
A

Dissertation

on

dgridOS – An approach to Grid enabled

Operating System

Submitted in partial fulfillment of the requirement

for the award of Degree of

MASTER OF ENGINEERING

(Computer Technology and Application)

Submitted by

DHIRAJ KUMAR SINGH
(University Roll No. 2001)

Under the Guidance of

Prof. D. ROY CHOUDHURY

DEPARTMENT OF COMPUTER ENGINEERING

DELHI COLLEGE OF ENGINEERING

BAWANA ROAD, NEW DELHI

(DELHI UNIVERSITY)

JUNE-2007

CERTIFICATE

This is to certify that the work that is being presented in this dissertation entitled

“dgridOS - An approach to Grid enabled Operating System” submitted by Dhiraj

Kumar Singh in the partial fulfillment of the requirement for the award of the degree

of Master of Engineering in Computer Technology & Application, Delhi College of

Engineering is an account of his work carried out under my guidance in the academic

year 2006-2007.

This work embodies in this dissertation has not been submitted for the award of any

other degree to the best of my knowledge.

Prof. D Roy Choudhury

Head of Department

Department of Computer Engineering

Delhi College of Engineering

 Dr. S C Gupta

 Sr. Technical Director

 National Informatics Center

 Delhi

Delhi

1

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extend my heartiest felt gratitude to everybody

who helped me throughout the course of this project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my learned

supervisors Dr. S C Gupta and Prof. D Roy Choudhury for their invaluable guidance,

encouragement and patient reviews. Their continuous inspiration only has made me complete

this dissertation. Both of them kept on boosting me time and again for putting an extra ounce

of effort to realize this work.

I am also thankful to my lab partners Kalpesh Kumar Meena, Minakshi Anand and Rajesh

Kumar, for their consistent support and cheerups.

I would also like to take this opportunity to present my sincere regards to my teachers Prof.

Goldie Gabrani, Mrs. Rajni Jindal, Dr. S. K. Saxena, Mr. Manoj Sethi and Mr. Rajeev Kumar

for their support and encouragement.

I am grateful to my parents, brothers and sisters for their moral support all the time, they have

been always around on the phone to cheer me up in the odd times of this work.

I am also thankful to my classmates for their unconditional support and motivation during

this work. Living at DCE with them has been a lifetime experience for me, all the time we

spend together enjoying life to its fullest, the birthday parties, placement parties, photo

sessions and night outs discussing new topic or technology would remain with me forever.

I want to thank the members of Linux Forums, Grid Computing communities,

Sourceforge.net. Last but not least, special thanks to the crowd who are active in the field of

distributed computing on World Wide Web.

(Dhiraj Kumar Singh)

M.E. (Computer Technology and Application)

Department of Computer Engineering

Delhi College of Engineering, Delhi-42

2

ABSTRACT

This work is about the realization of a modern operating system with grid services as an

integral part of it. In recent time the dominating species of distributed computing is Grid

Computing, and till now this grid computing has been enabled through the use of middleware

toolkits.

As the most frequent machine interacting system calls are bundled together to make the

kernel of operating system, so as the more frequently used functions are bundled together in

set of modules which can easily be integrated to the operating system kernel even at runtime.

In this process the grid services which enables the sharing, selection, and aggregation of wide

variety of geographically distributed resources can be integrated together inside the kernel of

operating system as a module.

In the last few years, a number of exciting projects like Globus, Legion, and UNICORE

developed the software infrastructure needed for grid computing. However, operating system

support for grid computing is minimal or non-existent. Tool writers are forced to re-invent

the wheel by implementing from scratch. This is error prone and often results in sub-optimal

solutions. To address this and some more problems, an approach has been described to

demonstrate a module based approach to grid enabled operating systems.

In order to develop an integrated, GRID-enabled OS the free availability of the source code is

mandatory. This eventually makes Linux (and other Open Source Operating Systems) the

ideal platform for GRID computing. Linux already has a strong position in GRID research,

owing to the fact that GRID computing inherits many of its features and ideas from

clustering.

The core functional infrastructure is analyzed through different grid products in use which

helped in isolation of operating system configuration that facilitate grid computing and

common grid services provided by grid software. Based on the identified functionalities,

modules and sub-modules description and interconnection is explored. Finally a setup

execution plan is defined which visualizes the dgridOS structure and operation.

Just like it was the case in the beginning of the World Wide Web, there are currently many

special purpose GRIDs, which usually use the Internet for data transportation. It'll take its

time until these GRIDs grow together and form a World Wide GRID, but the ultimate goal is

a global, standardised infrastructure for transparent execution of compute jobs across network

boundaries and that is the evolution of Grid enabled operating system.

3

TABLE OF CONTENTS

ACKNOWLEDGEMENT ... 1

ABSTRACT .. 2

TABLE OF CONTENTS .. 3

LIST OF FIGURES ... 5

LIST OF TABLES ... 7

1. INTRODUCTION.. 8

1.1 Background .. 8

1.2 Motivation .. 8

1.3 Introduction to Grid Computing .. 9

1.3.1 Grid Definition ... 9

1.3.2 Grid Benefits .. 9

1.3.3 Types of Resources in Grid.. 12

1.3.4 Applications and Jobs .. 13

1.3.5 Scheduling, Reservation and Scavenging .. 14

1.3.6 IntraGrid to InterGrid ... 15

1.4 Objective .. 16

1.5 Organization of work ... 16

2. GRID ORGANIZATIONS .. 17

2.1 Grid Infrastructures .. 17

2.2 Grid computing projects .. 17

2.2.1 Globus Toolkit ... 18

2.2.2 Condor.. 21

2.2.3 Legion .. 22

2.2.4 Nimrod ... 24

3. INTRODUCTION TO LINUX KERNEL ... 28

3.1 Introduction .. 28

3.2 Scope for grid modules .. 31

4

4. DESIGN OF OPERATING SYSTEM WITH GRID ENABLED SERVICES 32

4.1 Identification of core services .. 32

4.2 Proposed grid architecture ... 32

4.3 Virtualization Concept ... 33

4.4 Topology for dgridOS implementation .. 34

4.5 Modular architecture for dgridOS .. 35

4.6 Job Execution ... 44

5. ADVANTAGES OF dgridOS ... 46

5.1 Optimization in File Transfer process .. 46

5.2 Freedom from restricted use of resources .. 47

5.3 New race in shared resource computing .. 47

6. RELATED WORK .. 49

6.1 GridOS ... 49

6.2 Vigne Grid OS ... 51

6.3 XtreemOS .. 51

7. CONCLUSION AND FUTURE WORK ... 53

8. REFERENCES ... 54

APPENDIX ... 57

A1 Grid Organization Job Execution ... 57

A2 Generations of Distributed Computing .. 58

A3 IDC’s model of Grid Computing ... 59

A4 Pseudo code for dgridOS environment .. 60

5

LIST OF FIGURES

Figure 1.1 An application is one or more jobs scheduled to run on grid………………...14

Figure 1.2 Meta-scheduling in grid………………………………………………………15

Figure 2.1 Globus toolkit layered architecture..…………………………………………18

Figure 2.2 Globus toolkit component architecture..………………………..……………20

Figure 2.3 Condor-G architecture………………………………………..………………22

Figure 2.4 Legion component interaction………………………………………..………24

Figure 2.5 Nimrod-G architecture………………………………………..……………...25

Figure 3.1 Relationship between Application, Kernel and Hardware…………...………31

Figure 3.2 Grid Services module inside the OS kernel………………………………….31

Figure 4.1 Current Grid Implementation……………………………………………...…33

Figure 4.2 Proposed grid implementation………………………………………………..33

Figure 4.3 Virtualization concept on dgridOS architecture……………………………...34

Figure 4.4 dgridOS architecture topology……………………………………………….35

Figure 4.5 dgridOS architecute………………………………………………………….37

Figure 4.6 dgrid resource brokering and scheduling…………………………………….43

Figure 4.7 dgrid setup procedure………………………………………………………..44

Figure 4.8 Job execution on dgridOS architecture………………………………………45

Figure 5.1 File transfer from client to server without dgridOS services………………...46

6

Figure 5.2 File transfer from client to server with dgridOS services……………………47

Figure 6.1 Major modules and structure in GridOS……………………………………..50

Figure 6.2 Services of a Vigne Grid Operating System…………………………………51

Figure 6.3 XtreemOS architecture…………………….…………………………………52

Figure A3 IDC’s model of Grid Computing……………………………………………..60

7

LIST OF TABLES

Table 4.1 Integral parts of dgridOS communication module…………………………...38

Table 4.2 Integral parts of dgridOS resource management module…………………….39

Table 4.3 Integral parts of dgridOS process control module……………………………40

Table 4.4 Integral parts of dgridOS security control module…………………...............41

Table 4.5 Integral parts of dgridOS vitual file system module…………………………42

Table 4.6 Integral parts of dgridOS core module……………………………………….43

Table A2 Generations of distributed computing………………………………………..59

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 8

1. INTRODUCTION

1.1 BACKGROUND

 As modern computing continues to see technological improvements in raw

computing power, storage capability and communication, the demands placed on these

resources continues to grow. Despite these improvements, there exist many situations

where computational resources fail to keep up with the demands placed on them. This

trend created the desire to be able to share computational resources both within an

organization and with external organizations. Resource sharing is beneficial since it

allows one to take advantage of the power of multiple resources in order to achieve a

single goal and provides a method for harnessing the power of underutilized resources.

Issues surrounding resource sharing form the basis for grid computing, an evolution of

wide-area parallel and distributed computing at a multi-institutional scale. A grid is an

infrastructure that allows the sharing, selection and aggregation of heterogeneous,

geographically dispersed resources that can be owned and operated by different

organizations. Distributed Computing is not a new paradigm. But up until a few years ago

networks were too slow to allow efficient use of remote resources. But as the bandwidth

of high-speed WAN’s today even exceeds the bandwidth found in the internal links of

commodity computers, it becomes inevitable that distributed computing is taken to a new

level. It now becomes feasible to actually think of a set of computers coupled through a

high-speed network as one large computational device.

1.2 MOTIVATION

 My earlier project work was establishment of a working cluster[6] in our

computer department. In the process of clustering of resources and their optimal use, it

was discovered that cluster of clusters can make a grid and as cluster services are

integrated inside the operating system then with few modifications a grid enabled

operating system can be presented for general purpose use. With few encouragements

from my guide and friends, it was decided to design a grid enabled operating system.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 9

1.3 INTRODUCTION TO GRID COMPUTING[7][10][17]

1.3.1 GRID DEFINITION

The grid computing model of computing emerged recently as a new field

distinguished from traditional distributed computing because of its focus on large-scale

resource sharing and innovative high-performance applications.

The definition of Grid computing in Ian Foster’s[11] three point check list that defines a

Grid as a system that:

 coordinates resources that are not subject to centralized control,

 uses standard, open, general-purpose protocols and interfaces,

 delivers nontrivial Qualities of Service.

Grid computing, most simply stated, is distributed computing taken to the next

evolutionary level. The goal is to create the illusion of a simple yet large and powerful

self managing virtual computer out of a large collection of connected heterogeneous

systems sharing various combinations of resources. The emerging standardization for

sharing resources, along with the availability of higher bandwidth, are driving a possibly

equally large evolutionary step in grid computing. Grid computing is a new IT

architecture that produces more resilient and lower cost enterprise information systems.

With grid computing, groups of independent, modular hardware and software components

can be connected and rejoined on demand to meet the changing needs of businesses.

1.3.2 GRID BENEFITS[22]

Exploiting underutilized resources

The machine on which the application normally run might be busy due to an unusual peak

in activity, then the job can be run on an idle machine elsewhere in grid. There are two

prerequisites for this scenario. First, the application must be executable remotely and

without undue overhead. Second, the remote machine must meet any special hardware,

software, or resource requirements imposed by the application (i.e. applications are grid

enabled). A batch job that spends a significant amount of time processing a set of input

data to produce an output set is perhaps the most ideal and simple use for a grid.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 10

Parallel CPU capacity

The potential for massive parallel CPU capacity is one of the most attractive features of a

grid. A CPU intensive grid application can be thought of as many smaller “sub jobs,”

each executing on a different machine in the grid. To the extent that these sub jobs do not

need to communicate with each other, the more “scalable” the application becomes.

Perfectly scalable applications will, for example, finish10 times faster if it uses 10 times

the number of processors.

Applications

Automatic transformation of applications is a science in its infancy. There are some

practical tools that skilled application designers can use to write a parallel grid

application. One must understand that not all applications can be transformed to run in

parallel on a grid and achieve scalability. But still these software can target some

applications to support some degree of scalability.

Virtual resources and virtual organizations for collaboration

Grid computing offers important standards that enable very heterogeneous systems to

work together to form the image of a large virtual computing system offering a variety of

virtual resources. Sharing is not limited to files, but also includes many other resources,

such as equipment, software, services, licenses, and others. These resources are

“virtualized” to give them a more uniform interoperability among heterogeneous grid

participants. The participants and users of the grid can be members of several real and

virtual organizations. The grid can help in enforcing security rules among them and

implement policies, which can resolve priorities for both resources and users.

Access to additional resources

Some machines may have expensive licensed software installed that the user requires. His

jobs can be sent to such machines more fully exploiting the software licenses. Some

machines on the grid may have special devices. Most of us have used remote printers,

perhaps with advanced color capabilities or faster speeds. In addition to CPU and storage

resources, a grid can provide access to increased quantities of other resources and to

special equipment, software, licenses, and other services.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 11

Resource balancing

A grid federates a large number of resources contributed by individual machines into a

greater total virtual resource. An unexpected peak can be routed to relatively idle

machines in the grid. If the grid is already fully utilized, the lowest priority work being

performed on the grid can be temporarily suspended or even cancelled and performed

again later to make room for the higher priority work. When jobs communicate with each

other, the Internet, or with storage resources, an advanced scheduler could schedule them

to minimize communications traffic or minimize the distance of the communications. A

grid provides excellent infrastructure for brokering resources.

Reliability

Grid management software can automatically resubmit jobs to other machines on the grid

when a failure is detected. If there is a power or other kind of failure at one location, the

other parts of the grid are not likely to be affected. In critical, real-time situations,

multiple copies of the important jobs can be run on different machines throughout the

grid, their results can be checked for any kind of inconsistency, such as computer failures,

data corruption, or tampering. In principle, most of the reliability attributes achieved

using hardware in today’s high availability systems can be achieved using software in a

grid setting in the future. It also provides mechanism for authorization, authentication for

users making it more secure.

Management

It will be easier to visualize capacity and utilization, making it easier for IT departments

to control expenditures for computing resources over a larger organization. With the

larger view a grid can offer, it becomes easier to control and manage when hardware

might be underutilized while another project finds itself in trouble. Aggregating

utilization data over a larger set of projects can enhance an organization’s ability to

project future upgrade needs. When maintenance is required, grid work can be rerouted to

other machines without crippling the projects involved.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 12

1.3.3 TYPES OF RESOURCES IN GRID

Computation

The most common resource is computing cycles provided by the processors of the

machines on the grid. The processors can vary in speed, architecture, software platform,

and other associated factors, such as memory, storage, and connectivity. There are three

primary ways to exploit the computation resources of a grid. The first and simplest is to

use it to run an existing application on an available machine on the grid rather than

locally. The second is to use an application designed to split its work in such a way that

the separate parts can execute in parallel on different processors. The third is to run an

application that needs to be executed many times, on many different machines in the grid.

Storage

A grid providing an integrated view of data storage is sometimes called a “data grid.”

Storage can be memory attached to the processor or it can be “secondary storage” using

hard disk drives or other permanent storage media. Memory attached to a processor

usually has very fast access but is volatile. It would best be used to cache data or to serve

as temporary storage for running applications. Secondary storage in a grid can be used in

interesting ways to increase capacity, performance, sharing, and reliability of data.

Communication

Another important resource of a grid is data communication capacity. This includes

communications within the grid and external to the grid. Communications within the grid

are important for sending jobs and their required data to points within the grid. Some jobs

require a large amount of data to be processed and it may not always reside on the

machine running the job. The bandwidth available for such communications can often be

a critical resource that can limit utilization of the grid. External communication access to

the Internet, for example, can be valuable when building search engines. Machines on the

grid may have connections to the external Internet in addition to the connectivity among

the grid machines. When these connections do not share the same communication path,

then they add to the total available bandwidth for accessing the Internet. Redundant

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 13

communication paths are sometimes needed to better handle potential network failures

and excessive data traffic.

Software and Licenses

The grid may have software installed that may be too expensive to install on every grid

machine. Using a grid, the jobs requiring this software are sent to the particular machines

on which this software happens to be installed. License management software keeps track

of how many concurrent copies of the software are being used and prevents more than

that number from executing at any given time. The grid job schedulers can be configured

to take software licenses into account, optionally balancing them against other priorities

or policies.

Special equipment, capacities, architectures, policies

Some software may be available on several architectures, for example PowerPC and x86,

such software is often designed to run only on a particular type of hardware and operating

system. Such attributes must be considered when assigning jobs to resources in the grid.

In some cases, the administrator of a grid may create a new artificial resource type that is

used by schedulers to assign work according to policy rules or other constraints. For

example, some machines may be designated to only be used for medical research.

1.3.4 APPLICATIONS AND JOBS

Usually we use the term application as the highest level of a piece of work on the

grid. However, sometimes the term job is used equivalently. Applications may be broken

down into any number of individual job, those, in turn, can be further broken down into

sub jobs. A grid application that is organized as a collection of jobs is usually designed to

have these jobs execute in parallel on different machines in the grid. The jobs may have

specific dependencies that may prevent them from executing in parallel in all cases.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 14

Fig. 1.1 An application is one or more jobs scheduled to run on grid

1.3.5 SCHEDULING, RESERVATION, AND SCAVENGING[19]

Advanced grid systems would include a job “scheduler” of some kind that

automatically finds the most appropriate machine on which to run any given job that is

waiting to be executed. Sometimes the term “resource broker” is used in place of

scheduler. Schedulers usually react to the immediate grid load. They use measurement

information about the current utilization of machines to determine which ones are not

busy before submitting a job. Schedulers can be organized in a hierarchy. For example, a

meta-scheduler may submit a job to a cluster scheduler or other lower level scheduler

rather than to an individual machine.

The term “scheduling” is not to be confused with “reservation” of resources in advance to

improve the quality of service. Grid resources can be “reserved” in advance for a

designated set of jobs.

In a “scavenging” grid system, any machine that becomes idle would typically report its

idle status to the grid management node. This management node would assign to this idle

machine the next job which is satisfied by the machine’s resources.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 15

Fig. 1.2 Meta-scheduling in grid

1.3.6 INTRAGRID TO INTERGRID

The concept of grid computing is still evolving and most attempts to define it

precisely end up excluding implementations that many would consider to be grids. Grids

can be built in all sizes, ranging from just a few machines in a department to groups of

machines organized as a hierarchy spanning the world. the simplest grid consists of just a

few machines, all of the same hardware architecture and same operating system,

connected on a local network. This kind of grid uses homogeneous systems so there are

fewer considerations and may be used just for experimenting with grid software. The

machines are usually in one department of an organization, and their use as a grid may

not require any special policies or security concerns. Because the machines have the same

architecture and operating system, choosing application software for these machines is

usually simple. Some people would call this a “cluster” implementation rather than a

“grid.”. Machines participating in the grid may include ones from multiple departments

but within the same organization. Such a grid is also referred to as an “intragrid.” As the

grid expands to many departments, policies may be required for how the grid should be

used. grid may grow to cross organization boundaries, and may be used to collaborate on

projects of common interest. This is known as an “intergrid.”

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 16

1.4 OBJECTIVE

The objectives of this thesis are to

 Identification of core grid functionalities and services for making

operating system grid enable.

 Develop a modular architecture design for grid enabled operating system.

1.5 ORGANIZATION OF WORK

 The rest of this thesis is organized as follows. Chapter 2 presents an overview of

grid technologies, discusses some of the key software components of a grid, and presents

a survey of representative systems. Chapter 3 presents the information of Linux kernel the

targeted operating system because of its open source characteristic. Chapter 4 presents in-

depth discussion of the architecture, its setup procedure and modular functionalities.

Chapter 5 figures out the importance of proposed dgridOS architecture. Chapter 6 covers

related topics to the dissertation work. Chapter 7 presents the conclusion and future

direction of this work.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 17

2. GRID ORGANIZATIONS

2.1 GRID INFRASTRUCTURES

An infrastructure is an underlying foundation that provides basic facilities, services

and installations needed for the functioning of an organization or system. For example the

Internet allows people to communicate with each other and virtually any electronic

device, etc. In order to be widely deployed, an infrastructure must be simple and offer

value to its users. Grid computing is an emerging infrastructure that provides scalable and

secure mechanisms for the access, sharing and discovery of resources amongst dynamic

collections of individuals and institutions. One of its goals is to provide these services in a

manner that hides the implementation details from the user. The availability of high-speed

networks, low cost components and the ubiquity of the Internet and Web technologies

make it feasible to realize this vision. Grid Computing organizations and their roles can

be broadly classified into four categories based on their functional role in Grid

Computing. These roles are best described as:

 Organizations developing grid standards and best practices guidelines.

 Organizations developing Grid Computing toolkits, frameworks, and middleware

solutions.

 Organizations building and using grid-based solutions to solve their computing,

data and network requirements.

 Organization working to adopt grid concepts into commercial products, via utility

computing, and Business on Demand computing.

2.2 GRID COMPUTING PROJECTS

A number of grid computing projects have undertaken the task of developing a grid

infrastructure. Since grid computing is an evolving field, no standards as of yet have been

developed and widely accepted. As such, many of these projects differ in their

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 18

implementation of the grid protocols and services discussed in Section. This section

provides an overview of these projects.

2.2.1 GLOBUS TOOLKIT

Globus[4] is a grid-oriented community committed to developing standards for the

protocols, APIs, services definitions and service behaviors associated with grid

infrastructures. The community provides a toolkit that implements the basic components

and services required to construct and support a computational grid. The infrastructure

allows both users and applications working within the environment to view distributed

heterogeneous resources as if they were local resources.

The Globus toolkit is constructed using a layered architecture that allows high level

services to be built using low level services. The four main components of this

architecture are resource management, data management, information services, and

security. This architecture is shown in Figure.

Fig. 2.1 Globus Toolkit Layered Architecture

The Grid Security Infrastructure (GSI) deals with the issues of authentication and

authorization. Three important properties that GSI provides are single sign-on, mapping

to local security mechanisms, and delegation. Single sign-on means that users only need

to be authenticated once. When a user signs in, GSI uses public key encryption

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 19

mechanisms to verify the user's grid credential. The grid credential is a global credential

used to authenticate the user to the grid infrastructure. GSI handles the mapping of grid

credentials to local credentials in order to make use of authentication and authorization

mechanisms in place on local systems. Delegation is provided by creating a proxy

credential which is used for making requests on behalf of the user.

Information services handle the task of collecting information about resources in the grid

and responding to queries about this information. This functionality is implemented in a

component called the Monitoring and Directory System (MDS).A hierarchical directory

system based on the Lightweight Directory Access Protocol (LDAP). MDS is further

broken down into the Grid Resource Information Service (GRIS) and the Grid Index

Information Service (GIIS). GRIS provides a uniform interface for querying a resource

provider about the status of its resources and its configuration, while GIIS aggregate

information into a single directory listing. A GRIS registers itself with a GIIS, and a GIIS

can register itself with another GIIS, thus forming a hierarchy.

Resource management services handle the tasks of job submission, job execution

management, and resource allocation. This functionality is implemented in a variety of

different components. Grid Resource Allocation and Management (GRAM) is a protocol

that supports the remote submission of a computational request to a remote computational

resource, and the subsequent monitoring and control of the resulting computation. A

command-line tool is used to submit job requests, transfer the job’s executable file to the

remote site, and transfer the resulting output files to the originating system. Requests sent

by this tool are authenticated by a gatekeeper service, which starts a job manager service

for each job submitted to the remote site. The job manager service handles job execution

and job management operations. In addition, the gatekeeper is responsible for secure

communication. Globus Access to Secondary Storage (GASS) is a service that provides

GRAM mechanisms for transferring and accessing data between remote resources. A

typical use of GASS is to transfer a job’s executable and any of its inputs to a remote

resource and transfer the resulting output back to the client. Globus resource management

supports co-allocation through its Dynamically-Updated Request Online Co-allocator

(DUROC) mechanism. DUROC allows jobs to be submitted to resources managed by

different resource managers and coordinates the transactions between these managers.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 20

Data management services handle file transfers and file transfer management. This

functionality is implemented in GridFTP, a secure and reliable grid data transfer protocol

based on the File Transfer Protocol (FTP). The Globus toolkit provides an

implementation of both the GridFTP client and the GridFTP server.

A more detailed architecture of the Globus grid infrastructure is presented in Figure

Although Globus provides a fairly robust framework, problems with scalability can arise

on the machine running the gatekeeper process when a large number of jobs are submitted

to it. This is because an instance of a job manager is created for each job submitted. Once

created, a job manager runs a programming script that continually probes the local

scheduler about the status of a job at short intervals. This causes load average on the host

machine to skyrocket, causing heavy swapping, and results in the bombardment of the

local scheduler with potentially thousands of job status requests per minute.

Fig. 2.2 Globus Toolkit Component Architecture

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 21

2.2.2 CONDOR

The Condor[9] project, from the University of Wisconsin, is aimed at

investigating and developing mechanisms and policies that support high throughput

computing on sets of distributed resources. The Condor system supports both dedicated

and scavenged resources. Resources are discovered through centralized queries to a

Condor pool manager. The Condor system uses a centralized scheduler. Resource

requests and offers are expressed using Classified Advertisements (ClassAds), a semi-

structured language which maps attribute names to expressions. Resources are

represented by Resource-Owner Agents and customers are represented by Customer

Agents. Resource-Owner Agents are responsible for enforcing resource usage policies put

in place by resource owners and maintaining information about resource status. For

example, a Resource-Owner agent might only accept applications for execution during

specified time intervals. Both Resource-Owner Agents and Customer Agents submit their

ClassAds to a ClassAds pool manager. The manager periodically invokes a matchmaking

algorithm that scans submitted ClassAds and creates pairs that satisfy each others

constrains and preferences. The matchmaking algorithm uses information about past

resource usage policy in order to ensure an element of fairness. When a match is found,

the pool manager “introduces” the matched parties to each other. If the Resource-Owner

Agent accepts and runs the job submitted by the Customer Agent, it is said to be

“claimed”. Once the Customer Agent is finished with the resource, it releases its claim on

it and the Resource-Owner Agent can advertise itself as unclaimed. It is possible to have a

Resource-Owner Agent continue to advertise itself while it is claimed in order to listen

for higher-priority jobs. The matchmaking process is analogous to scheduling.

Once a job is placed in an execution environment, it can run into a multitude of problems

relating to missing libraries or files, firewalls, missing credentials, etc. One system might

be aware of the user but not of the files the user needs and vise-versa. Only the execution

system is aware of what file systems, networks, and databases must be accessed and how

they can be reached. Condor uses split execution in order to address these issues. Split

execution involves the cooperation of a shadow, responsible for specifying everything the

job needs at run time, and a sandbox, responsible for providing the job with a safe

execution environment. The combination of a shadow and a sandbox is referred to as a

universe. Universes are used in order to preserve a job’s originating environment on the

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 22

execution machine. The Condor system was extended in order to be able to submit jobs to

grid resources using services provided by the Globus toolkit. This extended framework is

called Condor-G. The main component of this system is the Condor-G agent, which

allows a user to treat the grid as a local resource. It provides an API and command-line

tools that allow the user to submit jobs, cancel jobs, obtain job-related information and

perform grid queries. Once the agent receives a job submitted by the user, it stages the

job's standard input/output (I/O) and executable using Globus GASS, submits the job to a

remote resource using Globus GRAM, handles job monitoring and failure recovery

through Globus GRAM and authenticates all requests via Globus GSI mechanisms.

Condor's implementation of the GRAM protocol is revised in order to make it more fault-

tolerant. It uses a two-phased commit protocol during job submission in order to deal with

lost requests and responses and logs the details of all active jobs to stable storage at the

client side in the event of local failure. The Condor-G agent also handles communication

with the user concerning errors or unusual conditions, resubmission of failed jobs, and

stores state information for each submitted job to persistent storage in the scheduler's job

queue to support restart in case of failure. The system architecture is presented in Figure

Fig. 2.3 Condor-G architecture

2.3.3 LEGION

Legion[1] is an object oriented meta-computing system designed to consolidate

and manage large collections of heterogeneous, distributed machines and present the

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 23

users with a single coherent view of this system. Legion does not mandate any particular

programming model or language; it only defines APIs for object interaction. The Legion

framework defines five main class objects which represent components of a grid. They

are a Host, a Vault, a Collection, a Scheduler, and an Enactor. Class objects have two

main purposes in Legion: Defining types for their instances and acting as managers for

these instances. Host objects represent the machines shared as part of the grid. Host

objects implement functions for load monitoring, reservation management, and

information retrieval. Host objects assign attributes with information about their current

state, architecture, operating system, etc. Vault objects are used in order to store persistent

information regarding Host objects. Collection objects represent a repository of state-

related resource information. It allows system administrators to organize resources into

suitable arrangements, such as an organizational topology based on the location of

machines. Collections may retrieve information directly from resources or may share

information with other Collections. Collections only supported static resource

information. Scheduler objects obtain resource information from Collections and use this

information to compute mappings from objects to resources. Once these mappings are

determined, they are passed to an Enactor object for verification and instantiation. Each

schedule consists of at least one master schedule, which might contain a list of alternate

schedules. Enactor objects verify resource mappings passed to them by Scheduler objects

and perform the instantiation of these mappings. It does this by verifying whether an

object can be instantiated on the machine at the given time. If all of the mappings in the

master schedule succeed, the scheduling is complete. Instantiation is held off until a

Scheduler object calls a method that tells the Enactor object to perform the instantiation

on the reserved resources. If any of the mappings fail, an alternate schedule for the failed

mapping is selected and verified. Mappings can fail if the resources on which the object

should be instantiated are unavailable. Interaction between objects in the Legion

framework is demonstrated in Figure

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 24

Fig. 2.4 Legion Component Interaction

Job handling in Legion is accomplished via a set of command-line tools that allow

programs to register themselves with the Legion system and start program instances. The

procedure for running a Legion-enabled program is fairly straightforward: the class

associated with the program is instructed to create an instance of the class which executes

the program code. Running a non-Legion enabled program involves a more complex

procedure; a “BatchQueueClassObject” metaclass must be used in order to create a

specialized class object which acts as the class object for the non-Legion enabled

program. “JobProxyObjects” are used in order to manage the execution of a program. A

JobProxyObject is created whenever the class associated with a program is instructed to

create an instance of itself. There are several disadvantages to job handling in the Legion

framework. One JobProxyObject is required for each running job, thus increasing the

overall resource requirements for each job. Also, there is no method of monitoring or

restarting a job, and there is no control over the total number of jobs executing

simultaneously.

2.2.4 NIMROD

Nimrod[2] is a software system whose purpose is to manage the execution of

parametric studies across distributed computers. Parametric studies execute one

application many times with different sets of input parameters. Nimrod provides the

facilities to create, execute, monitor and collect the results of individual experiments.

Nimrod requires experiments to be described through the use of declarative plan files.

These files contain the parameters and the commands necessary to perform the work.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 25

Nimrod uses this information in order to transfer the necessary files and schedule the

work on the first available machine. The plan file is processed by a generator tool, which

allows the user to choose values for the parameters specified in the file. Once this is done,

the generator builds a run file that is processed by a dispatcher tool. The dispatcher is

responsible for managing the computation across the nodes on which the computation is

scheduled to run. Nimrod does not operate well in a grid environment due to several

limitations. It operates on a static set of resources, it has no provision for dynamic

resource discovery, it does not understand the concept of user deadlines, and it has no

support for a variety of access mechanisms. Nimrod-G is an extended version of Nimrod

which is designed to run in grid environments. It takes advantage of grid resources and

services and uses a model of computational economy as part of the Nimrod-G scheduler.

The Nimrod-G architecture consists of five main components: a client/user, a parametric

engine, a scheduler, a dispatcher and a job wrapper. The architecture is very flexible and

can be integrated with grid services provided by systems such as Globus, Legion and

Condor. The architecture is shown in Figure

The client is an interface for controlling and supervising an experiment under

construction. It allows users to modify parameters related to time and cost, which

influences how the scheduler selects the resources on which to run the experiment. The

client also allows the user to control, monitor and check the status of jobs.

Fig. 2.5 Nimrod-G architecture

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 26

It is not bound to any particular site; the user can shut it down and start it on another

system without affecting the outcome of the experiment. It also is possible to have many

clients connected to and controlling or monitoring the same experiment. The parametric

engine acts as a central coordinator for the experiment. It is responsible for

parameterization of the experiment and the actual creation of jobs, maintenance of job

status, interacting with clients, schedule advisor, and dispatcher. The engine also ensures

that the state of the experiment is stored in persistent storage in the event of failure. The

scheduler is responsible for resource discovery, resource selection, and job assignment. It

uses a resource selection algorithm based on a model of computational economy, which

selects resources according to those that meet the deadline and minimize the cost

associated with a computation. In the basic Nimrod model, once tasks are started they do

not communicate with one another; scheduling is simply a problem of finding suitable

resources and executing the experiment. The dispatcher is responsible for initiating the

execution of a task on a selected resource and updating its status to the parametric engine.

This is accomplished by starting a job wrapper on the selected resource. The job wrapper

is responsible for staging the tasks and data associated with an experiment, executing the

tasks and sending the results back to the parametric engine via the dispatcher. Resource

selection can be handled in two different ways when using a model of computational

economy. One method is to allow the system to work on behalf of the user and attempt to

complete the assigned work within a given deadline and cost. Another method is to allow

the user to enter into a contract with the system. The contract specifies what the users are

willing to pay for the resources if the work can be completed within a given deadline.

Using this method, the system can identify a set of viable resources through the use of

resource reservation or trading mechanisms. If the user is satisfied with the contract, it

can be accepted. Otherwise, the contract can be re-negotiated by changing the deadline

and/or cost constraints. The latter method is advantageous since it allows the user to be

aware of whether the work can be completed within the given deadline and cost

constraints before the work actually starts. However it requires grid middleware services

for resource reservation, broker services for cost negotiation, and an underlying system

which has a management and accounting infrastructure. Nimrod-G uses the Grid

Architecture for Computational Economy (GRACE), an economic framework which

provides the services that helps resource providers and resource consumers maximize

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 27

their goals. Resource providers can use GRACE mechanisms to define their charging and

access policies and the GRACE trader works according to these policies. Resource

consumers define their requirements through the use of resource brokers, who use grace

services for resource trading and identifying resource providers that meet their needs. The

GRACE framework is generic enough to accommodate different economic models.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 28

3. INTRODUCING LINUX KERNEL

3.1 INTRODUCTION

Linux[8] is a member of the large family of Unix-like operating systems. Linux

was initially developed by Linus Torvalds in 1991 as an operating system for IBM-

compatible personal computers based on the Intel 80386 microprocessor. One of the more

appealing benefits to Linux is that it isn’t a commercial operating system: its source code

under the GNU Public License is open and available to anyone to study. If we download

the code (the official site is http://www.kernel.org) or check the sources on a Linux CD,

we will be able to explore, from top to bottom, one of the most successful, modern

operating systems. Because of its openness it has been selected for this demonstration.

Most Unix kernels[8] are monolithic: each kernel layer is integrated into the whole kernel

program and runs in Kernel Mode on behalf of the current process. In contrast,

microkernel operating systems demand a very small set of functions from the kernel,

generally including a few synchronization primitives, a simple scheduler, and an inter-

process communication mechanism. Several system processes that run on top of the

microkernel implement other operating system-layer functions, like memory allocators,

device drivers, and system call handlers.

The main advantages of using modules include:

A modularized approach: Since any module can be linked and unlinked at runtime,

system programmers must introduce well-defined software interfaces to access the data

structures handled by modules. This makes it easy to develop new modules.

Platform independence: Even if it may rely on some specific hardware features, a module

doesn’t depend on a fixed hardware platform. For example, a disk driver module that

relies on the SCSI standard works as well on an IBM-compatible PC as it does on

Hewlett-Packard’s Alpha.

Frugal main memory usage: A module can be linked to the running kernel when its

functionality is required and unlinked when it is no longer useful. This mechanism also

can be made transparent to the user, since linking and unlinking can be performed

automatically by the kernel.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 29

No performance penalty: Once linked in, the object code of a module is equivalent to the

object code of the statically linked kernel. Therefore, no explicit message passing is

required when the functions of the module are invoked.

Technically speaking, the operating system is considered as the parts of the system

responsible for basic use and administration. This includes the kernel and device drivers,

boot loader, command shell or other user interface, and basic file and system utilities. The

term system, in turn, refers to the operating system and all the applications running on top

of it.

The user interface is the outermost portion of the operating system, the kernel is the

innermost. It is the core internals. The software that provides basic services for all other

parts of the system, manages hardware, and distributes system resources. The kernel is

sometimes referred to as the supervisor, core, or internals of the operating system. Typical

components of a kernel are interrupt handlers to service interrupt requests, a scheduler to

share processor time among multiple processes, a memory management system to

manage process address spaces, and system services such as networking and inter-process

communication. On modern systems with protected memory management units, the

kernel typically resides in an elevated system state compared to normal user applications.

This includes a protected memory space and full access to the hardware. This system state

and memory space is collectively referred to as kernel-space. Conversely, user

applications execute in user-space. The see a subset of the machine’s available resources

and are unable to perform certain system function, directly access hardware, or otherwise

misbehave (without consequences, such as their death, anyhow). When executing the

kernel, the system is in kernel-space executing in kernel mode, as opposed to normal user

execution in user-space executing in user mode. Applications running on the system

communicate with the kernel via system calls. An application typically calls functions in

a library for example, the C library that in turn rely on the system call interface to instruct

the kernel to carry out tasks on their behalf. Some library calls provide may features not

found in the system call and thus, calling into the kernel is just one step in an otherwise

large function. For example, consider the familiar printf() function. It provides formatting

and buffering of the data and only eventually calls write() to write the data to the console.

Conversely, some library calls have a one-to-one relationship with kernel. Fro example,

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 30

the open() library function does noting except call the open() system call. Still other C

library functions, such strcpy(), should make no user of the kernel at all. When an

application executes a system call, it is said that the kernel is executing on behalf of the

application. Furthermore, the application is said to be executing a system call in kernel-

space, and kernel is running in process context. This relationship that applications call

into the kernel via the system call interface is the fundamental manner in which

applications get work done.

The kernel also manages the system’s hardware. Nearly all architectures, including all

systems that Linux supports, provide the concept of interrupts. When hardware wants to

communicate with system, it issues an interrupt that asynchronously interrupts the kernel.

Interrupts are identified by a number. The kernel uses the number to execute a specific

interrupt handler to process and respond to the interrupt. For example, as you type, the

keyboard controller issues an interrupt to let the system know that there is new data in the

correct interrupt handler. The interrupt handler processes the keyboard data and lets the

keyboard controller know it is ready for more data. To provide synchronization, the

kernel can usually disable interrupts either all interrupts or just one specific interrupt

number. In many operating system, including Linux, the interrupt handlers do not run in a

process context. Instead, they run in special interrupt context that is not associated with

any process. This special context exists solely to let an interrupt handler quickly respond

to an interrupt, and then exit.

These contexts represent the breadth of the kernel’s activities. In fact, in Linux, it is

generalized that each processor is doing one of three things at any given moment:

 In kernel-space, in process context, executing on behalf of a specific process

 In kernel-space, in interrupt context, not associated with a process, handling an

interrupt

 In user-space, executing user code in a process.

This list is inclusive. Each corner cases fit into one of these three activities: For example,

when idle, it turns out that the kernel is executing an idle process in process context in the

kernel.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 31

Fig. 3.1 Relationship between applications, the kernel, and hardware

3.2 SCOPE FOR GRID MODULES

Fig. 3.2 Grid services module installed inside the kernel-space

As shown in the Fig.3.2 the grid services module can be integrated inside the kernel-space

without necessarily disturbing other modules and architecture. Since microkernel

approach of operating system supports module-integration and de-integration at runtime.

It can be easily bundled to kernel-space.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 32

4. DESIGN OF OPERATING SYSTEM WITH GRID

ENABLED SERVICES

4.1 INDENTIFICATION OF CORE SERVICES[11]

 For a single node

 Resource discoverer and Characterizer

 Resource publisher

 File system identifier and virtualizer

 Security Controller

 Kernel Cache to store information and its Controller

 Job executor and Process controller

 For node inside a gridLan

 Communication Controller

 Informer and Updater to gridLan head node.

 Node identifier

 Cache synchronizer

 process synchronizer

 Virtual file system manager

 For a gridLan

 Resource Broker

 Resource Scheduler

4.2 PROPOSED GRID ARCHITECTURE

Current grid implementation includes grid middleware software which is

responsible for formulation and support for grid computing. It provides services to

application developers so that they can write code, which can exploit underutilized

resources. Middleware is responsible for binding the resources into a single virtual

computing resource.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 33

Fig. 4.1 Current Grid implementation

Our grid implementation eliminates the grid middleware and the supporting functionality

is directly included inside the operating system. Applications no longer need to be

middleware specific in order to use its functionality.

Fig. 4.2 proposed grid implementation

The proposed architecture reveals that applications are submitted to dgridOS without any

intermediate middleware tool or services. Applications are straight forward served by

dgridOS functionalities which actually binds all the hardware and software resource into

single virtual resource pool. dgridOS services do almost all the functions provided by

previous middleware.

4.3 VIRTUALIZATION CONCEPT

The Fig. 4.3 below describes the virtualization concept. The sub modules used in

the graph are dgridOSvfs: dgridOS virtual file system module and dgridOSres: dgridOS

resource module.

dgridOSvfs module maps the node file system to the common dgridOS file system and

attached it to the central dgridOS headnode virtualized tree like structure.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 34

dgridOSres module, collects all the parameter values of its different types of resources

into a structure and publish it to head node of dgridLan. The module dgridOSres of

concerned node and head node communicate and manage the overall availability of

resources.

Fig. 4.3 Virtualization concept on dgridOS architecture

4.4 TOPOLOGY FOR dgridOS IMPLEMENTATION

Identifications

The proposed operating system is named as “dgridOS”. It works on a topology with

group of computers inside a LAN forms a “gridLan”, a small grid with one head note and

all others as participation nodes. A node can be simple desktop computer with computing

power, memory and other resources. A gridLan can be virtualized through the concept of

a cluster but is not designed for clustering services. The head nodes of gridLan have

additional functionality to integrate them selves to form a wide structure of overall grid.

.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 35

Fig. 4.4 dgridOS architecture topology

4.5 MODULAR ARCHITECTURE OF dgridOS

The modular architecture of dgridOS includes five core modules which gets

instantiated through the dgridOScore.

1. dgridOScom module: This is basically dgridOS communication control module.

a. This module maintains its gridLan buffer, where it keep updating the

listening nodes inside its gridLan.

b. It broadcast its address, and update its buffer in accordance with the head

node girdLan buffer.

c. This module keeps records of ports and services offered on the ports.

d. A peer to peer network is established on any particular node (choose from

the free pool of non standard ports) for communication among nodes of

gridLan.

2. dgridOSsec module: This is dgridOS security control module.

a. This module checks for the user authentication, authorization.

b. It maintains any restricted resource or service.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 36

c. If authentication fails then it stops communication to that node and

accordingly publish it to head node.

d. It manages log of user login, logout records.

3. dgridOSres module: This is dgridOS resource control module.

a. It includes a cache of its resource descriptions.

b. It sends informations of its available resources to head node dgridOSres

module.

c. A part of it, works for resource virtualization with head node inside a

gridLan and accordingly part in resource brokering and scheduling.

4. dgridOSvfs module: This is dgridOS virtual file system control module.

a. It starts with the recognition of node file system.

b. If its type is known, it is mapped with the dgridOS file system.

c. It is linked to the central hierarchy of virtual file system and maintained.

5. dgridOSpro module: This is dgridOS process control module.

a. It includes jobCache in order to track process/job proceedings.

b. A part of it, manages the process related communication with head node’s

process control module.

c. A part of it, manages to execute processes in an optimized way using the

virtual resource.

d. A part of it, manages inter-process communication and synchronizations.

Apart from these, the modular architecture has brokering and scheduling module which

works over the framework buildup by dgridOScore.

This modular structure is placed inside the kernel space of operating system.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 37

Fig. 4.5 dgridOS architecture

INTEGRAL PARTS OF MODULES ARE DESCRIBED IN THE FOLLOWING SECTIONS.

(From the side of Client (or participating nodes) inside a gridLan)

dgridOScore: This module is the heart of dgridOS, calls all other dgridOS modules

inside its definition.

dgrid_Initializer() Sets the values of dgrid environment variables.

 Creates dgridLocalCacheBuffer

 Collects local resources (computational,

primary memory, disk

memory,communicational) parameter values

using kernel and device driver services.

 Sets security mode ON

 Stores local resources parameters, security mode

and other variables values in a structured

database of dgridLocalCacheBuffer.

dgrid_bufferMgr() Checks for any modifications on

dgridLocalBufferCache (since it is a long term

buffer, need no updation till, hardware or

notified software gets changed).

 In case of hardware/ concerned software update,

it does

1. insertion

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 38

2. deletion

3. updation

dgrid_Launcher() Launches serially dgridOScom module,

dgridOSsec module, dgridOSres module,

dgridOSvfs module, dgridOSpro module.

dgrid_StartupChecker() It queries for checking the parameters of

modules.

 It maintains a log for failure of modules check

and accordingly provide alert.

Table 4.1 Integral parts of dgridOS core module

dgridOScom: This is basically communication establishment module. Protocols related

to communication can be used or can be newly created for node discoveries and

development of networks.

dgrid_publishIP() This command broadcast node ip in local network.

 uses parameters:

 String ipaddress

 String subnetmask (of gridLan)

 String netmask (used in case of inter

gridLan communication)

dgrid_addrCollector() It uses the positive responses of

dgrid_publishIP command and update them in

dgrid_gridLanBuffer.

 structure fields are

 int node_id (unique inside the gridLan

assigned by head_node)

 String ipaddress

 String subnetmask address

 String netmask address

dgrid_gridLanBufferMgr

()

While dgrid_addrCollector collects the addresses and

assign the unique id to nodes,

dgrid_gridLanBufferMgr does the management of

that buffer.

 less frequently checking the validity of address

to other nodes dgrid_comBuffer through their

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 39

dgrid_comBufferMgr.

 Updation [dgrid_addrCollector’s Structure

pointer]

 Insertion[dgrid_addrCollector’s Structure

pointer]

 Deletion[dgrid_addrCollector’s Structure

pointer]

dgrid_portsMgr() This module picks up a port number (non standard

port) and stablish a peer to peer network on that

specified port inside a gridLan.

 The dgrid head_node communicate on this

specified port inside the gridLan and on a

different assigned port outside the gridLan for

interlinking to other dgrid heads.

 It also relate different dgrid services to

different port numbers.

 The basic structure pattern include

o String dgrid_gridLan_id.

o String

dgrid_gridLanassignedPortNumber

list.

o String* dgrid_servcie_portPointer

[string dgridserviceName, int

portNumber]

(this is cached at every node inside

gridLan in their dgrid_gridLanbuffer)

dgrid_comServiceMgr() int * getfreeports()

 int periodicBandwithUtilization(

hostdgrid_node_id, targetdgrid_node_id,

comm._res pointer)

[Checks the load on a communication channel,

thus congestion can be controlled]

 insert_services(dgrid_services_portNumber,

node_id)

 delete_services(dgrid_services_portNumber,

node_id)

 update_services(dgrid_services_portNumber,

node_id)

Table 4.2 Integral parts of dgridOS communication module

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 40

dgridOSsec: This is the security control module. It checks the authentication,

authorization users of partitioning nodes and resources.

dgrid_authenCltr() Management of identity and verification of nodes to

server and recognition of each other.

dgrid_privCltr() Management and control of privileges to users/ peers.

dgrid_shareLimits() Control and management of highly secure part away

from shared pool.

dgrid_logCltr() Logging on/off management and control

dgrid_authCltr() Authorization management and control unit for dgrid.

Table 4.3 Integral parts of dgridOS security control module

dgridOSres: This is basically resource identification, integration and virtualization

module. Resource characterization into computational, storage, communication, or other

categories, Their respective parameterization are defined. Resource discovery,

integration, deletion and status check functionality is provided by this module.

dgrid resource types Computation

 Storage

 Communication

 Software and Licenses

 Special equipments (like printer, scanner)

dgrid resource

descriptions

It uses the type name from above modules and specifies

the parameters corresponding the resource description

structure of each type.

Resources are indentified with the prefix of its node_id

inside a gridLan.

 structure descriptions

 Computational

 name

 MIPSrating (million instruction

per second)

 costpersec (used in scheduling and

brokering services)

 architecture [16bit, 32bit, 64bit,

other]

 numberofresource (used in

calculating overall computational

cycles)

 Storage

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 41

 type [primary]

 size (in megabytes)

 unallocated size

 allocated size

 type [disk]

 size (in megabytes)

 unallocated size

 allocated size

 Communicational

 name

 bandwidth

 peakLoad

 allocation policy [yes/no, type]

 currentLoad (used in order to

avoid network congestion)

 Software and Licenses

 this module is not included so

far(considering the size of kernel).

 Special equipment

 different integer values for printer,

scanner, other devices.

dgrid_resCache It stores the statistics of resources in combining

both of the structures defined by dgrid resource

Type and dgrid resource description into a single

structure.

 This is maintained on its own node.

dgrid_resMgr() This module coordinates with the head node resCache.

 It maintains and manages the resources on its

own node.

 It sends resource request to head node in case of

need and maintains the log.

 It allocates resource on head node request and

maintains the log.

 It sends updates for resource allocation or

deallocation to head node’s dgrid_ resMgr().

Table 4.4 Integral parts of dgridOS resource managment module

dgridOSvfs: This module develop a virtual file system by vitualization of resources

inside the grid and thus work on common file system.

dgrid_fsRecog() This gets the file system type

 Maps with the grid known file system type(if

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 42

known)

dgrid_vfsMgr() defines management policies with working as on

gridLan.

Control the mount point statistics from dgridLan file

system. And on process to this mount point it controls

 UpdatedOnVfs()

 WriteOnVfs()

 ReadOnVfs()

 DeleteOnVfs()

Table 4.5 Integral parts of dgridOS virtual file system module

dgridOSpro: This is basically process control block. Processes parallelization its

scheduling and synchronization is maintained by this module.

dgrid_jobListener() This module gets started with the dgridOScore module

and starts listening for any grid job or application. This

includes

 startJobListener()

1. waitJobOccurrence() and

2. serveEvent() cycles

 It serves the request

 Goto step 1: waitJobOccurence()

dgrid_jobCache In case of job has occurred, its statistics are maintained

inside this module.

structure for job is

 int Job_id

 int subJob_id

 int computational_power_used

 int memory_used

 int status

 boolean migrated[yes/no]).

 allocated_resource_list

 input cache

 output cache

dgrid_processMgr() Deals with migrated job processes and uses the routines

 dgridJobResolver()

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 43

 dgridFailoverResolver()

 dgridJobContextUpdater()

dgrid_outputCollector() It collects the output from output buffers. Uses the

following routines

 getdgridJobOutputReader()

 getdgridJobId()

 getdgridSubJobId()

 releaseJobOutput()

dgrid_cleaner() It cleans the records from buffer for the process which

get successfully completed.

 identifyJobsCompleted()

 deleteJobsCompleted(dgrid_Job_id pointer)

Table 4.6 Integral parts of dgridOS process control module

Resource Brokering and Scheduling module:

This module runs over the abstract created by above mentioned modules. It works on

combined pool of resources. It takes the application / jobs/ batch processes and

efficiently distribute. . It dynamically find, identify, characterize, evaluate, allocate the

most suitable resources to the user’s application.

Fig. 4.6 dgridOS Resource brokering and Scheduling

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 44

4.3 JOB EXECUTION

dgridOS setup

Job execution is carried on the framework created by dgridOScore. dgridOS setup

procedure does the creation of framework for grid application. It starts with dgridOScore

module, which initializes the dgrid variables and caches, followed by the sequential call

of other modules as described the following Fig. 4.5.

Fig. 4.7 dgridOS setup procedure

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 45

Job execution in dgridOS environment.

Fig. 4.8 job execution on dgridOS architecture

 Application is submitted to brokering module, where broker identifies the values

of application characteristics.

 Based on the characteristics parameters of job, broker uses its metrics to find the

optimal node where application should execute.

 Process control block get an application/ job and integrate it inside into scheduling

and synchronization model.

 While the processes are executing inter process communication is monitored, and

controlled and the output is collected to output cache inside the kernel buffer.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 46

5. ADVANTAGES OF dgridOS

5.1 OPTIMIZATION IN FILE TRANSFER

Fig. 5.1 File transfer from client to server without dgridOS services.

The steps a, b, c, d, and e of previous design consideration are eliminated in the grid

enabled operating system. Since the network buffer is part of operating system kernel

space, it does not need to communicated from user mode to kernel mode while

transferring a file from client to server or vice versa.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 47

Fig. 5.2 File transfer between client and server with dgridOS services.

5.2 FREEDOM FROM RESTRICTED USAGE OF RESOURCES.

The middleware does not rule on how many resources a job can consume because

there was no way for the administrator to specify how much or to what degree he wants to

share his resources on a Grid. Now it is taken care by the dgridOS. The middleware have

their own set of services defined, which could be the only means for programmers to code

grid-application, thus bounds the freedom and capabilities of a programmer. Integrated

inside in the operating system it will provide a better standard platform when compared to

different grid middleware.

5.3 NEW RACE IN RESOURCE SHARING COMPUTING

This move will speed up the resource sharing computing. Better comfort and ease

Since resource sharing and its use will be dominant in coming years of software

engineering and computing infrastructure so it is very necessary that the modules which

basically makes resources sharing and use working should be integrated inside the kernel

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 48

of operating system. In accordance with the most frequently used routines inside the OS

kernel so that they can always be inside the main memory. These functionalities at lowest

level will optimize every application running just over or any level over it. Thus dgridOS

guides to modern era of computing benefits.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 49

6. RELATED WORK

6.1 GRIDOS

GridOS[18] provides operating system services that support grid computing. It

makes writing middleware easier and provides services that make a normal commodity

operating system like Linux more suitable for grid computing. The services are designed

as a set of kernel modules that can be inserted and removed with ease. The modules

provide mechanisms for high performance I/O (gridos io), communication (gridos

comm), resource management (gridos rm), and process management (gridos pm). These

modules are designed to be policy neutral, easy to use, consistent and clean.

The following principles drive the design of GridOS. These principles derive from the

fact that the toolkits like Globus require a common set of services from the underlying

operating system.

Modularity. The key principle in GridOS is to provide modularity. The Linux

kernel module architecture is exploited to provide a clean modular functionality.

Policy Neutrality. GridOS follows one of the guiding principles of design of

operating systems: policy free mechanisms. Instead of providing a .black box.

Implementation that takes care of all possibilities, the modules provide a policy-free API

which can be used to develop high level services like GridFTP.

Universality of Infrastructure. GridOS provides a basic set of services that are

common to prevalent grid software infrastructures. It should be easy to build radically

different toolkits like Globus (a set of independent services) and Legion (an object-based

meta-systems infrastructure).

Minimal Core Operating System Changes. We do not want to make extensive

modifications to the core operating system as that would make it difficult to keep up with

new OS versions.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 50

Fig 6.1 Major modules and structure in GridOS

Fig. 6.1 Major modules in gridos

Additional Modules

1) gridos ftp common: This module provides facilities common to any FTP client and

server. This includes parsing of FTP commands, handling of FTP responses etc.

2) gridos ftp server: This module implements a simple FTP server in kernel space. Due to

its design, copying of buffers between user and kernel space is avoided. The server does

not start a new process for each client as is usually done in typical FTP servers. This

incurs low overhead and highperformance. The server also uses gridos io facilities to

monitor bandwidth and adjust the _le system buffer sizes. The _le system buffers are

changed depending on the _le size to get maximum overlap between network and disk

I/O. The module is designed with security in mind. Even while operating in the kernel

mode it drops all privileges and switches to an unprivileged user-id and group-id. It also

 heroots to FTP top level directory docroot which can be con_gured dynamically.

3) gridos ftp client: This module implements a simple FTP client in kernel. The main

purpose of this module is to decrease the overhead of writing or reading _le on the client

side. Our experiments indicate that primary overhead on the client side is the time spent

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 51

in reading and writing _les. By carefully optimizing the _le system buffers to achieve

maximum overlap between network and disk I/O, high-performance is achieved.

6.2 VIGNE GRID OPERATING SYSTEM

They have presented the design of three self-healing services of the Vigne[15]

Grid Operating System. The self-healing property is important to ensure the availability

of the system and to relieve users and programmers from dealing with reconfigurations

and failures. One of the main contributions of this architecture is the application

management service which decentralizes application control and provides applications

with generic and transparent fault-tolerance policies. Three self-healing services of Vigne,

namely system membership, application management, and volatile data management.

Fig. 6.2 Services of a Vigne Grid Operating System

6.3 XtreemOS

The overall objective of the XtreemOS[5] project is the design, implementation,

evaluation and distribution of an open source Grid operating system (named XtreemOS)

with native support for virtual organizations (VO) and capable of running on a wide range

of underlying platforms, from clusters to mobiles. It propose an approach to investigate

the design of a Grid OS, XtreemOS, based on the Linux existing general purpose OS. The

architecture described in by XtreemOS is follows:

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 52

Fig. 6.3 XtreemOS architecture

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 53

7. CONCLUSION AND FUTURE WORK

The modular architecture presented covers all the core functionalities of grid. The

modules and its routines can be visualized to a perfect virtual organization. A user can

take advantage of grid resources of a virtual organization they belong to while having the

illusion to execute their applications on their local computers.

Apart from the core benefits of grid computing, the advantages of grid enabled operating

system is a matter of high importance, because it will shape the applications to new and

better level.

The design of the dgridOS grid enabled operating system is a viable computing model for

the coming years in distributed computing. It will explore the computing resources usage

to a much optimized level.

Future Work

The approach presented here, shows a lot of potential for extensibility and improvement.

 One of the possible areas of research in the future is the security module

explorations. However this module will be explored in future.

 Since it is implemented at the cost of memory requirement, research on memory -

performance graphs in relation with different operating systems needs a high level

concern.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 54

8. REFERENCES

RESEARCH PAPERS and BOOKS

1. A. S. Grimshaw, W. A. Wulf, and the Legion team, ”The legion vision of a

worldwide virtual computer”. Communications of the ACM, vol. 40, no. 1, pp.

39.45, Jan. 1997.

2. Abramson, D., Buyya, R., and Giddy, J.”Nimrod-G: An Architecture for a

Resource Management and Scheduling System in a Global Computational

Grid”,2004, from http://www.csse.monash.edu.au/~davida/papers/hpcasia.pdf

3. Anthony Sulistio, Chee Shin Yeo, and Rajkumar Buyya, “Visual Modeler for Grid

Modeling and Simulation (Grid Sim) Toolkit”, 2003.

4. Bart Jacob, Luis Ferreira, Norbert Bieberstein, Candice Gilzean, Jean-Yves

Girard, Roman strachowski, Seong Yu, “Enabling Application For Grid

Computing Using Globus” ibm redbook, 2003.

5. Christine Morin, PARIS Project-team, “XtreemOS: a Grid Operating System

Making Your Computer Ready for Partincipating in Virtual Organizations”, 2007.

6. Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA,

“Cluster Computing”, 2004.

7. Dan Kusnetzky, Carl W. Olofson ,white paper on “Oracle 10g: putting Grids to

Work” by, april 2004.

8. Daniel P. Bovet, Marco Cesati, “Understanding the Linux Kernel, 2nd Edition”,

publisher O’Reilly,2002.
9. Foster, I., Frey, J., Livny, M., Tannenbaum, T. and Tuecke, S. (2001). “Condor-G:

A Computation Management Agent for Multi-Institutional Grids”. Proc. of the

Tenth International Symposium on High Performance Distributed Computing

(HPDC-10), IEEE Press, August, 2001.

10. Fran Berman, Geoffrey Fox and Tony Hey, “The Grid past present and future”,

2005.

11. I. Foster, Argonne & U. Chicago, “Open Grid Services Architecture”, jan-2005.

12. Ian Johnson, “Security Requirements for a Grid-based OS”, jan-2007.

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 55

13. Irwin Boutboul, Dikran Meliksetian, Joe Zhou and others, “Grid Computing-

Solutions Brief”, ibm redbook, 2005.

14. Klaus krauter, Rajkumar Buyya, and Muthucumaru Maheswaran, “A Taxonomy

and Survey of Grid Resource Management Systems”, 2003.

15. Louis Rilling. Vigne: “Towards a Self-Healing Grid Operating System”. Dresden,

Germany,August 2006.

16. Luis Ferreira, fabiano Lucchese, Tomoari Yasuda, Chin Yau Lee, Carlos

Alexandre Queiroz, Elton Minetto, Antonio Mungioli, “Grid Computing in

research and education”, ibm redbook, 2005.

17. Manish Parashar, Craig A. Lee, “Special Issue on Grid Computing”, 2005.

18. Pradeep Padala and Joseph N Wilson, “GridOS: Operating System services for

grid architectures, 2003.

19. Rajkumar Buyya and Manzur Murshed, “GridSim: a toolkit for the modeling and

simulation of distributed resource management and scheduling of Grid

computing”, 2002.

20. Silicon Graphics, sgi while paper on “The Future of Cluster Computing”, 2005.

21. Srinivas Nimmagadda, Ilan Harari, “Scalability Issues in Cluster Computing

Operating Systems”.

22. Viktors Berstis, “Fundamentals of Grid Computing”, ibm redbook, 2002.

23. White paper on “Oracle Database 10g Release 2: A Revovlution in Database

Technology”, may 2005.

WEBSITES:

i. http://www-03.ibm.com/grid/index.shtml

ii. http://download-uk.oracle.com/docs/cd/B19306_01/server.102/b14231/

iii. http://www.globus.org/

iv. http://www.teragird.org/

v. http://www.unicore.org/

vi. http://www.gridforum.org/

vii. http://www.gridtoday.com/

http://www-03.ibm.com/grid/index.shtml
http://download-uk.oracle.com/docs/cd/B19306_01/server.102/b14231/
http://www.globus.org/
http://www.teragird.org/
http://www.unicore.org/
http://www.gridforum.org/
http://www.gridtoday.com/

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 56

viii. http://www.sourceforge.net/

ix. http://www.buyya.com/cluster/

x. www.oasis-open.org

xi. www.w3c.org

xii. http://legion.virginia.edu

xiii. www.nsf-middleware.org

xiv. http://www.knoppix.org/

xv. http://www.csse.monash.edu.au/~davida/nimrod/index.htm

xvi. http://www.google.co.in

http://www.sourceforge.net/
http://www.buyya.com/cluster/
http://www.oasis-open.org/
http://www.w3c.org/
http://legion.virginia.edu/
http://www.nsf-middleware.org/
http://www.knoppix.org/
http://www.csse.monash.edu.au/~davida/nimrod/index.htm
http://www.google.co.in/

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 57

APPENDIX A

A1 GRID ORGANIZATIONS

World Community Grid

The World Community Grid’s mission is to create the largest public computing grid

benefiting humanity. The work is built on the belief that technological innovation

combined with visionary scientific research and large-scale voluntaryism can change our

world for the better. For more information, please refer to the following Web site:

http://www.worldcommunitygrid.org/

Globus Alliance

The Globus Alliance conducts research and development to create fundamental

technologies for grid computing. The alliance is formed by a group of sponsors and

collaborators from around the world. The core team is based at the Argonne National

Laboratory and other worldwide institutions (see http://www.globus.org/about/team.html

for more information).

The Globus Toolkit is being developed by the Globus Alliance and many others all over

the world. For more information, please refer to the following Web site:

http://www.globus.org/

Global Grid Forum

The Global Grid Forum (GGF) is a community-initiated organization of thousands of

active participants from industry and research. GGF's primary objective in this

organization is to promote development, deployment, and implementation of grid

technologies through creation of technical specifications, user experiences, and

implementation guidelines. For more information, please refer to the following Web site:

http://www.gridforum.org/

OASIS and WSRF TC

Organization for the Advancement of Structured Information Standards (OASIS) is an

international consortium that drives the development and adoption of e-business standards

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 58

and technologies. For more information, please refer to the following Web site:

http://www.oasis-open.org/ The OASIS Web Services Resource Framework (WSRF)

Technical Committee (TC) works on the definition of a generic, royalty-free, open

framework for modeling and accessing stateful resources (required for grid computing)

using Web services. For more information, please refer to the following Web site:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

W3C

The World Wide Web Consortium (W3C) is an international consortium that develops

specifications and guidelines for Web technologies. For more information, please refer to

the following Web site:

http://www.w3.org/

TeraGrid

TeraGrid is a initiative to build and deploy the world's largest, distributed infrastructure

for open scientific research. It combinations three programs: National Science Foundation

(NSF) Terascale initiative: Terascale Computing System (TCS®), Distributed Terascale

Facility (DTF) and Extensible Terascale Facility (ETF). For more information, please

refer to the following Web site:

http://www.teragrid.org/

A2 GENERATIONS OF DISTRIBUTED COMPUTING

 General Characteristics

First (Host-based Computing)

 Dumb Terminal.

 Single Server.

 Monolithic Applications.

Second (Remote Access) Single Client supporting only terminal

emulation functions.

 Single Server.

http://www.oasis-open.org/

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 59

Third (Client/Server) Single Client supporting rules processing as

well as user interface.

 Up to two servers.

Fourth (Multitier) Single Client supporting rules processing as

well as user interface.

 More than two server tiers.

Fifth (Grid Computing) Virtual Environment where all systems are

considered a pool of resources.

 N-tier.

 Service-Oriented Architectures.

Table A2 generations of distributed computing

Entering the Fifth Generation . Grid Computing

Grid Computing is the result of several trends coming together. Some of these are the

following:

 New standards for object-to-object communications making it easier to build

multivendor, multi-application networks.

 High-performance microprocessors have become available, making it possible to

deploy large applications on a number of low-cost systems rather than a single

mid-range system.

 High-speed networking technology is becoming both less costly and readily

available, offering higher levels of performance when deploying distributed

application architectures.

A3 IDC’S MODEL OF GRID COMPUTING

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 60

Fig. A3 IDC’s model of grid computing

A4 PSEUDO CODE FOR DGRIDOS ENVIRONMENT

1. dgridOScore starts

a. call dgrid_Initializer module

i. [dgridOS_environment variables initializations].

ii. create dgridLocalCacheBuffer(BufferStructure *ptr, int

BufferInitialSize)

iii. getComputationalResourceRating(int *compRat[], String

*compType[], int compNumber)

iv. getMemoryResourceSize(int memSize[], int memType[],int

memNumber)

v. getCommunicationChannelBandwith(int SourceNode_id, int

DestNode_id, int bandwidth[])

vi. checkSecurityStatus() set SECURITY_STATUS=ON;

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 61

vii. addRecordTOdgridLocalCacheBuffer([dgridOS_environment

variables initializations], resName, resType and parameterValues,

securityStatus)

b. call dgrid_buffMgr module

i. checkHardwareEventGenerator(Event_node_id, Event_loginUser)

if (both data matches) then call checkHardwareUpdate

else file_a_complain to head_node of fake event.

ii. checkHardwareUpdate()

if(there is any) then Update respective record in

dgridLocalCacheBuffer()

else do nothing.

c. call dgrid_launcher

Thread 1:

i. call dgridOScom module

ii. call dgridOSsec module

iii. call dgridOSres module

iv. call dgridOSvfs module

v. call dgridOSpro module

Thread 2:

wait_for_a_dgridOSmoduleEvent()

switch(case){

case1: dgridOScom module event

 call com_module_service();

 wait_for_a_dgridOSmoduleEvent();

case2: dgridOSsec module event

 call sec_module_service();

 wait_for_a_dgridOSmoduleEvent();

case3: dgridOSres module event

 call res_module_service();

 wait_for_a_dgridOSmoduleEvent();

case4: dgridOSvfs module event

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 62

 call vfs_module_service();

 wait_for_a_dgridOSmoduleEvent();

case5: dgridOSpro module event

 call pro_module_service();

 wait_for_a_dgridOSmoduleEvent();

case6: dgridOS other event

 call otherEvent_module_service();

 wait_for_a_dgridOSmoduleEvent();

case default:

 wait_for_a_dgridOSmoduleEvent();

}

Thread 3:

d. call dgridOScore_StartUpchecker()

///

// dgridOSpro module //

2. dgridOSpro()

a. strats jobListener()

{

waitJobOccurrence(Job_id, subJob_id, jobContextStructue)

if (JobOccurred) then {

 collect JobContextStructure inside the dgrid_jobCache

 CheckWhetherAllResources are available on Local node;

 if(yes)

 {

sendAllocateRequest to dgrid_resMgr;

do the operation and collect the result from

dgrid_jobCacheOutput section.

}

else

{

send ResourceRequest to head_node resMgr;

dgridOS – An approach to Grid enabled Operating System

Delhi college of Engineering, Delhi 2007 63

get the allocation

handover the control to processCtrl which maintains

Cache of migrated processes;

processCtrl return the result Cache to host node_id

}

 waitJobOccurrence(Job_id, subJob_id, jobContextStructue)

 }

//

