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Abstract

In broadband distributed computing environments, the importance of data resource (DR) migration is increasing because of
its potential to improve performance of the system, especially for transaction processing. In such environments, mobile data
resources relocate themselves from one computer site to the other. Hence, it is important to have mechanisms that manage the
locations of each data resource. In this paper, a location management algorithm is presented in which sites are logically
organized as multiple rooted tree structures. The rooted tree structures are used to move the requests for locating the data
resources. The algorithm makes use of a distributed queue strategy to define the path a data resource takes while migrating from
one site to the other. The proposed algorithm enhances its effectiveness by continuously updating its information regarding the
site to which the request is to be forwarded so as to reduce the number of messages needed by the requests to locate and access
the data resources. The performance of the proposed algorithm is evaluated and is also compared with one of the existing
location management algorithms by simulation studies under several system parameters such as frequency of requests
generation, frequency of data resource migrations and network topology. The experimental results show the effectiveness of the
proposed algorithm in all cases.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A distributed system is composed of multiple
geographically dispersed computer sites connected
via a communication network. These sites do not
share a common memory but communicate with each
other by sending messages over the network. Each
computer site has its own memory, processing and
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communication capabilities as well as the necessary
resources. The resources considered in this paper are
data resources (DRs) such as databases and files. The
DRs owned and controlled by a site are said to be
local to it, while the DRs owned and controlled by
other sites as well as those that can be accessed
through a network are said to be remote. With the
availability of appropriate communication network
and control protocols, the users and applications have
an access to local and remote system resources in an
integrated manner. One of the methods, normally
employed in traditional (narrowband) networks, to
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access remote DRs is fixed processing. In this method,
DRs are fixed at a particular computer site and all
other sites access the DR at that site by sending
operation and control messages to it. Another method
called DR migration method [8,9] makes use of recent
broadband environments. In this method, all the DRs
required by a transaction are migrated to the transac-
tion initiation site so that transaction initiation site can
access the DRs locally without sending any operation
requests over the network. Therefore, the sites where
the DRs are migrated have the advantage of quick and
inexpensive retrieval of information, whereas getting
the information from remote sites by fixed processing
incur communication costs and transmission delays.
Let us take an example of an airline reservation
system [4]. A few hours before and after a flight stops
at an airport, a surge in access activity from airport to
the airline DR is observed. During those periods, if
the requested DR is remotely located, huge volume of
long distance communication traffic is generated (for
example intensive queries and updates of reservation,
ticketing, crew, fare information, baggage handling,
etc.) and this results into the deterioration of commu-
nication services and increase in overall operating
costs. When the amount of traffic is substantial
cnough, the system can benefit from migrating the
DR to the cities at which a flight stops a few hours
before the flight arrives there. However, in practice,
migration of DRs is possible with the use of broad-
band networks, because broadband networks are
different from traditional networks in that the propa-
gation delay in the latter is small as compared to the
transmission delay. As an illustration, for example,
propagation delay across a country say United States
at the speed of light is about 20 ms [2]. In broadband
networks, at say 1 Gb/s, it will only take 1 ms to
transmit a 1-megabit file, resulting in a total delay of
21 ms. For a traditional network, like the internet,
operating at 50 Kb/s, the transmission delay is 20 s,
giving a total delay of 20,020 ms. Therefore, in
conventional narrowband networks, most of the exist-
ing algorithms have focused on minimizing the vol-
ume of data to be transmitted, whereas in broadband
networks it has become possible to transmit a great
volume of data in a very short period of time. From
this viewpoint, migration of DRs has become more
viable and is expected to be one of the most useful
mechanisms in broadband distributed systems. The

use of DR migration in distributed systems has been
demonstrated in Refs. [1,4,5,11-14,20]. As already
mentioned, one of the motivations to use DR migra-
tion method is to trade transaction throughput with the
available bandwidth. It has been shown in Ref. [9]
that the use of DR migration mechanism highly
contributes to the performance improvement in trans-
action processing in broadband networks such as
ATM and hence can be considered as one of the
primitive DR operations. Further, the researches in
Refs. [2,6] have suggested the techniques to utilize the
advantages of broadband networks for transaction
processing. Some of the other applications of mobile
DRs include replication and allocation of DRs to
various sites so as to reduce communication costs
and to increase reliability [10], query processing
strategies for high speed local area networks [24,25]
or for load balancing among distributed file servers by
relocating the distributed data [15,16,19,22,23]. (It
may be pointed out here in these studies, as broadband
networks are not assumed, the DR migration oper-
ations are executed in a limited controlled manner.) In
addition, DR migration may also reduce system op-
erating costs because different computer sites operate
under different operating cost scales, differences in
time zone permit the use of regular shift operations at
remote sites instead of local late shifts, and remote
computer sites are used during lean periods rather than
local resources within peak hours [4]. Thus, DR
migration operations have a very high potential to
improve system performance and reduce system costs
appreciably. Taking the above into account, the devel-
opments of distributed systems now incorporates DR
migration operations as well as fixed processing as
options for accessing remote DRs. Therefore, mobile
DRs that move among various computer locations are
emerging as a new form of building distributed
network-centric applications. As DRs move from
one site to the other, their locations keep on changing.
Thus, deriving efficient strategies for managing the
locations of mobile DRs (i.e. identifying their current
locations) is an important research issue. Several such
location management algorithms have been proposed
in the literature [7,21]. In Ref. [21], authors have
proposed a new location searching algorithm and, in
Ref. [7], Hara et al. have suggested six location
management methods for mobile DRs in broadband
environments. Four out of these six (DF (Default
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Forwarding), DQ (Default Query), CF (Chain For-
warding), CQ (Chain Query)) have been adopted from
mobile computing [17]. The other two, ECF (Extend-
ed Chain Forwarding) and ECQ (Extended Chain
Query) are improved versions of CF and CQ, respec-
tively. In Ref. [7], it has been demonstrated through
simulation experiments that the ECF algorithm gives
the best performance among various distributed algo-
rithms under different system parameters. The ECF
algorithm is now explained below.

In ECF, the requesting site generates a request
message to locate a DR (the DR to be located is
called target/requested DR). The ECF algorithm
ensures that a request message is forwarded succes-
sively along the migration track of the target DR, i.e.
the chronological sequence of the sites at which the
target DR has resided. This is achieved by maintain-
ing a location table at each site. The location table is
local to each site and the information in this table is
only modified when a site either receives a request
message, a DR or sends a DR. For example, whenever
a DR migrates from, say, site i to site j, the location
tables at both sites / and j are modified to point to site
J, the new location of the DR. The location table at
each site records the last known location of all the
DRs along with their migration counts. The migration
count of DR increments by one every time it migrates
from one site to another. Therefore, the value i of
migration count means that the corresponding location
information represents the location of the DR after ith
migration. Hence, newer information about the loca-
tion of a DR can be recognized by comparing its
migration counts. Whenever a requesting site intends
to locate a DR, it sends a request message to a site
according to its own location table. If a site receiving
the request message does not hold the target DR, it
forwards the request message to another site accord-
ing to its own location table. The request message also
carries the contents of the location table of the
requesting site. At every site visited by the request
message, migration counts of each DR given by the
location table of both request and the site are com-
pared and older values are replaced with newer
values. This process of successive message forward-
ing continues till the request message reaches the
target site (the site holding the target DR). The target
site then sends the DR to requesting site and the entry
regarding the current location of the target DR in

location tables at both the target site and the request-
ing site is updated to requesting site and the migration
count is updated to the value one higher than that of
target site. In addition, ECF also uses another message
called update message that is generated by the target
site on the receipt of a request message. Each update
message carries the contents of location table of the
target site. This message is sent backwards from the
target site to every site through which the corre-
sponding request message has passed. It updates the
location tables at all the sites it visits with the contents
of location table it carries (updation is performed in a
similar manner as by request message).

In this paper, an algorithm is proposed that makes
use of a distributed queue data structure for the
location management of mobile DRs. The design of
the proposed algorithm is motivated by Ref. [3], in
which Chang et al. have proposed an algorithm that
employs distributed queue data structure to achieve
mutual exclusion. The algorithm by Chang et al. is
modified to fit the location management method for
DRs in broadband networks. In the proposed algo-
rithm, all the » sites of the system are configured as m
(total number of DRs) logical trees. In other words,
one logical tree corresponding to each DR is main-
tained in the system; therefore, there are m logical
trees (one corresponding to each DR) in the system.
The root of the tree holds the DR when no other site in
the system requests for the migration of the DR. Also,
the root is the last site among the current requesting
sites to receive the DR when no message is in
transmission. Each site points to the site where the
request is to be forwarded for locating the DR and
every requesting site only records the requesting site
next to it to receive the DR; therefore the size of each
local queue that stores the request for migration
(migratory request) of a DR is one. This is in contrast
with the algorithms where every requesting site adds
all the incoming migratory requests in its queue.
Therefore, in such algorithms, the size of the queue
that stores the migratory requests, at each site has to
be expanded to » (the number of the sites in the
system). In the proposed algorithm, whenever a
requesting site needs to access a DR, it sends a request
to the site possibly holding the DR. Whenever a site
receives a request, it forwards this request to another
site possibly having the DR. After successive for-
warding, the request message reaches the root site. (It
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may be noted here that the request message in the
proposed algorithm can be forwarded to (n — 1) sites
in the worst case.) From the root site, the DR is then
migrated to the site requesting for the DR. The
migration of the DR from one site to the other takes
place via the entries given by the local queues.
Whenever a DR migrates, it also carries with itself
the information of the site, which is pointed by the site
from where it migrates. Finally, the performance of
the proposed algorithm is evaluated and is compared
with ECF. As ECF algorithm gives the best perfor-
mance among various distributed algorithms [7], the
proposed algorithm is compared with ECF. The im-
proved performance of the proposed algorithm in
terms of message traffic for two network topologies
(binary tree and star) is demonstrated through simu-
lation experiments. Moreover, in order to be widely
used in system applicability, it is shown that the
proposed algorithm has strong adaptability to different
network topologies and generally enhances its effec-
tiveness with greater connectivity.

The rest of the paper is structured as follows: In
Section 2, the system model on which the proposed
algorithm has been developed is described. Section 3
gives the basic idea of the algorithm. The working of
the algorithm is illustrated with the help of an example
in Section 4. A detailed description of the algorithm is
given in Section 5. The algorithm is analyzed in
Section 6. In Section 7, the simulation model and
results are presented. Finally, some concluding
remarks are given in Section 8.

2. System preliminaries

The distributed system considered in this paper
consists of n homogeneous sites and m DRs with low
location dependency, i.e. DRs can move without
restrictions between the sites involved in the system.
The sites are connected via an ATM network and
general ATM environments similar to that used in Ref.
[7] has been assumed. The communication network is
assumed to be reliable (i.e. messages are neither lost
nor duplicated and are transmitted error free) and sites
do not crash. Whenever site i sends a message to the
site j, the message is routed through intermediate
ATM switches by making a Switched Virtual Con-
nection (SVC). SVC is established dynamically

according to the request generated by the site. Some-
times, overloading in the network causes congestion
in the network, during which SVC is released. SVC is
also released if connection has not been used for a
predefined period of time.

All the sites in system can have an access to any of
the m DRs. The sites can access these DRs either by
fixed processing method or by DR migration method.
Each site contending for the DR has equal priority and
no central control is supported. Any site that wants to
access a DR generates a request message and com-
municates it to the other site. The request message can
be of two types: (i) access request message and (ii)
migratory request message. In case of an access
request message, the transaction initiation site re-
quests the target site to allow it to perform operations
on the DR by fixed processing method (on the site
where the DR resides). Whereas in case of a migratory
request message, the transaction initiation site
requests the target site to migrate the DR to it. In
response to this request, the DR is migrated from
target site to the transaction initiation site and the
operations on the DR are then performed at the
transaction initiation site. A basic idea of how the
proposed algorithm handles the request messages and
the migration of DRs is now given in Section 3.

3. Basic idea

In the proposed algorithm, all the » sites of the
system are configured as m logical trees (one logical
tree corresponds to one DR). All directed edges of a
tree point towards the root of the tree. The root holds
the DR if no other site of the system is requesting for
the migration of the DR and also is the last site to
receive the DR, when no message is in transmission.
Each site maintains a State Information (SI) table that
stores the current state of the site with respect to all the
DRs of the system. Each site can be in a requesting
state for a DR, when the site has generated either an
access or a migratory request for a DR; a non-
requesting state for a DR, where the site does not
hold the DR and does not produce any access or
migratory request; or in a holding state for a DR,
when the site holds the DR. Each site also maintains a
father table that records the value of father pointers of
that site with respect to all the DRs of the system. The
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father pointer of a site for a DR points to the site that
possibly holds the corresponding DR. Therefore, a
requesting site / will send the request message for DR
x to site j only if father pointer of site 7 for DR x points
to site /. Further, each site maintains the following two
queues for each of the m DRs of the system:

(i) Migratory_Request (M_R) queue: this queue stores
the site_id of the site to which the corresponding
DR would be migrated after the DR holding site
finishes its operations on the DR. If M_R queue for
a DR is empty (indicates that no other site has
requested for the migration of the DR), then site ;
enters into the holding state for that DR.

(1i) Access_Requests (A_R) queue: this queue stores
the site_id of the sites that have generated access
requests for the DR.

From now onwards, for simplicity, the migratory
request will be represented as M_Req,[x] and access
request will be represented as A_Req;[x], which
respectively implies a migratory request or an access
request generated by site i for DR x.

In the proposed algorithm, whenever site i needs to
access DR x, it checks whether it has DR x with itself,
if it has, it accesses DR x. Otherwise, it invokes either
M_Req;[x] or A_Req,[x] and enters into the request-
ing state for DR x. Site i then forwards its request to
the site pointed by father,[x] (father of site i for DR x
(=/, say)).

The case when a site receives M_Req,[x] is dis-
cussed first and then the events that takes place
whenever a site receives A_Req,[x] are explained.

Whenever site i receives M_Req,[x] and it holds DR
x, it updates its father pointer for DR x to the requesting
site j (father;[x]=/). DR x is then migrated to the
requesting site j along with the father pointer value of
site i for DR x. Otherwise, site i forwards the request to
the site given by father,;[x], in the following situations:

(i) site i is in non-requesting state for DR x, or
(ii) site 7 is in requesting state for DR x and its M_R
queue for DR x is not empty

Site i after forwarding the request updates its
father;[x] pointer to site j, because according to site
i’s knowledge site j is going to be the new holder site
of DR x in near future. If none of the above conditions

is true, site / adds the request to its M_R queue for DR
x and sets father,[x] to site j, as site j will receive DR x
shortly. In this way, the request is forwarded from one
father site to another and in a finite time, M_Req,[x]
will be forwarded to the root and at that time site j will
become the new root.

If site i receives A_Req,{x] and it holds DR x, then
site i allows site j to access DR x by fixed processing
at site 7. The operation results are sent back to the site
Jj. If site i does not hold DR x and is in non-requesting
state for DR x, then it forwards the received access
request to the site pointed by its father;[x]. If site 7 is in
requesting state for DR x, it does not forward the
request further, instead adds the request to its A_R
queue for DR x.

Whenever site / receives DR x in response to its
migratory request, it first completes its operations on
DR x and then caters to all the access requests,
which are waiting at site 7 (given by its A_R queue
for DR x). After all the access requests for DR x
have been catered for, the operation results along
with father pointer value of site / for DR x are send
to the access request generator sites. The access
request generator sites then update their father
pointers for DR x. Site i then checks its M_R
queuex]. If some migratory request is waiting, DR
x is migrated to the waiting site and if M_R
queue;[x] is empty (that is no migratory request is
waiting for DR x), then site i keeps DR x with itself
and enters into the holding state for DR x. Therefore,
the request is sequentially forwarded from father site
to father site but DR x is directly migrated from the
DR x holding site to the next requesting site.

In Section 4, the proposed algorithm is illustrated
with the help of an example.

4. An example

Fig. 1 shows the initial state of an example, where
there are eight sites (0,1,...,7) and three DRs (DR 0,
DR 1 and DR 2). DR 0, DR | and DR 2 are
assumed to initially reside on sites 0, 1 and 2,
respectively. All the sites set their father pointers
for DR 0, DR | and DR 2 to sites 0, 1 and 2,
respectively. The arrows represent the direction of
father pointers. M_R and A_R queues of all the sites
are initialized to nil.
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(DR 0 hoider site

@ DR 1 holder site

O DR 2 holder site

—— father pointer for DR 0 ——  father pointer for DR 1 —— father pointer for DR 2

Fig. 1. Initial state of an example.

In this example, it is assumed that sites 3, 4, 5
and 6 generate migratory requests for DR 1 and sites
7 and 2 generate access requests for DR 1 in this
order. Fig. 2(a-h) illustrates how these requests
chase DR 1. The shaded circle shows the presence
of DR 1. To maintain simplicity in the diagrams, the
father pointers pointing towards DR 0 and DR 2 are
omitted.

Whenever site 3 generates M_Reqs[1], it enters
into the requesting state for DR 1. M_Reqs[1] is
transmitted to site 1. Let us assume, at this moment
site 1 is performing operations on DR 1, so it enters
the incoming request to its M_R queue for DR 1 and
updates its father,[1] to the requesting site, i.e. site 3,
as shown in Fig. 2a. Site 4 now transmits M_Reqy[1]
and sets itself to requesting for DR 1. This request is
forwarded to the site pointed by fathery[1], that is site
1. As site 1 is performing operations on DR 1 and its
M_R queue for DR 1 is not empty, therefore, it
forwards M_Reqy[1] to the site pointed by father;[1],
Le. site 3, where it is entered into its M_R queue
(since site 3 is in requesting state and its M_R queue
is empty). After forwarding M_Req,[1] to site 3, site |
modifies its father;[1] to the requesting site, site 4.
This is done because site 4 will be receiving DR [ in
near future. Also site 3 on receiving M_Req4[1] from
site 1, updates its fathers[1] to site 4. This is shown in
Fig. 2b. At this stage, site 5 generates M_Regqs[1],

enters into requesting state for DR 1 and forwards this
request to father[1], that is site 1. At this moment, site
1 is performing operations on DR 1 and its M_R
queue for DR 1 is not empty, hence site 1 forwards
this request to the site pointed by father,[1], i.e. site 4.
Site 4 adds this request to its M_R queue for DR 1, as
shown in Fig. 2c. Also, sites 3 and 4 update their
tather pointers for DR 1 to point to the requesting site,
i.e. site 5. Likewise, when M_Reqe[1] arrives at site 1,
it forwards M_Reqg[1] to the site pointed by its
father,[1], that is site 5. Site 5 is in requesting state
and as its M_R queue for DR 1 is empty, it adds
M_Reqg[1] to its M_R queue for DR 1. Site 1 and site
5 also modify their father pointers for DR 1 to the
requesting site 6. This is illustrated in Fig. 2d. In the
mean time, sites 7 and 2 generate A_Req-[l] and
A_Reqy[1], respectively. These requests are also for-
warded to site 1, where they are pushed to A_R queue
for DR 1. This is shown in Fig. 2e. Site 1 after
finishing its operation on DR 1 finds that its A_R
queue for DR 1 is not empty. Tt therefore allows sites 7
and 2 to access DR 1. After sites 7 and 2 finish their
operations on DR 1, site | sends an update message
along with the information of its father pointer
(corresponding to DR 1) to them. Sites 7 and 2 then
update their father pointers, which now point to site 6.
This 1s illustrated in Fig. 2f. Site 1 now checks for the
waiting migratory requests in its M_R queue for DR
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® DR I holder site, [1 M_R queue, A R queue, ™ father pointer for DR 1

Fig. 2. An example.
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1, which is site 3. So DR 1 along with the value of its
father pointer for DR 1 is migrated to site 3 and the
entry in the M_R queue for DR 1 is reset to nil. Site 3
on receiving DR 1 modifies its father pointer for DR 1
to site 6 as shown in Fig. 2g. Likewise, site 3, after
finishing its operation on DR 1, migrates DR 1 (along
with the value of its father pointer of DR 1) to site 4,
in order to cater M_Reqq[1]. Site 4 after receiving DR
1 updates its father pointer for DR 1 to site 6. This is
shown in Fig. 2h. After all the above requests have
been catered to, DR | will be finally migrated to site
6, which now becomes the new root. All the sites now
have a new set of father pointers for DR 1 directed
towards site 6.

5. The algorithm in detail
5.1. Data structures

For each site i, the following data structures are
constructed to record the necessary information:

(i) SI table: This table has m entries (corresponding
to m DRs) to record the state of the site with
respect to each of the m DRs.

(i1) father table: This table has m entries to store the
value of father pointers for all the m DRs.

(iii) req_type (request type) table: This table has m
entries to record the type of request generated by
the site for a DR. This parameter is valid only if
the site is requesting for a DR. It is set to 4 for
the access and M for the migratory request.

(iv) M_R queue: This is a distributed queue for each
DR in which each site can store one value to
record the site where the corresponding DR
would be migrated next. In case there is no
waiting migratory request for the DR, the queue
is reset to nil.

(v) A_R queue: This queue is maintained for each
DR. It records the sites that have requested site {
for fixed processing on the DR.

Two operations are defined on this queue:
(a) push_A_R queue,[x](site_id): pushes the site_id of

the requesting site in the A_R queue for DR x at
site 7.

(b) pop— A_R queue[x](): pops A_R queue for DR x
at site / and returns the site_id of the site, which
had generated an access request for DR x.

The following messages are assumed to exist and
are used to exchange information among the sites in
the system:

(1) Request message: This message is created and
sent by any site / which intends to either migrate
DR x or access it by fixed processing. The
format of the request message is as follows:
Regst_msg(i,x,req_type;[x])

The parameters have the following meaning.

i: site_id of the requesting site.

x: x is the DR which the site wants to either
migrate or access by fixed processing.

* req-_typejx]: this is the information regarding
the type of request (4 or M).

(i) DR_migrate message: This is DR x along with
the father pointer information of the site from
which DR x migrates. The format of the
DR_migrate message is given below: DR_mi-
grate(father,[x]) where father;[x] represents the
value of the father pointer for DR x of the site
that migrates DR x.

(iti) Update message: This message is invoked by
DR x holding site after all the waiting access
requests (in its A_R queue for DR x) finish
their operations on DR x. This message
informs all the sites about the completion of
their access requests for DR x and also updates
their father pointers for DR x. The format of
the Update message is as follows: Upda-
te_msg(father[x]) where father;[x] represents
the value of the father pointer for DR x of
the site that generates the Update message.

5.2, Initialization

In this section, the initialization process of the
above mentioned data structures is explained. Initially,
it is assumed that DR 0 resides at site 0, DR 1 at site 1,
DR x at site x and so on. The data structures at all the
sites are initialized as follows:
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for(i=0;i<n;i++) {
for (3=0;j<m;j++) {
if (j=1){

5.3. Pseudo-code of the algorithm

Now, the proposed algorithm is explained step by
step, where each site 7 in the system is driven by the

following events.

else{

father;[j]=i;/*initially m DRs reside on m sites,
one on each site*/

SI;[jl=H; /*m sites (having one DR each) are in
holding state*/

father;[jl=j; /*at each site, father pointers are
set for all DRs*/

SI;[J]=NR; /*all sites for all DRs are set to
non-requesting state*/

M_R queue;[j]=nil; /*M_R queues at all sites for
all DRs are reset to nil*/

A_R queue;[j]l=nil; /*A_R queues at all sites for
all DRs are initialized to nil*/

req_type;[J]=M; /*request type at all sites for
all DRs is initialized to migratory*/

5.3.1. Site i generates a request for either migrating

or accessing DR x by fixed processing

Generate_Regst_msg (i, req_type;[x])

{

if (migratory request for DR x)
req_type; [x]=M; /*if migration, reg_type is set to M*/

else

req_type;[x]=A;/*if fixed processing, req_type is set
to A*/

if (father;[x]==1i)/*checks if the site has DR x with itself*/
DR x_access;/*access DR x*/

else{ /*site i does not have DR x*/
SI;[x]=R; /*site i becomes requesting for DR x*/

send Reqst_msg(i,reqg_type;[x]) to
site_id[father;[x]];

/*forwards the request to the next site*/

if (req_type;[x]==M) /*if migratory request, site i
updates its father pointer for DR x to itself*/
father; [x]=1i;

Site i either generates a migratory or an access
request for DR x and sets its req_type for DR x to M
or 4, respectively. It then checks if it has DR x, if
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so, it finishes its operations on DR x. Otherwise, site
i sets itself requesting for DR x and forwards its
request along with its site_id to the site given by
father,[x]. After forwarding the request, it updates its
father pointer for DR x to itself. The detailed
description of the procedure is as follows.

/*This procedure is executed by site i when it
wants to either migrate or access DR x*/

5.3.2. Site i receives a request message reqst_msg(i,
req_type;[x]) from site j for DR x

Whenever site i receives a request message, it takes
following actions depending upon its current state and
the type of request received:

(1) 1f it is in non-requesting state and does not hold
DR x: it forwards the request message to the site
pointed by father[x]. It then updates its father;[x]
to point towards the requesting site only in case
of a migratory request. This is done because the
requesting site will receive DR x soon (as it has
generated a migratory request) and hence all
further requests should be forwarded to this site.

Recv_Reqgst_msg (j, reqg_type;j[X])

{

if (father;[x] !=1) &&SI;[x]==NR) {

(i1) if it is in requesting state: then the migratory
request is forwarded further if its M_R queue for
DR x is not empty, otherwise it is added to its M_R
queue for DR x. If it is an access request, then the
request is added to its A_R queue for DR x.

(iif) if it is holding DR x: DR x is migrated to the
requesting site in case of a migratory request.
While DR x migrates, it carries with itself the
father pointer information of site i for DR x, so
that the site receiving DR x can modify its father
pointer for DR x. This father pointer information
carried by DR x reduces the message traffic in
subsequent requests for DR x. Similarly, if site 7
receives an access request for DR x, it allows the
requesting site to access DR x by fixed process-
ing at site i. After the operation finishes, site i
sends an Update message to the requesting site
that carries results as well as the father pointer
information of site 7 for DR x, so that requesting
site can update its father pointer for DR x.

/*This procedure is executed by site i when it
receives a Reqst_msg(i,req_type;[x]) from site j*/

/*site 1 does not hold DR

x and is in non-requesting state*/
send Regst_msg(j,req_type;[x])to site_id[father;[x]];
/*sends the received request to the site given by its
father pointer for DR x*/
if (Regst_msg.req_type;[x]==M) /*if the receive request
is migratory, update the father pointer to the

requesting site*/

father; [x]=Regst_msg.7;

}

else(
if (SI;[x]==R) {

/*if site i is in requesting state*/

if (Regst_msg.req_type;[x]==A}) /*if the received
request is an access request, then enter the
request in A_R queue for DR x*/

Push A R queue;[x] (Regst_msg.]j):

else{

/*received request is migratory*/

if (M_R queue;[x]==nil){ /*if M_R queue is empty,
add the request to the M_R queue*/

M_R queue; [x]=Regst_msg.j;
father;[x]=Reqgst_msg.Jj;/*update the father
pointer for DR x to the requesting site*/
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else{/*if M_R queue for DR x is not empty, forward the

request further*/

send Regst_msg(j, req_type;[x]) to
site_id[father,[x]];
father,[x]=Regst_msg.j;/*update the father
pointer for DR x to the requesting site*/

}

else{ /*site i holds DR x*/

if (Regst_msg.req_type;[x]==A){ /*the received request

is an access request*/

DR x_access; /*access DR x by fixed processing*/
send Update_msg (father;[x]) to
site_id[Regst_msg.j]; /*send an Update message
to the requesting site*/

}

else{/*in case of a migratory request*/
send DR_migrate (father;[x]) to
site_id[Regst_msg.]j];

3.3.3. Site i receives a message DR_migrate(fa-
ther;[x]) from site j

Whenever site 7 receives this message, the follow-

ing two cases can arise:

(i) DR_migrate.father{x] # site i: it indicates that the

(i)

site given by DR_migrate.father;[x] is the site that
has generated the request after site i in the
distributed queue. Therefore, the site represented
by DR_migrate.father[x] will receive DR x after
site 7 finishes its operation on DR x. Thus, site i
updates its father pointer for DR x to the site given
by DR_migrate.father;[x].

DR_migrate.father[x] =site i: it implies that there
is no other site requesting for DR x after site
i, or the last requesting site has been updated

Recv_DR_migrate (father,[x])
{

if (DR_migrate. fatherj [x] !==1)

to another requesting site k, when site
received a migratory request from site k. In
the latter case, site & will get DR x in a finite
time after site 7/ finishes its operation on DR x.
Therefore, site i does not update its father
pointer for DR x.

After receiving DR x site 7 first finishes its oper-
ations on DR x, it then checks its A_R queue for DR x
and if the queue is not empty, it allows the requests to
access DR x at site i. After the operations on DR x are
over, site 7 sends an update message along with the
results and its father pointer value for DR x to all those
sites whose access requests it has catered to. It then
looks into its M_R queue for DR x, if there is an entry,
it migrates DR x to the site given by M_R queue,[x].

father; [x]=DR_migrate.father,[x];

DR x_access; /*site i accesses DR x*/

SI;[x]=H; /*site i enters holding state for DR x*/
if (A-R queue;[x]!==nil) {/*if A_R queue for DR x at site i is
not empty, cater to access requests*/
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for (i=0;i<n;i++) {

s=pop A_R queue;[x] ();/*pop the site_id that has
generated an access request for DR x*/
DR x_access; /*site s accesses DR x at site i by

fixed processing*/

send Update_msg(father;[x]) to site_id[s];
/*After site s finishes its operation on DR x,
send Update message to site s*/

}
}

if (M_R queue;[x] !==nil) {/*if M_R queue for DR x at site i is
not empty, migrate DR x to the next reguesting site*/
send DR_migrate (father;[x]) to site_id[M_R queue,[x]];

/*migrate DR x*/

SI;[x]=NR;/*site i1 enters non-requesting state for DR

x*/

M_R queue,[x]=nil;/*reset the entry in M_R queue for

DR x at site i te nil*/

After sending the DR, it resets the M_R queue,[x] to
nil and enters into non-requesting state. If M_R
queue,[x] does not have any entry, it keeps DR x with
itself and enters into holding state for DR x.

/*This procedure is executed by site i when it
receives a DR_migrate (father;[x]) from site /*/

RecvﬁUpdateﬁmsg(fatherj[x])
{

5.3.4. Site i receives an update_msg(father;(x]) from
site J

When site i finishes its operations on DR x by fixed
processing, it receives an Update message. It then
changes its state from requesting to non-requesting
and updates its father pointer for DR x.

SI;[x]=NR; /*site i enters non-requesting state for DR x*/

if (Update_msg.father;[x] !==1)

fatheri[x]=Update_msg.fatherj[x];/*father pointer of site i
for DR x updated with the value of father pointer brought

by the Update message*/
}

/*This procedure is executed by site i when it
receives an Update_msg(father;[x]) from site j*/
6. Analysis of the algorithm

In this section, the proposed algorithm is analysed

and it is proved that it is free from deadlock and
starvation.

6.1. Deadlock

A distributed system is said to be in deadlock when
none of the sites is performing operation on the DRs

and no requesting site can ever perform operation on
them. To show that such a situation never occurs and a
requesting site eventually gets access to the DR, the
two conditions must hold:

(i) the request message (whether access or migra-
tory) from a requesting site / will arrive at site j
satisfying father[x]=/ (i.e., it either holds DR x
or is going to receive it in near future), and

(ii) site ; migrates DR x or sends an Update
message to site i in a finite time. We use the
following lemmas to prove that the above
two conditions hold true for the proposed
algorithm.
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Fig. 3. (a) Binary Tree Topology and (b) Star Topology.

Lemma 1. Any path constructed by father pointers for
DR x always leads to a site that satisfies father;[x] = i.

Proof. It is assumed that initially every site sets its
tather pointer for DR x to the only site r that satisfies
father,[x] =7. Whenever a site generates a migratory
request or receives a migratory request or a DR, its
father pointer for the DR is updated. Whenever a
requesting site i sends M_Req;[x] to father[x]=r, it
sets father,[x]=i. After site r receives M_Req,[x], it
sets father,[x] =1i; therefore, there is a path from site r
to site 7 that satisfies father;[x]=i. At this instant, any
other site, say, j can send M_Req,[x] along the path
made by father;[x]=r and father,[x]=/. Assume that
site r then receives M_Regq;[x], M_Reqp[x], ...,
M_Req;[x] (the migratory requests from the sites /|,
J2, - Jix) for DR x before it migrates DR x. During
this period, site » will keep on forwarding the
M_Req;[x] to father,[x]=17 (then sets father,[x]=/),
..., forwarding M_Req; : )[x] to father,[x]=/; (then
sets father,[x]=j;+1)).... Finally, father[x]=/,, fa-
ther,[x] =/ and father;[x]=j; 1, (1=i=(k— 1)). At
this moment, any path constructed by father pointers
leads for DR x to ji that satisfies father;[x]= ;.
When site r (at this moment father,[x]=/;) finishes
with the operation, it migrates DR x to M_R queue,
[x]=i. After receiving DR x, site / updates its

father;[x] pointer to the latest requesting site, i.e. j;
and so does every site j; to site j; 1y (1=i=(k—1)).
Therefore, any path constructed by father pointers,
always leads to a site satisfying father;,[x]=i. Also,
there 1s only one site that satisfies father,[x]=1{, when
there is no request in the system. Similarly, whenever
a requesting site 7 sends A_req,x] to father,[x]=r,
where it is entered into its A_R queue for DR x,
When site » receives DR x (let us assume at this time
father,[x]=/;), it allows access to site / and sends an
Update message to site /. Site i then updates its father
pointer for DR x to the last requesting site j;,. Now,
if site i again sends another access request, it will
now be transmitted to the site j, that satisfies
tather;i[x] = j. O

Lemma 2. When there is no migratory or access
request in the system, the entries in the M_R or A_R
queue contain every requesting site.

During initialization, every site resets its M_R
queue for DR x to nil. A migratory request M_Reg;
[x] will ammive at site j that satisfies father[x]=/.
Since site j has not received any request that can
be inferred from father;[x]=/, it implies M_R
queug;[x] =nil. In other words, site j is the last site
in the distributed queue. Then site j sets M_R
queue;[x]=i. Therefore, the queue constructed by

a P

d R R\d
S

h
ATM switch

b P

b L ,\d

S; — s —

ATM switch

Fig. 4. (a) Channel Formation and (b) Message Propagation.
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M_R contains the migratory request of every request-
ing site. Similarly, an access request A_req;x] will
arrive at site j that satisfies father;[x]=/, where it gets
entered to A_R queue irrespective of whether it has
an entry or not. Hence, all the A_R gqueues contain
access requests of every site.

From Lemma 1, a migratory or an access request
will be forwarded along the path formed by father
pointers to a site that satisfies father,[x]=1; therefore,
condition 1 is satisfied. From Lemma 2, the queue
formed by M_R contains migratory requests of every
requesting site and is finite, and the site holding the
DR x will migrate DR x to its M_R queue[x] (if M_R
queue[x] # nil). Also the A_R queues contain access
requests of every requesting site and is finite and the
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site holding DR x will send an Update message to
the site given by A_R queue for DR x (if A_R
queue[x] # nil.). Hence, condition 2 is satisfied and
therefore the algorithm is free from deadlock.

6.2. Starvation

Starvation is a condition when the requests of
only few sites are catered to, while other sites wait
indefinitely for their turns to do so. Since every
migratory or access request will arrive at a site that is
either holding or is going to receive DR x in a finite
time, the only cause of starvation is the unfair
decision made by the DR holding site. That is if
M_Req;[x] has arrived at a site that satisfies
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Fig. 5. (a) Time Delay for A/M ratio= 1 for Binary Tree Topology; (b) Time Delay for A/M ratio= 35 for Binary Tree Topology; (c) Time Delay
for A/M ratio =10 for Binary Tree Topology; (d) Time Delay for A/M ratio= 15 for Binary Tree Topology; () Time Delay for A/M ratio= 1 for
Star Topology; (f) Time Delay for A/M ratio=35 for Star Topology; (g) Time Delay for A/M ratio= 10 for Star Topology; (h) Time Delay for

A/M ratio =15 for Star Topology.
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Fig. 5 (continued).

father;(x]=/, and a finite number of other sites
gencrate migratory requests for DR x after site i/
and obtain DR x before site 7, starvation may occur.
Or if some access requests are waiting in the A_R
queue for DR x and the site migrates DR x to
another site without satisfying them.

In the proposed algorithm, when M_Req,[x] mes-
sage arrives at site j that satisfies father;[x]=/, site /
will set father[x]=7 and M_R queue/[x] to i. When
some other migratory request M_Req[x], say from
site k arrives at site j, site j will forward M_Req,[x]
to father[x]=i. Therefore, any requesting site (for
migration) after site / will be added after site 7 in the
distributed queue and DR x is migrated in the same
order as sites in the distributed queue, site i will
receive DR x in a finite time and before any
requesting site (for migration) which is after it in

the distributed queue. Similarly, when A_req]x]
message arrives at site j that satisfies father;[x]=/,
site j will either allow site 7 to perform operations on
DR x (if it is in holding state for DR x) or will enter
the request in A_R queue for DR x. Now if some
other access request A_req;[x], say from site &
arrives at site j, site j will enter it in A_R queue
for DR x after the request of site i. Whenever site
receives DR x, A_R queue for DR x is first checked
and the A_R queue is then read in FIFO manner.
Hence, the access request arriving first is catered to
first. Moreover, site j does not read its M_R queue
for DR x, till all the access requests for DR x have
been catered to. Therefore, DR x will not migrate to
the next requesting site till all the previous access
requests have been satisfied. Therefore, the algorithm
is free from starvation.
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7. Simulation model and results

The simulation model used in this paper is similar
to that used in Hara et al. [7]. The algorithms for
comparison (the proposed algorithm and ECF) are
implemented on two network topologies: (i) a binary
tree with depth k (number of sites n=2%) having
sites as leaves and ATM switches at every other level
(Fig. 3a) and (ii) a star topology with a central ATM
switch (Fig. 3b). The sites communicate by setting
up SVCs. Whenever a site / sends a message to site
J, the message is routed through intermediate ATM
switches. The total time required for transmitting one
message between two sites consists of two parame-
ters: (a) the time required for setting up the SVC
connection called Channel Formation (CF) delay
(Fig. 4a) and (b) the time needed for the transmis-
sion of the message once the connection is made
called Message Propagation (MP) delay (Fig. 4b).
Let & represent the number of ATM switches be-
tween the two communicating sites, P’ the total
processing delay at both sites when SVC does not
already exist, 4 the constant propagation delay be-
tween two arbitrary sites, R and » the constant route
configuration time and the constant routing time
respectively at an arbitrary switch, then CF(h)=
P'+2(h+1)d+h(r+R). If during transmission, P is
the total processing delay at both sites when SVC
already exist, then MP(h)=P+(h+ 1)d+hr. The pa-
rameter values of P, P/, r, R, d are taken to be 30,
10, 2, 10, 5 ms, respectively, and are same as those
given in Ref. [7]. The number of sites and DRs are
assumed to be 32 and 20 and each DR say DR x is
initially located at site x. For simplicity, each site
generates requests in equal probability and the
requested DR is also chosen among 20 DRs in equal
probability. The intervals of accesses and DR migra-
tions are based on exponential distributions and a
SVC between two sites remains valid for 20 min
after the setup.

As the performance measures are probabilistic in
nature, so value of these variables for the proposed
algorithm and ECF are collected for 5000 requests, in
which the intervals between requests follow exponen-
tial distributions which are based on the mean access
interval called inter access delay (ia_delay). The
value of ia_delay is changed from 10 s to 3 min in
steps of 10 s. The time delay of the algorithms has

also been studied against the ratio of access to
migratory requests generated in the system called
A/M (Access to Migratory) ratio, which is varied
from 1 to 15. The simulations were carried out in
PARallel Simulation Environment for Complex sys-
tems (PARSEC), which is a C-based discrete event
simulation language [18]. It adopts the process inter-
action approach to discrete events simulation. An
object (or physical process) or set of objects in the
physical system is represented by a logical process.
Interaction among physical process (events) is mod-
eled by time stamped message exchanges among the
corresponding logical processes.

In the simulation experiments, two performance
parameters viz., time delay and message traffic are
measured for two network topologies. Time delay is
the average time needed by the requesting site to
locate the DR, which is the period of time between the
instant a site generates a request and the instant when
the site accesses the DR. The time delay is computed
from the time the request message is sent until the
time the DR is migrated to the requesting site in case
of a migratory request or the Update message is
received by the requesting site in case of an access
request. Message traffic is the average number of
messages needed by the requesting site to locate and
perform operations on DR.

Fig. 5 shows the simulation results. In Fig. 5(a—
h), the x-axis indicates the value of ia_delay and y-
axis gives time delay for the proposed algorithm and
ECF. The graphs are plotted for four different values
of A/M ratio and for two network topologies namely
binary tree and star. The method that gives the
shortest time delay is also examined. It is observed
that in both the methods (proposed algorithm and
ECF), time delay increases as the mean access
interval is increased from 10 s to 3 min for a fixed
A/M ratio. Also, in both the methods, time delay
increases with the increase in A/M ratio (from 1 to
15). Time delay for ECF and the proposed algorithm
changes nearly from 0.265 to 0.542 and 0.290 to
0.534 s, respectively, for binary tree topology. For
star topology, time delay varies approximately from
0.085 to 0.170 and 0.087 to 0.163 s for ECF and the
proposed algorithm, respectively. The time delay for
ECF and the proposed algorithm is comparable in
star network at all the frequencies of DR migration,
whereas the performance of the proposed algorithm
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Fig. 6. Variation in Message Traffic with respect to A/M Ratio for
ia_delay=90s.

improves for binary tree topology as compared to
ECF as A/M ratio is decreased. Also, the proposed
algorithm performs better than ECF when DR mi-
gration occurs frequently. This is because the pro-
posed algorithm tries to direct the request to a
requesting site, so that endless chasing of the DR
1s minimized. Moreover, there is an active contention
for DR in ECF whereas in the proposed algorithm,
there is a passive contention, that is, the site that is
already requesting is allowed to access the DR first,
Hence, in the proposed algorithm, fairness is ensured
such that earlier requesting site gets to access the DR
first.

Message traffic for the proposed algorithm as
well as for ECF is also studied. It is observed that
the message traffic is independent of the mean
access interval but it varies with respect to A/M
ratio. In Fig. 6, x-axis indicates the A/M ratio and
y-axis gives message traffic for ECF and the
proposed algorithm for both the network topologies.
From the graph, it is observed that the proposed
algorithm reduces the message traffic to a consid-
erable extent. This is because in the proposed
algorithm, the requests are stopped whenever they
encounter a requesting site, thereby reducing the
unnecessary forwarding of request messages. On the
other hand, the message traffic in ECF is higher
than that of the proposed algorithm, because in
ECF, the request is not stopped anywhere, instead
the intermediate sites keep on forwarding the re-
quest until the DR holding site is found. After the

site holding the DR is found, the requesting and all
the intermediate sites are updated with the latest
DR location table contents. Further, both these
methods give lesser message traffic when DR
migration does not occur frequently. This is because
there is a high probability that the site to which the
requesting site sends the message 1s the DR holding
site.

8. Conclusion

In this paper, an algorithm that uses a distributed
queue strategy to simplify the data structure carried by
the DR and the Update message is proposed. The
amount of information carried by DR and the Update
message is small as they carry only the father pointer
value (corresponding to the requested DR) of the site
that sends them. To speed up the search for the DR,
the algorithm tries to keep up-to-date as much as
possible the value of father pointers whenever a site
reccives any message. Moreover, the size of the M_R
queue for each DR at each site is always one. It
ensures fairness in the system that is while chasing a
DR, if the request reaches a requesting site, it is
stopped there instead of being forwarded. Hence, the
requests generated earlier are catered to first.

Further, by simulation experiments, the perfor-
mance of the proposed algorithm is compared with
ECF. The simulation results show that in the proposed
algorithm, the message traffic is reduced considerably
as compared to ECF. The proposed algorithm reduces
the message traffic by keeping track of the latest
information about the site possibly holding the DR.
Also, the time delay of the proposed algorithm is less
as compared to ECF at lower A/M ratios, especially in
star topology. Finally, it is concluded that the pro-
posed algorithm performs best with networks of
higher degrees of connectivity and when DR migra-
tion occurs frequently.
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