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Abstract. The development of analysis and simulation of propagation characteristics of photonic crystal
fiber (PCF) using scalar and fully vectorial effective index methods are described. As a result, we report
how the fundamental space filling mode, guided mode and dispersion of the PCF depends on its structural
parameters like its normalized air hole spacing, center-to-center spacing of the air holes in the photonic
crystal or pitch and radius of the unit cell. Normalized frequency parameter V. as a function of nor-
malized wavelength for various relative air hole sizes is obtained to estimate the dispersion characteristics
of PCF. It is observed that wavelength of zero dispersion, ultraflattened dispersion response and high
negative dispersion remarkably differ from two different effective index methods.

Key words: dispersion, fully vectorial effective index method (FVEIM), photonic crystal Fibers (PCF),
scalar effective index method (SEIM), space filling modes (SFM), zero dispersion wavelength (ZDW)

1. Introduction

Photonic crystal materials attracted much attention in the past few years with
the number of publications and patents increasing exponentially.
Two-dimensional (2D) photonic crystal structures, like holey fibers and 2D
slab-type photonic crystals, are probably the most advanced and fast
developing areas owing to mature fabrication methods and envisioned broad
applications. One of the most important applications of photonic crystals is
the design of novel waveguides known as photonic crystal fibers (PCFs) or
holey fiber (HF) or micro structured fibers. PCFs are single material optical
fibers with an array of periodic air holes across the cross-section running
down its entire length. By leaving a single lattice site without an air hole, a
localized region of higher refractive index i1s formed. This localized region
acts as a waveguide core in which light can be trapped along the axis of the
fiber. Photonic crystal with periodicity in transverse direction supports mode
propagating along the longitudinal direction. These modes are referred as
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space filling modes (SFM) because they are infinitely extended in transverse
direction. In the effective index method, a single material having refractive
index equal to the modal index of fundamental space filling mode replaces the
photonic crystal cladding.

A considerable amount of interest has been generated in PCFs during
the last few years, due to its single-mode operation over extended range of
operating wavelengths, large mode area, soliton propagation and contin-
uum generation and overall controllable dispersion. In optical communi-
cation, dispersion plays an important role as it determines the information
carrying capacity of the fiber. Therefore, it becomes important to study
the dispersion properties of PCF. Many modeling techniques have been
applied to study its propagation characteristics, which include the effective
index method (Birks et al. 1997; Knight et al. 1998; Varshney et al. 2003),
plane wave expansion method (Ferrando et al. 1999, 2000; Johnson and
Joannopoulos, 2001), localized function method (Mogilevstev er al. 1999:
Monro et al. 1999), finite element method (Brechet et al. 2000), finite
difference time domain method (Qiu 2001), multiple method (White et al.
2001) and finite difference frequency domain method (Zhu and Brown
2002) etc.

In this paper, the dispersion properties of PCFs have been analyzed and
compared using the scalar effective index method and fully vectorial
effective index method. Previously, dispersion properties such as wave-
length of zero dispersion nearly zero ultra flattened dispersion, and
anomalous dispersion was obtained by the finite element method, plane
wave expansion method, and localized function method, respectively. The
effective index method has also been used to study the propagation char-
acteristics of PCFs. This is because the effective index method is a simple
numerical technique that qualitatively provides the same modal properties
of PCFs as obtained by other numerical techniques. Further, it is shown
that the fundamental properties of PCFs such as effective index and dis-
persion parameter can be understood from classical optical fiber theories
(Koshiba and Saitoh 2004), where scalar effective index method is used.
However, this method is applicable for weekly guiding regime and in case
of PCFs, where large index contrast exists between air and silica reduces
the applicability of SEIM. Therefore, very recently, fully vectorial effective
index method for the calculation of effective index and dispersion param-
eters has been employed (Li et al. 2004). However, this paper lacks the
detailed studies of dispersion in terms of zero dispersion wavelengths,
nearly zero ultraflattened dispersion and the high negative dispersion
provided by PCFs. Therefore, in this paper we report how the fully vec-
torial effective index method is applied to compare the dispersion proper-
ties, such as high negative chromatic dispersion and nearly zero ultra
flattened dispersion of PCF.
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Fig. 1. (a) Schematic diagram of PCF and its parameters. (b) The equivalent circular unit cell of a hex-
agonal.

The dispersion properties of silica-based PCFs are analyzed to compare: (i)
zero dispersion at any wavelength, (ii) nearly zero ultra flattened dispersion
and (iii) a very high negative chromatic dispersion for various designs of
PCFs using both SEIM and FVEIM. It is shown that a wavelength of zero
dispersion and high negative dispersion is remarkably differing from these
two effective index methods.

l.1. SCALAR EFFECTIVE INDEX METHOD (SEIM)

In scalar effective index method, one starts form the Scalar wave equation

[V + (K20 = )|y =0 (1)

where V, is the transverse Laplacian operator in cylindrical coordinates,
k =2m/A\ is free space wavelength, » is material index and 3 is the propa-
gation constant. Using boundary condition that field must be continuous at
boundary of air-hole and silica and it must vanish at the outer boundary of

= 0, where

»

circular unit cell i.e. ¥ and ‘{.—})'?,.R ymust be continuous ;md%’f
R=rla, a being the radius of the air hole and r is the normal co‘ordinate to
the boundary *S’ and b = A\/%;—:— is defined as a radius of the outer circle,

which is obtained by equating the filling fraction of hexagonal unit cell and
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its circular approximation as shown in Figure 1(b). Therefore equation for
inner and outer areas of the air hole is

Y, = Al(WR) Air Hole (2a)

W, = BJo(UR) + CYo(UR) Silica region (2b)

Applying boundary conditions and making use of Bessel functions an
eigen value equation for evaluating the effective index npg)\ is obtained,

BJy(u) + CYy(u) =0, (3)
where B and C are the constants given by

aie  WL(W)I(U) — UL(U)R(W)
i) {"’(”’) U (0) Yo(U) — Jo(U) Y, (U))]

4)

C_A[W]](VV)JU(U)+UJ|(U)IQ(VV)] )
— UNW(U)Yo(U) — Jo(U) Y1(D)]

with parameters U, W and u as follows

U = koay/n? — n?,
W = koay/n? — n? (6)
u= kob\/flg = ngl

ns and n, are the refractive indices of pure silica and air, respectively. The
modal indices of fundamental space filling mode is obtained and hence n is
determined. Thereafter, the PCF is assumed to be a step index fiber as shown
in Figure 1(b).

1.2. FULLY VECTORIAL EFFECTIVE INDEX METHOD

In Full Vectorial Effective index method (FVEIM), both the effective clad-
ding index method and the effective index of the guided mode of the PCF are
calculated using fully vectorial equations. The electromagnetic fields in the
optical fibers are expressed in cylindrical coordinates as

E = E(r,0)é" 1) 'H = H(r, §)@~F) (7)

Substituting into Maxwell’s equation we will get the two sets of wave
equations.
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Where, symbols carry their usual meaning. Solving above Maxwell equation
we will get the modal indices of fundamental space filling mode.

(it whom) Ciahcan i) = (- 52) (8)

9)

where, P(U) is defined as
P(U) = J1I(U) Y (u) — Y (U)J(u) (10)

U, W, u are defined as in Equation (6) and the primes denote differentiation
with respect to the argument. In order to calculate # (propagation constant)
for the PCF, the hexagonal unit cell is approximated by a circular one of
radius # and hence the propagation constant of the guided mode will be
calculated.

2.1. INDEX GUIDED MODE

The equivalent step index fiber consists of core and cladding regions having
refractive indices n..( = ng) and n, respectively. From the obtained values of
cladding index using both the stated effective index method methods, we will
get the cladding index and hence, calculate the index-guiding mode for dif-
ferent fiber parameters, which are shown in Figure 2. The scalar solution
obtained for the fundamental mode is given by

Y = AJ)(UgR) R<I1
— BK(WegR) R<1 (11)

where 4 and B are constants and the eigenvalue equation obtained is the
similar to the eigenvalue equation of step index except the waveguide
parameters which are

Uerr = korey/n2 — % (12)
Werr = koren/n2e — 13, (13)
Verr = korey/n2 — ”31 (5)

nay is the effective index of the guided mode and r. is the radius of the core.
The characteristic equation obtained from the FVEIM is written as
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J'I(Ucff) K’I(chf) 2 J'I(Ucﬂ') 2 KII(WCIT)
(UcffJI(UctT) s WcrrKl(Wcrr)) (nd UetrJ1 (Uerr) =i WerrKi ( Wcﬁ))

(o) )

where, n.r is the effective index of the fundamental mode and n. is the
effective cladding index obtained from Equation (9).

In Figure 2(a), calculations have been done by using PCF parameters,
center-to-center spacing of the air holes in the photonic crystal or pitch
A =23 pm, core radius r.=0.64A, air hole diameter ¢=0.69 um. In later
figure i.e. Figure 2(b) we change the air hole diameter ¢=1.035 pm. It is
evident from the figure that the difference in the values of fundamental space
filling mode and the guided mode index calculated by these methods are
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Fig. 2. (a) Effective index of the guided mode as a function of wavelength for normalized air-hole sizes
of the PCF with parameters A=23pm and r.=0.64A, d/A =0.30. (b) Effective index of the guided
mode as a function of wavelength for normalized air-hole size of the PCF with parameters A =2.3 um
and r.=0.64A, d/A =0.45.
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significantly different. We concluded from the figures that, as the air filling
fraction increases the credibility of the SEIM reduces since the difference
between the refractive index of the silica and the refractive index of the
fundamental space filling mode increases, which violets the foremost
requirement of the weakly guided approximation.

Figure 3 shows the variation of effective normalized frequency parameter
for a PCF using FVEIM and SEIM Figure 3(b) shows that just by changing
any one parameter of PCF (e.g., A d or r. we can design an endlessly single
mode fiber. Viewing the Figure 3 it is being observed that the normalized cut
off frequency calculated by both the stated method is quantitatively different.
Using FVEIM we get smaller cut off normalized wavelength than by SEIM.
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Fig. 3. (a) Variation ol eflective normalized frequency parameter for a PCF using FVEIM and SEIM.
(b) Variation of effective normalized frequency parameter for a PCIF using FVEIM and SEIM keeping
({;’A 10.3.
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2.2. DISPERSION CALCULATION

The dispersion characteristics of PCF are investigated by taking into account
the refractive index of pure silica by means of the Sellemier formula, while the
index of air is assumed constant. The dispersion D is given as D = —é‘i{' ;
where n, is the effective index of the guided mode, which has been calculated
(Okamoto 2000) from scalar effective index method and fully vectorial
effective index method and A (in pm) is the free space wavelength. Figure 4
shows the dispersion behavior, calculated from both the above stated meth-
ods, as a function of wavelength for different normalized air holes. From the
figure we can state that dispersion curve obtained from SEIM and FVEIM are
not same. For the relative air hole size /A = 0.3 the curve is flattened near zero
unlike as obtained from FVEIM for the same PCF parameters.

2.2.1. Zero dispersion wavelengths

The dispersion (ps/nm-km) for different structures of PCF is obtained and
shown in Figure 4. Figure depicts that one can design PCFs by choosing
appropriate cladding parameters to obtain a desired zero dispersion wave-
length (ZDW). Variation of ZDW of PCF with normalized air hole size is
represented in Fig. 5 for the PCF of same parameters. It is clear from the
figure that as the air hole size increases the wavelength of zero dispersion also
increases. For the SEIM, zero-dispersion wavelength is smaller than that of
obtained from FVEIM. It is clear from Fig. 5 that the results are significantly
different for the large air fill fraction as the contrast of refractive index
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Fig. 4. Comparison of group velocity dispersion as a function of wavelength for different relative air-
hole sizes.
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Fig. 5. Comparison of zero-dispersion wavelength as a function of relative air hole size.

increases; this is because the fact that the effective index of cladding is
wavelength dependent. At short wavelength, the modal field remains
confined to the silica region, but at longer wavelengths the effective cladding
index decreases.

2.2.2. Nearly zera ultra flattened dispersion

From Figure 4 it is clear that dispersion properties obtained by using two
methods (SEIM and FVEIM) are not the same. Dispersion curve for the PCF
of parameters, hole-to-hole distance i.e. A=2.3 um, air hole diameter
d=0.69 pm and core diameter 2r.=3 pm is flattened near zero using SEIM.
Earlier, nearly zero ultra flattened dispersion is obtained for silica based PCF
with these design parameters and it is reported that the ultraflattened re-
sponse is in the order of (+0.05,-0.25) ps/nm-km (Sinha and Varshney 2003)
using scalar effective index method. However, with these design parameters,
nearly zero ultra flattened dispersion response is not achievable using
FVEIM. We can obtaine even more flattened dispersion behavior of PCF
using FVEIM with design parameters, A =2.3 um, d=0.59 pm, 2r.=3 um
and is in the order of (+0.038,-0.13) ps/nm-km, as shown in Figure 6. More
flattened response means more applicability in DWDM based optical
communications systems.

2.2.3 High negative dispersion

Chromatic dispersion in single-mode fibers causes light pulses to spread,
limiting the data transmission rate and length of optical-fiber links. To
overcome these limits, various techniques are used to suppress the dispersion
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Fig. 6. Nearly zero ultraflattened dispersion response in wavelength range of 1.3-1.7 pm.
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Fig. 7. High negative chromatic dispersion in photonic crystal fibers for different core diameters using
two different numerical techniques.

effects. Dispersion can be compensated by a short length ol a special type of
optical fibers, such as dispersion compensating fibers (DCFs), with a
dispersion of opposite sign so that the net dispersion of two fibers in series
becomes zero. The higher the dispersion coefficient of the compensating fiber,
the smaller will be the required length of the compensating fiber. A large
index contrast between core and cladding permits a high dispersion over a
broad wavelength range. Since the negative dispersion is obtained because of
the large index contrast due to which the foremost requirement for the scalar
approximation will be no more in picture, which leads us to a non-reliable
values of the negative dispersion olfered by PCF. It is evident from the Fig. 7
that the dispersion obtained from FVEIM is more negative than that of
obtained from SEIM at lower wavelength.
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3. Conclusion

The results on dispersion characteristics of PCFs, so obtained, have been
compared with the two standard methods namely SEIM and FVEIM for the
same geometrical and wave guiding parameters. For lower wavelengths, there
is negligible difference in the results obtained by using above stated methods,
however, as wavelength increases difference becomes apparent. The dis-
crepancy observed at higher wavelength values is due to the fact that the
refractive index of the silica and the effective cladding index are wavelength
dependent. The above results show that the scalar effective index method is
applicable only for the PCFs whose effective refractive index difference be-
tween core and cladding is less. It has been found that wavelength of zero
dispersion and high negative dispersion characteristics of PCFs obtained
from SEIM and FVEIM differ significantly.
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