A Domain Specific Language based approach for design of OS Schedulers

A

Dissertation
On

A Domain Specific Language based approach for design of OS Schedulers
Submitted in Partial fulfillment of the requirements

 for the award of Degree of

MASTER OF ENGINEERING

 (Computer Technology and Applications)
Delhi University, Delhi

Submitted by: Amit Kumar (12/CTA/04)

University Roll No. 8502

Under the guidance of:

Prof. D Roy Choudhary

Department of Computer Engineering

DCE, Delhi

[image: image9.emf]System Call Interface

Device Drivers

Kernel Subsystems

Application1 Application1 Application1

kernel-space

Hardware

user-space

System Call Interface

Device Drivers

Kernel Subsystems

Application1 Application1 Application1

System Call Interface

Device Drivers

Kernel Subsystems

Device Drivers

Kernel Subsystems

Application1 Application1 Application1

kernel-space

Hardware

user-space

Department of Computer Engineering

DELHI COLLEGE OF ENGINEERING

Bawana Road, Delhi – 110042
Certificate

This is to certify that the work contained in this dissertation entitled “A Domain Specific Language based approach for design of Operating System Schedulers” by Amit Kumar has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

[image: image10.png]140% —

130%

120%

110%

100%

90%

array size (KB)0 4 81632640 4 81632640 4 81632640 4 § 1632640 4 81632640 4 81632640 4 81632640 4 8163264
processes 2 4 H 16 24 32 64 9

June, 2006

Prof. D. Roy Choudhury

Department of Computer Engineering

Delhi College of Engineering, Delhi

Abstract

Over the years, OS developers and researchers have been continuously implementing new XE "new" scheduling policies XE "scheduling policies" to address the requirements of different classes of applications. Such schedulers XE "schedulers" are especially designed to ensure timing guarantees that traditional schedulers are unable to provide. However, writing schedulers is a difficult task. It requires understanding the operation of multiple low-level kernel XE "kernel" mechanisms. To complicate matters, schedulers are highly optimized components. Such optimizations hinder code maintenance and testing, and make XE "make" development prone to errors.
This dissertation is intended to present the design and use of a runtime XE "runtime" (LISURT XE "LISURT") [§1.4] system XE "system" and a domain specific language (LISURT DSL XE "LISURT DSL") [§1.5] that are specifically targeted toward the development of scheduling policies XE "scheduling policies" .
The runtime XE "runtime" provides an interface XE "interface" in the linux kernel XE "kernel" , which enables to plug in a new XE "new" scheduling policy XE "scheduling policy" dynamically. The new policy is in the form of a module XE "module" . There are two kinds of schedulers XE "schedulers" : process scheduler XE "process scheduler" (PS) and hub scheduler XE "hub scheduler" (HS). Also there is a root scheduler XE "root scheduler" that is essentially a hub scheduler XE "scheduler" ; all the plugged schedulers are attached to this root scheduler either directly or through another hub scheduler. Using this scheme a tree of schedulers can be built, where the process scheduler will always be the leaf.

The domain specific language provides high-level abstractions that are specific to the domain of scheduling. These abstractions permit the separation of scheduling policy XE "scheduling policy" from rest of the kernel XE "kernel" , easing the development task. Additionally, a policy can be verified so as to ensure important safety properties. The policy written in this DSL produces a scheduler XE "scheduler" in high level C code based on the kernel. This newly generated scheduler code can be compiled with the dependencies from both kernel and system XE "system" libraries to produce a module XE "module" , which can be plugged in the kernel through the LISURT XE "LISURT" .

The existence of more than one scheduler XE "scheduler" in the system XE "system" costs some overhead in context switch time. But this overhead is almost negligible (see Figure 55).

Advantages of LISURT XE "Advantages of LISURT" are:

· Simplified scheduler XE "scheduler" implementation: The LISURT XE "LISURT" DSL provides high-level scheduling abstractions that simplify the implementation and evolution of new XE "new" scheduling policies XE "scheduling policies" . A dedicated translator XE "translator" checks LISURT DSL XE "LISURT DSL" code for compatibility with the target OS and translates the code into C.

· Simplified scheduler XE "scheduler" integration: The LISURT XE "LISURT" replaces scheduling code scattered throughout the kernel XE "kernel" by a fixed interface XE "interface" of scheduling events. Integration of a new XE "new" policy amounts to linking a module XE "module" defining handlers for these events with the rest of the kernel.

· Safety: Because integration of a new XE "new" policy does not require any changes to a LISURT XE "LISURT" -ready kernel XE "kernel" , potential errors are limited to the policy definition itself. Constraints on the LISURT DSL XE "LISURT DSL" , such as the absence of pointers and the impossibility of defining infinite loops, and the verifications performed by the LISURT DSL translator XE "translator" provide further safety guarantees.

This dissertation is written in as friendly and explanatory manner as possible to make XE "make" even the people with little or no linux background understand LISURT and LISURT DSL but still some assumptions are made for readers and mentioned in [§1.2].

Acknowledgements
It is a great pleasure to have the opportunity to extent my heartiest felt gratitude to everybody who helped me throughout the course of this project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my learned supervisor XE "supervisor" Prof. D Roy Choudhury, for his invaluable guidance, encouragement and patient review. His continuous inspiration only has made me complete this dissertation. He is the one who kept on boosting me time and again for putting an extra ounce of effort to realize this work.
I would also like to take this opportunity to present my sincere regards to my teachers Prof. Goldie Gabrani, Mrs. Rajni Jindal, Dr. S. K. Saxena and Mr. Rajeev Kumar for their support and encouragement.
I am grateful to my parents, brother and sister for their moral support all the time, they have been always around on the phone to cheer me up in the odd times of this work.
I am also thankful to my classmates for their unconditional support and motivation during this work. Living at DCE with them has been a lifetime experience for me; all the time we spend together enjoying life to its fullest, the birthday parties, placement parties, photo sessions and night outs discussing new XE "new" topic or technology would remain with me forever.
With a lot of voluntary commitment, the developers of Linux XE "Linux" cooperate on a global scale to promote the development of Linux. I thank them for their efforts — this dissertation would not exist without them. Furthermore, I want to thank the members of Linux Forum, Orkut Linux Kernel Programmers, Debian, Kernel Hackers communities. Last but not least, special thanks to Linus Torvalds!

I would like to hear from any readers with comment, suggestions, or bugs reports: amitkumar@lycos.com, amit180380@yahoo.com, amit180380@gmail.com. Please forward me a copy or patch of changes you made to this version for reviews.

Amit Kumar

M.E. (Computer Technology & Applications)

Department of Computer Engineering

Delhi College of Engineering, Delhi

Table of Contents
1Certificate

2Abstract

3Acknowledgements

4Table of Contents

6List of Figures

8List of Tables

91.
Introduction

91.1.
Purpose and Problem Definition

91.2.
Assumptions

101.3.
Approach

101.4.
The LISURT overview

111.4.1.
Example: Building and installing a RR scheduler

131.4.2.
Managing the Scheduler Modules

141.4.3.
Writing a C program which uses a PS

161.5.
The LISURT DSL overview

161.5.1.
Example: Writing the round-robin policy with the LISURT DSL

16Process structure definition

16States

17Selection

17Events handling

19Interface

222.
Introduction to the Linux Kernel

242.1.
The Kernel Source Tree

242.2.
Building the Kernel

262.2.1.
Minimizing Build Output

262.2.2.
Spawning Multiple Build Jobs

262.2.3.
Installing the Kernel

272.3.
Different nature of the kernel

323.
Process Scheduling in Linux

323.1.
The Linux Scheduling Algorithm

323.1.1.
Runqueues

343.1.2.
The Priority Arrays

353.1.3.
Recalculating Timeslices

373.1.4.
Calculating Priority and Timeslice

393.1.5.
Sleeping and Waking Up

413.1.6.
The Load Balancer

443.2.
Scheduler Related System Calls

464.
Design and Implementation

464.1.
Design of LISURT

484.2.
Implementation of LISURT

484.2.1.
The LISURT kernel interface

49lisurt_policy_rts.h

52lisurt_rts_kernel.h

53lisurt_events.h

554.3.
Design of LISURT DSL

55Declarations

56Event handlers

574.4.
Implementation of LISURT DSL Translator

584.4.1.
Verification

615.
Results

676.
Related Work

677.
Conclusion and Future Work

688.
Appendix

688.1.
LISURT DSL Grammar

708.2.
Operator precedence

708.3.
The associativity of the binary operators

708.4.
Primitives

729.
Reference

74Index

List of Figures

9Figure 1: Purpose of LISURT and LISURT DSL

11Figure 2: Working of lisurt_install script

12Figure 3: Execution of lisurt_install script

12Figure 4: Command to compile a scheduler module (gcc)

13Figure 5: Command to insert a new module and list currently inserted modules

13Figure 6: The lmanager command

14Figure 7: The scheduler tree view

15Figure 8: user_stub_RR.h interface header.

16Figure 9: user_stub_RR.c implementation of interface function RR_attach()

16Figure 10: LISURT Process structure definition

17Figure 11: LISURT Process states

17Figure 12: Selection criterion

18Figure 13: Events handler (general template)

18Figure 14: New process event handler

18Figure 15: Blocked process event handler

18Figure 16: Process unblocking event handler

19Figure 17: The clocktick event handler

19Figure 18: The schedule event handler

19Figure 19: The terminate process event handler

20Figure 20: Implementation of an interface

21Figure 21: Complete Round Robin policy RR.lisurt

23Figure 22: Relationship between applications, the kernel, and hardware

28Figure 23: how to use printk()

28Figure 24: Printing a kernel error with printk()

28Figure 25: Declaring inline functions

29Figure 26: A simple if statement

29Figure 27: Marking a branch as very unlikely

29Figure 28: Marking a branch as very likely

33Figure 29: Definition of the runqueue structure

33Figure 30: Locking/unlocking using task_runqueue_lock()/unlock()

33Figure 31: Locking/unlocking using this_rq_lock() and rq_unlock()

34Figure 32: Locking/unlocking multiple runqueues using spin_lock()/unlock()

34Figure 33: Locking/unlocking using the double_rq_lock()/unlock()

34Figure 34: Definition of the prio_array structure

36Figure 35: Recalculating timeslices (old method)

36Figure 36: Swapping active and expired arrays

37Figure 37: Finding highest priority task

37Figure 38: The Linux O(1) scheduler algorithm.

39Figure 39: scheduler_tick() interrupt handler

41Figure 40: Sleeping and waking up.

42Figure 41: The load_balancer()

44Figure 42: A simplified load_balance() function

46Figure 43: General LISURT Architecture

47Figure 44: Desired property of instructions

48Figure 45: Overall architecture of LISURT (taking and example of EDF policy)

49Figure 46: The LISURT event based interface

49Figure 47: exported_functions structure and find_functions function

51Figure 48: scheduler_operations structure

51Figure 49: scheduler_struct Structure

51Figure 50: event_struct structure

52Figure 51: lisurt_struct structure

52Figure 52: excerpts of linux_rts_kernel.h

54Figure 53: lisurt_events.h header file

56Figure 54: EDF scheduling policy

61Figure 55: Comparison of LISURT implementation of the Linux policy and the native Linux scheduler

62Figure 56: A scheduling hierarchy for use with MPEG video display

63Figure 57: test_edf_periodic bash script

64Figure 58: Output of hourglass with EDF

64Figure 59: edf_periodic_test.out.jpg Gantt chart.

64Figure 60: test_edf.out.jpg Gantt chart.

65Figure 61: test_edf_scan.out.jpg Gantt chart.

65Figure 62: test_linux.out.jpg Gantt chart.

66Figure 63: RR10.c test program

66Figure 64: Round Robin with timeslice of 10ms

66Figure 65: Round Robin with timeslice of 30ms

List of Tables

24Table 1: Directories in the Root of the Kernel Source Tree

35Table 2: Linux Scheduler Timeslices

43Table 3: Steps for load_balance()

44Table 4: Scheduler-Related System Calls

58Table 5: Implementation directories of LISURT DSL

62Table 6: Distance between Video and Audio

69Table 7: LISURT DSL Grammar

70Table 8: LISURT DSL Operator Precedence

70Table 9: LISURT DSL Associativity

1. Introduction

1.1. Purpose and Problem Definition

Process scheduling is an old problem, but there is no single scheduler XE "scheduler" that is perfect for all applications. Indeed, in the last few years, the emergence of new XE "new" applications, such as multimedia and real-time applications, and new execution environments, such as embedded systems, has given rise to a host of new scheduling algorithms [2, 3, 5, 7, 14, 18, 19, 21, 22, 23, 24, and 25]. Nevertheless, because these algorithms are typically highly specialized, few have been included in commercial operating systems (OSes). Ideally, when the scheduling behavior required by an application is not available, the application programmer can implement a new scheduler in the target OS. Nevertheless, scheduler programming at the kernel XE "kernel" level is a difficult task. First, there is no standard interface XE "interface" for implementing schedulers XE "schedulers" . Thus, the programmer must identify the parts of the kernel XE "kernel" that should be modified and the code that should be written in each case. Because scheduling is affected by all kernel services, this analysis requires a global understanding of the kernel behavior. The analysis is further complicated by the pseudo-parallelism present in the kernel due to interrupts XE "interrupts" .

Second, few debugging tools are available at the kernel XE "kernel" level. Indeed, any errors in kernel code are likely to crash the machine, making bugs difficult to track down. Together these issues imply that the kind of expertise required to successfully integrate a new XE "new" scheduler XE "scheduler" into an existing OS is outside the scope of application programmers.

The LISURT plus LISURT DSL defines architecture for dynamic plugging of a scheduling policy XE "scheduling policy" in the kernel XE "kernel" of a general purpose Operating System. The architecture enables the use of scheduling policies that closely resembles the application requirements, while avoiding the cost of developing a complex, monolithic scheduler XE "scheduler" that implements all the desired functionality, and the inflexibility inherent in that approach.
Figure 1: Purpose of LISURT XE "LISURT" and LISURT DSL XE "LISURT DSL"
1.2. Assumptions

It is assumed that the system XE "system" processes already running on the system with the default root scheduler XE "scheduler" are not affected by the introduction of a new XE "new" scheduler(s). This is in the interest of already running critical process XE "critical process" which should not be affected by the runtime XE "runtime" and keep on enjoying their share of CPU. This also reduces the number of changes to be made in the task_struct
 which can cause instability of kernel XE "kernel" .

It is also assumed that only the programs/processes belonging to and written by the user are candidates for scheduling by the LISURT XE "LISURT" . XE "runtime" This is because linux does not allow any user to interfere with the workspace of other users; root user is an exception although. root user can attach XE "attach" any process running in the system XE "system" to any plugged scheduler XE "scheduler" , but it is not that easy. (See §1.4.3 for details.)
An effort is made to keep this document as simple as possible, so that anybody can read and understand. But it is preferred that reader have a working knowledge of linux kernel XE "kernel" and the Linux XE "Linux" Operating System itself. To read and understand the terminology used in this document one should be familiar with internals XE "internals" of any flavor of linux, but Debian and RedHat Linux are preferred platforms. If you are not familiar with Linux it is advised to keep along with you a book for linux basics and kernel basics. Familiarity with C language programming and kernel programming is also assumed.
1.3. Approach

LISURT XE "LISURT" is implemented in the Linux XE "Linux" 2.6.17 kernel XE "kernel" , and it has been used to implement a variety of scheduling policies XE "scheduling policies" , including policies directed towards multimedia applications such as progress-based scheduling [22], policies directed towards real-time systems such as rate monotonic and earliest-deadline first (EDF) [4], and general purpose policies such as the policy of Linux. Most policies amount to under 200 lines of LISURT code and are implemented in a few hours beyond the time required to understand the scheduling algorithm. Overall, use of LISURT allows the scheduler XE "scheduler" programmer to focus on the features of the policy to be implemented rather than on the details of integrating a new XE "new" scheduler into an existing OS. In the rest of this dissertation describes the features of the LISURT framework XE "framework" . Chapter 2 introduces the Linux 2.6.17 kernel and some features. Chapter 3 briefly describes the linux scheduling mechanism, the mechanism which is changed. Chapter 4 describes the design and implementation of the LISURT and LISURT DSL XE "LISURT DSL" . Chapter 5 evaluates the performance of this approach. Chapter 6 gives a glimpse of past work. Chapter 7 concludes and describes future work.
1.4. The LISURT overview XE "LISURT"
LISURT XE "LISURT" is a kernel XE "kernel" -level event-based runtime XE "runtime" framework XE "framework" to allow application programmers to implement new XE "new" scheduling policies XE "scheduling policies" easily and safely. This framework defines a scheduling interface XE "interface" that is instantiated in a standard OS by an OS expert. The interface is implemented in the form of character special device files which are generated as soon as a scheduler XE "scheduler" is plugged in the kernel. All the interface files are placed in /dev/lisurt/ directory as per their name specified in policy file for e.g. /dev/lisurt/lisurt_RR
 file is generated as soon as a round robin scheduler is plugged. /dev/lisurt/lisurt_Linux XE "Linux" is the default linux scheduler available all the time. The process schedulers XE "process schedulers" are accounted in the /proc XE "proc" /lisurt/<sched_name.info> file. The .info file is a record of all the process assigned to the respective schedulers XE "schedulers" .
A complete LISURT XE "LISURT" kernel XE "kernel" comprises three parts:

· A standard kernel XE "kernel" , in which all scheduling actions are replaced by LISURT XE "LISURT" event notifications.

· A programmer-provided scheduling policy XE "scheduling policy" that defines an event handler for each possible LISURT XE "LISURT" event. The policy is either written in C directly, or written in the DSL, and translated to C by LISURT DSL XE "LISURT DSL" .

· An OS-independent run-time system XE "system" that manages the interaction between the rest of the kernel XE "kernel" and the scheduling policy XE "scheduling policy" .
A translator XE "translator" lt XE "lt" translates the policy written in LISURT XE "LISURT" DSL into C code. This C code can be compiled using gcc XE "gcc" including kernel XE "kernel" source headers and some system XE "system" headers to produce a module XE "module" , which in turn can be inserted in a running LISURTified kernel. Once a new XE "new" scheduler XE "scheduler" module is inserted it can be connected and disconnected to another scheduler, provided the other scheduler is a hub scheduler XE "hub scheduler" . To automate and facilitate the complex method of generating/translating a scheduler C code, compiling XE "compiling" and loading of scheduler module a bash shell script lisurt_install [§1.4.1] is also written XE "lisurt_install" .
Once one or more scheduler XE "scheduler" modules are installed using lisurt_install XE "lisurt_install" , the utility lmanager XE "lmanager" can be used to manage the schedulers XE "schedulers" . The manager is written in C which is compiled and installed along with the LISURTified kernel XE "kernel" , as is the case of lisurt_install which is simply copied because a shell script is not compiled. The default location for lisurt_install and lmanager is /usr/bin, this is where system XE "system" can find them by default as this is a part of $PATH XE "$PATH" environment variable XE
 "environment variable" .
[image: image11.png]cycles
60000

40000

1))

array size (KB)0 4 81632640 4 81632640 4 81632640 4 8 1632640 4 8 1632640 4 8 1632640 4 81632640 4 § 163264
processes 2 4 8 16 2 32 64 96

Figure 2: Working of lisurt_install XE "lisurt_install" script
Figure 2 explains the overall working of the lisurt_install XE "lisurt_install" script with a simple round robin policy [§1.4.1], this is explained in sections to follow. This script gives error on the failure of lt XE "lt" or gcc. To debug the errors some knowledge of kernel XE "kernel" source and gcc is required, but in general if the .lisurt policy file is bug free there would not be any problem.
1.4.1. Example: Building and installing a RR scheduler XE "scheduler"
Building and installing a new XE "new" scheduler XE "scheduler" is as simple as writing the lisurt policy and running the script lisurt_install XE "lisurt_install" on this newly written script. How to write a new policy is explained in [§1.5.1]. Once executed the lisurt_install script does everything necessary to translate, verify, compile and install the module XE "module" .

#lisurt_install XE "lisurt_install" RR.lisurt

Translating the lisurt file RR.lisurt [Done]

Type checking [Done]

Verifying [Done]

Postprocessing [Done]

C code generating [Done]

Compiling the module XE "module" [Done]

Installing the module XE "module" [Done]

#
Figure 3: Execution of lisurt_install XE "lisurt_install" script
In the output of Figure 3 type checking XE "type checking" , verifying XE "verifying" , postprocessing XE "postprocessing" and C code generating is the work done by the lt XE "lt" translator XE "translator" . A typical command XE "command" for compiling XE "compiling" the scheduler XE "scheduler" code RR.c generated in above diagram is as follows:

#gcc -m32 -nostdinc -isystem $ISYSTEM -D__KERNEL__ \

-I$LISURT_HOME/build/include -I$LISURT_HOME/build/include2 \

-I$LISURT_HOME/include \

-include $LISURT_HOME/build/include/linux/autoconf.h \

-I$LISURT_HOME/kernel XE "kernel" -Wall -Wundef -Wstrict-prototypes \

-Wno-trigraphs -fno-strict-aliasing -fno-common -Os \

-fomit-frame-pointer -g -pipe -msoft-float \

-mpreferred-stack-boundary=2 –DMODULE –DMODULEVERSIONS \

-march=i686 -mtune=pentium4 -mtune=generic -mregparm=3 -ffreestanding \

-I$LISURT_HOME/include/asm-i386/mach-default \

-I$LISURT_HOME/build/include/asm-i386/mach-default \

-Wdeclaration-after-statement -Wno-pointer-sign -g \

-D"KBUILD_STR(s)=#s" \

-D"KBUILD_BASENAME=KBUILD_STR(${filename%.lisurt})" \

-D"KBUILD_MODNAME=KBUILD_STR(${filename%.lisurt})" \

-c ${filename%.lisurt}.c # ${filename%.lisurt} gives EDF.c

#
Figure 4: Command to compile a scheduler XE "scheduler" module XE "module" (gcc XE "gcc")
NOTE: The above command XE "command" contains some environment variables which are defined in the script lisurt_install XE "lisurt_install" .

This command XE "command" is too big to type in all the time so it is embedded inside the lisurt_install XE "lisurt_install" script. Before executing this command the script executes the translator XE "translator" lt XE "lt" which generates the input file to this command, in this case RR.c. On successful compilation gcc XE "gcc" will generate an elf
 file RR.o which is the desired module XE "module" .
Next the same script executes a command XE "command" insmod XE "insmod" to insert the module XE "module" in the kernel XE "kernel" . You can use the rmmod XE "rmmod" command to remove a module from the kernel. This is called scheduler XE "scheduler" plugging XE "scheduler plugging" and scheduler unplugging XE "scheduler unplugging" . The property of the scheduler (PS of HS) is entirely based on the scheduler policy (the .lisurt file) [§1.5.1].
#insmod RR.o
#lsmod XE "lsmod"
Module

Size
Used by
Not tainted
RR

 10368
 0 (unused)

i810

 51684 1

agpgart
 32128 7 (autoclean)

ac97_audio
 11848
 0 [i810_audio]

soundcore

3140 2 [i810_audio]

...

...

cloop

 8542 2

#
Figure 5: Command to insert a new XE "new" module XE "module" and list currently inserted modules
Once a scheduler XE "scheduler" module XE "module" is plugged in one can write/modify [§1.4.3] a program to attach XE "attach" it with this particular scheduler. This modified program when executed will attach itself to a specified scheduler and execute according to that policy.
1.4.2. Managing the Scheduler Modules
The utility lmanager provides a command XE "command" based interactive interface XE "interface" to manage the scheduler XE "scheduler" modules existing/inserted in the kernel XE "kernel" . All the scheduler modules you see using lsmod XE "lsmod" command can be manipulated using this single utility to form a hierarchical structure of schedulers XE "schedulers" . On the top of the hierarchy is the root scheduler XE "root scheduler" . Following is a simple output of this command:
#lmanager

Available schedulers XE "schedulers" :

0. Linux XE "Linux" (PS, loaded, default)

1. Proportion (HS, root, default)

2. Fixed_priority (HS, loaded, default)

3. EDF (PS, loaded, not default)

4. RR (PS, loaded, default)

Default path:

Proportion -> Linux XE "Linux"
Command: (use the scheduler XE "scheduler" number)

 c <P> <C>
 connect parent scheduler XE "scheduler" P to child scheduler C

 d <S> disconnect scheduler XE "scheduler" S

 l list available schedulers XE "schedulers"
 h print this help menu

q quit

>
Figure 6: The lmanager command XE "command"
This command XE "command" also asks for the scheduler XE "scheduler" specific parameters as you connect one scheduler to the other. These parameters can be priority, proportion, quantum size XE "quantum size" etc. As long as a PS is not connected to a HS is status remains “not loaded” which changes to “loaded” as soon as it is connected to a HS
The /proc XE "proc" /lisurt directory will contain a list of all the scheduler XE "scheduler" in form of a directory, file or link
, or some combination in order to facilitate the accounting. Every scheduler has a respective SCHEDNAME.info file in /proc/lisurt/ directory which accounts the scheduling parameters like running processes, ready queue, expired queue, blocked queue etc. These parameters are generally scheduler dependent. The general organizations of the list of schedulers XE "schedulers" are as elicited:
· A root hub scheduler XE "scheduler" (HSROOTNAME) takes a directory HSROOTNAME and a file HSROOTNAME.info in /proc XE "proc" /lisurt.
· All hub schedulers XE "schedulers" HS have a directory HSNAME and a file HSNAME.info in the respective directory of their parent.
· All process schedulers XE "schedulers" (PS) have a file PSNAME.info in the respective directory of their parent.

· All the PSNAME and HSNAME (except HSROOTNAME) have respective links PSNAME.info and HSNAME.info again in the directory /proc XE "proc" /lisurt
The purpose of the link in the directory is to simplify the access of scheduler XE "scheduler" info file. This file keeps on changing frequently with new XE "new" process coming and old process dying. As can be figured from above rules that schedulers XE "schedulers" can be arranged in a tree structure, this tree can be seen by issuing a tree command XE "command" on /proc XE "proc" /lisurt directory.
#tree /proc XE "proc" /lisurt

/proc XE "proc" /lisurt

|-- EDF.info -> Proportion/Fixed_priority/EDF.info

|-- Fixed_priority.info -> Proportion/Fixed_priority.info

|-- Linux XE "Linux" .info -> Proportion/Linux.info

|-- RR.info -> Proportion/Fixed_priority/RR.info

|-- Proportion

| |-- Fixed_priority

| | |-- EDF.info

| | `-- RR.info

| |-- Fixed_priority.info

| `-- Linux XE "Linux" .info

`-- Proportion.info

Figure 7: The scheduler XE "scheduler" tree
 view
In the above representation is clear that above rules are met. The cat
 or less/more
 linux command XE "command" can be used to see the contents of the SCHEDNAME.info file(s). All the SCHEDNAME.info files are read-only; this is quite obvious because you do not want to make XE "make" changes to these files, as these files are managed by the linux kernel XE "kernel" itself.
1.4.3. Writing a C program which uses a PS
This section deals with the method by which one can write programs which make XE "make" the use of scheduler XE "scheduler" hierarchy that was build in the previous section. It must be recalled from Figure 2 that while translating the lt generates three files. First file generated by say, RR.lisurt is RR.c; this file is the main scheduler source file which is compiled into a scheduler module XE "module" . Other files user_stub_RR.h and user_stub_RR.c are the files which provide you with an interface XE "interface" to the scheduler. This interface is generated according to the interface [§1.5.1] definition in RR.policy [Figure 21] file.
/*
 * rr/c-code/user_stub_RR.h
 */

#ifndef LISURT_RR

#define LISURT_RR

#ifndef LISURT_TYPEDEFS

#define LISURT_TYPEDEFS

typedef int bool;

typedef void * port;

#endif

int RR_sched_setscheduler(int p, int timeslice XE "timeslice");

int RR_attach XE "attach" (int p_9);
#endif /* LISURT_RR */
Figure 8: user_stub_RR.h interface XE "interface" header.
From Figure 8 it is clear that this header file gives an interface XE "interface" as specified in the RR.lisurt policy file. The two interface functions generated are RR_sched_setscheduler(int, int) it takes the process pid
 and timeslice XE "timeslice" to be set for this process. user_stub_RR.c contains the definition to these interface functions as usual. The definition most of the time uses kernel XE "kernel" interface provided in the /dev/lisurt/lisurt_RR, so most of the time these functions contains an open
 and ioctl
 system XE "system" function call to manipulate the loaded module XE "module" schedulers XE "schedulers" .
/*
 * rr/c-code/user_stub_RR.c
 *

 */

#include “user_stub_RR.h”

#define LISURT_ID_NUM 0xCE

#define LISURT_DEVICE_NAME lisurt
/* this is a wrapper structure for communication with the live

 scheduler XE "scheduler" module XE "module" in kernel XE "kernel" */

struct dev_RR_attach XE "attach" _struct {

 int _checksum;

 int p_9;

};

/* the number and type of arguments to these functions

 depends on lisurt policy */

/* this function attaches a given PID to this scheduler XE "scheduler" */

int RR_attach XE "attach" (int p_9) {

 struct dev_RR_attach XE "attach" _struct _data;

 _data._checksum = 11023;

 _data.p_9 = p_9;

 {

 int fd, res;

 fd = open("/dev/lisurt/" LISURT_DEVICE_NAME, O_WRONLY);

 res = ioctl(fd,IOCTL_ATTACH,(char *)&_data);

 if (res < 0) perror("attach XE "attach" ");

 close(fd);

 return res;

 }

}

Figure 9: user_stub_RR.c implementation of interface XE "interface" function RR_attach XE "attach" ()
So, to run a process under a specialized scheduling environment call SCHEDNAME_attach XE "attach" (pid, ...) function with the process pid and related scheduling parameters. As soon as this call is made the process is transferred to the SCHEDNAME scheduler XE "scheduler" .
1.5. The LISURT XE "LISURT" DSL overview
Schedulers written using LISURT XE "LISURT" DSL provides high-level scheduling-specific abstractions to simplify the programming of scheduling policies XE "scheduling policies" . To enable compile time verification that a scheduler XE "scheduler" interacts correctly with the target kernel XE "kernel" , the OS expert configures the DSL translator XE "translator" with a model of the kernel’s scheduling behavior, including information about process state XE "state" transitions and interrupts XE "interrupts" . Schedulers can either be compiled with the kernel XE "kernel" or dynamically loaded into a scheduling hierarchy. Because LISURT extends a standard OS, applications can continue to use a standard execution environment (drivers, libraries, etc.).
Basically a LISURT XE "LISURT" DSL policy is divided in five parts:

1. The process structure definition,
2. The declaration of the different states,
3. The ordering criteria used to select the next process to run,
4. The handling of the scheduling events,
5. The interface XE "interface" used to control some aspects of the policy
1.5.1. Example: Writing the round-robin policy with the LISURT XE "LISURT" DSL
Process structure definition: The first thing to do in a LISURT XE "LISURT" policy is to describe the elements that will be using further. As scheduling processes is just about processes, a proper definition of the process structure is needed, especially the scheduling data.
process = {

int time_slice; /* clock ticks left on the current time slice */

}
Figure 10: LISURT Process structure definition
This means that each process will also have a time_slice
 attribute, besides the other attributes a task_sched have. This attribute is used to store the quantum value. When manipulating a process p it is possible to set and get its time slice by using p.time_slice. Note that only the declaration of the scheduling data is required.
States: Once defined the process structure, it is required to store the processes. Generally in scheduling, queues or lists are used to store the processes, one for processes ready to execute and one to store blocked processes. With LISURT XE "LISURT" it is just the same. One can declare queues to store processes and at the same time define the state XE "state" (RUNNING XE "RUNNING" , READY XE "READY" , BLOCKED XE "BLOCKED" , TERMINATED XE "TERMINATED") the processes it contains will be in. To be clear, when a BLOCKED process is enqueued in a READY queue, the process will change from state BLOCKED to state READY. This allows defining two scheduling structures at same time, and it also allows verifying XE "verifying" the integrity of the policy by checking if processes are in the right states.
states = {

RUNNING XE "RUNNING" running : process;

READY XE "READY" active : select fifo queue;

BLOCKED XE "BLOCKED" blocked : queue;

TERMINATED XE "TERMINATED" terminated;
}
Figure 11: LISURT Process states
As written above, simply a queue is declared and called active to store the processes in state XE "state" READY XE "READY" and another one called blocked for the processes in state BLOCKED XE "BLOCKED" . The specific argument FIFO XE "FIFO" means that the queue will behave as a first-in first-out queue. One can also declare LIFO XE "LIFO" (last-in first-out) queues. The argument sorted will be discussed in the next section.

Besides these two queues, a running process is also declared; this is the process in XE "state" RUNNING state XE "RUNNING" . This just makes sense, because two processes cannot be running at the same time. And finally, terminated is the state which is used to end XE "end" the life of a process.

Selection: Selection is probably the main part of all schedulers XE "schedulers" as the behavior (fairness, interactivity, etc) of a scheduling policy XE "scheduling policy" depends on how it selects the next process to run. LISURT XE "LISURT" tries to express the selection process as simply as possible. This is done by defining the criteria on which LISURT will select the next process and applying it to one queue. In the previous section it was seen that during the definition of the state XE "state" <CODE>READY XE "READY" <CODE> a select argument is applied to the active queue, so declaring a queue as select just means that scheduler will process the selection criteria on this particular queue.

You may have noticed that the word select and sorted are used which really are not same. Actually in the background, LISURT XE "LISURT" uses ordering algorithms based on the criteria defined by the developer. This is why the argument is called select and the criteria are defined using:
/* no ordering criteria used */

ordering_criteria = { }
Figure 12: Selection criterion
For the round-robin scheduler XE "scheduler" , it is not needed to define a criteria because the next selected process will be the next process in the queue (remember the queue was defined to be a FIFO XE "FIFO" queue).

Events handling: The LISURT XE "LISURT" framework XE "framework" replaces scheduling code scattered throughout the kernel XE "kernel" by a fixed interface XE "interface" of scheduling events. This section explains which events are available for use and how to handle them. Yet, as this is just an overview of what LISURT is and how to use it, this will be kept short and just an introduction is made in the main events: new XE "new" , block XE "block" , unblock XE "unblock" , clocktick XE "clocktick" , schedule XE "schedule" and end XE "end" . The names of these events are explicit enough so that there is no need to waste too much time explaining what they do.

Beforehand this is how events are declared.

handler(event e) {

On event_name_1 { /* statements */ }

On event_name_2 {

/* e.target is the process targeted by the event e*/

e.target.attribute = X;

/* e.source is the process which generated the event e */

e.source.attribute = Y;

}
}
Figure 13: Events handler (general template)
new XE "new" : First step of a process life. Linux XE "Linux" copes with all the memory and other resources stuff. Is is needed to initialize scheduling data of the process. Something like:
On process.new XE "new" {

e.target.time_slice = 100;

e.target => active;

}
Figure 14: New process event handler
The process is assigned a time_slice value of 100 units and placed in the active queue; the process is now in states READY XE "READY" (eligible to run).

block XE "block" : This event is quite frequent in the life of input/output based applications. It occurs when a process blocks, for instance when it is waiting for user input.

/* we can use the wild character * to group all the blocked events */

On block XE "block" .* {

e.target => blocked;
}
Figure 15: Blocked process event handler
For all the blocked events the process is added to the blocked processes queue. The process is now in state XE "state" BLOCKED XE "BLOCKED" (not eligible).

unblock XE "unblock" : As a counterpart, the unblock.* events. This event is generated to unblock the process, for example the user just type on his keyboard.

On unblock XE "unblock" .* {

/* e.target element of the queue blocked? */

if (e.target in blocked) { e.target => active; }

}
Figure 16: Process unblocking event handler
It is checked whether the process is in the blocked processes queue or not. If true XE "true" its state XE "state" is changed from BLOCKED XE "BLOCKED" to READY XE "READY" by adding it to the queue active. The => operation automatically dequeue the process from the queue it is currently in.

clocktick XE "clocktick" : This event is triggered at each CPU clocktick. Basically the processor XE "processor" clocktick is used as unit of time that is what used with time_slice. A value of 100 was declared in the profile which means that a process can run on the CPU as long as 100 clockticks. Here is how it is this event is handled in a round-robin scheduler XE "scheduler" :
On system.clocktick XE "clocktick" {

/* process just used some time */

running.time_slice--;

/* the process time is over

if (running.time_slice <= 0) {

/* we reload its time */

running.time_slice = 100;

/* and preempt it */

running => active;

}
}
/* the system now need to schedule XE "schedule" a new XE "new" process */
Figure 17: The clocktick XE "clocktick" event handler
schedule XE "schedule" : So it is just seen that a process can be preempted XE "preempted" during a block XE "block" and a clocktick XE "clocktick" . As a result, after the preemption, the scheduler XE "scheduler" needs to select a new XE "new" process to run. The round robin algorithm is simple and just selects the next process in the queue of READY XE "READY" processes. Thus the implementation of the event schedule is very simple:
On lisurt.schedule {

select() => running;
}
Figure 18: The schedule XE "schedule" event handler
select() returns the next process to run. select() use the ordering_criteria on the sorted queue to determine which process to execute.

end XE "end" : Finally the last event is end. This event is not really needed as generally nobody cares about terminated processes. This event will often just contain:
On process.end {

e.target => terminated;
}
Figure 19: The terminate process event handler
Interface: Once a scheduler XE "scheduler" is implemented and plugged next step is to assign processes to this scheduler either automatically or manually. The purpose of this section is to provide an interface XE "interface" to programmers so that they can attach XE "attach" processes to the plugged process scheduler. (See §1.4.3.) This is achieved by attach interface which takes the pid of any process and attaches it. Since the detach XE "detach" interface contains no implementation code it is not defined in the resulting interface definition C code. But there is an inherent detach procedure defined in each scheduler, it is just that you have not asked for the requirement of an interface to it in the policy file.
 interface XE "interface" = {

 void attach XE "attach" (process p) {

 p.time_slice = 100;

 p => active;

 }

 void detach XE "detach" (process p) {

 }

 void sched_setscheduler(process p, int time_slice) {

 p.time_slice = time_slice;

 }

 }

Figure 20: Implementation of an interface XE "interface"
The complete RR.lisurt scheduling policy XE "scheduling policy" : Following is complete LISURT policy file in discussion, it can be seen how elegant the code is, and of course how easy it is to implement new XE "new" scheduler XE "scheduler" . The coding style resembles to the C programming language. Hence LISURT DSL is easy to learn and code. Both The comment style single line and multiple lines are same as the C. Most of conventions followed like ending a line with a ‘;’ and start a block XE "block" with ‘{’ and end XE "end" with ‘}’ are kept deliberately like C.
/*
 * examples/RR.lisurt

 * LISURT Round-robin Policy

 */
default scheduler XE "scheduler" RR = {

 /* scheduling data for each process */
 process = {

 int time_slice; /* clock ticks left on the current time slice */
 }

 states = {

 RUNNING XE "RUNNING" running : process;

 READY XE "READY" active : select fifo queue;

 BLOCKED XE "BLOCKED" blocked : queue;

 TERMINATED XE "TERMINATED" terminated;

 }

 /* no ordering criteria, we use the fifo property of the queue. */
 ordering_criteria = { }

 handler (event e) {

 /* initialize the new XE "new" process data when a
 process fork()s or clone()s */
 On process.new XE "new" {

 e.target.time_slice = 100;

 e.target => active;

 }

 /* end XE "end" of the process

 On process.end XE "end" { e.target => terminated; }

 /* the process is blocked

 if the process is in running, it is preempted XE "preempted" */
 On block XE "block" .* { e.target => blocked; }

 On unblock XE "unblock" .* {

 if (e.target in blocked) { e.target => active; }

 }

 /* this event is generated at each clock interrupt XE "interrupt"
 (frequency depends on the HZ value) */
 On system XE "system" .clocktick XE "clocktick" {

 running.time_slice--;

 if (running.time_slice <= 0) { /* the process time is over */

 running.time_slice = 100; /* we reload its time */

 running => active;
 /* and preempt running */

} /* the system XE "system" now need to schedule XE "schedule" a new XE "new" process */
 }

 /* here we select the next process to run

 select() uses the ordering_criteria */
 On lisurt.schedule XE "schedule" { select() => running; }

 On yield.system XE "system" .pause.* {

 if (e.target in running) { e.target => active; }

 }

 On yield.system XE "system" .immediate.* {

 if (e.target in running) { e.target => active; }

 }

 On yield.user.* {

 if (!empty(running)) { running => active; }

 }

 On preempt { running => active; }

 }

 interface XE "interface" = {

 void attach XE "attach" (process p) {

 p.time_slice = 100;

 p => active;

 }

 void detach XE "detach" (process p) {

 }

 void sched_setscheduler(process p, int time_slice) {

 p.time_slice = time_slice;

 }

 }

}
Figure 21: Complete Round Robin policy RR.lisurt
2. Introduction to the Linux XE "Linux" Kernel

Technically speaking, the operating system XE "operating system" is considered the parts of the system XE "system" responsible for basic use and administration. This includes the kernel XE "kernel" and device drivers, boot loader, command XE "command" shell or other user interface XE "interface" , and basic file and system utilities. The term system, in turn, refers to the operating system and all the applications running on top of it.

The user interface XE "interface" is the outermost portion of the operating system XE "operating system" , the kernel XE "kernel" is the innermost. It is the core XE "core" internals XE "internals" ; the software that provides basic services for all other parts of the system XE "system" , manages hardware, and distributes system resources. The kernel is sometimes referred to as the supervisor XE "supervisor" , core, or internals of the operating system. Typical components of a kernel are interrupt XE "interrupt" handlers to service interrupt requests, a scheduler XE "scheduler" to share processor XE "processor" time among multiple processes, a memory management system to manage process address spaces, and system services such as networking and interprocess communication. On modern systems with protected memory management units, the kernel typically resides in an elevated system state XE "state" compared to normal user applications. This includes a protected memory space and full access to the hardware. This system state and memory space is collectively referred to as kernel-space XE "kernel-space" . Conversely, user applications execute in user-space XE "user-space" . They see a subset of the machine's available resources and are unable to perform certain system functions, directly access hardware, or otherwise misbehave (without consequences, such as their death, anyhow). When executing the kernel, the system is in kernel-space executing in kernel mode, as opposed to normal user execution in user-space executing in user mode. Applications running on the system communicate with the kernel via system calls XE "system calls" (see Figure 22). An application typically calls functions in a library XE "library" for example, the C library XE "C library" that in turn rely on the system call interface to instruct the kernel to carry out tasks on their behalf. Some library calls provide many features not found in the system call, and thus, calling into the kernel is just one step in an otherwise large function. For example, consider the familiar printf() function. It provides formatting and buffering of the data and only eventually calls write() to write the data to the console. Conversely, some library calls have a one-to-one relationship with the kernel. For example, the open() XE "open()" library function does nothing except call the open() system call. Still other C library functions, such as strcpy(), should make XE "make" no use of the kernel at all. When an application executes a system call, it is said that the kernel is executing on behalf of the application. Furthermore, the application is said to be executing a system call in kernel-space, and the kernel is running in process context XE "process context" . This relationship that applications call into the kernel via the system call interface is the fundamental manner in which applications get work done.
The kernel XE "kernel" also manages the system XE "system" 's hardware. Nearly all architectures, including all systems that Linux XE "Linux" supports, provide the concept of interrupts XE "interrupts" . When hardware wants to communicate with the system, it issues an interrupt XE "interrupt" that asynchronously interrupts the kernel. Interrupts are identified by a number. The kernel uses the number to execute a specific interrupt handler XE "interrupt handler" to process and respond to the interrupt. For example, as you type, the keyboard controller issues an interrupt to let the system know that there is new XE "new" data in the keyboard buffer. The kernel notes the interrupt number being issued and executes the correct interrupt handler. The interrupt handler processes the keyboard data and lets the keyboard controller know it is ready for more data. To provide synchronization XE "synchronization" , the kernel can usually disable interrupts either all interrupts or just one specific interrupt number. In many operating systems, including Linux, the interrupt handlers do not run in a process context XE "process context" . Instead, they run in a special interrupt context XE "interrupt context" that is not associated with any process. This special context exists solely to let an interrupt handler quickly respond to an interrupt, and then exit.

[image: image12.emf]LISURT DSL

Scheduling policies written in

LISURT DSL

LISURT Compiler

Library for

automatically

loading of policies

Kernel Space

User Space

2

1

Applications

Loadable

Modular Policy

EDFLinux

FxP

EDFLinux

FxP EDFLinux

FxP

Attach()

API

LISURT RTS

EDFLinux Linux

FxP

Scheduling

Hierarchy

Clock

Tick

Context

Switch

Event Notification: block, unblock,

process.new, process.end, yield

P1

P2 P3

Processes:

1

Manual Loading of modular policy and

manual building of hierarchy

2

Automatic loading of modular policies used

to build automatically the specific hierarchy

used by the application

LISURT DSL

Scheduling policies written in

LISURT DSL

LISURT Compiler

Library for

automatically

loading of policies

Kernel Space

User Space

2

1

Applications

Loadable

Modular Policy

EDFLinux

FxP

EDFLinux

FxP EDFLinux

FxP

Attach()

API

LISURT RTS

EDFLinux Linux

FxP

Scheduling

Hierarchy

Clock

Tick

Context

Switch

Event Notification: block, unblock,

process.new, process.end, yield

P1

P2 P3

Processes:

1

Manual Loading of modular policy and

manual building of hierarchy

2

Automatic loading of modular policies used

to build automatically the specific hierarchy

used by the application

LISURT DSL

Scheduling policies written in

LISURT DSL

LISURT Compiler

Library for

automatically

loading of policies

LISURT DSL

Scheduling policies written in

LISURT DSL

LISURT Compiler

LISURT DSL

Scheduling policies written in

LISURT DSL

LISURT Compiler

Library for

automatically

loading of policies

Kernel Space

User Space

Kernel Space

User Space

2

1

Applications

2

1

Applications

Loadable

Modular Policy

EDFLinux

FxP

Loadable

Modular Policy

Loadable

Modular Policy

EDFLinux

FxP

EDFLinux

FxP

EDFLinux

FxP EDFLinux

FxP

EDFLinux

FxP

Attach()

API

LISURT RTS

EDFLinux Linux

FxP

Scheduling

Hierarchy

Attach()

API

LISURT RTS

Attach()

API

LISURT RTS

EDFLinux Linux

FxP

Scheduling

Hierarchy

EDFLinux Linux

FxP

Scheduling

Hierarchy

EDFLinux Linux

FxP

EDFLinux Linux

FxP

EDFLinux Linux

FxP

Scheduling

Hierarchy

Clock

Tick

Context

Switch

Clock

Tick

Context

Switch

Event Notification: block, unblock,

process.new, process.end, yield

P1

P2 P3

Processes:

Event Notification: block, unblock,

process.new, process.end, yield

P1

P2 P3

Event Notification: block, unblock,

process.new, process.end, yield

P1

P2 P3

Processes:

1

Manual Loading of modular policy and

manual building of hierarchy

2

Automatic loading of modular policies used

to build automatically the specific hierarchy

used by the application

1

Manual Loading of modular policy and

manual building of hierarchy

2

Automatic loading of modular policies used

to build automatically the specific hierarchy

used by the application

1

Manual Loading of modular policy and

manual building of hierarchy

1

Manual Loading of modular policy and

manual building of hierarchy

2

Automatic loading of modular policies used

to build automatically the specific hierarchy

used by the application

2

Automatic loading of modular policies used

to build automatically the specific hierarchy

used by the application

Figure 22: Relationship between applications, the kernel XE "kernel" , and hardware
These contexts represent the breadth of the kernel XE "kernel" 's activities. In fact, in Linux XE "Linux" , it is generalized that each processor XE "processor" is doing one of three things at any given moment:

· In kernel XE "kernel" -space XE "kernel-space" , in process context XE "process context" , executing on behalf of a specific process

· In kernel XE "kernel" -space XE "kernel-space" , in interrupt XE "interrupt" context XE "interrupt context" , not associated with a process, handling an interrupt

· In user-space XE "user-space" , executing user code in a process

This list is inclusive. Even corner cases fit into one of these three activities: For example, when idle, it turns out that the kernel XE "kernel" is executing an idle process
 in process context XE "process context" in the kernel.
2.1. The Kernel Source Tree

The kernel XE "kernel" source tree is divided into a number of directories, most of which contain many more subdirectories. The directories in the root of the source tree, along with their descriptions, are listed in Table 1.

	Directory
	Description

	arch
	Architecture-specific source

	block XE "block"
	Block layer core configuration

	crypto
	Crypto API

	Documentation
	Kernel source documentation

	drivers
	Device drivers

	fs
	The VFS and the individual file systems

	include
	Kernel headers

	init
	Kernel boot and initialization

	ipc
	Interprocess communication code

	kernel XE "kernel"
	Core subsystems, such as the scheduler XE "scheduler"

	lib
	Helper routines

	mm
	Memory management subsystem and the VM

	net
	Networking subsystem

	scripts
	Scripts used to build the kernel XE "kernel"

	security
	Linux XE "Linux" Security Module

	sound
	Sound subsystem

	usr
	Early user-space XE "user-space" code (called initramfs
)

Table 1: Directories in the Root of the Kernel Source Tree
A number of files in the root of the source tree deserve mention. The file COPYING is the kernel XE "kernel" license (the GNU GPL v2). CREDITS is a listing of developers with a more than trivial amount of code in the kernel. MAINTAINERS lists the names of the individuals who maintain subsystems and drivers in the kernel. Finally, Makefile is the base kernel Makefile.

2.2. Building the Kernel

Building the kernel XE "kernel" is easy. In fact, it is surprisingly easier than compiling XE "compiling" and installing other system-level components, such as glibc. The 2.6 kernel series introduces a new XE "new" configuration and build system, which makes the job even easier and is a welcome improvement over 2.4.

Because the Linux XE "Linux" source code is available, it follows that you are able to configure and custom tailor it before compiling XE "compiling" . Indeed, it is possible to compile support into the kernel XE "kernel" for just the features and drivers you require. Configuring the kernel is a required step before building it. Because the kernel offers a myriad of features and supports tons of varied hardware, there is a lot to configure. Kernel configuration is controlled by configuration options, which are prefixed by CONFIG in the form CONFIG_FEATURE. For example, symmetrical multiprocessing XE "symmetrical multiprocessing" (SMP XE "SMP") is controlled by the configuration option CONFIG_SMP. If this option is set, SMP is enabled; if unset, SMP is disabled. The configure options are used both to decide which files to build and to manipulate code via preprocessor directives.

Configuration options that control the build process are either Booleans XE "Booleans" or tristates XE "tristates" . A Boolean option is either yes or no. Kernel features, such as CONFIG_PREEMPT, are usually Booleans. A tristate option is one of yes, no, or module XE "module" . The module setting represents a configuration option that is set, but is to be compiled as a module (that is, a separate dynamically loadable object). In the case of tristates, a yes option explicitly means to compile the code into the main kernel XE "kernel" image and not a module. Drivers are usually represented by tristates.

Configuration options can also be strings or integers. These options do not control the build process but instead specify values that kernel XE "kernel" source can access as a preprocessor macro. For example, a configuration option can specify the size of a statically allocated array.

Vendor kernels, such as those provided by Novell and Red Hat, are precompiled as part of the distribution. Such kernels typically enable a good cross section of the needed kernel XE "kernel" features and compile nearly all the drivers as modules. This provides for a great base kernel with support for a wide range of hardware as separate modules.

Thankfully, the kernel XE "kernel" provides multiple tools to facilitate configuration. The simplest tool is a text-based command XE "command" -line utility:

$ make XE "make"
 config
This utility goes through each option, one by one, and asks the user to interactively select yes, no, or (for tristates XE "tristates") module XE "module" . Because this takes a long time, unless you are paid by the hour, you should use an ncurses
-based graphical utility:

$ make XE "make" menuconfig
Or an X11-based graphical utility:

$ make XE "make" xconfig
Or, even better, a gtk+-based graphical utility:

$ make XE "make" gconfig
These three utilities divide the various configuration options into categories, such as "Processor type and features." You can move through the categories, view the kernel XE "kernel" options, and of course change their values.

The command XE "command"
$ make XE "make" defconfig
creates a configuration based on the defaults for system architecture. Although these defaults are somewhat arbitrary (on i386, they are rumored to be Linus's configuration!), they provide a good start if you have never configured the kernel XE "kernel" before.
The configuration options are stored in the root of the kernel XE "kernel" source tree, in a file named .config. You may find it easier (as most of the kernel developers do) to just edit this file directly. It is quite easy to search for and change the value of the configuration options. After making changes to the configuration file, or when using an existing configuration file on a new XE "new" kernel tree, you can validate and update the configuration:

$ make XE "make" oldconfig
You should always run this before building a kernel XE "kernel" , in fact. After the kernel configuration is set, you can build it:

$ make XE "make"
Unlike kernels before 2.6, you no longer need to run make XE "make" dep before building the kernel XE "kernel" the dependency tree is maintained automatically. You also do not need to specify a specific build type, such as bzImage, or build modules separately, as you did in old versions. The default Makefile rule will handle everything!

2.2.1. Minimizing Build Output
Linux 2.6 onwards Makefile has an option V=0|1 to control the build noise. 0 causes the out to be very general and prints only the file type and name, this is the default. 1 obviously causes all the detailed command to be printed on the stdout.
$make XE "make" V=0
A trick to minimize build noise, but still see warnings and errors, is to redirect the output from make XE "make" (1):

$ make XE "make" > ../some_other_file
If you do need to see the build output, you can read the file. Because the warnings and errors are output to standard error, however, you normally do not need to. In fact, I just do

$ make XE "make" > /dev/null
which redirects all the worthless output to that big ominous sink of no return, /dev/null.

2.2.2. Spawning Multiple Build Jobs

The make XE "make" (1) program provides a feature to split the build process into a number of jobs. Each of these jobs then runs separately and concurrently, significantly speeding up the build process on multiprocessing XE "multiprocessing" systems. It also improves processor XE "processor" utilization because the time to build a large source tree also includes some time spent in I/O wait (time where the process is idle waiting for an I/O request to complete).

By default, make XE "make" (1) spawns only a single job. To build the kernel XE "kernel" with multiple jobs, use

$ make XE "make" -jn
where n is the number of jobs to spawn. Usual practice is to spawn one or two jobs per processor XE "processor" . For example, on a dual processor machine, one might do

$ make XE "make" j4
Using utilities such as the excellent distcc(1) or ccache(1) can also dramatically improve kernel XE "kernel" build time.

2.2.3. Installing the Kernel

After the kernel XE "kernel" is built, it needs to be installed it. How it is installed is very architecture and boot loader dependent consult the directions for specific boot loader on where to copy the kernel image and how to set it up to boot. Always keep a known-safe kernel or two around in case the new XE "new" kernel has problems!

As an example, on an x86 using grub, you would copy arch/i386/boot/bzImage to /boot, name it something like vmlinuz-version, and edit /boot/grub/grub.conf with a new XE "new" entry for the new kernel XE "kernel" . Systems using LILO to boot would instead edit /etc/lilo.conf and then rerun lilo(8).

Installing modules, thankfully, is automated and architecture-independent. As root, simply run

make XE "make" modules_install
to install all the compiled modules to their correct home in /lib
.

The build process also creates the file System.map in the root of the kernel XE "kernel" source tree. It contains a symbol lookup table, mapping kernel symbols to their start addresses. This is used during debugging to translate memory addresses to function and variable names.

2.3. Different nature of the kernel XE "kernel"
The kernel XE "kernel" has several differences compared to normal user-space XE "user-space" applications, although not making it necessarily harder to program than user-space, certainly provide unique challenges to kernel development.

These differences give the kernel XE "kernel" source a different nature. Some of the usual rules are bent; other rules are entirely new XE "new" . Although some of the differences are obvious (the kernel can do anything it wants), others are not so obvious. The most important of these differences are

· The kernel XE "kernel" does not have access to the C library XE "library" .

· The kernel XE "kernel" is coded in GNU C XE "GNU C" .

· The kernel XE "kernel" lacks memory protection like user-space XE "user-space" .

· The kernel XE "kernel" cannot easily use floating point.

· The kernel XE "kernel" has a small fixed-size stack.

· Because the kernel XE "kernel" has asynchronous interrupts XE "interrupts" , is preemptive XE "preemptive" , and supports SMP XE "SMP" , synchronization XE "synchronization" and concurrency are major concerns within the kernel.

· Portability is important.

Let's briefly look at each of these issues because all kernel XE "kernel" development must keep them in mind.

No access to C Library - libc
Unlike a user-space XE "user-space" application, the kernel XE "kernel" is not linked against the standard C library XE "library" (or any other library, for that matter). There are multiple reasons for this, but the primary reason is speed and size. The full C library or even a decent subset of it is too large and too inefficient for the kernel.

Many of the usual libc functions have been implemented inside the kernel XE "kernel" . For example, the common string manipulation functions are in lib/string.c. Just include <linux/string.h> and have at them.

Of the missing functions, the most familiar is printf(). The kernel XE "kernel" does not have access to printf(), but it does have access to printk(). The printk() function copies the formatted string into the kernel log buffer XE "kernel log buffer" , which is normally read by the syslog
 program. Usage is similar to printf():

printk("Hello world! A string: %s and an integer: %d\n",
 a_string, an_integer);

Figure 23: how to use printk()
One notable difference between printf() and printk() is that printk() allows you to specify a priority flag. This flag is used by syslogd
(8) to decide where to display kernel XE "kernel" messages. Here is an example of these priorities:

printk(KERN_ERR "this is an error!\n");

Figure 24: Printing a kernel XE "kernel" error with printk()
GNU C XE "GNU C"
Like any self-respecting UNIX kernel XE "kernel" , the Linux XE "Linux" kernel is programmed in C. Perhaps surprisingly, the kernel is not programmed in strict ANSI C. Instead, where applicable, the kernel developers make XE "make" use of various language extensions available in gcc (the GNU Compiler Collection, which contains the C compiler XE "compiler" used to compile the kernel and most everything else written in C on a Linux system).

The kernel XE "kernel" developers use both ISO C99 XE "ISO C99"
 and GNU C XE "GNU C" extensions to the C language. These changes tie the Linux XE "Linux" kernel to gcc, although recently other compilers, such as the Intel C compiler XE "compiler" , have sufficiently supported enough gcc features that they too can compile the Linux kernel. The ISO C99 extensions that the kernel uses are nothing special and, because C99 is an official revision of the C language, are slowly cropping up in a lot of other code. The more interesting, and perhaps unfamiliar, deviations from standard ANSI C are those provided by GNU C. Let's look at some of the more interesting extensions that may show up in kernel code.

Inline Functions

GNU C XE "GNU C" supports inline XE "inline" functions XE "inline functions" . An inline function is, as its name suggests, inserted inline into each function call site. This eliminates the overhead of function invocation and return (register saving and restore), and allows for potentially more optimization because the compiler XE "compiler" can optimize XE "optimize" the caller and the called function together. As a downside, code size increases because the contents of the function are copied to all the callers, which increases memory consumption and instruction cache footprint. Kernel developers use inline functions for small time-critical functions. Making large functions inline, especially those that are used more than once or are not time critical, is frowned upon by the kernel XE "kernel" developers.

An inline XE "inline" function is declared when the keywords static and inline are used as part of the function definition. For example:

static inline XE "inline" void dog(unsigned long tail_size)

Figure 25: Declaring inline functions
The function declaration must precede any usage, or else the compiler XE "compiler" cannot make XE "make" the function inline XE "inline" . Common practice is to place inline functions XE "inline functions" in header files. Because they are marked static, an exported function is not created. If an inline function is used by only one file, it can instead be placed toward the top of just that file.

In the kernel XE "kernel" , using inline XE "inline" functions XE "inline functions" is preferred over complicated macros for reasons of type safety.

Inline Assembly

The gcc C compiler XE "compiler" enables the embedding of assembly XE "assembly" instructions in otherwise normal C functions. This feature, of course, is used in only those parts of the kernel XE "kernel" that are unique to a given system architecture.

The asm() compiler XE "compiler" directive is used to inline XE "inline" assembly XE "assembly" code.

The Linux XE "Linux" kernel XE "kernel" is programmed in a mixture of C and assembly XE "assembly" , with assembly relegated to low-level architecture and fast path code. The vast majority of kernel code is programmed in straight C.

Branch Annotation

The gcc C compiler XE "compiler" has a built-in directive that optimizes conditional branches as either very likely taken or very unlikely taken. The compiler uses the directive to appropriately optimize XE "optimize" the branch. The kernel XE "kernel" wraps the directive in very easy-to-use macros, likely() and unlikely().

For example, consider an if statement such as the following:

if (foo) {

 /* ... */

}

Figure 26: A simple if statement

To mark this branch as very unlikely taken (that is, likely not taken):

/* we predict foo is nearly always zero ... */

if (unlikely(foo)) {

 /* ... */

}

Figure 27: Marking a branch as very unlikely
Conversely, to mark a branch as very likely taken:

/* we predict foo is nearly always nonzero ... */

if (likely(foo)) {

 /* ... */

}

Figure 28: Marking a branch as very likely
You should only use these directives when the branch direction is overwhelmingly a known priori or when you want to optimize XE "optimize" a specific case at the cost of the other case. This is an important point: These directives result in a performance boost when the branch is correctly predicted, but a performance loss when the branch is mispredicted. A very common usage for unlikely() and likely() is error conditions. As one might expect, unlikely() finds much more use in the kernel XE "kernel" because if statements tend to indicate a special case.

No Memory Protection XE "Memory Protection"
When a user-space XE "user-space" application attempts an illegal memory access, the kernel XE "kernel" can trap the error, send SIGSEGV, and kill the process. If the kernel attempts an illegal memory access, however, the results are less controlled.
Memory violations in the kernel XE "kernel" result in an oops XE "oops" , which is a major kernel error. It should go without saying that you must not illegally access memory, such as dereferencing a NULL pointer but within the kernel, the stakes are much higher!

Additionally, kernel XE "kernel" memory is not pageable XE "pageable" . Therefore, every byte of memory you consume is one less byte of available physical memory. Keep that in mind next time you have to add one more feature to the kernel!

No (Easy) Use of Floating Point

When a user-space XE "user-space" process uses floating-point XE "floating-point" instructions, the kernel XE "kernel" manages the transition from integer to floating point mode. What the kernel has to do when using floating-point instructions varies by architecture, but the kernel normally catches a trap and does something in response.

Unlike user-space XE "user-space" , the kernel XE "kernel" does not have the luxury of seamless support for floating point because it cannot trap itself. Using floating point inside the kernel requires manually saving and restoring the floating point registers, among possible other chores. The short answer is: Don't use any floating point in the kernel.

Small, Fixed-Size Stack

User-space XE "User-space" can get away with statically allocating tons of variables on the stack, including huge structures and many-element arrays. This behavior is legal because user-space XE "user-space" has a large stack that can grow in size dynamically.

The kernel XE "kernel" stack is neither large nor dynamic; it is small and fixed in size. The exact size of the kernel's stack varies by architecture. On x86, the stack size is configurable at compile-time and can be either 4 or 8KB. Historically, the kernel stack is two pages, which generally implies that it is 8KB on 32-bit architectures and 16KB on 64-bit architectures this size is fixed and absolute. Each process receives its own stack.

Synchronization and Concurrency

The kernel XE "kernel" is susceptible to race conditions. Unlike a single-threaded user-space XE "user-space" application, a number of properties of the kernel allow for concurrent access of shared resources and thus require synchronization XE "synchronization" to prevent races. Specifically,

· Linux XE "Linux" is a preemptive XE "preemptive" multi-tasking XE "multi-tasking" operating system XE "operating system" . Processes are scheduled and rescheduled at the whim of the kernel XE "kernel" 's process scheduler XE "scheduler" . The kernel must synchronize between these tasks.

· The Linux XE "Linux" kernel XE "kernel" supports multiprocessing XE "multiprocessing" . Therefore, without proper protection, kernel code executing on two or more processors can access the same resource.

· Interrupts occur asynchronously with respect to the currently executing code. Therefore, without proper protection, an interrupt XE "interrupt" can occur in the midst of accessing a shared resource and the interrupt handler XE "interrupt handler" can then access the same resource.

· The Linux XE "Linux" kernel XE "kernel" is preemptive XE "preemptive" . Therefore, without protection, kernel code can be preempted XE "preempted" in favor of different code that then accesses the same resource.

Typical solutions to race conditions include spinlocks
 XE "spinlocks" and semaphores XE "semaphores" .
3. Process Scheduling in Linux

3.1. The Linux XE "Linux" Scheduling Algorithm

The Linux scheduler XE "scheduler" is defined in kernel XE "kernel" /sched.c. The scheduler algorithm and supporting code went through a large rewrite early in the 2.5 kernel development series. Consequently, the scheduler code is entirely new XE "new" and unlike the scheduler in previous kernels. The new scheduler is designed to accomplish specific goals:

· Implement fully O(1) scheduling. Every algorithm in the new XE "new" scheduler XE "scheduler" completes in constant-time, regardless of the number of running processes.

· Implement perfect SMP scalability. Each processor XE "processor" has its own locking and individual runqueue.

· Implement improved SMP affinity. Attempt to group tasks to a specific CPU and continue to run them there. Only migrate tasks from one CPU to another to resolve imbalances in runqueue sizes.

· Provide good interactive performance. Even during considerable system load, the system should react and schedule XE "schedule" interactive tasks immediately.

· Provide fairness. No process should find itself starved of timeslice XE "timeslice" for any reasonable amount of time. Likewise, no process should receive an unfairly high amount of timeslice.

· Optimize for the common case of only one or two runnable processes, yet scale well to multiple processors, each with many processes.

The new XE "new" scheduler XE "scheduler" accomplished these goals.

3.1.1. Runqueues

The basic data structure in the scheduler XE "scheduler" is the runqueue. The runqueue is defined in kernel XE "kernel" /sched.c
 as struct runqueue. The runqueue is the list of runnable processes on a given processor XE "processor" ; there is one runqueue per processor. Each runnable process is on exactly one runqueue. The runqueue additionally contains per-processor scheduling information. Consequently, the runqueue is the primary scheduling data structure for each processor.

Let's look at the structure, with comments describing each field:

struct runqueue {

 spinlock_t lock; /* spin lock that protects this runqueue */

 unsigned long nr_running; /* number of runnable tasks */

 unsigned long nr_switches; /* context switch count */

 unsigned long expired_timestamp; /* time of last array swap */

 unsigned long nr_uninterruptible; /* uninterruptible tasks */

 unsigned long long timestamp_last_tick; /* last scheduler XE "scheduler" tick */

 struct task_struct *curr; /* currently running task */

 struct task_struct *idle; /* this processor XE "processor" 's idle task */

 struct mm_struct *prev_mm; /* mm_struct of last ran task */

 struct prio_array *active; /* active priority array */

 struct prio_array *expired; /* the expired priority array */

 struct prio_array arrays[2]; /* the actual priority arrays XE "priority arrays" */

 struct task_struct *migration_thread; /* migration thread */

 struct list_head migration_queue; /* migration queue*/

 atomic_t nr_iowait; /* number of tasks waiting on I/O */

};

Figure 29: Definition of the runqueue structure

Because runqueues XE "runqueues" are the core data structure in the scheduler XE "scheduler" , a group of macros are used to obtain the runqueue associated with a given processor XE "processor" or process. The macro cpu_rq(processor) returns a pointer to the runqueue associated with the given processor; the macro this_rq() returns the runqueue of the current processor; and the macro task_rq(task) returns a pointer to the runqueue on which the given task is queued.

Before a runqueue can be manipulated, it must be locked. Because each runqueue is unique to the current processor XE "processor" , it is rare when a processor desires to lock a different processor's runqueue. The locking of the runqueue prohibits any changes to it while the lock-holder is reading or writing the runqueue's members. The most common runqueue locking scenario is when you want to lock the runqueue on which a specific task runs. In that case, the task_rq_lock() and task_rq_unlock() functions are used:

struct runqueue *rq;

unsigned long flags;

rq = task_rq_lock(task, &flags);

/* manipulate the task's runqueue, rq */

task_rq_unlock(rq, &flags);
Figure 30: Locking/unlocking using task_runqueue_lock()/unlock()
Alternatively, the method this_rq_lock() locks the current runqueue and rq_unlock() unlocks the given runqueue:

struct runqueue *rq;

rq = this_rq_lock();

/* manipulate this process's current runqueue, rq */

rq_unlock(rq);

Figure 31: Locking/unlocking using this_rq_lock() and rq_unlock()
To avoid deadlock, code that wants to lock multiple runqueues XE "runqueues" needs always to obtain the locks in the same order: by ascending runqueue address. For example,

/* to lock ... */

if (rq1 == rq2)

 spinlock(&rq1->lock);

else {

 if (rq1 < rq2) {

 spin_lock(&rq1->lock);

 spin_lock(&rq2->lock);

 } else {

 spin_lock(&rq2->lock);

 spin_lock(&rq1->lock);

 }

}

/* manipulate both runqueues XE "runqueues" ... */

/* to unlock ... */

spin_unlock(&rq1->lock);

if (rq1 != rq2)

 spin_unlock(&rq2->lock);
Figure 32: Locking/unlocking multiple runqueues XE "runqueues" using spin_lock()/unlock()
These steps are made automatic by the double_rq_lock() and double_rq_unlock() functions. The preceding steps would then become

double_rq_lock(rq1, rq2);

/* manipulate both runqueues XE "runqueues" ... */

double_rq_unlock(rq1, rq2);

Figure 33: Locking/unlocking using the double_rq_lock()/unlock()
A quick example should help you see why the order of obtaining the locks is important. Nested locks always need to be obtained in the same order. The spin locks are used to prevent multiple tasks from simultaneously manipulating the runqueues XE "runqueues" . They work like a key to a door. The first task to reach the door grabs the key and enters the door, locking the door behind it. If another task reaches the door and finds it locked (because another task is already inside), it must sit and wait for the first task to exit the door and return the key. This waiting is called spinning XE "spinning" because the task actually sits in a tight loop, repeatedly checking for the return of the key. Now, consider if one task wants to lock the first runqueue and then the second while another task wants to lock the second runqueue and then the first. Assume the first task succeeds in locking the first runqueue while simultaneously the second task succeeds in locking the second runqueue. Now the first task tries to lock the second runqueue and the second task tries to lock the first runqueue. Neither task succeeds because the other task holds the lock. Both tasks sit, waiting forever for each other. Like an impasse creating a traffic deadlock, this out-of-order locking results in the tasks waiting for each other, forever, and thus deadlocking. If both tasks obtained the locks in the same order, this scenario could not happen.

3.1.2. The Priority Arrays

Each runqueue contains two priority arrays XE "priority arrays" , the active and the expired array. Priority arrays are defined in kernel XE "kernel" /sched.c as struct prio_array. Priority arrays are the data structures that provide O(1) scheduling. Each priority array contains one queue of runnable processors per priority level. These queues contain lists of the runnable processes at each priority level. The priority arrays also contain a priority bitmap used to efficiently discover the highest-priority runnable task in the system.

struct prio_array {

 int nr_active; /* number of tasks in the queues */

 unsigned long bitmap[BITMAP_SIZE]; /* priority bitmap */

 struct list_head queue[MAX_PRIO]; /* priority queues */

};

Figure 34: Definition of the prio_array structure
MAX_PRIO is the number of priority levels on the system. By default, this is 140. Thus, there is one struct list_head for each priority. BITMAP_SIZE is the size that an array of unsigned long typed variables would have to be to provide one bit for each valid priority level. With 140 priorities and 32-bit words, this is five. Thus, bitmap is an array with five elements and a total of 160 bits.

Each priority array contains a bitmap field that has at least one bit for every priority on the system. Initially, all the bits are zero. When a task of a given priority becomes runnable (that is, its state XE "state" is set to TASK_RUNNING XE "RUNNING"), the corresponding bit in the bitmap is set to one. For example, if a task with priority seven is runnable, then bit seven is set. Finding the highest priority task on the system is therefore only a matter of finding the first set bit in the bitmap. Because the number of priorities is static, the time to complete this search is constant and unaffected by the number of running processes on the system. Furthermore, for each supported architecture Linux implements a fast find first set algorithm to quickly search the bitmap. This method is called sched_find_first_bit(). Many architectures provide a find-first-set instruction that operates on a given word
. On these systems, finding the first set bit is as trivial as executing this instruction at most a couple of times.

Each priority array also contains an array named queue of struct list_head queues, one queue for each priority. Each list corresponds to a given priority and in fact contains all the runnable processes of that priority that are on this processor XE "processor" 's runqueue. Finding the next task to run is as simple as selecting the next element in the list. Within a given priority, tasks are scheduled round robin.

The priority array also contains a counter, nr_active. This is the number of runnable tasks in this priority array.

3.1.3. Recalculating Timeslices
The timeslice XE "timeslice"
 is the numeric value that represents how long a task can run until it is preempted XE "preempted" . The scheduler XE "scheduler" policy must dictate a default timeslice, which is not a trivial exercise. Too long a timeslice causes the system to have poor interactive performance; the system will no longer feel as if applications are concurrently executed. Too short a timeslice causes significant amounts of processor XE "processor" time to be wasted on the overhead of switching processes because a significant percentage of the system's time is spent switching from one process with a short timeslice to the next. Furthermore, the conflicting goals of I/O-bound versus processor-bound processes again arise: I/O-bound processes do not need longer timeslices (although they do like to run often), whereas processor-bound processes crave long timeslices (to keep their caches hot, for example).

With this argument, it would seem that any long timeslice XE "timeslice" would result in poor interactive performance. In many operating systems, this observation is taken to heart, and the default timeslice is rather low for example, 20ms. Linux, however, takes advantage of the fact that the highest priority process always runs. The Linux scheduler XE "scheduler" bumps the priority of interactive tasks, enabling them to run more frequently. Consequently, the Linux scheduler offers a relatively high default timeslice (See Table 2). Furthermore, the Linux scheduler dynamically determines the timeslice of a process based on priority. This enables higher-priority (allegedly more important) processes to run longer and more often. Implementing dynamic timeslices XE "dynamic timeslices" and priorities provides robust scheduling performance.
	Type of Task
	Nice Value
	Timeslice Duration

	Initially created
	parent's
	half of parent's

	Minimum Priority
	+19
	5ms (MIN_TIMESLICE)

	Default Priority
	0
	100ms (DEF_TIMESLICE)

	Maximum Priority
	-20
	800ms (MAX_TIMESLICE)

Table 2: Linux Scheduler Timeslices

Many operating systems (older versions of Linux included) have an explicit method for recalculating each task's timeslice XE "timeslice" when they have all reached zero. Typically, this is implemented as a loop over each task, such as

for (each task on the system) {

 recalculate priority

 recalculate timeslice XE "timeslice"
}

Figure 35: Recalculating timeslices (old method)
The priority and other attributes of the task are used to determine a new XE "new" timeslice XE "timeslice" . This approach has some problems:

It potentially can take a long time. Worse, it scales O(n) for n tasks on the system.

· The recalculation must occur under some sort of lock protecting the task list and the individual process descriptors. This results in high lock contention.

· The non-determinism of a randomly occurring recalculation of the timeslices is a problem with deterministic real-time programs.

· It is just gross (which is a quite legitimate reason for improving something in the Linux kernel XE "kernel").

The new XE "new" Linux scheduler XE "scheduler" alleviates the need for a recalculate loop. Instead, it maintains two priority arrays XE "priority arrays" for each processor XE "processor" : both an active array and an expired array. The active array contains all the tasks in the associated runqueue that have timeslice XE "timeslice" left. The expired array contains all the tasks in the associated runqueue that have exhausted their timeslice. When each task's timeslice reaches zero, its timeslice is recalculated before it is moved to the expired array. Recalculating all the timeslices is then as simple as just switching the active and expired arrays. Because the arrays are accessed only via pointer, switching them is as fast as swapping two pointers. This is performed in schedule XE "schedule" ():

struct prio_array *array = rq->active;

if (!array->nr_active) {

 rq->active = rq->expired;

 rq->expired = array;

}

Figure 36: Swapping active and expired arrays
This swap is a key feature of the new XE "new" O(1) scheduler XE "scheduler" . Instead of recalculating each processes priority and timeslice XE "timeslice" all the time, the O(1) scheduler performs a simple two-step array swap. This resolves the previously discussed problems.

schedule XE "schedule" ()

The act of picking the next task to run and switching to it is implemented via the schedule XE "schedule" () function. This function is called explicitly by kernel XE "kernel" code that wants to sleep and it is invoked whenever a task is to be preempted XE "preempted" . The schedule() function is run independently by each processor XE "processor" . Consequently, each CPU makes its own decisions on what process to run next.

The schedule XE "schedule" () function is relatively simple for all it must accomplish. The following code determines the highest priority task:

struct task_struct *prev, *next;

struct list_head *queue;

struct prio_array *array;

int idx;

prev = current;

array = rq->active;

idx = sched_find_first_bit(array->bitmap);

queue = array->queue + idx;

next = list_entry(queue->next, struct task_struct, run_list);

Figure 37: Finding highest priority task
First, the active priority array is searched to find the first set bit. This bit corresponds to the highest priority task that is runnable. Next, the scheduler XE "scheduler" selects the first task in the list at that priority. This is the highest priority runnable task on the system and is the task the scheduler will run. See Figure 38
[image: image13.emf]bit 5 priority 5

140 bit priority array

bit 0 priority 0

bit 139 priority 139

schedule()

sched_find_first_set()

**

*

List of all runnable

tasks, by priority

**

*

List of runnable

tasks for priority 5

run the first process in the list

bit 5 priority 5

140 bit priority array

bit 0 priority 0

bit 139 priority 139

schedule()

sched_find_first_set()

bit 5 priority 5

140 bit priority array

bit 0 priority 0

bit 139 priority 139

140 bit priority array 140 bit priority array

bit 0 priority 0

bit 139 priority 139

schedule()

sched_find_first_set()

**

*

List of all runnable

tasks, by priority

**

*

**

*

List of all runnable

tasks, by priority

**

*

List of runnable

tasks for priority 5

**

*

List of runnable

tasks for priority 5

run the first process in the list

Figure 38: The Linux O(1) scheduler XE "scheduler" algorithm.
If prev does not equal next, then a new XE "new" task has been selected to run. The function context_switch() is called to switch from prev to next. Context switching is discussed in a subsequent section.

Two important points should be noted from the previous code. First, it is very simple and consequently quite fast. Second, the number of processes on the system has no effect on how long this code takes to execute. There is no loop over any list to find the most suitable process. In fact, nothing affects how long the schedule XE "schedule" () code takes to find a new XE "new" task. It is constant in execution time.
3.1.4. Calculating Priority and Timeslice

Processes have an initial priority that is called the nice XE "nice" value. This value ranges from 20 to +19 with a default of zero. Nineteen is the lowest and 20 is the highest priority. This value is stored in the static_prio member of the process's task_struct. The variable is called the static priority XE "static priority" because it does not change from what the user specifies. The scheduler XE "scheduler" , in turn, bases its decisions on the dynamic priority that is stored in prio. The dynamic priority is calculated as a function of the static priority and the task's interactivity.

The method effective_prio() returns a task's dynamic priority. The method begins with the task's nice XE "nice" value and computes a bonus or penalty in the range 5 to +5 based on the interactivity of the task. For example, a highly interactive task XE "interactive task" with a nice value of ten can have a dynamic priority of five. Conversely, a mild processor XE "processor" hog with a nice value of ten can have a dynamic priority of 12. Tasks that are only mildly interactive at some theoretical equilibrium of I/O versus processor usage receive no bonus or penalty and their dynamic priority is equal to their nice value.

Of course, the scheduler XE "scheduler" does not magically know whether a process is interactive. It must use some heuristic that is capable of accurately reflecting whether a task is I/O bound or processor XE "processor" bound. The most indicative metric is how long the task sleeps. If a task spends most of its time asleep, then it is I/O bound. If a task spends more time runnable than sleeping, it is certainly not interactive. This extends to the extreme: A task that spends nearly all the time sleeping is completely I/O bound, whereas a task that spends nearly all its time runnable is completely processor bound.

To implement this heuristic, Linux keeps a running tab on how much time a process is spent sleeping versus how much time the process spends in a runnable state XE "state" . This value is stored in the sleep_avg member of the task_struct. It ranges from zero to MAX_SLEEP_AVG, which defaults to 10 milliseconds. When a task becomes runnable after sleeping, sleep_avg is incremented by how long it slept, until the value reaches MAX_SLEEP_AVG. For every timer tick the task runs, sleep_avg is decremented until it reaches zero.

This metric is surprisingly accurate. It is computed based not only on how long the task sleeps but also on how little it runs. Therefore, a task that spends a great deal of time sleeping, but also continually exhausts its timeslice XE "timeslice" , will not be awarded a huge bonus the metric works not just to award interactive tasks but also to punish processor XE "processor" -bound tasks. It is also not vulnerable to abuse. A task that receives a boosted priority and timeslice quickly loses the bonus if it turns around and hogs the processor. Finally, the metric provides quick response. A newly created interactive process quickly receives a large sleep_avg. Despite this, because the bonus or penalty is applied against the initial nice XE "nice" value, the user can still influence the system's scheduling decisions by changing the process's nice value.

Timeslice, on the other hand, is a much simpler calculation. It is based on the static priority XE "static priority" . When a process is first created, the new XE "new" child and the parent split the parent's remaining timeslice XE "timeslice" . This provides fairness and prevents users from forking new children to get unlimited timeslice. After a task's timeslice is exhausted, however, it is recalculated based on the task's static priority. The function task_timeslice() returns a new timeslice for the given task. The calculation is a simple scaling of the static priority into a range of timeslices. The higher a task's priority, the more timeslice it receives per round of execution. The maximum timeslice, which is given to the highest priority tasks (a nice XE "nice" value of -20), is 800 milliseconds. Even the lowest-priority tasks (those with a nice value of +19) receive at least the minimum timeslice, MIN_TIMESLICE, which is either 5 milliseconds or one timer tick, whichever is larger. Tasks with the default priority (a nice value of zero) receive a timeslice of 100 milliseconds. See Table 2.

The scheduler XE "scheduler" provides one additional aide to interactive tasks: If a task is sufficiently interactive, when it exhausts its timeslice XE "timeslice" it will not be inserted into the expired array, but instead reinserted back into the active array. Recall that timeslice recalculation is provided via the switching of the active and the expired arrays. Normally, as processes exhaust their timeslices, they are moved from the active array to the expired array. When there are no more processes in the active array, the two arrays are switched: The active becomes the expired, and the expired becomes the active. This provides O(1) timeslice recalculation. It also provides the possibility that an interactive task XE "interactive task" can become runnable but fail to run again until the array switch occurs because the task is stuck in the expired array. Reinserting interactive tasks back into the active array alleviates this problem. The task does not run immediately, but is scheduled round robin with the other tasks at its priority. The logic to provide this feature is implemented in scheduler_tick(), which is called via the timer interrupt:

struct task_struct *task;

struct runqueue *rq;

task = current;

rq = this_rq();

if (!--task->time_slice) {

 if (!TASK_INTERACTIVE(task) || EXPIRED_STARVING(rq))

 enqueue_task(task, rq->expired);

 else

 enqueue_task(task, rq->active);

}

Figure 39: scheduler XE "scheduler" _tick() interrupt handler
First, the code decrements the process's timeslice XE "timeslice" and checks whether it is now zero. If it is, the task is expired and it needs to be inserted into an array, so this code first checks whether the task is interactive via the TASK_INTERACTIVE() macro. This macro computes whether a task is "interactive enough" based on its nice XE "nice" value. The lower the nice value (the higher the priority) the less interactive a task needs to be. A nice +19 task can never be interactive enough to be reinserted. Conversely, a nice 20 task would need to be a heavy processor XE "processor" hog not to be reinserted. A task at the default nice value, zero, needs to be relatively interactive to be reinserted, but it is not too difficult. Next, the EXPIRED_STARVING() macro checks whether there are processes on the expired array that are starving that is, if the arrays have not been switched in a relatively long time. If they have not been switched recently, reinserting the current task into the active array further delays the switch, additionally starving the tasks on the expired array. If this is not the case, the process can be inserted into the active array. Otherwise, it is inserted into the expired array, which is the normal practice.

3.1.5. Sleeping and Waking Up

Tasks that are sleeping (blocked) are in a special non-runnable state XE "state" . This is important because without this special state, the scheduler XE "scheduler" would select tasks that did not want to run or, worse, sleeping would have to be implemented as busy looping. A task sleeps for a number of reasons, but always while it is waiting for some event. The event can be a specified amount of time, more data from a file I/O, or another hardware event. A task can also involuntarily go to sleep when it tries to obtain a contended semaphore in the kernel XE "kernel" . A common reason to sleep is file I/O for example, the task issued a read() request on a file, which needs to be read in from disk. As another example, the task could be waiting for keyboard input. Whatever the case, the kernel behavior is the same: The task marks itself as sleeping, puts itself on a wait queue, removes itself from the runqueue, and calls schedule XE "schedule" () to select a new XE "new" process to execute. Waking back up is the inverse: the task is set as runnable, removed from the wait queue, and added back to the runqueue.

As discussed in the previous chapter, two states are associated with sleeping, TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE. They differ only in that tasks in the TASK_UNINTERRUPTIBLE state XE "state" ignore signals, whereas tasks in the TASK_INTERRUPTIBLE state wake up prematurely and respond to a signal if one is issued. Both types of sleeping tasks sit on a wait queue, waiting for an event to occur, and are not runnable.

Sleeping is handled via wait queues. A wait queue is a simple list of processes waiting for an event to occur. Wait queues are represented in the kernel XE "kernel" by wake_queue_head_t. Wait queues are created statically via DECLARE_WAITQUEUE() or dynamically via init_waitqueue_head(). Processes put themselves on a wait queue and mark themselves not runnable. When the event associated with the wait queue occurs, the processes on the queue are awakened. It is important to implement sleeping and waking correctly, to avoid race conditions.

Some simple interfaces for sleeping used to be in wide use. These interfaces, however, have races: It is possible to go to sleep after the condition becomes true XE "true" . In that case, the task might sleep indefinitely. Therefore, the recommended method for sleeping in the kernel XE "kernel" is a bit more complicated:

/* 'q' is the wait queue we wish to sleep on */

DECLARE_WAITQUEUE(wait, current);

add_wait_queue(q, &wait);

while (!condition) { /* condition is the event that we are waiting for */

 set_current_state XE "state" (TASK_INTERRUPTIBLE); /* or TASK_UNINTERRUPTIBLE */

 if (signal_pending(current))

 /* handle signal */

 schedule XE "schedule" ();

}

set_current_state XE "state" (TASK_RUNNING XE "RUNNING");

remove_wait_queue(q, &wait);

The task performs the following steps to add itself to a wait queue:

· Creates a wait queue entry via DECLARE_WAITQUEUE().

· Adds itself to a wait queue via add_wait_queue(). This wait queue awakens the process when the condition for which it is waiting occurs. Of course, there needs to be code elsewhere that calls wake_up() on the queue when the event actually does occur.

· Changes the process state XE "state" to TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE.

· If the state XE "state" is set to TASK_INTERRUPTIBLE, a signal wakes the process up. This is called a spurious wake up (a wake-up not caused by the occurrence of the event). So check and handle signals.

· Tests whether the condition is true XE "true" . If it is, there is no need to sleep. If it is not true, the task calls schedule XE "schedule" ().

· When the task awakens, it again checks whether the condition is true XE "true" . If it is, it exits the loop. Otherwise, it again calls schedule XE "schedule" () and repeats.

· Now that the condition is true XE "true" , the task can set itself to TASK_RUNNING XE "RUNNING" and remove itself from the wait queue via remove_wait_queue().

If the condition occurs before the task goes to sleep, the loop terminates, and the task does not erroneously go to sleep. Note that kernel XE "kernel" code often has to perform various other tasks in the body of the loop. For example, it might need to release locks before calling schedule XE "schedule" () and reacquire them after or react to other events.

Waking is handled via wake_up(), which wakes up all the tasks waiting on the given wait queue. It calls try_to_wake_up(), which sets the task's state XE "state" to TASK_RUNNING XE "RUNNING" , calls activate_task() to add the task to a runqueue, and sets need_resched if the awakened task's priority is higher than the priority of the current task. The code that causes the event to occur typically calls wake_up() afterward. For example, when data arrives from the hard disk, the VFS calls wake_up() on the wait queue that holds the processes waiting for the data.

[image: image14.emf]TASK_RUNNING TASK_INTERRUPTIBLE

Event the task is waiting for occurs, and

try_to_wake_up()

sets the

task to

TASK RUNNING

, calls

activate_task()

to add the task to

runqueue, and calls

schedule()

.

__remove_wait_queue()

removes

the task from wait queue.

__add_wait_queue()

adds task to the wait queue, sets the task state

to

TASK_INTERRUPTIBLE,

and calls

schedule()

.

schedule()

calls

deactivate_task()

and removes the task from the runqueue.

receives a signal, task state is set

to

TASK_RUNNING

and task

executes signal handler.

(task is runnable) (task is not runnable)

TASK_RUNNING TASK_INTERRUPTIBLE

Event the task is waiting for occurs, and

try_to_wake_up()

sets the

task to

TASK RUNNING

, calls

activate_task()

to add the task to

runqueue, and calls

schedule()

.

__remove_wait_queue()

removes

the task from wait queue.

__add_wait_queue()

adds task to the wait queue, sets the task state

to

TASK_INTERRUPTIBLE,

and calls

schedule()

.

schedule()

calls

deactivate_task()

and removes the task from the runqueue.

receives a signal, task state is set

to

TASK_RUNNING

and task

executes signal handler.

(task is runnable) (task is not runnable)

An important note about sleeping is that there are spurious wake-ups. Just because a task is awakened does not mean that the event for which the task is waiting has occurred; sleeping should always be handled in a loop that ensures that the condition for which the task is waiting has indeed occurred. Figure 40 depicts the relationship between each scheduler XE "scheduler" state XE "state" .
Figure 40: Sleeping and waking up.
3.1.6. The Load Balancer

As discussed, the Linux scheduler XE "scheduler" implements separate runqueues XE "runqueues" and locking for each processor XE "processor" on a symmetrical multiprocessing system. That is, each processor maintains its own list of processes and operates the scheduler on only those tasks. The entire scheduling system is, in effect, unique to each processor. How, then, does the scheduler enforce any sort of global scheduling policy XE "scheduling policy" on multiprocessing systems? What if the runqueues become unbalanced, say with five processes on one processor's runqueue, but only one on another? The solution is the load balancer, which works to ensure that the runqueues are balanced. The load balancer compares the current processor's runqueue to the other runqueues in the system. If it finds an imbalance, it pulls processes from the busier runqueue to the current runqueue. Ideally, every runqueue will have the same number of processes. That is a lofty goal, but the load balancer comes close.

The load balancer is implemented in kernel XE "kernel" /sched.c as load_balance(). It has two methods of invocation. It is called by schedule XE "schedule" () whenever the current runqueue is empty. It is also called via timer: every 1 millisecond when the system is idle and every 200 milliseconds otherwise. On uniprocessor systems, load_balance() is never called and in fact is not even compiled into the kernel image because there is only a single runqueue and thus no balancing is needed.

[image: image15.emf]Process 1

Process 2

Process 3

Process 4

Process 20

Processor 1’s runqueue

total processes: 20

Process 1

Process 2

Process 3

Process 4

Process 15

Processor 2’s runqueue

total processes: 15

load_balance()

Pull processes from one runqueue

to another to relieve imbalance

Process 1

Process 2

Process 3

Process 4

Process 20

Processor 1’s runqueue

total processes: 20

Process 1

Process 2

Process 3

Process 4

Process 20

Processor 1’s runqueue

total processes: 20

Process 1

Process 2

Process 3

Process 4

Process 15

Processor 2’s runqueue

total processes: 15

Process 1

Process 2

Process 3

Process 4

Process 15

Processor 2’s runqueue

total processes: 15

load_balance()

Pull processes from one runqueue

to another to relieve imbalance

The load balancer is called with the current processor XE "processor" 's runqueue locked and with interrupts XE "interrupts" disabled to protect the runqueues XE "runqueues" from concurrent access. In the case where schedule XE "schedule" () calls load_balance(), its job is pretty clear because the current runqueue is empty and finding any process and pulling it onto this runqueue is advantageous. When the load balancer is called via timer, however, its job might be less apparent: It needs to resolve any imbalance between the runqueues to keep them about even. See Figure 41.
Figure 41: The load_balancer()
The load_balance() function and related methods are fairly large and complicated, although the steps they perform are comprehensible:

	1.
	First, load_balance() calls find_busiest_queue() to determine the busiest runqueue. In other words, this is the runqueue with the greatest number of processes in it. If there is no runqueue that has at least 25% more processes than the current, find_busiest_queue() returns NULL and load_balance() returns. Otherwise, the busiest runqueue is returned.

	2.
	Second, load_balance() decides from which priority array on the busiest runqueue it wants to pull. The expired array is preferred because those tasks have not run in a relatively long time and thus are most likely not in the processor XE "processor" 's cache (that is, they are not "cache hot"). If the expired priority array is empty, the active one is the only choice.

	3.
	Next, load_balance() finds the highest priority (smallest value) list that has tasks, because it is more important to fairly distribute high-priority tasks than lower-priority ones.

	4.
	Each task of the given priority is analyzed to find a task that is not running, not prevented to migrate via processor XE "processor" affinity, and not cache hot. If the task meets this criteria, pull_task() is called to pull the task from the busiest runqueue to the current runqueue.

	5.
	As long as the runqueues XE "runqueues" remain imbalanced, the previous two steps are repeated and more tasks are pulled from the busiest runqueue to the current. Finally, when the imbalance is resolved, the current runqueue is unlocked and load_balance()returns.

Table 3: Steps for load_balance()
Here is load_balance(), slightly cleaned up but otherwise in all its glory:

static int load_balance(int this_cpu, runqueue_t *this_rq,

 struct sched_domain *sd, enum idle_type idle)

{

 struct sched_group *group;

 runqueue_t *busiest;

 unsigned long imbalance;

 int nr_moved;

 spin_lock(&this_rq->lock);

 group = find_busiest_group(sd, this_cpu, &imbalance, idle);

 if (!group)

 goto out_balanced;

 busiest = find_busiest_queue(group);

 if (!busiest)

 goto out_balanced;

 nr_moved = 0;

 if (busiest->nr_running > 1) {

 double_lock_balance(this_rq, busiest);

 nr_moved = move_tasks(this_rq, this_cpu, busiest,

 imbalance, sd, idle);

 spin_unlock(&busiest->lock);

 }

 spin_unlock(&this_rq->lock);

 if (!nr_moved) {

 sd->nr_balance_failed++;

 if (unlikely(sd->nr_balance_failed > sd->cache_nice XE "nice" _tries+2)) {

 int wake = 0;

 spin_lock(&busiest->lock);

 if (!busiest->active_balance) {

 busiest->active_balance = 1;

 busiest->push_cpu = this_cpu;

 wake = 1;

 }

 spin_unlock(&busiest->lock);

 if (wake)

 wake_up_process(busiest->migration_thread);

 sd->nr_balance_failed = sd->cache_nice XE "nice" _tries;

 }

 } else

 sd->nr_balance_failed = 0;

 sd->balance_interval = sd->min_interval;

 return nr_moved;

out_balanced:

 spin_unlock(&this_rq->lock);

 if (sd->balance_interval < sd->max_interval)

 sd->balance_interval *= 2;

 return 0;

}

Figure 42: A simplified load_balance() function
3.2. Scheduler Related System Calls
Linux XE "Linux" provides a family of system calls for the management of scheduler XE "scheduler" parameters. These system calls allow manipulation of process priority, scheduling policy XE "scheduling policy" , and processor XE "processor" affinity, as well as provide an explicit mechanism to yield the processor to other tasks.

Various books and the friendly system man pages provide reference to these system calls (which are all implemented in the C library XE "library" without much wrapper they just invoke the system call). Table 4 Lists the system calls and provides a brief description.

	System Call
	Description

	nice XE "nice" ()
	Sets a process's nice XE "nice" value

	sched_setscheduler()
	Sets a process's scheduling policy XE "scheduling policy"

	sched_getscheduler()
	Gets a process's scheduling policy XE "scheduling policy"

	sched_setparam()
	Sets a process's real-time priority

	sched_getparam()
	Gets a process's real-time priority

	sched_get_priority_max()
	Gets the maximum real-time priority

	sched_get_priority_min()
	Gets the minimum real-time priority

	sched_rr_get_interval()
	Gets a process's timeslice XE "timeslice" value

	sched_setaffinity()
	Sets a process's processor XE "processor" affinity

	sched_getaffinity()
	Gets a process's processor XE "processor" affinity

	sched_yield()
	Temporarily yields the processor XE "processor"

Table 4: Scheduler-Related System Calls

Scheduling Policy and Priority-Related System Calls

The sched_setscheduler() and sched_getscheduler() system calls set and get a given process's scheduling policy XE "scheduling policy" and real-time priority, respectively. Their implementation, like most system calls, involves a lot of argument checking, setup, and cleanup. The important work, however, is merely to read or write the policy and rt_priority values in the process's task_struct.

The sched_setparam() and sched_getparam() system calls set and get a process's real-time priority. These calls merely encode rt_priority in a special sched_param structure. The calls sched_get_priority_max() and sched_get_priority_min() return the maximum and minimum priorities, respectively, for a given scheduling policy XE "scheduling policy" . The maximum priority for the real-time policies is MAX_USER_RT_PRIO minus one; the minimum is one.

For normal tasks, the nice XE "nice" () function increments the given process's static priority XE "static priority" by the given amount. Only root can provide a negative value, thereby lowering the nice value and increasing the priority. The nice() function calls the kernel XE "kernel" 's set_user_nice() function, which sets the static_prio and prio values in the task's task_struct as appropriate.

Processor Affinity System Calls

The Linux XE "Linux" scheduler XE "scheduler" enforces hard processor XE "processor" affinity. That is, although it tries to provide soft or natural affinity by attempting to keep processes on the same processor, the scheduler also enables a user to say, "This task must remain on this subset of the available processors no matter what." This hard affinity is stored as a bitmask XE "bitmask" in the task's task_struct as cpus_allowed. The bitmask contains one bit per possible processor on the system. By default, all bits are set and, therefore, a process is potentially runnable on any processor. The user, however, via sched_setaffinity(), can provide a different bitmask of any combination of one or more bits. Likewise, the call sched_getaffinity() returns the current cpus_allowed bitmask.

The kernel XE "kernel" enforces hard affinity in a very simple manner. First, when a process is initially created, it inherits its parent's affinity mask. Because the parent is running on an allowed processor XE "processor" , the child thus runs on an allowed processor. Second, when a processor's affinity is changed, the kernel uses the migration threads to push the task onto a legal processor. Finally, the load balancer pulls tasks to only an allowed processor. Therefore, a process only ever runs on a processor whose bit is set in the cpus_allowed field of its process descriptor.

Yielding Processor Time

Linux XE "Linux" provides the sched_yield() system call as a mechanism for a process to explicitly yield the processor XE "processor" to other waiting processes. It works by removing the process from the active array (where it currently is, because it is running) and inserting it into the expired array. This has the effect of not only preempting the process and putting it at the end XE "end" of its priority list, but also putting it on the expired list guaranteeing it will not run for a while. Because real-time tasks never expire, they are a special case. Therefore, they are merely moved to the end of their priority list (and not inserted into the expired array). In earlier versions of Linux, the semantics of the sched_yield() call were quite different; at best, the task was moved only to the end of its priority list. The yielding was often not for a very long time. Nowadays, applications and even kernel XE "kernel" code should be certain they truly want to give up the processor before calling sched_yield().

Kernel code, as a convenience, can call yield(), which ensures that the task's state XE "state" is TASK_RUNNING XE "RUNNING" , and then call sched_yield(). User-space XE "User-space" applications use the sched_yield()system call.
4. Design and Implementation

4.1. [image: image16.jpg]

Design of LISURT XE "LISURT"
Figure 1 illustrates the general overall architecture of the LISURT XE "LISURT" framework XE "framework" . A LISURT scheduling policy XE "scheduling policy" is translated by the LISURT DSL XE "LISURT DSL" translator XE "translator" into a component that is implemented as a kernel XE "kernel" module XE "module" . This component exports an interface XE "interface" requesting event notifications from the OS kernel whenever process state XE "state" changes occur. The component then uses the information received via these event notifications to make XE "make" scheduling decisions, including the election of a new XE "new" process.
Figure 43: General LISURT XE "LISURT" Architecture
Preparing an OS kernel XE "kernel" for use with LISURT XE "LISURT" thus requires inserting event notifications throughout the kernel, wherever process state XE "state" changes occur, in accordance with the LISURT interface XE "interface" . A standard solution to extending an OS, such as Linux XE "Linux" , with a new XE "new" feature is to perform the integration by hand and to distribute the result as a patch file. Manual integration is, however, tedious and error-prone, and the result is limited to a single version of the OS. To obtain a solution that is both more manageable and more flexible, aspect-oriented programming (AOP) [8] is used.

AOP is a programming technique that is targeted towards providing a modular implementation of functionalities that crosscut an application. The implementation of such functionality is isolated in an aspect, which contains a collection of code fragments, known as advice, and a formal description, known as a pointcut, of the positions at which these fragments should be inserted into the target application. To see how AOP can be used for LISURT XE "LISURT" , the integration of the unblock XE "unblock" .preemptive XE "preemptive" event notification into Linux XE "Linux" 2.6.X can be considered. In this case, the LISURT functionality completely subsumes the primitive Linux process wakeup function try to wake up. Thus, the LISURT aspect contains a pointcut specifying that any call to try to wake up should be replaced and an advice specifying that the replacement should call the LISURT unblock event notification function rts_unblock with the same set of arguments.

Existing approaches to AOP typically provide pointcut languages that can modify function calls and some kinds of variable references. Because the need for a scheduling interface XE "interface" was not anticipated by the Linux XE "Linux" developers, however, the needs of the LISURT XE "LISURT" interface do not always match up with the structure of the Linux kernel XE "kernel" . As an example, consider the lisurt.schedule XE "schedule" event. The semantics of this event requires that the policy elect a new XE "new" process and thus coincides roughly with the behavior of the Linux schedule function. The Linux schedule function, however, does more than elect a new process; it also initiates the context switch and performs some other bookkeeping actions. Thus, it is not possible to simply replace a call to schedule with the lisurt.schedule event notification; instead it is needed to specify the fragment of the schedule definition that the event notification should replace.

To precisely specify the fragments of Linux XE "Linux" code that should be replaced by an event notification; features based on temporal logic to the pointcut language is added. Temporal logic is commonly used to express properties of event sequences, particularly in the context of model checking [6]. Properties include whether an event may eventually occur, or whether it is guaranteed to eventually occur. In the context of specifying properties of programs, temporal logic is used to describe the operations that occur on various paths through a control-flow graph. This use of temporal logic was pioneered by Lacey et al., who use this logic to define rewrite rules that describe common compiler XE "compiler" optimizations [9].

In the case of the lisurt.schedule XE "schedule" event notification, it is observed that in the Linux XE "Linux" schedule function, the fragment of code that deals with process election appears after the taking of the runqueue lock and before the release of this lock. The LISURT XE "LISURT" aspect thus specifies that a lisurt.schedule event notification should replace the maximal code fragment in the schedule function in which every instruction satisfies the following property:
AFΔ(spin_lock_irq (&runqueue_lock)) Λ
AF (spin_unlock_irq(&runqueue_lock))
Figure 44: Desired property of instructions
The operator AFΔф matches any code point from which all paths (indicated by A) in a backward direction (indicated by ф) eventually (indicated by F) reach a point where ф is true XE "true" . In the formula above, ф is specified as the code fragment that should be matched. The operator AFф is similar, but considers control-flow in a forward direction. In the formula above, the conjunction of these two operations captures code fragments that are between the taking and releasing of the runqueue lock. These fragments are then as a whole replaced by the lisurt.schedule XE "schedule" event notification. Error checking rules can also be provided in a similar style to check for cases where only some of the control-flow paths satisfy the required property. Using such rules, the LISURT XE "LISURT" aspect can be applied to multiple versions of the Linux XE "Linux" kernel XE "kernel" , with the assurance that unexpected code patterns will be detected.

Figure 45 gives an overall architecture of the LISURT. You can see how the user level processes are abstracted from the RTS XE "RTS" . Taking an example of EDF scheduling policy XE "scheduling policy" which is inserted in the kernel XE "kernel" as module it is shown that how it communicates with the kernel and user processes. Linux is the default scheduler XE "scheduler" O(1) of linux kernel 2.6, it is implemented as PS in lisurt itself and compiled in the kernel. As soon as a Hub scheduler is inserted in the kernel and Linux scheduler is declared as a child of a parent hub scheduler it starts communicating with the kernel via hub. The hub scheduling policy then decides how to schedule XE "schedule" Linux (and others attached). A kernel specific library is used to automatically load the policies. On the kernel level scheduling hierarchies are maintained as a kernel data structure in kernel memory.
[image: image17.jpg]Thread Number

3500

Time (ms)

4000

4500

Figure 45: Overall architecture of LISURT (taking and example of EDF
 policy)
4.2. Implementation of LISURT XE "LISURT"
4.2.1. The LISURT kernel XE "kernel" interface XE "interface"
LISURT encapsulates the points of interaction between a scheduling policy XE "scheduling policy" and an OS in an event-based interface XE "interface" , as illustrated in Figure 46. Because each OS has different scheduling-related behavior, this interface is specific to the target OS and is designed by an OS expert (i.e., an expert in the given OS). This expert identifies the set of relevant scheduling events and re-engineers the kernel XE "kernel" by replacing scheduling-related code by event notifications. In particular, the complete implementation of process election is removed and replaced by the event notification lisurt.schedule XE "schedule" . An automated tool to help the OS expert in the re-engineering process [22] is developed. The OS expert also creates a formal model describing the expected behavior of the scheduler XE "scheduler" handler for each event. This model is provided to the scheduler programmer, who uses it to guide the development of a scheduler. The LISURT translator XE "translator" , checks that a scheduler satisfies OS-specific requirements and generates code that is compatible with the OS kernel. The LISURT interface for the Linux XE "Linux" kernel contains event notifications for events such as process creation and termination, process blocking, unblocking and yielding, and the need to elect a new XE "new" process. In all, there are 10 basic events for which a LISURT scheduling policy must define handlers for use with this kernel. For events such as blocking, unblocking and yielding that are generated by multiple kernel services, LISURT provides specializations of the basic events that include information about the identity of the service that triggered the event. These specialized events are organized into a hierarchy, allowing an event handler to treat all instances of an event or only instances generated by a given source, such as character devices or the network.
[image: image18.emf]...

fork() {

...

event_create_process(. . .)

...

}

wake_up_process() {

...

event_unblock(. . .)

...

}

...

LISURTified Linux Kernel

...

handler (event e) {

process.new {

...

}

unblock preemptive.* {

...

}

...

}

LISURT Policy

...

fork() {

...

event_create_process(. . .)

...

}

wake_up_process() {

...

event_unblock(. . .)

...

}

...

LISURTified Linux Kernel

...

fork() {

...

event_create_process(. . .)

...

}

wake_up_process() {

...

event_unblock(. . .)

...

}

...

LISURTified Linux Kernel

...

handler (event e) {

process.new {

...

}

unblock preemptive.* {

...

}

...

}

LISURT Policy

...

handler (event e) {

process.new {

...

}

unblock preemptive.* {

...

}

...

}

LISURT Policy

Figure 46: The LISURT event based interface XE "interface"
Interfaces can be taken terms of header files, that way there are three entities: the policy, the RTS XE "RTS" and the kernel XE "kernel" . There are thus header files for

1. The interaction between the policy and the rts (lisurt_policy_rts.h)
2. The interaction between the policy and the kernel XE "kernel" (lisurt_policy_kernel.h)
3. The interaction between the rts and the kernel XE "kernel" (lisurt_rts_kernel.h)
lisurt_policy_rts.h

sched_type enumeration type for declaring the type of scheduler XE "scheduler" module.
enum sched_type { HS, PS };

exported_functions structure defines all the access points defined by the RTS XE "RTS" . These access points are used to communicate with the HS/PS
struct exported_functions
{

 int hashcode;

 char *signature;

 void (*function) (void);

};

void *find_function(int hashcode, char *sig, int count,

 struct exported_functions *exports);

Figure 47: exported_functions structure and find_functions function
scheduler XE "scheduler" _operations structure defines all the scheduling interface functions defined at the RTS XE "RTS" level. These functions are defined in the module generated by the lt XE "lt" , which in turn communicates with the kernel
 XE "kernel"
struct scheduler XE "scheduler" _operations {

 int (*handle_event) (struct event_struct *,
/*scheduler XE "scheduler" entry point*/

 struct next_list_struct *,

 struct next_list_struct *);

 int (*block XE "block") (int, struct lisurt_struct *, struct next_list_struct *);

 int (*block XE "block" _lisurt_schedule XE "schedule") (void);

 int (*block XE "block" _entry) (int, struct lisurt_struct *);

 int (*yield_system_immediate) (int, struct lisurt_struct *,

 struct next_list_struct *);

 int (*yield_system_immediate_lisurt_schedule XE "schedule") (void);

 int (*yield_system_immediate_entry) (int, struct lisurt_struct *);

 int (*yield_system_pause) (int, struct lisurt_struct *,

 struct next_list_struct *);

 int (*yield_system_pause_lisurt_schedule XE "schedule") (void);

 int (*yield_system_pause_entry) (int, struct lisurt_struct *);

 int (*unblock XE "unblock" _preemptive) (int, struct lisurt_struct *,

 struct next_list_struct *);

 int (*unblock XE "unblock" _preemptive_entry) (int, struct lisurt_struct *);

 int (*lisurt_schedule XE "schedule") (void);

 int (*lisurt_schedule XE "schedule" _entry) (void);

 int (*unblock XE "unblock" _timer_target) (int, struct lisurt_struct *,

 struct next_list_struct *);

 int (*unblock XE "unblock" _timer_target_entry) (int, struct lisurt_struct *,

 struct next_list_struct *);

 int (*unblock XE "unblock" _timer_notarget) (int, struct lisurt_struct *,

 struct next_list_struct *);

 int (*unblock XE "unblock" _timer_notarget_entry) (int, struct lisurt_struct *,

 struct next_list_struct *);

 int (*unblock XE "unblock" _timer_persistent)

 (int, struct timer_list * /* the timer itself */ ,

 void * /* timer policy data */ ,

 int /* tgt alive */ ,

 struct lisurt_struct *, struct next_list_struct *);

 int (*unblock XE "unblock" _timer_persistent_entry)

 (int, struct timer_list * /* the timer itself */ ,

 void * /* timer policy data */ ,

 int /* tgt alive */ ,

 struct lisurt_struct *, struct next_list_struct *);

 char *name;

 enum sched_type type;

 int is_default;

 /* true XE "true" if a default HS/PS */

 void (*init) (void);
 /* scheduler XE "scheduler" initialization function */

 int (*ioctl_init) (void);

 struct scheduler XE "scheduler" _struct *

(*create_scheduler XE "scheduler") (struct scheduler_operations *, int new XE "new" _root);

 unsigned int (*check_process_state XE "state") (PROTOCOL_PROCESS_STRUCT *,

 struct next_list_struct *,

 unsigned int);

 void (*preempt) (void);

 int (*do_taskprocinfo) (struct next_list_struct * next_list,

 struct lisurt_struct * lisurt, char *buffer,

 int, int, int);

 int (*do_schedprocinfo) (char *buffer, int);

 int (*list_sched_info) (char *page, char **start, off_t off,

 int count, int *eof, void *data);

 int (*count_processes) (void);

 void (*print_processes) (void);

 void (*set_priority) (PROTOCOL_PROCESS_STRUCT *,

 struct next_list_struct *, int);

 int (*compute_state XE "state") (struct next_list_struct * next_list);

 int (*ps_attach XE "attach") (struct next_list_struct * next_list);

 int (*ps_detach XE "detach") (struct next_list_struct * next_list,

 struct lisurt_struct * p);

 int (*attach XE "attach") (PROTOCOL_SCHEDULER_STRUCT * s, int data[]);

 int (*attach XE "attach" _info) (char *info[]);

 int (*detach XE "detach") (PROTOCOL_SCHEDULER_STRUCT * s, int discard_child);
 /* scheduler XE "scheduler" load-time init function (fns) */

 int (*attach XE "attach" _self1) (struct scheduler XE "scheduler" _operations * parentops);

 /* scheduler XE "scheduler" load-time init function (timers) */

 void (*attach XE "attach" _self2) (void);

 PROTOCOL_SCHEDULER_STRUCT *(*detach XE "detach" _self) (int is_root);

 int export_count;

 struct exported_functions *exports;

 struct module *owner;

 struct next_list_struct next_list;

};

Figure 48: scheduler XE "scheduler" _operations structure
scheduler XE "scheduler" _struct is used to define Lisurt schedulers every hub scheduler must define a structure for child schedulers that begins with this format
struct scheduler XE "scheduler" _struct {

 /* default attributes for Lisurt */

 /* next and previous scheduler XE "scheduler" in the current lisurt queue */

 struct list_head list_info;

 /* scheduler XE "scheduler" operations exported to the RTS XE "RTS" */

 struct scheduler XE "scheduler" _operations *ops;

 /* lisurt schedule XE "schedule" state XE "state" */

 int state XE "state" ;

};

Figure 49: scheduler XE "scheduler" _struct Structure
event_struct structure for event notifications
struct event_struct {

 int type;

 /* event type */

 PROTOCOL_PROCESS_STRUCT *target;
/* target process XE "target process" */

 PROTOCOL_PROCESS_STRUCT *source;
/* event process source */

};

Figure 50: event_struct structure
lisurt_struct used to define Lisurt processes every process scheduler XE "scheduler" must define a structure for child processes that begins with this format *attr points to the default process atributes (pid, memory context)
#ifndef LISURT_STRUCT

#define LISURT_STRUCT

struct lisurt_struct {

 /* default attributes for Lisurt */

 /* next and previous processes in the current lisurt queue */

 struct list_head list_info;

 /* list of hub schedulers on the way to this process */

 struct next_list_struct *next_list;

 /* process state XE "state" */

 int state XE "state" ;

};

#endif

Figure 51: lisurt_struct structure
The functions declared by RTS XE "RTS" , these functions are defined in kernel XE "kernel" /lisurt.c
create_lisurt_timer()used by the translator XE "translator" for process timers
create_static_lisurt_timer() used by the translator XE "translator" for scheduler XE "scheduler" timers
delete_lisurt_timer() used by the compiler XE "compiler" for process timers
delete_static_lisurt_timer() used by the translator XE "translator" for scheduler XE "scheduler" timers
start_absolute_timer() used by the programmer
start_relative_timer() used by the programmer(add jiffies
 XE "jiffies" to provided time)
stop_timer() stops a timer
get_user_int() copy from user, user interrupts XE "interrupts" the scheduler XE "scheduler" and the interrupt infotmation is copied to the kernel XE "kernel" .
lisurt_add_scheduler XE "scheduler" () adds a new XE "new" scheduler in the tree
lisurt_remove_scheduler XE "scheduler" () deletes the new XE "new" scheduler from the tree
rts_scheduler XE "scheduler" _operations() management of scheduler(set/unset) scheduler specific properties
lisurt_rts_kernel XE "kernel" .h
This file describes the interface between the RTS XE "RTS" and the kernel XE "kernel" . It declares the functions and variables defined by the RTS and used by the kernel. This is to be included in sched.h

struct task_struct {

volatile long state XE "state" ;
/* -1 unrunnable, 0 runnable, >0 stopped */

struct thread_info *thread_info;

atomic_t usage;

unsigned long flags;
/* per process flags, defined below */

unsigned long ptrace;

int lock_depth;

/* BKL lock depth */
...

...

...

#ifdef CONFIG_LISURT

struct lisurt_struct lisurt;

int lisurt_data[CONFIG_LISURT_DATA_SIZE];

#endif

...

...

...

};

Figure 52: excerpts of linux_rts_kernel XE "kernel" .h
This file further declares the following functions:
lisurt_create_process() Create a new XE "new" lisurt process and assign it to a specific scheduler XE "scheduler" , also set the scheduler specific options.
lisurt_init() Initialize variables for the RTS XE "RTS" (event buffer) and plugs the root scheduler XE "scheduler" . Called at system startup by init/main.c
lisurt_ioctl_init() Initialize ioctls of all loaded schedulers count all processes that are ready or sleeping in the Linux sense, and that are not nowhere or terminated in the Lisurt sense.
rts_terminate_process() Terminates a process
rts_clocktick XE "clocktick" () Manage the clockticks
rts_yield() Yield XE "Yield" a process
rts_schedule XE "schedule" () Preempt the current process (with or without blocking) and elect a new XE "new" process to the CPU
rts_scheduler XE "scheduler" _info() Create the scheduler info structure
rts_proc XE "proc" _info() Make entries in proc file system
lisurt_events.h
This file defines all the events that can be generated

/*

 * Lisurt events are structured in six top level classes:

 *

 * event mask description

 * ======= ============ =====================

 * BLOCK 0x01........ blocking events

 * UNBLOCK 0x02........ unblocking events

 * YIELD 0x03........ process-related events

 * SYSTEM 0x04........ system events

 * PROCESS 0x05........ process-related events

 * LISURT 0x06........ Lisurt run-time events

 *

 */

#ifndef LISURT_EVENTS

#define LISURT_EVENTS

#define MAIN_REST_INIT
 0x00000101

#define MAIN_START_KERNEL
 0x00000102

#define KERNEL_SCHED_WAKE_UP_PROCESS
 0x00000201

#define KERNEL_SCHED_SCHEDULE_TIMEOUT
 0x00000202

#define KERNEL_SCHED___WAKE_UP_COMMON
 0x00000203

#define KERNEL_SCHED_WAIT_FOR_COMPLETION
 0x00000204

#define KERNEL_SCHED_INTERRUPTIBLE_SLEEP_ON
 0x00000205

#define KERNEL_SCHED_INTERRUPTIBLE_SLEEP_ON_TIMEOUT
 0x00000206

...
...
...

...
#define EVENT_YIELD

 0x03000000

#define EVENT_YIELD_SYSTEM

 0x03010000

#define EVENT_YIELD_SYSTEM_IMMEDIATE

 0x03010100

#define EVENT_YIELD_SYSTEM_PAUSE

 0x03010200

#define EVENT_YIELD_USER

 0x03020000

#define EVENT_YIELD_USER_EDF

 0x03020100

#define EVENT_LISURT_SCHEDULE 0x06000000

#endif

Figure 53: lisurt_events.h header file
Following are the functions used by all the other users exported by rts.
rts_idle_process defined by RTS XE "RTS" , exported to policy and kernel XE "kernel"
root_s_state XE "state" defined by RTS XE "RTS" , exported to policy and kernel XE "kernel"
lisurt_struct structure type

next_list_struct structure type

SchedState structure type

The policies and the RTS XE "RTS" exports the pointer to the current process, and the positions of the fields need_resched, pid, and lisurt from the task_struct structure. The RTS imports the state XE "state" field from the task_struct structure. The RTS and the policies also import the functions of list.h, panic XE "panic" , dynamic memory allocation XE "dynamic memory allocation" , and errno.

Four parts to the RTS XE "RTS" :

Functions called by the user: lisurt_user.c
Functions called by the policies: lisurt_policy.c
Functions called by the kernel XE "kernel" (except /proc XE "proc"): lisurt_kernel.c
Functions called by /proc XE "proc" : lisurt_proc.c
Interaction with the kernel XE "kernel" . Basic scheduling related operations.

Create a process: defined in lisurt/fork.c
Terminate a process: defined in lisurt/exit.c
Clock tick: defined in lisurt/timer.c
Unblock a process: defined in lisurt/sched.c
Preempt the current process (with or without blocking) and elect a new XE "new" process for the CPU.
4.3. Design of LISURT XE "LISURT" DSL
The goal of the LISURT XE "LISURT" DSL is to express scheduling policies XE "scheduling policies" in a clear, concise and verifiable way. A LISURT scheduling policy XE "scheduling policy" includes a set of declarations and a set of handlers for kernel XE "kernel" scheduling events. The language is already explained using an implementation of a Round Robin scheduling policy, shown in Figure 21, which illustrates most of the language features. The complete implementation is 84 lines of LISURT code.

Declarations: The declarations of a scheduling policy XE "scheduling policy" define the process attributes, the scheduling states, and the ordering of processes. The process declaration lists the policy-specific attributes associated with each process. Those of the EDF policy are the period and the Worst-Case Execution Time (WCET) supplied by the process, the process’s current deadline, and a timer that is used to maintain the period. The states declaration lists the set of process states that are distinguished by the policy. Each state XE "state" is associated with a state class (RUNNING XE "RUNNING" , READY XE "READY" , BLOCKED XE "BLOCKED" , or TERMINATED XE "TERMINATED") describing the schedulability of processes in the state and an implementation as either a process variable (process) or a queue (queue). The names of the states of the EDF policy are mostly intuitive. For example, the ready state is in the READY state class, meaning that it contains processes that are able to run. This state is also designated as select, meaning that processes are elected from this state. The computation ended state stores processes that have completed their computation within the current period. The ordering criterion allows the comparison of two processes according to a sequence of criteria based on the values of their attributes. The EDF policy favors the process with the lowest current deadline. The annotation select in the declaration of the ready state indicates that the associated queue is sorted according to this criterion.
scheduler XE "scheduler" EDF = {

process = {

time period;

time wcet;

time current_deadline;

timer period_timer;

}

states = {

RUNNING XE "RUNNING" running : process;

READY XE "READY" ready : select queue;

READY XE "READY" yield : process;

BLOCKED XE "BLOCKED" blocked : queue;

BLOCKED XE "BLOCKED" computation_ended : queue;

TERMINATED XE "TERMINATED" terminated;

}

ordering_criteria = { lowest current_deadline }

handler (event e) {

On unblock XE "unblock" .preemptive XE "preemptive" {

if (e.target in blocked) {

if (!empty(running) && e.target > running) {

running => ready;

}

e.target => ready;

}

}

On lisurt.schedule XE "schedule" {

if (empty(ready)) { yield => ready; }

select() => running;

if (!empty(yield)) { yield => ready; }

}

...

}

}

Figure 54: EDF scheduling policy XE "scheduling policy"
Event handlers: Event handlers describe how a policy reacts to scheduling-related events that occur in the kernel XE "kernel" . Examples of such events include process blocking, unblocking and the need to elect a new XE "new" process. Only the definitions of the handler’s unblock XE "unblock" .preemptive XE "preemptive" and lisurt.schedule is shown XE "schedule" , which include most of the scheduling specific language constructs. Event handlers are parameterized by an event structure, e that includes the target process XE "target process" , e.target, affected by the event. The event-handler syntax is based on that of a subset of C, to make XE "make" the language easy to learn, and provides specific constructs and primitives for manipulating processes and their attributes. These include constructs for testing the state XE "state" of a process (exp in state), testing whether there is any process in a given state (empty (state)), testing the relative priority of two processes (exp1 > exp2), and changing the state of a process (exp => state). The latter operation is the only means of affecting the state of a process and both removes the process from its current state and adds it to the new one, thus ensuring by construction that every process is always in exactly one state.

An unblock XE "unblock" .preemptive XE "preemptive" event occurs when a process unblocks. The EDF handler checks whether the process is actually blocked (e.target in blocked), and if so sets the state XE "state" of the target process XE "target process" to ready making it eligible for election. The handler also checks whether there is a running process (! empty (running)) and if so whether the target process has a higher priority than this running process (e.target > running). If both tests are satisfied, the state of the running process is set to ready, thus causing the process to be preempted XE "preempted" . Process election is performed by the lisurt.schedule XE "schedule" event handler. The kernel XE "kernel" invokes this handler only when a new XE "new" process must be elected and there are some eligible processes. The handler must change the state of some READY XE "READY" process to a state in the RUNNING XE "RUNNING" state class and is the only handler that is allowed to do so. In the EDF lisurt.schedule handler the main effect is to elect a process from the state designated as select (ready, in the case of the EDF policy) using the select() primitive, which is defined in terms of the ordering criteria. Nevertheless, because the EDF policy has two READY states, ready and yield, it may occur that the only READY process is actually in the yield state. In this case, the handler first changes the state of the yield process to ready. The policy furthermore implements the strategy that a yielding process only defers to other eligible processes until the next context switch. Thus, the handler terminates by changing the state of any process remaining in the yield state to ready. The structure of the EDF event handlers is quite simple, and is typical of that of most of the handlers found in LISURT XE "LISURT" policies. This simplicity, combined with the domain-specific operators and the characterization of process states by state classes, makes it easy for a programmer to understand the algorithm implemented by a LISURT scheduling policy XE "scheduling policy" and enables the LISURT DSL XE "LISURT DSL" translator XE "translator" to automatically verify that an event handler satisfies OS-specific requirements. LISURT supports both the construction of a single process scheduler XE "scheduler" , as described above, and the construction of a hierarchy of schedulers XE "schedulers" . The use of a hierarchy allows multiple process schedulers XE "process schedulers" , each satisfying particular scheduling needs, to coexist in a running OS. In a LISURT hierarchy, the root and interior nodes are hub schedulers XE "hub schedulers" , which only manage other schedulers, and the leaf nodes are process schedulers, which only manage processes.
This phase resulted in a grammar which is event based and looks like C. A vim syntax file is also written for highlighting the code of LSIURT DSL, lisurt.vim. If installed properly this results in highlighting lisurt code in vi editor.
4.4. Implementation of LISURT XE "LISURT" DSL Translator
This is very easy; all the rules and some code are written in OCAML
 (Objective CAML) for complete implementation of the lt translator. Following is the directory hierarchy of the translator XE "translator" ; each directory contains specific code according to the name. OCaml code is generally divided in three files .ml (Meta language), .mli (Meta language interface), .mly (Meta language yacc) the compilation of the translator itself is automated using make XE "make" same as it is in kernel XE "kernel" . The OCaml compiler XE "compiler" suite itself provides an optimizer that can optimize the elf file produced to a great extent.
This part is very easy because OCaml have wizards for writing code, what you need is to choose the rules carefully, types and productions and rest everything is generated by wizards, after that you just need to tune the code dumped by wizards.

	Folder
	Implementation

	building
	Combine module admission criteria into a single admission criterion.

locals : concatenate; rename.ml will check for duplicates

crit_params : take those that are not requires, type.ml will check for dups

crits : collect all that are provided into a list in the order specified by the scheduler XE "scheduler" attach XE "attach" declaration

attach XE "attach" /detach XE "detach" : pick a fresh parameter name, and rename all of the code accordingly. collect into a sequence according to the order provided in the scheduler XE "scheduler"

	translator XE "translator"
	Check, Translate, Verify, Post-verify

	events
	This directory contains the code that translate events, lexical analyze and parse events, convert NFA to DFA the events

	generator
	Generate C code from the policy, this results in production of files policy_name.c, user_stub_pilicy_name.c and user_stub_policy_name.h
The code in files of this directory contains a embedded C and OCaml code for a lookup function like functionality,

	model
	Explore a collection of states generatable by an automaton. Collect the possible states as well as a single path from the initial state XE "state" that leads to each one. A state is a mapping of Lisurt classes/states to contents descriptions. The module is parameterized over the definition of state.

A configuration is a triple of a source state XE "state" , a rule name, and a target state.

The first step is to pick a state XE "state" that has not yet been treated and apply all applicable rules to it, producing a set of target states. The resulting configurations are by definition all fresh, because the source state has not yet been treated.
There are then several questions:

1. Should the target state XE "state" be added to the set of new XE "new" states?
2. Should the configuration be added to the set of transitions?

The target state XE "state" should only be added to the set of new XE "new" states if it has not been seen before. Whether the configuration should be added to the set of transitions depends on the user of this module.

1. When computing the automaton, the interested is in all transitions that can occur at all points. Thus, every configuration should be added to the set of transitions.

2. When computing the set of inputs derived from quasi-sequences, only one approach is of interested for reaching a given state XE "state" . Thus nothing should be added if there is already a transition to the target state. The module is thus parameterized over this decision.

A transition (tbl) is a maximal unique sequence of configurations.

extensible_transitions (exttbl) consists of prefixes of the transitions.

	parser
	Parser for the DSL is implemented here. It has a lisurt lexer, lisurt parser, error parser program types implemented in separate files.

	types
	All the aspects and lisurt related state XE "state" tables, class states, objects are defined in the files of this directory.

	verifier
	The verifier for the verification of the module, and C code generated is implemented in this directory and explained further in next section.

Table 5: Implementation directories of LISURT DSL

4.4.1. Verification

The purpose of the Lisurt verification is to ensure that for each mapping of processes to states that can occur at run time, the effect of each event handler is compatible with the expectations of the target OS. The verification process is oriented toward precision rather than efficiency, as properties of the domain of scheduling and restrictions in the Lisurt language, such as the absence of recursion, imply that event handlers have a simple structure. Accordingly, several kinds of information are stored in the representations of processes and states, and the analysis avoids introducing approximations, when possible. Consider a simplified version of the language in which the only values are booleans and processes and there are no assignments. Hub schedulers have been introduced earlier in this document. Following is an overview and an example.

The verifier relies on an analysis that proceeds by abstract interpretation of the handler code. Abstract values are used to represent the individual processes and the sets of processes in each state XE "state" . The abstract representation of a process consists of information about the process name, such as tgt for the target process XE "target process" , and the starting state of the process, when this information is known. The abstract representation (contents description) associated with a state is
[image: image1.wmf][

]

, if it is known that there are no processes in the state, or a pair
[image: image2.wmf]may

must

,

, otherwise. In the latter case, must XE "must" is a set of abstract processes describing the set of processes that are known to be in the given state and may XE "may" is a set of abstract processes describing the set of processes that may be in the given state. This information allows the analysis to determine the current state of specific processes, such as the target process, and the starting and ending states of arbitrary processes that change state in the course of the handler.

The analysis rules for only two constructs are presented here, the Boolean expression empty (state) and the statement if exp then stmt1 else stmt2. These constructs are sufficient to illustrate the main points of the analysis. The expression empty (state) is true XE "true" if and only if there does not exist any process in the state state XE "state" . The analysis rules are as follows:

[image: image19.png]S(state)

@5, empty (state) - false

S(state)

S(state) =]
B, enpty (state) frue

{pds,

@)

.pdy }, may) n

9. may

T, ST, eaptyCstate)

Fate — [, add(may, state,

®

The expression is analyzed with respect to a variable environment XE "variable environment"
[image: image3.wmf]F

 mapping each variable to an abstract process describing its value, and a state environment XE "state environment"
[image: image4.wmf]S

, mapping each state to a contents description. The result of the analysis is a boolean XE "boolean" value, if one can be determined, and otherwise it is a pair of state environments, representing the current state environment extended with any information that can be inferred from the truth or falsity of the test expression, respectively. If the contents description associated with state XE "state" is
[image: image5.wmf][

]

, then the result of empty(state) is known to be true XE "true" (rule (1)). Similarly, if the set of processes that must be in state is known to be non-empty, then the result of the test is known to be false (rule (2)). If neither of these conditions holds, then the value of the test is unknown (rule (3)). The result is one state environment in which
[image: image6.wmf][

]

 is associated with state and another state environment in which the information associated with the state is updated such that its “must” set contains an upper bound of its current “may” information. This approach is analogous to the use of positive and negative information in partial evaluation. The analysis of a conditional statement uses the following rules:

[image: image20.png]{running ~ ({(x, running)}, { (x, running)}),
roady — (0 {(x, ready)}),
blocked - ({(tat, blocked)}, {(x, blocked)})}

These rules exploit the precise information produced by the analysis of a boolean XE "boolean" expression such as empty(state XE "state"). If the result of the analysis of the boolean expression is a boolean value, only the corresponding branch of the conditional is subsequently analyzed (rules (4) and (5)). On the other hand, if the result of the analysis of the boolean expression is a pair of state environments, then the component of the pair representing the case where the test is true XE "true" is used in the analysis of the “then” branch, and the component of the pair representing the case where the test is false is used in the analysis of the “else” branch (rule (6)). The result of the analysis of each branch is a set of state environments. When both branches are analyzed, the result of the analysis of the conditional statement is the union of the two sets of resulting state environments. The rest of the handler is then analyzed with respect to each of these environments individually. As an example, consider the following simplified version of the unblock XE "unblock" .preemptive handler of the Fixed-Priority policy:
On unblock XE "unblock" .preemptive {

 if (next(e.target) in blocked) {

 if (empty(running)) { }

 else running => ready;

 }

 next(e.target) => forwardImmediate();

}

analyzed with respect to an empty variable environment XE "variable environment" [image: image21.png]{{running — [],
Teady — ({(x, running)}, { (x, running), (x, ready)}),
blocked ({ (tgt, blocked)}, { (x,blocked)}) }}

[image: image7.wmf]F

and the following state XE "state" environment XE "state environment"
[image: image8.wmf]S

:
For conciseness, this state XE "state" environment XE "state environment" only includes the states running, ready, and blocked, as these are the only states that are relevant to the example. The must information in this state environment indicates that it is known that there is a child scheduler XE "scheduler" in the running state, that it is unknown whether there are any child schedulers in the ready state, and that the target process XE "target process" is known to be managed by a child scheduler in the blocked state. The analysis begins with the test expression next(e.target) in blocked. Because the must information of the blocked state indicates that the child scheduler managing the target process is indeed in this state, the analysis of this expression returns true XE "true" , and thus, by rule (4), the analysis of the enclosing conditional statement considers only the “then” branch. The analysis next considers the test expression empty(running). By rule (2), the result of the analysis is false, because the must information of the running state is non-empty. Thus, by rule (5) for conditional statements, only the “else” branch is analyzed. This branch changes the state of the scheduler in the running state to ready, producing the following set of state environments as the result of analyzing the inner conditional statement:

[image: image22.png]{{rumning (],
Teady — ({ tet, blocked), (x, rumning)},
{{(tgt, blocked), (x, rumning), (x, ready)}),
locked — (0, { (x,blocked)})

The handler next forwards the event to the child scheduler XE "scheduler" managing the target process XE "target process" . To determine the resulting state XE "state" of this child scheduler, the analysis identifies type rules for the given event that are compatible with the current state environment XE "state environment" . According to the set of type rules for unblock XE "unblock" .preemptive inferred in [§1.5.1], the scheduler managing the target process ends up in a state of the READY XE "READY" state class. The Fixed-Priority policy defines two such states, ready and yield, and this scheduler is not currently in either of them. Thus, the public state is chosen, which is ready. The result of updating the set of state environments according to this state transition is thus:
[image: image23.png]©,Sky bezp: true BTk, stmty < S
TEFLF berp) simis else stz 15)

b bemp: false @, Fostmia:S
XE C bezp) stmiy else stmiz 15 (°)

@, bezp : (true_env, false.env)
D, trueenv o stmty : Sy, folse.envb stity : Sy

.S, 1f (bexp) simfy else stmiz i 51 U5

©)

which is the result of analyzing the handler. This combination of initial state XE "state" environment XE "state environment" and final state environment is compatible with the type rule:

[p in RUNNING XE "RUNNING" , tgt in BLOCKED XE "BLOCKED"] -> [[p,tgt] in READY XE "READY"]

Analysis with respect to other state XE "state" environments compatible with the input configurations of the type rules proceeds similarly.
5. Results
The use of LISURT XE "LISURT" moves scheduling operations from the kernel XE "kernel" into a separate module XE "module" , and thus can have an impact on the context switch time. The context switch benchmark lat_ctx is used to measure the impact, and find that it is negligible for real-sized applications. Then it is shown how LISURT can be used to improve the performance of a video player. All measures are taken using the version of LISURT based on Linux XE "Linux" 2.6.17.

[image: image24.jpg]Thread Number

3000

3500

4000
Time (ms)

4500

5000

 (a) Average context-switch overhead (cycles)

[image: image25.jpg]Thread Number

3000 3500 4000 4500 5000
Time (ms)

(b): Increase in the context-switch overhead when using LISURT XE "LISURT" . The dotted horizontal lines at 100% and 110% highlight the region in which the overhead of LISURT is below 10%

Figure 55: Comparison of LISURT XE "LISURT" implementation of the Linux XE "Linux" policy and the native Linux scheduler XE "scheduler"
Impact on the context switch overhead: Performing a context switch involves electing a new XE "new" process, saving the register state XE "state" of the current process, and installing the register state of the elected process. The context-switch overhead also includes the cost of reloading cache and TLB entries as needed during the subsequent execution of the elected process. The costs of these operations are measured using the lat_ctx benchmark of the LMBench 2.0.4 benchmark suite. This benchmark passes a token around a ring of processes, triggering a context switch at each step. Each process sums the elements in a local array of a given size to emulate a working set. Varying the size of the array affects the cache and TLB behavior. Figure 3 compares the performance of lat_ctx when using the LISURT XE "LISURT" implementation of the Linux XE "Linux" policy to the performance of lat_ctx when using the standard Linux scheduler XE "scheduler" . Measures are grouped first by the array size (0-64KB) and then by the number of processes (2-96). Tests are performed in single-user mode. When the overall memory usage (product of the number of processes and the memory usage per process) of lat_ctx is below 64KB, the cost of the scheduling policy XE "scheduling policy" plays a significant role in the context-switch overhead. Indeed, the use of LISURT increases the overhead by up to 39%, with the worst case being that of 2 processes that manipulate a 64KB array Figure 3 (b).
[image: image26.jpg]Thread Number

SN 1 IIIII

G NN 1 e 111
SR 1

3000 3100 3200 3300 3400 3500

Time (ms)

When the overall memory usage is above 64-128KB, however, the context-switch overhead increases significantly for both Linux XE "Linux" and LISURT XE "LISURT" . In these cases, the use of LISURT increases the context-switch overhead by only 2-5% as compared to Linux (Figure 3b). While these experiments show some overhead for LISURT, lat_ctx represents a worst case, because its computation time is dominated by scheduling and because the memory sizes used are much smaller than those used by real applications running on a general-purpose system XE "system" .
Figure 56: A scheduling hierarchy for use with MPEG video display

	Application
	Min
	Max

	Linux XE "Linux" : Player only
	0.005
	0.048

	EDF: Player only
	0.019
	0.024

	Linux XE "Linux" : Player, kernel XE "kernel" compilation
	0.009
	22.683

	EDF: Player, kernel XE "kernel" compilation
	0.017
	0.018

Table 6: Distance between Video and Audio
MPEG video display: On a lightly loaded system XE "system" , a video player can achieve the frame rate required by the video by sleeping for an appropriate time after processing each frame. On a heavily loaded system, the player needs to reserve a portion of CPU time within a fixed interval, to ensure both that it receives adequate access to the CPU and that it receives this access at the appropriate rate.
Consider the use of the video player mplayer with a scheduling hierarchy containing a Fixed-priority scheduler XE "scheduler" at the root, and the Linux XE "Linux" 2.6 scheduler and the EDF scheduler of Figure 54 at the leaves, as shown in Figure 56. The Linux 2.6 scheduler has lower priority than the EDF scheduler. All processes run on the Linux 2.6 scheduler, except the video player, which runs on the EDF scheduler. mplayer is slightly modified to dynamically construct the hierarchy, attach XE "attach" it self to the EDF scheduler, and yield at the end XE "end" of the processing of each frame. Table 6 shows the behavior of the player using LISURT XE "LISURT" on the Little Terrorist OSCAR Short film trailer with and without reservations when competing with Linux kernel XE "kernel" compilation. The behavior is represented as the difference in the percentage of the complete audio and video that has been treated so far. In both cases, The X11 process is given a Linux real-time priority, so that when the player blocks to allow the video display, the X11 process runs immediately, thus reducing its impact as a performance bottleneck. Under the Linux 2.6 scheduling policy XE "scheduling policy" , the video falls far behind the audio in the presence of kernel compilation. With EDF, the player maintains correct synchronization XE "synchronization" .
Next, the hourglass
 XE "hourglass" is modified so that it can handle the hub scheduler. Hourglass creates threads and executes them in parallel then dumps the related information. The option –ps (processes scheduler XE "scheduler") is deliberately modified and –hs (the hub scheduler) is added to specify which process scheduler will be attached for the test. A test script is written which makes a timing diagram from the output of hour glass, which is in text format. Following is the script used for testing EDF with Fixed Priority hub scheduler.
#!/bin/bash

/usr/local/bin/hourglass XE "hourglass" -hs Fixed_priority 40 -ps EDF 60 \

-n 3 -d 20s \

-t 0 -b EDF 100 40 -w PERIODIC 400ms 1000ms \

-t 1 -b EDF 100 20 -w PERIODIC 200ms 1000ms \

-t 2 -b EDF 50 10 -w PERIODIC 100ms 500ms > $1

echo test done

../scripts/render_trace.pl $1 20000

mv $1.eps $1_20000.eps

../scripts/render_trace.pl $1 10000

mv $1.eps $1_10000.eps

../scripts/render_trace.pl $1 5000

mv $1.eps $1_5000.eps

Figure 57: test_edf_periodic bash script
The test script, test_edf, requires one argument, which is the name of the file in which the result of the test is stored. Graphs at various levels of granularity are made using this result.

Note that hourglass XE "hourglass" processes normally just run; they don't stop themselves. Thus, they should be tested with policies such as Linux that limit the amount of time a process gets access to the processor XE "processor" . Alternatively, there is a PERIODIC option that controls a wcet
 and period from the user level. The above setup created the result file test_edf_periodic.out which is shown as follows:
Linux psyche 2.6.17-2.lisurt #6 Mon Apr 17 22:21:49 IST 2006 i686 i686 i386 GNU/Linux

Thu May 25 21:33:31 IST 2006

thread 0 will run under policy EDF

thread 1 will run under policy EDF

thread 2 will run under policy EDF

5.722046 MB allocated for trace records

Hourglass 0.5 : 3 threads; 20.000000 seconds; 2400.292079 MHz processor XE "processor"
max gap is 4800 cycles

this test will last for 20.000000 seconds

niceval 0

numthreads: 3

work done by thrd 0 : 150962607

work done by thrd 1 : 75511243

work done by thrd 2 : 75194229

there were 1876 out of 300000 trace records; 0.625333 % used.

in cycles, trace start 8256413670804, end XE "end" 8306744215653, duration 50330544849

trace duration 20.968508 seconds

thread 0 recorded 8.365838 seconds

thread 1 recorded 4.183550 seconds

thread 2 recorded 4.183039 seconds

total thread time 16.732426 seconds

time slots in ms: thread start end XE "end" duration gap:

tracerec: 2 0.000000 0.000000 0.000000 3439753.745939

tracerec: 2 0.002130 9.980393 9.978263 0.002130

tracerec: 2 9.992830 19.979777 9.986947 0.012437

tracerec: 2 19.991926 29.978970 9.987045 0.012149

tracerec: 2 29.990579 39.978205 9.987626 0.011609
...

...

...

...

tracerec: 2 20738.521510 20748.509207 9.987697 0.011725

tracerec: 2 20748.521146 20758.508366 9.987221 0.011939

tracerec: 2 20758.519941 20768.507683 9.987742 0.011575

tracerec: 1 20968.508493 20968.508493 0.000000 200.000810

Figure 58: Output of hourglass XE "hourglass" with EDF
Then jgraph XE "jgraph" , a very primitive and efficient tool to draw graph and pictures in .ps (post script) format is used, later on the .ps files are convrted to a .jpg
 graphic image file using pstopnm command. Following is the graph generated with the above output.
[image: image27.jpg]Thread Number

3000

3500

4000

Time (ms)

4500

Figure 59: edf_periodic_test.out.jpg Gantt chart.
It can be seen from the graph the behavior of process execution. The graph from 3000ms to 5000ms is taken because the timeline is too lengthy to fit on this paper. It can be shrinked but the graph would become invisible in that case.
The other example tests are as follows:

[image: image28.jpg]Thread Number

3000

3500

4000

Time (ms)

4500

5000

test_edf: tests an EDF policy that relies on ticks to control the wcet and a timer to control the period. Both the wcet and the period are specified in ticks. This test does not work in the version of Lisurt with high-resolution timers, because the EDF policy cannot be compiled for that kernel XE "kernel" .

Figure 60: test_edf.out.jpg Gantt chart.
test_edf_scan: as above, except that the option -w CPU_SCAN 100 option is given for each process, indicating that the process should also scan a 100K array. This test again does not work in the version of Lisurt with high-resolution timers.

Figure 61: test_edf_scan.out.jpg Gantt chart.

test_linux: tests the Linux policy O(1) with high, normal, and low priority processes. This uses the –p conventional option in hourglass XE "hourglass" . This test should give the same result with the original implementation of hourglass under normal Linux.

Figure 62: test_linux.out.jpg Gantt chart.

The Round Robin scheduling algorithm is also run with the above setup. First the RR was run with a timeslice XE "timeslice" of 30ms and then with a timeslice of 10ms. For this a C program is written that uses the user_stub_RR.h generated by lt XE "lt"
We run three loops (1, 2, 3) in parallel. They are scheduled by the round-robin scheduler XE "scheduler" with time_slice=30.

11111111111111111122222222222222222233333333333333333311111111111111111122222222222222222233333333333333333311111111111111111122222222222222222233333333333333333311111111111111111122222222222222222233333333333333333311111111111111111122222222222222222233333333333333333311111111111111111122222222222222222233

The round robin scheduling effect can clearly be seen.

We run three loops (1, 2, 3) in parallel. They are scheduled by the round-robin scheduler XE "scheduler" with time_slice=10.

111111222222333333111111222222333333111111222222333333111111222222333333111111222222333333111111222222333333111111222222333333111111222222333333111111222222333333111111222222333333111111222222333333111111222222333333111111222222333333111111222222333333111111222222333333111111222222333333111111222222

The round robin scheduling effect can clearly be seen.

The source used to generate the above with 10 ms is as following:
#include "c-code/user_stub_RR10.c"

#include <sys/types.h>

#include <sys/time.h>

#include <time.h>

#include <unistd.h>

#define MAX_TIMESLICE 100000

int main (int argc, char * argv[]) {

long int delta;

struct timeval start, tmp;

/* attach XE "attach" the process to the RR10 scheduler XE "scheduler" */

RR10_attach XE "attach" (getpid());

/* the loop to print the progress of the execution

 * we do some tricks with time so that we don't overflow the term */

gettimeofday(&start, NULL);

while(1) {

gettimeofday(&tmp, NULL);

delta = (tmp.tv_sec - start.tv_sec) * 1000000 +

 (tmp.tv_usec - start.tv_usec);

if ((delta > 30000) && (delta < MAX_TIMESLICE)) {

for (; delta > 0; delta -= 30000) write(1, argv[1], 1);

gettimeofday(&start, NULL);

} else if (delta >= MAX_TIMESLICE) {

gettimeofday(&start, NULL);

}

}

return 0;

}

Figure 63: RR10.c test program
A similar code with timeslice XE "timeslice" of 30ms is also written to generate the second output. Following are the graphs generated with the above setup.
Figure 64: Round Robin with timeslice XE "timeslice" of 10ms
Figure 65: Round Robin with timeslice XE "timeslice" of 30ms
In the above timing diagrams
 the effect of round robin and timeslice XE "timeslice" can be easily seen.
6. Related Work
This work is related both to research on scheduler XE "scheduler" development and to work on improving OS development. Other work on scheduler development includes that of Ford and Susarla in which a process can donate its CPU time to other processes, HLS which allows the creation of scheduling hierarchies, and the S.Ha.R.K. Kernel XE "kernel" and MaRTE OS which are OSes specifically designed to facilitate the implementation of new XE "new" schedulers XE "schedulers" . In these approaches, schedulers are implemented using ordinary C code, for which no scheduling-specific verification is provided. Thus schedulers have to be assumed to be correct, although scheduling code remains low-level and error-prone. Recently, there has been much interest in compile-time error detection in the context of OS code. CCured, Cyclone and Splint check C programs for common programming errors, such as invalid pointer references. These approaches provide little or no support for checking domain-specific properties. Meta-level Compilation checks properties that can be described as a sequence of matching operations, such as locking and unlocking, and has been applied to OS code. SLAM uses model checking to check similar properties. These approaches work well when the programmer follows certain coding conventions (e.g. using kernel macros to change the interrupt XE "interrupt" level rather than using assembly XE "assembly" code). A DSL, on the other hand, restricts the programmer to a limited set of abstractions, thus enabling more precise verifications.
7. Conclusion and Future Work
In this dissertation, a complete framework XE "framework" is presented to facilitate the development of kernel XE "kernel" schedulers XE "schedulers" . The approach is based on a DSL that simplifies programming and allows critical properties to be verified at compile time. The expressiveness of a new approach is demonstrated by implementing several well known scheduling policies in LISURT DSL. The initial experience with the LISURT translator XE "translator" has shown that it is useful in catching both common inattention errors and errors related to incorrect understanding of the target OS. Since integration of a policy into the kernel is handled by the translator and the framework, it is easy to test new XE "new" policy variants. The model of scheduling behavior provided by the OS expert presents relevant information in a concise form, rather than the large number of functions that must be studied to understand Linux XE "Linux" scheduling behavior from the source code. Thus, scheduler XE "scheduler" programming is made accessible to non-kernel experts.

The current design of LISURT has some limitations that is should be addressed in the near future.

There is a need to port the LISURT to realtime OS domain. LISURT can be extended to distributed systems, NUMA XE "NUMA"
, multiprocessors, both symmetric XE "symmetric" and asymmetric XE "asymmetric" .

Process execution may be controlled by the availability of other resources than the CPU, such as the availability of disk, network, and energy resources. LISURT can be extended to incorporate in a scheduling policy, the control of these features XE "scheduling policy" .
There is also a huge scope of designing a GUI based management of scheduler XE "scheduler" modules currently running in the kernel XE "kernel" . That GUI can be used to make XE "make" the hierarchy of schedlers and set the properties at runtime. At present LISURT uses a TUI for the same which is not at all pleasant.
8. Appendix
These definitions are based on the rules of C, and simplified according to the needs of LISURT XE "LISURT" . In particular, there is no associativity specified for the various assignment operators, because an assignment is not an expression in LISURT.

8.1. LISURT XE "LISURT" DSL Grammar
	scheduler XE "scheduler"
	::=
	[default] ([high_res] | [low_res]) scheduler XE "scheduler" id =

{sched_decl handlerdef interfacedef functiondef }
| [default] ([high_res] | [low_res]) hub_scheduler XE "scheduler" id =

{hsched_decl handlerdef interfacedef functiondef }

	sched_decl
	::=
	(constdef)*(typedef)*[processdef] (fundecl | valdecl)*statedef [orderdef]

[admissiondef] [tracedef]

	hsched_decl
	::=
	(constdef)*(typedef)*[schedulerdef]

(fundecl | valdecl)*statedef [orderdef]

[admissiondef] [tracedef]

	
	
	

	constdef
	::=
	const lisurt_type_expr id = expr ;

	typedef
	::=
	(enumdef | rangedef)*

	enumdef
	::=
	type enum_name = enum { id (, id)* } ;

	rangedef
	::=
	type range_name = [expr .. expr] ;

	
	
	

	processdef
	::=
	process = { (process_var_decl ;)+ }

	schedulerdef
	::=
	scheduler XE "scheduler" = { (process_var_decl ;)+ }

	process_var_decl
	::=
	type_expr id | type_expr system XE "system" id | timer id

	
	
	

	fundecl
	::=
	non_proc XE "proc" _type fn_name ([parameter_types]); | void fn_name ([parameter_types]);

	valdecl
	::=
	non_proc XE "proc" _type id = expr ; | non_proc_type system XE "system" id ; | timer id ;

	parameter_types
	::=
	(type_expr | timer) (, (type_expr | timer))*

	
	
	

	statedef
	::=
	states = { (class_name id [: storage] ;)+ }

	class_name
	::=
	READY XE "READY" | RUNNING XE "RUNNING" | BLOCKED XE "BLOCKED" | TERMINATED XE "TERMINATED"

	storage
	::=
	process | [state XE "state" _visibility] scheduler XE "scheduler" | [state_visibility] [queue_type] queue

	state XE "state" _visibility
	::=
	public | private

	queue_type
	::=
	select | select fifo | select lifo

	
	
	

	orderdef
	::=
	ordering_criteria = { (key_crit_decls, crit_decls | key_crit_decls | crit_decls) }

	key_crit_decls
	::=
	key crit_decl (, key crit_decl)*

	crit_decls
	::=
	crit_decl (, crit_decl)*

	crit_decl
	::=
	critop id | critop (expr ? expr : expr)

	critop
	::=
	lowest | highest

	
	
	

	admissiondef
	::=
	admit = { (valdef)* adm_crit [attach XE "attach" _detach XE "detach"] }

	valdef
	::=
	type_expr id = expr ;

	adm_crit
	::=
	admission_criteria ([param_var_decl (, param_var_decl)*]) = { expr }

	param_var_decl
	::=
	type_expr id

	attach XE "attach" _detach XE "detach"
	::=
	admission_attach XE "attach" proc XE "proc" _param = seq_stmt admission_detach XE "detach" proc_param = seq_stmt

	proc XE "proc" _param
	::=
	((process | scheduler XE "scheduler") id)

	
	
	

	tracedef
	::=
	trace integer { [trace_events] [trace_exprs] [trace_test] }

	trace_events
	::=
	events = { event_name (, event_name)* };

	trace_exprs
	::=
	expressions = { id (, id)* };

	trace_test
	::=
	test = { expr };

	
	
	

	handlerdef
	::=
	handler (event id) { (On event_name (, event_name)*seq_stmt)+ }

	interfacedef
	::=
	interface XE "interface" = { (type_or_void id ([param_var_decl (, param_var_decl)*]) seq_stmt)+ }

	functiondef
	::=
	function = { (type_or_void fn_name ([param_var_decl (, param_var_decl)]) seq_stmt)+ }

	
	
	

	lisurt_type_expr
	::=
	int | bool | time | cycles | port | process | scheduler XE "scheduler" | enum_name | range_name

	type_expr
	::=
	lisurt_type_expr | system XE "system" struct id

	type_or_void
	::=
	type_expr | void

	non_proc XE "proc" _type
	::=
	int | bool | time | cycles | port | enum_name | range_name | system XE "system" struct id

	
	
	

	stmt
	::=
	if_stmt | for_stmt | return_stmt | switch_stmt | seq_stmt | assign_stmt | move_stmt
| defer_stmt | prim_stmt | error_stmt | break_stmt

	if_stmt
	::=
	if (expr) seq_stmt [else seq_stmt]

	for_stmt
	::=
	foreach (id [in class_state XE "state" (, class_state)*]) seq_stmt
| foreachIncreasing (id in state XE "state") seq_stmt
| foreachDecreasing (id in state XE "state") seq_stmt

	class_state XE "state"
	::=
	state XE "state" | class_name

	return_stmt
	::=
	return [expr] ;

	switch_stmt
	::=
	switch loc_expr in { (case class_state XE "state" (, class_state)* : seq_stmt)*}

	seq_stmt
	::=
	{ (valdef)* (stmt)* }

	assign_stmt
	::=
	loc_expr assign_unop | loc_expr assign_binop expr

	assign_unop
	::=
	++ | --

	assign_binop
	::=
	= | += | -= | *= | /= | %= | &= | |= | <<= | >>=

	move_stmt
	::=
	move_expr => state XE "state" _ref [.head | .tail] ;
| move_expr => forwardImmediate() [.head | .tail] ;

	defer_stmt
	::=
	defer();

	prim_stmt
	::=
	fn_name ([expr (, expr)*]);

	error_stmt
	::=
	error(string);

	break_stmt
	::=
	break;

	
	
	

	expr
	::=
	integer | id | state XE "state" | true XE "true" | false | unop expr | * expr | expr . id | select()
| fn_name ([expr (, expr)*]) | empty(class_state XE "state") | srcOnSched()
| schedulerOf(expr) | expr binop expr | expr in class_state XE "state" | (expr)

	unop
	::=
	+ | - | ! | ~

	binop
	::=
	+ | - | * | / | % | && | || | & | | | == | != | < | > | <= | >= | << | >>

	loc_expr
	::=
	(id | state XE "state" _name) (. id)*

	move_expr
	::=
	select() | state XE "state" _name | id | id . source | id . target

Table 7: LISURT XE "LISURT" DSL Grammar
8.2. Operator precedence

 {,} < {=, +=, -=, *=, /=, %=, &=, |=, <<=, >>=}

 < {||}

 < {&&}

 < {|}

 < {&}

 < {==, !=}

 < {<, >, <=, >=}

 < {<<, >>}

 < {+, -}

 < {*, /, %}

 < {!, ~, ++, --}

 < {.}
Table 8: LISURT XE "LISURT" DSL Operator Precedence
8.3. The associativity of the binary operators
	Left associative:
	{,, ||, &&, |, &, ==, !=, <, >, <=, >=, <<, >>, +, -, *, /, %, .}

	Right associative:
	{!, ~}

Table 9: LISURT XE "LISURT" DSL Associativity
8.4. Primitives

The following primitive time functions are defined for both the version of LISURT XE "LISURT" with high-resolution timers and for the LISURT without high-resolution timers:
now() : unit -> time

The current time.

· start_relative_timer(timer,offset) : timer * time -> unit

Set a timer for offset time units in the future.

· Start_absolute_timer(timer,time) : timer * time -> unit

Set a timer for the time time.

· stop_timer(timer) : timer -> unit

Stop a timer.

· time_to_ticks(t) : time -> int

Convert a time to a number of ticks (on LISURT XE "LISURT" with high-resolution timers, this is equivalent to time to jiffies XE "jiffies" , but is included for portability).

· ticks_to_time(n) : int -> time

Convert a number of ticks to a time.
The following primitive time functions are only defined for the version of LISURT XE "LISURT" with high-resolution timers:

· make XE "make" _time(sec,nsec) : int * int -> time

Convert a pair of a number of seconds and a number of nanoseconds to the corresponding time.

· make XE "make" _cycle_time(jiffies XE "jiffies" ,cycles) : int * cycles -> time

Convert a pair of a number of jiffies XE "jiffies" and a number of cycles to the corresponding time.

· make XE "make" _cycles(n) : int -> cycles

Cast an integer to a number of cycles.

· time_to_jiffies XE "jiffies" (t) : time -> int

Drop the subjiffies component of a time.

· time_to_subjiffies(t) : time -> cycles

Drop the jiffies XE "jiffies" component of a time.

The following primitive time functions are planned, but are unfortunately not currently implemented:

· time_to_seconds(t) : time -> int

Drop the nanoseconds component of a time.

· time_to_nanoseconds(t) : time -> int

Drop the seconds’ component of a time.
Other miscellaneous primitive functions are as follows:

· print_trace_info() : void -> void

Print the accumulated trace information. Only defined when tracing is defined.

· get_user_int(t) : port -> int

Get an integer value from a user-level address.

9. Reference
[1]. R. A. Åberg, J. L. Lawall, M. Südholt, G. Muller, and A.-F. Le Meur. On the automatic evolution of an OS kernel XE "kernel" using temporal logic and AOP. In Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE 2003), pages 196–204, Montreal, Canada, Oct. 2003. IEEE.

[2]. A. Atlas and A. Bestavros. Design and implementation of statistical rate monotonic scheduling in KURT Linux XE "Linux" . In IEEE Real-Time Systems Symposium, pages 272–276, Phoenix, AZ, Dec. 1999.

[3]. J. L. Bruno, E. Gabber, B. Özden, and A. Silberschatz. Move-to-rear list scheduling: a new XE "new" scheduling algorithm for providing QoS guarantees. In Proceedings of ACM Multimedia, pages 63–73, Seattle, WA, Nov. 1997.

[4]. F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri. Scheduling in Real-Time Systems. Wiley, West Sussex, England, 2002.

[5]. K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (BVT) scheduling: supporting latency-sensitive threads in a general-purpose scheduler XE "scheduler" . In Proceedings of the 17th ACM Symposium on Operating Systems Principles (SOSP’99), pages 261–276, Kiawah Island Resort, SC December 1999.

[6]. M. Huth and M. Ryan. Logic in Computer Science: Modelling and reasoning about systems. Cambridge University Press, 2000.

[7]. K. Jeffay, F. D. Smith, A. Moorthy, and J. Anderson. Proportional share scheduling of operating system XE "operating system" services for real-time applications. In IEEE Real-Time Systems Symposium, pages 480–491, Madrid, Spain, Dec. 1998.

[8]. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented Programming. In ECOOP’97 – Object-Oriented Programming, 11th European Conference, number 1241 in Lecture Notes in Computer Science, pages 220–242, Jyväskylä, Finland, June 1997.
[9]. D. Lacey and O. de Moor. Imperative program transformation by rewriting. In R. Wilhelm, editor, Compiler Construction, 10th International Conference, CC 2001, number 2027 in Lecture Notes in Computer Science, pages 52–68, Genova, Italy, 2001.

[10]. J. L. Lawall, A.-F. Le Meur and G. Muller. On designing a target-independent DSL for safe OS process-scheduling components. In Generative Programming and Component Engineering: Third International Conference, GPCE 2004, number 3286 in Lecture Notes in Computer Science, pages 436–455, Vancouver, Canada, Oct. 2004.

[11]. J. L. Lawall, G. Muller, and H. Duchesne. Language design for implementing process scheduling hierarchies (invited paper). In ACM SIGPLAN 2004 Symposium on Partial Evaluation and Program Manipulation - PEPM’04, pages 80–91, Verona, Italy, Aug. 2004.

[12]. J. L. Lawall, G. Muller, and R. Urunuela. Tarantula: Killing driver bugs before they hatch. In The 4th AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software (ACP4IS), pages 13–18, Chicago, IL, Mar. 2005.

[13]. C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the ACM, 20(1):46–61, Jan. 1973.

[14]. J. R. Lorch and A. J. Smith. Scheduling techniques for reducing processor XE "processor" energy use in MacOS. Wireless Networks, 3(5):311–324, Oct. 1997.

[15]. G. Muller, J. Lawall, J.-M. Menaud and M. Südholt. Constructing component-based extension interfaces in legacy systems code. In ACM SIGOPS European Workshop 2004 (EW2004), pages 80–85, Leuven, Belgium, Sept. 2004.

[16]. G. Muller, J. L. Lawall, and H. Duchesne. A framework XE "framework" for simplifying the development of kernel XE "kernel" schedulers XE "schedulers" : Design and performance evaluation. In HASE 2005 - High Assurance Systems Engineering Conference, Heidelberg, Germany, Oct. 2005. To appear.

[17]. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language and tools for analysis and transformation of C programs. In R. N. Horspool, editor, Compiler Construction, 11th International Conference, CC 2002, number 2304 in Lecture Notes in Computer Science, pages 213–228, Grenoble, France, Apr. 2002.

[18]. J. Nieh and M. S. Lam. The design, implementation and evaluation of SMART: A scheduler XE "scheduler" for multimedia applications. In Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP’97), pages 184–197, Saint-Malo, France, Oct. 1997.

[19]. J. Regehr and J. A. Stankovic. Augmented CPU reservations: towards predictable execution on general-purpose operating systems. In RTAS’2001 [20], pages 141–148.

[20]. Proceedings of the 7th Real-Time Technology and Applications Symposium (RTAS’2001), Taipei, Taiwan, May 2001.

[21]. Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard real-time systems. In Proceedings of the 36th ACM/IEEE conference on Design Automation Conference (DAC’99), pages 134–139, New Orleans, LA, June 1999.

[22]. D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole. A feedback-driven proportion allocator for real-rate scheduling. In Proceedings of the Third USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages 145–158, New Orleans, LA, Feb. 1999.

[23]. D. K. Y. Yau and S. S. Lam. Adaptive rate-controlled scheduling for multimedia applications. IEEE/ACM Transactions on Networking, 5(4):475–488, Aug. 1997.

[24]. W. Yuan and K. Nahrstedt. Energy-efficient soft real-time CPU scheduling for mobile multimedia systems. In Proceedings of the 19th ACM Symposium on Operating System Principles, pages 149–163, Bolton Landing (Lake George), NY, Oct. 2003.

Index

$PATH, 11
Advantages of LISURT, 2

assembly, 29, 67

asymmetric, 67

attach, 9, 13, 15, 16, 19, 21, 51, 57, 62, 66, 68

bitmask, 45

block, 17, 18, 19, 20, 24, 31, 50

BLOCKED, 17, 18, 20, 55, 60, 68

boolean, 59
Booleans, 25
C library, 22

clocktick, 17, 18, 19, 20, 53

command, 12, 13, 14, 15, 22, 25
compiler, 25, 28, 29, 47, 52, 57
compiling, 11, 12, 24

core, 22
critical process, 9

detach, 19, 21, 51, 57, 68

dynamic memory allocation, 54

dynamic timeslices, 35

end, 17, 19, 20, 45, 62, 63, 64
FIFO, 17

floating-point, 30

framework, 10, 17, 46, 67, 72

gcc, 10, 12

GNU C, 27, 28
hourglass, 63, 64, 65

hub scheduler, 2, 10
hub schedulers, 56
inline, 28, 29
inline functions, 28, 29
insmod, 12
interactive task, 38, 39

interface, 2, 9, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 46, 48, 49, 69

internals, 9, 22
interrupt, 20, 22, 23, 31, 67

interrupt context, 23

interrupt handler, 22, 31

interrupts, 9, 16, 22, 27, 42, 52

ISO C99, 28

jgraph, 64

jiffies, 52, 70, 71

kernel, 2, 9, 10, 11, 12, 13, 14, 15, 16, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 39, 40, 41, 42, 45, 46, 47, 48, 49, 52, 54, 55, 56, 57, 61, 62, 64, 67, 72

kernel log buffer, 28
kernel-space, 22, 23

library, 22, 27, 44

LIFO, 17

Linux, 3, 9, 10, 13, 14, 16, 18, 22, 23, 24, 28, 29, 31, 32, 44, 45, 46, 47, 48, 61, 62, 67, 72

LISURT, 2, 9, 10, 16, 17, 46, 47, 48, 55, 56, 57, 61, 62, 68, 69, 70

LISURT DSL, 2, 9, 10, 46, 56

lisurt_install, 11, 12
lmanager, 11
lsmod, 12, 13
lt, 10, 11, 12, 49, 65

make, 2, 14, 22, 25, 26, 27, 28, 29, 46, 56, 57, 67, 70

may, 58
Memory Protection, 30

module, 2, 10, 11, 12, 13, 14, 15, 25, 46, 61
multiprocessing, 26, 31

multi-tasking, 31

must, 58
new, 2, 3, 9, 10, 11, 13, 14, 17, 18, 19, 20, 21, 22, 24, 26, 27, 32, 36, 37, 38, 40, 46, 47, 48, 50, 52, 53, 54, 56, 57, 61, 67, 72

nice, 38, 39, 43, 44, 45

NUMA, 67

oops, 30
open(), 15, 22

operating system, 22, 31, 72

optimize, 28, 29
pageable, 30
panic, 54

postprocessing, 12

preempted, 19, 20, 31, 35, 36, 56

preemptive, 27, 31, 46, 55, 56

priority arrays, 33, 34, 36

proc, 10, 13, 14, 53, 54, 68, 69

process context, 22, 23

process scheduler, 2

process schedulers, 10, 56

processor, 16, 18, 22, 23, 26, 32, 33, 35, 36, 38, 39, 41, 42, 43, 44, 45, 63, 72

quantum size, 13
READY, 17, 18, 19, 20, 55, 56, 60, 68

rmmod, 12
root scheduler, 2, 13
RTS, 47, 49, 51, 52, 53, 54
RUNNING, 17, 20, 35, 40, 41, 45, 55, 56, 60, 68

runqueues, 32, 33, 34, 41, 42, 43

runtime, 2, 9, 10

schedule, 17, 19, 21, 32, 36, 37, 40, 41, 42, 47, 48, 50, 51, 53, 55, 56

scheduler, 2, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 31, 32, 33, 35, 36, 37, 38, 39, 41, 44, 45, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 67, 68, 69, 72, 73

scheduler plugging, 12
scheduler unplugging, 12
schedulers, 2, 9, 10, 11, 13, 14, 15, 17, 56, 67, 72

scheduling policies, 2, 10, 16, 55

scheduling policy, 2, 9, 10, 17, 20, 41, 44, 45, 46, 47, 48, 55, 56, 62, 63, 67

semaphores, 31

SMP, 25, 27

spinlocks, 31
spinning, 31, 34
state, 16, 17, 18, 22, 35, 38, 39, 40, 41, 45, 46, 50, 51, 52, 54, 55, 56, 57, 58, 58, 59, 60, 61, 68, 69

state environment, 59, 60
static priority, 38, 45

supervisor, 3, 22
symmetric, 67

symmetrical multiprocessing, 25
synchronization, 22, 27, 31, 63
system, 2, 9, 10, 11, 15, 20, 21, 22, 62, 68, 69

system calls, 22
target process, 51, 56, 58, 60
TERMINATED, 17, 20, 55, 68

timeslice, 15, 16, 32, 35, 36, 38, 39, 44, 65, 66

translator, 2, 10, 12, 16, 46, 48, 52, 56, 57, 67

tristates, 25
true, 18, 40, 41, 47, 50, 58, 59, 60, 69

type checking, 12

unblock, 17, 18, 20, 46, 50, 55, 56, 59, 60
user-space, 22, 23, 24, 27, 30, 31

User-space, 30, 45

variable environment, 59, 60
verifying, 12, 17
Yield, 53

elected process

lisurt.schedule

scheduler state

event

LISURT scheduler kernel module

Standard kernel with LISURT events

Linux Kernel

Verifier and

Translator

LISURT DSL Policy

EDF

Linux

Fixed Priority

/dev/lisurt/lisurt_RR

/proc/lisurt/RR.info

modutils:

lsmod|insmod|modprobe

insmod RR.o

RR.o

Scheduler Module

RR.c

user_stub_RR.c

user_stub_RR.h

C Code

$LISURT_HOME/include2

$LISURT_HOME/kernel

$LISURT_HOME/include

System Specific kernel Libraries

‘gcc’ compiler

LISURT Policy

‘RR.lisurt’

LISURT DSL Translator ‘lt’

� struct task_struct is the data structure defined in the include/linux/sched.h. It represents the process descriptor and is around 1.7 KB on 32-bit machine.

� From here on we will take Round Robin policy as example everywhere unless specified otherwise. RR.lisurt is the file containing the policy. See � REF _Ref135406634 \h � * MERGEFORMAT �Figure 21� for a complete listing.

� environment variables like $PATH are defined by the shell, an intelligent interface between user and kernel� XE "kernel" �. To see the value of an environment variable use echo ${VARNAME}, and to see all the environment variables and their values use set. You can define your own environment variable by export VARNAME=<some value>

� elf is executable and linkable format for object files, dynamic link libraries, statically linked and executable files; earlier it used to be the a.out format. It generally specifies how an elf file is stored on secondary storage and how its image is loaded in main memory for execution. This format can be analyzed by using binutils package.

� A link is generally created using ln command� XE "command" �; a link can be symbolic or hard. Link to directories are generally symbolic. A change in symbolic link reflects in target file/directory, this is not in the case of hard link.

� tree is a linux command� XE "command" � which can print a directory hierarchy as tree representation using |, -, and ` characters.

� cat command� XE "command" � prints the contents of a text file on the stdout, generally your monitor screen.

� less/more command� XE "command" � also prints the text file contents as cat but in a browse able and page wise manner.

� pid of current process can be obtained by using function getpid() defined in <unistd.h> otherwise “ps –A” command� XE "command" � can be used to get the pid’s of all the processes executing in system� XE "system" �

� open system� XE "system" � call opens a file or device. This is implemented as open()� XE "open()" � function interface� XE "interface" � which takes filename and mode as arguments and returns a file descriptor fd. Both normal and device files can be manipulated using this function.

� ioctl is the system� XE "system" � call that controls a device. The ioctl() function takes the file descriptor of special file, device-dependent request code and an untyped pointer to memory. It’s generally char*argp (from the days before void* was valid C)

� Timeslice is the amount of CPU time assigned to a process. It is sometimes called quantum or processor� XE "processor" � slice in other systems. Linux� XE "Linux" � calls it timeslice� XE "timeslice" �, and so should you.

� Most of the information presented about linux kernel� XE "kernel" � in this section is very introductory and basic, if you are familiar with linux kernel and interested in the implementation of LISURT, you can skip this chapter.

� Idle process is the process which executes when the system has nothing to do, when executing this process system is said to be idle. You can verify this by using top command which lists all the currently running processes in the system, sort them by CPU usage and see which process executes when there is almost nothing to do. Alternatively you can also use the ps command for the same purpose.

� initramfs is The RAM disk driver is a way to use main system memory as a block� XE "block" � device. It is required for initrd, an initial filesystem used if you need to load modules in order to access the root filesystem. initrd provides the capability to load a RAM disk by the boot loader. This RAM disk can then be mounted as the root file system and programs can be run from it.

� make� XE "make" � is a compilation automation tool for bigger packages. If invoked in a source tree make looks for a file Makefile which lists all the environment variables, definitions, rules, defaults and files to be compiled. It also contains all the information about the compiler� XE "compiler" �, like which compiler to use, compiler command line arguments, etc.

� ncurses is a text mode windowing utility. It makes use of special characters to make� XE "make" � frames and dialogues in text mode.

� Default home for modules is generally /lib/modules/<kernel� XE "kernel" � version>

� syslog program is a utility to see all the systems log messages, generally generated in /var/log/ directory. /var/log/dmesg file contains all the bootup and initial information printed by the kernel� XE "kernel" � while booting, this information is very important if you plan to debug or something went wrong while booting (not wrong enough to cause kernel paic). You can also use the command dmesg to print the kernel log.

� syslogd is the syslog daemon started by the sysinit scripts in /etc/init.d

� ISO C99� XE "ISO C99" � is the latest major revision to the ISO C standard. C99 adds numerous enhancements to the previous major revision, ISO C90, including named structure initializers and a complex type. The latter of which you cannot use safely from within the kernel� XE "kernel" �.

� There are three main types of kernel� XE "kernel" � locks. The fundamental type is the spinlock (include/asm/spinlock.h), which is a very simple single-holder lock: if you can't get the spinlock, you keep trying (spinning� XE "spinning" �) until you can. Spinlocks are very small and fast, and can be used anywhere. The second type is a mutex (include/linux/mutex.h): it is like a spinlock, but you may block� XE "block" � holding a mutex. If you can't lock a mutex, your task will suspend itself, and be woken up when the mutex is released. This means the CPU can do something else while you are waiting. There are many cases when you simply can't sleep, and so have to use a spinlock instead. The third type is a semaphore (include/asm/semaphore.h): it can have more than one holder at any time (the number decided at initialization time), although it is most commonly used as a single-holder lock (a mutex). If you can't get a semaphore, your task will be suspended and later on woken up - just like for mutexes. Neither type of lock is recursive

� This chapter introduces the linux kernel� XE "kernel" � 2.6 scheduler� XE "scheduler" � basics and programming. Strictly speaking it elaborates the O(1) scheduler proposed/implemented by Ingo Molnar. If you are familiar with O(1) scheduler basics and programming you can skip this chapter

� Why kernel� XE "kernel" �/sched.c and not <linux/sched.h>? Because it is desired to abstract away the scheduler� XE "scheduler" � code and provide only certain interfaces to the rest of the kernel. Placing the runqueue code in a header file would allow code outside of the scheduler to get at the runqueues� XE "runqueues" �, and this is not desired.

� On the x86 architecture, this instruction is called bsfl. On PPC, cntlzw is used for this purpose.

� Timeslice is sometimes called quantum or processor� XE "processor" � slice in other systems.

� Take an example of EDF(Earliest Deadline First) as an example here. The EDF policy is inserted in the kernel� XE "kernel" � as a module.

� One jiffie is one clock tick in linux kernel� XE "kernel" � terminology

� OCaml is a dialect of the ML (Meta-Language) family of languages, which derive from the Classic ML language designed by Robin Milner in 1975 for the LCF (Logic of Computable Functions) theorem prover. OCaml shares many features with other dialects of ML, and it provides several new� XE "new" � features of its own.

� For a detailed look at the grammar of the language please take a look at §� REF _Ref136487855 \w \h � * MERGEFORMAT �8.1�

� Hourglass is specially designed open source software for creation and testing of processes and scheduler.

� Worst Case Execution Time

� Joint Picture Expert Group

� This kind of timing diagrams are generally called Gantt Charts

� Non-Uniform Memory Access is the technology in which different nodes share the same running image of the Linux kernel.

PAGE
1

_1210135856.unknown

_1210136919.unknown

_1210136938.unknown

_1210135825.unknown

_1210064635.unknown

_1210065087.unknown

