
DEVELOPMENT OF AN ALGORITHM FOR WAVELET
TRANSFORM IN A JPEG LIKE IMAGE CODER

 A Dissertation Submitted in partial fulfillment of the requirements
for the award of the degree of

MASTER OF ENGINEERING
(Electronics and Communication)

By
Puneet Sabbarwal

College Roll no. 06/E&C/04
Delhi University Roll No. 8733

Under the guidance of

 Mrs. S. Indu

Department of Electronics & Communication Engineering

Delhi College of Engineering

Bawana Road, Delhi-110042

(University of Delhi)

June-2006

CERTIFICATE

This is to certify that dissertation entitled “DEVELOPMENT OF AN
ALGORITHM FOR WAVELET TRANSFORM IN A JPEG LIKE IMAGE
CODER” which is submitted by Puneet Sabbarwal in partial fulfillment of the

requirement for the award of degree M.E. in Electronics and Communication

Engineering to Delhi College of Engineering, Delhi is a record of the candidate

own work carried out by him under my supervision. The matter embodied in

this thesis is original and has not been submitted for the award of any other

degree

(Mrs. S.Indu)
Lecturer

Dept. of Electronics and Comm. Engg.
Delhi College of Engineering, Delhi

 i

ACKNOWLEDGEMENTS

It is a great pleasure to have the opportunity to extent my heartiest felt

gratitude to everybody who helped me throughout the course of this project.

I would like to express my heartiest felt regards to Mrs.S.Indu, Lecturer,

Department of Electronics and Communication Engineering for the constant

motivation and support during the duration of this project. It is my privilege

and owner to have worked under her supervision. Her invaluable guidance

and helpful discussions in every stage of this project really helped me in

materializing this project. It is indeed difficult to put her contribution in few

words.

I would also like to express my deep sense of gratitude towards my teacher

Prof. Asok Bhattacharyya, Head of Department, Electronics and Comm.

Engineering, Delhi College of Engineering He was always kind, cooperative &

helped me whenever I needed his guidance. Inspite of his busy schedule, he

always find time to provide precious guidance and encouragement. He gladly

accepted all pains in going through my work and participated in enlightening

and motivating discussions which are extremely useful.

I would also like to take this opportunity to present my sincere regards to my

teachers viz. Mrs. R.Pandey, Mr. R.Rohilla, Dr. M.Kulkarni , Mr. J.Panda

and Mr. A.K.Singh for their support and encouragement.

I am thankful to my friends and classmates for their unconditional support and

motivation during this project.

Puneet Sabbarwal
M.E. (Electronics and Communication Engineering)

College Roll No. 06/E&C/04

Delhi University Roll No. 8733

 ii

ABSTRACT

Image compression is now essential for applications such as transmission of large

sized images and their storage in databases. The fundamental goal of image

compression is to reduce the number of bits for transmission or storage while

maintaining an acceptable image quality. Compression can be achieved by

transforming the data, projecting it on a basis function, and encoding this transform.

 A new Discrete Wavelet Transform (DWT) based image compression algorithm is

presented in this thesis whose structure is modeled on the lines of the “Baseline JPEG

(Joint Picture Expert Group) standard”. The JPEG algorithm that uses the Discrete

Cosine Transform (DCT) yields good results for compression ratios till 10-15:1. As

the compression ratio increases, the coarse quantization on the image blocks causes

blocking artifacts in the decompressed image which is very annoying to the Human

Visual System (HVS). The wavelet transform that has better decorrleating properties

than the DCT operates on the complete image and hence it does not create any

blocking artifacts and provides significant improvement in achieving compression.

 Lifting scheme which is an easy, efficient and the latest advancement in the field of

implementing conventional wavelets by the use of simple lifting steps has been used

to implement the wavelet transform and the multiresolution decomposition of the

images at different scales. This is followed by the quantization of the transformed

coefficients. The transformed coefficients which are now at different resolution levels

are quantized using block thresholding. The block thresholding levels are fixed such

that the coefficients in the lowest resolution range are least quantized whereas the

coefficients in the higher resolution range are quantized more severely. The final 3

blocks which contain the highest frequency components are completely quantized to a

zero-level mark. Finally entropy encoding (Run length encoding and Huffman

encoding) is done to achieve final compression. This algorithm produces compression

results competitive with the DCT base Baseline JPEG model and requires no training,

 iii

no pre-stored tables or codebooks and requires no prior knowledge of the image

source.

 Results of this new coder are compared to JPEG standard, which shows a gain of 1dB

to 5dB over the standard baseline JPEG algorithm and a better performance in the

visual perceptibility of the reconstructed images.

 iv

Contents

1. Introduction 1
1.1 Digital Image 1
1.2 Need of Compression 1
1.3 Principles of Image Compression 2
1.4 Performance Ratios 2
1.5 Typical Environment For Image Compression 3

1.5.1 Source Encoder 4
1.5.2 Quantizer 4
1.5.3 Entropy Encoder 5

1.6 Image Compression Techniques 5
1.6.1 Lossless Vs. Lossy Compression 5
1.6.2 Predictive Vs. Transform Coding 6

1.7 Image Compression Algorithm 7
1.8 Organization of the Thesis 9

2. Transform Based Image Compression 10

 2.1 Karhunen-Loeve Transform 10
 2.2 Discrete Fourier Transform 11

2.3 Discrete Cosine Transform 12
2.3.1 JPEG : DCT-Based Image Coding Standard 13

2.4 Discrete Wavelet Transform 17
2.4.1 Wavelets 17
2.4.2 Wavelet Based Compression 17
2.4.3 Advantages of Wavelet based Compression 18
2.4.4 One-Dimensional Wavelet Transform 18
2.4.5 Multilevel Decomposition by Wavelet Transform 19
2.4.6 Two Dimensional Wavelet Transform 20
2.4.7 The Lifting Scheme 22

2.4.7.1 Split Phase 23
2.4.7.2 Predict Phase 24
2.4.7.3 Update Phase 26
2.4.7.4 The Inverse Transform 26
2.4.7.5 Integer to Integer Transform 27

3. Algorithm Development & Software Implementation 29
 3.1 Deviation from the “Baseline JPEG” Model 29
 3.2 The Compression Step 29
 3.2.1 Reading the Original Image 31
 3.2.2 Wavelet Transform Routine 32
 3.2.3 Quantization Routine 33
 3.2.4 Run-Length Encoding Routine 36
 3.2.5 Entropy Coding Routine 38
 3.2.6 Writing the Compressed File 39
 3.3 The Decompression Step 39
 3.4 Comparison of Original and Reconstructed Image 39

 3.5 Implementation of DCT based Image Coder 39

4. Results 42
 4.1 Bit Rate(bpp) Vs. PSNR(dB) 42
 4.2 File Size Vs. File Format of Storage 50
 4.3 Perceptual Validation 54

5. Conclusion and Suggestions for Further Research 56
 5.1 Conclusions 56
 5.2 Suggestions for Further Research 57

REFERENCES 58

Appendix A: 60

List of figures and tables 79

Chapter 1

INTRODUCTION

An overview of Image Compression Concepts is presented in subsections 1.1 – 1.7

below. Thereafter the general introduction of the work done is presented in 1.8. The

organization of the thesis is presented in 1.9.

1.1 Digital Image
An image may be defined as a two dimensional function, f (x, y), where x and y are

spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x, y) is

called the intensity or gray level of the image at that point. When x, y and the

amplitude of f are all finite discrete quantities then we call the image a digital image.

1.2 Need of Compression

The figures in Table 1.1 show the qualitative transition from simple text to full-

motion video data and the disk space, transmission bandwidth, and transmission time

needed to store and transmit such uncompressed data. It clearly illustrates the need for

sufficient storage space, large transmission bandwidth, and long transmission time for

image, audio, and video data. At the present state of technology, the only solution is

to compress multimedia data before its storage and transmission, and decompress it at

the receiver for play back. For example, with compression ratio of 32:1, the space,

bandwidth, and transmission time requirements can be reduced by a factor of 32, with

acceptable quality.

 1

Multimedia Data Size/Duration
Bits/Pixel or
Bits/Sample

Uncompressed
Size

A page of text 11'' x 8.5'' Varying resolution 16-32 Kbits

Telephone quality

speech
1 sec 8 bps 64 Kbits

Grayscale Image 512 x 512 8 bpp 2.1 Mbits

Color Image 512 x 512 24 bpp 6.29 Mbits

Medical Image 2048 x 1680 12 bpp 41.3 Mbits

Full-motion Video 640 x 480, 10 sec 24 bpp 2.21 Gbits

TABLE 1.1 Multimedia data types and uncompressed storage space, transmission
bandwidth, and transmission time required. The prefix kilo- denotes a factor of 1000
rather than 1024. [1]

1.3 Principles of Image Compression
A common characteristic of most images is that the neighboring pixels are correlated

and therefore contain redundant information. The foremost task then is to find less

correlated representation of the image. Two fundamental components of compression

are redundancy and irrelevancy reduction. Redundancy reduction aims at removing

duplication from the signal source (image/video). Irrelevancy reduction omits parts

of the signal that will not be noticed by the signal receiver, namely the Human Visual

System (HVS). In general, three types of redundancy can be identified:

• Interpixel (Spatial) Redundancy or correlation between neighboring pixel

values.

• Coding Redundancy usage of more code symbols than needed.

• Psychovisual redundancy more information than HVS can process.

1.4 Performance Ratios
The performance of Compression achieved is measured by two significant ratios[2].

These ratios serve as an important tool for direct comparison with other coders.

i) Mean Square Error (MSE)

It is the Cumulative squared error between the compressed and the original image. It

is usually represented by σd and is defined as

 2

∑∑
= =

−=
M

m

N

n
mnymnx

MN
RMSE

1 1

2)],(),([1
 (1-1)

 xn is the source output, yn is the reconstructed sequence.

 MSE lower the better, means lesser error.

ii) Peak Signal to Noise Ratio (PSNR)

It is a measure of the peak error.

2

2

10log10)(
d

peakx
dBPSNR

σ
=

 (1-2)

1.5 Typical Environment For Image Compression
Image compression research aims at reducing the number of bits needed to represent

an image by removing the spatial and spectral redundancies as much as possible while

maintaining and acceptable quality and intelligibility.

A typical environment for image compression is shown in Figure 1.1. The digital

image is encoded by an image coder. The output of the image coder is a string of bits

that represents the source image. The channel coder transforms string of bits to a form

suitable for transmission over a communication channel. At the receiver, the received

signal is transformed back into a string of bits by a channel decoder. The image

decoder reconstructs the image from the string of bits. In contrast to the

communication environment in Figure 1.1, no communication channel is involved in

application of image coding for purpose of storage.

The image coder in Figure 1.1 consists of three closely connected components viz. (a)

Source Encoder or Linear Transforms, (b) Quantizer, and (c) Entropy Encoder, shown

in Figure 1.2. Compression is accomplished by applying a linear transform to

decorrelate the image data, quantizing the resulting transform coefficients and entropy

coding the quantized values.

 3

1.5.1 source encoder

The source encoder is responsible for reducing or eliminating any coding, interpixel,

or psychovisual redundancies in the input image. A variety of linear transforms are

available like Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT),

Discrete Wavelet Transform (DWT) for this purpose. This operation is reversible and

may or may not reduce directly the amount of data required to represent the image.

1.5.2 quantizer

A Quantizer reduces the precision of the values generated from the encoder and

therefore reduces the number of bits required to save the transform co-coefficients.

This process is lossy. Quantization can be performed on each

 FIG. 1.1 Typical Environment for Image Coding

 4

 FIG. 1.2 Typical Structured Image Compression System

individual coefficient i.e. Scalar Quantization (SQ) or it can be performed on a group

of coefficients together i.e. Vector Quantization (VQ).

1.5.3 Entropy Encoder

An entropy encoder does further compress the quantized values. This is done to

achieve even better overall compression. The various commonly used entropy

encoders are the Huffman encoder, arithmetic encoder, and simple run-length

encoder. For better performance with compression, it’s important to have the best of

all the three components.

1.6 Image Compression Techniques

There are different schemes for classifying compression techniques. Two of these

schemes, described in this report, are:

1.6.1 lossless Vs. lossy compression: The first categorization is based

on the information content of the reconstructed image. They are 'lossless

compression' and 'lossy compression' schemes. In lossless compression, the

 5

reconstructed image after compression is numerically identical to the original image

on a pixel-by-pixel basis. However, only a modest amount of compression is

achievable in this technique. In lossy compression on the other hand, the

reconstructed image contains degradation relative to the original, because redundant

information is discarded during compression. As a result, much higher compression

is achievable, and under normal viewing conditions, no visible loss is perceived

(visually lossless). Performance analysis of these schemes is shown in Fig. 1.3 below.

 ERROR

 LOSSY

 LOSSLESS

 SIZE

FIG. 1.3 Performance Analysis

1.6.2 predictive Vs. transform coding: The second categorization of

various coding schemes is based on the 'space' where the compression

method is applied. These are 'predictive coding' and 'transform coding'. In

predictive coding, information already sent or available is used to predict

future values, and the difference is coded. Since this is done in the image or

spatial domain, it is relatively simple to implement and is readily adapted to

local image characteristics.

 Transform coding, on the other hand, first transforms the image from its

spatial domain representation to a different type of representation using

some well-known transforms mentioned later, and then codes the

transformed values (coefficients). Some of these are: Karhunen-Loeve

Transform (KLT), Discrete Fourier Transform (DFT), Discrete Cosine

 6

Transform (DCT), Discrete Wavelet Transform (DWT). The primary

advantage is that, it provides greater data compression compared to

predictive methods, although at the expense of greater computations.

1.7 Image Compression Algorithm

After reviewing the various techniques used for development of image compression

algorithms, a scheme is presented for the work done in this thesis.

Visual communication is becoming more and more important in applications such as

digital television transmission, teleconferencing, multimedia communications,

transmission and archival of remote sensing and medical images, video databases,

educational and business documents, etc. Since digital images and video data are

voluminous, efficient compression techniques are essential for their storage, retrieval

and transmission.

Transform based image compression schemes first involve the transformation of

spatial information in to another domain. For example, the Discrete Cosine Transform

(DCT) transforms an image into the frequency domain. The goal of the transformation

is a compact, complete representation of the image. The transform should decorrelate

the spatially distributed energy into fewer data samples such that no information is

lost. Orthogonal transforms have the feature of eliminating redundancy in the

transformed image. Compression occurs in the second step when the transformed

image is quantized (i.e. when some data samples usually those with insignificant

energy-level are discarded). The inverse transform reconstructs the compressed image

in the spatial domain. Since the quantization process is not invertible, the

reconstruction cannot perfectly recreate the original image[3]. This type of

compression is called lossy; Figure 1.2 shows a block diagram of a lossy compression

scheme.

In transform based image compression, entropy coding typically follows the

quantization stage. Entropy coding minimizes the redundancy in the bit stream and is

fully invertible at the decoding end. So, it is lossless and usually gives about 0.4-0.6

dB gain in the PSNR [3].

 7

Recently, discrete wavelet transform (DWT) has proven itself as a powerful and

promising technique for image coding applications. Energy compaction is one of the

most important properties for low bit rate transfer coding. Wavelets have better

energy compaction property than the Fourier transform (DCT based JPEG) for signal

with discontinuities. A pedagogically oriented image compression system using the

modified version of the integer-lifting scheme by Cohen-Daubechies-Feauveau[4,5] is

used to implement the wavelet transform and the multiresolution analysis. Lifting

scheme is one of the latest advancements made in the field of wavelet research and is

popularly known as the Second Generation Wavelets.The lifting scheme, developed

by Sweldens, started as a method to improve a given Discrete Wavelet Transform

(DWT) to obtain specific properties [4,6]. Later it became an efficient algorithm to

calculate any wavelet transform as a sequence of simple lifting steps [5]. Digital

signals are usually a sequence of integer numbers, while wavelet transforms result in

floating point numbers. For an efficient reversible implementation it is of great

importance to have a transform algorithm that converts integers to integers.

Fortunately a lifting step can be modified to operate on integers, while preserving the

reversibility [6]. Thus the lifting scheme became a method to implement reversible

integer wavelet transforms. The advantages of lifting are numerous [4]:

1. It allows a faster (0(n)) implementation of the wavelet transform.

Traditionally, the fast wavelet transform is calculated with a two-band

subband transform scheme. In each step the signal is split into a high pass and

low pass band and then subsampled. Recursion occurs on the low pass band.

The lifting scheme makes optimal use of similarities between the high and low

pass filters to speed up the calculation. In some cases the number of operations

can be reduced by a factor of two.

2. The lifting scheme allows a fully in-place calculation of the wavelet transform.

In other words, no auxiliary memory is needed and the original signal (image)

can be replaced with its wavelet transform.

3. In the classical case, it is not immediately clear that the inverse wavelet

transform actually is the inverse of the forward transform. Only with the

Fourier transform one can convince oneself of the perfect reconstruction

property. With the lifting scheme, the inverse wavelet transform can

immediately be found by undoing the operation of the forward transform. In

 8

practice, this comes down to simply reversing the order of the operations and

changing each + into a – and vice versa[4,6,7].

Based on this a software has been developed on the lines of baseline JPEG that uses

Discrete Wavelet Transform instead of the Discrete Cosine Transform, quantization

and entropy coding and hence provides image compression of two-dimensional

grayscale images of size 512 X 512 with a gain in the PSNR values in the range of

1dB to 5dB over the standard baseline JPEG algorithm.

1.8 Organization of the Thesis

The present thesis is distributed in 5 chapters. Chapter 1 deals with the general

introduction to the concepts of image compression and the algorithm presented.

Chapter 2 describes the compression techniques using the different transformation

schemes available. The popular DCT based JPEG, the lifting scheme for the wavelets

have been detailed here. Chapter 3 describes the implementation of the image

compression system developed in this thesis. The results are presented , analyzed and

compared with some of the well known techniques of image compression in Chapter

4. Conclusions and issues identified for further research are presented in Chapter 5.

References cited in the text of the thesis are presented at the end.

 9

Chapter 2

TRANSFORM BASED IMAGE
COMPRESSION

In transform image coding, an image is transformed into a domain significantly

different form the image intensity domain. Transform coding technique attempt to

reduce the correlation that exists among image pixel intensities. When the correlation

is reduced, the redundant information does not have to be coded repeatedly.

Transform coding techniques also exploit the observation that for typical images a

large amount of energy is concentrated in a small fraction of the transform

coefficients. This is called the energy compaction property. Because of this property,

it is possible to code only a fraction of the transform coefficients without seriously

affecting the image quality and intelligibility.

Many different transforms have been considered for transform image coding. They

differ in energy compaction and in computational requirements. Some of them are:

1. Karhunen-Loeve Transform (KLT)

1. Discrete Fourier Transform (DFT)

2. Discrete Cosine Transform (DCT)

3. Discrete Wavelet Transform (DWT)

 2.1 Karhunen-Loeve Transform
 Karhunen-Loeve Transform (KLT) is the best of all linear transforms for energy

compaction. In the KLT, the basis functions a(n1,n2; k1,k2) are obtained within a

scaling factor by solving

 10

),;,(),(212121 kknnakkλ =

∑ ∑
− −1

21212121

11

1

1

1

),;,(),;,(
n

l

n

l
f kkllallnnk (2-1)

where

)])],([),(()]),([),([

), ;,(

21212121

2121

llfEllfnnfEnnfE

llnnkf

−−

=
 (2-2)

KLT of f(n1,n2) is given by

∑∑
−

=

−

=

=
1

0

1

0
21212121

1

1

2

2

)k, ;,(),(),(
N

k

N

k
f knnannfkkT (2-3 a)

Inverse KLT is given by

∑∑
−

=

−

=

=
1

0

1

0
21212121

1

1

2

2

)k, ;,(),(T),(
N

k

N

k
f knnbkknnf (2-3 b)

where a(n1,n2; k1,k2) and b(n1,n2; k1,k2) are basis functions.

The KLT is interesting theoretically, but it has serious practical difficulties. Since

KLT is data dependent, obtaining the KLT basis images for each sub image, in

general is a nontrivial computational task. For this reason, the KLT is seldom used in

practice for image compression[2,4].

2.2 Discrete Fourier Transform

 Discrete Fourier Transform(DFT) has fixed set of basis functions, and is an efficient

algorithm for its computation and good energy compaction.

The DFT of a sequence f(n1,n2) for n1,n2 = 0,1,………….N-1 is defined as[3]

∑∑
−

=

−

=

Π−Π−=
1

0

1

0

22
2121

1 2

2211),(),(
N

n

N

n

nkjnkj eennfkkF
 (2-4)

 11

for k1,k2 = 0,2…………N-1

and the discrete inverse transform is given by

22

1 2

11 2
1

0

1

0

2
21221),(1),(nkj

N

k

N

k

nkj eekkF
N

nnf Π
−

=

−

=

Π∑ ∑=
(2-5)

for n1,n2 = 0,1,2,……..N-1.

When transform image coding techniques were first developed in the late 1960’s the

DFT was the first that was considered. DFT has very good energy compaction

property for typical images, but it is suboptimal as the transform coefficients F(k1,k2)

are not correlated. Moreover the DFT gives rise to boundary discontinuities due to

Gibbs phenomenon resulting as blocking artifacts in an image[4].

2.3 Discrete Cosine Transform

Compared to other input independent transforms, Discrete Cosine Transform (DCT)

has the advantages of packing the most information into the fewest coefficients, and

minimizing the block like appearance, called the blocking artifact,[5] that results

when the boundaries between subimages become visible. The DCT of sequence

f(n1,n2) for n1=0,1,……….N1-1 and n2=0,1,………..N2-1, is defined as[4]

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

−≤≤
−≤≤

+
Π

+
Π

=

∑∑
−

=

−

=

otherwise

Nk
Nk

for

nk
N

nk
N

nnf

kkF

N

n

N

n

,0

10
,10

)12(
2

cos)12(
2

cos),(4

),(

22

11

1

0

1

0
22

2
11

1
21

21

1

1

2

2

(2.6)

 12

2.3.1 JPEG : DCT-based image coding standard

The idea of compressing an image is not new. However, the discovery of Discrete

Cosine Transform (DCT) in 1974, was an important achievement for the scientific,

engineering, and research communities working on image compression. Joint Picture

Experts Group (JPEG) is one of the most popular and comprehensive still image

compression standards brought out in 1992. It defines three different coding

systems[4]: (1) a lossy baseline coding system, which is based on the DCT and is

adequate for most compression algorithms; (2) an extended coding system for greater

compression; and (3) a lossless independent coding system for reversible

compression. The 'baseline JPEG coder' (Figure 2.1), which is the sequential

encoding in its simplest form, will be briefly discussed here. Fig. 2.2(a) and 2.2(b)

show the key processing steps in such an encoder and decoder for gray scale images.

 13

FIG. 2.1 Flow of information from encoder to decoder for JPEG baseline system [5]

The DCT-based encoder can be thought of as essentially compressing a stream of 8x8

blocks of image samples. Each 8x8 block makes its way through each processing step,

and yields output in compressed form into the data stream. Because adjacent image

pixels are highly correlated, the forward DCT (FDCT) processing step lays the

foundation for achieving data compression by concentrating most of the signal in the

lower spatial frequencies. For a typical 8x8 sample block from a typical source

image, most of the spatial frequencies have zero or near-zero amplitude and need not

be encoded. In principle, the DCT introduces no loss to the source image samples and

 14

merely transforms them to a domain in which they can be more efficiently encoded.

FIG. 2.2(a) JPEG Encoder Block Diagram

FIG. 2.2(b) JPEG Decoder Block Diagram

After output from the FDCT, each of the 64 DCT coefficients is uniformly quantized

in conjunction with a carefully designed 64-element Quantization Table (QT). At the

decoder, the quantized values are multiplied by the corresponding QT elements to

recover the original unquantized values. After quantization, all of the quantized

coefficients are ordered into the "zig-zag" sequence as shown in Figure 2.3. This

ordering helps to facilitate entropy coding by placing low-frequency non-zero

coefficients before high-frequency coefficients. The DC coefficient, which contains a

significant fraction of the total image energy, is differentially encoded[4,5].

 15

FIG. 2.3 Zig-Zag sequence

Entropy Coding (EC) achieves additional compression losslessly by encoding the

quantized DCT coefficients more compactly based on their statistical characteristics.

The JPEG proposal specifies both Huffman coding and Arithmetic coding. The

Baseline sequential codec uses Huffman coding, but codecs with both methods are

specified for all modes of operation. Arithmetic coding, though more complex,

normally achieves 5-10% better compression than Huffman coding. The basic steps in

JPEG implementation are[4]:-

1. The image is first subdivided into pixel blocks of size 8x8, which are

processed left to right, top to bottom.

2. Level shift the 64 pixel by subtracting the quantity 2n-1.

3. The 2-D DCT of the block is then computed, quantized and reordered, using

the zigzag pattern of Figure. 2.3 to form a 1-D sequence of quantized

coefficients.

 16

2.4 Discrete Wavelet Transform

2.4.1 wavelets

Wavelets (small waves) are functions defined over a finite interval and having an

average value of zero. The main idea behind wavelet analysis is to decompose a

signal f into a basis of functions Ψi:

i
i

iaf ψ∑=
 (2-7)

To have an efficient representation of the signal f using only a few coefficients ai, it is

very important to use a suitable family of functions Ψi. The functions Ψi should

match the features of the data we want to represent.

Real-world signals usually have the following features: they are both limited in time

(time-limited) and limited in frequency (band-limited). What we need is a

compromise between the pure time-limited and band-limited basis functions, a

compromise that combines the best of both worlds: wavelets (“small waves”)[6].

2.4.2 wavelet based compression

Digital image is represented as a two-dimensional array of coefficients, each

coefficient representing the brightness level in that point. We can differentiate

between coefficients as more important ones, and lesser important ones. Most natural

images have smooth color variation, with the fine details being represented as sharp

edges in between the smooth variations. Technically, the smooth variations in color

can be termed as low frequency variations and the sharp variations as high frequency

variations.

The low frequency components constitute the base of an image, and the high

frequency components (the edges with give the detail) add upon them to refine the

image, thereby giving a detailed image. Hence, the smooth variations are demanding

more importance that the details.

Separating the smooth variations and details of the image can be done in many ways.

One such way is the decomposition of the image using the Discrete Wavelet

Transform (DWT). Digital image compression is based on the ideas of sub band

 17

decomposition or Multi Resolution Analysis (MRA) which can be achieved using

DWT[7].

2.4.3 advantages of wavelet based compression
Wavelet Transforms have several advantages with regards to image compression and

processing[11]. Some of them are mentioned here:

• One of the main features of Wavelet Transform, which is important for data

compression and image processing applications, is its decorrelating behavior.

• Wavelets are localized in both the space (time) and scale (frequency) domains.

Hence they can easily detect local features in a signal.

• Wavelets are based on multi-resolution analysis (MRA). Wavelet

decomposition allows to analyze a signal at different resolution levels (scales).

• There exist fast and stable algorithms to calculate the discrete wavelet

transform and its inverse.

2.4.4 one-dimensional wavelet transform
The one-dimensional discrete wavelet transform can be described in terms of a filter

band as shown in Figure 2.4. An input signal x[n] is applied to the low pass filter l[n]

and to the analysis high-pass filter h[n]. The odd samples of the outputs of these

filters are then discarded, corresponding to a decimation factor of two. The decimated

outputs of these filters constitute the reference signal r[k] and the detail signal d[k]

for a new-level of decomposition. During reconstruction, interpolation by a factor of

two is performed, followed by filtering using the lowpass and high-pass synthesis

filters l[n] and h[n]. Finally, the outputs of the two synthesis filters are added

together[7,8,9,10].

 18

FIG. 2.4 One-dimensional wavelet transform.

The above procedure can be expressed mathematically as the following equations[9].

∑ −•=
n

nkhnxkd]2[][][
 (2-8)

∑ −•=
n

nklnxkr]2[][][
 (2-9)

∑ −•+−•=
n

nklkrnkgkdnx])2[][(])2[][(][
 (2-10)

2.4.5 multilevel decomposition by wavelet transform
For a multilevel decomposition, the above process is repeated. The previous level’s

lower resolution reference signal ri[n] becomes the next level sub-sampling input, and

its associated detail signal di[n] is obtained after each level filtering. Figure 2.5

illustrates this procedure. The original signal x[n] is input into the low-pass filter h[n]

and the high-pass filter g[n][8,10].

 19

FIG. 2.5 Computing DWT by MRA

2.4.6 two dimensional wavelet transform
 To apply wavelet transform to a 2D array, such as an image, it is a common practice

to apply the wavelet transform in the horizontal and vertical direction separately. The

approach is called 2D-separable wavelet transform. The 2D data array of the image is

first filtered in the horizontal direction, which results in two subbands, a horizontal

low and a horizontal high pass subband. Each subband then passes through a vertical

wavelet filter. The image is thus decomposed into four subbands, - subband LL (low

pass horizontal and vertical filter), LH (low pass vertical and high pass horizontal

filter), HL (high pass vertical and low pass horizontal filter) and HH (high pass

horizontal and vertical filter). Because the wavelet transform is a linear transform, we

may switch the order of the horizontal and vertical wavelet filter, and still reach the

same effect.

 A multi-scale dyadic wavelet pyramid shown in Figure 2.6 can be obtained by further

decomposing the subband LL with another 2D wavelet. Recursive application of

 20

wavelet transform in spatial domain corresponds to partition of data in the frequency

domain[7].

FIG. 2.6 Example of Two level Dyadic Decomposition of an Image

 Low-pass samples represent a smaller low-resolution version of the original signal.

The high-pass samples represent a smaller residual version of the original; this is

needed for a perfect reconstruction of the original set from the low-pass set. This is

the basis for multiresolution analysis. In MRA, a scaling function is used to create a

series of approximations of a function or image, each differing by a factor of 2 from

its nearest neighboring approximations. Additions functions called wavelets are then

used to encode the difference in information between adjacent approximations.

 A wavelet transform discussed in sections 2.4.3 and 2.4.4 is called the convolution-

based implementation. The easiest implementation of the filtering process that will

work for all wavelet filters (and even non-wavelet filters) is a convolution algorithm.

 21

Here, the signal is first convoluted with the filter bank and then subsampled. In other

words, only half the samples are kept, with the other half of the filtered samples

thrown away. Clearly this is not efficient, and it would be better to do the sub

sampling before the filtering operation. This leads to an alternative implementation of

the wavelet transform termed lifting approach. It turns out that all FIR wavelet filters

can be factored into lifting step[11].

2.4.7 the lifting scheme
The lifting scheme is an algorithm to calculate wavelet transforms in an efficient way.

It was developed first as a method to improve a given wavelet transform to obtain

some specific properties. Wavelets based on dilations and translations of a mother

wavelet are referred to as first generation wavelets or classical wavelets. Second

generation wavelets are wavelets that are not necessarily translations and dilations of

one function. Second generation wavelets retain the powerful properties of first

generation wavelets, like fast transform, localization and good approximation. Lifting

scheme is a rather new method for constructing wavelets. The main difference with

the classical constructions is that it is does not rely on the Fourier transform. In this

way, Lifting can be used to construct second generation wavelets Lifting scheme [15]

can in addition, efficiently implement classical wavelet transforms. Existing classical

wavelets can be implemented with Lifting Scheme by factorization them into Lifting

steps [14].

The basic idea behind the Lifting Scheme is very simple; we try to use the correlation

in the data to remove redundancy. To this end, we first split the data into two sets

(Split phase): the odd samples and the even samples (see Figure 2.7). If the samples

are indexed beginning with 0 (the first sample is the 0th sample), the even set

comprises all the samples with an even index and the odd set contains all the samples

with an odd index. Because of the assumed smoothness of the data, we predict that the

odd samples have a value that is closely related to their neighboring even samples.

We use N even samples to predict the value of a neighboring odd value (Predict

phase). With a good prediction method, the chance is high that the original odd

sample is in the same range as its prediction. We calculate the difference between the

odd sample and its prediction and replace the odd sample with this difference. As long

as the signal is highly correlated, the newly calculated odd samples will be on the

 22

average smaller than the original one and can be represented with fewer bits. The odd

half of the signal is now transformed. To transform the other half, we will have to

apply the predict step on the even half as well. Because the even half is merely a sub-

sampled version of the original signal, it has lost some properties that we might want

to preserve. In case of images for instance, we would like to keep the intensity (mean

of the samples) constant throughout different levels. The third step (Update phase)

updates the even samples using the newly calculated odd samples such that the

desired property is preserved. Now the circle is round and we can move to the next

level; we apply these three steps repeatedly on the even samples and transform each

time half of the even samples, until all samples are transformed. These three steps are

explained below in more detail[12].

FIG. 2.7 Number of samples in different levels

2.4.7.1 split phase (lazy wavelet transform)
Assume that the scheme starts at level 0. We denote the data set as λ0,k where k

represents the data element and 0 signifies the iteration level 0. In the first stage, the

data set is split into two other sets: the even samples λ-1,k and the odd samples γ-1,k

(see Figure 2-8). This is also referred to as the Lazy Wavelet transform because it

does not decorrelate the data, but just sub-samples the signal into even and odd

samples.

λ-1,k = λ0,2k (2-11)

γ-1,k = γ0,2k+1 (2-12)

 23

The negative indices are used according to the convention that the smaller the data

set, the smaller the index.

FIG. 2.8 The Lifting Scheme, forward transform: Split, Predict and Update phases

2.4.7.2 predict phase or dual lifting
The next step is to use the even set λ-1,k to predict the odd set γ-1,k using some

prediction function P, which is independent of the data. The prediction will be

Prediction = P (λ- 1,k) (2-13)

The more correlation present in the original data, the closer the predicted value will be

to the original γ-1,k. Now, the odd set γ-1,k will be replaced by the difference between

itself and its predicted value. Thus,

γ-1,k = γ-1,k – P(λ-1,k) (2-14)

Different functions can be used for prediction of odd samples. The easiest choice is to

predict that an odd sample is just equal to its neighboring even sample. This

prediction method is result to the Haar wavelet. Obviously this is an easy but not

realistic choice, as there is no reason why the odd samples should be the equal to the

even ones.

Another option is to predict that an odd sample γ-1,k is equal to the average of the

neighboring even samples at its left end right side λ-1,k, λ 0, k+1 .

 24

γ-1,k = γ-1,k – ½ (λ-1,k + λ 0, k+1) (2-15)

In other words, we assume that the data has a piecewise linear behavior over intervals

of length 2. If the original signal complies with this model, all wavelet coefficients (γ-

1,k, ∀k) will be zero. In other words, the wavelet coefficients measure to which extent

the original signal fails to be linear. In terms of frequency content, the wavelet

coefficients capture the high frequencies present in the original signal.

The prediction does not necessarily have to be linear. We could try to find the failure

to be cubic and any other higher order. This introduces the concept of interpolating

subdivision. We use some value N to denote the order of the subdivision

(interpolation) scheme. For instance, to find a piecewise linear approximation, we use

N equal to 2. To find a cubic approximation N should be equal to 4. It can be seen that

N is important because it sets the smoothness of the interpolating function used to find

the wavelet coefficients (high frequencies). This function is referred to as the dual

wavelet. Figure 2.9-left illustrates linear interpolation (N=2), where one even sample

at each side is used for predicting the odd sample, while Figure 2.9-right depicts cubic

interpolation (N=4), where two even samples at each side are used for prediction.

FIG. 2.9 Examples of different prediction functions, Left: Piecewise linear prediction,

right: Cubic polynomial interpolation.

 25

2.4.7.3 update phase or primal lifting
By iterating the predict step on the λj,k outputs of each level for lets say n times, we

can convert all the samples, except N coarsest level coefficients λ-n,k, to their

corresponding wavelet coefficients. These last N coarsest coefficients are N samples

from the original data and form the smallest version of the original signal. This

introduces considerable aliasing. We would like some global properties of the original

data set to be maintained in the smaller versions λj,k. for example in the case of images

we would like the smaller images to have the same overall brightness, i.e. the same

average pixel value. Therefore, we would the last values to be the average of all the

pixel values in the original image. This problem can be solved by introducing a third

stage: the update stage.

In this stage the coefficients λ-1,k are lifted with the help of the neighboring wavelet

coefficients γs, so that a certain scalar quantity Q, e.g. the mean, is preserved. A new

operator U is introduced that ensures the preservation of this quality. Operator U uses

a wavelet coefficient of the current level (λ j,k) to update N even samples of the same

level.

λ-1,k = λ-1,k + U(γ-1,k) (2-16)

This is referred to as primal lifting.

2.4.7.4 the inverse transform
One of the great advantages of the lifting scheme realization of a wavelet transform is

that it decomposes the wavelet filters into extremely simple elementary steps, and

each of these steps is easily invertible. As a result, the inverse wavelet transform can

always be obtained immediately from the forward transform. The inversion rules are

trivial: revert the order of the operations, invert the signs in the lifting steps, and

replace the splitting step by a merging step. Here follows a summary and the steps to

be taken for both forward and inverse transform for the popular Cohen, Daubechies

and Feauveau classical biorthogonal wavelets whose modified scheme has been

implemented in this dissertation for the calculation of wavelet transform (CDF(2,2))

[12,14], (see Figure 2.11).

 26

FIG. 2.10 The Lifting Scheme, inverse transform : Update, Predict and Merge stages

FIG. 2.11 Lifting steps for CDF(2,2) Wavelets

2.4.7.5 integer-to-integer transform
In many applications (e.g. image compression and processing, video, audio, . . .) the

input data consist of integer samples. In addition the storage and encoding of integer

numbers is easier, compared to floating point numbers. Unfortunately all of the above

transforms assume that the input samples are floating point values. Even if the input

values actually are integer, doing the filtering operations on these numbers will

transform them in rational or real numbers because the filter coefficients need not be

integers. To obtain an efficient implementation of the discrete wavelet transform, it is

of great practical importance that the wavelet transform is represented by a set of

integers as well (possibly up to some scaling factor). Of course, this can always be

obtained by scaling and rounding the real numbers, but this rounding process will

loose information, and after rounding, the original signal can not be reconstructed

from its transform without an error. Especially from a compression point of view, it

 27

looks a bit silly to first expand the integer input data from e.g. 8 bits per sample to 32

bit wide floating point numbers, while the goal is to reduce the total amount of data.

Fortunately the lifting scheme can be modified easily to a transform that maps

integers to integers and that is reversible, and thus allows a perfect reconstruction [6].

This is done by adding some rounding operations, at the expense of introducing a

non-linearity in the transform. Since even the most elementary lifting steps involve

for example divisions by 2, we obtain in general prediction values P(λj) and update

values U(γj) which are not integer. We shall round these numbers to integers (for

example the nearest integer) and indicate this operation by curly braces. Thus, we

actually compute rounded values:

{ })(jjj P λγγ −← (2-17)

{ })(jjj U γλλ +← (2-18)

To see that perfect reconstruction is always possible, we note the following. The last

computation in a forward transform step is to compute { })(jjj U γλλ +←)

Thus the first computation in the inverse transform step is to recompute {U(γj) and

this will give exactly the same result as before if γj has been perfectly reconstructed

so far. Therefore { })(jjj U γλλ −← reconstructs exactly the original λj. Thus also

{P(λj)} can be reproduced in the reconstruction step, exactly as in the forward step,

and thus also { })(jjj P λγγ −← will give the original γj back. This shows that each

step of the lifting scheme with rounding, is perfectly invertible and thus the whole

signal is perfectly reconstructible. This is one of the most amazing features of integer

lifting: whatever deterministic rounding operation is used, the lifting operation is

always reversible[12].

 28

Chapter 3

ALGORITHM DEVELOPMENT &
SOFTWARE IMPLEMENTATION

The entire software is developed using “C” programming language and complied in

the Microsoft Visual C++ environment. Total image compression scheme that is

developed in this dissertation is methodically explained below along with its software

implementation.

3.1 Deviation from the “Baseline JPEG” Model
The main difference between the “Baseline JPEG” (see Figure 3.1) and the present

implementation (see Figure 3.2) scheme is that the JPEG is DCT based, whereas this

implementation is based on the wavelet transform because of its numerous advantages

mentioned earlier in Chapter 2.

JPEG uses a fixed quantization table of size 8 X 8, whereas in the wavelet based

implementation, once the image is scaled into the blocks of different resolution,

different block threshold levels are used for quantization purpose. The Run Length

Coding and the Huffman Entropy coding has been implemented using separate

functions, whereas JPEG uses the standard tables.

 29

 FIG. 3.1 Baseline JPEG basic encoding flow diagram.

 FIG. 3.2 DWT-JPEG based on the JPEG structure

3.2 The Compression step
The “compress.c” contains all the routines required for a simple wavelet-based

image compression of a 512 X 512 8-bits per pixel image in PGM format. The

compression process consists of four basic steps: wavelet transform, quantization,

run-length encoding, and entropy coding. This is shown in Figure 3.3.

The program accepts an optional compression-factor parameter specifying how

aggressively the image should be compressed. A compression factor of 0 indicates

minimal compression and maximum image quality. The compression factor of 255

 30

indicates maximum compression with higher degradation to the image quality. If the

compression factor is not indicated, a default compression rate of 128 will be used.

The compressed output image file format is specific to this program, and has a

".cmp" extension.

FIG. 3.3 Image Compression routines.

3.2.1 reading the original image
The original image, which is unprocessed, is stripped off with its header information.

Only the necessary information is retained while reading the image header. These are:

num_cols, num_rows : number of columns, rows in the image vector.

The image size(img_size) is then calculated which is equal to the product of number

of columns and rows. The information after the header inside the image are the pixel

intensities. These values are then read in an array of integers (int_data). The image

data is ready for further processing.

 31

3.2.2 wavelet transform routine
The first step, the wavelet transform routine process, is a modified version of the

biorthogonal Cohen-Daubechies–Feauveau wavelet[12,14]. The basic concept behind

wavelet transform is to hierarchically decompose an input signal into a series of

successively lower resolution reference signals and their associated detail signals. At

each level, the reference signal and their associated detail signal contain the

information needed to reconstruct the reference signal at the next higher resolution

level.

The wavelet transform routine employs a lifting scheme to simplify the wavelet

transform implementation. Therefore, it only requires integer adds and shifts. The

computation of the wavelet filter is performed according to the following equations.

D0 = D0 + D0 – S0 – S0 (3-1)

S0 = S0 + (2*D0/8) (3-2)

 Di = Di + Di – Si – Si+1 (3-3)

Si = Si+ ((Di-1+Di)/8) (3-4)

In the above equations, Di and Si are odd and even pixels taken from one row or

column, respectively. In image compression, one row or column of an image is

regarded as a signal.

Calculation of the wavelet transform requires the pixels to be taken from one row or

column at a time. In Equations (1) – (4). Di should be calculated first before

processing Si. Therefore, the odd pixel should be processed first, then the even pixel

due to the data dependency. There are a total of three levels based on the 3-level

decomposition wavelet transform algorithm. In each level, the rows are processed first

and then the columns. Each level’s signal length (amount of each row/column pixels)

is half of the previous level. Equations (1) – (4) are grouped into a function called

“forward-wavelet ” & “ fcdf22” in the C code. Figure 3.4 illustrate the three

levels of wavelet transform implementation.

 32

FIG. 3.4 Wavelet transform implementation.

3.2.3 quantization routine
After obtaining the three levels of the wavelet transform, the quantization routine

follows. During the quantization routine, the image is divided into 10 blocks; the first

four will be 64 x 64 pixels (4096 pixels), then three will be 128 x 128 (16384 pixels),

and the remaining three of 256 x 256 pixels (65536 pixels). Every block executes the

same quantization process. Figure 3.5 illustrates this as a block diagram. Before

processing each block, some parameters should be prepared. First is the blockthresh,

which is a threshold value below which all the intensities in the transformed image are

given the zero mark. An array is used to hold these 10 block blockthreshes values:

Blockthresh[10] = { 0, 39, 27, 104, 79, 51, 191, 99999, 99999, 99999}

For example: Since we want to retain the values in lower numbered blocks, Block 1 ‘s

blockthresh is 0, Block 10’s blockthresh is 99999. The next values that need to be

calculated are the sixteen thresholds for each block, thresh1~thresh10. The formula to

calculate these values is given in equation (5).

 33

FIG. 3.5 Quantization and Run-Length encoding block diagram.

 (3-5)

The threshn is the nth threshold value in a block, and n value ranges from 1 to 16.

Values min and max are the minimal and maximum pixel values within this block.

After these numbers are computed, each block can run the quantization process. First,

each input pixel’s absolute value is compared with its corresponding blockthresh[n],

if it is smaller than the blockthresh value, the original pixel value is assigned to a

constant value ZERO_MARK, which should be defined by the user. In this

dissertation, this is assigned a value of 16. If the abs (pixel) value is not smaller then

the blockthresh value, the pixel will be passed to a subroutine called “classify()”

in the program. The original pixel value will then be changed into its corresponding

threshn value after this call. Listing 3-1 is the pseudo code to represent the above

calculation.

 34

if(abs(val)< value of that block’s threshold)

quant_buf[num][qsize++]=ZERO_MARK;

else

quant_buf[num][qsize]=classify(val);

/**

Routine: classify() to find the quantized value in the

range of 0 to 16.

**/

int classify(int val)

{

if(val>thresh8) {

if(val>thresh12) {

if(val>thresh14) {

if(val>thresh15) return 15;

else return 14;

} else {

if(val>thresh13) return 13;

else return 12;

} } else {

if(val>thresh10) {

if(val>thresh11) return 11;

else return 10;

} else {

if(val>thresh9) return 9;

else return 8;

} } } else {

if(val>thresh4) {

if(val>thresh6) {

if(val>thresh7)

 return 7;

else

return 6;

 35

} else {

if(val>thresh5)

return 5;

else

return 4;

} } else {

if(val>thresh2) {

if(val>thresh3)

return 3;

else return 2;

} else {

if(val>thresh1)

return 1;

LISTING 3-1: Pseudo code for quantization algorithm.

3.2.4 run-length encoding routine (RLE)

Run-length encoding is the next routine following the quantization process. The basic

concept is to code each contiguous group of 0’s encountered in a scan of a row by its

length and to establish a convention for determining the value of the run. This is

shown as an example in Figure 3.6

 FIG. 3.6 An example of Run Length Encoding

The purpose of this step is to compress the image size based on the pixel values from

quantization, which are between integer values 0 to 16. The image can be compressed

 36

as much as up to 10% of the original after the run length encoding. As in the

quantization routine, the image is also divided into 10 blocks. Each block will run the

same run-length encoding algorithm.

Because values in blocks 8, 9, and 10 after quantization are all equal to 16, these three

blocks will not be processed. The process pseudo code for each block is shown in

Listing 3-2.

While (pixel is in this block)

{

if (pixel !=ZERO_MARK (16))

saving pixel value in rle-buffer;

else {

count = 0;

while(pixel ==ZERO_MARK(16))

{

count++;

if((count == 256-ZERO_MARK)||(no more pixels in this

block))

break;

read the next pixel;

}

save (count+ZERO_MARK-1) in rle-buffer;

}

read the next pixel;

}

LISTING 3-2: Pseudo code for each block run-length encoding algorithm.

 37

3.2.5 entropy coding routine
The last routine in the Image Wavelet Compression algorithm is entropy coding. This

process is based on the calculation results from run-length encoding. Using the

Huffman encoding algorithm for the entropy coding, the resulting image file can be

compressed as much as up to 2-3% of the original image size. In the algorithm, two

256 size integer arrays are used to hold the parameters for a fixed Huffman encoding

tree. These parameters are expected to work reasonably well with most images. The

definition of these parameters is as follows.

Int HufSize[256] = { 9, 7, 6, ….}

Int HufVal[256] = {0x00097, 0x00066 …}

The Huffman coding call in the C code refers to the following listing 3-3.

/**

 Routine: void hufenc(unsigned char ich, int *nb)

**/

void hufenc(unsigned char ich, int *nb)

{

nbits=HufSize[ich];

val=HufVal[ich];

for(i=0; i<nbits; i++)

{

bytn=(*nb)>>3;

bitn=(*nb)&7;

if((val&(1<<i))>0) codep[bytn]|=(1<<bitn);

(*nb)++;

}

}

LISTING 3-3: Pseudo code for entropy coding algorithm.

The whole process includes checking values from the Huffman tree parameters,

shifting, multiplication, addition, and comparison to get the final compressed value.

 38

3.2.6 writing the compressed file
The original image, which has been processed using the above steps, is written to a

“.cmp” format file with name “Original_Image.cmp”. A header is attached

with this file, which contains the maximum and minimum values of pixel intensities,

run length, number of bytes inside every block of the decomposed image and the

compressed signal.

3.3 The Decompression step
The file “decompress.c” consists of all routines for decompression of a “.cmp”

format file. (This is a program specific format). There are four distinct steps for

decompression of the “.cmp” format file. These are: reverse wavelet transform,

dequantization, run length decoding and entropy decoding.

Each of these steps is just the opposite of steps applied in the compression routine.

The output of this program will generate a PGM format file. The expected input is

the name of the file to be decompressed. The name of the output ".pgm" file is an

optional input.

3.4 Comparison of Original and the Reconstructed Image
The program “compare.c” will be used to perform the acceptance test of the image

quality. It will compare the original ".pgm" image file with the decompressed

".pgm" image. It will report the root mean square error (RMSE) and the peak signal

to noise ratio (PSNR). Higher image quality is reflected by a low RMSE, and

therefore high PSNR. The acceptance test is based solely on the signal to noise ratio

(PSNR). This program expects the name of both ".pgm" image files as its input.

3.5 Implementation of DCT based Image Coder

A DCT based image compression system was also developed for the comparison

purpose. The only difference that lies in the standard baseline JPEG model is that the

coefficients are coded using variable length coding instead of using the standard

Huffman tables[4]. The coding used is explained below.

The code for each coefficient consists of two components, a bit count, and an encoded

value. The bit count is encoded as a prefix code with the following binary values:

 39

Number of Bits Binary Code

0 00

 1 010

 2 011

 3 1000

 4 1001

 5 1010

 6 1011

 7 1100

 8 1101

 9 1110

 10 1111

A four-bit number telling how many zeros are in the encoded run follows a bit count

of zero. A value of 1 through ten indicates a code value follows, which takes up that

many bits. The encoding of values into this system has the following scheme:

Bit Count Amplitudes

--------- --------------------------

1 -1, 1

 2 -3 to -2, 2 to 3

 3 -7 to -4, 4 to 7

 4 -15 to -8, 8 to 15

 5 -31 to -16, 16 to 31

 6 -63 to -32, 32 to 64

 7 -127 to -64, 64 to 127

 8 -255 to -128, 128 to 255

 9 -511 to -256, 256 to 511

 10 -1023 to -512, 512 to 1023

The compression is performed in three sequential steps. First is the computation of the

DCT coeffiecients, then the quantization of the transformed coefficients and finally

 40

the variable-length code assignment. The image is first subdivided into pixel blocks of

size 8X8, which are processed left to right and top to bottom. As each 8X8 block or

subimage is encountered, its 64 pixels are left shifted by subtracting the quantity 2n-1,

where 2n is the maximum number of gray levels in a grayscale image. The 2-D DCT

of the block is then computed, quantized, and reordered using the zig-zag scanning

pattern to form 1-D sequence of quantized coefficients. All the coefficients are then

coded using the variable length coding and written to a “.dat” file which is the

compressed file size.

 41

Chapter 4

RESULTS

This section discusses the experimental results obtained using the developed

algorithm for the Image Codec. The results are presented according to their qualitative

evaluation, the relative size of the compressed file formats and the intelligibility of the

reconstructed medical image.

4.1 Bitrate(bpp) Vs. PSNR(db)
For the qualitative investigation of the reconstructed images, PSNR values of the

standard images “LENA” and “BARBARA” were taken for comparison with the

well-known techniques and formats of Image compression. The standard images have

been compared with the JPEG, JPEG2000, and the DCT based Image Coder. A

practical image “BRAIN” has been compared with the Embedded Zerotree Wavelet

algorithm [16]. Figures 4.1, 4.2, 4.3 show the original images, the 3 scale

decomposition of the images using the wavelet transform, reconstructed images at

different bits per pixel (bpp) using the DCT based and the present DWT based JPEG

algorithm. Figures 4.4, 4.5, 4.6 present the graphs of PSNR Vs. the bitrate for these

images corresponding to the values in Tables 4.1,4.2,4.3.

It can be observed from Figures 4.1, 4.2 and 4.3 that the DCT based algorithm

produces blocking artifacts which appear in the image as small squares. This is due to

the fact that the DCT is applied to the blocks of size 8X8, on the entire image. The

wavelet based technique does not produce these blocking artifacts even at a reduced

bit rate (0.30 bpp) (see Figure 4.1(e),4.2(e),4.3(e)). From Table 4.1, for image LENA

512X512, there does not appear much difference in the PSNR values at higher bit

rates(0.75 bpp). As the bit rate is reduced, the JPEG and the DCT base

implementation show a degraded PSNR response to the developed new coder. The

PSNR values of JPEG2000 outperform the developed coder at all bit rates because of

its complex quantizer and coding system. Similar behavior is observed for the image

BARBARA 512X512, Table 4.2, which shows a peculiarity at 0.25 bpp where the

PSNR of the developed coder shows a moderate gain of around 0.5 dB over the

 42

JPEG2000 standard. For the practical test image BRAIN 512X512, Table 4.3, the new

coder shows a gain of 1dB over the embedded zerotree coder at 0.25bpp.

 43

 (a)
(b)

 (c)

 (d)
(e)

FIG. 4.1 (a) Lena 512X512- original image; (b) three level decomposition of Lena;
(c) reconstructed image using DCT based image codec at 0.42 bpp; (d),(e)
reconstructed image using DWT based JPEG at 0.88 and 0.30 bpp respectively.

 44

 (a)
(b)

 (c)

 (d)
(e)
FIG. 4.2 (a) Barbara 512X512 - original image; (b) three level decomposition of
Lena; (c) reconstructed image using DCT based image codec at 0.5 bpp; (d), (e)
reconstructed image using DWT based JPEG at 0.9 and 0.20 bpp respectively.

 45

 (a)
(b)

 (c)

 (d)
(e)

FIG. 4.3 (a) Brain 512X512 - original image; (b) three level decomposition of Lena;
(c) reconstructed image using DCT based image codec at 0.5 bpp; (d), (e)
reconstructed image using DWT based JPEG at 0.96 and 0.18 bpp respectively.

 46

Table 4.1 Coding results for 512X512 LENA showing PSNR

O/p

Bytes
Rate
(bpp)

Ratio JPEG DWT-JPEG JPEG20
00

DCT

 PSNR
(dB)

PSNR
(dB)

PSNR
(dB)

29492 0.9 8.9:1 -- 36.54 47.50 34.43

24576 0.75 10.6:1 36.60 36.93 45.72 32.59

19661 0.60 13.3:1 35.6 37.24 43.66 29.87

16384 0.50 16:1 34.90 37.36 42.20 26.93

8192 0.25 32:1 31.6 36.69 37.40 -

Bitrate Vs. PSNR (Lena 512 X 512)

25
27
29
31
33
35
37
39
41
43
45
47
49

0 0.25 0.5 0.6 0.75 0.9

bitrate(bpp)----->

PS
N

R
(d

b)

>

DWT-JPEG JPEG-2000 DCT-Based JPEG

FIG. 4.4 PSNR as a function of bit rate for the Lena image

 47

TABLE 4.2 Coding results for 512X512 BARBARA showing PSNR

O/p
Bytes

Rate
(bpp)

Ratio JPEG DWT-
JPEG

JPEG20
00

DCT

 PSNR
(dB)

PSNR
(dB)

PSNR
(dB)

29492 0.9 8.9:1 -- 29.40 36.27 28.85

24576 0.75 10.6:1 31.00 29.60 34.88 26.85

19661 0.60 13.3:1 29.4 29.66 33.40 24.49

16384 0.50 16:1 28.30 29.61 32.30 22.64

8192 0.25 32:1 25.2 28.82 28.36 -

Bitrate Vs. PSNR (Barbara 512 X 512)

20

22

24

26

28

30

32

34

36

38

40

0 0.25 0.5 0.6 0.75 0.9

bitrate(bpp)----->

PS
N

R
(d

b)

>

DWT-JPEG JPEG-2000 DCT-Based JPEG

FIG. 4.5 PSNR as a function of bit rate for the Barbara image

 48

TABLE 4.3 Coding results for 512X512 BRAIN showing PSNR

O/p
Bytes

Rate
(bpp)

Ratio EZW DWT-JPEG JPEG20
00

DCT

 PSNR
(dB)

PSNR
(dB)

PSNR
(dB)

PSNR
(dB)

29492 0.9 8.9:1 36.41 25.30 38.28 31.23

24576 0.75 10.6:1 35.53 29.29 36.42 28.78

19661 0.60 13.3:1 33.31 25.38 34.78 25.71

16384 0.50 16:1 32.00 29.70 33.51 22.26

8192 0.25 32:1 28.4 29.39 29.61 -

Bitrate Vs. PSNR (Brain 512 X 512)

20

22

24

26

28

30

32

34

36

38

40

0 0.25 0.5 0.6 0.75 0.9

bitrate(bpp)----->

PS
N

R
(d

b)

>

DWT-JPEG JPEG-2000 DCT-Based EZW

FIG. 4.6 PSNR as a function of bit rate for the Brain image

 49

4.2 File Size Vs. File Format of Storage
This section presents the comparative file sizes of different images compressed using

different techniques. These are the GIF, JPEG and the present DWT-JPEG model.

For the DWT based JPEG, quality factor was fixed by setting the compression factor

to: low (255), medium (128), high (0). For compressing images in the GIF method,

Compuserve GIF (interlaced) codec in Irfanview has been used which gives a

constant file size.

Adobe Photoshop version 5.00 was used to encode images in the JPEG format. The

quality settings were 1 (low), 5 (medium), 10 (high) with baseline standard option.
This is shown in charts in Figures 4.7, 4.8, 4.9. The GIF format produces the

compressed files of a fixed size for all three quality factors, whereas the developed

new coder compresses the files to a size that is much lesser to the baseling JPEG

format at all quality factors.

 50

TABLE 4.4 Coding results showing file size at low quality.

 GIF JPEG DWT-JPEG

LENA 146,359 25,179 3,767

BARBARA 291,581 37,068 4,915

BRAIN 44,046 25,057 4,965

GOLDHILL 255,943 21,796 3,636

0 100000 200000 300000
Compressed File Size(in bytes)

GIF

JPEG

DWT-
JPEG

Low Quality

Goldhill
Brain
Barbara
Lena

FIG. 4.7 Compressed file size Vs. Compressed file format (low quality)

 51

TABLE 4.5 Coding results showing file size at medium quality.

 GIF JPEG DWT-JPEG

LENA 146,359 40,743 5,556

BARBARA 291,581 51,144 8,187

BRAIN 44,046 43,356 7,271

GOLDHILL 255,943 47,144 6.070

0 100000 200000 300000
Compressed File Size(in bytes)

GIF

JPEG

DWT-
JPEG

Medium Quality

Goldhill
Brain
Barbara
Lena

FIG. 4.8 Compressed file size Vs. Compressed file format (medium quality)

 52

 TABLE 4.6 Coding results showing file size at high quality.

 GIF JPEG DWT-JPEG

LENA 146,359 90,558 28,775

BARBARA 291,581 166,713 29,708

BRAIN 44,046 114,765 31,444

GOLDHILL 255,943 170,630 30,024

0 100000 200000 300000
Compressed File Size(in bytes)

GIF

JPEG

DWT-
JPEG

High Quality

Goldhill
Brain
Barbara
Lena

FIG. 4.9 Compressed file size Vs. Compressed file format (high quality)

 53

4.3 Perceptual Validation
An ECG signal of a cardiac patient was scanned and compressed using the present

compression algorithm. The original image and the reconstructed result (at

Compression Ratio of 88.8:1) is shown in Figure 4.10. Perceptual validation was done

by showing the coding results to a few subjects. The results were found to be

“perceptible and slightly annoyin” to the Human Visual System (HVS) of the

subjects. The result shows that the reconstructed image is well within the

perceptibility of the corrected HVS. Several other medical images were tested and the

perceptibility of the reconstructed images was found to be of good quality at even

higher compression ratios.

 54

(a)

(b)

FIG. 4.10 (a) Original ECG image (512X512), (b) Reconstructed image at
compression ratio of 88.7:1

 55

Chapter 5

CONCLUSION AND SUGGESTIONS
FOR FURTHER RESEARCH

5.1 Conclusions
The DWT based JPEG was shown to outperform the baseline JPEG, the DCT based

compression algorithm and approaching the performance of more sophisticated and

complex DWT based coders. The lifting scheme is an efficient implementation of the

conventional wavelet transform technique and it is not computationally intensive and

does not require large amount of data and memory and is therefore optimal for the

application.

The images that have been used for the testing of algorithm are the standard images

for image compression research. Results show that the image quality (PSNR) does not

degrade even at low bit rates when compared to the other compression methods. For a

standard test image LENA 512 X 512, at higher bit rates (0.75 bpp) there is not much

difference in PSNR values, whereas for low bit rates (0.25 bpp) there is a difference

of 5 dB in the PSNR values of the new coder and the baseline JPEG coder and hence

the poor performance of JPEG at lower bit rates. The DCT based image coder has an

overall degraded performance at all bit rates. JPEG-2000 outperforms this new coder

at all bit rates because of its complex quantizer system. Similar behavior is observed

for BARBARA 512 X 512 image with the exception that (0.25 bpp) the developed

coder shows a slight improvement in PSNR over the JPEG2000. For a practical test

image BRAIN 512 X 512, developed coder shows a gain of 1dB to 5dB over the DCT

based implementation. Moreover the comparison of compressed file sizes using

different compression techniques illustrate that the new image coder provides better

compression ratio for all quality of images. Perceptual validation of a practical

medical ECG signal was done by showing the coding results to a few subjects. The

results are “perceptible and slightly annoying” to the Human Visual System of the

subjects.

 56

5.2 Suggestions for Further Research
The present work can be extended in the following areas:

• Both quantizer and Huffman tables can be optimized and optimal coefficient

thresholding can be applied,

• Embedded bit coding of the quantized coefficients to achieve progressive

transmission of the images,

• Currently the software operates for grayscale images of size 512 X 512 in the

PGM format only. A more realistic version could be implemented for images

of all types and of any size incorporating boundary treatment by using the

classical extension methods such as periodic extension.

 57

References

[1] Saha S, “Image Compression – from DCT to Wavelets: A review,” [URL

http://www.acm.org/crossroads/xrds6-3/sahaimgcoding.htm].

[2] Sayood Khalid, “Introduction to Data Compression,” 2nd Edition, Morgan

Kaufmann, Harcourt India Pvt. Ltd. (2000).

[3] Gonzalez, R.C. and Woods, R.E, “Digital Image Processing”. 2nd Edition,

Pearson Education Asia. (2002).

[4] W. Sweldens, “The lifting scheme: A new philosophy in biorthogonal wavelet

constructions,” In A. F. Laine and M. Unser, editors, Wavelet Applications in

Signal and Image Processing III, pp. 68–79. Proc. SPIE 2569, 1995.

[5] Ingrid Daubechies and Wim Sweldens, "Factoring Wavelet Transforms into

Lifting Steps," J. Fourier Anal. Appl., 4 (no. 3), pp. 247-269, 1998.

[6] Geert Uytterhoven, "Wavelets: software and applications,” PhD thesis, April

1999, Catholic University of Leuven.

[7] W. Sweldens, “The lifting scheme: A custom-design construction of

biorthogonal wavelets,” Appl. Comput. Harmon. Anal., 3(2); pp. 186–200,

1996.

[8] Alan V. Oppenheim, Ronald Schaofer, “Discrete-Time Signal Processing”.

PHI (1992).

[9] ISO IS-10918- Understanding JPEG Image Compression.

[10] Rao, R.M. and Bopardikar, A.S., “Wavelet Transform”. Pearson Education

Asia, (2000).

[11] Application of Wavelets to image compression, [URL

http://ouray,cudenver.edu/~mbhatia/Project%20Report_Web.htm].

 58

[12] Polikar, Robi, “The Wavelet Tutorial Part I, II, III, IV,” [URL

http://www.public.iastate.edu/~rpolikar/wavelet/Wttutorial.htm].

[13] Polikar R., “Story of Wavelets,” Proc IEEE CSCC, pp 5481-5486, 1999.

[14] M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies,”Image coding using

Wavelet Transform,” Image Processing, IEEE Transactions on, Volume: 1,

Issue: 2, April 1992, Page(s): 205-220.

[15] W. Sweldens, “The lifting scheme: A construction of second generation

wavelets,” SIAM J. Math. Anal., 29(2); pp. 511–546, 1997.

[16] J.M. Shapiro, ”Embedded image coding using zerotrees of wavelet

coefficients”, IEEE Trans. Signal Processing, vol 41, pp. 3445-3463, Dec

1993.

 59

APPENDIX A

**********************CompressImage**********************

/***/
/*This program provides the routines required for a wavelet based */
/* image compression of a 512 X 512 grayscale(8bit) image in the */
/* PGM format.The structure of the program is similar to baseline */
/* JPEG standard which is implemented in 4 basic steps: Wavelet- */
/* -Transform, quantization, run length coding and entropy coding */
/*Each of these steps is implemented as a function and is described*/
/* in the program. This program will expect the name of the PGM */
/* image to be compressed as a required input. It will also accept */
/* an optional compression-factor (range 0-255)parameter specifying*/
/* how the image should be compressed : A compression factor of 0 */
/* indicates minimal compression and maximum image quality. */
/* Conversely, a compression factor of 255 indicates maximum */
/* compression with higher degradation to the image quality. If the*/
/* compression factor is not indicated, a default compression rate */
/* of 128 will be used. The compressed image file format is */
/* specified in this program which is indicated by “InputImage.cmp”*/
/* file. */
/***/

#include<stdio.h>
#include<string.h>

#define NBLKS 10
#define BLKS_SAVED 7

#define IMG_SIZE 262146

#define BLOCK_SIZE 128
#define ZERO_MARK 16

#define min(a,b) ((a<b)?(a):(b))
#define max(a,b) ((a>b)?(a):(b))

/* I/O Variables */
#define DEFAULT_CRATIO 128 /* Default Compression Level */
char in_name[80],out_name[80];
int img_size, nbytes, cratio;

/* Wavelet variables */
#define ROW 1
#define COL 512
int int_data[IMG_SIZE];

/* Quantization variables */
/* The image will be divided into 10 blocks, the first four will be
of

size 64x64 pixels (4096 pixels), then three of size 128x128 (16384
pixels) and the remaining three of size 256x256 pixels (65536
pixels). These blocks will be arranged as represented below:

 60

 +---+---+-------+---------------+
 | 4K| 4K| | |
 +---+---| 16K | |
 | 4K| 4K| | |
 +---+---+-------+ 65K |
16K	16K	
+-------+-------+---------------+		
65K	65K	
 +---------------+---------------+
*/
int
blocksize[NBLKS]={4096,4096,4096,4096,16384,16384,16384,65536,65536,6
5536};
int blockthresh[NBLKS]= {0, 39, 27, 104, 79, 50,191, 99999, 99999,
99999};
int blockminval[NBLKS], blockmaxval[NBLKS];
int quant_buf[NBLKS][IMG_SIZE];
int thresh1 ,thresh2 ,thresh3 ,thresh4 ,thresh5 ,thresh6 ,thresh7
,thresh8;
int thresh9
,thresh10,thresh11,thresh12,thresh13,thresh14,thresh15,thresh16;

/* RLE variables */
unsigned char rle_buf[NBLKS][IMG_SIZE];
unsigned int rle_size[NBLKS];

/* Huffman Encoding variables */
unsigned char codep[IMG_SIZE];

/* Parameters for a fixed huffman encoding tree. These parameters are
*/
/* expected to work reasonably well with most images.
*/
int HufSize[256]={ };

int HufVal[256]={ };

/* Function Declarations */
void forward_wavelet();
void quantization();
void RLE_encode();
void entropy_encode();
void hufenc(unsigned char, int *);
int write_compressed_file(char *);
int read_image(char *);

 61

/**
 * Routine: main(int argc, char **argv)
 * Expects image file name and the scale factor for compression as
 * input parameters. Calls all the required routines for compression.
 * The compressed file is the output of write_compressed_file().
 * This file format is specific to this program and includes all
image
 * information required for decompression.

**/

main(int argc, char **argv)
{
 initialize(argc, argv);
 read_image(in_name);
 forward_wavelet();
 quantization();
 RLE_encode();
 entropy_encode();
 write_compressed_file(in_name);
} /* End of Main() */

initialize(argc, argv)
int argc;
char **argv;
{
 int i;

 cratio = DEFAULT_CRATIO;
 if(argc==3) cratio = atoi(argv[2]);
 if(argc> 1) strcpy(in_name,argv[1]);

 if (argc < 2 || argc > 3 || cratio < 0 || cratio > 255){
 printf("Syntax: %s image.pgm [compression rate]\n",argv[0]);
 printf(" Where image.pgm is the name of the image to
be\n");
 printf(" compressed and the optional compression ratio
parameter\n");
 printf(" specifies how aggressively to compress the
image.\n");
 printf(" (O = least compression and 255 = highest
compression)\n");
 printf(" Examples: %s lena.pgm OR %s xyz.pgm 100\n"

,argv[0],argv[0]);
 exit(-1);
 }

 for(i=0; i<9; i++) blockthresh[i]=(blockthresh[i]*cratio)>>7;
}

 62

/**
 * Routine: read_image(in_name)
 * read_image opens the specified image file, calculates the size
 * of image the imagE to be compressed (excluding the .pgm header),
and
 * makes a copy of the image as integers in array int_data.
**/
int read_image(in_name)
char *in_name;
{
 FILE *fp_in_image;
 unsigned char char_in[IMG_SIZE];
 int num_cols,num_rows,num_bits;
 int i;
 char p5[10];

 /* Open input image file */
 if ((fp_in_image = fopen (in_name, "rb")) == NULL) {
 fprintf (stderr, "\n Could not open file \"%s\"\n\n", in_name);
 return(1);
 }

 /* Skip .pgm image file header */
 fscanf(fp_in_image,"%s\n %d %d\n
%d\n",p5,&num_rows,&num_cols,&num_bits);

 /* Copy image bytes following the header into char array char_in */
 img_size = num_cols * num_rows;
 fread(char_in, img_size, 1, fp_in_image);
 fclose(fp_in_image);

 /* Copy into integer arrays int_data */
 for (i = 0; i < img_size; i++) int_data[i] = char_in[i];
}

/**
 * Routine: void quantization()
**/
void quantization()
{
 int bl,num;

 num=0;
 block_quantize(0,0,BLOCK_SIZE/2,num++);
 for(bl=BLOCK_SIZE/2; bl<512; bl<<=1)
 {
 block_quantize(0,bl,bl,num++);
 block_quantize(bl,0,bl,num++);
 block_quantize(bl,bl,bl,num++);
 }
}

 63

/**
 * Routine: block_quantize(int x, int y, int size, int num)
**/
block_quantize(int x, int y, int size, int num)
{
 int i,j,val;
 int minval,maxval;
 int qsize;

 minval = 10000; maxval =-10000;
 for(i=x; i<x+size; i++)
 for(j=y; j<y+size; j++)
 {
 val=int_data[i+512*j];
 minval = min(val,minval);
 maxval = max(val,maxval);
 }

 thresh1= minval+((1*(maxval-minval)+8)>>4);
 thresh2= minval+((2*(maxval-minval)+8)>>4);
 thresh3= minval+((3*(maxval-minval)+8)>>4);
 thresh4= minval+((4*(maxval-minval)+8)>>4);
 thresh5= minval+((5*(maxval-minval)+8)>>4);
 thresh6= minval+((6*(maxval-minval)+8)>>4);
 thresh7= minval+((7*(maxval-minval)+8)>>4);
 thresh8= minval+((8*(maxval-minval)+8)>>4);
 thresh9= minval+((9*(maxval-minval)+8)>>4);
 thresh10=minval+((10*(maxval-minval)+8)>>4);
 thresh11=minval+((11*(maxval-minval)+8)>>4);
 thresh12=minval+((12*(maxval-minval)+8)>>4);
 thresh13=minval+((13*(maxval-minval)+8)>>4);
 thresh14=minval+((14*(maxval-minval)+8)>>4);
 thresh15=minval+((15*(maxval-minval)+8)>>4);
 thresh16=minval+((16*(maxval-minval)+8)>>4);

 qsize=0;
 for(i=x; i<x+size; i++)
 for(j=y; j<y+size; j++)
 {
 val=int_data[i+512*j];
 if(abs(val)<blockthresh[num])
quant_buf[num][qsize++]=ZERO_MARK;
 else
 {
 quant_buf[num][qsize]=classify(val);
 qsize++;
 }
 }

 blockminval[num]=minval;
 blockmaxval[num]=maxval;
}

 64

/**
 * Routine: int classify(int val)
**/
int classify(int val)
{
 if(val>thresh8) {
 if(val>thresh12) {
 if(val>thresh14) {
 if(val>thresh15) return 15;
 else return 14;
 } else {
 if(val>thresh13) return 13;
 else return 12;
 } } else {
 if(val>thresh10) {
 if(val>thresh11) return 11;
 else return 10;
 } else {
 if(val>thresh9) return 9;
 else return 8;
 } } } else {
 if(val>thresh4) {
 if(val>thresh6) {
 if(val>thresh7) return 7;
 else return 6;
 } else {
 if(val>thresh5) return 5;
 else return 4;
 } } else {
 if(val>thresh2) {
 if(val>thresh3) return 3;
 else return 2;
 } else {
 if(val>thresh1) return 1;
 else return 0;
 } } }
}

/**
 * Routine: void RLE_encode()
**/
void RLE_encode()
{
 unsigned int bl;

 for (bl = 0; bl < NBLKS; bl++)
 block_RLE_encode(bl);
}

/**
 * Routine: block_RLE_encode(int num)
**/
block_RLE_encode(int num)
{
 int i,j,count;

 i = j = 0;
 while(i<blocksize[num])
 {

 65

 if(quant_buf[num][i]!=ZERO_MARK)
rle_buf[num][j]=quant_buf[num][i];
 else
 {
 count=0;
 while(quant_buf[num][i]==ZERO_MARK)
 {
 i++;
 count++;
 if((count==256-ZERO_MARK)||(i==img_size)) break;
 }
 i--;
 rle_buf[num][j]=count+ZERO_MARK-1;
 }
 j++;
 i++;
 }
 rle_size[num]=j;
}

/**
 * Routine: void entropy_encode()
**/
void entropy_encode()
{
 int i,j,nb;
 int rlecount;

 for(i=0; i<IMG_SIZE; i++) codep[i]=0;

 rlecount=0;
 nb=0;
 for (i = 0; i < BLKS_SAVED; i++)
 {
 for(j = 0; j < rle_size[i]; j++)
 hufenc(rle_buf[i][j],&nb);
 rlecount+=rle_size[i];
 }

 printf("Compressed size is %d bytes\n",(nb>>3)+88);
 nbytes = (nb/8);
}

/**
 * Routine: void hufenc(unsigned char ich, int *nb)
**/
void hufenc(unsigned char ich, int *nb)
{
 int i,nbits,val;
 int bytn,bitn;

 nbits=HufSize[ich];
 val=HufVal[ich];
 for(i=0; i<nbits; i++)
 {
 bytn=(*nb)>>3;
 bitn=(*nb)&7;
 if((val&(1<<i))>0) codep[bytn]|=(1<<bitn);
 (*nb)++;
 }

 66

}

/**
 * Routine: int write_compressed_file()
**/
int write_compressed_file(in_name)
char *in_name;
{
 FILE *fp_out_file;

 if(strlen(in_name)>4)
 strncat(out_name,in_name,strlen(in_name)-4);
 else
 strcat(out_name,in_name);
 strcat(out_name,".cmp");

 if ((fp_out_file= fopen (out_name, "wb")) == NULL) {
 fprintf (stderr, "\n Could not open file %s \n\n",out_name);
 return(1);
 }

 fwrite(blockminval, sizeof(int) ,7 , fp_out_file);
 fwrite(blockmaxval, sizeof(int) ,7 , fp_out_file);
 fwrite(rle_size , sizeof(int) ,7 , fp_out_file);
 fwrite(&nbytes , sizeof(int) ,1 , fp_out_file);
 fwrite(codep , sizeof(char),nbytes, fp_out_file);

 fclose(fp_out_file);
}

/**
 * Routine: void fcdf22(int x[], int n, int st)
**/
void fcdf22(int x[], int n, int st)
{
 int s[256],d[256];
 int mid, i;

 mid=(n/2)-1;

 for (i=0;i<=mid;i++)
 {
 s[i]=x[2*i*st];
 d[i]=x[2*i*st+st];
 }

 d[0]=d[0]+d[0]-s[0]-s[1];
 s[0]=s[0]+((d[0]+d[0])>>3);
 for (i=1;i<mid;i++)
 {
 d[i]=d[i]+d[i]-s[i]-s[i+1];
 s[i]=s[i]+((d[i-1]+d[i])>>3);
 }
 d[mid]=d[mid]+d[mid]-s[mid]-s[mid];
 s[mid]=s[mid]+((d[mid-1]+d[mid])>>3);

 for(i=0; i<=mid; i++)
 {
 x[i*st]=s[i];

 67

 x[(i+mid+1)*st]=d[i];
 }
}

/**
 * Routine: void forward_wavelet()
 ***/
void forward_wavelet()
{
 int i,nt;

 for (nt=512;nt>=BLOCK_SIZE;nt>>=1)
 {
 for (i=0;i<nt*512;i+=512) fcdf22(&int_data[i],nt,ROW);
 for (i=0;i<nt;i++) fcdf22(&int_data[i],nt,COL);
 }
}

 68

*******************Decompress Image**********************

/***/
/* This program provides the routines required for a wavelet based */
/* image compression of a 512 X 512 grayscale(8bit) image in the */
/* PGM format. The structure of the program is similar to baseline */
/* JPEG standard which is implemented in 4 basic steps: reverse- */
/* -Wavelet Transform, dequantization, run length decoding and */
/* entropy decoding. Each of these steps is implemented as function*/
/* and is described in the program. This program will expect thname*/
/* of the “.cmp” file to be decompressed and the output PGM file aa*/
/* required input. */
/***/

#include<stdio.h>
#include<string.h>

#define NUMROWS 512
#define NUMCOLS 512

#define BLOCKS_SAVED 7
#define GL_INC 4.0

#define IMG_SIZE 262146

#define BLOCK_SIZE 128
#define ZERO_MARK 16

/* I/O Variables */
int img_size,num_cols,num_rows,nbytes;
char in_name[80], out_name[80];

/* Wavelet variables */
int int_data[IMG_SIZE];

/* Quantization variables */
/*
The image will be divided into 10 blocks, the first four will be of
size 64x64 pixels (4096 pixels), then three of size 128x128 (16384
pixels)and the remaining three of size 256x256 pixels (65536 pixels).
These blocks will be arranged as represented below

 69

 +---+---+-------+---------------+
 | 4K| 4K| | |
 +---+---| 16K | |
 | 4K| 4K| | |
 +---+---+-------+ 65K |
16K	16K	
+-------+-------+---------------+		
65K	65K	
 +---------------+---------------+
*/
int quant_buf[10][IMG_SIZE];
int block_minval[10],block_maxval[10];

/* RLE variables */
unsigned char rle_buf[20][IMG_SIZE];
unsigned int rle_size[20];

/* Huffman variables */
#define HUFTABSIZE 2000000
int htable[HUFTABSIZE];
unsigned char codep[IMG_SIZE];

int
HufSize[256]={ };

int
HufVal[256]={ };

void reverse_wavelet();
void dequantization();
void RLE_decode();
void hufinit();
void entropy_decode();
unsigned char hufdec(unsigned long *nb);
int read_format_file(void);
int write_image(int argc, char **argv);

/**
 * Routine: main(int argc, char **argv)
 * The expected input is the name of the file to be decompressed. The
 * name of the output ".pgm" file is an optional input. It will calls
 * all routines required for decompression.
**/
main(int argc, char **argv)
{
 initialize(argc, argv);
 read_compressed_file();
 entropy_decode();
 RLE_decode();
 dequantization();
 reverse_wavelet();

 70

 write_image(argc, argv);
}

/**
 * Routine: write_image(int argc, char **argv)
 * write_image first writes the PGM format file header to the user
 * specified file and then appends the decompressed image from array
 * data to output file.
**/
int write_image(int argc, char **argv)
{
 FILE *fp_out_image;
 unsigned char data[IMG_SIZE];
 int i;
 char p5[10];

 /* Open user specified file for writing */
 if ((fp_out_image = fopen (out_name, "wb")) == NULL) {
 fprintf (stderr, "\n Could not open file \"%s\"\n\n",
 argv[argc-1]);
 return(1);
 }

 /* Write PGM format header in output file */
 fprintf(fp_out_image,"P5\n");
 fprintf(fp_out_image,"%d %d\n", num_cols, num_rows);
 fprintf(fp_out_image,"%d\n", 255);

 /* Convert image from integer bytes to char bytes */
 for (i = 0; i < img_size; i++)
 {
 if(int_data[i]<0.0) data[i]=0;
 else if(int_data[i]> 255.0) data[i]=255;
 else data[i] = int_data[i];
 }

 /* Write image in output file */
 fwrite(data, sizeof(unsigned char), img_size, fp_out_image);

 fclose(fp_out_image);
}

initialize(argc, argv)
int argc;
char **argv;
{
 if(argc<2 || argc >3)
 {
 printf("Syntax: %s image.cmp [image.pgm]\n",argv[0]);
 printf(" Where image.pgm is the name of the compressed");
 printf(" image file to be\n expanded. The optional second
argument");
 printf(" specifies the name of the\n output pgm file that
will be");
 printf(" written by this program.\n");
 printf(" Examples: %s lena.cmp OR %s lena.cmp new.pgm\n",

argv[0],argv[0]);
 exit(-1);
 }

 71

 strcpy(in_name,argv[1]);
 if(argc==3) strcpy(out_name,argv[2]);
 else
 {
 strncat(out_name,in_name,strlen(in_name)-3);
 strcat(out_name,"pgm");
 }

}

/**
 * Routine: block_dequantize(int x, int y, int size, int num)
**/
block_dequantize(int x, int y, int size, int num)
{
 int i,j,ind;
 int minval,maxval,qsize;
 float diff,findex;
 int thresh[17];

 minval=block_minval[num];
 maxval=block_maxval[num];

 diff=(float)(maxval-minval);
 findex=0.5;
 for(i=0; i<16; i++)
 {
 thresh[i]=minval+(int)(GL_INC+(findex*diff)/16.0);
 findex+=1.0;
 }

 if(num>=BLOCKS_SAVED)
 {
 for(i=x; i<x+size; i++)
 for(j=y; j<y+size; j++)
 {
 ind=i+512*j;
 int_data[ind]=0;
 }
 }
 else
 {
 qsize=0;
 for(i=x; i<x+size; i++)
 for(j=y; j<y+size; j++)
 {
 ind=i+512*j;
 if(quant_buf[num][qsize]==ZERO_MARK) int_data[ind]=0;
 else int_data[ind]=thresh[quant_buf[num][qsize]];
 qsize++;
 }
 }
}

 72

/**
 * Routine: void dequantization()
**/
void dequantization()
{
 int bl,num,i;

 num=0;
 for(i=0; i<img_size; i++) int_data[i]=0;
 block_dequantize(0,0,BLOCK_SIZE/2,num++);
 for(bl=BLOCK_SIZE/2; bl<512; bl<<=1)
 {
 block_dequantize(0,bl,bl,num++);
 block_dequantize(bl,0,bl,num++);
 block_dequantize(bl,bl,bl,num++);
 }
}

/**
 * Routine: void entropy_decode()
**/
void entropy_decode()
{
 unsigned long nb;
 int i,j;

 hufinit();

 nb=0;
 for (i = 0; i < BLOCKS_SAVED; i++)
 for(j = 0; j < rle_size[i]; j++)
 {
 rle_buf[i][j]=hufdec(&nb);
 }
}

/**
 * Routine: void RLE_decode()
**/
void RLE_decode()
{
 unsigned int bl;

 for (bl = 0; bl < 10; bl++)
 block_RLE_decode(bl);
}

/**
 * Routine: block_RLE_decode(int num)
**/
block_RLE_decode(int num)
{
 int i,j,value,count;

 j=0;
 for(i=0; i<rle_size[num]; i++)
 {
 value=rle_buf[num][i];
 if(value<ZERO_MARK) quant_buf[num][j++]=value;
 else for(count=0; count<=(value-ZERO_MARK); count++)

 73

 quant_buf[num][j++]=ZERO_MARK;
 }
}

/**
 * Routine: unsigned char hufdec(unsigned long *nb)
**/
unsigned char hufdec(unsigned long *nb)
{
 int val,bytn,bitn,bitv;

 val=1;
 while(htable[val]<0)
 {
 bytn=(*nb)>>3;
 bitn=(*nb)&7;

 bitv=((codep[bytn]&(1<<bitn))>0);
 val=(val<<1)+bitv;

 (*nb)++;
 }

 return(htable[val]);
}

/**
 * Routine: void hufinit()
**/
void hufinit()
{
 int i,j,val,huf;

 for(i=0; i<HUFTABSIZE; i++) htable[i]=-1;

 for(i=0; i<256; i++)
 {
 val=1;
 huf=HufVal[i];
 for(j=0; j<HufSize[i]; j++)
 {
 val=(val<<1)+(huf&1);
 huf>>=1;
 }
 htable[val]=i;
 }
}

/**
 * Routine: int read_compressed_file(void)
**/
int read_compressed_file(void)
{
FILE *fp_fmt_file;
int i;

 if ((fp_fmt_file= fopen (in_name, "rb")) == NULL) {
 fprintf (stderr, "\n Could not open file file.fmt \n\n");
 return(1);
 }

 74

 num_rows=NUMROWS;
 num_cols=NUMCOLS;
 img_size=num_rows*num_cols;

 fread(block_minval, sizeof(int),7, fp_fmt_file);
 fread(block_maxval, sizeof(int),7, fp_fmt_file);
 fread(rle_size, sizeof(int), 7, fp_fmt_file);
 fread(&nbytes, sizeof(int), 1, fp_fmt_file);
 fread(codep, sizeof(char), nbytes, fp_fmt_file);

 fclose(fp_fmt_file);
}

/**
 * Routine: void bcdf22(int x[], int n, int st)
**/
void bcdf22(int x[], int n, int st)
{
 int s[256],d[256], mid, i;

 mid=(n/2)-1;

 for (i=0;i<=mid;i++)
 {
 s[i]=x[i*st];
 d[i]=x[(i+mid+1)*st];
 }

 s[mid]=s[mid]-((d[mid-1]+d[mid])>>3);
 d[mid]=d[mid]+s[mid]+s[mid];
 for (i=mid-1; i>0; i--)
 {
 s[i]=s[i]-((d[i-1]+d[i])>>3);
 d[i]=d[i]+s[i]+s[i+1];
 }
 s[0]=s[0]-((d[0]+d[0])>>3);
 d[0]=d[0]+s[0]+s[1];

 for(i=0; i<=mid; i++)
 {
 x[2*st*i]=s[i];
 x[2*st*i+st]=d[i]/2;
 }
}

/**
 * Routine: void reverse_wavelet()
**/
#define ROW 1
#define COL 512
void reverse_wavelet()
{
 int i,nt;
 for (nt=BLOCK_SIZE;nt<=512;nt<<=1)
 {
 for (i=0;i<nt;i++) bcdf22(&int_data[i],nt,COL);
 for (i=0;i<nt*512;i+=512) bcdf22(&int_data[i],nt,ROW);
 }
}

 75

*********************Compare Image***********************

/***/
/* This program is used to perform the quality test of the */
/* reconstructed image. It will compare the original “.pgm image */
/* file with the decompressed “.pgm“ image file. It will report the*/
/* PSNR and the maximum pixel value difference. */
/***/

#include <stdio.h>
#include <math.h>

#define IMG_SIZE 262146

#define max(a,b) ((a>b)?(a):(b))

int orig_data[IMG_SIZE], int_data[IMG_SIZE];
int img_size_orig,img_size_decomp;
int num_cols,num_rows;

/**
 * Routine: main(int argc, char **argv)
 * Rounite main expects the image files as inputs for the acceptance
 * tests. The Root Mean Square Eror and PSNR is defined in chapter 1.
**/
main(int argc, char **argv)
{
 FILE *fp_in_image,*fp_out_image;
 unsigned char char_in[IMG_SIZE];
 char p5[10];

 int i;
 int num_bits;
 double j,square,sum,mean,max_square,max_diff;
 double root, psnr;

 if (argc != 3 || argc > 3){
 printf("Please specify image files to be compared.\n");
 printf("For example: %s original.pgm decompressed.pgm
\n",argv[0]);
 exit(0);
 }

 /* Open original .pgm file */
 if ((fp_in_image = fopen (argv[argc-2], "rb")) == NULL) {
 fprintf (stderr, "\n Could not open file \"%s\"\n\n",
argv[argc-2]);
 return(1);
 }

 /* Open compressed and then decompressed .pgm file */
 if ((fp_out_image = fopen (argv[argc-1], "rb")) == NULL) {
 fprintf (stderr, "\n Could not open file \"%s\"\n\n",
argv[argc-1]);
 return(1);
 }

 /* Skip pgm file header of the original file*/

 76

 fscanf(fp_in_image,"%s\n %d %d\n
%d\n",p5,&num_rows,&num_cols,&num_bits);

 img_size_orig = num_cols * num_rows;
 fread(char_in, img_size_orig, 1, fp_in_image);
 fclose(fp_in_image);

 /* Copy image into integer array orig_data */
 for (i = 0; i < img_size_orig; i++)
 {
 orig_data[i] = char_in[i];
 }

 /* Skip pgm file header for compressed and then decompressed file*/
 fscanf(fp_out_image,"%s\n %d %d\n
%d\n",p5,&num_rows,&num_cols,&num_bits);

 img_size_decomp = num_cols * num_rows;
 fread(char_in, img_size_decomp, 1, fp_out_image);
 fclose(fp_out_image);

/* Copy image into integer array int_data */
 for (i = 0; i < img_size_decomp; i++)
 {
 int_data[i] = char_in[i];
 }

/* Compute Root Mean Square Error (RMSE) between original
 image in orig_data and decompressed image in int_data */

 sum = max_square = max_diff = 0;

 for (i = 0; i < img_size_orig; i++)
 {
 j = (double) (orig_data[i]-int_data[i]) ;
 square = j * j ;
 sum += square;
 max_square = max(square,max_square);
 max_diff= max(fabs(orig_data[i]-int_data[i]),max_diff);
 }
 mean = sum / img_size_orig;
 root = sqrt(mean);

 /* Compute Peak Signal-To-Noise Ratio (PSNR) */
 psnr = consta * (log10(255.0/root));
 printf("Signal to Noise Ratio (PSNR) = %f\n", psnr);

}

 77

*********************HUFFMAN ARRAYS********************

Int Hufsize[256]=

 { 9 , 7 , 6 , 5 , 4 , 4 , 3 , 4 , 3 , 3 , 4 , 5 , 6 , 6 , 7 , 8 ,
 4 , 5 , 5 , 6 , 6 , 7 , 7 , 7 , 8 , 8 , 8 , 8 , 9 , 9 , 9 , 9 ,
 9 , 9 , 9 ,10 , 9 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,10 ,11 ,
 10 ,11 ,11 ,10 ,10 ,11 ,11 ,11 ,11 ,11 ,11 ,12 ,12 ,12 ,12 ,11 ,
 11 ,12 ,11 ,12 ,12 ,12 ,12 ,11 ,13 ,12 ,12 ,12 ,12 ,13 ,12 ,13 ,
 13 ,13 ,14 ,13 ,13 ,14 ,13 ,13 ,13 ,13 ,14 ,13 ,13 ,13 ,13 ,13 ,
 13 ,13 ,13 ,13 ,14 ,13 ,14 ,13 ,13 ,14 ,15 ,13 ,13 ,14 ,13 ,14 ,
 13 ,14 ,13 ,14 ,14 ,14 ,14 ,13 ,13 ,13 ,13 ,14 ,13 ,13 ,13 ,13 ,
 14 ,13 ,15 ,14 ,15 ,14 ,14 ,13 ,14 ,16 ,14 ,14 ,13 ,12 ,12 ,13 ,
 15 ,15 ,17 ,18 ,18 ,18 ,17 ,17 ,15 ,17 ,18 ,16 ,17 ,17 ,16 ,16 ,
 18 ,18 ,16 ,18 ,16 ,18 ,18 ,18 ,16 ,16 ,16 ,18 ,15 ,16 ,18 ,15 ,
 16 ,18 ,16 ,16 ,18 ,18 ,18 ,18 ,16 ,18 ,16 ,18 ,18 ,18 ,16 ,18 ,
 18 ,18 ,18 ,18 ,18 ,18 ,18 ,18 ,16 ,16 ,18 ,18 ,17 ,18 ,18 ,18 ,
 18 ,17 ,15 ,18 ,18 ,15 ,15 ,18 ,17 ,16 ,16 ,15 ,16 ,16 ,18 ,18 ,
 16 ,17 ,18 ,18 ,15 ,18 ,16 ,16 ,18 ,18 ,18 ,18 ,16 ,18 ,18 ,16 ,
 18 ,16 ,18 ,18 ,18 ,18 ,18 ,18 ,18 ,16 ,18 ,18 ,17 ,18 ,18 , 9 };

int
HufVal[256]=
{0x00097,0x00066,0x00007,0x00016,0x00000,0x0000B,0x00001,0x0000F,
0x00002,0x00004,0x0000E,0x00015,0x00037,0x00025,0x00038,0x000ED,
0x00003,0x0001D,0x00008,0x0000D,0x00018,0x00067,0x00005,0x00006,
0x000D7,0x0002D,0x000C6,0x000F8,0x001A7,0x00197,0x0016D,0x00127,
0x001C5,0x001A6,0x00146,0x00357,0x00178,0x00257,0x000AD,0x0006D,
0x000A7,0x003AD,0x001AD,0x00017,0x000C5,0x002C5,0x00145,0x00117,
0x000A6,0x00427,0x002A7,0x00246,0x00226,0x002AD,0x00217,0x00027,
0x006A6,0x002A6,0x00445,0x00A27,0x00A6D,0x00717,0x00D57,0x00345,
0x00446,0x00057,0x00726,0x006A7,0x00026,0x00EA7,0x00E17,0x00126,
0x0026D,0x00D26,0x006AD,0x00B17,0x00845,0x00F17,0x00317,0x00617,
0x01457,0x01326,0x02526,0x00B26,0x01D17,0x01F17,0x00627,0x01C57,
0x0166D,0x00E6D,0x00957,0x01E6D,0x01E45,0x01526,0x00517,0x01846,
0x00745,0x01617,0x00157,0x01627,0x00E27,0x01EAD,0x00227,0x01745,
0x00245,0x01957,0x06957,0x01517,0x01157,0x0326D,0x01645,0x02557,
0x00A45,0x03957,0x01046,0x03045,0x00457,0x02227,0x00557,0x01A45,
0x00046,0x00C57,0x00326,0x02457,0x00EAD,0x01B26,0x00645,0x01227,
0x01426,0x0066D,0x02E45,0x01557,0x03F17,0x02E27,0x03426,0x01245,
0x00D17,0x02957,0x03557,0x02D17,0x00045,0x00857,0x00F45,0x00846,
0x0526D,0x00426,0x1A957,0x06C26,0x26C26,0x14426,0x1D045,0x09E27,
0x00526,0x19E27,0x04426,0x06E45,0x05E27,0x15E27,0x02C26,0x04526,
0x24426,0x0CC26,0x0EE45,0x2CC26,0x0C526,0x16C26,0x36C26,0x0AC26,
0x07E27,0x01826,0x09826,0x2AC26,0x00C26,0x05826,0x0A826,0x01045,
0x0D826,0x2A826,0x04C26,0x0CE45,0x1A826,0x3A826,0x1AC26,0x3AC26,
0x0C426,0x1CC26,0x0126D,0x1EC26,0x3EC26,0x1DC26,0x05C26,0x3DC26,
0x0DC26,0x2DC26,0x1C826,0x3C826,0x04826,0x24826,0x0C826,0x2C826,
0x03826,0x0B826,0x16426,0x36426,0x0DE27,0x06426,0x0E826,0x2E826,
0x14826,0x1DE27,0x03E27,0x34826,0x0A426,0x07826,0x00826,0x2A426,
0x0FE27,0x0BC26,0x02826,0x00E45,0x07C26,0x0926D,0x05045,0x25045,
0x0FC26,0x1FE27,0x15045,0x35045,0x07F17,0x1A426,0x06826,0x0E426,
0x3A426,0x19C26,0x39C26,0x09C26,0x02426,0x29C26,0x26426,0x01C26,
0x13C26,0x01E27,0x33C26,0x0D045,0x2D045,0x03C26,0x3CC26,0x23C26,
0x1E826,0x04E45,0x3E826,0x0EC26,0x0A957,0x2EC26,0x34426,0x00078};

 78

LIST OF FIGURES

CHAPTER 1
1.1 Typical Environment for Image Coding……………………………….. 4
1.2 Typical Structured Image Compression System………………………. 5
1.3 Performance Analysis………………………………………………….. 6

CHAPTER 2
2.1 Flow of information from encoder to decoder for JPEG baseline
 system………………………………………………………………….. 14
2.2 (a) JPEG Encoder Block Diagram………………………………………15
2.2 (b) JPEG Decoder Block Diagram……………………………………... 16
2.3 Zig-Zag sequence………………………………………………………. 19
2.4 One-dimensional wavelet transform…………………………………… 20
2.5 Computing DWT by MRA…………………………………………….. 21
2.6 Example of Two level Dyadic Decomposition of an Image…………… 23
2.7 Number of samples in different levels…………………………………. 24
2.8 The Lifting Scheme, forward transform: Split, Predict and Update
phases ………………… ……. …….............. …… … …… . …. . 25
2.9 Examples of different prediction functions, Left: Piecewise linear
prediction, right: Cubic polynomial interpolation…………………. 27
2.10 The Lifting Scheme, inverse transform : Update, Predict and Merge
stages………………………………………………………. ….. . .. 27
2.11 Lifting steps for CDF(2,2) Wavelets…………………………………. 27

CHAPTER 3
3.1 Baseline JPEG basic encoding flow diagram………………………….. 30
3.2 DWT-JPEG based on the JPEG structure……………………………… 30
3.3 Image Compression routines…………………………………………… 31
3.4 Wavelet transform implementation…………………………………….. 33
3.5 Quantization and Run-Length encoding block diagram……………….. 34
3.6 An example of Run Length Encoding…………………………………. 36

CHAPTER 4
4.1 (a) Lena 512X512- original image,
 (b) three level decomposition of Lena,
 (c) reconstructed image using DCT based image codec at 0.42 bpp,
 (d),(e) reconstructed image using DWT based JPEG at 0.88 and
 0.30 bpp respectively………………………………………………….. 44
4.2 (a) Barbara 512X512 - original image,
 (b) three level decomposition of Lena,
 (c) reconstructed image using DCT based image codec at 0.5 bpp,
 (d), (e) reconstructed image using DWT based JPEG at 0.9 and
 0.20 bpp respectively………………………………………………….. 45
4.3 (a) Brain 512X512 - original image,
 (b) three level decomposition of Lena,
 (c) reconstructed image using DCT based image codec at 0.5 bpp,

 79

 (d), (e) reconstructed image using DWT based JPEG at 0.96 and
 0.18 bpp respectively………………………………………………….. 46
4.4 PSNR as a function of bit rate for the Lena image……………………. 47
4.5 PSNR as a function of bit rate for the Barbara image…………………. 48
4.6 PSNR as a function of bit rate for the Brain image……………………. 49
4.7 Compressed file size Vs. Compressed file format (low quality)……… 51
4.8 Compressed file size Vs. Compressed file format (medium quality)….. 52
4.9 Compressed file size Vs. Compressed file format (high quality) ………53
4.10 (a) Original ECG image (512X512),
 (b) Reconstructed image at compression ratio of 88.7:1………………55

LIST OF TABLES
1.1 Multimedia data types and uncompressed storage space, transmission
 bandwidth, and transmission time required……………………. …… 2
4.1 Coding results for 512X512 LENA showing PSNR…………………… 47
4.2 Coding results for 512X512 BARBARA showing PSNR…………… 48
4.3 Coding results for 512X512 BRAIN showing PSNR………………….. 49
4.4 Coding results showing file size at low quality………………………… 51
4.5 Coding results showing file size at medium quality……………………. 52
4.6 Coding results showing file size at high quality……………………….. 53

 80

