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CHAPTER-1 

INTRODUCTION  
 

1.1 INTRODUCTION TO WAVELET 
 
The wavelet transform has been perhaps the most exciting development in the last 

decade to bring together , researchers in several different fields such as signal 

processing , image processing ,communications ,computer sciences and mathematics 

etc., It is well known form Fourier theory that a signal can be expressed as the sum of 

a , possibly infinite, series of sine’s and cosines. This sum is also referred to as a 

Fourier expansion. The big disadvantage of a Fourier expansion however is that , it 

has only frequency resolution and no time resolution. This means that although we 

might be able to determine all the frequencies present in a signal, we do not know 

when they are present. To overcome this problem in the past decades several solutions 

have been developed which are more or less able to represent a signal in the time and 

frequency domain at the same time. 

 

The idea behind these time-frequency joint representations is to cut the signal of 

interest into several parts and then analyze the parts separately. It is clear that 

analyzing a signal this way will give more information about the when and where of 

different frequency components, but it leads to a fundamental problem as well: how to 

cut the signal? Suppose that we want to know exactly all the frequency components 

present at a certain moment in time, we cut out only this very short time window 

using dirac pulse transform it to the frequency domain and something is very wrong. 

The problem here is that cutting the signal corresponds to a convolution between the 

signal and the cutting window. Since convolution in the time domain is identical to 

multiplication in the frequency domain and since the Fourier transform of a dirac 

pulse contains all possible frequencies the frequency components of the signal will be 

smeared out all over the frequency axis. In fact this situation is the opposite of the 

standard Fourier transform since we now have time resolution but no frequency 

resolution whatsoever. 
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The underlying principle of the phenomenon just described is Heisenberg’s 

uncertainty principle, which in signal processing terms, states that it is impossible to 

know the exact frequency and the exact time of occurrences of this frequency in a 

signal. In other words a signal can simply not be represented as a point in the time-

frequency space. The uncertainty principle shows that it is very important now one 

cuts the signal. 

 

The wavelet transform or wavelet analysis is probably the most recent solution to 

overcome the shortcomings of the Fourier transform. In wavelet analysis the use of a 

fully scalable modulated window solves the signal-cutting problem. The window is 

shifted along the signal and for every position the spectrum is calculated. Then this 

process is repeated many times with slightly shorter (or longer) window for every new 

cycle. In the end the result will be a collection of time and frequency representations 

of the signal, all with different resolutions. Because of this collection of 

representations we can speak multi-resolution analysis. In this case of wavelets we 

normally speaks about time-frequency representations but about time-scale 

representations, scale being in a way the opposite of frequency , because the term 

frequency is reserved for the Fourier transform. 

 

1.2 WAVELET DEFINATION:- 

 

A wavelet is a small wave which has its energy concentrated in time. It has oscillating 

wave like characteristic but also has the ability to allow simultaneous time and 

frequency analysis and it is a suitable tool for transient, non-stationary or time-

varying phenomena. 

Fig 

 

 

Fig 1 wavelet defination 
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1.3 WAVELET CHARACTERISTICS:- 

 

The difference between wave and wavelet is shown in the above fig. waves are 

smooth, predictable and everlasting, whereas wavelets are limited duration, irregular 

and may be asymmetric. Waves are used as deterministic basis functions in Fourier 

analysis for the expansion of functions (signals), which are time-invariant, or 

stationary. The important characteristic of wavelets is that they can serve as 

deterministic or non-deterministic basis for generation and analysis of the most 

natural signals to provide better time-frequency representation, which is not possible 

with waves using conventional Fourier analysis. 

 

1.4 WAVELET ANALYSIS: 

 

The wavelet analysis procedure is to adopt a wavelet prototype function, called an 

‘analyzing wavelet’ or ‘mother wavelet’ .Temporal analysis is performed with a 

contracted , high frequency version of the prototype wavelet , while frequency 

analysis is performed with a dilated, low frequency version of the same wavelet. 

Mathematical formulation of signal expansion using wavelets gives wavelet transform 

(WT) pair, which is an analogues to the Fourier transform (FT) pair. Discrete-time 

and discrete-parameter version of WT is termed as discrete wavelet transform (DWT) 

. DWT can be viewed in a similar framework of discrete Fourier transform (DFT) . 

DWT can be viewed in a similar framework of discrete Fourier transform (DFT) with 

its efficient implementation through fast filter bank algorithms similar to fast Fourier 

transform algorithms. 

 

1.5 EVOLUTION OF WAVELET TRANSFORM : 

 

The need of simultaneous representation and localization of both time and frequency 

for non-stationary signals (e.g. music, speech , images) led toward the evolution of 

wavelet transform form the popular Fourier transform. Different ‘time-frequency 

representations’ (TFR) are very informative in understanding and modelling of 

wavelet transform. 
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1.6 TRANSFORMS:- 
 

First of all, why do we need transform? Mathematical transformations are applied to 

signals to obtain further information from that signal that is not readily available in 

the raw signal. Most of the signals in practice are time-domain signals in their raw 

format. Time domain representation is not always the best representation of the signal 

for most signal processing related applications. In many cases, the most distinguished 

information is hidden in the frequency content of the signal. The information that 

cannot be readily seen in the time-domain can be seen in the frequency domain. 

Fourier Transform (FT) with its fast algorithms (FFT) is an important tool for analysis 

and processing of many natural signals. FT has certain limitations to characterize 

many natural signals, which are non-stationary (e.g. speech). Though a time varying , 

overlapping window  based FT namely STFT (short time Fourier transform) is well 

known for speech processing applications ,a new time-scale based Wavelet Transform 

(WT) is a powerful mathematical tool for non-stationary signals. 

 

Wavelet Transform uses a set of damped oscillating functions known as wavelet 

basis. Wavelet Transform in its continuous (analog) form is represented as CoWT     

(continuous wavelet transforms).  Continuous wavelet transform with various 

deterministic or non-deterministic basis is a more effective representation of signals 

for analysis as well as characterization. Continuous wavelet transform is powerful in 

singularity detection. A discrete and fast implementation of continuous wavelet 

transform, (generally with real valued basis) is known as the standard DWT (discrete 

wavelet transforms). 

 

With standard DWT (Discrete wavelet transform, signal has a same data size in 

transform domain and therefore it is a non-reluctant transform, Standard DWT can be 

implemented through a simple filter bank structure of recursive FIR filters. A very 

important property ; multi-resolution analysis (MRA) allows DWT to view and 

process different signals at various resolution levels .The advantages such as non-

redundancy, fast and simple implementation with digital filters using micro-

computers, and MRA capability popularized the DWT in many signal processing 
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applications since last decade. Many researches have successfully applied and proved 

the advantages of DWT for signal de-noising and compression in a number of diverse 

fields. 

 

1.6.1 FOURIER TRANSFORM 

 

Fourier transform is used to find the frequency content of a signal. It allows going 

back and forwarding between the raw and processed (transformed) signals. However, 

only either of them is available at any given time. That is, no frequency information is 

available in the time-domain signal, and no time information is available in the 

Fourier transformed signal. Fourier transform of a time domain signal X(t)  and 

inverse Fourier transform (IFT) of a frequency domain signal X(f) are given below. 

 

2( ) ( ) j ftX f x t e dtπ
∞

−

−∞

= ∫ �
……………………………………….……(1.6.1) 

2( ) ( ) j ftx t X f e dtπ
∞

−∞

= ∫ � ……………………………………………(1.6.2) 

 

Though FT has a great ability to capture signal’s frequency content as long as X(t) is 

composed of few stationary components (e.g. sine waves) .However , any abrupt 

change in time for non-stationary signal X(t) is spread out over the whole frequency 

axis in X(f). Hence the time-domain signal sampled with dirac-delta function is highly 

localized in time but spills over entire frequency band and vice versa. The limitation 

of FT is that it cannot offer both time and frequency localization of a signal at the 

same time. To overcome the limitations of the standard FT, Gabor introduced the 

initial concept of short time Fourier transform(STFT). 
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1.6.2 SHORT TERM FOURIER ANALYSIS: 

 

This is the revised version of the Fourier transform. There is only a minor difference 

between short term Fourier analysis (STFT) and FT. In STFT, the signal is divided 

into small enough segments, where these segments (portions) of the signal can be 

assumed to be stationary. For this purpose, a window function “w” is chosen. The 

width of this window must be equal to the segment of the signal where its stationarity 

is valid. 

 

This window function is the first located to the very beginning of the signal. That is, 

the window function is located at t=0. Let’s suppose that the width of the windows is 

“T” s. At this time instant (t=0), the window function will overlap with the first T/2 

seconds. The window functions and the signal are then multiplied. By doing this , 

only the first T/2 seconds of the signal is being chosen, with the appropriate weighting 

of the window (if  the window is a rectangle, with amplitude “I”  , then the product 

will be equal to the signal) Assuming the product just as another signal, FT is taken. 

The result of this transformation is the FT of the first T/2 seconds of the signal. If this 

Portion of the signal is stationary, as it is assumed, the obtained result will be as true 

frequency representation of the first T/2 seconds of the signal. The next step would be 

shifting this window (for some t1 seconds) to a new location, multiplying with the 

signal and taking the FT of the product. This procedure is followed until the end of 

the signal is reached by shifting the window with “t1” seconds intervals. The 

following definition of the STFT summarizes all the above explanations in one line: 

    

* 1 2( , ) [ ( ). ( )]. j ft
X

t

STFT t f x t t t e dtω πω −= −∫ ………………………(1.6.2.1)        

  

   

In the above equation X(t) is the signal , w(t) is the window function, and * is the 

complex conjugate. As you can see from the equation, the STFT of the signal is 

nothing but the FT of the signal multiplied by a window function. Using STFT one 

cannot know the exact time-frequency representation of a signal, i.e., one cannot 
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know what spectral components exist at what instances of times.  What one can know 

are the time intervals in which certain band of frequencies exists, which is a resolution 

problem. This problem occurs because of width of window function used. 

Narrow window  � good time resolution, poor frequency resolution 

Wide window � good frequency resolution, poor time resolution and violates the 

condition of stationary. 

 

The selection of proper window is application dependent. Once a window has been 

chosen for STFT, the time-frequency resolution is fixed over the entire time-

frequency plane because the same window is used at all frequencies. There is always 

a trade off between time resolution and frequency resolution in STFT. 

 

1.6.3 CONTINUOUS WAVELET TRANSFORM 

 

The continuous wavelet transform was developed as alternative approach to the short 

time Fourier transforms to overcome the resolution problem. The wavelet analysis is 

done in a similar way to the STFT analysis, in the sense that the signal is multiplied 

with a function (i.e. the wavelet) , similar to the window function in the STFT, and the 

transform is computed separately for different segments of the time-domain signal, 

however, there are two main differences between the STFT and the CWT. 

 

1. The Fourier transforms of the windowed signals are not taken, and therefore 

are not computed. 

2. The width of the window is changed as the transform is computed for every 

single spectral component, which is probably the most significant 

characteristic of the wavelet transform. 

 

The wavelet transform (WT) in its continuous (CWT) form provides a flexible time-

frequency window, which narrows when observing high frequency phenomena and 

widens when analysing low frequency behaviour. Thus time resolution becomes 

arbitrarily good at low frequencies. This kind of analysis is suitable for signals 

composed of high frequency components with short duration and low frequency 

components with long duration, which is often the case in practical situation. 
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The continuous wavelet transform is defined as follows  

 

*1
( , ) ( , ) ( ) ( )x x

t
CWT s x x t dt

ss
ϕ ϕ ττ ψ τ ϕ −= = ∫ …………………(1.6.3.1) 

 

As seen in the above equation, the transformed signal is a function of two variables, 

τ  and s , the translation and scale parameters, respectively. Ψ(t) is the transforming 

function, and it is called the mother wavelet. 

 

The mother wavelet is a prototype for generating the other window functions. The 

term translation is related to the location of window, as the window is shifted through 

the signal. This term corresponds to the time information in transform. The scale 

parameter is defined as the inverse of frequency. High scales (low frequencies) 

correspond to global information of a signal (that usually spans the entire signal) 

whereas low scales (high frequencies) do not last for entire duration of signal but 

usually appear from time to time as short bursts and high scales (low frequencies) 

usually last for the entire duration of the signal. 

The CWT is the correlation between a wavelet at different scales and the signal with 

the scale (or the frequency) being used as a measure of similarity. The continuous 

wavelet transform was computed by changing the scale of the analysis window, 

shifting the window in time, multiplying by the signal , and integrating over all times. 

 

1.6.4 DESCRETE WAVELET TRANSFORM 

 

The CWT has the drawbacks of redundancy and impracticability with digital 

computers. The discrete wavelet transform (DWT) provides sufficient information 

both for analysis and synthesis of the original signal, with a significant reduction in 

the computation time. The DWT is considerably easier to implement when compared 

to the CWT. 

The DWT analyzes the signal at different frequency bands with different resolutions 

by decomposing the signal into a coarse approximation and detail information. DWT 

employs two sets of functions, called scaling functions and wavelet functions, which 
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are associated with low pass and high pass filters, respectively. The original signal 

x[n] is first passed through a half-band high pass filter g[n] and a low pass filter h[n]. 

After the filtering, half of the samples can be eliminated according to the nyquist’s   

rule. The signal can therefore be sub sampled by 2 , simply by discarding every other 

sample. This constitutes one level of decomposition and can mathematically be 

expressed as follows: 

 

[ ] [ ] [2 ]highy n x k g n k= −∑ � ……………………………..(1.6.4.1) 

 

[ ] [ ] [2 ]lo wy n x k h n k= −∑ � ……………………………..(1.6.4.2) 

 

[ ]highy k  and [ ]lowy k  are the outputs of the high pass and low pass filters, respectively 

after sub sampling by 2. This decomposition halves the time resolution since only half 

the number of samples now characterises the entire signal. However, this operation 

doubles the frequency resolution, since the frequency band of the signal now spans 

only half the previous frequency band, effectively reducing the uncertainty in the 

frequency by half. The above procedure, which is also known as the sub-band coding 

can be repeated for further decomposition. At every level, the filtering and sub 

sampling will result in half the number of samples (and hence half the time resolution) 

and half the frequency band spanned (and hence half the frequency resolution). Hence 

the fig. illustrates this procedure, where x[n] is the original signal to be decomposed, 

and h[n] and g[n] are low pass and high pass filters, respectively. The bandwidth of 

the signal at every level is marked on the figure as “ f “. 

 

The frequencies that are most prominent in the original signal will appear as high 

amplitudes in that region of the DWT signal that includes those particular frequencies. 

The frequency bands that are not very prominent in the original signal will have very 

low amplitudes , and that part of the DWT signal can be discarded without any major 

loss of information , allowing data reduction. The difference of this transform from 

the Fourier transform is that the time localization of these frequencies will not be lost. 
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Fig

 
Fig  2  DWT coefficients at different levels 

 

Four resulting sets of wavelet coefficientsLLW , HLW , LHW  and HHW  are conventionally 

named according to the filtering types along rows and columns respectively (H: high 

pass filtering, L: for low pass filtering). These sets are also called wavelet sub bands 

(LL,LH,HL,HH). The perfect reconstruction is also obtained by applying the  

ID synthesis scheme on rows and columns successively. 
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Fig 3 reconstruction using subbands 

 

 

It is worth pointing out that the order in which rows and columns are processed at the 

analysis and synthesis sides has no importance since the global transformation is 

linear. 

 

 An advantage of wavelet transform is that the windows vary. In order to isolate signal 

discontinuities , one would like to have some very short basis functions. At the same 

time, in order to obtain detailed frequency analysis , one would like to have some very 

long basis functions. A way to achieve this is to have short high-frequency basis 

functions and long low-frequency ones. This happy medium is exactly what you get 

with wavelet transforms. One thing  to remember is that wavelet transforms do not 

have a single set of basis functions like the Fourier transform, which utilizes just the 

sine and cosine functions. Instead , wavelet transforms have an infinite set of possible 

basis functions. Thus wavelet analysis provides immediate access to information that 

can be obscured by other time-frequency methods such as Fourier analysis. 
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1.7 COMPARATIVE VISUALIZATION 

 

A comprehensive visualization of various time-frequency representation, shown in 

figure, demonstrates the time-frequency resolution for a given signal in various 

transform domains with their corresponding basis functions. 

Figure describes the time and frequency responses in different domains  

Here x- axis has time  and y-axis has frequency 

 

 
Fig 4 comparative visualization 
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1.8 WAVELET PROPERTIES 

 

The most important properties of wavelets are the admissibility and the regularity 

conditions and these are the properties which gave wavelets their name. It can be 

shown that square integrable functions ( )tψ satisfies the admissibility condition 

 

2

| ( ) |

| |
d

ψ ω ω
ω∫   ˂    

+∞ ………………………………...……………(1.8.1) 

 

can be used to first analyze and then reconstruct a signal without loss of information.  

( )ψ ω  stands for the Fourier transform of  ( )tψ . The admissibility condition implies 

that the Fourier transform of  ( )tψ  vanishes at the zero frequency. 

i.e.,                 

 

2| ( ) |ψ ω = 0| 0ω = ………………………………………..(1.8.2)

 

 

This means that wavelets must have a band-pass like spectrum. This is a very 

important observation, which we will use later on to build an efficient wavelet 

transform. 

 

A zero at the zero frequency also means that the average value of the wavelet in the 

time domain must be zero. 

 

( ) 0t d tψ =∫ ……………………………………………………………..(1.8.3) 

 

And therefore it must be oscillatory. In other words ( )tψ  must be a wave. As from 

the above knowledge the wavelet transform of one dimensional function is two 

dimensional ; the wavelet transform of two-dimensional function is four-dimensional. 

The time-bandwidth product of the wavelet transform is the square of the input signal 
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and for most practical applications this is not a desirable property. Therefore one 

imposes some additional conditions on the wavelet functions in order to make the 

wavelet transform decrease quickly with decreasing scale s. These are the regularity 

conditions and they state that the wavelet function should have some smoothness and 

concentration in both time and frequency domains.  

 

If we expand the wavelet transform into the taylor series at t=0 until order n (let τ=0 

for simplicity) we get 

 

( )

0

1
( , 0) [ (0) ( ) ( 1)]

pn
p

p

t t
s f dt o n

p ss
γ ψ

=

= + +∑ ∫ ……………….(1.8.4) 

 

Hence f(p) stands for the pth  derivative of f and O(n+1) means the rest of the 

expansion. Now, if we define the moments of the wavelet by Mp , 

 

Mp = ( ) ,pt t d tψ∫ …………………………………………………………(1.8.5) 

 

Then we can get the finite development 

 

(1) (2) ( )
2 3 1 2

0 1 2

1 (0) (0) (0)
( ,0) (0) ... 0( )

1 2

n
n n

n

f f f
s f M s M s M s M s s

ns
γ + + 

= + + + + + 
 

…….(1.8.6) 

 

From the admissibility condition we already have that the 0th moment M0= 0 so that 

the first term in the right-hand side of above equation is zero. If we now manage to 

make the other moments up to Mn zero as well, then the wavelet transform 

coefficients ( , )sγ τ  will decay as fast as sn+2 for a smooth signal f(t). This is known in 

literature as the vanishing moments or approximation order. If a wavelet has N 

vanishing moments, then the approximation order of the wavelet transform is also N. 

The moments do not have to be exactly zero , a small value is often good enough. In 

fact experimental research suggests that the number of vanishing moments required 

depends heavily on the applications. 
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The admissibility condition gave us the wave, regularity and vanishing moments gave 

us the fast decay or the let, and put together they give us the wavelet.  

 

1.9 A BAND-PASS FILTER 

 

With the redundancy removed, we still have two hurdles to take before we have the 

wavelet transform in a practical form. We continue by trying to reduce the number of 

wavelets needed in the wavelet transform and save the problem of the difficult 

analytical solutions for the end. 

 

Even with discrete wavelets we still needed an infinite number of scalings and 

translations to calculate the wavelet transform. The easiest way to tackle this problem 

is simply not to use an infinite number of discrete wavelets. Of course this poses the 

question of the quality of the transform. Is it possible to reduce the number of 

wavelets to analyze a signal and still have a useful result . 

 

The translation of the wavelets are of course limited by the duration of the signal 

under investigation so that we have an upper boundary for the wavelets. This leaves 

us with the question of dilation how many scales do we need to analyze our signal? 

How do we get the lower bond ? it turns out that we can answer this question by 

looking at the wavelet transform in a different way. 

 

The wavelet has a band-pass like spectrum. From Fourier theory we know that 

compression in time is equivalent to stretching the spectrum and shifting it upwards 

 

{ } 1
( )F f a t F

a a

ω =  
 

……………………………………………..(1.9.1) 

 

This means that a time compression of the wavelet by a factor of 2 will stretch the 

frequency spectrum of the wavelet by a factor of 2 and also shift all frequency 

components up by a factor of 2. Using this insight we can cover the finite spectrum of 

our signal with the spectrum of dilated wavelets in the same way as that we covered 
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our signal in the time domain with translated wavelets. To get a good coverage of the 

signal spectrum the stretched wavelet spectra should touch each other, as if they were 

standing hand in had. This can be arranged by correctly designing the wavelets. 

 

 

 
Fig 5 band pass filter 

 

 

If one wavelet can be seen as a band-pass filter, then a series of dilated wavelets can 

be seen as a band-pass filter bank. If we look at the ratio between the center frequency 

of a wavelet spectrum and the width of this spectrum we will see that it is the same for 

all wavelets. This ratio is normally referred to as the fidelity factor Q of a filter and in 

the case of wavelets one speaks therefore of a constant-Q filter bank. 

 

1.10 A CONSTRAINT 

 

As a constraint we will now take a look at an important constraint on our signal, 

which has sneaked in during the last section the signal to analyze must have finite 

energy. when the signal has infinite energy it will be impossible to cover its frequency 

spectrum and its time duration with wavelets. Usually this constraint is formally 

stated as 

 

2( )f t dt < ∞∫ ……………………………………………………………(1.10.1) 

 

And it is equivalent to stating that the L2 norm of our signal f(t) should be finite. This 

is where Hilbert spaces come in so we end our constraint by stating that natural 

signals normally have finite energy. 
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1.11 THE SCALING FUNCTION 

 

The question arises how to cover the spectrum all the way down to zero ? Because 

every time we stretch the wavelet in time domain with a factor of 2, its bandwidth is 

halved. In other words, with every wavelet stretch we cover only half of the remaining 

spectrum, which means that we will need an infinite number of wavelets to get the job 

done. 

 

The solution of this problem is simply not to try to cover the spectrum all the way 

down to zero with wavelet spectra, but to use a cork to plug the hole when it is small 

enough. This cork then is a low-pass spectrum and it belongs to the so-called scaling 

function. The scaling function was introduced by mallat . because of the low-pass 

nature of he scaling function spectrum it is sometimes referred to as the averaging 

filter. 

 

 

Figure 6 shows scaling function of wavelet. 

 

If we look at the scaling function as being just a signal with a low-pass spectrum, then 

we can decompose it in wavelet components and express it as 

 

,
,

( ) ( , ) ( )j k
j k

t j k tϕ γ ψ=∑ ………………………………………….(1.11.1) 

 

Since we selected the scaling function ( )tϕ in such a way that its spectrum neatly 

fitted in the space left open by the wavelets, the expression uses an infinite number of 

wavelets up to certain scale j. This means that if we analyze a signal using the 
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combination of scaling function and wavelets, the scaling function by itself takes care 

of the spectrum otherwise covered by all the wavelets up to scale j, while the rest is 

done by the wavelets. In this way we have limited the number of wavelets form an 

infinite number to a finite number. 

 

By introducing the scaling function we have circumvented the problem of the infinite 

number of wavelets and set a lower bound for the wavelet. Of course when we use a 

scaling function instead of wavelets we lose information. That is to say, from a signal 

representation view we do not loose any information, since it will still be possible to 

reconstruct the original signal but from a wavelet-analysis point of view we discard 

possible valuable scale information. The width of the scaling function spectrum is 

therefore an important parameter in the wavelet transform design. The shorter its 

spectrum the more wavelet coefficients, we will have and more scale information. But 

, as on , in the discrete wavelet transform this problem is more or less automatically 

solved. 

 

The low-pass spectrum of the scaling function allows us to state some sort of 

admissibility condition similar to  

( ) 1t d tϕ =∫ ………………………………………………………..(1.11.2) 

Which shows that the 0th moment of the scaling function can not vanish. 

If one wavelet can be seen as a band-pass filter and scaling function is a loqw-pass 

filter, then a series of dilated wavelets together with a scaling function can be seen as 

a  filter bank. 
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1.12 SUBBAND CODING 

 

If we regard the wavelet transform as a filter bank, then we can consider wavelet 

transforming a signal as passing the signal through this filter bank. The outputs of the 

different filter stages are the wavelet-and scaling function transform coefficient. 

Analyzing  a signal by passing it through a filter bank is not a new idea and has been 

around for many years under the name sub-band coding. It is used for instance in 

computer vision applications. 

 
Fig 7 sub band coding function 

 

The filter bank needed in subband coding can be built in several ways. One way is to 

build many band-pass filters to split the spectrum into frequency bands. The 

advantages is that the width of every band can be chosen freely, in such a way that the 

spectrum of the signal to analyze is covered in the places where it might be 

interesting. The disadvantage is that we will have to design every filter separately and  

this can be a time consuming process. Another way is to split the signal spectrum in 

two parts a low-pass and a high-pass part. The high-pass part contains the smallest 



~ 20 ~ 
 

DELHI COLLEGE OF ENGINEERING, DELHI UNIVERSITY 

details we are interested in and we could stop here. We now have two bands. 

However the low-pass part still contains some details and therefore we can split it 

again.  And again, until we are satisfied with the number of bands we have created. In 

this way we have created an iterated filter bank. Usually the number of bands is 

limited by for instance the amount of data or computation power available. The 

process of splitting the spectrum is graphically delayed in fig.  The advantage of this 

scheme is that we have to design only two filters , the disadvantage is that the signal 

spectrum coverage is fixed. 

 

Looking in above fig. we see that what we are left with after the repeated spectrum 

splitting is a series of band-pass bands with doubling bandwidth and one low-pass 

band. (Although in first split gave us a high-pass band and a low-pass band, in reality 

the high-pass band is a band-pass band due to te limited bandwidth of the signal.) 

.The same can be done in another way by feeding the signal into a bank of band-pass 

filters of which each filter has a bandwidth twice as wide as his left neighbour (the 

frequency axis runs to the right here) and a low-pass filter. This is same as applying a 

wavelet transform to the signal. The wavelet gives us the band-pass bands with 

doubling bandwidth and scaling function provides us with the low-pass band. So we 

can conclude that a wavelet transform is the same thing as a sub-band coding scheme 

using a constant-Q filter bank. This analysis is referred to as a multi-resolution 

analysis. 

 

1.13 ORTHOGONAL WAVELET 

An orthogonal wavelet is a Wavelet where the associated wavelet transform is 

orthogonal. That is the inverse wavelet transform is the ad joint of the wavelet 

transform. If this condition is weakened you may end up with bi-orthogonal wavelet 

The scaling function is a re-definable function. That is, it is a fractal functional 

equation, called refinement equation: 

1

0

( ) ( 2 )
N

k
k

x a x kϕ ϕ
−

=

= −∑ ,………………………………....(1.13.1) 
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where the sequence 0 1( , ,... )na a a of real numbers is called scaling sequence or scaling 

mask. The wavelet proper is obtained by a similar linear combination, 

1

0

( ) (2 )
M

k
k

x b x kψ ϕ
−

=

= −∑ ………………………………………..(1.13.2) 

where the sequence 0 1( , ,..., )nb b b  of real numbers is called wavelet sequence or 

wavelet mask. 

A necessary condition for the orthogonality of the wavelets is, that the scaling 

sequence is orthogonal to any shifts of it by an even number of coefficients: 

2 ,02n n m m
n z

a a δ+
∈

=∑ ………………………………………..(1.13.3) 

In this case there is the same number M=N of coefficients in the scaling as in the 

wavelet sequence, the wavelet sequence can be determined asbn=(-1)naN-1-n . In some 

cases the opposite sign is chosen. 

1.14 BI-ORTHOGONAL WAVELET 

A bi-orthogonal wavelet is a wavelet where the associated wavelet transform is 

invertible but not necessarily orthogonal.  Designing bi-orthogonal wavelets allows 

more degrees of freedoms than orthogonal wavelets. One additional degree of 

freedom is the possibility to construct symmetric wavelet functions. 

In the bi-orthogonal case, there are two scaling functions ,ϕ ϕ% , which may generate 

different multi-resolution analyses, and accordingly two different wavelet functions 

,ψ ψ% . So the numbers M,N of coefficients in the scaling sequences ,a a%  may differ. 

The scaling sequences must satisfy the following bi-orthogonality condition 

2 ,02n n m m
n z

a a δ+
∈

=∑ % .Then the wavelet sequences can be determined as 

1( 1)n
n M nb a − −= − % ,    1( 1)n

n M nb a − −= −% %  , n=0,…,M-1 and ,n=0,…,N-1…..(1.13.4) 
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1.15 GENERATING SCALING FUNCTIONS AND WAVELETS FROM  

FILTER COEFFICIENTS 

 

The following equation represents as  

(2 ) ( ) ( )Hω ω ωΦ = Φ ……………………………………...…………….(1.15.1) 

( )H ω  is the frequency response of H.  

Rewriting this above equation as  

 

( ) ( 2 ) ( 4 ) . . . ( 0 )H H Hω ω ωΦ = ………………………………….(1.15.2) 

Where we have set Φ(0)=1, we have the coefficients of the impulse response of a 

discrete-time filter h(n) satisfy the paraunitary conditions. The sequence 2h(n) can 

serve as the set of coefficients for the dilation equation to generate a potential scaling 

function ˂(t) for an orthonormal decomposition. If substitution of the frequency 

response H(ω) in the right-hand side of the equation leads to a function of Φ(ω), then 

its inverse Fourier transform is such a scaling function. There is a simple time-domain 

iteration method based on this result. 

The steps of the algorithm are 

 

1. Set c(n)=2h(n). 

2. Let the initial scaling function be the haar scaling function 

0

1

0
φ 

= 


    otherwise 0
   

0≤t<1
   ……………………………….…………..…(1.15.3) 

3. At iteration n set 

1( ) ( ) (2 )n n
t

t c l t lφ φ −= −∑ ……………………………………….…(1.15.4) 

4. Iterate until either divergence is established or the desired convergence is 

obtained. If there is convergence, the scaling function is given by 

0
( ) lim ( )n

n
t tφ φ

→
= …………………………………………………....(1.15.5) 

Transforming the iteration to the frequency domain, at the end of the first iteration, 

1 0( ) ( 2) ( 2)Hω ω ωΦ = Φ ……………………………….…(1.15.6) 
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Where ( )n ωΦ  denotes the Fourier transform of the scaling function at the nth 

iteration. The function 0( )ωΦ  is the Fourier transform of the Haar scaling function. 

Thus the scaling function become 

1 0( ) ( 2) ( 4) ( 4)H Hω ω ω ωΦ = Φ ………………………….(1.15.7) 

 

1.16 WAVELET TRANSFORM AND DATA COMPRESSION 

The most wide spread application of the wavelet transform so far has been for data 

compression. This is related to the fact that the DWT is tied closely to subband 

decomposition, and the latter was already being used for compression by the time the 

connection between the two was established by mallat.   

 

Compression in the context of speech compression, image compression, and so forth, 

connotes the process of starting with a source of such data in digital form and creating 

a representation for it that uses fewer bits than the original. The aim is to reduce 

storage requirements or transmission time when such information is communicated 

over a distance. Ideally we want the compression process to be reversible. That is 

given the compressed data, we would like to get the original data. When it is possible 

to do so then compression is said to be lossless; otherwise we have lossy compression  

The error signal is represented as 

  

ˆ( ) ( ) ( ).e n s n s n= −
………………………………………………………(1.16.1) 

For lossless compression, e(n) is identically zero. For lossy compression, an objective 

measure of distortion or figure of merit for the quality of the reproduction signal or 

image is the mean squared value of the e(n) . One might use the related measures of 

signal to noise ratio (SNR) or peak signal to noise ratio (PSNR) defined as  

 

10

( )
( ) 10log

( )

meansquared s n
SNR dB

meansquared e n
= ……………………………(1.16.2) 
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1.17 WAVELET MATCHING 

 

Generate a mother wavelet ( )tψ  such that the latter is as close as possible to the 

specified function in some optimal sense while generating an orthonormal basis. Now 

construct the meyer-type scaling function and wavelet since it is used in the derivation 

of the matching algorithm. Let ( )tφ  be a real value function of time and ( )ωΦ be its 

Fourier transform, let ( )ωΦ  be bandlimited to 2
3

πω ≤  such that  ( ) 1ωΦ =  

 

20 3
πω≤ ≤  

2 2
( ) ( ) 1π ω π ωΦ + + Φ − = ……………………………………………(1.17.1) 

 

For 3
πω ≤ . By virtue of the fact that ( )tφ is real valued, it follows that ( )ωΦ  is 

symmetric about origin. 

It can be shown that the function ( )ωΦ  is symmetric about the origin. 

It can be shown that the function ( )ωΦ  satisfies the poisons summation formula, 

2
( 2 ) 1

k

kω πΦ + =∑ ……………………………………………….(1.17.2) 

Thus indicating that {˂ (t-k) : k integer} is an orthogonal set. The function ˂ (t) serves 

as a scaling function in an orthonormal MRA. The corresponding wavelet amplitude 

spectrum ( )ψ ω  is bandlimited to 2 3 8 3π ω π< ≤  and is given by 

 
                     ( 2 )ω πΦ −     2 3 4 3π ω π≤ ≤  

( )ψ ω =  

                      ( 2)ωΦ           4 3 8 3π ω π≤ ≤ ……………………………..(1.17.3) 

An interesting consequence is  

(4 3 ) (4 3 2 )ψ π ω ψ π ω− = +  for 0 2 3ω π≤ ≥ ………………...(1.17.4) 
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Now F(ω) be the Fourier transform of the specified signal. We address the problem of 

generating a function ( )ψ ω  such that it satisfies the conditions of a meyer wavelet 

while minimizing the squared norm of the function 
2 2

( ) ( )F ω ψ ω−  

2 2
( ) ( )F ω ψ ω= ………………………………………………………….(1.17.5) 

And 

2
( ) ( )A ω ψ ω= ……………………………………………………...(1.17.6) 

We minimize 

2
[ ( ) ( )]j G A dω ω ω= −∫ ………………………………………………..(1.17.7) 

Subject to the condition that A(ω) is bandlimited to 2 3 8 3π ω π≤ ≤  and 

 

Where c is a constant 
2 2( ) ( )A A Cπ ω π ω− + + =  . …………………………(1.17.8) 

The idea is first to minimize the cost function with C as a free parameter and then to 

minimize further with respect to C to get the minimum.  

 

2 ( ) / 2a C Fa Fb Fc Fd= + − − + ………………………………………..(1.17.9) 

2 ( ) 2b C Fa Fb Fc Fd= − − − + ………………………………………(1.17.10) 

 

Extending this to the entire function yields 

 

( ) 2 [ ( ) (2 ) (2 ) (4 2 )] 2A C G G G Gω ω π ω ω π ω= + − − − + − …………(1.17.11) 

 

Now further minimizing of the cost function with respect to C yields 

 

4 3 8 3

2 3 4 3

1 1
( ) ( )

2 2
C G d G d

π π

π π

ω ω ω ω
π
 

= + 
  
∫ ∫ …………………………..(1.17.12) 
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1.18 AUDIO COMPRESSION 

 

The DTWT or subband decomposition techniques are used for the compression of 

audio and wideband speech signals. There seems to be a perceptual basis in audio 

perception for using such decomposition. The frequency range for human hearing 

extends to 20 kHz. When an analog audio signal is sampled, the sampling frequency 

has to be greater than 40 kHz. In applications such as audio recording on conventional 

compact disk (CD), the sampling rate is 44.1 kHz. Since the sampled data are stored 

in digital form, only a finite number of levels, determined by the number of bits 

allotted per sample, can be used to represent the signal. In audio CDs, 16 bits per 

sample are used. This allows 65,536 levels. Then this levels are decoded is called 

pulse code modulation.  

 

1.19 APPLICATIONS OF WAVELET TRANSFORMS 

 

Finally, applications of widely used standard DWT implementations, utilizing its 

Multi-scale and Multi-resolution capabilities with fast filter bank algorithms are 

numerous to describe. Depending upon the application, extensions of standard DWT 

namely WP and SWT are also employed for improved performance at the cost of 

higher redundancy and computational complexity. 

 

A few of such applications in data compression, de noising, source and channel 

coding , biomedical, non-destructive evolution, numerical solutions of PDE , study of 

distant universe, zero-crossing, fractals, turbulence, speckle removal, edge detection 

and object isolation, image fusion, scaling functions as signalling pulses, and finance 

are comprehensively covered in. wavelet applications in may diverse fields such as 

physics , medicine, and biology, computer graphics, communications and multimedia 

etc. can be found in various books on wavelets. 
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1.20 TYPES OF WAVELETS 

HARR 

Any discussion of wavelets begins with Haar wavelet, the first and simplest. Haar 

wavelet is discontinuous, and resembles a step function. It represents the same 

wavelet as Daubechies I. 

 
Fig.8 

DAUBECHIES 

Ingrid Daubechies, one of the brightest stars in the world of wavelet research, 

invented what are called compactly supported orthonormal wavelets thus making 

discrete wavelet analysis practicable.  

 

The names of the Daubechies family wavelets are written dbN, where N is the order, and db 

the "surname" of the wavelet. The db1 wavelet, as mentioned above, is the same as Haar 

wavelet. Here are the wavelet functions psi of the next nine members of the family: 

Fig 9 
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COIFLETS  

Built by I. Daubechies at the request of  R. Coifman. The wavelet function has 2N 

moments equal to 0 and the scaling function has 2N-1 moments equal to 0. The 

two functions have a support of length 6N-1. You can obtain a survey of the main 

properties of this family by typing from the MATLAB command line 

Fig 10 

 
 
SYMLETS 

The symlets are nearly symmetrical wavelets proposed by Daubechies as 

modifications to the db family. The properties of the two wavelet families are 

similar. Here are the wavelet functions psi. 

Fig 11 
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BIORTHOGONAL 

This family of wavelets exhibits the property of linear phase, which is needed for 

signal and image reconstruction. By using two wavelets, one for decomposition (on 

the left side) and the other for reconstruction (on the right side) instead of the same 

single one, interesting properties are derived. 

 
Fig 12 
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MORLET 

This wavelet has no scaling function, but is explicit. 

 
Fig 13 
 
 
 
 
 
MEXICAN HAT 
 

This wavelet has no scaling function and is derived from a function that is 

proportional to the second derivative function of the Gaussian probability density 

function. 

 

 

Fig 14 
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MEYER 

The Meyer wavelet and scaling function are defined in the frequency domain. 

 

Fig 15 
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CHAPTER-2 

LITERATURE SURVEY 

 
2.1 ALGORITHMS FOR DESIGNING WAVELETS TO MATCH A 
SPECIFIED SIGNAL 
 
Algorithms for designing a mother wavelet ( )xψ  such that it matches a signal of 

interest and such that the family of wavelets { }( 2)2 (2 )j j x kψ− − − forms an 

orthonormal Riesz basis of 2( )L R are developed. The algorithms are based on a closed 

form solution for finding the scaling function spectrum from the wavelet spectrum. 

Many applications of signal representation, adaptive coding and pattern recognition 

require wavelets that are matched to a signal of interest. Most current design 

techniques, however, do not design the wavelet directly. They either build a 

composite wavelet from a library of previously designed wavelets, modify the bases 

in an existing multi-resolution analysis or design a scaling function that generates a 

multi-resolution analysis with some desired properties. In this paper, two sets of 

equations are developed that allow us to design the wavelet directly from the signal of 

interest. Both sets impose band-limitedness, resulting in closed form solutions. The 

first set derives expressions for continuous matched wavelet spectrum amplitudes. 

The second set of equations provides a direct discrete algorithm for calculating close 

approximations to the optimal complex wavelet spectrum. The discrete solution for 

the matched wavelet spectrum amplitude is identical to that of the continuous solution 

at the sampled frequencies. An interesting by product of this work is the result that 

Meyer’s spectrum amplitude construction for an orthonormal band limited wavelet is 

not only sufficient but necessary. Specific examples are given which demonstrate the 

performance of\the wavelet matching algorithms for both known orthonormal 

wavelets and arbitrary signals. 

 

Daubechies introduces the wavelet transform as “a tool that cuts up data or functions 

or operators into different frequency components, and then studies each component 

with a resolution matched to its scale”. One of the exciting advantages of wavelets 

over Fourier analysis is the flexibility they afford in the shape and form of the 

analyzer, that which “cuts up” and “studies” the signal of interest. However ,with 
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flexibility comes the difficult task of choosing or designing the appropriate wavelet or 

wavelets for a given application.  

 

look at a multi resolution decomposition as the output of a bank of matched filters , 

we can see the need for the analyzing wavelet to “look” like the signal of interest. In 

signal detection applications, the decomposition of a signal in the presence of noise 

using a wavelet matched to the signal would produce a sharper or taller peak in time-

scale space as compared to standard non matched wavelets. The design techniques 

developed to date do not specifically address the need for maximizing correlation in a 

signal decomposition. Daubechies’ classic technique for finding orthonormal wavelet 

bases with compact support is often used as the default in many wavelet applications. 

However, the wavelets produced are independent of the signal being analyzed. 

Tewfik, Sinha, and Jorgensen have developed a technique for finding the optimal 

orthonormal wavelet basis for representing a specified signal within a finite number of 

scales. Gopinath, Odegard, and Burrus extended the results of Tewfik, by assuming 

bandlimited signals and finding the optimal M-band wavelet basis for representing a 

desired signal, again within a finite number of scales. Both of these approaches seek 

to represent a signal over some number of scales. However, the desired output of a 

multiresolution decomposition of a bandpass signal using a matched wavelet is 

representation in one or at most two scales. 

 

The wavelet design techniques developed Mallat and Zheng , and Chen and Donoho , 

build non orthonormal wavelet bases from a library of existing wavelets in such a way 

that some error cost function is minimized. These techniques are constrained by the 

library of functions used and do not satisfy the need for optimal correlation in both 

scale and translation. Sweldens developed the lifting scheme for constructing 

biorthogonal wavelets . Aldroubi and Unser match a wavelet basis to a desired signal 

by either projecting the desired signal onto an existing wavelet basis, or transforming 

the wavelet basis under certain conditions such that the error norm between the 

desired signal and the new wavelet basis is minimum. Both of these techniques are 

constrained by their initial choice of MRA. 
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Apart from being of mathematical interest, the problem of deriving orthonormal 

wavelets directly from a signal of interest has specific application to signal detection, 

image enhancement, and target detection, to name a few. In this paper, we will show 

that in the case of orthonormal MRA’s with bandlimited wavelets, there is a solution 

to finding wavelets that “look” like a desired signal. The only additional constraints 

are the necessary conditions for an MRA and the signal of interest itself. While the 

matching algorithm is sub-optimal in the sense that it is performed on the spectrum 

magnitude and phase independent of one another, we will show by way of examples 

that it produces good matching wavelets. 

 

�In an orthonormal MRA(OMRA), a signal, 1( )f x V−∈ , is decomposed into an 

infinite series of detail functions, }{ ( )jg x  such that 

0

( ) ( )j
j

f x g x
∞

=

= ∑ , ………………………………………………………….(2.1.1) 

The first level decomposition is done by projecting ( )f x onto two orthogonal 

subspaces, V0 and W0, where 1 0 0V V W− = ⊕  and ⊕  is the direct sum operator. The 

projection produces 0 0( )f x V∈ , a low resolution approximation of ( )f x , and 

0 0( )g x W∈ .The detail lost in going from ( )f x  to 0( )f x  . The decomposition 

continues by projecting 0( )f x  onto V1 and W1 and so on. The orthonormal bases of 

jW and jV  are given by 

 

2
, 2 (2 )j j

j k x kψ ψ− −= − …………………………………………………...(2.1.2) 

2
, 2 (2 )j j

j k x kφ φ− −= − …………………………………………………...(2.1.3) 

 
 
Where ,j kψ  is  the mother wavelet and ,j kφ is the scaling function. Where 

 

( ) 0 (0) 0x dxψ = ⇔ Ψ =∫ …………………………………………(2.1.4) 

  

( ) 1 ( 0 ) 1x d xφ = ⇔ Φ =∫ …………………………………………(2.1.5) 
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And ( )ωΦ and ( )ωΨ are the Fourier transform of ( )xψ and ( )xφ , respectively. The 

projection equations are  

2( ) 2 (2 )k j j
j j

k

g x d x kψ
∞

− −

=−∞
= −∑ ……………………………………….(2.1.6) 

 

1 ,( ),j
k j j kd f x ψ−= 〈 〉……………………………………………………..(2.1.7) 

 

( 2)( ) (2 )j j
j k

k

f x c x kφ
∞

−

=−∞

= −∑ ……………………………………………….(2.1.8) 

 

1 ,( ),k
j j j kc f x φ=

−〈 〉…………………………………………………………(2.1.9) 

 
Where k

jd and k
jc  are the projection coefficient and .,.〈 〉 is the L2 inner product. The 

nested sequence of subspaces,  {Vj }, constitutes the multiresolution analysis. For  the 

MRA to be orthonormal ,j kψ and ,j kφ  must be orthonormal bases of W and Vj , 

respectively and  j kW W⊥  , for j≠ k, and j jW V⊥ , which lead to the following 

conditions on ψ and φ .  

 

, , ,,j k j m k mφ φ δ〈 〉 = ………………………………………………………..(2.1.10) 

 

, ,, 0j k j mφ ψ〈 〉 =   , , , ,, ,j k l m j l k mψ ψ δ δ〈 〉 = ………………………………...(2.1.11) 

 
The Fourier transform gives the poisson summation which is 1 for all ω. 
 

2( 2 ) 1.
m

w mπ
∞

= −∞

Φ + =∑ ……………………………………………...(2.1.12) 

 
Since 0 1( )x V Vφ −∈ ⊂  and 0 1( ) ,x W Vψ −∈ ⊂ they can be represented as linear 

combinations of the basis of V-1 

( ) 2 (2 )k
k

x h x kφ φ
∞

=−∞

= −∑ ………………………………………………….(2.1.13) 

( ) 2 (2 )k
k

x g x kψ φ
∞

=−∞

= −∑ ………………………………………………….(2.1.14) 
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In the frequency domain 
 

( ) ( ) ( )
2 2

H
ω ωωΦ = Φ ……………………………………………………...(2.1.15) 

 

( ) ( ) ( )
2 2

G
ω ωωΨ = Φ ……………………………………………………...(2.1.16) 

1
1( 1) ( ) ( )k j

k kg h G e Hωω ω π+
−= − ⇔ = + ………………………………….(2.1.17) 

 

2.2 SIGNAL DETECTION 

 

Using a matched filter bank interpretation of wavelet transforms, we propose to 

design a wavelet that “matches” the signal of interest such that the output of the 

matched filter bank is maximized. The projection equation for the detail functions, 

given in (2.1.5), is an inner product integral and can be rewritten in the frequency 

domain by way of Parseval’s Identity as 

 

, ,( ), ( ), (2 )k j
j j k j kd f x Fψ ω ψ ω=〈 〉=〈 〉……………………………………..(2.2.1) 

Where 2 2
, (2 ) 2 (2 )

jj j i k j
j k e ωω ω− −Ψ = Ψ is the Fourier transform of , ( )j k xψ . The 

energy of k
jd  at a particular scale . j0 ,and translation ,k0 is given by its squared 

magnitude  

0 0

0 0 0

2 2

,( ), (2 )j j
k j kd F ω ω= 〈 Ψ 〉 …………………………………………...(2.2.2) 

 

Applying the Cauchy-schwarz inequality to the right side gives 

 

0 0 0

0 0 0 0 0 0

2

, , ,( ), (2 ) ( ), ( ) (2 ), (2 )j j j
j k j k j kF F Fω ω ω ω ω ω〈 Ψ 〉 ≤〈 〉〈Ψ Ψ 〉…………(2.2.3) 

 

Where the equality holds if and only if  

 

0

0 0,( ) (2 )j
j kF Kω ω= Ψ …………………………………………………...(2.2.4) 
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Where both F and Ψ are complex spectra. Therefore 0
0

2j
kd , is maximized when the 

complex frequency spectrum of  
0 0,j kψ is identical to that of . Therefore, we would like 

to develop a method for matching the complex spectrum of the wavelet to that of the 

desired signal while maintaining the conditions for an orthonormal MRA. However, 

because the conditions for orthonormality are on the spectrum amplitude (Poisson 

summation) only, our solution matches the spectrum amplitudes and group delays 

independently. While this approach is not ideal from an optimization standpoint, we 

will show that it One other difficulty in matching the wavelet spectrum directly to that 

of the desired signal is the fact that the conditions for an orthonormal MRA are on the 

scaling function and its frequency spectrum, not the wavelet specifically. If we were 

to construct a wavelet that satisfied its conditions for an orthonormal basis, it would 

not necessarily lead to a scaling function that generates an orthonormal MRA. 

Therefore, we must propagate the conditions for an orthonormal MRA from the 2-

scale sequence and scaling function to the wavelet, match the wavelet to the desired 

signal under those conditions, and then calculate the scaling function and 2-scale 

sequence always guaranteeing that the conditions for an orthonormal MRA are 

satisfied still leads to good matching wavelets. 

 
2.3 PROPERTIES OF A WAVELET IN AN OMRA 
 
Most wavelet construction techniques first find a scaling function that satisfies (2.1.4) 

and (2.1.5), (2.1.12) , and (2.1.13) and then calculates the wavelet using (2.1.14) and 

(2.1.15) , (2.1.16) and (2.1.17). 

 

2.3.1 Finding the scaling function from a Wavelet 

 

The first step in deriving the OMRA conditions for the wavelet spectrum amplitude is 

providing a means of deriving the scaling function from the mother wavelet. Finding 

the wavelet from the scaling function is simple using (2.1.14), however, it is not 

invertible. To derive an expression for in terms of , the conditions provided in Section 

II will be applied directly. Conditions (2.1.4), (2.1.7) and (2.1.15) and (2.1.16) are 

required for to generate an orthonormal MRA, thereby satisfying (2.1.7). From 

(2.1.15) and (2.1.16), we get the following expression  
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2 2 2
( ) (2 ) (2 )ω ω ωΦ = Ψ + Φ ……………….…………………….(2.3.1) 

 

Repeated substitution of 
2

(2 )k ωΦ  for 1k ≥  into above equation gives the following 

closed form solution 

2
2

1

( ) (2 )j

j

ω ω
∞

=

Φ = Ψ∑ for ω≠ 0………………………………………..(2.3.2) 

 

2.3.2 Properties of the Wavelet spectrum amplitude 

 

Now that we have an expression for finding Φ from Ψ  , we need to develop the 

constraints on Ψ  that are necessary and sufficient to guarantee ,j kφ  is an 

orthonormal basis of Vj . Using (2.3.2), conditions (2.1.4), (2.1.7), and (2.1.15 and 

2.1.16) can be transferred to conditions on ( )ωΨ  . To guarantee a closed form 

solution, we assume the scaling function spectrum is bandlimited with only a 

countable number of zeros. With this assumption, we can derive the following 

theorems for the properties of orthonormal bandlimited scaling function and wavelet 

spectra.  

 

2.3.3 Properties of the Wavelet spectrum phase 

 

It would be convenient if we could simply set the phase of Ψ to the phase of the 

desired signal spectrum, F, thereby cancelling the complex component of (2.2.4). 

However, just as in the previous section we showed that Ψ has specific constraints on 

its amplitude, here we will show that has specific constraints on the structure of its 

phase as well. First we will develop an expression for the group delay of  ( )ωΨ in 

terms of the group delay of the scaling function spectrum, ( )ωΦ  . Substituting 

(2.1.17) into (2.1.15) gives  
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(2 2 )
(2 ) ( )

( )
ie ω ω πω ω

ω π
− Φ +Ψ = Φ

Φ + …………………………………..……..(2.3.3) 

 

And so the phase of Ψ becomes 

 

( ) ( 2 ) ( ) ( )
2 2 2

ω ω ωθ ω θ ω π θ π θΨ Φ Φ Φ=− − + + + + …………………..……..(2.3.4) 

Where ( )θ ωΨ  and ( )θ ωΦ are the phases of Ψ and Φ , respectively. The negatives of 

the group delays are denoted as  Ψ∧ and  Φ∧ . 

Setting  ( ) ( ) 1 2ω ωΨ ΨΓ = ∧ + gives 

1
( ) ( 2 ) ( ) ( )

2 2 2

ω ωω ω π πΨ Φ Φ ΦΓ = − ∧ + + ∧ + + ∧ …………………...………(2.3.5) 

Next we develop an expression for the group delay of ( )ωΨ  in terms of the group 

delay of ( )H ω ,denoted as ( )λ ω . By repeated substitutions of the equations in 

(2.1.15) and (2.1.17), we get the following infinite products 

1

( ) ( )
2m

m

H
ωω

∞

=

Φ = ∏ ………………………………………………...……………..(2.3.6) 

( 2)

2

( ) ( ) ( )
2 2

i
m

m

e H Hω ω ωω π
∞

−

=

Ψ = + ∏ ……………………………..……………….(2.3.7) 

 

Where H(ω) is 2π -periodic. 

 

2.4 Design Issues For Matched Wavelets 

  

 
Wavelets and other methods of time-frequency analysis in their many practical 

applications require that the analyzing filter sequence have certain desired properties. 

Typical of these properties are good time-frequency localization, energy compaction, 

orthogonality, and regularity. In addition it may be desired to have an analyzing filter 

that resembles a given waveform or that statistically matches a process. These 

wavelets will be referred to as matched wavelets. The "matching" of'wavelet filters 
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can be classified in two groups namely "waveform matching", and "statistical 

matching". When a given waveform is mapped into a function that possesses perfect 

reconstruction (PR) and regularity properties, this is called waveform matched 

wavelet. One technique for obtaining waveform matched wavelets is given by FK 

mapping. On the other hand, in the case of statistical matching the wavelet filter is 

designed to optimize its energy compaction or time-frequency resolution performance 

with respect to a given process, that is with respect to a given autocorrelation 

function. 

 

2.5 Design trade offs in statistically matched wavelets: 
 
 
Matched wavelet filters were designed for an autoregressive, AR(l), model, and the 

following tradeoffs were observed: 

 

1.The number of vanishing moments beyond k > 4 ,brings a penalty on the energy 

compaction, and therefore on the coding gain of a constraint matrix. This may not be 

however a significant limitation since for most processes encountered in practice, like 

images, vanishing moments only up to 2 are required. 

 

2. When filters were designed with time-frequency localization as a performance 

criterion, it was observed that, increasing the number of vanishing moments leads to 

more compact functions in time while spreading the frequency support,. In total the 

resolution cell 2 2
n ωσ σ  is slightly decreased for larger k.  

 

3. The relationship of interband correlation and GSBC in filter banks is not as clear as 

in the block transforms. However at the highest value of GSBC, the two band 

correlation is not necessarily zero, though the correlation coefficient remains quite 

small. 
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2.6 WAVEFORM MATCHED WAVELETS 

 

Wavelet filter banks can also be designed by matching to a specific waveform. Here 

the goal is not to maximize the energy compaction with respect to a process model as 

was the case in statistically matched wavelet filters, but starting from a given 

reference waveform, to map it to a closest function that possesses wavelet properties. 

A mapping operator, which for a given reference function f, finds a wavelet filter Ψ  

that is closest to it in the mean square norm, is given by Frazier-Kumar (FK) 

technique. This design technique for 1-D wavelet filters has been detailed in “The 

Discrete Orthonormal Wavelet Transform”, and its extension to 2-D filters has been 

provided by Alkin in “A study of 2-D Wavelet Transform, Technical Report”. In the 

FK technique the wavelet function ( )tΨ  is related to the reference function as 

follows: 

2 2

( )
( )

( ) ( )

F z
z

F z F z
Ψ =

+ −
……………………………...………… (2.6.1) 

 

 

where F(z) denotes the z-transform of the reference function f(n). The resulting filters 

are of infinite impulse response type, hence must be windowed. The windowing and 

truncation invariably results in some loss of orthogonality or perfect reconstruction 

property. 

 

 In summary, matched wavelet design using the FK method consists of the following 

steps: 

 

1. Choice of a reference function 

2.Spectral factorization of above equation and windowing of the response. 

 

At this stage, the contribution of our work to the FK methodology is first to 

investigate the selection of a proper reference function. It is suggested that the 

reference function can be chosen as a combination of the eigen-spectra of a process. 

In other words the reference function in above equation  can be chosen as 
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2

1

( ) ( )
N

k k
k

F uω α ω
=

= ∑ ........................................................................ (2.6.2) 

 

Where the kth eigen spectrum is given by 

 

2
1

0

( )
j

N
N

k kj
j

u u e
π

ω
−

=

= ∑ ………………………………………….. (2.6.3) 

 

Where uk denoting an eigen vector of the N×N covariance matrix. Since we will deal 

with a two-band scheme, then the reference function is constituted with the 

eigenspectra corresponding to the N/2 largest eigenvalues. Finally in (2.1.14) ( ) 'k sα   

denote the combiner coefficients. These coefficients can be determined in a variety of 

ways, such as being proportional to the eigenvalues iλ  , or to select them to maximize 

the energy compaction. Note that after the FK mapping operation, there is no 

guarantee that the energy compaction performance of ( )nΨ  will be optimum. This 

second method can be formulated as follows, (for N=4): 
 
  

2
max ( ) ( )k k xxu S d

π

π

α ω ω ω
−
∑∫ ……………………………………….(2.6.4) 

 
For  
 

1 2 1α α+ =  

1 1 2 2(2 )α λ λ α< …………………………………...…………………… (2.6.5) 
 

where the inequality constraint is derived in the proof in[4] and ( )xxS ω  is the power 

spectral density. For N larger the optimization problem is similar, except that there are 

additional inequality constraints on kα ’s. 
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2.7 A NEW APPROACH FOR CONSTRUCT  

 

Compared with Fourier transform, wavelet transform has better ability to analyze the 

singularities and irregular signal because of a multi-resolution analysis, and we can 

obtain the, details of signal at different scales by applying a wavelet transform. A 

chronological development of efforts in wavelet analysis shows that WT is a good 

tool for analyzing the non-stationary signal. One of the exciting advantages of 

wavelets over Fourier analysis is the flexibility they afford in the shape and form of 

the analyzer, that which “cuts up” and “studies” the signal of interest. The given 

signal can be decomposed by a set frequency channel of equal bandwidth on a 

logarithmic scale, an analysis of using constant Q-filters. In other words, the signal 

projects into the basis function of wavelet, each of which is a dilation and translation 

of a function called mother wavelet ( )tΨ at diffident scale. Unlike FT, WT do not 

have a unique basis. Using different basis function of wavelet to analyze signal will 

get different results. That means that the wavelet designed matches the signal to be 

analyzed so that hest representation of the signal can be resulted. Usually, one uses a 

wavelet to do signal decomposition; it is something like a blind man’s walk. If we 

know the particular features of the signal and then design a wavelet to match the 

signal, it would be better. This is a reason that match wavelets are finding applications 

in diverse fields and is a topic of current research. Since Mallat “A Theory for Multi 

resolution Signal Decomposition,” has introduced wavelet transform in 1989 and led 

to the discrete wavelet transform, many researchers proposed so many methods for 

construction basis function wavelet. Daubechies proposed method to find orthonormal 

and biorthonomal wavelet bases with compact support, where she gave regularity and 

decay conditions. Since Mallat has proposed tower algorithm and Daubechies has 

given regularity conditions, one found the relationship between the wavelet transform 

and filter banks. Many approaches to build bases function of wavelet based on filter 

banks, were proposed. But these approaches of designing wavelet were independent 

of the signals to he analyzed. In order to obtain the best signal representation, many 

researchers are designing wavelet to match signal. Tewfik first addressed an important 

problem in wavelet analysis, which is to find the best wavelet multiresoulation 

analysis that approximates a given signal in some norm. J.O.Chapa proposed 
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suboptimal algorithm for designing match wavelet. Z.Chen described the best wavelet 

matched tree to represent a signal. Anubha gave a method for finding the maximal 

projection of the given signal on to the scaling subspace, but he does not give how to 

choice wavelet filter banks. 

 

2.8 MATCH  WAVELET TO SIGNAL DETECTION 
 
DESIGNING ALGRITHM 

 

The criterion of wavelet matching signal is to minimize an error between original and 

reconstruction signal only with coefficients in the scale space. In order to make the 

0( )h n  and 1( )h n be low-pass and high-pass filters respectively, the objective function 

Equ.(8) is modified as following  

 

2 2 2
1 2 0 0 0( ) ( (1 ( ) ) ( ) )p

s

j jE we t dt w H e d H e dω ω π ω
ωω ω= + − + …………...(2.8.1) 

 

where pω  and sω  are the stop frequency of the pass-band and stop-band respectively, 

and w1 w2 are weights. The design procedures for constructing a match wavelet can be 

presented as follows: 

Step I: Give an original discrete signal x(n) . 

Step 2: Random guess an initial coefficient α . 

Step 3: Compute analysis and synthesis filters0( )h n  , 1( )h n , 0( )f n and 1( )f n  

Step 4:Compute the coefficient of the wavelet basis 

function by pyramidal algorithm, and reconstruct 

signal ˆ( )x n  only with coefficients in the scale space. 

Step 5: Compute the objective function in Equ.(22). 

Step 6: Adjust the coefficient α  by optimal algorithm, such as Nelder-Mead simplex 

method. 

Step 7: If the objective function is not reached at minimum, go to step 3 again; other 

than end the calculation. 
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2.9 A NEW APPROACH FOR ESTIMATION OF STATISTICALLY 
MATCHED WAVELET 
 

It is well known that a number of natural and man-made phenomenon exhibit self-

similar characteristics. Also known as fractal processes, these waveforms arise in 

natural landscapes, ocean waves, and distribution of earthquakes and have found 

profound applications in various engineering fields like image analysis, 

characterization of texture in bone radiographs, network traffic analysis etc. 

These processes are in general non-stationary, and they exhibit self-similarity in the 

statistical sense. A class of these signals is called 1 f β processes, which have 

measured power spectral density (psd) that decays by a factor of 1 f β . Wornell [7] 

emphasized the role of wavelet basis expansion as a Karhunen–Loève-type expansion 

for 1 f β  processes. Since processes simultaneously exhibit statistical scale 

invariance and time invariance, wavelet-like bases having both scaling and shifting 

can best represent these signals. 

 

The wavelet transform has emerged as an alternative to traditional Fourier-based 

analysis techniques for the analysis of non-stationary signals. However, unlike Fourier 

methods, wavelet transforms do not have a unique basis, which is one of the reasons 

why wavelets are finding applications in diverse fields and is a topic of current 

research. Since the basis here is not unique, it is natural to seek a wavelet that is best 

in a particular context. Particularly, in the context of signal/image compression, an 

issue of great research interest is to find a wavelet that can provide the best 

representation for a given signal. 

 

 

 

M-Band Wavelets: 

 
Similar to the two-band wavelet system, one can define a multi-resolution analysis 

(MRA) with a scaling factor of M to construct M-band wavelets. Motivation for a 

larger value of M comes from the desire to have a more flexible tiling of the time 

scale than that resulting from the M=2 wavelet, and it also comes from multirate 
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filterbank theory. For the two-band wavelet system, the scaling function and wavelet 

function are defined by the two-scale difference equation as follows: 

0( ) 2 (2 ),
n

t f t n n Zφ φ= − ∀ ∈∑ ………………………………………………....(2.9.1) 

 
Fig 16 M-band wavelet 

 

1( ) ( ) 2 (2 ),t f n t n n Zψ φ= − ∀ ∈ ………………………………..….(2.9.2) 

 

For a two-band perfect reconstruction biorthogonal filterbank, the scaling filter f0 and 

its dual h0 , wavelet filter f1, and its dual h1 are required to satisfy the following 

conditions : 

1 0 1( ) ( 1) ( )nh n f N n= − − …………………………………...…………..(2.9.3) 

1 0 1( ) ( 1) ( ),nf n h N n= − −   …………………………………………..……………(2.9.4) 

where N1 is any odd delay. 

The scaling function  ( )tφ and  ( )tψ wavelet function are related to 0f  and  1f via 

(2.9.1) and (2.9.2). Dual scaling function  ( )tφ′  and dual wavelet function ( )tψ ′  are 

related to 0h  and 1h via similar equations. The wavelet function is said to have 

vanishing moments of degree N if 
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( ) 0,kt t dtψ =∫ for k=0,1,2,…,N……………………………………………..(2.9.5) 

This equation can be transferred to discrete moments of 1f , where the kth moment of 

1f  is defined as  

1 1( ) ( )k

n

m k n f n= ∑ ………………………………………………..……...(2.9.6) 

Requiring the moments of ( )tψ to be zero is equivalent to putting the discrete 

moments of 1f to zero. For a more general multi-resolution formulation, consider an 

M-band uniformly decimated filter bank shown in Figure above to which the sampled 

version 0( ( ))a n  of the continuous time input signal ( )a t  is applied as input. 

0( ) ( ) ( ),
n

t f n M Mt n n Zφ φ= − ∀ ∈∑ ………………………………..……(2.9.7) 

( ) ( ) ( ),
n

i i
n

t f n M Mt n n Zψ φ= − ∀ ∈∑     for  i=1,2,3,…,M-1………..…..(2.9.8) 

Here, 0f  is the synthesis lowpass filter,1f  to 2Mf −  are synthesis bandpass filters, and 

1Mf −  is the synthesis highpass filter. Unlike the M=2 case, there are M-1 wavelets 

associated with the scaling function governed by above mother wavelet equation. 

However, just as for the M=2 case, the multiplicity M scaling function and scaling 

coefficients are unique and are the solution of basic recursive equation defined in 

scaling function , and we can have multi-resolution approximation associated with the 

M-band scaling and wavelet functions. There are M-1 signal spaces spanned by the 

M-1 wavelets at each scale j. 
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2.10 BRIEF OVERVIEW OF THE THEORY OF SELF SIMILAR 

PROCESSES 

 

A continuous-time random process is called self similar if its statistical properties are 

scale invariant. Symbolically, it is represented as 

( ) ( )HX ct c X t≈ ………………………………………………………..(2.10.1) 

where the random process x(t) is self similar with self similarity index H (also called 

the Hurst exponent) for any scale parameter c > 0 . The equality in (2.1.14) holds in 

the statistical sense only. If, in addition to this, the process has stationary increments, 

it isdenoted H-sssi.  

 

 

2.11 FRACTIONAL BROWNIAN MOTION:  

 

An (H-sssi) Gaussian process x(t) with 0 1H< <  is called fractional Brownian 

motion (FBm) and is denoted as ( )HB t  . For the value H=1/2 , the resulting process is 

the well-known Wiener process. Although an FBm process is a nonstationary process, 

Flandrin has shown, using time-frequency representation, that the averaged PSD of 

this process follows a power law and is directly proportional to 1 f
β

 with 

2 1Hβ = +  , where f is the frequency. Therefore, in general, these processes are also 

called 1 f β  processes. FBm has a generalized derivative and is termed fractional 

Gaussian noise (FGn). Corresponding to a discrete data set, discrete FBm is defined 

as 

[ ] [ ]H H sB k B kT= ………………………………………………………..(2.11.1) 

Where Ts is the sampling period. Since the process is self-similar for any value of c > 

0, therefore, can be taken to be equal to one without loss of generality. The mean 

value, variance, and autocorrelation function of the discrete Gaussian process 1 f β  

are given by 

{ [ ]} 0HE B k = ………………………………………………………..(2.11.2) 
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2 2var{ [ ]} H
H HB k k σ= 2 2 22

1 2 1 1 2 2

1
( , ) ( )

2
H H H

BH Hk k k k k kσΓ = − − +  

      ………………………………….(2.11.3) 

 

Where 2 var{ (1)} 1 (2 1) sin( )H HB H Hσ = = Γ + , i.e., it is a zero mean, self similar, non 

stationary random process. Next, discrete FGn can be defined as  

 

[ ] [ ] [ 1]H H HX k B k B k= − − …………………………………………(2.11.4) 

 

2.12 Mth ORDER FRACTIONAL BROWNIAN MOTION  (m-FBm):  

 

FBm with 0 < H < 1 is called the 1-FBm, and the corresponding firstorder incremental 

process is called the 1-FGn. Similarly, the m-FBm process is denoted , ( )H mB t with  m-

1 < H < m , and the corresponding mth-order incremental process is defined  as m-

FGn process. It is given as 

 

( )
, , ,

0

( ) ( ) ( 1) ( )
m

m m j
H m l H m H m

j

m
X t B t B t jl

j
−

=

 
= ∆ = − + 

 
∑ ………………….(2.12.1) 

 

Where l is a real number, and is called a lag, and m is an integer 
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Fig:17 Analysis end of M-band wavelet system. 

 

2.13 ESTIMATION OF H PARAMETER 

 

The maximum likelihood estimation method presented in  “Fractional Brownian 

motion: A maximum likelihood estimator and its application to image texture,” can be 

used to estimate parameter H. In “Fractional Brownian motion: A maximum 

likelihood estimator and its application to image texture,” the method is presented for 

a process with 0 < H < 1 that can be easily extended to m-FBm processes. If the input 

process is m-FBm, then its mth-order incremental process will be an m-FGn 

stationary process. Since it is stationary, maximum likelihood (ML) estimation is 

performed using a discrete m-FGn vector X and is denoted Ĥ : 

1

1

ˆ max ( log log )
T

X
X

m H m

X R X
H N R

N

−

− < <
= − − ……………………...(2.13.1) 

Where XR  is the autocorrelation matrix of a discrete m-FGn process. 
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2.14  ESTIMATION OF STATISTICALLY MATCHED HIGHPASS 
WAVELET FILTER OF ANALYSIS FILTERBANK 
 
 

Consider an analysis filterbank structure in above figure of the M-band wavelet 

system to which the sampled version of given continuous time signal a(t) is applied as 

input, i.e., 0( ) ( )na a n= sampled version of the input signal or approximation 

coefficients of the signal at scale j=0 . Here,0h  is the lowpass filter, 1 2 2, ..., Mh h h − are 

bandpass filters, and 1Mh −  is the highpass filter such that 1( )a n−  represents the 

approximation coefficients at scale j = -1 , and 1,1 1,2 1, 1( ), ( ),..., ( )Md n d n d n− − − −  

represents the finer information in wavelet subspaces at scale j = -1 . Let us assume 

that the length of filter 1Mh −  is N=5 ; then, 1, 1( )Md n− −  can be written in terms of filter 

weights as 

 

1, 1 1 0 1 0

1 0 1 0 1 0

( ) (0) ( ) (1) ( 1)

(2) ( 2) (3) ( 3) (4) ( 4.)
M M M

M M M

d n h a Mn h a Mn

h a Mn h a Mn h a Mn
− − − −

− − −

= + +
+ + + + + + ………..(2.14.1) 

 

The signal 1, 1( )Md n− −   provides the detail or highpass information. Therefore, we 

would like to express this signal as smoothening error signal. Now if the center 

weight 1(2)Mh − of the highpass filter 1Mh −  is set to unity, then the above equation is 

rewritten as  

 

1, 1 0 1 0 1

0 1 0 1 0

( ) ( 2) { [ (0) ( ) (1)

( 1) (3) ( 3) (4) ( 4)]}
M M M

M M

d n a Mn h a Mn h

a Mn h a Mn h a Mn
− − − −

− −

= + − − +
× + + + + + ……..…(2.14.2) 

 

0 0ˆ( 2 ) ( 2 ) ( )a M n a M n e n= + − + = …………….……(2.14.3) 

Where  

0 1 0 1 0

1 0 1 0

ˆ ( 2) [ (0) ( ) (1) ( 1)

(3) ( 3) (4) ( 4)]
M M

M M

a Mn h a Mn h a Mn

h a Mn h a Mn
− −

− −

+ = − + +
+ + + + ………….(2.14.4) 
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The interpretation of the above equation is as below : in fact , is the central idea of the 

present work. This equation has been put in the above form to derive an interesting 

interpolation for the same. This play a key role in the estimation of the matched 

wavelet . With the centre weight fixed to unity, from above equation. 0ˆ ( 2)a Mn + is 

the smoother estimate of 0( 2)a Mn + from the past as well as from future samples. 

Thus 1, 1( )Md n− − is the error in estimating 0( 2)a Mn + from its neighbourhood and, 

hence, represents additional finer information. This idea to estimate an analysis 

wavelet filter is similar to a sharpening filter used in image enhancement. Since 

1, 1( )Md n− −  represents error signal between the actual value of 0( 2)a Mn + and its 

estimated value 0ˆ ( 2)a Mn + , we should minimize the mean square value of this error 

signal. Here , the resulting filter 1Mh − is observed to be a high pass filter , which is in 

conformity  with the result of the sharpening filter in image enhancement . from 

above equation this can also be represented as follows: 

 

1, 1 0 1 0 0( ) ( ) ( ) T
Md n e n a Mn J W A− − = = + − ……………………………(2.14.5) 

 

Where 1J =index of centre weight of filter 1Mh −  and N= length of dual wavelet filter 

1Mh −  

 

0 0 0 0 1 0 1

0

[ ( ) ( 1).... ( 1) ( 1)....

.... ( 1)]T
A a Mn a Mn a Mn J a Mn J

a Mn N

=− + + − + +

+ − …………..……(2.14.6) 

 

0 1 1 1 1 1 1 1[ (0) (1).... ( 1) ( 1).... ( 1)]TM M M M MW h h h J h J h N− − − − −= − + − ……………...(2.14.7) 

 

2 2
0 1 0 1 0 0 0 0 0 0[ ( )] [ ( )] 2 [ ( ) ] [ ]T T TE e n E a Mn J E a Mn J W A EW A A W= + − + + ……………(2.14.8) 
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To minimize 2[ ( )]E e n , the derivation of 2[ ( )]E e n  with respect to W0 is equal to zero. 

 

2

0 1 0 0 0
0

[ ( )]
2 [ ( ) ] 2 0TE e n

E a Mn J A R W
W

∂ = − + + =
∂ ……………(2.14.9) 

 

0 1 0 0 0[ ( ) ]TE a M n J A R W⇒ + = …………………………………….(2.14.10) 

 

Therefore, if statistics of the input signal are known ,then using above filter equation 

1Mh −  can be computed. The wavelet structure is ideally suited for self-similar or, say, 

1 f β  processes, and the wavelet basis acts like a K-L type basis for 1 f β  processes. 

Therefore, consider input signal a(t) as a self similar process with self similarity index 

H. 

 
2.14.1 Algorithm 1 
 
The algorithm to estimate statistically matched highpass analysis wavelet filter is 

explained below: 

 

Step 1: First, find the self-similarity index H for a given input signal by the ML 

estimation method presented in Fractional Brownian motion. The procedure is 

i) Form the mth-order incremental process (i.e., discrete m-FGN) from the given input 

signal starting from . Compute the autocorrelation matrix of the resulting m-FGn 

process with (2.14.11): 

2
2

( , )

2
( ) ( 1) ( 1)

2

m
Hm m jH

H m
j m

m
r k k j

m j

σ
= −

 
= − − + + 

∑ …………..(2.14.11) 

 

ii) Next, plot the graph of bracketed term for various values of H. If the graph is 

convex upward, the value of H corresponding to maxima in the graph is the correct 

value of H. 

iii) If the graph is linear, increment m, and repeat steps i) and ii). 

Step 2) Compute the autocorrelation matrix R of 0( )a Mn  with (2.14.11) for a fixed 

length N of the analysis wavelet filter.  
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       

∑ ………...(2.14.12) 

 

where 2m
H Hσ σ=  

 

Step 3) Estimate the analysis wavelet filter using (2.14.10) for the sufficiently high 

value of time index n. The resulting filter is the highpass analysis wavelet filter. 

 

2.15 DESIGN OF FIR PERFECT RECONSTRUCTION BIORTHOGONAL 

FILTERBANK 

 

The four filters 0 1 0 1, , ,h h f f of the two-band perfect reconstruction biorthogonal 

filterbank structure are related by (2.9.3)and (2.9.4).Here , all the filters are FIR 

filters. First,the highpass analysis wavelet filter 1h is estimated as mentioned in above 

section. 

 

Now compute the scaling filter 0f . Since the integer translates of ( )tφ  and ( )tψ form 

the basis of V0 and W0 respectively, in L2 , 0(2 )f m n− and 1(2 )f m n−  form the basis 

of 2l  for integer values of m. similarly, 0( 2 )h n m−  and 1( 2 )h n m− form the dual basis 

of 2l for integer value of m. Therefore  

 

0 0 2 1 2 1 2( 2 ) ( 2 ) ( ), ,
n

h n m f n m m m m m Zδ− − = − ∀ ∈∑ ……………(2.15.1) 

 

And 0 1( ) ( ) 0
n

h n h n =∑ ……………………………………………….……(2.15.2) 
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2.15.1 Algorithm 2 

 

The complete algorithm to estimate a two-band compactly supported statistically 

matched wavelet with desired support and a desired number of vanishing moments 

from a given signal is as follows: 

 

Step 1–3: Estimate the statistically matched analysis wavelet filter 1h of order 1N from 

a given input signal using steps 1 to 3 of above algorithm. 

 

Step 4: If it is desired to design wavelet filter 1f  of order 2 1N N>  , then append extra 

zeros before and after 1h such that its order is 2N  . 

Step 5: Use (2.9.4) to compute the synthesis scaling filter 0f .  

 

Step 6: Use (2.15.1)and (2.15.2) and (2.9.5) and (2.9.14) to compute the analysis 

scaling filter 0h . 

 

Step 7: Use (2.9.4) to compute the synthesis wavelet filter 1f . 

 

Step 8: Design the scaling and wavelet functions from the scaling and 

wavelet filter using 2–scale recursive relations (2.9.1) and (2.9.2). 
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2.16  DESIGN OF STATISTICALLY MATCHED SEMIORTHOGONA L 2-
BAND WAVELET SYSTEM 
 

1 0 1( ) ( 1) ( )nh n h N n= − − ………………………………………….(2.16.1) 

 

Where N1 is odd delay. 

 

( ) ( ) ( ) ( )E z U z z V z= Λ ………………………………...……………(2.16.2) 

 

Where U(z) and V(z) are unimodular matrices, and ( )zΛ is a diagonal matrix. 

 

Algorithm 3 

 

Thus, the complete algorithm to estimate a semiorthogonal two-band statistically 

matched wavelet from a given signal is as follows. 

 

Step 1–3: Estimate the statistically matched analysis wavelet filter 1h from a given 

input signal using Steps 1 to 3 of above section. 

Step 4: Use (2.16.1) to compute analysis scaling filter 0h  . 

Step 5: Form the polyphase decomposition matrix E(z) from analysis filters 0h and 1h . 

Carry out the Smith-McMillan form decomposition of as in (2.16.2). Find R(z) and 

using R(z) and det( ( ))z∧  , compute the synthesis filters and, hence, design the 

structure of the PR filterbank. 

Step 6: Design the scaling and wavelet functions from the synthesis scaling and 

wavelet filter. 

 

The resulting wavelet corresponding to the highpass synthesis filter is usually 

infinitely supported. However, a subclass of these wavelets have finite support when 

det( ( ))z∧  is a monomial and results in a compactly supported wavelet. 
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2.17 Expected results of biorthogonal wavelet for a music clip is 

Input as a music clip 

 
Fig 18 

 

 

 

Scaling function  

 
Fig 19 
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Wavelet function 

 
Fig 20 

 

2.18 For semiorthogonal 

 

Scaling function is  

 
Fig 21 
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Wavelet function 

 
Fig 22 
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CHAPTER-3  
LITERATURE SURVEY ON FRACTIONAL DELAY 

FILTER 
 

3.1 INTRODUCTION  TO FRACTIONAL DELAY FILTERS 
 
A fractional delay filter is a device for band-limited interpolation between samples. It 

finds applications in numerous fields of signal processing, including communications, 

array processing, speech processing, and music technology and time-delay 

estimations, not only the sampling frequency but the actual sampling instants are of 

crucial importance. a comprehensive study of FIR and all-pass filter design techniques 

for band-limited approximation of a fractional digital delay. The sampling rate must 

satisfy the Nyquist criteria in order for a sample set to represent adequately the 

original continuous signal. The appropriate sampling rate is alone is not sufficient for 

many applications also the sampling instants must be properly selected. 

Fractional delay filter design is used to approximate the delay filter ( )exp j Dω−  with a 

delay D for the full band ω π< , using FIR filters or IIR allpass filters. Fractional 

delay filter design is necessary only when sampling is critical, i.e. Nyquist sampling. 

When the sampling rate is higher than the Nyquist rate, the ideal delay filter ( )exp j Dω−   

for the base band 
r

πω <  only needs to be approximated, where r is the ratio of 

sampling rate over the Nyquist rate. 

 

Fractional delay means, assuming uniform sampling, a delay that is a non integer 

multiple of the sample interval. Fractional delay filters are those filters which exhibit 

near unity magnitude response and a flat group-delay which is not necessarily an 

integer multiple of the sampling interval. FIR FD filters are discrete-time interpolators 

which approximate the signal in between sample points as a linear combination of 

sample values on either side of the desired signal value. 

 

Designing FD filters involves determining the coefficients of an FIR filter such that 

its response best approximates the complex valued frequency response of the desired 

FD. One fundamental advantage of digital signal processing techniques over 
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traditional analog methods is the easy implementation of a constant delay; the signal 

samples are simply stored in a buffer memory for the given time. 

 

 

3.2 COMPARISON OF FIR AND IIR FILTER DESIGN 

We can compare the above fractional delay filters in terms of their frequency response 

error (FRE) magnitude. The useful range of delay D is different for FIR and allpass 

filters. In the case of FIR filters, the best approximation is obtained when 

interpolating between the middle taps in the case of odd-length ones. The squared 

approximation error function are symmetric about the midpoint of the FIR filter. In 

the case of allpass filters, the error curves are asymmetric. The stability of allpass 

filters must be taken into account. Fractional delay filters yields the best 

approximation when the total delay D is close to 
2

N
 for FIR filters and close to N for 

allpass filters. 

 

CONCLUSION:  The design of high quality FD filters is difficult if a very small 

delay is required. one possibility is to use a higher sampling rate if accurate and small 

fractional delays are needed. 

 

3.3 LAGRANGES INTERPOLATOR 

 

The fractional delay filters should have the following characteristics: 

1. Lowpass characteristics with an almost flat magnitude response in the passband 

2. Magnitude response less than unity at all frequencies, so as not to cause instability  

3. Accurate model of the desired fractional delay 

4. Easy and intuitive incorporation into the vocal tract model. 

 

According to valimaki Lagrange’s interpolators are one type of FIR filter that are both 

easy  to implement and have the desire properties listed above. Among IIR filters, 

thiran allpass filters are also considered suitable since they meet the listed 

requirements. In this work, only Lagrange's interpolators have been used because 
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being FIR filters it is intuitively easier to understand how they work in a given 

application. Their design and characteristics are now declared. 

 

While designing a digital filter, the ideal magnitude and frequency responses are 

always kept in mind. The response of an ideal fractional delay filter was described 

later in this thesis. If an FIR FD filter is being designed, the general form of an Nth 

order filter whose length is L=N+1; 

0

( ) ( )
N

n

n

H z h n z −

=

= ∑ ……………………………………………..(3.3.1) 

An error function E(ejω) is defined as the difference between the actual and the ideal 

filters at a given frequency 

 

E(ω)=H(ω)-H id(ω) 

 

Frequency-domain filter design involves minimizing the above error metric according 

to criteria that lead to the filter design goals being met. It may be useful in certain 

applications to use a filter with zero error at ω=0. In other situations the squared error 

integrated over a range of frequencies, may be minimized. Different constraints on the 

error E(ω) lead to different types of filters. 

 

Lagrange's interpolators belong to a class of filters called maximally flat filters they 

have a constant magnitude response around a particular frequency of interest. The 

response of Lagrange's interpolators is made identical to that of the ideal interpolators 

at zero frequency. The derivatives of the error function E(ω) are set to zero at the 

frequency of interest: 

 

0

( )
0

n

n

d E

d ω ω

ω
ω =

=     for all n=0,1,2,… N………………………………..........(3.3.2) 

 

The N+1 linear equations that follows above equation ,and can be solved to obtain 

N+1 coefficients of the FIR filter. The resultant set of equations is of the form shown 
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below, where D is as before, a positive real number representing the desired total 

delay: 

0

( )
N

n n

k

k h k D
=

=∑   or n=0,1,2,…,N……………….…………………………(3.3.3) 

On solving this equation  , a closed form representation of the FIR filter coefficients 

can be obtained. 

0

( ) ,
M

L
k
k n

D k
h n

n k=
≠

−=
−∏  for    n= 0,1,2,…,M…………………………………(3.3.4) 

The ease of computing filter taps is an important feature of Lagrange's interpolators. 

By virtue of their design criterion, they exhibit a flat magnitude response at low 

frequencies with no ripples. The magnitude response and group delay characteristics 

of odd and even-length filtes are shown in result. 

 

For fractional delay of D=0.5 , the point of interpolation is located mid-way between 

the two center filter taps. The filter impulse response for a third-order filter is shown 

in  result. the filter is perfectly symmetric and the phase is linear in the entire 

frequency range of the interpolators. This is borne out in the group delay plot. For the 

values D=0.5 in (0,1) , the odd order filter are not symmetric. For an even length filter 

, the point of interpolation lies between the two central samples. In such a scenario, 

the delay characteristics are superior to odd-length interpolators.only odd order 

Lagrange's interpolators are used in this work. It  is also important to analyze the 

magnitude response of the interpolators. In speech synthesis , the upper value of 

frequencies that are of interest is about 5 KHz. While the waveguide model being 

used in this work produces speed output at a sampling rate of 44.1KHz , the spatial 

resolution of the vocal tract is twice as much. This is because one segment length is 

0.397cm m which is equivalent to a sampling rate of 88.2KHz. The interpolation 

method to be used for length variations can be visualized as “spatial interpolation” 

where the samples are 1/88200 s apart. The 0 – 5 kHz band thus corresponds to a 

maximum normalization frequency of about 0.06. even a first order Lagrange's 

interpolation has a very flat passband up to a normalized frequency of 0.1 , so the use 

of a sample first order filter is adequate for  the highly over-sampled system being 
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used. Linear interpolation is simply a two filter taps, [α, 1-α] where α is the desired 

fractional delay. 

 

 

 

3.4 FRACTIONALLY DELAY FILTER DESIGN BASED ON TRUNC ATED 

LAGRANGE’S INTERPOLATION 

 

A new design method for fractional delay filters based on truncating the impulse 

response of the Lagrange interpolation filter is presented. The truncated Lagrange 

fractional delay filter introduces a wider approximation bandwidth than the Lagrange 

filter. However, because of truncation, a ripple caused by the Gibbs phenomenon 

appears in the filter’s frequency response. Proper choices of filter order and prototype 

filter order allow adjusting the overshoot to a desired level and simultaneously 

reducing the overall frequency-response error. The design of the proposed filter is 

computationally efficient, because it is based on polynomial formulas, which have 

common terms for all coefficients. 

 

Lagrange’s interpolation is a common method in signal processing. It is used for the 

interpolation of band-limited signals, for instance, in sampling rate conversion and in 

fractional delay (FD) filters Lagrange interpolation is used to determine the 

coefficients of a finite impulse response (FIR) filter for a given fractional delayed 

Such a filter approximately produces a time delay of the Form (Dint +d)T , where Dint  

is an integer , d is a fractional Number (0 < T < 1), and T is the sampling interval. 

Harmonics proposed the maximally-flat approximation of the ideal fractional delay 

and noted that when the point at which the approximation error and its  N derivates 

are set to zero is chosen to be the zero frequency, the solution is equivalent to the 

Lagrange interpolation. Kootsookos and Williamson discovered that the coefficients 

of even-order Lagrange FD filters can be obtained from the truncated sinc function 

using the binomial window. 

 

Välimäki showed that the same is true for odd-order Lagrange FD filters. Lagrange 

interpolation converges to sinc interpolation as the order N approaches infinity. The 
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implementation cost of variable Lagrange interpolation can be reduced by using a 

structure based on the Taylor series. the popularity of Lagrange interpolation is due to 

its easy coefficient update rule, which uses closed-form formulae that are N th-order 

polynomials, where N is the filter order. Additional advantages of Lagrange FD filters 

include the accurate approximation of fractional delay at low frequencies and the fact 

that its magnitude response does not exceed unity. The latter property makes 

Lagrange FD filters a useful choice for feedback structures, in which it is necessary to 

restrict the loop gain to ensure stability. The main drawback of Lagrange FD filters is 

that the approximation bandwidth is narrow, and it is widened slowly as the filter 

order is increased .A number of coefficients at the beginning and the end of the 

coefficient vector of a prototype Lagrange FD filter are deleted to reduce the filter 

length. This way, the bandwidth of approximation can be extended with respect to 

that of a Lagrange FD filter of the same order. The truncation introduces a ripple in 

the frequency response, known as the Gibbs phenomenon, which typically appears in 

FIR filters, whose coefficients are samples of a truncated ideal impulse response. As 

the order of the prototype filter is increased, the response of the truncated Lagrange 

FD filter approaches that of a truncated sinc FD filter. The new technique can be 

interpreted as a hybrid method that combines properties of the Lagrange and the 

truncated sinc FD filters and allows mixing them in an appropriate proportion. 

 

3.5 NEW DESIGN METHODS AND ITS PROPERTIES: 

 

The new design method is based on discarding an equal number of coefficients from 

both sides of the impulse response of the Lagrange FD filter, which will be referred to 

as the prototype filter in the following. The closed-form formula to compute the 

coefficients of an M th-order Lagrange FD filter, hL(n), is given as 

 

0

( ) ,
M

L
k
k n

D k
h n

n k=
≠

−=
−∏  for n= 0,1,2,..., M. ………………………………….(3.5.1) 
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where D is a real number that corresponds to the delay from the beginning  (n=0)of 

the impulse response. An Nth-order truncated Lagrange FD filter is obtained by 

casting off  K1 coefficient from each end of the prototype filter as 

 

1

'
1 1

1

0 , 0 1

( ) ( ),

0 , 1
L L

w h en n K

h n h n w h en K n N K

w h en N K n M

≤ ≤ −
= ≤ ≤ +
 + + ≤ ≤

               …………(3.5.2)                   

where M > N is the prototype filter order, and K1 is a positive integer(K1 >
2

M
). 

Therefore, the truncated Lagrange interpolator can be represented as  

hTL(n)= hL(n+K1) , for n=0,1,2,…,N.                                                            

The explicit formula to compute the coefficients of the truncated Lagrange FD filter 

of order N is represented as follows 

 

1

0 1

( )
M

TL
k
k n K

D k
h n

n K k=
≠ +

−=
+ −∏   , for n=0,1,2,…,N………………….…………(3.5.3) 

 

In the designs the same number of prototype filter coefficients,K1 , are deleted 

symmetrically from the beginning and end of the coefficient vector, that is,   M = N + 

2K1. Although the truncation operation brings about the Gibbs phenomenon, the 

overshoot is small compared to the overshoot of the truncated sinc filter of the same 

order.  the frequency-response error (FRE) for the same filters. It is seen that 

truncating the Lagrange interpolator results in an increased FRE at low frequencies. 

This is the price to be paid for widening the bandwidth. the Lagrange and truncated 

sinc FD filters have the largest and the smallest MSE values. The MSE of the 

truncated Lagrange filter decreases as the prototype filter order is increased. As the 

prototype filter order becomes larger, the MSE curves converge.  
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3.5.1 Coefficient update: 

 

In FD filters, the coefficients depend on the delay value, which may change often. If 

updating the coefficients calls for heavy computations, the filtering algorithm 

becomes inefficient for high-speed applications. Therefore, it is necessary to find a 

way to reduce the computational complexity. An Nth-order truncated Lagrange FD 

filter with prototype filter order M has N + 1  coefficients, each of which is an M th-

order polynomial in D. Direct calculation of coefficients along with one step of FIR 

filtering requires (M+1)(N+1)multiplications and M(N+1)=N additions. A technique 

to reduce the computational complexity is to use a look-up table, provided that there 

is enough memory available. Method for decreasing the computations is to implement 

the truncated Lagrange FD filter using the Farrow structure . Then the number of 

computations can be reduced to (N+1)2 +M multiplications and N (N+1)+M 

additions. A modified Farrow structure has been proposed, which yields a further 

reduction in the number of multipliers. In Farrow structure, 
2( 1)

2

N

M

+
+

 multiplications 

and N2 +M+1 additions are required. 

 

3.5.2 HOW TO CHOOSE M AND N: 

 

The design of the truncated Lagrange filter consists of choosing the values of M and 

N such that its response best approximates the desired response. The overshoot of the 

magnitude response and the bandwidth are the main features according to which the 

design parameters can be determined.  the behaviour of the overshoot and normalized 

bandwidth of the truncated Lagrange FD filter. The normalized bandwidth expresses 

the frequency at which the magnitude response reaches 3 Db for a given filter order 

N, as the prototype filter order M becomes larger, the normalized bandwidth becomes 

wider. The undesirable effect of the enlargement of the prototype filter order is the 

increase in the overshoot of the filter, which may be chosen to be small enough to be 

insignificant for parameter values are the smallest M and N that yield the desired 

response with sufficient accuracy. 
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3.6 IDEAL SOLUTION: 

 

Assuming that the (real-valued) discrete-time signal represents a band-limited base 

band signal, the implementation of a constant delay can be considered as an 

approximation of the ideal discrete-time linear phase allpass filter with unity 

magnitude and constant group delay of the given value D. The corresponding impulse 

response is obtained via the inverse discrete-time Fourier transform 

1
( ) ( )

2
j j nh n H e e d

π
ω ω

π

ω
π −

= ∫  for all n ……………………………(3.6.1) 

( )j j D
idH e eω ω−= ……………………………………………...(3.6.2) 

 

sin[ ( )
( ) sin ( )

( )id

n D
h n c n D

n D

π π
π

−= = −
−  for all n   …………………………..(3.6.3)                                      

which has the shape of the familiar sinc function defined as 

s in ( )
s in ( )

x
c x

x

π
π

=  …………………………………………………..(3.6.4)

                    

.                                                    

When the desired delay D assumes an integer value, the impulse response Eq. 03 

reduces to a single impulse at n = D, but for non-integer values of D the impulse 

response is an infinitely long, shifted and sampled version of the sinc function . 

Unfortunately, the ideal impulse response is not only infinitely long but also non 

causal, which makes it impossible to implement it in real-time applications. 
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CHAPTER-4 

LAGRANGE’S MULTIPLIER 

Lagrange multipliers are a very useful technique in multivariable calculus.  
Lagrange's multipliers are useful in one of the most common problems in calculus is 

that of finding maxima or minima (in general, "extrema") of a function, but it is often 

difficult to find a closed form for the function being extremized. Such difficulties 

often arise when one wishes to maximize or minimize a function subject to fixed 

outside conditions or constraints. The method of Lagrange multipliers is a powerful 

tool for solving this class of problems without the need to explicitly solve the 

conditions and use them to eliminate extra variables. Lagrange multipliers are useful 

when some of the variables in the simplest description of a problem are made 

redundant by the constraints. 
 

A example : the "milkmaid problem " 

 

To give a specific, intuitive illustration of this kind of problem, we will consider a 

classic example which I believe is known as the "Milkmaid problem". It can be 

phrased as follows:  

 
Fig 23 
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It's milking time at the farm, and the milkmaid has been sent to the field to get the 

day's milk. She's in a hurry to get back for a date with a handsome young goatherd, so 

she wants to finish her job as quickly as possible. However, before she can gather the 

milk , she has to rinse out her bucket in the nearby river. Just when she reaches point 

M , our heroine spots the cow, way down at point C. Because she is in a hurry, she 

wants to take the shortest possible path from where she is to the river and then to the 

cow. If the near bank of the river is a curve satisfying the function g(x, y) = 0, what is 

the shortest path for the milkmaid to take? 

 

To put this into more mathematical terms, the milkmaid wants to find the point P for 

which the distance d(M ,P) from M to P plus the distance d(P,C) from P to C is a 

minimum (we assume that the field is flat, so a straight line is the shortest distance 

between two points). It's not quite this simple, however: if that's the whole problem, 

then we could just choose P = M (or P = C, or for that matter P anywhere on the line 

between M and C): we have to impose the constraint that P is a point on the 

riverbank. Formally, we must minimize the function f(P) = d(M ,P) + d(P, C), subject 

to the constraint that g(P) = 0. 

 

4.1 Graphical inspiration for the method 

 
Fig 24 



~ 71 ~ 
 

DELHI COLLEGE OF ENGINEERING, DELHI UNIVERSITY 

Our first way of thinking about this problem can be obtained directly from the picture 

itself. We'll use an obscure fact from geometry: for every point P on a given ellipse, 

the total distance from one focus of the ellipse to P and then to the other focus is 

exactly the same. In our problem, that means that the milkmaid could get to the cow 

by way of any point on a given ellipse in the same amount of time: the ellipses are 

curves of constant f(P). Therefore, to find the desired point P on the riverbank, we 

must simply find the smallest ellipse that intersects the curve of the river. Just to be 

clear, only the "constant f(P)" property is really important; the fact that these curves 

are ellipses is just a lucky convenience (ellipses are easy to draw). The same idea will 

work no matter what shape the curves happen to be. The image at right shows a 

sequence of ellipses of larger and larger size whose foci are M and C, ending with the 

one that is just tangent to the riverbank. This is a very significant word! It is obvious 

from the picture that the "perfect" ellipse and the river are truly tangential to each 

other at the ideal point P. More mathematically, this means that the normal vector to 

the ellipse is in the same direction as the normal vector to the riverbank. A few 

minutes' thought about pictures like this will convince you that this fact is not specific 

to this problem: it is a general property whenever you have constraints. And that is the 

insight that leads us to the method of Lagrange multipliers. 

 

4.2 The mathematics of Lagrange multipliers 

 

In multivariable calculus, the gradient of a function h is a normal vector to a curve (in 

two dimensions) or a surface (in higher dimensions) on which h is constant:    

n = grad(h(P)). The length of the normal vector doesn't matter: any constant multiple 

of grad(h(P)) is also a normal vector. In our case, we have two functions whose 

normal vectors are parallel, so 

 

grad(f(P)) = λ grad(g(P))……………………………………………………….(4.2.1) 

 

The unknown constant multiplier λ is necessary because the magnitudes of the two 

gradients may be different. (Remember, all we know is that their directions are the 

same.) In D dimensions, we now have D+1 equations in D+1 unknowns. D of the 

unknowns are the coordinates of P (e.g. x, y, and z for D = 3), and the other is the new 
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unknown constant λ. The equation for the gradients derived above is a vector 

equation, so it provides D equations of constraint. I once got stuck on an exam at this 

point: don't let it happen to you! The original constraint equation g(P) = 0 is the final 

equation in the system. 

 

Thus, in general, a unique solution exists. As in many maximum/minimum problems, 

cases do exist with multiple solutions. There can even be an infinite number of 

solutions if the constraints are particularly degenerate: imagine if the milkmaid and 

the cow were both already standing right at the bank of a straight river, for example. 

In many cases, the actual value of the Lagrange multiplier isn't interesting, but there 

are some situations in which it can give useful information (as discussed below). 

That's it: that's all there is to Lagrange multipliers. Just set the gradient of the function 

you want to extremize equal to the gradient of the constraint function. You will get a 

vector's worth of (algebraic) equations, and together with the original constraint 

equation they determine the solution. 

 

A formal mathematical inspiration 

 

There is another way to think of Lagrange multipliers that may be more helpful in 

some situations and that can provide a better way to remember the details of the 

technique (particularly with multiple constraints as described below). Once again, we 

start with a function f(P) that we wish to extremize, subject to the condition that g(P) 

= 0. Now, the usual way in which we extremize a function in multivariable calculus is 

to set grad(f(P)) = 0. How can we put this condition together with the constraint that 

we have? 

One answer is to add a new variable λ to the problem, and to define a new function to 

extremize: 

 

F(P, λ) = f(P) - λ g(P)……………………………………………………………(4.2.2) 

 

(Some references call this F "the Lagrangian function". I am not familiar with that 

usage, although it must be related to the somewhat similar "Lagrangian" used in 

advanced physics.) 
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We next set grad(F(P, λ)) = 0, but keep in mind that the gradient is now D + 1 

dimensional: one of its components is a partial derivative with respect to λ. If you set 

this new component of the gradient equal to zero, you get the constraint equation g(P) 

= 0. Meanwhile, the old components of the gradient treat λ as a constant, so it just 

pulls through. Thus, the other D equations are precisely the D equations found in the 

graphical approach above. As presented here, this is just a trick to help you 

reconstruct the equations you need. However, for those who go on to use Lagrange 

multipliers in the calculus of variations, this is generally the most useful approach. I 

suspect that it is in fact very fundamental; my comments about the meaning of the 

multiplier below are a step toward exploring it in more depth, but I have never spent 

the time to work out the details. 

 

Several constraints at once 

 

If you have more than one constraint, all you need to do is to replace the right hand 

side of the equation with the sum of the gradients of each constraint function, each 

with its own (different!) Lagrange multiplier . This is usually only relevant in at least 

three dimensions (since two constraints in two dimensions generally intersect at 

isolated points). Again, it is easy to understand this graphically. Consider the example 

shown at right: the solution is constrained to lie on the brown plane (as an equation, 

"g(P) = 0") and also to lie on the purple ellipsoid ("h(P) = 0"). For both to be true, the 

solution must lie on the black ellipse where the two intersect. I have drawn several 

normal vectors to each constraint surface along the intersection. The important 

observation is that both normal vectors are perpendicular to the intersection curve at 

each point. In fact, any vector perpendicular to it can be written as a linear 

combination of the two normal vectors. (Assuming the two are linearly independent! 

If not, the two constraints may already give a specific solution: in our example, this 

would happen if the plane constraint was exactly tangent to the ellipsoid constraint at 

a single point.) The significance of this becomes clear when we consider a three 

dimensional analogue of the milkmaid problem. The pink ellipsoids at right all have 

the same two foci (which are faintly visible as black dots in the middle), and represent 

surfaces of constant total distance for travel from one focus to the surface and back to 

the other. As in two dimensions, the optimal ellipsoid is tangent to the constraint 
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curve, and consequently its normal vector is perpendicular to the combined constraint 

(as shown). Thus, the normal vector can be written as a linear combination of the 

normal vectors of the two constraint surfaces. In equations, this statement reads  

 

grad(f(P)) = λ grad(g(P)) + µ grad(h(P))………………………………………(4.2.3) 

 

just as described above. The generalization to more constraints and higher dimensions 

is exactly the same. 

 

4.3 The meaning of the multiplier 

 

As a final note, I'll say a few words about what the Lagrange multiplier "means". In 

the more formal approach described two sections above, the constraint function g(P) 

can be thought of as "competing" with the desired function f(P) to "pull" the point P 

to its minimum or maximum. 

 

The Lagrange multiplier λ can be thought of as a measure of how hard g(P) has to 

pull in order to make those "forces" balance out on the constraint surface. (This 

generalizes naturally to multiple constraints, which generally "pull" in different 

directions.) This analogy is inspired by the physics of potential energy.  
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WORK DONE 

 

IMPLEMENTATION 

 

1. DESIGN OF UNIT DELAY FILTER 

 

2. DESIGN OF FRACTIONAL DELAY FILTER(Lagrange’s interpolator (FIR)) 

 

3. COMPARISON OF THEIR CHARACTERISTIC 

 

4. DESIGN OF LAGRANGE’S MULTIPLIER 

 

5. DESIGN OF WAVELETS(orthogonal) 

 

6. COMPARISON OF RESULTS USING FRACTIONALLY DELAYED FILTR  

 

     AND UNIT DELAY FILTER. 
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CONCLUSION AND FUTURE SCOPE 
 

To conclude this dissertation gives us the detailed knowledge of key issues in the field 

of communication named “ Design of Matched Wavelet using Fractionally delayed 

filter”. We introduced the theory and literature survey behind design of matched 

wavelet and design of fractionally delayed filter and discuss  the basic design of 

matched wavelet and fractionally delayed filter, properties of matched wavelet, 

performance of matched  and even properties of fractionally delayed filter , 

performance of fractionally delayed filter in various fields of their applications. We 

identified some factors that could result in the design of matched wavelet using 

fractional delay filters not performing to its potential. These factors includes 

randomness of signals, statistical signals etc., and the noise effect and issues of 

implementing them is crucial for proper functionality. We have discussed and 

reserved some for our discussion latter pursuits and we hope to carry that in our next 

work. 

 

In this dissertation we focused our attention on the design of matched  wavelet using 

fractionally delayed filter, using Lagrange’s multiplier to get  random ness of signal 

information and for non stationary signals. We used Lagrange's interpolator filter 

(FIR)  and designed it for fractional delay, so our aim is to fine tune the signal and 

improve the performance of matched wavelet on signals. Here  after discussion and 

the result we got , we can conclude that the matched wavelet designed by fractionally 

delayed filters are better than matched wavelets designed by unit delay filters. 

 

To support my work, I have simulated the entire work on MATLAB 7.0.1. At this 

stage my work should be considered as a preliminary as it has plenty of scope for 

future investigation and analysis. Major work can be carry in the field of image 

processing and signal processing. 
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RESULTS 

Results of fractional delay filter 

Magnitude with normalized frequency 
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Phase with normalized frequency 
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All this results are of orthogonal wavelet. 

 

Results for unit delay filter when applied to images. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results of fractional delay filter when applied to images 
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Results of fractional delay filter when applied to sound signal 

 
 
 

Results for unit delay filter when applied to sound signals 
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Results for the same sentence spoke by three  different people 

Lamda value for this three tests are 

Test1 Test2 Test3 
t = 
 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.1640 
         0 
         0 
         0 
         0 
    0.0893 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 

t = 
 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    1.2190 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 

t = 
 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.2983 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.5361 
         0 
         0 
    0.0601 
         0 
         0 
         0 
    0.0621 
         0 
         0 
    0.0042 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
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         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.6584 
         0 
         0 
         0 
         0 
         0 
    0.9929 
         0 
         0 
         0 
         0 
    0.3819 
         0 
         0 
         0 
         0 
    0.3729 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.2585 
         0 
         0 
         0 
         0 
         0 

         0 
         0 
         0 
         0 
    1.1142 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.1660 
         0 
         0 
    0.8870 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 

         0 
         0 
         0 
         0 
         0 
    0.1517 
         0 
    0.6520 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.5449 
         0 
         0 
         0 
         0 
    0.0685 
         0 
    0.1100 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
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    0.7333 
         0 
         0 
    0.4907 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.5625 
         0 
         0 
         0 
    0.0664 
         0 
         0 
         0 
    0.5455 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.2187 
    0.1789 
         0 
         0 
         0 
    0.2406 
         0 
         0 

         0 
    0.3143 
         0 
         0 
    0.0685 
         0 
         0 
    1.3587 
         0 
         0 
         0 
         0 
         0 
    0.0878 
         0 
         0 
    0.1239 
         0 
         0 
         0 
    0.2472 
    0.0100 
         0 
         0 
         0 
         0 
         0 
    0.4441 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.5424 
         0 
    0.5208 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.1695 
         0 
         0 

         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.5274 
         0 
         0 
    0.4650 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.2202 
         0 
    0.3936 
         0 
         0 
         0 
         0 
         0 
    0.2541 
         0 
         0 
         0 
    0.3893 
         0 
         0 
         0 
         0 
         0 
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    0.0149 
    0.5775 
         0 
    0.2143 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.3315 
         0 
         0 
         0 
         0 
         0 
         0 
    0.1487 
         0 
         0 
    0.4870 
         0 
         0 
         0 
         0 
         0 
    0.0033 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 

         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.5734 
         0 
    1.2321 
         0 
         0 
         0 
         0 
         0 
    0.0717 
         0 
         0 
         0 
         0 
         0 
    0.7342 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.2866 
         0 
         0 
         0 
         0 
    0.5776 
         0 
    0.3028 

         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.3135 
         0 
         0 
         0 
         0 
         0 
    0.2906 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.3817 
         0 
         0 
         0 
         0 
    0.1989 
    0.4281 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.2145 
         0 
         0 
         0 
         0 
    0.3334 
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         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.2026 
         0 
         0 
         0 
         0 
    0.5050 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.0784 
         0 
         0 
    1.5787 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.1622 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 

         0 
         0 
         0 
         0 
    0.0660 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.4828 
         0 
         0 
         0 
         0 
         0 
    0.2879 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    0.8956 
         0 
         0 
         0 
         0 
    0.4556 
         0 
         0 
         0 
         0 

         0 
         0 
         0 
    0.4086 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    1.2552 
         0 
    0.0709 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
    1.1200 
         0 
         0 
         0 
    0.6734 
         0 
    0.0040 
         0 
         0 
         0 
         0 
         0 
    0.3569 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
         0 
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         0          0          0 
 
 
 
 
Results for unit delay filter and fractional delay filters are as below 

Test1 for unit delay 
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Test1 for fractional delay 
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Result for test 2 

Test 2 for unit delay 
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Fractional delay test2 
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Results for test3 

For unit delay filter 
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For fractional delay 
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