

DEVELOPMENT OF A VIRUS DETECTION

SYSTEM FOR DOS ENVIRONMENT

A DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

MASTER OF ENGINEERING

IN

COMPUTER TECHNOLOGY & APPLICATIONS

SUBMITTED BY

SUNITA VERMA
(Roll No: 3009)

UNDER THE GUIDANCE OF

Mrs. RAJNI JINDAL

DEPATRTMENT OF COMPUTER ENGINEERING

DELHI COLLEGE OF ENGINEERING
NEW DELHI-110042

2005

Department of Computer Engineering
Delhi College of Engineering, Delhi

CERTIFICATE
This is to certify that the project report entitled “Development of

a Virus Detection System for DOS environment” being

submitted by Ms. SUNITA VERMA (Roll No: 3009) is a bonafide

record of her own work carried under our guidance and supervision

in partial fulfillment for the award of the degree of Master of

Engineering in Computer Technology and Applications from Delhi

College of Engineering, Delhi.

Mrs. Rajni Jindal Dr. D. Roy Choudhury
Lecturer, Project Guide Professor & HOD
Delhi College of Engg. Delhi College of Engg.
Delhi-42 Delhi-42

 i

ACKNOWLEDGEMENT

I wish to express my deep sense of gratitude and veneration to my project guide Mrs.

Rajni Jindal, Lecturer, Department of Computer Engineering, Delhi College of

Engineering, Delhi, for her perpetual encouragement, constant guidance, valuable

suggestions and continuous motivation which has enabled me to complete this work.

I would like to express my sincere thanks to Dr. P. B. Sharma, Principal, Delhi

College of Engineering, Delhi, to allow me to perform this study and for providing all

the necessary facilities to carry out this work.

I am deeply indebted to Dr. D. Roy Choudhury, HOD, Department of Computer

Engineering, Delhi College of Engineering, Delhi, for his constant encouragement,

valuable guidance, resourceful suggestions and alignment evaluations throughout the

course of this project.

I am also thankful to Mrs. Goldie Gabrani, Assistant Professor, Delhi College of

Engineering, Delhi and to all the teachers of Computer Engineering department for

their kind co-operation and enormous support.

I am also grateful to my parents, for being a constant source of inspiration, and for

enabling me to reach at this stage. A special appreciation also goes to all my friends

for their love and constant support.

SUNITA VERMA

 ii

ABSTRACT

This dissertation presents an implementation of a Virus Detection System to

detect, known as well as unknown viruses. It is an integration of two detection tools,

Integrity Checker and Signature Scanner. Integrity checker tool uses SHA-1 algorithm to

generate the checksum of a file to avoid forgery. SHA-1 gives 160-bit checksum, which

is larger than that of CRC-32 (32-bit) that makes it more resistant to brute force attacks,

such as Birthday attacks, which choose messages at random in an attempt to generate the

same checksum. By using integrity checking technique virus detection system is able to

detect all the infections whether it is due to known virus or unknown virus. It generates

the list of all infected files, which are then scanned by signature scanner to get more

details about the infection like name of the virus, location of infection in file etc. The

signature database can always be updated by using database maintaining program, which

is provided as a part of signature scanning tool. To reduce the scanning time, signature

scanner uses Boyer-Moore-Horspool (BMH), a fast pattern-matching algorithm. It

showed the best performance among commonly used pattern matching algorithms like

Boyer Moore and Turbo-Boyer-Moore algorithms.

 iii

CONTENTS

CERTIFICATE i

ACKNOWLEDGEMENT ii

ABSTRACT iii

TABLE OF CONTENTS iv

LIST OF FIGURES viii

LIST OF TABLES viii

CHAPTER 1 INTRODUCTION 1

1.1 Motivation 1

1.2 Objective 1

 1.3 Contribution 1

1.4 Organization of dissertation 3

CHAPTER 2 WHAT IS A COMPUTER VIRUS? 4

2.1 Related Software 7

2.2 Classification of Computer Viruses 7

2.2.1 Type of infection technique 8

2.2.1.1 Shell viruses 8

2.2.1.2 Add-on viruses 8

 2.2.1.3 Intrusive viruses 9

2.2.1.4 Inserting virus 10

2.2.2 Type of Host Victim 11

2.2.2.1 System Sector Virus 11

2.2.2.2 File Virus 12

2.2.2.3 Companion Virus 12

2.2.2.4 Multipartite Virus 13

2.2.3 Type of virus activation 13

2.2.3.1 Direct action virus 13

 iv

 2.2.3.2 Memory resident virus 13

2.2.4 Special Virus Features 14

 2.2.4.1 Stealth Virus 14

 2.2.4.2 Polymorphic Virus 15

CHAPTER 3 ANTIVIRUS SOLUTIONS 17

3.1 Signature scanner 17

3.2 Integrity checkers 18

3.3 Activity monitor 19

3.4 Heuristics Scanner 20

CHAPTER 4 SPECIFICATIONS OF VIRUS DETECTION SYSTEM 23

4.1 Generic Approach: An Integrity Checker 23

4.2 Specific Approach: A Signature Scanner 24

4.3 Combining Generic and Virus-Specific Approaches 25

CHAPTER 5 INTEGRITY CHECKER 26

5.1 Checksumming 27

5.2 Implementation Modes 28

5.2.1 On-demand 28

5.2.2. Resident 28

5.2.3. Self-test 29

5.3 Criteria for Choice of Hash Function 30

5.4 Description Of SHA-1 31

5.4.1 Bit Strings and Integers 32

5.4.2 Operations on WORDS 33

5.4.3 Message Padding 34

5.4.4 Functions Used 35

5.4.5 Constants Used 36

5.4.6 Computing the Message Digest 36

5.5 Description of Integrity Checker Tool 37

 v

5.5.1 Implementation 37

5.5.2 The Code 39

5.5.2.1 Building the Checksum File 39

5.5.2.2 Calculating the File Checksum 40

 5.5.2.3 Checking the Files 41

5.6 Comparison of SHA-1 with CRC-32 41

CHAPTER 6 SIGNATURE SCANNING TECHNIQUE 43

6.1 Pattern Matching Algorithms 44

6.1.1 Sequential pattern matching algorithm 44

6.1.2 Boyer Moore Algorithm 44

6.1.2.1 Performance analysis of BM 47

6.1.3 Turbo Boyer Moore Algorithm 47

6.1.3.1 Performance analysis of TBM 49

6.1.4 The Boyer-Moore-Horspool Algorithm 49

6.1.4.1 Description of the algorithm 50

6.1.4.1.1 Implementation and data structures 50

6.2 Description of the Signature Scanner 52

6.2.1 Implementation 52

6.2.1.1 Signature Database 52

6.2.1.2 Virus detection engine 53

6.3 Performance analysis 54

6.3.1 Measures 54

6.3.2 Choice of Patterns 55

6.3.3 Search for Boot sector viruses 55

6.3.4 Search for Partition table viruses 55

6.3.5 Search for File type viruses 56

6.3.6 Performance According to Pattern Size 57

6.4 Summary of results 58

CHAPTER 7 CONCLUSION AND FUTURE WORK 60

 vi

REFERENCES 62

APPENDIX A: OUTPUT SNAPSHOT 66

APPENDIX B: SOURCE CODE 74

 vii

LIST OF FIGURES

Figure 2.1 Shell Virus Infection 8

Figure 2.2 Prepending virus 9

Figure 2.3 Appending Virus 9

Figure 2.4 Intrusive Virus Infection 10

Figure 2.5 Inserting virus 10

Figure 6.1 The good-suffix shift, u re-occurs preceded by a character c 45

Figure 6.2 The good-suffix shift, only a suffix of u re-occurs in x. 45

Figure 6.3 The bad-character shift, a occurs in x. 46

Figure 6.4 The bad-character shift, b does not occur in x. 46

Figure 6.5 A turbo-shift can apply when |v|<|u|. 48

Figure 6.6 c d so they cannot be aligned with the same character in v 48

Figure 6.7 Performance graph on the basis of Signature Database size 56

Figure 6.8 Performance graph on the basis of the pattern size 58

LIST OF TABLES

Table 6.1 Performance on the basis of Signature Database Size 56

Table 6.2 Performance according to the pattern size 57

 viii

Virus Detection System

CHAPTER 1

INTRODUCTION

1.1 Motivation

Today, we have become dependent on computing infrastructure, which is

becoming more and more vulnerable to viruses with time. There are many reasons

behind this. First is, nowadays our computing systems are connected enabling a virus to

infect large number of machines by spreading. Second reason is, today machines are

more programmable, so it does not need a very experienced programmer to write a

malicious code etc.

Considering the devastating effect of viruses in our computing systems, it has

become very important to detect them, so that we can remove them as well as disinfect

the infected files. Therefore any defense mechanism should have a component that

detects the presence of any kind of malicious code. There are four basic types of virus

detection techniques: Signature Scanning, Integrity Checking, Activity Monitoring and

Heuristic technique. Each has pros and cons of its own.

1.2 Objective

The aim is to develop a virus detection system that will help in detecting known

as well as new viruses appearing daily in a large number.

1.3 Contribution

In this dissertation, a virus detection system has been implemented, that consists

of two techniques, Integrity checking and Signature Scanning technique. Because no

single detection method works for all cases, it has to be accomplished by a combination

of detection techniques. Integrity checking technique detects presence of a virus in a file

by comparing the checksum of that file with the stored checksum, when file was

supposed to be clean. Thus it is able to detect any modification in the file, which may

Delhi College of Engineering, Delhi 1

Virus Detection System

have been caused by a known or an unknown virus. While in signature-based detection

technique, a pattern string is searched for in a target text (a possibly infected program).

This pattern identifies a specific virus and is called virus signature in technical terms. It

consists of sequences of bytes in the machine code of the virus and is unique to a

particular virus, or a family of viruses. Signature scanning technique uses a database of

signature of all known viruses, which it tries to match against every file suspected to

have a possible virus. This method is very good at detecting the viruses whose

signatures are already known. But they are unable to detect the attack of any new virus.

The main reason behind this is that the signature of this new virus is not known.

To detect viruses, this system will first use integrity checking technique, which

will give all the infected files. Now to get more details about the infection, signature

scanner scans those infected files. It will give the name of virus, offset where its

signature is found in file etc. In case if file is declared clean by scanner, it implies some

new virus has infected the file. This file can be sent to software houses so that they can

perform more research on that virus. In this way this virus detection system is able to

detect both known viruses as well as new viruses.

The Integrity Checking Technique uses SHA-1 algorithm to generate the

checksum (secure hash) of file. It generates a 160-bit checksum and therefore provides

more security than CRC-32, which generates 32-bit checksum. The probability of

forgery in SHA-1 is 2-160, which implies that it is very difficult to generate a different

message having the same checksum.

While implementing signature detection technique, a fast pattern-matching

algorithm was needed to improve its performance. Since in this technique a pattern, that

can be anywhere within the file, is searched for, so if pattern-matching algorithm is not

fast, users may find it annoying. Also, it is asserted that pattern matching is the most

computationally expensive test that this technique commonly performs. For these

reasons, in this work, a fast string-matching algorithm named Boyer-Moore-Horspool

(BMH) has been used. During comparison with other algorithms like Boyer-Moore and

Turbo-Boyer-Moore algorithms BMH proved the fastest pattern-matching algorithm.

Delhi College of Engineering, Delhi 2

Virus Detection System

Thus by using the combination of both these virus detection techniques i.e.

integrity checking and signature detection technique, the virus detection system will be

able to detect any kind of old or new viruses in the computer.

1.4 Organization of dissertation

The rest of the dissertation is organized as follows:

Chapter 2 gives an overview of computer viruses and their working.

Chapter 3 is well-organized exposition of anti-virus technologies.

Chapter 4 gives the specifications of Virus Detection System.

Chapter 5 moves on to explain how a signature-based detection system could benefit

from the use of better string matching algorithm. As well as the operation of the popular

Boyer-Moore, Turbo Boyer-Moore and Boyer-Moore-Horspool algorithms and these

theoretical performances has been dissected, too. The results of some performance

testing of signature detection tool have been discussed as well.

Chapter 6 explains how integrity-checking technique works and its implementation

using SHA-1 algorithm for generating checkcodes of files. Also its performance is

compared with CRC-32 algorithm.

Chapter 7 summarizes the results and gives a short future outlook.

Delhi College of Engineering, Delhi 3

Virus Detection System

CHAPTER 2

WHAT IS A COMPUTER VIRUS?

The development of a solution to any security problem initially requires

understanding two areas relating the security issue: what the security threat is and what

solutions have been used previously for that problem and similar security problems.

This is particularly true for antivirus research also. Therefore a solution to problem of

developing a method of detecting virus requires an insight in both areas. These areas

are: the different types of viruses, the mechanisms that work within them and the

security threats associated with them and what methodologies and technologies have

been employed to combat security problems within the fields of antivirus research. This

chapter discusses both these areas.

Computers are designed to execute instructions one after another. Those

instructions usually do something useful — calculate values, maintain databases, and

communicate with users and with other systems. Sometimes, however, the instructions

executed can be damaging and malicious in nature. When that happens by accident, we

call the code involved a software bug — perhaps the most common cause of unexpected

program behavior. If the source of the instructions was an individual who intended that

the abnormal behavior occur, then we consider this malicious coding. In recent years,

occurrences of malware have been described almost uniformly by the media as

computer viruses.

A computer virus is a segment of machine code (typically 200-4000 bytes) that

will copy itself (or a modified version of itself) into one or more larger “host” programs

when it is activated. When these infected programs are run, the viral code is executed

and the virus spreads further [1]. Sometimes, what constitute “programs” are more than

simply applications: boot code, device drivers, and command interpreters also can be

infected. Computer viruses cannot spread by infecting pure data; pure data files are not

executed [2]. However, some data, such as files with spreadsheet input or text files for

Delhi College of Engineering, Delhi 4

Virus Detection System

editing may be interpreted by application programs. For instance, text files may contain

special sequences of characters that are executed as editor commands when the file is

first read into the editor. Under these circumstances, the data files are “executed” and

may spread a virus. Data files may also contain “hidden” code that is executed when the

file is used by an application, and this too may be infected. Technically speaking,

however, pure data itself cannot be infected by a computer virus [2].

Fred Cohen [2] formally defined the term computer virus in 1983 as:

We define a computer 'virus' as a program that can 'infect' other programs by

modifying them to include a possibly evolved copy of itself. With the infection property,

a virus can spread throughout a computer system or network using the authorizations of

every user using it to infect their programs. Every program that gets infected may also

act as a virus and thus the infection grows.”

 Although Cohen and others, including Len Adleman [14] have attempted

formal definitions of computer virus, none have gained widespread acceptance or use.

Stubbs and Hoffman quote a definition by John Inglis that captures the generally

accepted view of computer viruses:

“He defines a virus as a piece of code with two characteristics:

1. At least a partially automated capability to reproduce.

2. A method of transfer, which is dependent on its ability to attach itself to other

computer entities (programs, disk sectors, data files, etc.) that move between these

systems.”

In other words “Viruses are malicious segments of code, attached into

legitimate programs, which execute when the legitimate program is executed”. To

attach might mean physically adding to the end of a file, inserting into the middle of a

file, or simply placing a pointer to a different location on the disk somewhere where the

virus can find it. The primary characteristic of a virus is that it replicates itself when it is

executed and inserts the replica into another program, which will replicate the virus

again when it executes.

Delhi College of Engineering, Delhi 5

Virus Detection System

Generally speaking [14], a computer virus consists of three parts :

• the infection mechanism,

• the trigger,

• the payload.

A computer virus must at least have the infection mechanism part.

The Infection Mechanism

As the name implies, the infection mechanism searches for one or more suitable

victims and checks to avoid multiple infections, if the host is already infected or not

(not every virus does this; some viruses infect a host multiple times due to bugs). After

that, simply speaking, the virus body is copied into the victim. The easiest method to do

so is by overwriting the code of the victim. Other methods are putting the code in front

of or at the end of a file.

The Trigger

A trigger is used for starting the possible payload, i.e. on a particular event the

payload is executed. Such an event could be a special day (Friday, 13th) or when the

infection counter has reached a pre-defined value. Viruses also may be triggered based

on some random event. One common trigger component is a counter used to determine

how many additional programs the virus has succeeded in infecting. Of course, the

trigger can be any combination of conditions, too.

The Payload

A possible payload causes transient or permanent damage, e.g. displaying an

animation on the screen or formatting the hard disk drive or manipulation of data.

For a computer virus to work, it somehow must add itself to other executable

code. The viral code is usually executed before the code of its infected host (if the host

Delhi College of Engineering, Delhi 6

Virus Detection System

code is ever executed again). Of course, damage may even happen unintentionally, e.g.

due to a programming error. Damage may be caused by over-reaction by the user, too.

Over time, the problem of viruses has grown to significant proportions. After the

first infection by the Brain virus in January 1986, generally accepted as the first

significant MS-DOS virus [6], the number of known viruses has grown to several

thousand different viruses, most of which are for MS-DOS. The problem has not been

restricted to the DOS machines, however, and now affects all popular operating

systems. It may be a reflection on the more technical nature of the user population of

these machines.

2.1 Related Software

Worms are another form of software that is often referred to as a computer virus

[16]. Unlike viruses, worms are programs that can run independently and travel from

machine to machine across network connections; worms may have portions of

themselves running on many different machines [19]. Worms do not change other

programs, although they may carry other code that does, such as a true virus.

It is their replication behavior that leads some people to believe that worms are a

form of virus, especially those people using Cohen’s formal definition [2] (which

incidentally would also classify standard network file transfer programs as viruses). The

fact that worms do not modify existing programs is a clear distinction between viruses

and worms, however.

2.2 Classification of Computer Viruses

The classification of computer viruses can be done via several ways:

• Type of infection technique,

• Type of host victim,

• Type of virus activation

Delhi College of Engineering, Delhi 7

Virus Detection System

• Special virus features.

2.2.1 Type of infection technique

One form of classification of computer viruses is based on the ways a virus may

add itself to host code: as a shell, as an add-on, as intrusive, and as an inserting code

[15].

2.2.1.1 Shell viruses

A shell virus is one that forms a “shell” around the original code. In effect, the

virus becomes the program, and the original host program becomes an internal

subroutine of the viral code. An extreme example of this would be a case where the

virus moves the original code to a new location and takes on its identity. When the virus

is finished executing, it retrieves the host program code and begins its execution.

Almost all boot sector viruses are shell viruses.

Uninfected Program

Virus

Figure 2.1 Shell Virus Infection

2.2.1.2 Add-on viruses

Most viruses are add-on viruses. They function by appending their code to the

host code, and/or by relocating the host code and inserting their own code to the

beginning. The add-on virus then alters the startup information of the program,

executing the viral code before the code for the main program. The host code is left

Infected Program

Delhi College of Engineering, Delhi 8

Virus Detection System

almost completely untouched; the only visible indication that a virus is present is that

the file grows larger, if that can indeed be noticed.

The pure prepending virus may simply place all of its code at the top of your

original program. When you run a program infected by a prepending file virus, the virus

code runs first, and then your original program runs.

Virus

Host code

Figure 2.2 Prepending virus: virus code runs first then executables

An appending virus places a “jump” at the beginning of the program file,

moves the original beginning of the file to the end of the file, and places itself between

what was originally the end of the file and what was originally at the beginning of the

file. When you try to run this program, the “jump” calls the virus, and the virus runs.

The virus then moves the original beginning of the file back to its normal position and

then lets your program run.

 Jumps to the end of the host code

Host code

Virus

 Virus code runs and jumps to the beginning Jump instruction

Figure 2.3 Appending virus

2.2.1.3 Intrusive viruses

Intrusive viruses operate by overwriting some or all of the original host code

with viral code. The replacement might be selective, as in replacing a subroutine with

Delhi College of Engineering, Delhi 9

Virus Detection System

the virus, or inserting a new interrupt vector and routine. The replacement may also be

extensive, as when large portions of the host program are completely replaced by the

viral code. In the latter case, the original program can no longer function properly. Few

viruses are intrusive viruses.

 Uninfected Program

 Infected Program

Virus Code

Figure 2.4 Intrusive Virus Infection

2.2.1.4 Inserting virus

An inserting virus copies itself into the host program. Programs sometimes

contain areas that are not used, and viruses can find and insert themselves into such

areas. The virus can also be designed to move a large chunk of the host file somewhere

else and simply occupy the vacant space.

 Virus code Host program

Figure 2.5 Inserting virus: Virus takes unused space and is run first. Then it jumps back

to the host program

Delhi College of Engineering, Delhi 10

Virus Detection System

2.2.2 Type of Host Victim

A second form of classification is to divide viruses on the basis of type of Host

victim. This is not particularly clear, however, as there are viruses that spread by

altering system-related code that is neither boot code nor programs [14]. Some viruses

target file system directories, for example. As of type of host victim we can distinguish

between:

• System Sector virus,

• File Virus,

• Companion Virus,

• Multipartite Virus.

2.2.2.1 System Sector Virus

A system sector virus infects the boot sector of a floppy disc and/or partition

table and boot sector of a hard disk [16]. Such a virus can infect the computer system,

when the computer is booted from an infected floppy disk.

As the code in the Disk Boot Record (DBR) is started by the BIOS after it does

the POST (Power On Self Test), the virus gets activated even before the Operating

System has been started and most likely ”hooks” some particular Interrupts (e.g. BIOS

INT13h or DOS INT 21h) for performing its tasks. Most viruses of this type save a

copy of the original boot sector/master boot record in an unused sector of the disk. A

boot virus may be ”placed” into the computer system by a so-called ”dropper”, i.e. a

program that simply drops the boot virus.

Most boot sector viruses are memory-resident, so they can easily infect every

non-write protected floppy when it is accessed. If we attept to boot another machine

with this floppy, the first sector containig the virus would get loaded in memory. Now

the virus acts intelligently. It knows that it has been loaded from the floppy and hence

proceeds to copy itself in the first physical sector of the hard disk,that is the partition

table sector. Instead of copying itself in the partition table sector, some viruses may

Delhi College of Engineering, Delhi 11

Virus Detection System

copy itself in the first logical sector of the DOS partiotion, that is the boot sector. In

either case, before copying itself the virus would first displace the original contents of

the sector to some other location. Once this is done , it reduces the RAM size and steals

the interrupt. Then back again to the floppy disk to load the original boot sector in

memory.

Even if the infected disk is not a bootable disk, if attempt is made to boot from

the floppy, the virus still manages to enter into the machine. This is becase DOS flashes

the ‘Non System Disk’ error message only when it fails to load the file IO.SYS. by thius

time virus has already reached the memory and takes over the control. Thus a non

bootable floppy may also infect the machine.

2.2.2.2 File Virus

The simplest file viruses’ work by locating a type of file they know how to

infect (usually a file name ending in .COM or .EXE) and overwriting part of the

program they are infecting. When this program is executed, the virus code executes and

infects more files. These overwriting viruses do not tend to be very successful since the

overwritten program rarely continues to function correctly and the virus is almost

immediately discovered. Most appending viruses put their virus code at the end of the

file and put a jump to the virus code at the beginning of the file, so that the virus code is

started first upon execution.

2.2.2.3 Companion Virus

A companion virus looks for programs with the extension .BAT or .EXE and

then creates a .COM file with the same name (i.e. EXAMPLE.COM, if a program

EXAMPLE.EXE exists). If only the program name is entered, DOS per default looks up

first for a matching .COM, .EXE and then .BAT file. So, EXAMPLE.COM will be

started (instead of EXAMPLE.EXE, which was originally the intention of the user).

Therefore, the companion virus is started first and can then start EXAMPLE.EXE.

Delhi College of Engineering, Delhi 12

Virus Detection System

2.2.2.4 Multipartite Virus

A multipartite or hybrid virus uses more than one infection technique, e.g. a

combination of a boot sector and file virus and therefore infects DBR / MBR and files.

2.2.3 Type of virus activation

Yet a third form of classification is related to how viruses are activated and

select new targets for alteration [29].

• Direct action (non-memory resident),

• Memory resident.

2.2.3.1 Direct action virus

A direct action virus is the simplest virus that runs when its “host” program is

run, selects a target program to modify, and then transfers control to the host. These

viruses are transient or direct viruses, known as such because they operate only for a

short time, does not stay in memory and they go directly to disk to seek out programs to

infect. In most cases, a direct action virus does not spread as fast as a memory resident

virus.

2.2.3.2 Memory resident virus

The most “successful” PC viruses to date exploit a variety of techniques to

remain resident in memory once their code has been executed and their host program

has terminated. This implies that, once a single infected program has been run, the virus

potentially can spread to any or all programs in the system. This spreading occurs

during the entire work session (until the system is rebooted to clear the virus from

memory), rather than during a small period of time when the infected program is

executing viral code. These viruses are resident or indirect viruses, known as such

because they stay resident in memory, and indirectly find files to infect, as the user

Delhi College of Engineering, Delhi 13

Virus Detection System

references those files. DOS provides a mechanism called ”terminate-and-stay-resident”

(TSR), so these viruses are also known as TSR (Terminate and Stay Resident) viruses.

Only a memory resident virus may use some ”modern” virus techniques like

stealth capabilities. For the memory resident virus, one can differentiate between a fast

infector and slow infector. Both got their name due to the speed they spread. The first

one infects every program that is being accessed (read/write) or even all files being

listed in a directory listing (e.g. when the ”dir” command is being executed). The latter

one, in contrast, infects only a file, when it’s being written (e.g. during compilation of a

new program or some older programs stored their configuration settings directly into the

executable file). Therefore, a slow infector may bypass file integrity checkers.

If a virus is present in memory after an application exits, how does it remain

active? That is, how does the virus continue to infect other programs? The answer for

personal computers running software such as MS-DOS is that the virus alters the

standard interrupts used by DOS and the BIOS (Basic Input/Output System). When an

interrupt is raised, the operating system calls the routine whose address it finds in a

special table known as the vector or interrupt table. Normally, this table contains

pointers to handler routines in the ROM or in memory-resident portions of the DOS. A

virus can modify this table so that the interrupt causes viral code (resident in memory)

to be executed. Once a virus has infected a program or boot record, it seeks to spread

itself to other programs, and eventually to other systems.

2.2.4 Special Virus Features

The following special virus features will be explained briefly:

• Stealth technique,

• Polymorphism.

2.2.4.1 Stealth Virus

Some special virus features can only be used by memory-resident viruses. A

stealth virus tries to hide itself by hooking several interrupts like BIOS Int 13h or DOS

Delhi College of Engineering, Delhi 14

Virus Detection System

Int 21h. Assumed, an anti-virus program reads the MBR via BIOS Int 13h to scan for

viruses, the virus can intercept this and ”redirect” the read call to the saved copy of the

original, uninfected MBR. Therefore, the anti-virus program won’t find any virus. Or, if

a virus scanner scans a file, this file must be opened first [4]. The open call, ”redefined”

by the virus, will first remove the virus from the file and then call the original open call.

After the scanning of the file has been finished, the file will be closed by the virus

scanner. And the modified close call will infect the file again.

2.2.4.2 Polymorphic Virus

A polymorphic virus is being ”encrypted” and changes infection its shape and

structure of the encryption/decryption routine by each infection but the basic

functionality is always the same [4]. For example: a CPU has a set of registers, e.g. the

accumulator register AX. If this register is set to be zero, then this can be done by

setting the register to zero, i.e. MOV AX, 0. Or by subtracting the current value of the

AX register with itself, i.e. SUB AX, AX. Or by the exclusive-or operation, i.e. XOR

AX, AX. In short, the effect is just the same, but each operation will result in a different

opcode. This technique is also known as ”mutation”.

Computer viruses can infect any form of writable storage, including hard disk,

floppy disk, etc [16]. Infections can spread when a computer is booted from an infected

disk, or when an infected program is run. This can occur either as the direct result of a

user invoking an infected program, or indirectly through the system executing the code

as part of the system boot sequence or a background administration task. With the

presence of networks, viruses can also spread from machine to machine as executable

code containing viruses is shared between machines. Once activated, a virus may

replicate into only one program at a time, it may infect some randomly chosen set of

programs, or it may infect every program on the system. Sometimes a virus will

replicate based on some random event or on the current value of the clock [15].

Delhi College of Engineering, Delhi 15

Virus Detection System

Traditional boot viruses and file viruses prosper in MS-DOS machines because

MS-DOS has no inherent security features. Viruses, therefore, have free rein to infect

system sectors and program Files. In starting, most infections were seen in .COM files

or system sectors, but later, the application world switched to .EXE format executables

[10]. Infecting .EXE files is done in any number of ways, from prepending, or

appending code to a file, to splitting up the virus and hiding it in holes within the

unused segments of the host application. These viruses are written mostly at an

assembly language level to have access to the innermost workings of DOS.

Delhi College of Engineering, Delhi 16

Virus Detection System

CHAPTER 3

ANTIVIRUS SOLUTIONS

Computer viruses pose an increasing risk to computer data integrity. They cause

loss of valuable data and cost an enormous amount in wasted effort in

restoration/duplication of lost and damaged data. Each month many new viruses are

reported. As the problem of viruses increases, we need tools to detect them and to

eradicate them from our systems. Defense against viruses generally takes one of four

forms:

3.1 Signature scanner

Scanners have been the most popular and widespread form of virus defense. A

scanner operates by reading data from disk and applying pattern matching operations

against a list of known virus patterns. If a match is found for a pattern, a virus instance

is announced.

Scanners are fast and easy to use, but the list of patterns must be kept up-to-date.

In the MS-DOS world, new viruses are appearing by as many as several dozen each

week. Keeping a pattern file up-to-date in this rapidly changing environment is very

important.

To the advantage of scanners, however, is their speed. Scanning can be made to

work quite quickly. Scanning can also be done portably and across platforms, and

pattern files are easy to distribute and update. Furthermore, of the new viruses

discovered each week, few will ever become widespread. Thus, somewhat out-of-date

pattern files are still adequate for most environments. Scanners equipped with

Delhi College of Engineering, Delhi 17

Virus Detection System

algorithmic or heuristic checking may also find most polymorphic viruses. It is for these

reasons that scanners are the most widely used form of anti-virus software.

A further benefit to scanning is that it can also be used against embedded trojan

horse code, logic bombs, and other malicious software in addition to simple viruses. All

that is needed to detect these pieces of code are appropriate signatures generated from a

disassembly of virus code. These signatures can be added to the search set and used

without any further change to the scanning software.

Cohen argues that signature scanning is not worth pursuing against computer

viruses [11]. He (correctly) observes that scanning cannot find new viruses before their

patterns are known, nor will such methods work against polymorphic viruses. He

attempts to show that an integrity shell (i.e., checksumming) is the most cost-effective

approach to virus protection.

It is believed that the cost-benefit ratio for scanners, either by themselves or in

addition to other mechanisms, is much higher than he calculates [14]. This is because of

scanners low impact on existing practice and because of their flexibility. Their

widespread use and continued effectiveness in the commercial world affirm this view.

Almost all currently available commercial anti-virus tools use signature scanning as

their primary detection method.

3.2 Integrity checkers

Integrity checkers are programs that generate checkcodes (e.g., checksums,

cyclic redundancy codes (CRCs), secure hashes, message digests, or crypto-graphic

checksums) for monitored files [21]. Periodically, these checkcodes are recomputed and

compared against the saved versions. If the comparison fails, a change is known to have

occurred to the file, and it is flagged for further investigation. Integrity monitors run

continuously and check the integrity of files on a regular basis. Integrity shells recheck

the checkcode prior to every execution.

Delhi College of Engineering, Delhi 18

Virus Detection System

Integrity checking is an almost certain way to discover alterations to files,

including data files [11]. As viruses must alter files to implant themselves, integrity

checking will find those changes. Furthermore, it does not matter if the virus is known

or not, the integrity check will discover the change, no matter what caused it. Integrity

checking also may find other changes caused by buggy software, problems in hardware,

and operator error.

Integrity checking also has drawbacks [21]. On some systems, executable files

change whenever the user runs the file, or when a new set of preferences is recorded.

Repeated false positive reports may lead the user to ignore future reports, or disable the

utility. It is also the case that a change may not be noticed until after an altered file has

been run and a virus spread. More importantly, the initial calculation of the checkcode

must be performed on a known-unaltered version of each file. Otherwise, the monitor

will never report the presence of a virus; probably leading the user to believe the system

is uninfected. Some integrity checkers now use other anti-virus techniques along with

their intelligence and ease of use.

While using an integrity checker is an excellent way to monitor changes to in

system, with today's operating systems so many files change on a regular basis, it's

imperative integrity checking to improve that we also use a good up-to-date scanner

along with the integrity checker or for the integrity checker to have that capability built

in.

3.3 Activity monitor

Activity monitors are programs that are resident on the system. They monitor

activity, and either raise a warning or take special action in the event of suspicious

activity. Thus, attempts to alter the interrupt tables in memory, or to rewrite the boot

sector would be intercepted by such monitors. This form of defense can be

circumvented (if implemented in software) by viruses, which activate earlier in the boot

sequence than the monitor code [11]. They are further vulnerable to virus alteration if

Delhi College of Engineering, Delhi 19

Virus Detection System

used on machines without hardware memory protection —as is the case with all

common personal computers.

Another form of monitor is one that emulates or otherwise traces execution of a

suspect application. The monitor evaluates the actions taken by the code, and

determines if any of the activity is similar to what a virus would undertake. Appropriate

warnings are issued if suspicious activity is identified.

A monitoring program assumes that viruses perform actions that are in its model

of suspicious behavior and in a way that it can detect. These are not always valid

assumptions. New viruses may utilize new methods, which may fall outside of the

model [20]. The monitoring program would not detect such a virus.

The techniques used by monitoring tools to detect virus-like behavior are also

not foolproof [22]. Personal computers lack memory protection, so a program can

usually circumvent any control feature of the operating system. As a part of the

operating system, monitoring programs are vulnerable to this as well. There are some

viruses, which evade or turn off monitoring programs.

Finally, legitimate programs may perform actions that the monitor deems

suspicious (e.g., self-modifying programs). Monitoring software may be difficult to use

but may detect some new viruses that scanning does not detect, especially if they do not

use new techniques. These monitors produce a high rate of false positives. Monitors can

also produce false negatives if the virus does not perform any activities the monitor

deems suspicious. Worse yet, some viruses have succeeded in attacking monitored

systems by turning off the monitors themselves.

Monitoring packages are integrated with the operating system so that additional

security procedures are performed. This implies some amount of overhead when any

program is executed. The overhead is usually minimal, though.

Delhi College of Engineering, Delhi 20

Virus Detection System

3.4 Heuristics Scanner
Heuristic techniques are used to find unknown viruses and threats that have not

yet been cataloged with signatures. Heuristics looks at characteristics of a file, such as

size or architecture, as well as behaviors of its code to determine the likelihood of an

infection [20]. Heuristics can sometimes find and stop many new viruses before they

execute. It is also used to find known viruses that do not lend themselves to signatures,

like some of the new metamorphic viruses that can obscure their entry points, have

obfuscated code structures (that can shrink or expand themselves through their

metamorphic engines), and are often encrypted as well.

A heuristic scanner looks for dozens if not hundreds of behaviors and indicators

that viruses use, and assigns a weighted score to each. Some red flags may include code

to check a date, an oversized file, or attempts to access your address book. Any of these

red flag indicators could simply be an innocent application, but a scorecard of sorts is

created, and when a number of such occurrences are combined, it may indicate a virus.

Heuristics can also be used in a reverse manner, looking for behaviors that

couldn't possibly be viruses, or in certain instances couldn't possibly be specific viruses

with known properties. Therefore, in some cases, it's faster to determine that a file

couldn't contain a virus, then finding one that could. For example, with a virus, by

which the infection is 32k to 130k in length, then a file that is 25k can not contain that

virus.

A big plus for heuristics is the ability to detect viruses in files and boot records

before they have a chance to run and infect the machine. Other anti-virus technologies,

such as behavior blocking or integrity checking, actually require the virus to execute on

the host computer and exhibit suspicious and potentially harmful behavior before the

virus can be detected and stopped.

Delhi College of Engineering, Delhi 21

Virus Detection System

Heuristic techniques, on the other hand, are working on the probabilities of a file

being infected. Heuristics is not an exact science. Currently, the industry claims a 70%-

80% detection rate of new and unknown viruses with heuristic scanning, which clearly

demonstrates the complexity of virus detection problem.

As given here there are several methods of defense against viruses.

Unfortunately, no single defense mechanism is perfect, but the combination of integrity

checking with signature matching technique seems the more reliable and more

economical approach to detect viruses.

Delhi College of Engineering, Delhi 22

Virus Detection System

CHAPTER 4

SPECIFICATIONS OF VIRUS DETECTION SYSTEM

In previous chapter, the definitions of various antivirus solutions are given,

including: signature scanning, integrity checking, behavior monitoring and heuristic

scanning method. The advantages and disadvantages of these individual methods are

also presented. Which is better: specific, precise detection or generic way of handling

viruses? A theoretical battle is constantly going on.

There are pros and cons of both approaches:

• Specific methods are good at determining exact nature of infection and can serve

as an excellent base for producing detailed descriptions and discussing small

differences between minor variations.

• Generic methods are good at detecting new viruses but they are not good at

determining the type of infections.

So the best way to detect known as well as unknown viruses is to combine both

these approaches. However, there are many different ways to combine two approaches,

but the combination of integrity checking with signature matching technique seems the

more reliable and more economical approach to detect viruses. This virus detection

system uses the similar approach.

4.1 Generic Approach: An Integrity Checker

Integrity checkers are the most reliable tool for unknown viruses [27]. It is a

program that determines whether another program has been altered or changed. It

searches for such changes and flags them as suspicious.

The integrity checker tool used in this detection system is an on-demand tool

and uses SHA-1 algorithm to generate a cryptographic checkcode for verifying the

Delhi College of Engineering, Delhi 23

Virus Detection System

integrity of information in computer systems. This technique produces a 160-bit

checksum. The chances of having two random documents hash to the same value is

very small, which is 1 in 2160 , Which implies forgery is almost impossible.

4.2 Specific Approach: A Signature Scanner

Scanner speed is as important as its ability to detect viruses. Slow scanners

simply cannot be used effectively; they increase the computing cost and should not be

used.

The first and probably the most important step to enhance the speed of scanner

is to use a fast pattern-matching algorithm because searching for signatures in files is its

main task. For this purpose, the signature-scanning tool uses Boyer-Moore-Horspool

algorithm, which significantly improves the performance.

The second important thing is to ensure that the virus definitions are applied to

the right type of files. It does not make sense to look for a virus infecting only boot

sectors in EXE files. To achieve this, the virus detection database has been designed

properly. The viruses have been categorized in three types: boot sector, partition table

and file types.

The third step to achieve high data processing rate is to read as little from the

file as possible before staring to analyze it seriously. The scanner divides file in slices of

1024 bytes and reads one slice at a time. Optimally, if the scanner can read the first

chunk of the file and determine whether file is clean or not, that would be exceptionally

quick. It is not usually possible to decide if the file is clean after analyzing just the first

chunk but certainly the less disk I/O tat is performed during the analysis, the better. The

reason for this is obvious; disk operations are relatively slow and amount to

approximately 50% of the total time spent performing a scan.

Delhi College of Engineering, Delhi 24

Virus Detection System

4.3 Combining Generic and Virus-Specific Approaches

When a scanner is analyzing the file, it should make sure that before it starts

scanning, it performs some kind of elimination. Good elimination is important but

achieving this is sometimes tricky. However, the integrity checking, a generic virus

detection technique can be used for this purpose. Integrity checker checks all the files

for the modifications and generates a report of all the modified files. Now only these

files need to be checked by signature scanner. That would be a good elimination.

Generally people prefer to know which particular virus they have detected. So, after

finding a virus-infected file by using integrity checker it would be advantageous to

switch to signature scanner and report the exact details. This virus detection system uses

the same approach, which is very similar to specific detection using elimination by

generic method approach.

Delhi College of Engineering, Delhi 25

Virus Detection System

CHAPTER 5

INTEGRITY CHECKER

Integrity Checking is a generic technique known by several names, particularly

Modification Detection, Differential Detection, and (Message or File) Authentication.

This is the most reliable detection technique for unknown viruses [27]. An integrity

checker (also known as a checksummer) is a program that determines whether another

program has been altered or changed. It searches for such changes and flags them as

suspicious.

The basic principles behind this technique [21] are as follows:

1. The distinguishing feature of a virus is that it replicates.

2. In order to replicate, a virus must attach itself to existing executable files1, which

necessarily causes some modification in the file.

3. Almost all viruses postpone their damaging effects for a long time (typically months)

in order to give themselves a chance to propagate as widely as possible without being

noticed.

4. Therefore to detect all infections, it suffices to examine all such files, either

periodically or just before execution, to determine whether they have been modified. If

a file has not been modified, one can be certain that it is not infected (assuming it was

not infected to begin with).

The advantages of this technique [21] are that:

1. it seems capable of detecting all viral infections which occur after its installation,

even by viruses which have never been encountered before;

2. it cannot be fooled, neutralized, or circumvented by stealth viruses or other hostile

software;

3. it is not affected by polymorphic techniques or compression;

Delhi College of Engineering, Delhi 26

Virus Detection System

4. there is no need for the user to obtain updates when new viruses or even entirely new

types of viruses are discovered.

Though an integrity checking detects infection only after it has taken place.

Nevertheless, the fact that it detects all infections is very important. If the user has

backed up his files before they became infected (a procedure which is recommended in

any case), he can restore them from backups. If the virus is known, it can be eradicated

and in the case of unknown virus, one can send the infected file to any software house,

to get this virus registered.

5.1 Checksumming

The almost universal way of implementing integrity checking is to compute, for

each file, a small fixed-sized value, at a time when system is assumed to be “clean” (i.e.

uninfected). Then modifications can be detected by changes in these values and it

suffices to store only these small original values (instead of copies of the entire original

files) for comparison.

The most common names for this value and the process of computing it are

checksum and checksumming, respectively [21]. A few write “checkcode” or

“checkvalue”, but these terms are not in wide use. A much more common alternative,

especially in cryptological circles, is hash value or sometimes hashcode, in which case

the checksumming function is called a hash function. Other alternatives for “checksum”

are message digest, fingerprint, file signature, and MIC (Message Integrity Code).

Instead of computing checksums and looking for changes in them in order to

detect modifications in files, there are few programs, which attempt to save time by

looking for changes in the size (length) of the file and/or in its date/time stamp. The

argument concerning the file-length check is as follows: When a program is infected

with a virus, it must continue to perform all its usual functions, so that the user does not

notice the modification. Moreover, new functions associated with the virus (mainly

Delhi College of Engineering, Delhi 27

Virus Detection System

replicating itself and performing some destructive action at some future date) must be

added. The result is that these functions must increase the size of the program. This

argument overlooks several things. First of all, checking the size is not effective against

boot sector or master-boot-record viruses. Secondly, even among file viruses, it is

ineffective against:

(a) stealth and semi-stealth viruses if the virus is in memory when checksumming is

performed and the checksumming program is not capable of bypassing the stealth

mechanism,

(b) viruses which hide the increase behind the end-of-file mark,

(c) “cavity” viruses, i.e. those which place themselves only in files which contain

enough consecutive unused binary-zero characters so that they can replace these

characters, and

(d) viruses which compress the original program and then pad it to preserve the original

length.

On the other hand, a file-length check can be quite useful if used, not instead of,

but with checksumming, file creation date as well as last modified date. For if any of

these has got changed, this guarantees that the file itself has changed.

5.2 Implementation Modes

There are essentially three ways of implementing checksumming:

5.2.1 On-demand

By a non-resident program activated by explicit program call, in order to check

all files or a specified subset of them all at once.

5.2.2 Resident
By a memory-resident program to automatically checksum, just before

execution, each program which is about to be executed.

Delhi College of Engineering, Delhi 28

Virus Detection System

5.2.3 Self-test
By code attached to each program, which is executed just before the program

itself is executed.

The first two methods usually use a single table to hold the name of every file,

which is to be checksummed and its corresponding checksum, although some

implementations create a separate table for each directory. Such table is called the CST

(CheckSum Table) and additional information on each file, such as the size, creation

date and time, is also included. With the later two methods one hardly notices the extra

execution time required for the checksum comparison, and because infrequently

executed programs don’t get checksummed any more than is necessary. Other things

being equal, these considerations would be significant. However, other things rarely are

equal, and both the resident and the self-test implementations have disadvantages.

These methods can be applied only to ordinary files, not to boot records or to certain

system files [27]. Also, a malicious program can easily neutralize the resident and self-

test types of programs.

Additional disadvantages of the self-test implementation are:

(a) a program may already have its own internal self-test, in which case the addition of

the new code to the file will cause the internal self-test to sound an alarm,

(b) the self-test code may get added to an already infected file, making it non-

disinfectable by many virus removal programs,

(c) adding code to many executable files wastes much disk space,

(d) the extra code may be misinterpreted as a virus by many users, and

(e) many users simply don’t like having their programs altered. For these reasons, use of

this implementation is to be discouraged.

Perhaps most important, if either of the last two methods is used alone, there is

no way of guaranteeing that memory is “clean” (uninfected) when the checksumming is

performed. They are therefore at the mercy of stealth viruses; when such a virus is in

Delhi College of Engineering, Delhi 29

Virus Detection System

memory, any attempt to checksum an infected file will result in checksumming the

original uninfected file, and the infection will go unnoticed. Another danger is that if the

checksum program is activated while RAM is infected by a “fast infector”, then every

time a file is opened for checksumming, it will immediately be infected by that virus.

On-demand checksummers, on the other hand, have the advantage that they can

be executed when memory is known to be clean. This is achieved by activating them

immediately after cold booting from a system diskette, which is known to be clean

because its write protection has never been removed since it was created. Theoretically,

even an original DOS diskette could be infected, but this is highly unlikely if the

diskette has been kept write protected.

5.3 Criteria for Choice of Hash Function

Three obvious criteria, which a hash function must satisfy [12], are:

1. For any given file F, computation of H (F) should be fast.

2. The length of the checksums should not be too great, so as not to take up too much

storage.

3. If two files are chosen at random, the probability of their having the same checksum

should be very small.

The fastest algorithms can compute checksum and compare it with the stored

value more quickly than a comparison of the complete file with a stored copy of it can

be made. There is a probability, that two randomly chosen files have the same

checksum. It is therefore important that the checksum should be reasonably large.

Increasing the length of checksum will increase storage requirements somewhat and

perhaps also the computation time. Therefore, unless storage and time are not at a

premium, checksum is usually chosen large enough to give security in the situation in

which the checksum program is used.

Delhi College of Engineering, Delhi 30

Virus Detection System

This is an on-demand integrity cheker tool and uses SHA-1 algorithm to

generate a cryptographic checkcode for verifying the integrity of information in

computer systems with no built-in protection. This technique produces a 160-bit

condensed representation of the message called a message digest.

5.4 Description Of SHA-1

SHA (The Secure Hash Algorithm) is a cryptographic message digest algorithm

specified in the Secure Hash Standard (SHS, FIPS 180), and was developed by NIST

[30]. SHA-1 is a revision to SHA that was published in 1994. During the revision an

unpublished flaw present in SHA was corrected [33]. Later, after the selection of

Rijndael as the Advanced Encryption Standard, were announced new algorithms SHA-

1, SHA-256, SHA-384 and SHA-512.

These new algorithms were published as “Secure Hash Standard” (in FIPS PUB

180-2) are issued by National Institute of Standards and Technology, announced on

2002 Aug 1.

This new standard specifies four secure hash algorithms – SHA-1, SHA-256,

SHA-384 and SHA-512 – for computing a condensed representation of electronic data

(message) [31]. When a message of any length less than 264 bits (for SHA-1 and SHA-

256) or 2128 bits (for SHA-384 and SHA-512) is input to an algorithm, the result is an

output called message digest. The message digest ranges from 160 to 512 bits,

depending on the algorithm. Secure hash algorithms are typically used with other

cryptographic algorithms, such as digital signature algorithms and keyed-hash message

authentication codes, or in the generation of random numbers (bits). The four hash

algorithms described in this standard called secure because, for a given algorithm, it is

computationally infeasible to find a message that corresponds to the given message

digest, or to find two different messages that produce the same message digest.

Delhi College of Engineering, Delhi 31

Virus Detection System

The Secure Hash Algorithm (SHA-1) is required for use with the Digital

Signature Algorithm (DSA) as specified in the Digital Signature Standard (DSS) and

whenever a secure hash algorithm is required for federal applications. For a message of

length < 264 bits, the SHA-1 produces a 160-bit condensed representation of the

message called a message digest. The message digest is used during generation of a

signature for the message. The SHA-1 is also used to compute a message digest for the

received version of the message during the process of verifying the signature. Any

change to the message will, with very high probability, result in a different message

digest, and the signature will fail to verify.

The SHA-1 is designed to have the property that it is computationally infeasible

to find a message which corresponds to a given message digest, or to find two different

messages which produce the same message digest [38].

5.4.1 Bit Strings and Integers

The following terminology related to bit strings and integers will be used:

a. A hex digit is an element of the set {0, 1, 9, A, ..., F}. A hex digit is the

representation of a 4-bit string.

Examples: 7 = 0111, A = 1010.

b. A word equals a 32-bit string, which may be represented as a sequence of 8 hex

digits. To convert a word to 8 hex digits each 4-bit string is converted to its hex

equivalent as described in (a) above.

Example: 1010 0001 0000 0011 1111 1110 0010 0011 = A103FE23.

c. An integer between 0 and 232 - 1 inclusive may be represented as a word. The least

significant four bits of the integer are represented by the right-most hex digit of the

word representation.

Example: the integer 291 = 28+25+21+20 = 256+32+2+1 is represented by the hex

word, 00000123.

Delhi College of Engineering, Delhi 32

Virus Detection System

If z is an integer, 0 <= z < 264, then z = 232x + y where 0 <= x < 232 and 0 <= y <

232. Since x and y can be represented as words X and Y, respectively, z can be

represented as the pair of words (X, Y).

d. Block = 512-bit string. A block (e.g., B) may be represented as a sequence of 16

words.

5.4.2 Operations on WORDS

The following logical operators will be applied to words:

a. Bitwise logical word operations

 X Λ Y = bitwise logical "and" of X and Y.

 X \/ Y = bitwise logical "inclusive-or" of X and Y.

 X XOR Y = bitwise logical "exclusive-or" of X and Y.

 ~ X = bitwise logical "complement" of X.

Example:

 01101100101110011101001001111011

 XOR 01100101110000010110100110110111

 = 00001001011110001011101111001100

b. The operation X + Y is defined as follows: words X and Y represent integers x and y,

where 0 <= x < 232 and 0 <= y < 232. For positive integers n and m, let n mod m be the

remainder upon dividing n by m. Compute z = (x + y) mod 232. Then 0 <= z < 232.

Convert z to a word, Z, and define Z = X + Y.

c. The circular left shift operation Sn(X), where X is a word and n is an integer with 0

<= n 32, is defined by Sn(X) = (X << n) OR (X >> 32-n). Here, X << n is obtained as

follows: discard the left-most n bits of X and then pad the result with n zeroes on the

Delhi College of Engineering, Delhi 33

Virus Detection System

right (the result will still be 32 bits). X >> n is obtained by discarding the right-most n

bits of X and then padding the result with n zeroes on the left. Thus Sn (X) is equivalent

to a circular shift of X by n positions to the left.

5.4.3 Message Padding

The SHA-1 is used to compute a message digest for a message or data file that is

provided as input. The message or data file should be considered to be a bit string. The

length of the message is the number of bits in the message (the empty message has

length 0). If the number of bits in a message is a multiple of 8, for compactness we can

represent the message in hex. The purpose of message padding is to make the total

length of a padded message a multiple of 512. The SHA-1 sequentially processes blocks

of 512 bits when computing the message digest. The following specifies how this

padding shall be performed. As a summary, a "1" followed by m "0"s followed by a 64-

bit integer are appended to the end of the message to produce a padded message of

length 512 * n. The 64-bit integer is l, the length of the original message. The padded

message is then processed by the SHA-1 as n 512-bit blocks.

Suppose a message has length l < 264. Before it is input to the SHA-1, the

message is padded on the right as follows:

a. "1" is appended.

Example: if the original message is "01010000", this is padded to "010100001".

b. "0"s are appended. The number of "0"s will depend on the original length of the

message. The last 64 bits of the last 512-bit block are reserved for the length l of the

original message.

Example: Suppose the original message is the bit string

01100001 01100010 01100011 01100100 01100101.

After step (a) this gives

01100001 01100010 01100011 01100100 011001011.

Delhi College of Engineering, Delhi 34

Virus Detection System

Since l = 40, the number of bits in the above is 41 and 407 "0"s are appended,

making the total now 448. This gives (in hex)

61626364 65800000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000.

c. Obtain the 2-word representation of l, the number of bits in the original message. If l

< 232 then the first word is all zeroes. Append these two words to the padded message.

Example: Suppose the original message is as in (b). Then l = 40 (note that l is

computed before any padding). The two-word representation of 40 is hex 00000000

00000028. Hence the final padded message is hex

61626364 65800000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000028

The padded message will contain 16 * n words for some n > 0. The padded

message is regarded as a sequence of n blocks M1, M2, ..., Mn, where each Mi contains

16 words and M1 contains the first characters (or bits) of the message.

5.4.4 Functions Used

A sequence of logical functions f0, f1,..., f79 is used in the SHA-1. Each ft, 0 <= t

<= 79, operates on three 32-bit words B, C, D and produces a 32-bit word as output.

ft(B,C,D) is defined as follows: for words B, C, D,

ft(B,C,D) = (B AND C) OR ((NOT B) AND D) (0 <= t <= 19)

ft(B,C,D) = B XOR C XOR D (20 <= t <= 39)

ft(B,C,D) = (B AND C) OR (B AND D) OR (C AND D) (40 <= t <= 59)

ft(B,C,D) = B XOR C XOR D (60 <= t <= 79).

Delhi College of Engineering, Delhi 35

Virus Detection System

5.4.5 Constants Used

A sequence of constant words K (0), K (1), ... , K (79) is used in the SHA-1. In

hex these are given by

K = 5A827999 (0 <= t <= 19)

Kt = 6ED9EBA1 (20 <= t <= 39)

Kt = 8F1BBCDC (40 <= t <= 59)

Kt = CA62C1D6 (60 <= t <= 79).

5.4.6 Computing the Message Digest

The message digest is computed using the final padded message. The

computation uses two buffers, each consisting of five 32-bit words, and a sequence of

eighty 32-bit words. The words of the first 5-word buffer are labeled A, B, C, D, and E.

The words of the second 5-word buffer are labeled H0, H1, H2, H3, and H4. The words

of the 80-word sequence are labeled W0, W1,..., W79. A single word buffer TEMP is

also employed.

To generate the message digest, the 16-word blocks M1, M2,..., Mn defined in

Section 4 are processed in order. The processing of each Mi involves 80 steps.

Before processing any blocks, the {Hi} are initialized as follows: in hex,

H0 = 67452301

H1 = EFCDAB89

H2 = 98BADCFE

H3 = 10325476

H4 = C3D2E1F0.

Now M1, M2, ... , Mn are processed. To process Mi, we proceed as follows:

a. Divide Mi into 16 words W0, W1, ... , W15, where W0 is the left-most word.

b. For t = 16 to 79 let Wt = S1 (Wt-3 XOR Wt-8 XOR Wt- 14 XOR Wt-16).

c. Let A = H0, B = H1, C = H2, D = H3, E = H4.

Delhi College of Engineering, Delhi 36

Virus Detection System

d. For t = 0 to 79 do

TEMP = S5 (A) + ft(B,C,D) + E + Wt + Kt;

E = D; D = C; C = S30 (B); B = A; A = TEMP;

e. Let H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4 + E.

After processing Mn, the message digest is the 160-bit string represented by the

5 words H0 H1 H2 H3 H4.

SHA-1 is a cryptographically strong checksumming technique with reasonable

performance characteristics, and it performs as intended. It is a method by which

performance may be improved over previous similar systems without substantially

increasing the complexity [35]. It appears to be genraly applicable and well suited for

integrity checking applications, allowing it to verify its own integrity and the integrity

of data files as well.

5.5 Description of Integrity Checker Tool
This tool consists of two parts. The first part uses SHA-1 algorithm to generate

the hash-codes i.e. message digests for files and then develops a catalog of message

digests for all the files in a directory tree. Since this is an on-demand integrity checker

tool, so it should be executed, only when memory is known to be clean. Later on the

second part can check the files in the same directory tree against the catalog.

5.5.1 Implementation

CHECKER is written as a dual-purpose program. It has two operating modes,

one for building a list of message digests, and another for checking files against that list.

The command line for CHECKER has one of two forms. The first form is used to create

a Message Digest listing file that has the message digest called checksum in this case,

and file name of every file in a directory tree, time, date and file size. The syntax for

invoking CHECKER in this mode is:

CHECKER -c directory checksum-file-name

Delhi College of Engineering, Delhi 37

Virus Detection System

The directory parameter passed to CHECKER is the name a of a root directory.

CHECKER will calculate the checksum for every file in and under that directory, and

store the results in the checksum file named as the second parameter. The checksum file

created is an ordinary ASCII text file that can be edited and manipulated using any text

editor. All it contains is a sequence of lines that contain a checksum value followed by a

file name, date, time and its size.

For example, CHECKER was run on the F: directory that holds all the work for

this dissertation on MS-DOS machine with the following command:

CHECKER –c F: TEST.txt

This created a checksum file named TEST.txt, which had the following contents:

fbe3e486a4238eda55b9da0ceedc14a6b0152056 F:\INTEGR~1\CHECKER.C 0 57 8 4 20 2005 58392578

d1b2a0dd3ffa34c396aebada1e6bef2a59473467 F:\INTEGR~1\SHA.H 16 5 46 9 10 2003 58392578

0e32540de0106bc120563ce13e72653513088458 F:\INTEGR~1\GLOBAL.H 16 5 38 9 10 2003

58392578

-

-

-

62f0c7a08aad4016a76db98dd8802a54e056cd88 F:\ SIGNAT~1\TESTFILE.C 11 19 8 4 1 2005

58392578

ad77c85a619bb1e4076bb7ea7e3873d2c8028aa1F:\SIGNAT~1\SCANNER.C 14 0 34 4 1 2005 58392578

Later on, one can check the integrity of these files by running CHECKER in its

second mode, which takes this command line:

CHECKER TEST.txt

In this mode, CHECKER just reads in each line of the Checksum file, calculates

the checksum of the file, and determines if it matches the stored checksum. Now if a file

is modified, CHECKER will produce the error that checksum, last modified time as

well as file size differs.

Delhi College of Engineering, Delhi 38

Virus Detection System

CHECKER correctly detected the changes in the file. In the current

implementation of CHECKER, all that happens when an error is detected is that an

error message is printed out to the screen at the same time. At the end a summary is also

printed which shows all the modified files in case of any modifications, otherwise it

prints, “All files are intact”.

5.5.2 The Code

The complete listing for CHECKER is shown in appendix B. This tool is

designed to run under most MS-DOS C Compilers. The main () routine of CHECKER

has to first perform checks to see which mode the user has selected, based solely on the

number of arguments passed on the command line. If argc is equal to 2, main () assumes

that it has been invoked with a single file name as an argument, and it calls

CheckFiles(). If argc is equal to 4 and the first argument is "-c", main () assumes it has

been invoked to build a checksum file, and then it calls BuildChecksumFile(). If neither

of these turns out to be true, a usage message is printed out and the program exits.

5.5.2.1 Building the Checksum File

Of the two possible jobs given to this program, building the Checksum file is the

more complex. Both tasks have to calculate the checksum values for one or more files,

but building the file has the additional job of navigating through the directory tree.

BuildChecksumFile() sets things up for the task by opening up the output file

that is going to receive all the file names and Checksum values. It then makes a call to

the routine, recusfile(), that gives all the filenames. This routine takes two arguments, a

path name and a checksum file FILE pointer.

The pseudo code for this routine looks like this:

 recusfile(path)

 dir = OpenDirectory(path)

 while FilesLeftInDirectory(dir)

 filename = GetNextFile(dir)

 if filename is a directory then

Delhi College of Engineering, Delhi 39

Virus Detection System

 recusfile(filename)

 else

 ProcessFile(filename)

 endif

 end of while

 end of recusfile

Implementing this same function without being able to use recursion would be

considerably more difficult. Examining the body of recusfile() shows that near the

bottom of the routine a call is made to ProcessFile(). This routine then calls

CalculateChecksumFile(), which calculates the Checksum value for the file, using

SHA-1 algorithm. The result is then printed out along with the file name, date, time and

size to the Checksum log file. Thus by these routines, a complete listing of the entire

directory tree is built up, for later use by CHECKER in its checking mode.

5.5.2.2 Calculating the File Checksum

For calculating the Checksum of a given file, SHA-1 algorithm has been used.

The CalculateFileChecksum() routine repeatedly reads in blocks of 512 bytes, and

passes them to the SHAUpdate() routine. Then routine SHAFinal() is used to give the

checksum for the file so far. This process repeats until the entire file has been

processed.

5.5.2.3 Checking the Files

The second mode of operation for this program is the Checksum check. Most of

the work here is done in the CheckFiles() routine. It gets to bypass the directory tree

navigation, since all of the file names it needs to check are already stored in the

Checksum log file. All this routine has to do is repeatedly read in a line from the

Checksum log file containing a 160-bit checksum value, a file name, date and time of

creation, and file size. It then calculates the actual Checksum for the file, and reports on

whether the stored and calculated Checksum values match up.

Delhi College of Engineering, Delhi 40

Virus Detection System

CHECKER can be set up to provide a quick way to check the integrity of any or

all of the files on your system. By calling CHECKER with the -c parameter for every

directory full of executables, a set of Checksum log files is created that can be

periodically checked with a single call to CHECKER. CHECKER operates quickly

enough that we can even include it as part of AUTOEXEC.BAT file under MS-DOS,

without letting it slow down the work too much.

5.6 Comparison of SHA-1 with CRC-32

CRC-32 generates a 32-bit checksum, while SHA-1 generates 160-bit checksum.

The SHA-1 does have attributes that make it very attractive for the verification of files.

These include the following:

• Every bit in the message contributes to the message digest. This means that

changing any bit in the message should change message digest also.

• Relatively small changes in the message should always result in changes in the

message digest. We want to be sure that it would take an extremely unlikely

combination of errors to produce an identical message digest.

• The histogram of output message digests for input messages should tend to be

flat. For a given input message, we want the probability of a given message

digest being produced to be nearly equal across the entire range of possible

message digests from 0 to FFFFFFFFH.

Gilmore Systems has a program called PROVECRC that creates a modified

version of a file that is different, but that has the same CRC as the original. The

program proves that a CRC is not fool-proof for virus detection, for it is possible to

write a virus, much like they wrote PROVECRC, which can add code to the program

without changing the CRC. When CRC-32 and SHA-1 algorithms were used,

PROVECRC created changes undetected by CRC-32, but detected by SHA-1.

SHA-1 gives a larger checksum that makes it more resistant to brute force

attacks, such as Birthday attacks, which choose messages at random in an attempt to

Delhi College of Engineering, Delhi 41

Virus Detection System

generate the same checksum. It is known that CRCs are not cryptographically strong. It

fails to0 provide the required integrity protection and not intended to be used in place of

SHA-1. CRCs will not protect against intentional damage, because it is fairly easy to

fiddle the file to make the checksum come out the same, which is very difficult with

SHA-1. In case of SHA-1, the chances of having two random documents hash to the

same value is very small, which is 1 in 2160, while in the case of CRC, it is 1 in 232. This

means that while CRC-32 will be an excellent judge of unintentional damage to files, it

is possible that an exceptionally clever virus will be able to defeat it.

Though CRC-32 is fast, but not secure. So where security is more important, a

slower, but really secure solution is better than an insecure though fast solution.

Delhi College of Engineering, Delhi 42

Virus Detection System

CHAPTER 6

SIGNATURE SCANNING TECHNIQUE

Among all the methods of virus detection mentioned above, the method that can

detect viruses accurately and also can help in removing them is Signature Scanning

method. Having every virus signature till date in the database, it is easy to detect

majority of viruses. While signature scanning may not be able to detect all possible

viruses, it is still simple and cheap enough to be easily available and useful to the public

at large, and it has the least impact on existing code and hardware. Moreover, it is

simple to add new patterns to an existing scanner whenever new viruses are discovered.

This chapter analyzes the problem of virus detection using Signature Scanning

Technique and its reliance on fast string matching algorithms. It will show that the

problem can be restructured to allow the use of more efficient string matching

algorithms that operate on patterns i.e. virus signatures and will introduce and analyze

Boyer-Moore-Horspool algorithm, a fast string-matching algorithm. Further,

measurement of the actual performance of several search algorithms on a set of virus

signatures is given. The results provide lessons on the structuring of string matching

algorithms in general, and the importance of performance to security.

Given that string matching is a bottleneck and performance is important, there is

at least one way to improve the performance of system that an efficient fast string-

matching algorithm could be used to search file for a set of signatures.

In this virus detection tool, a fast pattern-matching algorithm Boyer-Moore-

Horspool (BMH) has been used. It has better performance than the iterative use of

Boyer-Moore, currently used in some popular virus detection softwares and much better

than an efficient sequential string searching algorithm.

Delhi College of Engineering, Delhi 43

Virus Detection System

Before introducing BMH algorithm, a brief review of the string matching

problem, Sequential, Boyer-Moore and Turbo Boyer-Moore pattern matching

approaches is given below.

6.1 Pattern Matching Algorithms

Assume a text string T of length n and a pattern string P of length m, each

composed of an ordered set of characters from an common alphabet A. The general

problem is to determine the location of P within T, or that T does not contain P.

6.1.1 Sequential pattern matching algorithm

This is the simple sequential search algorithm. It uses a linear and sequential

character-based comparison at all positions in the text between y0 and yn-m-1, whether or

not an occurrence of the pattern x starts at the current position. In case of success in

matching the first element of the pattern x0, each element of the pattern is successively

tested against the text until failure or success occurs at the last position. After each

unsuccessful attempt, the pattern is shifted exactly one position to the right, and this

procedure is repeated until the end of the target is reached.

This algorithm has only one advantage, that it needs no preprocessing of any

kind on the pattern, but at the cost of more search time.

6.1.2 Boyer Moore Algorithm

The Boyer-Moore algorithm is considered as the most efficient pattern-matching

algorithm in usual applications. A simplified version of it or the entire algorithm is

often implemented in text editors for the Search and Substitute commands [41].

The algorithm scans the characters of the pattern from right to left beginning

with the rightmost one. In case of a mismatch (or a complete match of the whole

pattern) it uses two precomputed functions to shift the window to the right. These two

Delhi College of Engineering, Delhi 44

Virus Detection System

shift functions are called the good-suffix shift (also called matching shift) and the bad-

character shift (also called the occurrence shift).

Assume that a mismatch occurs between the character x [i]=a of the pattern and the

character y[i+j]=b of the text during an attempt at position j.

Then, x [i+1 .. m-1]=y[i+j+1 .. j+m-1]=u and x[i] y[i+j]. The good-suffix shift consists

in aligning the segment y [i+j+1 .. j+m-1]=x[i+1 .. m-1] with its rightmost occurrence in

x that is preceded by a character different from x[i].

Figure 6.1. The good-suffix shift, u re-occurs preceded by a character c different

from a.

If there exists no such segment, the shift consists in aligning the longest suffix v

of y [i+j+1 .. j+m-1] with a matching prefix of x.

 Figure 6.2. The good-suffix shift, only a suffix of u re-occurs in x.

The bad-character shift consists in aligning the text character y [i+j] with its

rightmost occurrence in x [0 .. m-2].

Delhi College of Engineering, Delhi 45

Virus Detection System

Figure 6.3. The bad-character shift, a occurs in x.

If y [i+j] does not occur in the pattern x, no occurrence of x in y can include

y[i+j], and the left end of the window is aligned with the character immediately after

y[i+j], namely y[i+j+1].

Figure 6.4. The bad-character shift, b does not occur in x.

Since the bad-character shift can be negative, thus for shifting the window, the

Boyer-Moore algorithm applies the maximum between the good-suffix shift and bad-

character shift. More formally the two shift functions are defined as follows.

The good-suffix shift function is stored in a table bmGs of size m+1.

Let us define two conditions:

• Cs (i, s): for each k such that i < k < m, s k or x [k-s]=x [k]

• Co (i, s): if s <i then x [i-s] x [i]

Then, for 0 i < m: bmGs[i+1]=min{s>0 : Cs(i, s) and Co(i, s) hold}

and we define bmGs[0] as the length of the period of x. The computation of the table

Delhi College of Engineering, Delhi 46

Virus Detection System

bmGs use a table suff defined as follows: for 1 i < m, suff[i]=max{k : x[i-k+1 ..

i]=x[m-k .. m-1]}

The bad-character shift function is stored in a table bmBc of size . For c in :

bmBc[c] = min {i: 1 i <m-1 and x [m-1-i]=c} if c occurs in x, m otherwise.

6.1.2.1 Performance analysis of BM

Tables bmBc and bmGs can be precomputed in time O (m+) before the

searching phase and require an extra-space in O (m+). The searching phase time

complexity is quadratic O (mn), but at most 3n text character comparisons are

performed when searching for a non-periodic pattern. On large alphabets (relatively to

the length of the pattern) the algorithm is extremely fast. When searching for am-1b in bn

the algorithm makes only O (n/m) comparisons, which is the absolute minimum for any

string-matching algorithm in the model where the pattern only is preprocessed.

6.1.3 Turbo Boyer Moore Algorithm
The Turbo-BM algorithm is an amelioration of the Boyer Moore algorithm. It

needs no extra preprocessing and requires only a constant extra space with respect to the

original Boyer-Moore algorithm. It consists of remembering the factor of the text that

matched a suffix of the pattern during the last attempt (and only if a good- suffix shift

was performed) [41].

This technique presents two advantages:

• It is possible to jump over this factor;

• It can enable to perform a turbo-shift.

A turbo-shift can occur if during the current attempt the suffix of the pattern that

matches the text is shorter than the one remembered from the preceding attempt. In this

case let us call u the remembered factor and v the suffix matched during the current

attempt such that uzv is a suffix of x. Let a and b be the characters that cause the

mismatch during the current attempt in the pattern and the text respectively. Then av is

a suffix of x, and thus of u since |v| < |u|. The two characters a and b occur at distance p

Delhi College of Engineering, Delhi 47

Virus Detection System

in the text, and the suffix of x of length |uzv| has a period of length p=|zv| since u is a

border of uzv, thus it cannot overlap both occurrences of two different characters a and

b, at distance p, in the text. The smallest shift possible has length |u|-|v|, which we call a

turbo-shift as shown in figure.

 Figure 6.5 A turbo-shift can apply when |v|<|u|.

Still in the case where |v|<|u| if the length of the bad-character shift is larger than

the length of the good-suffix shift and the length of the turbo-shift then the length of the

actual shift must be greater or equal to |u|+1. Indeed, in this case the two characters c

and d are different since we assumed that the previous shift was a good-suffix shift.

Figure 6.6 c d so they cannot be aligned with the same character in v.

Then a shift greater than the turbo-shift but smaller than |u|+1 would align c and

d with a same character in v. Thus in this case the length of the actual shift must be at

least equal to |u|+1.

Delhi College of Engineering, Delhi 48

Virus Detection System

6.1.3.1 Performance analysis of TBM

The preprocessing phase can be performed in O (m+) time and space

complexity. The searching phase is in O (n) time complexity. The number of text

character comparisons performed by the Turbo-BM algorithm is bounded by 2n.

6.1.4 The Boyer-Moore-Horspool Algorithm

The Boyer-Moore algorithm and its variant Turbo Boyer-Moore are considered

the most efficient pattern-matching algorithms. Both these methods can be preprocessed

and kept in tables. Their time and space complexities depend only on the pattern.

However, although there is a theoretic advantage in using the BM algorithm,

many computational steps in this algorithm are costly in terms of processor instructions.

The cost in time of the computational step was not shown to be amortized by the

economy of character comparisons. This is particularly true of the function that

computes the size comparisons in the skip tables. Simpler search algorithms can often

perform better than algorithms, which skip more characters per comparison, but require

much more work per skip.

Horspool proposed a simplified form of the BM algorithm that uses only a

single auxiliary skip table indexed by the mismatching text symbols i.e. the bad

character heuristic [41]. Baeza-Yates showed that the Boyer-Moore-Horspool algorithm

(BMH) is the best in terms of average case performance for nearly all pattern lengths

and alphabet sizes.

Among all pattern-matching algorithms tested here, the BMH algorithm showed

the best performance in time. Despite its apparent conceptual complexity, the BMH

algorithm is relatively simple to implement. Its time complexity is O (NM) in the worst

case but has better average performance than BM, both analytically and experimentally.

Also because of its low space complexity, the use of the BMH algorithm in any case of

exact string pattern matching, is recommended, whatever the size of the target. Since a

Delhi College of Engineering, Delhi 49

Virus Detection System

virus scanner should be very fast and economical, as well as it should be able to handle

very large files also, without being slow, hence for this purpose BMH algorithm appears

to be the best-choice algorithm.

6.1.4.1 Description of the algorithm

The BMH algorithm requires preprocessing of the pattern, and works by

comparing letter by letter the characters of T with the characters of P to find out where

the pattern matches.

6.1.4.1.1 Implementation and data structures

The BMH algorithm works as follows: a position indicator j is set up for the

text, and a position indicator k is set for the pattern. The matching process starts by

aligning the first letter of P under'' the first letter of T. It is as if we had opened a

window on the text that allows us to see only m characters. Later, this window will slide

to the right, to allow us to view other positions. Another position indication i is required

to record the position of the rightmost text position viewed through the window. i is

initialized to m-1. Starting at letter Pm-1, letter-by-letter comparisons are done between

Tj and Pk. Both j and k are decremented after each successful comparison. These

comparisons continue as long as characters match and as there are uncompared

elements in the pattern. If all characters in the pattern have been successfully compared

(that is k=-1); then we have found the pattern in the text. If a mismatch is detected, the

algorithm recognizes the failure of the current window, and no pattern can be possibly

found. Whether a match is found or not, the window is shifted a certain predesignated

distance d to the right: the position indicator is incremented by d, j is reset to i and k

to m-1. The whole process is repeated until we reach the end of the text.

In order to determine shift distance d, the pattern has to be preprocessed: for

each character a∈ A, a distance ds is computed. This distance depends only on the

position of a in the pattern. When we have to move the window on the right, the right-

Delhi College of Engineering, Delhi 50

Virus Detection System

most character t of the windows determines the shift distance: it is natural to align this

character with the nearest occurrence of t in P. The shift distance can be computed this

way: min{s≥1, Pm-s=t}. If t does not appear in the pattern, we cannot have any match

containing this letter. That is, we know that any window containing this letter t will not

match. So, we can move the window to the right for m characters.

This algorithm can be written this way:

while i < n do {A new valid window is defined}

 j=i

 k=m-1

 while k >= 0 and T[j] = P[k] do

 decrement j

 decrement k

 end while

 if k < 0 then { Found en occurrence of the pattern}

 process to be realized in case of match

 {print the line}

 end if

 I = I + D[ti] {shift the window on the right}

End while

And the preprocessing step can be written as follow:

 For ∀a ∈ A do

 D [a]=m

 End for

 For i=0 to m-2 do

 D [Pi]=m- (i+1)

 End for

Delhi College of Engineering, Delhi 51

Virus Detection System

 Data structures used to implement this algorithm are essentially arrays, which

are efficient data structure adapted to this algorithm. The array containing the pattern is

dynamically allocated, but the array containing the line of the text is statically allocated.

The alphabet A considered contains at most 256 characters (there is a parameter

ALPHABET_SIZE). It is the standard ASCII alphabet, without special characters. It is

worth noting that in C, there is a complete equivalence between a character and an 8

bits integer (A character is stored in memory by its ASCII value). Hence, it is possible

to index an array with characters.

6.2 Description of the Signature Scanner

The tool has two main components: Signature Database and an Engine that

scans files for viruses against signatures stored in the database. They are

complementary to each other and cannot work independently.

6.2.1 Implementation

The first step to implement signature scanner is to build the signature database

of all the viruses known till today. While in the second step, actual virus searching is

done for the viruses stored in signature database.

6.2.1.1 Signature Database

It is a database of uniquely identifiable “signatures” that a virus contains. The

signature for an executable virus typically is a series of machine code bytes that a virus

always contains. In this every virus record has following fields:

1. Virus signature in HEX

2. Type of virus (B: Boot sector, P: partition table, F: file virus)

3. Description of the virus

Delhi College of Engineering, Delhi 52

Virus Detection System

Whenever a new virus appears, database can be updated through a data entry

program. It first asks user to enter the signature. It has to be in HEX and without

commas and blank spaces. Next the type of virus has to be entered and finally the

description of virus can be entered. The virus description includes the virus name,

properties, comments, etc. After all the data has been verified, it is saved to the

signature database.

6.2.1.2 Virus detection engine

It scans boot sector, partition table and files of all types for viruses. The scanner

starts by reading information about viruses from the signature file. Now it knows the

particular sequence of code and is looking for an exact match, which will identify the

code as a virus. This program has to be passed certain command line options. For

example, -F *.COM checks all .COM files and -P 1 signifies a check of the partition

table of the first hard disk.

The database file contains, besides the signature and description of the virus, its

type as well. That is, whether it is a Boot sector, Partition or a File type of virus.

Depending on the value of the type field, an array of structures representing these virus

types is created to represent each virus record. If at the command line user passes option

–F C:*.EXE, this means that a check with all file virus signatures for all EXE files in

C: directory. Now the signatures of all the file viruses are dumped into the array of

structures. And signature by signature all executable files are searched for each virus.

The same procedure is followed for boot sector and partition table also.

For efficiency point of view, Firstchar array stores the first nibble of all

signatures, and if these first nibble matches while scanning the executables, then only

further matching with the respective signature is done. To keep the scanning speed fast,

Boyer-Moore-Horspool algorithm has been used, which is a very fast exact string-

matching algorithm.

Delhi College of Engineering, Delhi 53

Virus Detection System

Every file will be scanned from first byte to last byte against the signature

database. If certain anomalous patterns are detected, it will notify the user.

6.3 Performance analysis

6.3.1 Measures

All algorithms have been implemented in C. The tests were conducted on a 750

MHz Pentium IV processor PC with 128-Mbytes RAM having 20-GB hard disk divided

into four drives of 5 GB each, running under MS DOS 6.0. The 1127 target files, which

occupied total size 1.5 GB, were searched.

All preprocessing loads were measured within their respective algorithms. The

parameters of the function calls of each algorithm used pointers to zero-terminated

strings (target and signature) in order to avoid variance due to memory management.

All memory for strings was allocated before the calls. The functions, however, were

self-contained. The functions return the value 0 in case of failure, or else they return the

position in the target where the first occurrence of pattern was found. No preprocessing

or global variables were needed for their execution. Whenever possible, the functions

were optimized for speed. Time measures were done using the motherboard's high-

resolution performance counter.

The target text was divided into slices of 1024 characters, except the last one,

which might have fewer characters. All measurements were done in an incremental

manner growing in steps from the size of one slice to the whole target size. All

algorithms were tested for the various patterns.

All the algorithms considered in this dissertation incur an approximately

constant cost in space. In the worst case, the extra space needed for processing is a

linear function of the length of the pattern, which is negligible. Moreover, in this

analysis, space complexity is similar for all algorithms tested.

The accuracy with which this tool could detect viruses has been tested by using

the standard VB set of viruses.

Delhi College of Engineering, Delhi 54

Virus Detection System

6.3.2 Choice of Patterns

All tests were performed using three types of signatures. The first type tested

was Boot Sector Virus Signature. This word was chosen because it will be found in boot

sector of the system. The second pattern was for Partition Table Virus. It infects

partition table of the hard disk. The last pattern belonged to file type viruses. These

viruses infect files in system; hence the pattern is located somewhere in file.

6.3.3 Search for Boot sector viruses

The first test was done in boot sector using the boot sector virus signatures. In

this case size of target text was 512 bytes. The difference in performance of all BM and

its variants was subtle, because of the smaller size of target text. But it is worth noting

that BMH is 1.72 times faster than the sequential algorithm.

6.3.4 Search for Partition table viruses
In the second test partition table of hard disk was searched for partition table

type virus signatures. Since here also the target text size is the same as that of the boot

sector, so results were also the same.

Delhi College of Engineering, Delhi 55

Virus Detection System

6.3.5 Search for File type viruses

In this test, 1127 files occupying 1.5 GB space were searched.

Database Size

(No. of Patterns)

Sequential Algorithm

(Sec)

TBM

(Sec)

BM

(Sec)

BMH

(Sec)

20 8.6 6.8 6.3 5.3

40 10.7 9.4 8.2 7.2

60 11.4 10.2 9.2 8.5

80 15.6 14.8 11.5 9.6

100 18.5 18.1 13.9 11.8

Table 6.1 Performance on the basis of Signature Database Size

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120

Database Size (No of Signatures)

Sc
an

 T
im

e
(S

ec
s)

Sequential
TBM
BM
BMH

Figure 6.7 Performance graph on the basis of Signature Database size

Delhi College of Engineering, Delhi 56

Virus Detection System

Table 6.1 and figure 6.7 shows the performance of all the algorithms by varying

database size. It is clearly indicated by this table and figure that BMH is the fastest

algorithm among others shown here.

6.3.6 Performance According to Pattern Size

Algorithms that do not use a skip table to optimize the shift function are rather

independent of the pattern size in their time complexity. This is not the case for the

Boyer-Moore algorithm and its variants. In these algorithms, larger pattern size means

longer the skip shift in case of mismatch and, therefore, the faster the algorithm.

Nevertheless, the BMH algorithm is still fastest among all algorithms tested. The

overall results of all algorithms tested are shown in table 6.2 and figure 6.8.

Pattern Size

(No. of Chars)

Sequential Algorithm

(Sec)

TBM

(Sec)

BM

(Sec)

BMH

(Sec)

8 4.34 3.46 3.35 3.29

16 4.50 3.35 3.29 3.24

20 5.27 2.91 2.75 2.08

32 5.34 2.23 2.14 1.89

48 6.26 1.86 1.75 1.70

Table 6.2 Performance on the basis of the pattern size

Delhi College of Engineering, Delhi 57

Virus Detection System

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60

Pattern Size (No of Chars)

Sc
an

 T
im

e
(S

ec
s)

Sequential
TBM
BM
BMH

Figure 6.8 Performance graph on the basis of the pattern size

This table emphasizes the extreme speed of the BMH algorithm and the slight

advantage to long patterns. It shows also that the sequential algorithm, compared with

the BMH algorithm, performs less well with long patterns than with short ones.

6.4 Summary of results

Programs that detect viruses by scanning for known patterns are judged by two

criteria: how fast they scan and how well they detect the viruses. The scanning speed of

this tool is tested by searching the whole of the hard disk on an IBM PC compatible

system for viruses.

The BMH algorithm is a fast and easy-to-implement algorithm. It typically

performs better than the Boyer Moore algorithm, which is mostly used for string pattern

matching. Considering the growing amount of text, that needs to be handled by a virus

detection system, the BMH algorithm is worth implementing in any case. Other

algorithms that could theoretically perform better do not, compared with the BMH

algorithm under real conditions. If long patterns are used, a more conservative control

Delhi College of Engineering, Delhi 58

Virus Detection System

of the right-to-left comparison loop can slightly improve the time performance of the

BMH algorithm.

This virus detection tool is very efficient. Several techniques are used to keep a

handle on performance. First, signatures are classified by the type of infection they

represent like boot sector, partition table or file type. Through a process of elimination,

when a particular file is scanned, only the signatures that pertain to that file type is used

to keep scan times down. For example, a boot sector signature would not be used to

scan a file. If a signature matches, with the ‘Virus Detected’ warning, the name of file,

the offset at which it is found in the file and the description of the virus is displayed on

the screen.

The initialization overhead of reading in the patterns from signature database

and storing them in the internal structure “virus” is very small. The scanner has the

potential to scan an almost infinite range of different file types. In practice, however,

not all file types need to be scanned because some types of file, e.g. ASCII text files are

not capable of being virus carriers. It is very easy to use. Simply execute the scanner

and it provides concise results. It has options describing which disk, files, or directories

to scan, but the user does not have to be a computer expert to select the right parameters

or comprehend the results.

Delhi College of Engineering, Delhi 59

Virus Detection System

CHAPTER 7

CONCLUSION AND FUTURE WORK

This work represents a prototype of a virus detection system. Therefore there is

a lot of work that could still be done from both a research point of view and from a

commercial point of view. This chapter will suggest some of the directions that future

research could take as well as what would be necessary to make the move from research

to commercial viability.

In this virus detection system, viruses are detected by using two virus detection

tools that is an integrity checker and signature scanner. Viruses have great difficulty in

infecting machine without making some change in it. To detect a change is to begin the

process of virus detcetion, that is the approach integrity checker is using. It is using

SHA-1 algorithm to generate 160-bit checksum, which is large enough to avoid forgery.

It also computes file size, creation date, and last modification date, to ensure that a virus

is detected in case of any mismatch. Integrity checker detects all the infections whether

it is by known or unknown viruses and its performance is acceptable. Virus Scanner is

primarily used to detect if an executable contains virus code or not, but it can also be

used to detect resident viruses by scanning memory instead of executables. While being

prone to false positives sometimes, it is pretty accurate. Signature-based approaches

should not be abandoned, as they are useful for cleaning up infected computers, after

getting the information about area of infection and its cause.

The implementation demonstrated here provided good results within acceptable

time. By carefully using the BMH algorithm, the performance of virus detection system

is improved as compared to the performance of a Boyer Moore algorithm-based system.

Virus detection in general is an undecidable problem. We cannot devise a

method that can detect all possible viruses. Our method is also bounded by this

theoretical limit. For instance, it cannot detect the presence of virus before infection.

Delhi College of Engineering, Delhi 60

Virus Detection System

Currently the signature database has 100 signatures, but to use it in the practical world

all the existing virus signatures have to be maintained in the database.

If storage and time are not at a premium, then integrity checker can combine two

or more techniques to generate the checksum. In this way more security can be obtained

but at the cost of speed and memory. Having shown within this work, the approaches to

virus detection does demonstrate promising results, the next step would be to include a

technique that can detect the viruses before they have any chance to infect the system.

Delhi College of Engineering, Delhi 61

Virus Detection System

REFERENCES

[1] Leonard Adleman. An abstract theory of computer viruses. In Lecture Notes in

Computer Science, vol 403. Springer-Verlag, 1990.

[2] Fred Cohen. Computer Viruses. PhD thesis, University of Southern California, 1985.

[3] Deborah Russell and Sr. G. T. Gangemi. Computer Security Basics. O’Reilly &

Associates,Cambridge, MA, 1991.

[4] Alan Solomon. PC VIRUSES Detection, Analysis and Cure. Springer-Verlag,

London, 1991.

[5]Andrew S TanenBaum, “Modern operating System”. Prentice Hall of India, 2003.

[6]Richard D. Pethia, “Computer Viruses: The Disease, the Detection, and the

Prescription for Protection”, Carnegie Mellon University, November 6, 2003.

[7]Jan Hruska, “Computer virus prevention: a primer”, Oxford University, August

2000.

[8] Jake Ferry. “A Study and Evaluation of Virus Protection Software Marketed to

Average Computer Users.” Dissertation ES200006, Department of Computer Science,

University of Virginia, 2000.

[9] Lisa J. Carnahan and John P. Wack. Computer Viruses and Related Threats: A

Management Guide. NIST Special Publication 500-166, National Institute of Standards

and Technology, 1989.

[10] David Chess. Common viruses. Virus News and Reviews, 1:106– 107, March 1992.

[11] Frederick B. Cohen. Acost analysis of typical computer viruses and defenses. In

Safe Computing: Proceedings of the 4th Computer Virus & Security Con-ference, pages

737– 750. DPMA, 1991.

Delhi College of Engineering, Delhi 62

Virus Detection System

[12] George I. Davida, Yvo G. Desmedt, and Brian J. Matt. Defending systems against

viruses through cryptographic authentication. In Proceedings of the 1989 IEEE

Symposium on Computer Security and Privacy, pages 312– 318, 1989.

[13] Peter J. Denning, editor. Computers Under Attack: Intruders, Worms, and Viruses.

ACM Books/Addison-Wesley, 1991.

[14] Frederick B. Cohen; Computer Viruses, Theory and Experiments; 7th Security

Conference, DOD/NBS Sept 1984.

[15] David Ferbrache. A Pathology of Computer Viruses. Springer-Verlag, Lon-don,

1992.

[16] Lance Hoffman, editor. Rogue Programs: Viruses, Worms, and Trojan Horses.

Van Nostrand Reinhold, 1990.

[17] Keith Jackson. Product review: Central Point Anti-Virus. Virus Bulletin, pages 21–

23, May 1992.

[18] Keith Jackson. Product review: SmartScan. Virus Bulletin, pages 16– 18, July

1992.

[19] Keith Jackson. Product review: Vi-Spy Professional Edition. Virus Bulletin, pages

24– 26, August 1992.

[20] Maria M. King. Identifying and controlling undesirable program behaviors. In

Proceedings of the 14th National Computer Security Conference, pages 283– 294,

1991.

[21] Yisrael Radai. Checksumming techniques for anti-viral purposes. Virus Bulletin

Conference, 6:39– 68, September 1991.

Delhi College of Engineering, Delhi 63

Virus Detection System

[22] Eugene H. Spafford, Kathleen A. Heaphy, and David Ferbrache. Com-puter

Viruses: Dealing with Electronic Vandalism and Programmed Threats. ADAPSO,

Arlington, VA, 1989.

[23] Steve R. White, David M. Chess, and Chengi Jimmy Kuo. Coping with computer

viruses and related problems. International Business Machines Corporation, 1989.

[24] Dark Angel’s Phunky Virus Writing Guide, URL:

http://vx.netlux.org/lib/static/vdat/tuda0001.htm

[25] GIAC Code of Ethics, URL: http://www.giac.org/COE.php

[26] ZDNet UK. New page. 9 May 2000. ZDNet UK. 9 May 2000

<http://www.zdnet.co.uk/news/2000/18/ns-15265.html>.

[27] F. Cohen, "A Complexity Based Integrity Maintenance Mechanism", Conference

on Information Sciences and Systems, Princeton University, March 1986.

[28] M. Pozzo and T. Gray, "An Approach to Containing Computer Viruses",

Computers and Security, IFIP-SEC V6#2, 1987.

[29] R. Rivest, A. Shamir, and L. Adleman, "A Method for Obtaining Digital Signatures

and Public-Key Cryptosystems", CACM V21 (1978) pp 120-126.

[30] National Institute of Standards and Technology, Specifications for the SECURE

HASH STANDARD, August 2002.

[31] National Institute of Standards and Technology, Descriptions of SHA-256, SHA-

384, and SHA-512, August 2002.

[32] National Institute of Standards and Technology, Description of SHA-1, Federal

Information Processing Standards Publication 180-1, 1995 April 17.

[33] SANS Institute, A Guide to Hash Algorithm by Britt Savage, April 2003.

Delhi College of Engineering, Delhi 64

Virus Detection System

[34] SHA: A Design for Parallel Architectures Antoon Bosselears, Rene Govaerts and

Joos Vandewalle, 25th February 1997.

[35] Fast Hashing on the Pentium, Antoon Bosselears, Rene Govaerts and Joos

Vandewalle, Lecture Notes in Computer Science , Vol. 1109, pp 298, 1996.

[36] Michael Roe, Cambridge University Computer Laboratory, Performance of

Symmetric Ciphers and One-way hash functions.

[37] RFC 3174, Secure Hash Algorithm 1, September 2001.

[38] ACM SIGCOMM Computer Communication and Review, Performance

Analysis of MD5, Joseph D. Touch, Volume 25, Issue 4, October 1995.

[39] Cryptography and Network Security: Principles and Practice(3rd Edition),

William Stallings.

[40] Introduction to Public Key Cryptography, http://www.netscape.com.

[41] Alfred V. Aho. Algorithms for finding patterns in strings. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, chapter 5, pages 256– 300.Elsevier

Science Publishers, 1990.

Delhi College of Engineering, Delhi 65

Virus Detection System

APPENDIX A: OUTPUT SNAPSHOTS

I. Integrity Checker Output

C:\TC\BIN>checker -c E:*.* edir.txt

Scanning E:\MAJORP~1\FILEVE~1.HTM ...
Scanning E:\MAJORP~1\INTEGR~1.TXT
Scanning E:\MAJORP~1\REPORT~1.DOC
Scanning E:\MAJORP~1\REPORT~2.DOC
Scanning E:\MAJORP~1\REPORT~3.DOC
Scanning E:\MAJORP~1\REPORT~4.DOC
Scanning E:\MAJORP~1\SIGNAT~1\SIGNVIR.DAT .
Scanning E:\MAJORP~1\SIGNAT~1\TESTFILE.C .
Scanning E:\MAJORP~1\SIGNAT~1\WRITEFIL.C .
Scanning E:\MAJORP~1\SIGNAT~1\SCANNER.C .
Scanning E:\MAJORP~1\SIGNAT~1\APR22S~1\SCANNER.EXE ..
Scanning E:\MAJORP~1\SIGNAT~1\APR22S~1\SCANNER.C .
Scanning E:\MAJORP~1\SIGNAT~1\24APR~1\SCANNER1.EXE ..
Scanning E:\MAJORP~1\SIGNAT~1\24APR~1\SCANNER1.C .
Scanning E:\MAJORP~1\SIGNAT~1\24APR~1\SCANNER.C .
Scanning E:\MAJORP~1\SIGNAT~1\24APR~1\SCANGEN.C .
Scanning E:\MAJORP~1\SIGNAT~1\24APR~1\SCANNER.EXE ..
Scanning E:\MAJORP~1\SIGNAT~1\24APR~1\SCANGEN.EXE ..
Scanning E:\MAJORP~1\SIGNAT~1\26APRB~1\SCANNER.EXE ..
Scanning E:\MAJORP~1\SIGNAT~1\26APRB~1\SCANNER.C .
Scanning E:\MAJORP~1\SIGNAT~1\13MAY~1\SCANGEN.C .
Scanning E:\MAJORP~1\SIGNAT~1\13MAY~1\SCANNER.C .
Scanning E:\MAJORP~1\SIGNAT~1\13MAY~1\SCANNER.BAK .
Scanning E:\MAJORP~1\SIGNAT~1\13MAY~1\SCANNER.EXE
Scanning E:\MAJORP~1\INTEGR~2\24APR~1\CHEKSHA1.C ..
Scanning E:\MAJORP~1\INTEGR~2\24APR~1\CHECKER.C ..
Scanning E:\MAJORP~1\INTEGR~2\24APR~1\CRC_32\CHECKCRC.EXE ..
Scanning E:\MAJORP~1\INTEGR~2\24APR~1\CRC_32\CHECKCRC.C .
Scanning E:\PROJECT\DATABSE.BAK .
Scanning E:\PROJECT\SIGDETEC.BAK .
Scanning E:\PROJECT\CERTIF~1.DOC
Scanning E:\PROJECT\CONT.DOC ..
Scanning E:\PROJECT\FINALR~1.DOC
Scanning E:\PROJECT\FRONTP~1.DOC
Scanning E:\PROJECT\SOURCE~1.DOC

Delhi College of Engineering, Delhi 66

Virus Detection System

C:\TC\BIN>checker edir.txt

Checking file E:\MAJORP~1\FILEVE~1.HTM ... OK
Checking file E:\MAJORP~1\INTEGR~1.TXT OK
Checking file E:\MAJORP~1\REPORT~1.DOC OK
Checking file E:\MAJORP~1\REPORT~2.DOC OK
Checking file E:\MAJORP~1\REPORT~3.DOC OK
Checking file E:\MAJORP~1\REPORT~4.DOC OK
Checking file E:\MAJORP~1\SIGNAT~1\SIGNVIR.DAT . OK
Checking file E:\MAJORP~1\SIGNAT~1\TESTFILE.C . OK
Checking file E:\MAJORP~1\SIGNAT~1\WRITEFIL.C . OK
Checking file E:\MAJORP~1\SIGNAT~1\SCANNER.C . OK
Checking file E:\PROJECT\DATABSE.BAK . OK
Checking file E:\PROJECT\SIGDETEC.BAK . OK
Checking file E:\PROJECT\CERTIF~1.DOC OK
Checking file E:\PROJECT\CONT.DOC .. OK
Checking file E:\PROJECT\FINALR~1.DOC OK
Checking file E:\PROJECT\FRONTP~1.DOC OK
Checking file E:\PROJECT\SOURCE~1.DOC OK
Checking file E:\MAJORP~1\FILEVE~1.HTM ... OK
Checking file E:\MAJORP~1\INTEGR~1.TXT OK
Checking file E:\MAJORP~1\REPORT~1.DOC OK
Checking file E:\MAJORP~1\REPORT~2.DOC OK
Checking file E:\MAJORP~1\REPORT~3.DOC
Date of creation of this file differs
Error: E:\MAJORP~1\REPORT~3.DOC has been modified either by user or by
some malicious program
Checking file E:\MAJORP~1\REPORT~4.DOC OK
Checking file E:\MAJORP~1\SIGNAT~1\SIGNVIR.DAT . OK
Checking file E:\MAJORP~1\SIGNAT~1\TESTFILE.C . OK
Checking file E:\MAJORP~1\SIGNAT~1\WRITEFIL.C . OK
Checking file E:\MAJORP~1\SIGNAT~1\SCANNER.C . OK
Checking file E:\MAJORP~1\SIGNAT~1\APR22S~1\SCANNER.EXE .. OK
Checking file E:\MAJORP~1\SIGNAT~1\APR22S~1\SCANNER.C . OK
Checking file E:\MAJORP~1\SIGNAT~1\24APR~1\SCANNER1.EXE .. OK
Checking file E:\MAJORP~1\SIGNAT~1\24APR~1\SCANNER1.C . OK
Checking file E:\MAJORP~1\SIGNAT~1\24APR~1\SCANNER.C . OK
Checking file E:\MAJORP~1\SIGNAT~1\24APR~1\SCANGEN.C . OK
Checking file E:\MAJORP~1\SIGNAT~1\24APR~1\SCANNER.EXE ..
Last modified date of this file differs
Error: E:\MAJORP~1\SIGNAT~1\24APR~1\SCANNER.EXE has been modified either by user or
by some malicious program

Checking file E:\MAJORP~1\SIGNAT~1\24APR~1\SCANGEN.EXE .. OK
Checking file E:\MAJORP~1\SIGNAT~1\26APRB~1\SCANNER.EXE .. OK
Checking file E:\MAJORP~1\SIGNAT~1\26APRB~1\SCANNER.C . OK

Delhi College of Engineering, Delhi 67

Virus Detection System

Checking file E:\MAJORP~1\SIGNAT~1\13MAY~1\SCANGEN.C .
Checksum of this file differs
Error: E:\MAJORP~1\SIGNAT~1\13MAY~1\SCANGEN.C has been modified
either by user or by some malicious program

Checking file E:\MAJORP~1\INTEGR~2\20APR~1\Q.TXT . OK
Checking file E:\MAJORP~1\INTEGR~2\20APR~1\SHA.H . OK
Checking file E:\MAJORP~1\INTEGR~2\20APR~1\W.TXT . OK
Checking file E:\MAJORP~1\INTEGR~2\24APR~1\CHEKSHA1.EXE ... OK
Checking file E:\MAJORP~1\INTEGR~2\24APR~1\CHEKSHA1.C .. OK
Checking file E:\MAJORP~1\INTEGR~2\24APR~1\CHECKER.C .. OK
Checking file E:\MAJORP~1\INTEGR~2\24APR~1\CRC_32\CHECKCRC.EXE .. OK
Checking file E:\MAJORP~1\INTEGR~2\24APR~1\CRC_32\CHECKCRC.C . OK
Checking file E:\PROJECT\DATABSE.BAK . OK
Checking file E:\PROJECT\SIGDETEC.BAK . OK
Checking file E:\PROJECT\CERTIF~1.DOC OK
Checking file E:\PROJECT\CONT.DOC .. OK
Checking file E:\PROJECT\FINALR~1.DOC OK
Checking file E:\PROJECT\FRONTP~1.DOC OK
Checking file E:\PROJECT\SOURCE~1.DOC OK

 ****** Summary ******

 Modified Files are:
 E:\MAJORP~1\REPORT~3.DOC
 E:\MAJORP~1\SIGNAT~1\24APR~1\SCANNER.EXE
 E:\MAJORP~1\SIGNAT~1\13MAY~1\SCANGEN.C

Delhi College of Engineering, Delhi 68

Virus Detection System

II. Database.exe Output

********** DATABASE ENTRY PROGRAM **************
Every virus record will have three fields:
 1. Signature in HEX
 2. Type of the virus
 3. Description of virus

Enter the signature of virus in HEXADECIMAL (without comma and blank spaces):
DD7A0BA8

Enter the TYPE of Virus (P: partition table, B: Boot sector, F: File virus):
Type of virus is F

Enter description of the virus:
Code Red Virus

Are the details regarding this virus correct? (Y/n): y
Do you wish to continue? (Y/n): n

III. Scanner Output

(A) If this program is not run through command prompt then following error is
displayed on screen.

ERROR: Please run the program through command prompt and then
 follow the menu given below:

 1.Enter -B<drive no> to check the Boot Sector
 2.Enter -P<hard disk no> to check the Partition Table
 3.Enter -F<file specification> to check the files

(B) Program run through command prompt and an option to check the boot sector has
been given:

C:\TC\BIN>scanner -b

 No of signatures in database : 100

 Checking Boot Sector : A (Boot sector of Floppy)...........

*** No viruses present ***

Delhi College of Engineering, Delhi 69

Virus Detection System

(C) Option to check the partition table of hard disk 1 is provided:

C:\TC\BIN>scanner -p

 No of signatures in database : 100

 Checking partiton table of specified Hard Disk: 1……………

*** No viruses present ***

(D) Output when all the Executable files in C Directory has to be checked:

C:\TC\BIN>scanner -f C:/*.EXE

 No of signatures in database : 100

Type of files to be scanned is C:/*.EXE

Checking C:/*.EXE files.......
Checking file C:/TC.EXE
Checking file C:/WINDOWS*.EXE
Checking file C:/WINDOWS\HWINFO.EXE
Checking file C:/WINDOWS\CLSPACK.EXE
Checking file C:/WINDOWS\DRWATSON.EXE
Checking file C:/WINDOWS\EXPLORER.EXE
Checking file C:/WINDOWS\EXTRAC32.EXE
Checking file C:/WINDOWS\FONTVIEW.EXE
Checking file C:/WINDOWS\GRPCONV.EXE
Checking file C:/WINDOWS\HH.EXE
Checking file C:/WINDOWS\JVIEW.EXE
Checking file C:/WINDOWS\MSNMGSR1.EXE
Checking file C:/WINDOWS\NETCONN.EXE
Checking file C:/WINDOWS\PIDSET.EXE
Checking file C:/WINDOWS\SETDEBUG.EXE
Checking file C:/WINDOWS\SIGVERIF.EXE
Checking file C:/TC\BIN\CH24_2.EXE
Checking file C:/TC\BIN\CH24_25.EXE
Checking file C:/TC\BIN\CPP.EXE
Checking file C:/TC\BIN\DPMIINST.EXE
Checking file C:/TC\BIN\DPMILOAD.EXE
Checking file C:/TC\BIN\DPMIRES.EXE
Checking file C:/TC\BIN\EX1.EXE
Checking file C:/TC\BIN\GREP2MSG.EXE
Checking file C:/TC\BIN\MAKE.EXE
Checking file C:/TC\BIN\MAKER.EXE

Delhi College of Engineering, Delhi 70

Virus Detection System

Checking file C:/TC\BIN\PRJ2MAK.EXE
Checking file C:/TC\BIN\PRJCFG.EXE
Checking file C:/TC\BIN\PRJCNVT.EXE
Checking file C:/TC\BIN\TASM2MSG.EXE
Checking file C:/TC\BIN\TC.EXE
Checking file C:/TC\BIN\TCC.EXE
Checking file C:/TC\BIN\TDUMP.EXE
Checking file C:/TC\BIN\TEMC.EXE
Checking file C:/TC\BIN\TIMEIT.EXE
Checking file C:/TC\BIN\TLIB.EXE
Checking file C:/TC\BIN\TLINK.EXE
Checking file C:/TC\BIN\TRANCOPY.EXE
Checking file C:/TC\BIN\TRIGRAPH.EXE
Checking file C:/TC\BIN\TRY1.EXE
Checking file C:/GHOSTGUM\GSVIEW\UNINSTGS.EXE
Checking file C:/GHOSTGUM\GSVIEW\GSPRINT.EXE
Checking file C:/GHOSTGUM\GSVIEW\EPSTOOL.EXE
Checking file C:/GHOSTGUM\PSTOTEXT*.EXE
Checking file C:/GHOSTGUM\PSTOTEXT\PSTOTXT3.EXE
Checking file C:/GHOSTGUM\PSTOEDIT*.EXE
Checking file C:/GHOSTGUM\PSTOEDIT\PSTOEDIT.EXE
**** No Viruses Detected****

(E) Output when option to check all *.C files in C directory is given:

C:\TC\BIN>scanner -f C:*.C

 No of signatures in database: 100

Type of files to be scanned is C:*.C

Checking C:*.C files.......
Checking file C:\WINDOWS*.C
Checking file C:\WINDOWS\SYSTEM*.C
Checking file C:\WINDOWS\SYSTEM\MUI*.C
Checking file C:\WINDOWS\SYSTEM\MUI\0401*.C
Checking file C:\WINDOWS\SYSTEM\MUI\0403*.C
Checking file C:\WINDOWS\SYSTEM\MUI\0404*.C
Checking file C:\WINDOWS\SYSTEM\MUI\0405*.C
Checking file C:\WINDOWS\SYSTEM\MUI\0406*.C
Checking file C:\WINDOWS\SYSTEM\MUI\0407*.C
Checking file C:\WINDOWS\SYSTEM\MUI\0408*.C
Checking file C:\WINDOWS\SYSTEM\MUI\0409*.C
Checking file C:\WINDOWS\SYSTEM\MUI\040B*.C

Delhi College of Engineering, Delhi 71

Virus Detection System

Checking file C:\WINDOWS\SYSTEM\MUI\040C*.C
Checking file C:\WINDOWS\SYSTEM\MUI\040D*.C
Checking file C:\WINDOWS\SYSTEM\MUI\040E*.C
Checking file C:\MYDOCU~1\SUNITA~1\SIGDETEC.C
Checking file C:\MYDOCU~1\SUNITA~1\DATABSE.C
Checking file C:\MYDOCU~1\PROJECT*.C
Checking file C:\TC*.C
Checking file C:\TC\BGI*.C
Checking file C:\TC\BGI\BGIDEMO.C
Checking file C:\TC\BIN*.C
Checking file C:\TC\BIN\CH24_25.C
Checking file C:\TC\BIN\SIGDETEC.C
Checking file C:\TC\BIN\TESTFILE.C

****** Virus Detected ******
 Signature (dd7a0ba8) found at offset 76 in C:\TC\BIN\TESTFILE.C file.
 Name of Virus: Code Red

Checking file C:\TC\BIN\A.C
Checking file C:\TC\BIN\TEST1.C
Checking file C:\TC\BIN\TEST2.C
Checking file C:\TC\BIN\TEST3.C
Checking file C:\TC\BIN\WRITEFIL.C

****** Virus Detected ******
 Signature (dd7a0ba8) found at offset 105 in C:\TC\BIN\WRITEFIL.C file.
 Name of Virus: Code Red

Checking file C:\TC\BIN\DATABSE.C
Checking file C:\TC\BIN\CPROGR~1\TEST.C
Checking file C:\TC\BIN\CPROGR~1\ABS.C
Checking file C:\TC\BIN\CPROGR~1\TEST1.C
Checking file C:\TC\BIN\CPLUSP~1*.C
Checking file C:\TC\BIN\ANTIVI~1*.C
Checking file C:\TC\BIN\ANTIVI~1\SIGDETEC.C
Checking file C:\TC\BIN\ANTIVI~1\DATABSE.C
Checking file C:\TC\BIN\ANTIVI~1\PROJEC~1*.C
Checking file C:\TC\BIN\ANTIVI~1\PROJEC~1\BOOTVACI.C
Checking file C:\TC\BIN\ANTIVI~1\PROJEC~1\MEMCHE.C
Checking file C:\TC\BIN\ANTIVI~1\PROJEC~1\PARTIVAC.C
Checking file C:\TC\BIN\ANTIVI~1\PROJEC~1\SIGDETEC.C
Checking file C:\TC\BIN\ANTIVI~1\PROJEC~1\DATABSE.C
Checking file C:\TC\BIN\ANTIVI~1\WORKING*.C
Checking file C:\TC\BIN\ANTIVI~1\WORKING\SIGDETEC.C
Checking file C:\TC\BIN\ANTIVI~1\WORKING\DATABSE.C
Checking file C:\TC\BIN\DEBUG*.C

Delhi College of Engineering, Delhi 72

Virus Detection System

Checking file C:\TC\CLASSLIB*.C
Checking file C:\TC\CLASSLIB\EXAMPLES*.C
Checking file C:\TC\CLASSLIB\INCLUDE*.C
Checking file C:\TC\CLASSLIB\LIB*.C
Checking file C:\TC\CLASSLIB\OBJS*.C
Checking file C:\TC\CLASSLIB\OBJS\DL*.C
Checking file C:\TC\CLASSLIB\OBJS\DS*.C
Checking file C:\TC\EXAMPLES\BARCHART.C
Checking file C:\TC\EXAMPLES\CPASDEMO.C
Checking file C:\TC\EXAMPLES\GETOPT.C
Checking file C:\TC\EXAMPLES\GREP2MSG.C
Checking file C:\TC\EXAMPLES\HELLO.C
Checking file C:\TC\EXAMPLES\MATHERR.C
Checking file C:\TC\EXAMPLES\PLOTEMP.C
Checking file C:\TC\EXAMPLES\PLOTEMP1.C
Checking file C:\TC\EXAMPLES\PLOTEMP2.C
Checking file C:\TC\EXAMPLES\PLOTEMP3.C
Checking file C:\TC\EXAMPLES\PLOTEMP4.C
Checking file C:\TC\EXAMPLES\PLOTEMP5.C
Checking file C:\TC\EXAMPLES\PLOTEMP6.C
Checking file C:\TC\EXAMPLES\SALESTAG.C
Checking file C:\TC\EXAMPLES\TASM2MSG.C
Checking file C:\TC\EXAMPLES\TCALC*.C
Checking file C:\TC\EXAMPLES\TCALC\TCALC.C
Checking file C:\TC\EXAMPLES\TCALC\TCDISPLY.C
Checking file C:\TC\EXAMPLES\TCALC\TCINPUT.C
Checking file C:\TC\EXAMPLES\TCALC\TCOMMAND.C
Checking file C:\TC\EXAMPLES\TCALC\TCPARSER.C
Checking file C:\TC\EXAMPLES\TCALC\TCUTIL.C

Delhi College of Engineering, Delhi 73

Virus Detection System

APPENDIX B: SOURCE CODE

(I) INTEGRITY CHECKER

CHECKER.C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <io.h>
#include<conio.h>
#include <stdarg.h>
#include <dos.h>

#include "sha.h"
#include "endian.h"

/* the SHS block size and message digest sizes, in bytes */

#define SHS_DATASIZE 64
#define SHS_DIGESTSIZE 20

/* SHS f() - functions */

/* #define f1(x,y,z) ((x & y) | (~x & z)) // Rounds 0-19 */

#define f1(x,y,z) (z^ (x & (y ^ z))) /* Rounds 0 -19 */
#define f2(x,y,z) (x ^ y ^ z) /* Rounds 20-39 */

/* #define f3(x,y,z) ((x & y) |(x & z) | (y & z)) //Rounds 40-59 */

#define f3(x,y,z) ((x & y) | (z & (x | y))) /* Rounds 40-59 */
#define f4(x,y,z) (x ^ y ^ z)

/* The SHS Mysterious Constants */

#definek1 0x5A827999L
#define k2 0x6ED9EBA1L
#define k3 0x8F1BBCDCL
#define k4 0xCA62C1D6L

/* SHS initial values */

Delhi College of Engineering, Delhi 74

Virus Detection System

#defineh0Init 0x67452301L
#define h1Init 0xEFCDAB89L
#defineh2Init 0x98BADCFEL
#defineh3Init 0x10325476L
#define h4Init 0xC3D2E1F0L

/* 32-bit rotate left */

#define ROTL(n,X) (((X) << n) | ((X) >> (32 - n)))

#define expand(W,i) (W[i&15] = ROTL(1, (W[i&15] ^ W[(i-14) & 15] ^ \
 W[(i-8)&15] ^ W[(i-3)&15])))
#define subRound(a,b,c,d,e,f,k,data) \
 (e+= ROTL(5,a) + f(b,c,d) + k + data, b = ROTL(30,b))

void SHAInit(SHA_CTX * shsInfo);
static void SHSTransform(UINT4 * digest, UINT4 * data);
static void longReverse(UINT4 * buffer, int byteCount, int Endianness);
void SHAUpdate(SHA_CTX * shsInfo, BYTE * buffer, int count);
void SHAFinal(BYTE * output, SHA_CTX * shsInfo);
static void SHAtoByte(BYTE * output, UINT4 * input, unsigned int len);
void endianTest(int * endian_ness);

#define SEPARATOR "\\"
#define FILENAME_SIZE FILENAME_MAX
//#define MAXBYTES 10000 //upto 1MB file size

#ifdef __TURBOC__

#include <dir.h>
#define FILE_INFO struct ffblk
#define FIND_FIRST(n, i) findfirst((n), (i), FA_DIREC)
#define FIND_NEXT(info) findnext((info))
#define FILE_NAME(info) ((info).ff_name)
#define NAME FILE_NAME(fileinfo)

#else

#define FILE_INFO struct find_t
#define FIND_FIRST(n, i) _dos_findfirst((n), _A_SUBDIR, (i))
#define FIND_NEXT(info) _dos_findnext((info))
#define FILE_NAME(info) ((info).name)
#define NAME FILE_NAME(fileinfo)

#endif

Delhi College of Engineering, Delhi 75

Virus Detection System

#define FILE_MAX 100

void ErrorHandler(char *fmt, ...);
unsigned char* CalculateFileChecksum(FILE *file);
void ProcessFile(char* fullname,FILE *checksum_file);
void BuildChecksumFile(char *input_dir_name, char *checksum_file_name);
void CheckFiles(char *checksum_file_name);
void BuildCRCTable(void);

struct ftime ft;

/*
 The main program checks for valid occurrences of the two different types
 of command lines, and executes them if found.
 Otherwise, it prints out a simple usage statement and exits.
 */

int main(int argc, char *argv[])
 {
 setbuf(stdout, NULL);
 if (argc == 2)
 CheckFiles(argv[1]);
 else if (argc == 4 && strcmp(argv[1], "-c") == 0)
 BuildChecksumFile(argv[2], argv[3]);
 else {
 printf("Usage: CHECKER [-c DIR] checksum-file \n");
 printf("\n");
 printf("Using the -c option CHECKER checks all files under the input DIR\n");
 printf("and appends their data to the checksum-file. Otherwise, the\n");
 printf("program checks the Checksum data of all of the files in the\n");
 printf("checksum-file and prints the results\n");
 return(1);
 }
 return(0);
}

/*
 The routine to check the CHECKSUM values for a list of files just reads in
 a line at a time from the CHECKSUM file. Each line contains a file name and
 a CHECKSUM value.
 The program then just has to calculate the actual CHECKSUM for that
 file, and compare it with the current calculated value. Any
 mismatch triggers an error message. */
void CheckFiles(char *checksum_file_name)
{

Delhi College of Engineering, Delhi 76

Virus Detection System

 FILE * _file;
 FILE *test_file;
 unsigned char* log_checksum;
 unsigned char* checksum;
 char log_name[FILENAME_SIZE];
 char modif[FILE_MAX][FILENAME_SIZE];

 int result,i,j,k,flag;
 static int c=0;
 long int filesize;
 long int fsize;
 int hour,min,sec,month,day,year;
 struct ffblk fileinfo;
 checksum_file = fopen(checksum_file_name, "rb");
 if (checksum_file == NULL)
 ErrorHandler("Couldn't open the log file: %s\n", checksum_file_name);
 c=0;
 for (; ;)
 {
 for(j=0;j<20;j++)
 {
 result = fscanf(Checksum_file,"%02x",&log_checksum[j]);
 }
 if(result<1)
 {
 goto loop_end;
 }
 result = fscanf(checksum_file,"%s %d %d %d",log_name,&hour,&min,&sec);
 result = fscanf(checksum_file,"%d %d %d",&month,&day,&year);
 result = fscanf(checksum_file,"%ld",&fsize);
 if(result<1)
 {
 goto loop_end;
 }
 test_file = fopen(log_name, "rb");
 if (test_file != NULL)
 {
 printf("Checking file %s ",log_name);
 checksum= CalculateFileChecksum(test_file);
 filesize=fileinfo.ff_fsize;
 getftime(fileno(test_file), &ft);
 flag=0;
 for(j=0;j<20;j++)
 {
 if(log_checksum[j]!=checksum[j])
 {

Delhi College of Engineering, Delhi 77

Virus Detection System

 flag=1;
 printf("\nChecksum of this file differs\n");
 }
 }
 if((ft.ft_hour!=hour)||(ft.ft_min!=min)||(sec!=ft.ft_tsec*2))
 {
 printf("\nLast modified time differs\n");
 flag++;
 }
 if((ft.ft_month!=month)||(ft.ft_day!=day)||(year!=(ft.ft_year+1980)))
 {
 printf("\nDate of creation of this file differs\n");
 flag++;
 }
 if (flag>0)
 {
 strcpy(modif[c],log_name);
 printf("Error: %s has been modified either by user or by some malicious
program\n\n",modif[c]);
 c++;
 getch();
 }
 else
 printf("OK\n");
 }
 else
 printf("\nCould not open file %s\n", log_name);
 fclose(test_file);
 }
 loop_end:
 {
 printf(" \n\n\n ****** Summary ****** ");
 if(c!=0)
 {
 printf("\n\n Modified Files are: \n");
 for(i=0;i<c;i++)
 printf(" %s\n",modif[i]);
 }
 else
 printf("\n *** All files are intact *** \n");
 getch();
 }
getch();
exit(1);
}

Delhi College of Engineering, Delhi 78

Virus Detection System

/*
 This routine defers the hard part of directory scanning to a routine
 called ProcessAllFiles(), which takes care of scanning through the
 directory. That means, here after openning the output Checksum file,just
 start the processing. This routine also makes sure that the directory
 name passed on the command line is stripped of any trailing '/' or '\'
 character, since people tend to include those when specifying directory
 names.
 */

void BuildChecksumFile(char *input_dir_name,char *checksum_file_name)
{
 char path[FILENAME_SIZE];
 FILE *checksum_file;

 strcpy(path, input_dir_name);
 if (path[strlen(path) - 1] == SEPARATOR[0])
 path[strlen(path) - 1] = '\0';
 checksum_file = fopen(checksum_file_name, "a");
 if (checksum_file == NULL)
 ErrorHandler("Can't open checksum log file: %s\n", checksum_file_name);
 filerecus(path, checksum_file);
}

/*
 This routine is responsible for actually performing the
 calculation of the 160 bit Checksum for the entire file.
 The actual calculation consists of reading in blocks of 512 bytes at a
 time from the file, then updating the Checksum with the value for that
 block. The checksum of a file is calculated by using SHA-1 algo,that
 generates 160 bit(20 Bytes) checksum.
 */

unsigned char*CalculateFileChecksum(FILE *file)
{
 int count;
 unsigned char buffer[512];
 unsigned char*c;
 int i;
 SHA_CTX sha;
 unsigned char *checksum;
 i = 0;

 SHAInit(&sha);
 for (; ;)
 {

Delhi College of Engineering, Delhi 79

Virus Detection System

 count = fread(buffer, 1, 512, file);
 if ((i++ % 32) == 0)
 putc('.', stdout);
 if (count == 0)
 break;
 SHAUpdate(&sha,buffer,count);
 SHAFinal(checksum,&sha);
 }
 putc(' ', stdout);
 return(checksum);
}

/*
 This is the routine that is responsible for calculating all of
 the CHECKSUM values for the files in a given directory. The CHECKSUM
 values and the file names are written out to the checksum_file.
 This routine sits in a loop for each directory, opening each file
 and processing it. Before a file is opened, a check is made to
 see if the file is actually a directory. If it turns out that
 the file is a directory, a new path name is constructed, and this
 routine calls itself recursively so that all the files in the
 subdirectory are also processed.
 */

 /***** function to access all the files in specified directory *****/
filerecus(char*filemask,FILE *checksum_file)
{
struct ffblk fileinfo; // ffblk is DOS file control block structure
char path[256],drive[5],dir[256],name[14],ext[5],tempdir[256];
/*first files present in directory*/
if(findfirst(filemask,&fileinfo,39)!=-1) //findfirst search a disk directory for files
{
 fnsplit(filemask,drive,dir,name,ext);
 /*fnsplit takes a file's full path name as a string, split
the name into its four components, then store those components.*/
 strcpy(path,drive);
 strcat(path,dir);
 strcat(path,fileinfo.ff_name);
 ProcessFile(path,checksum_file);
 while(findnext(&fileinfo)!=-1)//findnext continue the search in a disk directory for files
 {
 fnsplit(filemask,drive,dir,name,ext);
 strcpy(path,drive);
 strcat(path,dir);
 strcat(path,fileinfo.ff_name);
 ProcessFile(path,checksum_file);

Delhi College of Engineering, Delhi 80

Virus Detection System

 }
}

/*now search for subdirectories*/
fnsplit(filemask,drive,dir,name,ext);
//split a given path with fnsplit, then merge the resultant components with
//fnmerge,end up with path
fnmerge(path,drive,dir,"*","."); // " '*' and '.' " means wildcard directory entry
if(findfirst(path,&fileinfo,FA_DIREC)==0)//;
{
if(strcmp(fileinfo.ff_name,".")&&strcmp(fileinfo.ff_name,"..")&&fileinfo.ff_attrib==F
A_DIREC)
 {
 strcpy(tempdir,dir);
 strcat(tempdir,fileinfo.ff_name);
 strcat(tempdir,"\\");
 fnmerge(path,drive,tempdir,name,ext);
 //path created in present directory
 filerecus(path,checksum_file);
 }
 while(findnext(&fileinfo)!=-1)
 {

if(strcmp(fileinfo.ff_name,".")&&strcmp(fileinfo.ff_name,"..")&&fileinfo.ff_attrib==F
A_DIREC)
 {
 strcpy(tempdir,dir);
 strcat(tempdir,fileinfo.ff_name);
 strcat(tempdir,"\\");
 fnmerge(path,drive,tempdir,name,ext);
 //path created in present directory
 filerecus(path,checksum_file);
 }
}
}
return;
}//end function filerecus

//void ProcessAllFiles(char *path,FILE *checksum_file)
void ProcessFile(char* fullname,FILE *checksum_file)
{

 FILE_INFO fileinfo;
 int done;
 long int fsize;
 int hour,min,sec,month,day,year;

Delhi College of Engineering, Delhi 81

Virus Detection System

 unsigned char *checksum;
 FILE *file;
 int i;

 file = fopen(fullname, "rb");
 if (file != NULL)
 {
 printf("Scanning %s ", fullname);
 getch();
 checksum=CalculateFileChecksum(file);
 getftime(fileno(file), &ft);
 fsize=(long int)fileinfo.ff_fsize;
 putc('\n', stdout);
 for(i=0;i<20;i++)
 {
 fprintf(checksum_file, "%02x", checksum[i]);
 }

 hour=(int)ft.ft_hour;
 min=(int)ft.ft_min;
 sec=(int)(ft.ft_tsec * 2);
 month=(int)ft.ft_month;
 day=(int)ft.ft_day;
 year=(int)(ft.ft_year+1980);
 fprintf(checksum_file, "%s", fullname);
 fprintf(checksum_file," %d %d %d",hour,min,sec);
 fprintf(checksum_file," %d %d %d",month,day,year);
 fprintf(checksum_file," %ld\n" ,fsize);
 fclose(file);
 }
 else
 printf("Could not open %s!\n", fullname);
}

/*
 * The fatal error handler just has to print out a formatted error
 * message and then exit.*/

void ErrorHandler(char *fmt, ...)
{
 va_list argptr;
 va_start(argptr, fmt);
 printf("Error: ");
 vprintf(fmt, argptr);
 va_end(argptr);
 exit(-1);

Delhi College of Engineering, Delhi 82

Virus Detection System

}

/* Initialize the SHS values */

void SHAInit(SHA_CTX * shsInfo)
{
 endianTest(&shsInfo->Endianness);
 /* set the h-vars to their initial values */
 shsInfo->digest[0] = h0Init;
 shsInfo->digest[1] = h1Init;
 shsInfo->digest[2] = h2Init;
 shsInfo->digest[3] = h3Init;
 shsInfo->digest[4] = h4Init;

 /* initialize the bit count */

 shsInfo->countLo=shsInfo->countHi = 0;
}

/* Perform the SHS Transformation */

static void SHSTransform(UINT4 * digest, UINT4 * data)
{
 UINT4 A,B,C,D,E; /* Local Vars */
 UINT4 eData[16]; /* Expanded Data */

 /* set up the first buffer and local data buffer */
 A = digest[0];
 B = digest[1];
 C = digest[2];
 D = digest[3];
 E = digest[4];

 memcpy((POINTER)eData, (POINTER)data, SHS_DATASIZE);

 /* heavy mangling in 4 sub rounds of 20 iterations each */

 subRound(A,B,C,D,E,f1,k1,eData[0]);
 subRound(E,A,B,C,D,f1,k1,eData[1]);
 subRound(D,E,A,B,C,f1,k1,eData[2]);
 subRound(C,D,E,A,B,f1,k1,eData[3]);
 subRound(B,C,D,E,A,f1,k1,eData[4]);
 subRound(A,B,C,D,E,f1,k1,eData[5]);
 subRound(E,A,B,C,D,f1,k1,eData[6]);
 subRound(D,E,A,B,C,f1,k1,eData[7]);
 subRound(C,D,E,A,B,f1,k1,eData[8]);

Delhi College of Engineering, Delhi 83

Virus Detection System

 subRound(B,C,D,E,A,f1,k1,eData[9]);
 subRound(A,B,C,D,E,f1,k1,eData[10]);
 subRound(E,A,B,C,D,f1,k1,eData[11]);
 subRound(D,E,A,B,C,f1,k1,eData[12]);
 subRound(C,D,E,A,B,f1,k1,eData[13]);
 subRound(B,C,D,E,A,f1,k1,eData[14]);
 subRound(A,B,C,D,E,f1,k1,eData[15]);
 subRound(E,A,B,C,D,f1,k1,expand(eData,16));
 subRound(D,E,A,B,C,f1,k1,expand(eData,17));
 subRound(C,D,E,A,B,f1,k1,expand(eData,18));
 subRound(B,C,D,E,A,f1,k1,expand(eData,19));

 subRound(A,B,C,D,E,f2,k2,expand(eData,20));
 subRound(E,A,B,C,D,f2,k2,expand(eData,21));
 subRound(D,E,A,B,C,f2,k2,expand(eData,22));
 subRound(C,D,E,A,B,f2,k2,expand(eData,23));
 subRound(B,C,D,E,A,f2,k2,expand(eData,24));
 subRound(A,B,C,D,E,f2,k2,expand(eData,25));
 subRound(E,A,B,C,D,f2,k2,expand(eData,26));
 subRound(D,E,A,B,C,f2,k2,expand(eData,27));
 subRound(C,D,E,A,B,f2,k2,expand(eData,28));
 subRound(B,C,D,E,A,f2,k2,expand(eData,29));
 subRound(A,B,C,D,E,f2,k2,expand(eData,30));
 subRound(E,A,B,C,D,f2,k2,expand(eData,31));
 subRound(D,E,A,B,C,f2,k2,expand(eData,32));
 subRound(C,D,E,A,B,f2,k2,expand(eData,33));
 subRound(B,C,D,E,A,f2,k2,expand(eData,34));
 subRound(A,B,C,D,E,f2,k2,expand(eData,35));
 subRound(E,A,B,C,D,f2,k2,expand(eData,36));
 subRound(D,E,A,B,C,f2,k2,expand(eData,37));
 subRound(C,D,E,A,B,f2,k2,expand(eData,38));
 subRound(B,C,D,E,A,f2,k2,expand(eData,39));

 subRound(A,B,C,D,E,f3,k3,expand(eData,40));
 subRound(E,A,B,C,D,f3,k3,expand(eData,41));
 subRound(D,E,A,B,C,f3,k3,expand(eData,42));
 subRound(C,D,E,A,B,f3,k3,expand(eData,43));
 subRound(B,C,D,E,A,f3,k3,expand(eData,44));
 subRound(A,B,C,D,E,f3,k3,expand(eData,45));
 subRound(E,A,B,C,D,f3,k3,expand(eData,46));
 subRound(D,E,A,B,C,f3,k3,expand(eData,47));
 subRound(C,D,E,A,B,f3,k3,expand(eData,48));
 subRound(B,C,D,E,A,f3,k3,expand(eData,49));
 subRound(A,B,C,D,E,f3,k3,expand(eData,50));

Delhi College of Engineering, Delhi 84

Virus Detection System

 subRound(E,A,B,C,D,f3,k3,expand(eData,51));
 subRound(D,E,A,B,C,f3,k3,expand(eData,52));
 subRound(C,D,E,A,B,f3,k3,expand(eData,53));
 subRound(B,C,D,E,A,f3,k3,expand(eData,54));
 subRound(A,B,C,D,E,f3,k3,expand(eData,55));
 subRound(E,A,B,C,D,f3,k3,expand(eData,56));
 subRound(D,E,A,B,C,f3,k3,expand(eData,57));
 subRound(C,D,E,A,B,f3,k3,expand(eData,58));
 subRound(B,C,D,E,A,f3,k3,expand(eData,59));

 subRound(A,B,C,D,E,f4,k4,expand(eData,60));
 subRound(E,A,B,C,D,f4,k4,expand(eData,61));
 subRound(D,E,A,B,C,f4,k4,expand(eData,62));
 subRound(C,D,E,A,B,f4,k4,expand(eData,63));
 subRound(B,C,D,E,A,f4,k4,expand(eData,64));
 subRound(A,B,C,D,E,f4,k4,expand(eData,65));
 subRound(E,A,B,C,D,f4,k4,expand(eData,66));
 subRound(D,E,A,B,C,f4,k4,expand(eData,67));
 subRound(C,D,E,A,B,f4,k4,expand(eData,68));
 subRound(B,C,D,E,A,f4,k4,expand(eData,69));
 subRound(A,B,C,D,E,f4,k4,expand(eData,70));
 subRound(E,A,B,C,D,f4,k4,expand(eData,71));
 subRound(D,E,A,B,C,f4,k4,expand(eData,72));
 subRound(C,D,E,A,B,f4,k4,expand(eData,73));
 subRound(B,C,D,E,A,f4,k4,expand(eData,74));
 subRound(A,B,C,D,E,f4,k4,expand(eData,75));
 subRound(E,A,B,C,D,f4,k4,expand(eData,76));
 subRound(D,E,A,B,C,f4,k4,expand(eData,77));
 subRound(C,D,E,A,B,f4,k4,expand(eData,78));
 subRound(B,C,D,E,A,f4,k4,expand(eData,79));

 /* Build Message Digest */

 digest[0]+=A;
 digest[1]+=B;
 digest[2]+=C;
 digest[3]+=D;
 digest[4]+=E;
}

/* when run on a little endian CPU we need to perform byte reversal on an
 array of long word */

static void longReverse(UINT4 * buffer, int byteCount, int Endianness)
{
 UINT4 value;

Delhi College of Engineering, Delhi 85

Virus Detection System

 if (Endianness == 1)
 return;
 byteCount /= sizeof(UINT4);

 while(byteCount--)
 {
 value = *buffer;
 value = ((value & 0xFF00FF00L) >> 8) | \
 ((value & 0x00FF00FFL) << 8);
 *buffer++ = (value << 16) | (value >> 16);
 }
}

/*Update SHS for a block of data */

void SHAUpdate(SHA_CTX * shsInfo, BYTE * buffer, int count)
{
 UINT4 tmp;
 int dataCount;
 /* Update bitcount */
 tmp = shsInfo->countLo;
 if ((shsInfo->countLo = tmp + ((UINT4) count << 3)) < tmp)
 shsInfo->countHi++;
 shsInfo->countHi += count >> 29;

 /* Get count of bytes already in data */
 dataCount = (int) (tmp >> 3) & 0x3F;
 /* Handle any leading odd-sized chunks*/
 if(dataCount)
 {
 BYTE * p = (BYTE *) shsInfo->data + dataCount;
 dataCount = SHS_DATASIZE - dataCount;

 if(count < dataCount)
 {
 memcpy(p,buffer,count);
 return;
 }
 memcpy(p,buffer,dataCount);
 longReverse(shsInfo->data, SHS_DATASIZE, shsInfo->Endianness);
 SHSTransform(shsInfo->digest,shsInfo->data);
 buffer += dataCount;
 count -= dataCount;
 }
 while(count >= SHS_DATASIZE)
 {

Delhi College of Engineering, Delhi 86

Virus Detection System

 memcpy((POINTER)shsInfo->data,(POINTER)buffer,SHS_DATASIZE);
 longReverse(shsInfo->data,SHS_DATASIZE,shsInfo->Endianness);
 SHSTransform(shsInfo->digest,shsInfo->data);
 buffer+=SHS_DATASIZE;
 count-=SHS_DATASIZE;
 }
 /* Handle any remaining bytes of data */
 memcpy((POINTER)shsInfo->data,(POINTER)buffer,count);
}

/* Final wrapup - pad to SHS_DATASIZE-byte boundary with the bit pattern */
/* 1 0* (64-bit count of the bits processed, MSB_FIRST) */

void SHAFinal(BYTE * output, SHA_CTX * shsInfo)
{
 int count;
 BYTE * dataPtr;

 /* compute the number of bytes mod 64 */
 count = (int) shsInfo->countLo;
 count = (count >> 3) & 0x3F;

 /* set the first char of padding to 0x80, this is safe since there is
 at least one byte free */

 dataPtr = (BYTE *) shsInfo->data + count;
 *dataPtr++=0x80;

 /* Bytes of padding needed to make 64 bytes */

 count = SHS_DATASIZE - 1 - count;

 /* Pad out to 56 mod 64 */

 if (count < 8)
 {
 /* Two lots of padding : pad the first block to 64 bytes */
 memset(dataPtr,0,count);
 longReverse(shsInfo->data,SHS_DATASIZE,shsInfo->Endianness);
 SHSTransform(shsInfo->digest,shsInfo->data);
 /* now fill the next block with 56 bytes */
 memset((POINTER) shsInfo->data,0,SHS_DATASIZE-8);
 }
 else
 /* pad block to 56 bytes */
 memset(dataPtr,0,count-8);

Delhi College of Engineering, Delhi 87

Virus Detection System

 /* append length in bits and transform */
 shsInfo->data[14] = shsInfo->countHi;
 shsInfo->data[15] = shsInfo->countLo;

 longReverse(shsInfo->data, SHS_DATASIZE - 8, shsInfo->Endianness);
 SHSTransform(shsInfo->digest, shsInfo->data);

 /* output to an array of bytes */

 SHAtoByte(output, shsInfo -> digest, SHS_DIGESTSIZE);

 /* Zeroise sensitive stuff */

 memset((POINTER)shsInfo, 0,sizeof(shsInfo));
}

static void SHAtoByte(BYTE * output, UINT4 * input, unsigned int len)
{
 /* output SHA digest in byte array */
 unsigned int i,j;

 for (i=0, j =0; j < len; i++, j+= 4)
 {
 output[j+3] = (BYTE) (input[i] & 0xff);
 output[j+2] = (BYTE) ((input[i] >> 8) & 0xff);
 output[j+1] = (BYTE) ((input[i] >> 16) & 0xff);
 output[j] = (BYTE) ((input[i] >> 24) & 0xff);
 }
}
void endianTest(int * endian_ness)
{
 if ((*(unsigned short *)("#S") >> 8) == '#')
 {
 *endian_ness = !(0);
 }
 else
 {
 *endian_ness = 0;
 }
}
/************************** End of CHECKER.C
**************************/

Delhi College of Engineering, Delhi 88

Virus Detection System

I. SCANNER
(a) DATABASE.C
 This program is used to enter the virus details in file SIGNVAR.DAT.

 /********** DATABASE ENTRY PROGRAM **************/

#include<stdio.h>

 #include<conio.h>

 #include<stdlib.h>

 #include<string.h>

 #include<ctype.h>

 #define MAXSTRING 50

 #define MAXTXT 60

 main()

 {

 char sign[MAXSTRING],sign1[MAXSTRING];

 char temp[MAXTXT],temp1[MAXTXT];

 char descrip[MAXTXT];

 unsigned chr,chr1;

 FILE *fp;

 int siglen,count=0,type;

 int j,len;

 int g,z, c,ch,p,m,blk;

 int n;

 printf("********** DATABASE ENTRY PROGRAM **************\n");

 printf("Every virus record will have three fields:\n 1. Signature in HEX\n 2. Type of

the virus \n 3. Description of virus");

Delhi College of Engineering, Delhi 89

Virus Detection System

 /* open signature log file to append*/

 if((fp=fopen("signvir.dat","a+b"))==NULL)

 {

 printf("ERROR:unable to open signvir.dat file\n");

 getch();

 exit(1);

 }

 while(1)

 {

 count=0;

 blk=0;

 while(1)

 {

 printf("\nEnter the signature of virus in HEXADECIMAL (without comma and blank

spaces):\n");

 scanf("%s",sign1);

 blk=0;

 for(m=0;m<MAXSTRING;m++)

 {

 if(sign1[m]>32)

 {

 blk++;

 }

 }

 if(blk==0)

 {

 printf("\nERROR:Signature should be in HEX without comma and blank

spaces\n");

Delhi College of Engineering, Delhi 90

Virus Detection System

 getch();

 }

 else

 {

 break;

 }

 }

 /* error check for valid signatures*/

 strcpy(sign,sign1);

 for(j=0;j<strlen(sign);j++)

 {

 if(!((sign[j]>='0'&&sign[j]<='9')||

 (sign[j]>='A'&&sign[j]<='F')||

 (sign[j]>='a'&&sign[j]<='f')||

 sign[j]==' '))

 {

 printf("\nERROR:Signature should be in HEX without comma and blank

spaces\n");

 getch();

 exit(1);

 }

 }

 /*Record 2:Type of virus*/

 while(1)

 {

 printf("Enter the TYPE of Virus (P:partition table,B:Boot sector,F:File virus):");

 type=toupper(getch());

 if(type=='P'||type=='B'||type=='F')

Delhi College of Engineering, Delhi 91

Virus Detection System

 {

 printf("\n Type of virus is:%c\n",type);

 break;

 }

 }

 //Record 3:Description of the virus

 printf("Enter 1 line description of the virus\n");

 c=getchar();

 z=0;

 temp[z]=c;

 while((c=getchar())!='\n')

 {

 z++;

 temp[z]=c;

 }

 printf("\nAre the details regarding this virus correct?(y/n):");

 while(1)

 {

 ch=toupper(getch());

 if(ch=='N'||ch=='Y')

 {

 break;

 }

 }

 if(ch=='Y')

 {

 for(p=0;p<MAXTXT;p++)

 {

 descrip[p]=temp[p];

 }

Delhi College of Engineering, Delhi 92

Virus Detection System

 count=strlen(sign);

 fwrite(sign,MAXSTRING,1,fp);

 fputc(count,fp);

 fputc(type,fp);

 fwrite(descrip,MAXTXT,1,fp);

 }

 printf("\nDo you wish to continue?(y/n):");

 while(1)

 {

 ch=toupper(getch());

 if(ch=='N'||ch=='Y')

 {

 break;

 }

 }

 if(ch=='N')

 {

 break;

 }

}

return 0;

}

Delhi College of Engineering, Delhi 93

Virus Detection System

(b) SCANNER.C

 /*************** VIRUS SCANNER **********************/

/****** It uses the Signature Scanning Tecnique to detect the presence of viruses in
executables and fast string matching Boyer-Moore-Horspool (BMH) algorithm
**********/

#include<stdio.h>
#include<mem.h>
#include<io.h>
#include<dos.h>
#include<bios.h>
#include<alloc.h>
#include<dir.h>
#include<fcntl.h>
#include<time.h>

#define MAXBYTES 10000
#define MAXSTRING 50
#define MAXTXT 60
#define MAXSIG 100
#define SECTSIZE 512
#define MAXCHAR 256

struct VIRUSINFO {
 char signature[MAXSTRING];//signature in HEX
 char xcount; //No of characters in signature
 char type; //Type of the virus
 };

struct VIRUSINFO *virus;
int sigcount;
char firstchar[MAXSIG];
FILE *fps;

void main(int argc,char *argv[])
{
 int count,drive=0,harddisk=1;
 int s;
 char filemask[MAXPATH]; //predefined MAXPATH: Complete file name with path

 strcpy(filemask,"*.EXE"); /*If the type of file has not been specified in option then by
default will search executable files.*/

Delhi College of Engineering, Delhi 94

Virus Detection System

 if (argc<2)
 {
 printf(" ERROR:Please run the program through command prompt and then\n follow
the menu given below:\n\n");
 printf(" 1.Enter -B<drive no> to check the Boot Sector\n");
 printf(" 2.Enter -P<hard disk no> to check the Partition Table\n");
 printf(" 3.Enter -F<file specification> to check the files\n");
 getch();
 exit(1);
 }

 if((virus =malloc(sizeof(struct VIRUSINFO)*MAXSIG))==NULL)
 {
 printf("ERROR: Unable to reserve space for the signatures\n");
 getch();
 exit();
 }

 if((fps=fopen("signvir.dat","rb"))==NULL)
 {
 printf("ERROR: Unable to open SIGNVIR.DAT-Signature Log File\n");
 getch();
 exit();
 }

 sigcount=0;

 /* &virus[sigcount] : Points to a block into which data is read
 sizeof(virus[sigcount]) : Length of each item read, in bytes
 1 : Number of items read
 fps: Points to input stream */
//read the signatures
 while(fread(&virus[sigcount],sizeof(virus[sigcount]),1,fps))
 {
 fseek(fps,60l,SEEK_CUR); //skip description of current signature(60 bytes)to read the
next signature
 firstchar[sigcount]=virus[sigcount].signature[0];
 sigcount++;
 }
 printf("\n No of signatures in database : %d\n",sigcount);

//parse the command line
 for(count=1;count<argc;count++)
 {
 //check for correct arguments

Delhi College of Engineering, Delhi 95

Virus Detection System

 //memchr searches the first 6 bytes of the block "bpfBPF" for argv[count][1]
 if(argv[count][0]!='-'||!memchr("bpfBPF",argv[count][1],6))
 {
 printf("ERROR: Options(-B,-P,-F<filename>) expected.\n");
 getch();
 exit();
 }

 //boot sector checking
 if(argv[count][1]=='B'||argv[count][1]=='b')
 {
 if(argv[count+1][0]!='-'&&(count+1)<argc)
 {
 count++;
 drive=toupper(argv[count][0])-65;
 }
 scanboot(drive);
 }

 //partition table checking
 if(argv[count][1]=='P'||argv[count][1]=='p')
 {
 if(argv[count+1][0]!='-'&&(count+1)<argc)
 {
 count++;
 harddisk=atoi(argv[count]);
 }
 scanpart(harddisk);
 }

 //File checking
 if(argv[count][1]=='F'||argv[count][1]=='f')
 {
 if(argv[count+1][0]!='-'&&(count+1)<argc)
 {
 count++;
 strcpy(filemask,argv[count]);
 printf("\nType of files to be scanned is %s\n",filemask);
 }
 scanfile(filemask);
 }

} //end for

fclose(fps);
}

Delhi College of Engineering, Delhi 96

Virus Detection System

//******** End Main() ********

/**********function definitions called in main functions***********

/*********** Check the Boot sector *************/
/*this function reads the boot sector of given drive and
then calls scansector function to do actual checking*/
scanboot(int drive)
{
 char buffer[SECTSIZE];

 printf("\n\n Checking Boot Sector : %c (Boot sector of Floppy)...........\n",drive+65);
 if(absread(drive,1,0,buffer)==-1)
 {
 printf("ERROR: Unable to read boot sector of drive %c\nPress any key to
exit...\n",drive+65);
 getch();
 exit(1);
 }
 scansector('B',buffer);
 return;
}

/********** Check the Partition Table ************/
/*this function reads the partition table of given hard disk and
then calls scansector function to do actual checking*/
scanpart(int harddisk)
{
 char buffer[SECTSIZE];

 printf("\n\n Checking partiton table of specified Hard Disk: %d\n",harddisk);
 if(biosdisk(2,harddisk+0x7F,0,0,1,1,buffer)!=0)
 {
 printf("ERROR: Unable to read the partition table of Hard Disk:%d\nPress any key to
exit...\n",harddisk);
 getch();
 exit(1);
 }
 scansector('P',buffer);
 return;
}

/*************** Check the files ******************/
/*this function calls function filerecus for a given file type*/
scanfile(char *filemask)
{

Delhi College of Engineering, Delhi 97

Virus Detection System

printf("\n\nChecking %s files.......\n",filemask);
 start= clock();
 filerecus(filemask);
 getch();
 return;
}

/*********** Functon called by scanboot and scanpart functions,
 it scans contents of a particular sector ************/
scansector(char type,char *buffer)
{
 int j,k,flag;
 unsigned i;
 char string[MAXSTRING];

 for(i=0;i<SECTSIZE;i++)
 {
 if(memchr(firstchar,buffer[i],sigcount))
 {
 for(k=0;k<sigcount;k++)
 {
 if(virus[k].type==type)
 {
 memcpy(string,virus[k].signature,MAXSTRING);
 for(j=0;j<virus[k].xcount&&(string[j]==buffer[i+j]);j++);
 if(j==virus[k].xcount)
 {
 printf("\n ****** VIRUS DETECTED ******\n Signature (%s) of found at offset
%u.\n ",string,i);
 showdescrip(k);
 return;
 }
 }
 }
 }
 }
 printf("\n*** No viruses present ***\n");
 return;
}

/***** Function to show the description of the detected virus *****/
showdescrip(int virnum)
{
 char desc[MAXTXT];
 int i;

Delhi College of Engineering, Delhi 98

Virus Detection System

 fseek(fps,(long)(virnum*(MAXSTRING+2+MAXTXT)),SEEK_SET);
 fseek(fps,(long)(MAXSTRING+2),SEEK_CUR);
 fread(desc,MAXTXT,1,fps);
 printf("\n Name of Virus:%s",desc);
 printf("\n");
 return;
}

/***** function to access all the files in specified directory *****/
filerecus(char*filemask)
{
struct ffblk fileinfo; // ffblk is DOS file control block structure
char path[256],drive[5],dir[256],name[14],ext[5],tempdir[256];
/*first files present in directory*/
if(findfirst(filemask,&fileinfo,39)!=-1) //findfirst search a disk directory for files
{
 fnsplit(filemask,drive,dir,name,ext);
 strcpy(path,drive);
 strcat(path,dir);
 strcat(path,fileinfo.ff_name);
 printf("\nChecking file %s",path);
 filechk(path);
 while(findnext(&fileinfo)!=-1)//findnext continue the search in a disk directory for files
 {
 fnsplit(filemask,drive,dir,name,ext);
 strcpy(path,drive);
 strcat(path,dir);
 strcat(path,fileinfo.ff_name);
 printf("\nChecking file %s",path);
 filechk(path);
 }
}

/*now search for subdirectories*/
fnsplit(filemask,drive,dir,name,ext);
fnmerge(path,drive,dir,"*","."); // " '*' and '.' " means wildcard directory entry
if(findfirst(path,&fileinfo,FA_DIREC)==0)//;
{

if(strcmp(fileinfo.ff_name,".")&&strcmp(fileinfo.ff_name,"..")&&fileinfo.ff_attrib==F
A_DIREC)
 {
 strcpy(tempdir,dir);
 strcat(tempdir,fileinfo.ff_name);
 strcat(tempdir,"\\");
 fnmerge(path,drive,tempdir,name,ext);

Delhi College of Engineering, Delhi 99

Virus Detection System

 filerecus(path);
 }
 while(findnext(&fileinfo)!=-1)
 {

if(strcmp(fileinfo.ff_name,".")&&strcmp(fileinfo.ff_name,"..")&&fileinfo.ff_attrib==F
A_DIREC)
 {
 strcpy(tempdir,dir);
 strcat(tempdir,fileinfo.ff_name);
 strcat(tempdir,"\\");
 fnmerge(path,drive,tempdir,name,ext);
 filerecus(path);
 }
}
}
return;
}//end function filerecus

/***** searches the presence of a particular virus signature string in a file *****/
filechk(char*filename)
{
 FILE*fp;
 int k,flag=0,count,i,j;
 char string[MAXSTRING];
 unsigned char buffer[1024];
 fp=fopen(filename,"rb");
 if(fp!=NULL)
 {
 j = 0;
 for (; ;)
 {
 count = fread(buffer, 1, 1024, fp);
 if ((j++ % 100) == 0)
 putc('.', stdout);
 if (count == 0)
 break;
 for(k=0;k<sigcount;k++)
 {
 if(virus[k].type=='F')
 {
 memcpy(string,virus[k].signature,MAXSTRING);
 flag =bmh(buffer,count,string);
 if(flag!=0)
 {

Delhi College of Engineering, Delhi 100

Virus Detection System

 printf("\n****** Virus Detected ******\n Signature (%s) found
at offset %d in %s file.",string,flag,filename);
 showdescrip(k);
 fclose (fp);
 return;
 }
 }
 }
 }
 putc(' ', stdout);
 fclose(fp);
}
else
{
 printf("ERROR:unable to open file %s\n",filename);
 getch();
}
return;
}

/* This function implements Boyer-Moore-Horsepool a fast string matching
algorithm*/

int bmh(char* buffer,int n,char string[30])
{
 int j=0,i;
 int d[MAXCHAR],m,k;
 m=strlen(string);
 for(i=0;i<MAXCHAR;i++)
 d[i]=m;
 for(i=0;i<m-1;i++)
 {
 d[string[i]]=m-i-1;
 }
 i=m-1;
for(i=m-1;i<n;i+=d[buffer[i]&(MAXCHAR-1)])
{
 for(k=m-1,j=i;k>=0&&buffer[j]==string[k];k--)
 j--;
 if(k==(-1))
 return(j+1);
}
return 0;
}

Delhi College of Engineering, Delhi 101

Virus Detection System

In this dissertation performance of BMH algorithm has been compared with

sequential, Boyer Moore and Turbo Boyer Moore algorithms, whose implementation

has been given here.

(c) Sequential algorithm
filechk(char*filename)
{
 FILE*fp;
 int k,count,i,j,m;
 char string[MAXSTRING];
 unsigned char buffer[1024];
 char desc[MAXTXT];
 FILE*sum;

 fp=fopen(filename,"rb");
 if(fp==NULL)
 {
 printf("ERROR: unable to open file %s", filename);
 getch();
 }
 else
 {
 m= 0;
 for (; ;)
 {
 count = fread(buffer, 1, 1024, fp);
 m++;
 if (count == 0)
 break;
 for(i=0;i<count;i++)
 {
 if(memchr(firstchar,buffer[i],sigcount))
 {
 for(k=0;k<sigcount;k++)
 {
 if(virus[k].type=='F')
 {
 memcpy(string,virus[k].signature,MAXSTRING);
 for(j=0;j<virus[k].xcount&&(string[j]==buffer[i+j]);j++);
 if(j==virus[k].xcount)
 {
 printf("\n ****** Virus Detected ****** \n Signature (%s) found in
%s \n at offset %u",
 string,filename, (1024*(m-1)+i));
 showdescrip(k);

Delhi College of Engineering, Delhi 102

Virus Detection System

 }
 }
 }
 }
 }
}
putc(' ', stdout);
fclose(fp);
}
return;
}

(d) Boyer More Algorithm
void preBmBc(char *x, int m, int bmBc[])
{
 int i;

 for (i = 0; i < ASIZE; ++i)
 bmBc[i] = m;
 for (i = 0; i < m - 1; ++i)
 bmBc[x[i]] = m - i - 1;
}

void suffixes(char *x, int m, int *suff)
{
 int f, g, i;

 suff[m - 1] = m;
 g = m - 1;
 for (i = m - 2; i >= 0; --i)
 {
 if (i > g && suff[i + m - 1 - f] < i - g)
 suff[i] = suff[i + m - 1 - f];
 else
 {
 if (i < g)
 g = i;
 f = i;
 while (g >= 0 && x[g] == x[g + m - 1 - f])
 --g;
 suff[i] = f - g;
 }
 }
}

Delhi College of Engineering, Delhi 103

Virus Detection System

void preBmGs(char *x, int m, int bmGs[])
{
 int i, j, suff[XSIZE];

 suffixes(x, m, suff);

 for (i = 0; i < m; ++i)
 bmGs[i] = m;
 j = 0;
 for (i = m - 1; i >= -1; --i)
 if (i == -1 || suff[i] == i + 1)
 for (; j < m - 1 - i; ++j)
 if (bmGs[j] == m)
 bmGs[j] = m - 1 - i;
 for (i = 0; i <= m - 2; ++i)
 bmGs[m - 1 - suff[i]] = m - 1 - i;
}

int Boyer_Moore(char *x, int m, char *y, int n)
{
 int i, j, bmGs[XSIZE], bmBc[ASIZE];

 /* Preprocessing */

 preBmGs(x, m, bmGs);
 preBmBc(x, m, bmBc);

 /* Searching */

 j = 0;
 while (j <= n - m)
 {
 for (i = m - 1; i >= 0 && x[i] == y[i + j]; --i);
 if (i < 0)
 {
 return(j);
 }
 else
 j += max(bmGs[i], bmBc[y[i + j]] - m + 1 + i);
 }
 return (0);
}

Delhi College of Engineering, Delhi 104

Virus Detection System

(e) Turbo Boyer Moore Algorithm
void preBmBc(char *x, int m, int bmBc[])
{
 int i;

 for (i = 0; i < ASIZE; ++i)
 bmBc[i] = m;
 for (i = 0; i < m - 1; ++i)
 bmBc[x[i]] = m - i - 1;
}

void suffixes(char *x, int m, int *suff)
{
 int f, g, i;

 suff[m - 1] = m;
 g = m - 1;
 for (i = m - 2; i >= 0; --i)
 {
 if (i > g && suff[i + m - 1 - f] < i - g)
 suff[i] = suff[i + m - 1 - f];
 else
 {
 if (i < g)
 g = i;
 f = i;
 while (g >= 0 && x[g] == x[g + m - 1 - f])
 --g;
 suff[i] = f - g;
 }
 }
}

void preBmGs(char *x, int m, int bmGs[])
{
 int i, j, suff[XSIZE];

 suffixes(x, m, suff);

 for (i = 0; i < m; ++i)
 bmGs[i] = m;
 j = 0;
 for (i = m - 1; i >= -1; --i)
 if (i == -1 || suff[i] == i + 1)

Delhi College of Engineering, Delhi 105

Virus Detection System

 for (; j < m - 1 - i; ++j)
 if (bmGs[j] == m)
 bmGs[j] = m - 1 - i;
 for (i = 0; i <= m - 2; ++i)
 bmGs[m - 1 - suff[i]] = m - 1 - i;
}

int Turbo_Boyer_Moore(char *x, int m, char *y, int n)
{
 int bcShift, i, j, shift, u, v, turboShift,
 bmGs[XSIZE], bmBc[ASIZE];

 /* Preprocessing */
 preBmGs(x, m, bmGs);
 preBmBc(x, m, bmBc);

 /* Searching */
 j = u = 0;
 shift = m;
 while (j <= n - m)
 {
 i = m - 1;
 while (i >= 0 && x[i] == y[i + j])
 {
 --i;
 if (u != 0 && i == m - 1 - shift)
 i -= u;
 }
 if (i < 0)
 {
 shift = bmGs[0];
 u = m - shift;
 return(j);
 }
 else
 {
 v = m - 1 - i;
 turboShift = u - v;
 bcShift = bmBc[y[i + j]] - m + 1 + i;
 shift = max(turboShift, bcShift);
 shift = max(shift, bmGs[i]);
 if (shift == bmGs[i])
 u = min(m - shift, v);
 else
 {

Delhi College of Engineering, Delhi 106

Virus Detection System

 if (turboShift < bcShift)
 shift = max(shift, u + 1);
 u = 0;
 }
 }
 j += shift;
 }
 return(0);
}

Delhi College of Engineering, Delhi 107

