BUS SYSTEM
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Fig 6.5 Bus-Code Diagram 30 Bus System
TABLE 11

IMPEDANCE or LINE-CHARGING DATA (30 Bus System)
	Line Designation
	Resistance p.u.*
	Reactance p.u.*
	Line Charging
	Tap Setting

	1-2
	0.0192
	0.0575
	0.0264
	1

	1-3
	0.0452
	0.1852
	0.0204
	1

	2-4
	0.0570
	0.1737
	0.0184
	1

	3-4
	0.0132
	0.0379
	0.0042
	1

	2-5
	0.0472
	0.1983
	0.0209
	1

	2-6
	0.0581
	0.1763
	0.0187
	1

	4-6
	0.0119
	0.0414
	0.0045
	1

	5-7
	0.0460
	0.1160
	0.0102
	1

	6-7
	0.0267
	0.0820
	0.0085
	1

	6-8
	0.0120
	0.0420
	0.0045
	1

	6-9
	0
	0.2080
	0
	0.978

	6-10
	0
	0.5560
	0
	0.969

	9-11
	0
	0.2080
	0
	1

	9-10
	0
	0.1100
	0
	1

	4-12
	0
	0.2560
	0
	0.932

	12-13
	0
	0.1400
	0
	1

	12-14
	0.1231
	0.2559
	0
	1

	12-15
	0.0662
	0.1304
	0
	1

	12-16
	0.0945
	0.1987
	0
	1

	14-15
	0.2210
	0.1997
	0
	1

	16-17
	0.0824
	0.1923
	0
	1

	15-18
	0.1070
	0.2185
	0
	1

	18-19
	0.0639
	0.1292
	0
	1

	19-20
	0.0340
	0.0680
	0
	1

	10-20
	0.0936
	0.2090
	0
	1

	10-17
	0.0324
	0.0845
	0
	1

	10-21
	0.0348
	0.0749
	0
	1

	10-22
	0.0727
	0.1499
	0
	1

	21-22
	0.0116
	0.0236
	0
	1

	15-23
	0.1000
	0.2020
	0
	1

	22-24
	0.1150
	0.1790
	0
	1

	23-24
	0.1320
	0.2700
	0
	1

	24-25
	0.1885
	0.3292
	0
	1

	25-26
	0.2544
	0.3800
	0
	1

	25-27
	0.1093
	0.2087
	0
	1

	27-28
	0
	0.3960
	0
	0.968

	27-29
	0.2198
	0.4153
	0
	1

	27-30
	0.3202
	0.6027
	0
	1

	29-30
	0.2399
	0.4533
	0
	1

	8-28
	0.0636
	0.2000
	0.0214
	1

	6-28
	0.0169
	0.0599
	0.0065
	1


*Impedance and line-charging susceptance in p.u. on a 100 MVA base. Line charging one-half of total charging line.
TABLE 12
BUS DATA or Operating Conditions (30 Bus System)
	
	
	
	Generation
	Generation
	Load
	Load

	Bus No.
	Magnitude p.u.
	Phase Angle
Degrees
	MW
	MVAR
	MW
	MVAR

	1*
	1.06
	0
	0
	0
	0
	0

	2
	1
	0
	40
	0
	21.7
	12.7

	3
	1
	0
	0
	0
	2.4
	1.2

	4
	1
	0
	0
	0
	7.6
	1.6

	5
	1
	0
	0
	0
	94.2
	19.0

	6
	1
	0
	0
	0
	0
	0

	7
	1
	0
	0
	0
	22.8
	10.9

	8
	1
	0
	0
	0
	30.0
	30.0

	9
	1
	0
	0
	0
	0
	0

	10
	1
	0
	0
	0
	5.8
	2.0

	11
	1
	0
	0
	0
	0
	0

	12
	1
	0
	0
	0
	11.2
	7.5

	13
	1
	0
	0
	0
	0
	0

	14
	1
	0
	0
	0
	6.2
	1.6

	15
	1
	0
	0
	0
	8.2
	2.5

	16
	1
	0
	0
	0
	3.5
	1.8

	17
	1
	0
	0
	0
	9.0
	5.8

	18
	1
	0
	0
	0
	3.2
	0.9

	19
	1
	0
	0
	0
	9.5
	3.4

	20
	1
	0
	0
	0
	2.2
	0.7

	21
	1
	0
	0
	0
	17.5
	11.2

	22
	1
	0
	0
	0
	0
	0

	23
	1
	0
	0
	0
	3.2
	1.6

	24
	1
	0
	0
	0
	8.7
	6.7

	25
	1
	0
	0
	0
	0
	0

	26
	1
	0
	0
	0
	3.5
	2.3

	27
	1
	0
	0
	0
	0
	0

	28
	1
	0
	0
	0
	0
	0

	29
	1
	0
	0
	0
	2.4
	0.9

	30
	1
	0
	0
	0
	10.6
	1.9


* Slack Bus

TABLE 13

Regulated Bus Data (30 Bus System)
	Bus Number
	Voltage Magnitude p.u.
	Minimum MVAR Capability
	Maximum MVAR Capability

	2
	1.045
	-40
	50

	5
	1.01
	-40
	40

	8
	1.01
	-10
	40

	11
	1.082
	-6
	24

	13
	1.071
	-6
	24


TABLE 14

Transformer Data (30 Bus System)
	Transformer Designation
	Tap Setting*

	4-12
	0.932

	6-9
	0.978

	6-10
	0.969

	28-27
	0.968


* Off-nominal turns ratio, as determined by the actual transformer-tap positions and the voltage bases. In the case of nominal turns ratio, this would equal 1.

TABLE 15

Static Capacitor Data (30 Bus System)
	Bus Number
	Susceptance* p.u.

	10
	0.19

	24
	0.043


* Susceptance in p.u. on 100 MVA base.
Cost Characteristics:

C1 = 50 P1^2 + 245 P1 + 105 $/hr

C2 = 50 P2^2 + 351 P2 + 44.4 $/hr

C8 = 50 P8^2 + 389 P8 + 40.6 $/hr
Here for the 30 bus system we have taken, the total load demand of the system is 283.4 MW. Maximum and minimum active power constraint on the generator bus for the given system is 120 MW and 30 MW respectively. Voltage magnitude constraint for generator bus 2 is 1.045, for bus no. 5 is 1.01, for bus no. 8 is 1.010, for bus no. 11 is 1.082 & for bus no. 13 is 1.071
So, in order to minimize the cost we have formulated the problem in the following manner:

Minimize 

                F(x) = C1 + C2 + C8
Subject to inequality constraint 

                 50<=Pi<=150 for i = 1, 2, 8
And equality constraint 

                 PGeneration - PDemand – PLoss = 0 

                 PLoss – Specified loss value = 0

6.3.1 M-file For Calculating B-Coefficients:

clear

basemva=100;

accuracy=0.0001;

maxiter=10;

busdata=[1 1 1.06 0 0 0 0 0 0 0 0; 2 2 1.045 0 21.7 12.7 90 0 -40 50 0; 3 0 1 0 2.4 1.2 0 0 0 0 0; 4 0 1 0 7.6 1.6 0 0 0 0 0; 5 0 1.01 0 94.2 19 0 0 -40 40 0; 6 0 1 0 0 0 0 0 0 0 0; 7 0 1 0 22.8 10.9 0 0 0 0 0; 8 2 1.01 0 30 30 150 0 -10 40 0; 9 0 1 0 0 0 0 0 0 0 0; 10 0 1 0 5.8 2 0 0 0 0 0.19; 11 0 1.082 0 0 0 0 0 -6 24 0; 12 0 1 0 11.2 7.5 0 0 0 0 0; 13 0 1.071 0 0 0 0 0 -6 24 0; 14 0 1 0 6.2 1.6 0 0 0 0 0; 15 0 1 0 8.2 2.5 0 0 0 0 0; 16 0 1 0 3.5 1.8 0 0 0 0 0; 17 0 1 0 9 5.8 0 0 0 0 0; 18 0 1 0 3.2 0.9 0 0 0 0 0; 19 0 1 0 9.5 3.4 0 0 0 0 0; 20 0 1 0 2.2 0.7 0 0 0 0 0; 21 0 1 0 17.5 11.2 0 0 0 0 0; 22 0 1 0 0 0 0 0 0 0 0; 23 0 1 0 3.2 1.6 0 0 0 0 0; 24 0 1 0 8.7 6.7 0 0 0 0 0.043; 25 0 1 0 0 0 0 0 0 0 0; 26 0 1 0 3.5 2.3 0 0 0 0 0; 27 0 1 0 0 0 0 0 0 0 0; 28 0 1 0 0 0 0 0 0 0 0; 29 0 1 0 2.4 0.9 0 0 0 0 0; 30 0 1 0 10.6 1.9 0 0 0 0 0];

linedata=[1 2 0.0192 0.0575 0.0264 1; 1 3 0.0452 0.1852 0.0204 1; 2 4 0.0570 0.1737 0.0184 1; 3 4 0.0132 0.0379 0.0042 1; 2 5 0.0472 0.1983 0.0209 1; 2 6 0.0581 0.1763 0.0187 1; 4 6 0.0119 0.0414 0.0045 1; 5 7 0.0460 0.1160 0.0102 1; 6 7 0.0267 0.0820 0.0085 1; 6 8 0.0120 0.0420 0.0045 1; 6 9 0 0.2080 0 0.978; 6 10 0 0.5560 0 0.969; 9 11 0 0.2080 0 1; 9 10 0 0.1100 0 1 ; 4 12 0 0.2560 0 0.932; 12 13 0 0.1400 0 1; 12 14 0.1231 0.2559 0 1; 12 15 0.0662 0.1304 0 1; 12 16 0.0945 0.1987 0 1; 14 15 0.2210 0.1997 0 1; 16 17 0.0824 0.1923 0 1; 15 18 0.1070 0.2185 0 1; 18 19 0.0639 0.1292 0 1; 19 20 0.0340 0.0680 0 1; 10 20 0.0936 0.2090 0 1; 10 17 0.0324 0.0845 0 1; 10 21 0.0348 0.0749 0 1; 10 22 0.0727 0.1499 0 1; 21 22 0.0116 0.0236 0 1; 15 23 0.1000 0.2020 0 1; 22 24 0.1150 0.1790 0 1; 23 24 0.1320 0.2700 0 1; 24 25 0.1885 0.3292 0 1; 25 26 0.2544 0.3800 0 1; 25 27 0.1093 0.2087 0 1; 27 28 0 0.3960 0 0.968;27 29 0.2198 0.4153 0 1; 27 30 0.3202 0.6027 0 1; 29 30 0.2399 0.4533 0 1;8 28 0.0636 0.2000 0.0214 1; 6 28 0.0169 0.0599 0.0065 1];

disp(busdata)

disp(linedata)

lfybus

lfnewton

busout

bloss

B-Coefficients Calculated are as:
B11 = 0.0307
B12 = 0.0129
B13 = 0.0002
B21 = 0.0129
B22 = 0.0152

B23 = - 0.0011
B31 = 0.0002
B32 = - 0.0011
B33 = 0.0190
6.2.2 M- File For 30 Bus Load Dispatch Problem: 
Objective Function M-file:

function z = optima30(x)

z = ((50*(x(1)/100)*(x(1)/100)) + (245*(x(1)/100))+105 +  (50*(x(2)/100)*(x(2)/100)) + (351*(x(2)/100)) + 44.4 + (50*(x(3)/100)*(x(3)/100)) + (389*(x(3)/100))+40.6);

Constraint Function M-File:
function [c,ceq]=constraintoptima30(x)

c=[-x(1)+50;x(1)-150;-x(2)+50;x(2)-150;-x(3)+50;x(3)-150];

ceq=[(x(1)+x(2)+x(3))-283.4-(100*(((x(1)/100)*(x(1)/100)*0.0307) + (2*(x(1)/100)*(x(2)/100)*0.0129) + (2*(x(1)/100)*(x(3)/100)*(0.0002)) + ((x(2)/100)*(x(2)/100)*0.0152) + (2*(x(2)/100)*(x(3)/100)*(-0.0011)) + ((x(3)/100)*(x(3)/100)*0.0190))); (100*(((x(1)/100)*(x(1)/100)*0.0307) + (2*(x(1)/100)*(x(2)/100)*0.0129) + (2*(x(1)/100)*(x(3)/100)*(0.0002)) + ((x(2)/100)*(x(2)/100)*0.0152) + (2*(x(2)/100)*(x(3)/100)*(-0.0011)) + ((x(3)/100)*(x(3)/100)*0.0190)))-9.72];
TABLE 16

Readings Obtained on Running GA
	S No.
	FL (Loss)

MW
	FC (Cost)

$/hr
	P1
(MW)
	P2
(MW)
	P8
(MW)

	1
	7.47
	1322.70
	71.91967
	107.76846
	111.18187

	2
	7.62
	1315.96
	78.50987
	98.40275
	114.1074

	3
	7.77
	1310.40
	79.61432
	108.59556
	102.96012

	4
	7.92
	1306.36
	88.81961
	86.85482
	115.64559

	5
	8.07
	1299.04
	90.81062
	95.17501
	105.48434

	6
	8.22
	1295.04
	92.56881
	99.88843
	99.16278

	7
	8.37
	1290.81
	98.21671
	91.77895
	101.77437

	8
	8.52
	1287.93
	98.67669
	99.0533
	94.18998

	9
	8.67
	1284.101
	104.17139
	89.05966
	97.83896

	10
	8.82
	1281.85
	109.61293
	82.32728
	100.27983

	11
	8.97
	1278.602
	109.6405
	90.58204
	92.14751

	12
	9.12
	1276.527
	115.02919
	81.89361
	95.59728

	13
	9.27
	1274.98
	112.29351
	96.16518
	84.21131

	14
	9.42
	1271.99
	117.94734
	87.46874
	87.40394

	15
	9.57
	1271.56
	116.54719
	96.55271
	79.87006

	16
	9.72
	1269.54
	119.56806
	94.41838
	79.1336

	17
	9.87
	1267.78
	128.96889
	74.9628
	89.3383


From the above table we have observed that:

Minimum loss is FLmin = 7.47 MW
Minimum cost is FCmin = 1267.78 $/hr
Value of loss at minimum cost is FLatFcmin = 9.87 MW
Value of cost at minimum loss is FCatFLmin = 1322.70 $/hr
TABLE 17:
Results obtained after applying Surrogate Worth Tradeoff Technique
	S No.
	FC (Cost)
	FL (Loss)
	׀tCL(FC)׀
	(F’C, F’L)
	MRSCL
	WCL

	1
	1322.70
	7.47
	
	
	
	

	
	
	
	0.0222
	1319.33, 7.545
	0.0015
	-0.93

	2
	1315.96
	7.62
	
	
	
	

	
	
	
	0.027
	1313.18, 7.695
	0.005
	-0.815

	3
	1310.40
	7.77
	
	
	
	

	
	
	
	0.037
	1308.38, 7.845
	0.0092
	-0.75

	4
	1306.36
	7.92
	
	
	
	

	
	
	
	0.0205
	1302.70, 7.995
	0.015
	-0.27

	5
	1299.04
	8.07
	
	
	
	

	
	
	
	0.0375
	1297.04, 8.145
	0.023
	-0.39

	6
	1295.04
	8.22
	
	
	
	

	
	
	
	0.0354
	1292.925, 8.295
	0.032
	-0.096

	7
	1290.81
	8.37
	
	
	
	

	
	
	
	0.052
	1289.37, 8.445
	0.045
	-0.135

	8
	1287.93
	8.52
	
	
	
	*

	
	
	
	0.039
	1286.01, 8.595
	0.062
	0.59

	9
	1284.101
	8.67
	
	
	
	

	
	
	
	0.067
	1282.98, 8.745
	0.083
	0.24

	10
	1281.85
	8.82
	
	
	
	

	
	
	
	0.046
	1280.229, 8.895
	0.114
	1.48

	11
	1278.608
	8.97
	
	
	
	

	
	
	
	0.072
	1277.5675, 9.045
	0.161
	1.24

	12
	1276.527
	9.12
	
	
	
	

	
	
	
	0.0969
	1275.7535, 9.195
	0.216
	1.23

	13
	1274.98
	9.27
	
	
	
	

	
	
	
	0.05
	1273.485, 9.345
	0.329
	5.58

	14
	1271.99
	9.42
	
	
	
	

	
	
	
	0.349
	1271.775, 9.495
	0.507
	0.45

	15
	1271.56
	9.57
	
	
	
	

	
	
	
	0.074
	1270.55, 9.645
	0.785
	9.61

	16
	1269.54
	9.72
	
	
	
	

	
	
	
	0.085
	1268.66, 9.795
	2.642
	30.08

	17
	1267.78
	9.87
	
	
	
	


*WCL changes sign here
The best compromise solution of F’C is obtained graphically at WCL tends to zero.

Here FC represents the cost in $/hr, FL represents the losses in MW. 

tCL represents trade off function given as:
׀ tCLI׀ =   FLK+1 - FLK   =               ∆ FL 
                FCK+1 - FCK         FCK+1- FCK  

F’C, F’L represents the average value of the interval given as:

                               F’C = FCK+1 + FCK 

                                                  2

                               F’L = FLK+1 + FLK

                                                   2

MRSCL represents the marginal rate of substitution given as:

          MRSCLI = F’L – FLmin
                           F’C – Fcmin
WCL represents the surrogate worth function as:

          WCLI  =  MRSCLI – 1


                            tCLI
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Fig 6.6 Plot between WCL and F’C (30 Bus System)
Hence the value of F’C when WCL = 0 is F*C = 1288.50 $/hr
Where F*C is the best compromise solution of FC 

Now to find the Losses at which we will have this cost we have to minimize the losses subject to fixed cost as 1288.50 $/hr. Problem can be formulated as: 

Minimize F(x) = P1 + P2 + P3 - PLosses
Subject to inequality constraint 50 < P1, P2, P3 < 150  

& equality constraint FC – F*C = 0

where FC = C1 + C2 + C3
The M-file for that would be:

Objective Function File:

function z = xoptima30(x)

z =(100*(((x(1)/100)*(x(1)/100)*0.0307)+ (2*(x(1)/100)*(x(2)/100)*0.0129) + (2*(x(1)/100)*(x(3)/100)*(0.0002)) + ((x(2)/100)*(x(2)/100)*0.0152) + (2*(x(2)/100)*(x(3)/100)*(-0.0011)) + ((x(3)/100)*(x(3)/100)*0.0190)));

Constraint Function M-file:

function [c,ceq]=constraintxoptima30(x)

c=[-x(1)+50;x(1)-150;-x(2)+50;x(2)-150;-x(3)+50;x(3)-150];

ceq=[((50*(x(1)/100)*(x(1)/100))+(245*(x(1)/100))+105 +  (50*(x(2)/100)*(x(2)/100))+(351*(x(2)/100)) +44.4 +(50*(x(3)/100)*(x(3)/100))+(389*(x(3)/100))+40.6) -1288.50;0];

Result or Losses obtained is F*L = 8.576 MW
Hence the Target Point is (F*​C, F*L) or (1288.50, 8.576). 
Chapter – 7

CONCLUSIONS & FUTURE SCOPE OF WORK
7.1 CONCLUSIONS
Based on the work carried out in this thesis following conclusion can be made:

1. In this work Genetic Algorithm has been studied and analyzed its parameters like population size, Initial population, Initial Range, Stopping conditions etc in getting the optimal points and final generation calculated for plotting the graphs. We had also noticed that we are not been able to obtain the results of all the population after each generation or iteration. We were only being able to get best fitness value after every generation.

2. Minimization of both constrained and unconstrained functions has been done using Genetic Algorithm to find global optimum point. We have also performed minimization of Multiobjective functions using GA for both constrained and unconstrained using the Weighted Method technique.

3. We have used the above gathered knowledge in the formulation and implementation of solution methods to obtain the optimum solution of Economic Load Dispatch problem using Genetic Algorithm is carried out.  

The effectiveness of the developed program is tested for IEEE 5, 14, & 30 BUS systems. Surrogate Worth Tradeoff Technique has been applied on the obtained results to obtain the Optimum or Ideal point.

7.2 FUTURE SCOPE OF WORK:
The Scope of further work in this field is identified as:

· In this work we have optimized the Economic Load Dispatch problem while considering loss constraints only. However, an attempt should be made to propose an algorithm so as to minimize the cost while considering loss, enviormental and emission constraints also.
· Effort should be done to find the population after each iteration or generation so that more detailed analysis of the results could be done. 

· Neural networks can be used to predict the load demand and to identify the feasible solutions. 
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