CHAPTER-1
INTRODUCTION

1.1 INTRODUCTION TO WAVELET

The wavelet transform has been perhaps the mogdingxdevelopment in the last
decade to bring together , researchers in seveffgreht fields such as signal
processing , image processing ,communications ,atengciences and mathematics
etc., It is well known form Fourier theory thatigrel can be expressed as the sum of
a , possibly infinite, series of sine’s and cosinBEsis sum is also referred to as a
Fourier expansion. The big disadvantage of a Foaxpansion however is that , it
has only frequency resolution and no time resafutibhis means that although we
might be able to determine all the frequenciesgmes a signal, we do not know
when they are present. To overcome this problethdrpast decades several solutions
have been developed which are more or less alvkptesent a signal in the time and

frequency domain at the same time.

The idea behind these time-frequency joint repragiems is to cut the signal of
interest into several parts and then analyze timés meparately. It is clear that
analyzing a signal this way will give more infornwat about the when and where of
different frequency components, but it leads taradbmental problem as well: how to
cut the signal? Suppose that we want to know exaditlthe frequency components
present at a certain moment in time, we cut ouy ¢his very short time window

using dirac pulse transform it to the frequency domand something is very wrong.

The problem here is that cutting the signal comess to a convolution between the
signal and the cutting window. Since convolutiorthie time domain is identical to
multiplication in the frequency domain and since fourier transform of a dirac
pulse contains all possible frequencies the fregqueonmponents of the signal will be
smeared out all over the frequency axis. In fait #ituation is the opposite of the
standard Fourier transform since we now have tiesolution but no frequency

resolution whatsoever.
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The underlying principle of the phenomenon just cdésd is Heisenberg's
uncertainty principle, which in signal processiegs, states that it is impossible to
know the exact frequency and the exact time of weoges of this frequency in a
signal. In other words a signal can simply not &gresented as a point in the time-
frequency space. The uncertainty principle shovas this very important now one
cuts the signal.

The wavelet transform or wavelet analysis is propdbe most recent solution to
overcome the shortcomings of the Fourier transfdmwavelet analysis the use of a
fully scalable modulated window solves the sign#iting problem. The window is
shifted along the signal and for every position spectrum is calculated. Then this
process is repeated many times with slightly sihgaelonger) window for every new
cycle. In the end the result will be a collectidrtimme and frequency representations
of the signal, all with different resolutions. Besa of this collection of
representations we can speak multi-resolution aiglyn this case of wavelets we
normally speaks about time-frequency representatiddut about time-scale
representations, scale being in a way the oppao$ifeequency , because the term

frequency is reserved for the Fourier transform.

1.2 WAVELET DEFINATION:-

A wavelet is a small wave which has its energy eotrated in time. It has oscillating
wave like characteristic but also has the abiliyaflow simultaneous time and
frequency analysis and it is a suitable tool fansient, non-stationary or time-
varying phenomena.

Fig

Sine Wave Wavelet (db10)

Fig 1 wavelet defination
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1.3 WAVELET CHARACTERISTICS:-

The difference between wave and wavelet is showthé above fig. waves are
smooth, predictable and everlasting, whereas wesvale limited duration, irregular
and may be asymmetric. Waves are used as detetimibésis functions in Fourier
analysis for the expansion of functions (signalshich are time-invariant, or
stationary. The important characteristic of waweléts that they can serve as
deterministic or non-deterministic basis for getiera and analysis of the most
natural signals to provide better time-frequengyesentation, which is not possible

with waves using conventional Fourier analysis.

1.4 WAVELET ANALYSIS:

The wavelet analysis procedure is to adopt a wayetgtotype function, called an
‘analyzing wavelet’ or ‘mother wavelet' .Temporahaysis is performed with a
contracted , high frequency version of the protetypavelet , while frequency
analysis is performed with a dilated, low frequen®ysion of the same wavelet.
Mathematical formulation of signal expansion usivayelets gives wavelet transform
(WT) pair, which is an analogues to the Fouriensfarm (FT) pair. Discrete-time
and discrete-parameter version of WT is termedsgete wavelet transform (DWT)
. DWT can be viewed in a similar framework of deter Fourier transform (DFT) .

DWT can be viewed in a similar framework of diser€ourier transform (DFT) with

its efficient implementation through fast filterrdaalgorithms similar to fast Fourier

transform algorithms.

1.5 EVOLUTION OF WAVELET TRANSFORM :

The need of simultaneous representation and |atadiz of both time and frequency
for non-stationary signals (e.g. music, speechagies) led toward the evolution of
wavelet transform form the popular Fourier transfoDifferent ‘time-frequency

representations’ (TFR) are very informative in wstiending and modelling of

wavelet transform.
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1.6 TRANSFORMS:-

First of all, why do we need transform? Mathematicansformations are applied to
signals to obtain further information from thatreg that is not readily available in
the raw signal. Most of the signals in practice @me-domain signals in their raw
format. Time domain representation is not alwayshiast representation of the signal
for most signal processing related applicationsnamy cases, the most distinguished
information is hidden in the frequency content loé tsignal. The information that
cannot be readily seen in the time-domain can ée sethe frequency domain.
Fourier Transform (FT) with its fast algorithms {BHs an important tool for analysis
and processing of many natural signals. FT hasicetimitations to characterize
many natural signals, which are non-stationary. (§og@ech). Though a time varying ,
overlapping window based FT namely STFT (shoretiRourier transform) is well
known for speech processing applications ,a new-8oale based Wavelet Transform

(WT) is a powerful mathematical tool for non-statwy signals.

Wavelet Transform uses a set of damped oscillatimgtions known as wavelet
basis. Wavelet Transform in its continuous (analmgin is represented as CowWT
(continuous wavelet transforms). Continuous wavdlansform with various

deterministic or non-deterministic basis is a meffective representation of signals
for analysis as well as characterization. Contisumavelet transform is powerful in
singularity detection. A discrete and fast impletaéon of continuous wavelet
transform, (generally with real valued basis) iswn as the standard DWT (discrete

wavelet transforms).

With standard DWT (Discrete wavelet transform, alghas a same data size in
transform domain and therefore it is a non-relucteansform, Standard DWT can be
implemented through a simple filter bank structafeaecursive FIR filters. A very
important property ; multi-resolution analysis (MRAllows DWT to view and
process different signals at various resolutiorelevThe advantages such as non-
redundancy, fast and simple implementation withitdigfilters using micro-
computers, and MRA capability popularized the DWAT nhany signal processing
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applications since last decade. Many researches suracessfully applied and proved
the advantages of DWT for signal de-noising and m@ssion in a number of diverse
fields.

1.6.1 FOURIER TRANSFORM

Fourier transform is used to find the frequencyteaohof a signal. It allows going
back and forwarding between the raw and procedsaais{ormed) signals. However,
only either of them is available at any given tifibat is, no frequency information is
available in the time-domain signal, and no timérmation is available in the
Fourier transformed signal. Fourier transform ofirmae domain signal X(t) and

inverse Fourier transform (IFT) of a frequency damsagnal X(f) are given below.

X(f)=[xtye® ™t 16.1)
x()= [ X(f)yemtdt (1.6.2)

Though FT has a great ability to capture signaksjiency content as long as X(t) is
composed of few stationary components (e.g. sinees)a.However , any abrupt
change in time for non-stationary signal X(t) isegml out over the whole frequency
axis in X(f). Hence the time-domain signal sampletth dirac-delta function is highly

localized in time but spills over entire frequermand and vice versa. The limitation
of FT is that it cannot offer both time and freqognocalization of a signal at the
same time. To overcome the limitations of the séaaddd=T, Gabor introduced the

initial concept of short time Fourier transform(SNF
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1.6.2 SHORT TERM FOURIER ANALYSIS:

This is the revised version of the Fourier transfoll here is only a minor difference
between short term Fourier analysis (STFT) and IRTSTFT, the signal is divided
into small enough segments, where these segmeatSo(s) of the signal can be
assumed to be stationary. For this purpose, a windmction “w” is chosen. The
width of this window must be equal to the segmétrihe signal where its stationarity

is valid.

This window function is the first located to therydeginning of the signal. That is,
the window function is located at t=0. Let's suppdisat the width of the windows is
“T" s. At this time instant (t=0), the window funch will overlap with the first T/2
seconds. The window functions and the signal aea timultiplied. By doing this ,
only the first T/2 seconds of the signal is beihgsen, with the appropriate weighting
of the window (if the window is a rectangle, wamplitude “I” , then the product
will be equal to the signal) Assuming the produst jas another signal, FT is taken.
The result of this transformation is the FT of tinst T/2 seconds of the signal. If this
Portion of the signal is stationary, as it is assdjrthe obtained result will be as true
frequency representation of the first T/2 secorfdb@ signal. The next step would be
shifting this window (for some t1 seconds) to a Hewation, multiplying with the
signal and taking the FT of the product. This pcage is followed until the end of
the signal is reached by shifting the window witti" seconds intervals. The

following definition of the STFT summarizes all tabove explanations in one line:

........................... (1.6.2.1)

SIFTA(, )= j [X0).c0t ) e "

In the above equation X(t) is the signal , w(tthe window function, and * is the
complex conjugate. As you can see from the equatiom STFT of the signal is
nothing but the FT of the signal multiplied by andow function. Using STFT one

cannot know the exact time-frequency representatiom signal, i.e., one cannot
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know what spectral components exist at what ingtsid times. What one can know
are the time intervals in which certain band ofjirencies exists, which is a resolution
problem. This problem occurs because of width afdeiv function used.

Narrow window =» good time resolution, poor frequency resolution

Wide window =» good frequency resolution, poor time resolution aolates the

condition of stationary.

The selection of proper window is application degmt. Once a window has been
chosen for STFT, the time-frequency resolution ileed over the entire time-
frequency plane because the same window is usalil fatquencies. There is always

a trade off between time resolution and frequeesyplution in STFT.

1.6.3 CONTINUOUS WAVELET TRANSFORM

The continuous wavelet transform was developedtamative approach to the short
time Fourier transforms to overcome the resolupavblem. The wavelet analysis is
done in a similar way to the STFT analysis, in skase that the signal is multiplied
with a function (i.e. the wavelet) , similar to tvndow function in the STFT, and the
transform is computed separately for different segis of the time-domain signal,

however, there are two main differences betweersTHelr and the CWT.

1. The Fourier transforms of the windowed signals rasetaken, and therefore
are not computed.

2. The width of the window is changed as the transf@roomputed for every
single spectral component, which is probably the stmignificant

characteristic of the wavelet transform.

The wavelet transform (WT) in its continuous (CW®)m provides a flexible time-
frequency window, which narrows when observing higdguency phenomena and
widens when analysing low frequency behaviour. Those resolution becomes
arbitrarily good at low frequencies. This kind afadysis is suitable for signals
composed of high frequency components with shoratthn and low frequency

components with long duration, which is often theecin practical situation.
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The continuous wavelet transform is defined a®vadl

..................... (1.6.3.1)

b1 <) = 1 e T
O (5,9 =¢ (T )= [ €1

As seen in the above equation, the transformedakigra function of two variables,
r and s, the translation and scale parametersectgply. () is the transforming

function, and it is called the mother wavelet.

The mother wavelet is a prototype for generatirg akther window functions. The
term translation is related to the location of vangl as the window is shifted through
the signal. This term corresponds to the time mgtion in transform. The scale
parameter is defined as the inverse of frequendgh Kcales (low frequencies)
correspond to global information of a signal (thsually spans the entire signal)
whereas low scales (high frequencies) do not lastefitire duration of signal but
usually appear from time to time as short bursts khigh scales (low frequencies)
usually last for the entire duration of the signal.

The CWT is the correlation between a wavelet dediht scales and the signal with
the scale (or the frequency) being used as a meadusimilarity. The continuous

wavelet transform was computed by changing theesoélthe analysis window,

shifting the window in time, multiplying by the sigl , and integrating over all times.
1.6.4 DESCRETE WAVELET TRANSFORM

The CWT has the drawbacks of redundancy and impsdxlity with digital
computers. The discrete wavelet transform (DWT)vjgles sufficient information
both for analysis and synthesis of the originahalgwith a significant reduction in
the computation time. The DWT is considerably easiegmplement when compared
to the CWT.

The DWT analyzes the signal at different frequebapds with different resolutions
by decomposing the signal into a coarse approxanaind detail information. DWT

employs two sets of functions, called scaling fiored and wavelet functions, which
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are associated with low pass and high pass filtespectively. The original signal
x[n] is first passed through a half-band high pidgsr g[n] and a low pass filter h[n].

After the filtering, half of the samples can benghated according to the nyquist’s
rule. The signal can therefore be sub sampled bsiply by discarding every other
sample. This constitutes one level of decompositioil can mathematically be

expressed as follows:

YhignlN] = Z MKIOd2n=K (1.6.4.1)

YiewlN] = Z NKIH2 n=K (1.6.4.2)

YugnlK] @nd y,,[K] are the outputs of the high pass and low passdilrespectively

after sub sampling by 2. This decomposition hathestime resolution since only half
the number of samples now characterises the esitiral. However, this operation
doubles the frequency resolution, since the frequdrand of the signal now spans
only half the previous frequency band, effectivedglucing the uncertainty in the
frequency by half. The above procedure, which $s &hown as the sub-band coding
can be repeated for further decomposition. At evemel, the filtering and sub
sampling will result in half the number of samplasd hence half the time resolution)
and half the frequency band spanned (and hencehealfequency resolution). Hence
the fig. illustrates this procedure, where x[nfhe original signal to be decomposed,
and h[n] and g[n] are low pass and high pass $iltezspectively. The bandwidth of

the signal at every level is marked on the figugé &".

The frequencies that are most prominent in theiralgsignal will appear as high
amplitudes in that region of the DWT signal thatlirdes those particular frequencies.
The frequency bands that are not very prominetiiénoriginal signal will have very
low amplitudes , and that part of the DWT signal ba discarded without any major
loss of information , allowing data reduction. Ttiéference of this transform from

the Fourier transform is that the time localizatadrihese frequencies will not be lost.
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Fig 2 DWT coefficients at different levels

Four resulting sets of wavelet coefficiens ,\W,, ,\W,,, andW,,, are conventionally

named according to the filtering types along rowd aolumns respectively (H: high
pass filtering, L: for low pass filtering). Thesets are also called wavelet sub bands
(LL,LH,HL,HH). The perfect reconstruction is alsdbtained by applying the
ID synthesis scheme on rows and columns succegsivel
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Fig 3 reconstruction using subbands

It is worth pointing out that the order in whicha® and columns are processed at the
analysis and synthesis sides has no importance sine global transformation is

linear.

An advantage of wavelet transform is that the wimsl vary. In order to isolate signal
discontinuities , one would like to have some v&mgrt basis functions. At the same
time, in order to obtain detailed frequency analysine would like to have some very
long basis functions. A way to achieve this is tvén short high-frequency basis
functions and long low-frequency ones. This hapmdimm is exactly what you get
with wavelet transforms. One thing to remembethest wavelet transforms do not
have a single set of basis functions like the Fouriansform, which utilizes just the
sine and cosine functions. Instead , wavelet tcans$ have an infinite set of possible
basis functions. Thus wavelet analysis provides egtiate access to information that

can be obscured by other time-frequency methods asi¢-ourier analysis.
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1.7 COMPARATIVE VISUALIZATION

A comprehensive visualization of various time-freqay representation, shown in
figure, demonstrates the time-frequency resolufion a given signal in various
transform domains with their corresponding basmfions.

Figure describes the time and frequency responsdifférent domains

Here x- axis has time and y-axis has frequency

@ =
e (&)
2
E g
< I
Time Amplitude
Time Domain (Shannon) Frequency Domain (Fourier)
-
= @
g g8
g W
i
Time Time
STFT (Gabor) Wavelet Analysis
Fig 4 comparative visualization
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1.8 WAVELET PROPERTIES

The most important properties of wavelets are tthmissibility and the regularity
conditions and these are the properties which geaeelets their name. It can be

shown that square integrable functigh@) satisfies the admissibility condition

can be used to first analyze and then reconstrsiginal without loss of information.

Y(w) stands for the Fourier transform af(t) . The admissibility condition implies
that the Fourier transform of/(t) vanishes at the zero frequency.

ie.,

W ()P 1, o0 = O o (1.8.2)

This means that wavelets must have a band-passspiketrum. This is a very
important observation, which we will use later am kuild an efficient wavelet

transform.

A zero at the zero frequency also means that tbeage value of the wavelet in the

time domain must be zero.

Iélf (1)t =0 e (1.8.3)

And therefore it must be oscillatory. In other wergd(t) must be a wave. As from

the above knowledge the wavelet transform of ormaedsional function is two

dimensional ; the wavelet transform of two-dimensilcfunction is four-dimensional.

The time-bandwidth product of the wavelet transfasrthe square of the input signal
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and for most practical applications this is notesichble property. Therefore one
imposes some additional conditions on the wavelattions in order to make the
wavelet transform decrease quickly with decreaskaje s. These are the regularity
conditions and they state that the wavelet funcsioould have some smoothness and

concentration in both time and frequency domains.

If we expand the wavelet transform into the tayderies at t=0 until order n (let0

for simplicity) we get
Y(s,0)= =13 19 ) Ly Lyt +o(n+1)] 164
\/g ~ |£ s/ TN T (1.8.4)

Hence ) stands for the 'p derivative of f and O(n+1) means the rest of the

expansion. Now, if we define the moments of theeletvby M, ,

- Itpw (Ot e .(1.8.5)

Then we can get the finite development

00

AN WL . M§+1+o(;“+2)} ....... (1.8.6)

i 2

ns0)= J{f (OMcs+

From the admissibility condition we already havattthe ¢ moment M= 0 so that
the first term in the right-hand side of above dmumis zero. If we now manage to
make the other moments up to,Mero as well, then the wavelet transform
coefficients y(s,7) will decay as fast as"¢ for a smooth signal f(t). This is known in
literature as the vanishing moments or approxinmatoder. If a wavelet has N
vanishing moments, then the approximation ordeahefwavelet transform is also N.
The moments do not have to be exactly zero , al srakle is often good enough. In
fact experimental research suggests that the nuofbeanishing moments required

depends heavily on the applications.
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The admissibility condition gave us the wave, ragty and vanishing moments gave

us the fast decay or the let, and put together gheyus the wavelet.
1.9 ABAND-PASS FILTER

With the redundancy removed, we still have two hesdo take before we have the
wavelet transform in a practical form. We contifyetrying to reduce the number of
wavelets needed in the wavelet transform and sheeptoblem of the difficult

analytical solutions for the end.

Even with discrete wavelets we still needed annitdi number of scalings and
translations to calculate the wavelet transforme €hsiest way to tackle this problem
is simply not to use an infinite number of discrei@velets. Of course this poses the
guestion of the quality of the transform. Is it gibde to reduce the number of

wavelets to analyze a signal and still have a lisefult .

The translation of the wavelets are of course éohiby the duration of the signal
under investigation so that we have an upper baynida the wavelets. This leaves
us with the question of dilation how many scalesvdoneed to analyze our signal?

How do we get the lower bond ? it turns out thatee@ answer this question by

looking at the wavelet transform in a different way

The wavelet has a band-pass like spectrum. Fronridfotheory we know that

compression in time is equivalent to stretchinggbectrum and shifting it upwards

F{f(at)}= |i (ﬂ) e (1.900)

This means that a time compression of the waveled Bactor of 2 will stretch the
frequency spectrum of the wavelet by a factor orgl also shift all frequency
components up by a factor of 2. Using this insightcan cover the finite spectrum of

our signal with the spectrum of dilated waveletsha same way as that we covered
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our signal in the time domain with translated wat®l To get a good coverage of the
signal spectrum the stretched wavelet spectra dliouch each other, as if they were

standing hand in had. This can be arranged by ctyréesigning the wavelets.

Fig 5 band pass filter

If one wavelet can be seen as a band-pass fitten, & series of dilated wavelets can
be seen as a band-pass filter bank. If we lookeatdtio between the center frequency
of a wavelet spectrum and the width of this speatwe will see that it is the same for
all wavelets. This ratio is normally referred totls fidelity factor Q of a filter and in

the case of wavelets one speaks therefore of dardr® filter bank.
1.10 A CONSTRAINT

As a constraint we will now take a look at an intpat constraint on our signal,
which has sneaked in during the last section tgeasito analyze must have finite
energy. when the signal has infinite energy it Wwélimpossible to cover its frequency
spectrum and its time duration with wavelets. Usuéiis constraint is formally

stated as

JIF @7t <o (110.)

And it is equivalent to stating that thé horm of our signal f(t) should be finite. This
is where Hilbert spaces come in so we end our canstby stating that natural

signals normally have finite energy.
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1.11 THE SCALING FUNCTION

The question arises how to cover the spectrumhallway down to zero ? Because
every time we stretch the wavelet in time domaithvai factor of 2, its bandwidth is
halved. In other words, with every wavelet stretehcover only half of the remaining
spectrum, which means that we will need an infinitenber of wavelets to get the job

done.

The solution of this problem is simply not to tky ¢cover the spectrum all the way
down to zero with wavelet spectra, but to use & tmplug the hole when it is small

enough. This cork then is a low-pass spectrum &ahdlongs to the so-called scaling
function. The scaling function was introduced byllata. because of the low-pass
nature of he scaling function spectrum it is somes referred to as the averaging

filter.

scaling function spectrum ()

A cork ___wavelet spectra (/)

—
1

n \,_

£

Figure 6 shows scaling function of wavelet

If we look at the scaling function as being jusignal with a low-pass spectrum, then

we can decompose it in wavelet components and ssjiras

o(t) :ZV(J K, (0) e (L11.0)

Since we selected the scaling functig(t)in such a way that its spectrum neatly

fitted in the space left open by the wavelets,ekgression uses an infinite number of

wavelets up to certain scale j. This means thawef analyze a signal using the
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combination of scaling function and wavelets, tbaling function by itself takes care
of the spectrum otherwise covered by all the waselg to scale j, while the rest is
done by the wavelets. In this way we have limitee humber of wavelets form an
infinite number to a finite number.

By introducing the scaling function we have circunted the problem of the infinite
number of wavelets and set a lower bound for theeles. Of course when we use a
scaling function instead of wavelets we lose infation. That is to say, from a signal
representation view we do not loose any informatgince it will still be possible to

reconstruct the original signal but from a waveleglysis point of view we discard
possible valuable scale information. The width foé scaling function spectrum is
therefore an important parameter in the waveletsiam design. The shorter its
spectrum the more wavelet coefficients, we willénand more scale information. But
, as on, in the discrete wavelet transform thabj@m is more or less automatically

solved.

The low-pass spectrum of the scaling function aflows to state some sort of

admissibility condition similar to

Which shows that theé'Omoment of the scaling function can not vanish.
If one wavelet can be seen as a band-pass fil@rsealing function is a loqw-pass
filter, then a series of dilated wavelets togethigh a scaling function can be seen as

a filter bank.
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1.12 SUBBAND CODING

If we regard the wavelet transform as a filter hatilen we can consider wavelet
transforming a signal as passing the signal thrabghfilter bank. The outputs of the
different filter stages are the wavelet-and scalfogction transform coefficient.
Analyzing a signal by passing it through a filbkemk is not a new idea and has been
around for many years under the name sub-band gottins used for instance in

computer vision applications.
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Fig 7 sub band coding function

The filter bank needed in subband coding can bk inuseveral ways. One way is to
build many band-pass filters to split the spectrimo frequency bands. The
advantages is that the width of every band carhbeean freely, in such a way that the
spectrum of the signal to analyze is covered in pieces where it might be
interesting. The disadvantage is that we will hvdesign every filter separately and
this can be a time consuming process. Another wdg Bplit the signal spectrum in
two parts a low-pass and a high-pass part. The-fegls part contains the smallest
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details we are interested in and we could stop.héfe now have two bands.
However the low-pass part still contains some tet@nd therefore we can split it
again. And again, until we are satisfied with thenber of bands we have created. In
this way we have created an iterated filter bankudlly the number of bands is
limited by for instance the amount of data or cotapan power available. The
process of splitting the spectrum is graphicalllaged in fig. The advantage of this
scheme is that we have to design only two filteiee, disadvantage is that the signal

spectrum coverage is fixed.

Looking in above fig. we see that what we are Veth after the repeated spectrum
splitting is a series of band-pass bands with dogbbandwidth and one low-pass
band. (Although in first split gave us a high-paasid and a low-pass band, in reality
the high-pass band is a band-pass band due toitedi bandwidth of the signal.)

.The same can be done in another way by feedingigmal into a bank of band-pass
filters of which each filter has a bandwidth twiae wide as his left neighbour (the
frequency axis runs to the right here) and a loasfddter. This is same as applying a
wavelet transform to the signal. The wavelet givssthe band-pass bands with
doubling bandwidth and scaling function provideswith the low-pass band. So we
can conclude that a wavelet transform is the sdnimng tas a sub-band coding scheme
using a constant-Q filter bank. This analysis ifemed to as a multi-resolution

analysis.

1.13 ORTHOGONAL WAVELET

An orthogonal wavelet is a Wavelet where the asdedi wavelet transform is
orthogonal. That is the inverse wavelet transfosmnthe ad joint of the wavelet

transform. If this condition is weakened you may ep with bi-orthogonal wavelet

The scaling function is a re-definable function.afhs, it is a fractal functional

equation, called refinement equation:

N -1

¢ (x) = Z a,p(2x-k) e (113.)

k=0
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where the sequendg,,a,,..a, )of real numbers is called scaling sequence orrsgali

mask. The wavelet proper is obtained by a simifeadr combination,

¢ (x) = Z b g (2X =K 1132

where the sequencéh,,b,,...b,) of real numbers is called wavelet sequence or

wavelet mask.

A necessary condition for the orthogonality of tvavelets is, that the scaling

sequence is orthogonal to any shifts of it by asnewumber of coefficients:

2 Adon =200,

ceeren(1.13.3
nz ( )

In this case there is the same number M=N of cdefiis in the scaling as in the
wavelet sequence, the wavelet sequence can benileter ash=(-1)"ay.1.n . In some

cases the opposite sign is chosen.

1.14 BI-ORTHOGONAL WAVELET

A bi-orthogonal wavelet is a wavelet where the asged wavelet transform is
invertible but not necessarily orthogonal. Designbi-orthogonal wavelets allows
more degrees of freedoms than orthogonal wavelet®e additional degree of

freedom is the possibility to construct symmetrevelet functions.

In the bi-orthogonal case, there are two scalingtions ¢,$ , which may generate

different multi-resolution analyses, and accordmglo different wavelet functions
¢, . So the numbers M,N of coefficients in the scakegiuences,a may differ.

The scaling sequences must satisfy the followirgrtsiogonality condition

Z%@wzm:za_m,o.Then the wavelet sequences can be determined as
nz

—_ nx -
b =(-1)"a,..,. 6=(¢1r4,. . n=0,. . M-1and ,n=0,...N-1....(1.13.4)
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1.15 GENERATING SCALING FUNCTIONS AND WAVELETS FROM
FILTER COEFFICIENTS

The following equation represents as
P2W)=H (W)P(W) oo (1.15.2)

H(w) is the frequency response of H.

Rewriting this above equation as

¢ (w)=H(w/2)H (0/4)..H (0) o .....(L152)

Where we have seb(0)=1, we have the coefficients of the impulse ocese of a
discrete-time filter h(n) satisfy the paraunitamgnditions. The sequence 2h(n) can
serve as the set of coefficients for the dilatignation to generate a potential scaling
function [I(t) for an orthonormal decomposition. If substibmtiof the frequency
response H{) in the right-hand side of the equation leads foretion of ®(w), then

its inverse Fourier transform is such a scalingfiom. There is a simple time-domain
iteration method based on this result.

The steps of the algorithm are

1. Setc(n)=2h(n).
2. Let the initial scaling function be the haar scglinonction

1
%:{0 herise 0 e (1.15.3)

3. Atiteration n set
A = c)@a (2 =) e (115.)

4. Iterate until either divergence is established lee tesired convergence is

obtained. If there is convergence, the scalingtiands given by

@(t) = H[no G e (1.15.5)

Transforming the iteration to the frequency domairthe end of the first iteration,

D (w) =H(W/2)P(W/2) .o (1.15.6)
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Where ® (w) denotes the Fourier transform of the scaling fionctat the f
iteration. The functior® (w) is the Fourier transform of the Haar scaling fiorct

Thus the scaling function become

@, () = H(af2)H (o) 4)P,, (@ A) o (115.7)

1.16 WAVELET TRANSFORM AND DATA COMPRESSION

The most wide spread application of the waveletidierm so far has been for data
compression. This is related to the fact that th&TDis tied closely to subband

decomposition, and the latter was already being mecompression by the time the

connection between the two was established by tnalla

Compression in the context of speech compressioagé compression, and so forth,
connotes the process of starting with a sourceic slata in digital form and creating
a representation for it that uses fewer bits tHen driginal. The aim is to reduce
storage requirements or transmission time when #fohmation is communicated

over a distance. ldeally we want the compressi@mtgss to be reversible. That is
given the compressed data, we would like to gebtiggnal data. When it is possible
to do so then compression is said to be lossléissrwise we have lossy compression

The error signal is represented as

e(n) = s(n) = §(n).

e (1.16.2)

For lossless compression, e(n) is identically zEar.lossy compression, an objective
measure of distortion or figure of merit for theatjty of the reproduction signal or
image is the mean squared value of the e(n) . Gghtrase the related measures of

signal to noise ratio (SNR) or peak signal to no&® (PSNR) defined as

SNR(dB) = 10log,, MEuared S(h)

ITBanSZ]uaraj e(n) et (1.16.2)
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1.17 WAVELET MATCHING

Generate a mother wavelgt(t) such that the latter is as close as possible éo th

specified function in some optimal sense while gatieg an orthonormal basis. Now
construct the meyer-type scaling function and waiv&hce it is used in the derivation

of the matching algorithm. Leg(t) be a real value function of time an®w) be its

Fourier transform, let(«) be bandlimited tdaf < 2% such that|®(w)| =1

0<swc< 2%

|CD(7T+@|2 "‘|¢(7T‘@|2 =L (117.0)

For |aJ< 7. By virtue of the fact thayat)is real valued, it follows thal®(c)| is

symmetric about origin.

It can be shown that the functiab(w) is symmetric about the origin.

It can be shown that the functiah(w) satisfies the poisons summation formula,

Ylo(w+enk) =1

k

e (117.2)

Thus indicating that{I(t-k) : k integer} is an orthogonal set. The functil(t) serves

as a scaling function in an orthonormal MRA. Theresponding wavelet amplitude

spectrumly(«J)| is bandlimited to277/3< |ad < &7/ 3and is given by

|®(w-2m)| 27m/3< ws 47/ 3

()=
|D(a/2) AT3S WS & 3o, (1.17.3)

An interesting consequence is

(471 3- )| =l (47 3+ W) OS2 277/3 . (1.17.4)
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Now F(@) be the Fourier transform of the specified sigiék address the problem of

generating a functiqqi/(a))| such that it satisfies the conditions of a meyavralet

while minimizing the squared norm of the functi|cﬁ1a))|2 —|z//(a))|2

And

|A(CU)| = |€U (C<J)|2 e (1.17.6)
We minimize
= [[G(@) = AT AW, (A7)

Subject to the condition that &) is bandlimited to277/3< |«f < 87/ 3 and

Wherecisaconstarﬁ(TC'-)z'*'A(mC'-)z:C. e (117.8)

The idea is first to minimize the cost functionhwif as a free parameter and then to

minimize further with respect to C to get the mioim

a=C/2+(Fa-Fb=Fc+Fd)/2.........ccocoiiiiiiiiiiiiiiie i (1.17.9)
b=C/2-(Fa-Fb-Fc+Fd)/2..........ccccociiiiiiiiiiiiiin . (1.17.10)

Extending this to the entire function yields
Alw) =C/2+[G(e) - G(27m- w) - G(2w)+ G (41— W)Y 2............(1.17.11)

Now further minimizing of the cost function withgpect to C yields

1 47m/3 18;1/3
C=— Glwdw+ = G(w)dw
2 27J;/3 (@) 24;[/3 (w) e (1.17.12)
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1.18 AUDIO COMPRESSION

The DTWT or subband decomposition techniques aeal digr the compression of
audio and wideband speech signals. There seems to gerceptual basis in audio
perception for using such decomposition. The frequerange for human hearing
extends to 20 kHz. When an analog audio signanspded, the sampling frequency
has to be greater than 40 kHz. In applications siscaudio recording on conventional
compact disk (CD), the sampling rate is 44.1 kHnc& the sampled data are stored
in digital form, only a finite number of levels, téemined by the number of bits
allotted per sample, can be used to representigin@ls In audio CDs, 16 bits per
sample are used. This allows 65,536 levels. Thenlévels are decoded is called

pulse code modulation.

1.19 APPLICATIONS OF WAVELET TRANSFORMS

Finally, applications of widely used standard DWmhpiementations, utilizing its
Multi-scale and Multi-resolution capabilities witfast filter bank algorithms are
numerous to describe. Depending upon the applitaégtensions of standard DWT
namely WP and SWT are also employed for improvedop@ance at the cost of

higher redundancy and computational complexity.

A few of such applications in data compression, ndésing, source and channel
coding , biomedical, non-destructive evolution, muital solutions of PDE , study of
distant universe, zero-crossing, fractals, turbtgerspeckle removal, edge detection
and object isolation, image fusion, scaling funesi@s signalling pulses, and finance
are comprehensively covered in. wavelet applicatiosnmay diverse fields such as
physics , medicine, and biology, computer grapttospmunications and multimedia

etc. can be found in various books on wavelets.
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1.20 TYPES OF WAVELETS

HARR
Any discussion of wavelets begins with Haar wavetle¢ first and simplest. Haar

wavelet is discontinuous, and resembles a steptiumclt represents the same

wavelet as Daubechies I.

9

Wovelet function psi

At

0 05 1
Fig.8
DAUBECHIES

Ingrid Daubechies, one of the brightest stars ie torld of wavelet research,

invented what are called compactly supported odhmal wavelets thus making

discrete wavelet analysis practicable.

The names of the Daubechies family wavelets ardemrj where is the order, and
the "surname" of the wavelet. Thevavelet, as mentioned above, is the same as

wavelet. Here are the wavelet functions psi ofrteet nine members of the family:

Fig 9
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COIFLETS

Built by I. Daubechies at the request of R. Coifimghe wavelet function had\2
moments equal to 0 and the scaling function Héd 2Znoments equal to 0. The
two functions have a support of lengtR-&. You can obtain a survey of the main

properties of this family by typing from the MATLABommand line

Fig 10

-1 - -1 -1 -1
o 2 Fl o s [T o 2 I 15 o s 15 20 o 35 1013 3 =

coif1 coif? coifd coif4d coifs

SYMLETS

The symlets are nearly symmetrical wavelets progpobg Daubechies as
modifications to the family. The properties of the two wavelet familiase

similar. Here are the wavelet functions psi.

Fig 11
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BIORTHOGONAL

This family of wavelets exhibits the property aidar phase, which is needed for
signal and image reconstruction. By using two watgelone for decomposition (on
the left side) and the other for reconstruction tfea right side) instead of the same

single one, interesting properties are derived.
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MORLET

This wavelet has no scaling function, but is explic

0.5

Wavelet function psi

-05

8 6 -4 2 0 2 4 6 8
Fig 13

MEXICAN HAT

This wavelet has no scaling function and is deriiesim a function that is
proportional to the second derivative function bé tGaussian probability density

function.

Wuavelet function psi

8 6 4 -2 0 2 4 B B8
Fig 14
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MEYER

The Meyer wavelet and scaling function are defiimeithe frequency domain.

; A
0.5}
Wuovelet function psi
0
-0.5
-5 0 5
Fig 15
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CHAPTER-2
LITERATURE SURVEY

2.1 ALGORITHMS FOR DESIGNING WAVELETS TO MATCH A
SPECIFIED SIGNAL

Algorithms for designing a mother wavelgt(x) such that it matches a signal of

interest and such that the familpf wavelets {2'(j/2)z//(2'jx—k)}forms an

orthonormal Riesbasis of L?(R) are developed. The algorithms are based dosed

form solution for finding the scaling function specn from the wavelet spectrum.
Many applications of signal representati@adaptive coding and pattern recognition
require wavelets that arenatched to a signal of interest. Most current desig
techniques, however, do not design the waveletctiyre They either build a
composite wavelet from a library of previously dgsd wavelets, modify the bases
in an existing multi-resolution analysis or desmrscaling function that generates a
multi-resolution analysis with some desired prapsrtIn this paper, two sets of
equations are developed that allow us to designvthelet directly from the signal of
interest. Both sets impose band-limitedness, liegulh closed form solutions. The
first set derives expressions for continuous matchlavelet spectrum amplitudes.
The second set of equations provides a directeatisalgorithm for calculating close
approximations to the optimal complex wavelet spent The discrete solution for
the matched wavelet spectrum amplitude is ident@#hat of the continuous solution
at the sampled frequencies. An interesting by proai this work is the result that
Meyer’s spectrum amplitude construction for an oenibrmal band limited wavelet is
not only sufficient but necessary. Specific exara@es given which demonstrate the
performance ofi\the wavelet matching algorithms fasth known orthonormal

wavelets and arbitrary signals.

Daubechies introduces the wavelet transform asdhathat cuts up data or functions
or operators into different frequency components] then studies each component
with a resolution matched to its scale”. One of #xeiting advantages of wavelets
over Fourier analysis is the flexibility they affbin the shape and form of the

analyzer, that which “cuts up” and “studies” thgrsil of interest. However ,with
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flexibility comes the difficult task of choosing designing the appropriate wavelet or

wavelets for a given application.

look at a multi resolution decomposition as thepatiof a bank of matched filters ,
we can see the need for the analyzing waveletaok® like the signal of interest. In
signal detection applications, the decompositiom @&fignal in the presence of noise
using a wavelet matched to the signal would progdusbarper or taller peak in time-
scale space as compared to standard non matchesletgavihe design techniques
developed to date do not specifically address &szlffor maximizing correlation in a
signal decomposition. Daubechies’ classic technfgudinding orthonormal wavelet
bases with compact support is often used as treutiéh many wavelet applications.
However, the wavelets produced are independenthef signal being analyzed.
Tewfik, Sinha, and Jorgensen have developed a imahrfor finding the optimal
orthonormal wavelet basis for representing a sjgetgignal within a finite number of
scalesGopinath, Odegard, and Burrus extended the restif®ewfik, by assuming
bandlimited signals and finding the optimal M-bamdvelet basis for representing a
desired signal, again within a finite number oflesaBoth of these approaches seek
to represent a signal over some number of scalesekkr, the desired output of a
multiresolution decomposition of a bandpass sigmsihg a matched wavelet is

representation in one or at most two scales.

The wavelet design techniques developed MallatZrehg , and Chen and Donoho ,
build non orthonormal wavelet bases from a libi@rgxisting wavelets in such a way
that some error cost function is minimized. Thesghhiques are constrained by the
library of functions used and do not satisfy thedéor optimal correlation in both
scale and translation. Sweldens developed thendiftscheme for constructing
biorthogonal wavelets . Aldroubi and Unser matchaaelet basis to a desired signal
by either projecting the desired signal onto arstaxgy wavelet basis, or transforming
the wavelet basis under certain conditions such the@ error norm between the
desired signal and the new wavelet basis is minimBath of these techniques are

constrained by their initial choice of MRA.
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Apart from being of mathematical interest, the peab of deriving orthonormal
wavelets directly from a signal of interest hascdeapplication to signal detection,
image enhancement, and target detection, to nafe.dn this paper, we will show
that in the case of orthonormal MRA'’s with bandlied wavelets, there is a solution
to finding wavelets that “look” like a desired sainThe only additional constraints
are the necessary conditions for an MRA and theasigf interest itself. While the
matching algorithm is sub-optimal in the sense thét performed on the spectrum
magnitude and phase independent of one anothewilvehow by way of examples

that it produces good matching wavelets.

=In an orthonormal MRA(OMRA), a signalf (x)V_,, is decomposed into an

infinite series of detalil functionz%,gj (x)} such that

F00 =2 000, 1)

The first level decomposition is done by projectinfgx) onto two orthogonal
subspaces, ¥and W, whereV_ =V,0W, and O is the direct sum operator. The
projection producesf,(x)00V,, a low resolution approximation off (x), and
0,(X) OW,.The detail lost in going fromf(x) tof,(x) . The decomposition
continues by projecting,(x) onto Vi and W and so on. The orthonormal bases of

W, andV, are given by

Wi =222 X=K) o (212)
B =2 PP2XKY) e (213)

Wherey, , is the mother wavelet ang, is the scaling function. Where

fo()dx=0 o W(0)=0. .. . ...(214

jga(x)dx =1l e ®(0)=1. . e (2.1.5)
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And ®(w) and W(w) are the Fourier transform @f(x) and ¢(x) , respectively. The

projection equations are

9,(x) = kide"'/Zw(z"'x—k)..............................................(2.1.6)
d) = CE OV k) e 21T
(002 X GHZTXK) 21
TR (0B k) e (2.1.9)

Where d}‘and c;‘ are the projection coefficient and ) is the 1% inner product. The

nested sequence of subspaces; }{\¢onstitutes the multiresolution analysis. Fiie

MRA to be orthonormaly;, andg, must be orthonormal bases of W and,V

respectively and W, OW, , for j#k, and W, 0JV;, which lead to the following

conditions ony and ¢.

(D k1 @i m) = Ok et 2(2.1.10)

(Gl md =0 Wil ) =051, G (2.1.11)

The Fourier transform gives the poisson summatibithvis 1 for allo.

2 (@ (W+27m)?| =1, 2012)

Since @gx)0OV, 0V, and ¢(x)OW, OV_,they can be represented as linear

combinations of the basis ofV

PX) =2 N@(2X=K) o (2.1.13)
k=—c0
W) =2 G X=K) 2114
k=—c0
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In the frequency domain

D) = HIP(D) 2129
W(w) = G(C—;)CD(C—;) e (2.1.16)
G =Dy = G =EH@H) ..o (2.1.17)

2.2 SIGNAL DETECTION

Using a matched filter bank interpretation of watelransforms, we propose to
design a wavelet that “matches” the signal of msersuch that the output of the
matched filter bank is maximized. The projectioru&ipn for the detail functions,
given in (2.1.5), is an inner product integral azah be rewritten in the frequency

domain by way of Parseval’'s Identity as

A =(FO, ) =(F@ ) RN (2.2,

Where lle’k(Zja))z2‘1'/2e"2]“"LIJ(2"a))is the Fourier transform ofy,,(x). The

energy ofd;( at a particular scale ¢ jand translation is given by its squared

magnitude
2 , 2
‘dk’j =‘<F(W),Wjo,ko(2'°w)>‘ e nn(2.2.2)

Applying the Cauchy-schwarz inequality to the rightte gives

. 2 . .
(F@ W, @) S(F@F@XW,, @)W, , @w)...... (223
Where the equality holds if and only if

F(w) = ijo,ko(zjow) e e (2.2.4)
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2

Where both F andV are complex spectra. Therefo(ldgj(f , iIs maximized when the

complex frequency spectrum af, , is identical to that of . Therefore, we would like

to develop a method for matching the complex spettof the wavelet to that of the
desired signal while maintaining the conditions &or orthonormal MRA. However,
because the conditions for orthonormality are om $pectrum amplitude (Poisson
summation) only, our solution matches the spectamplitudes and group delays
independently. While this approach is not ideahfran optimization standpoint, we
will show that it One other difficulty in matchirtbe wavelet spectrum directly to that
of the desired signal is the fact that the condgifor an orthonormal MRA are on the
scaling function and its frequency spectrum, netwravelet specifically. If we were
to construct a wavelet that satisfied its cond#idor an orthonormal basis, it would
not necessarily lead to a scaling function thategei®s an orthonormal MRA.
Therefore, we must propagate the conditions foodhonormal MRA from the 2-
scale sequence and scaling function to the wavelatch the wavelet to the desired
signal under those conditions, and then calculage scaling function and 2-scale
sequence always guaranteeing that the conditionsamo orthonormal MRA are

satisfied still leads to good matching wavelets.

2.3 PROPERTIES OF A WAVELET IN AN OMRA

Most wavelet construction techniques first findcalsg function that satisfies (2.1.4)
and (2.1.5), (2.1.12) , and (2.1.13) and then ¢ales the wavelet using (2.1.14) and
(2.1.15), (2.1.16) and (2.1.17).

2.3.1 Finding the scaling function from a Wavelet

The first step in deriving the OMRA conditions thie wavelet spectrum amplitude is
providing a means of derivinipe scaling function from the mother wavelet. Fngdi
the wavelet from the scaling function is simple usirgy1(14), howeverit is not
invertible. To derive an expression for in terafs the conditions provided in Section
II will be applieddirectly. Conditions (2.1.4), (2.1.7) and (2.1.55)d (2.1.16) are
required for togenerate an orthonormal MRA, thereby satisfyingl.(@. From

(2.1.15) and (2.1.16), we get the following expi@ss
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D (w)* =W 2)|* D (2N oo (231)

Repeated substitution *ItD(Zk a))‘2 for k=1 into above equation gives the following

closed form solution

- 2
D (@) = 2 [P (2T )| for@F 0o (2.3.2)
=1

2.3.2 Properties of the Wavelet spectrum amplitude

Now that we have an expression for findil@jfrom |‘P| , we need to develop the

constraints on|‘P| that are necessary and sufficient to guarangeg is an

orthonormal basis of V. Using (2.3.2), conditions (2.1.4), (2.1.7), ad1.15 and
2.1.16) can be transferred to conditions |Gr‘(a))| . To guarantee a closed form
solution, we assume the scaling function spectrgmbandlimited with only a
countable number of zeros. With this assumption, cae derive the following

theorems for the properties of orthonormal bandénhiscaling function and wavelet

spectra.

2.3.3 Properties of the Wavelet spectrum phase

It would be convenient if we could simply set thieape ofWto the phase of the
desired signal spectrum, F, thereby cancelling dbmplex component of (2.2.4).
However, just as in the previous section we shotliatW has specific constraints on
its amplitude, here we will show that has speatfnstraints on the structure of its
phase as well. First we will develop an expresdmnthe group delay of W(w)in

terms of the group delay of the scaling functioredpum®(w) . Substituting
(2.1.17) into (2.1.15) gives
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i P20+ 2m) o

W(2w) =€ (@7 @) o (2.3.3)

And so the phase d¥ becomes

w w
Q@)= -G QI GC) e
2 2
Where 6, (w) and 8, (w) are the phases d¥ and @, respectively. The negatives of
the group delays are denoted &g and [, .

Setting I, () = O, (w) +1/ 2gives

ro(@=-0, (w+2n)+§mq, Er MG (2.35)

Next we develop an expression for the group defa@wéw) in terms of the group
delay of H(w),denoted asA(w). By repeated substitutions of the equations in

(2.1.15) and (2.1.17), we get the following infenfiroducts

()= H(Z—C::)(236)

m=

LIJ(w)ze"WZ’H(%)HT) - H(Z—“’m)(237)

m=

Where H) is 27r-periodic.

2.4 Design Issues For Matched Wavelets

Wavelets and other methods of time-frequency aiglys their many practical
applications require that the analyzing filter seage have certain desired properties.
Typical of these properties are good time-frequdncwlization, energy compaction,
orthogonality, and regularity. laddition it may be desired to have an analyzingffil
that resembles a given waveform or that statidficedatches a process. These

wavelets will be referred to as matched waveletge Tmatching" of'wavelet filters
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can be classified in two groups namely "waveformtamiag”, and "statistical

matching”. Whera given waveform is mapped into a function thatspases perfect
reconstruction (PR) and regularity properties, thiscalled waveform matched
wavelet. One technique for obtaining waveform metckvavelets is given by FK
mapping. On the other hand, in the case of stadisthatching the wavelet filter is
designed to optimize its energy compaction or tineeuency resolution performance
with respect to a given process, that is with resge a given autocorrelation

function.

2.5 Design trade offs in statistically matched wavets:

Matched wavelet filters were designed for an awgpassive, AR(l), model, and the

following tradeoffs were observed:

1.The number of vanishing moments beyond k hrhgs a penalty on the energy
compaction, and therefoan the coding gain of a constraint matrix. This may be
however a significant limitation since for most pesse€ncountered in practice, like

images, vanishinghoments only up to 2 are required.

2. When filters were designed with time-frequenogalization asa performance
criterion, it was observed that, increasing the benof vanishing moments leads to

more compact functions in time while spreading fileguency support,. In total the

resolution cello’g? is slightly decreased for larger k.

3. The relationship of interband correlation angGn filter banks is not asclear as
in the block transformsHowever at the highest value ofgg the two band
correlation is not necessarily zero, thoutle correlation coefficient remains quite
small.
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2.6 WAVEFORM MATCHED WAVELETS

Wavelet filter banks can also be designed by matcko a specific waveform. Here
the goal is not to maximize the energy compactith vespect to a process model as
was the case in statistically matched wavelet réjtebut starting from a given
reference waveform, to map it to a closest functiat possesses wavelet properties.
A mapping operator, which for a given referencection f, finds a wavelet filtetV
that is closest to it in the mean square norm, iNerg by Frazier-Kumar (FK)
technique. This design technique for 1-D wavelkérs has been detailed in “The
Discrete Orthonormal Wavelet Transform”, and it$easion to 2-D filters has been
provided by Alkin in “A study of 2-D Wavelet Trammin, Technical Report”. In the
FK technique the wavelet functiol(t) is related to the reference function as

follows:
F(2)

JF@[ +|F(-2)

e (2.6.2)

where F(z) denotes the z-transform of the referémeetion f(n). The resulting filters
are of infinite impulse response type, hence masivindowed. The windowing and

truncation invariably results in some loss of ogbiality or perfect reconstruction

property.

In summary, matched wavelet design using the Fihateconsists of the following

steps:

1. Choice of a reference function

2.Spectral factorization of above equation and wimdg of the response.

At this stage, the contribution of our work to tiK methodology is first to
investigate the selection of a proper referencectfan. It is suggested that the
reference function can be chosenaasombination of the eigen-spectra of a process.

In other words the reference function in above @qnacan be chosen as
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F(w) = 2 VI 73 (2.6.2)
k=1
Where the K eigen spectrum is given by
— ~ 271) /N
U (@) = Z‘Bukie e (2.6.3)
J:

Where y denoting an eigen vector of thexNl covariance matrix. Since we will deal
with a two-band scheme, then the reference funci®nconstituted with the
eigenspectra corresponding to the N/2 largest gajaas. Finally in (2.1.14p(k)'s
denote the combiner coefficients. These coeffisi@ain be determined in a variety of
ways, suclasbeing proportional to the eigenvalugs, or to select them to maximize
the energy compaction. Note that after the FK magppoperation, there is no
guarantee that the energy compaction performanée(nj will be optimum. This

second method can be formulated as follows, (fo#)N=

maxﬁZakuk (a)fS&X (w)ja)(264)

For
ata,=1
A, <QAJA)A e (265)

where the inequality constraint is derived in tmegb in[4] and S (w) is the power

spectral density. For N larger the optimizationigpem is similar, except that there are

additional inequality constraints am_’s.
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2.7 ANEW APPROACH FOR CONSTRUCT

Compared with Fourier transform, wavelet transfdras better ability to analyze the
singularities and irregular signal because of atimesolution analysis, and we can
obtain the, details of signal at different scalgsapplying a wavelet transform. A
chronological development of efforts in wavelet lggs shows that WT is a good
tool for analyzing the non-stationary signal. Orfetloe exciting advantages of
wavelets over Fourier analysis is the flexibilihey afford in the shape and form of
the analyzer, that which “cuts up” and “studiese thignal of interest. The given
signal can be decomposed by a set frequency charinefual bandwidth on a

logarithmic scale, an analysis of using constaritlt€xs. In other words, the signal
projects into the basis function of wavelet, eatlbich isa dilation and translation

of a function called mother wavelép(t) at diffident scale. Unlike FT, WT do not

have a unique basis. Using different basis functibmavelet to analyze signal will
get different results. That means that the wavéésigned matches the signal to be
analyzed so that hest representation of the sigarabe resulted. Usually, one uses a
wavelet to do signal decomposition; it is somethlikg a blind man’s walk. If we
know the particular features of the signal and tdesign a wavelet to match the
signal, it would be better. This is a reason thataim wavelets are finding applications
in diverse fields and ia topic of current research. Since Mallat “A The@wy Multi
resolution Signal Decompositiontias introduced wavelet transform in 1989 and led
to the discrete wavelet transform, many researcheygosedso many methods for
construction basis function wavelet. Daubechieppsed method to find orthonormal
and biorthonomal wavelet bases with compact suppdrere she gave regularity and
decay conditions. Since Mallat has proposed tovgordhm and Daubechies has
given regularity conditions, one found the relasioip between the wavelet transform
and filter banks. Many approaches to build basestion of wavelet based on filter
banks, were proposed. But these approaches ofriegigravelet were independent
of the signals to he analyzed. In order to obthim liest signal representation, many
researchers are designing wavelet to match sigealfik first addressed an important
problem in wavelet analysis, which is to find thesb wavelet multiresoulation

analysis that approximates a given signal in somemn J.O.Chapaproposed
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suboptimal algorithm for designing match waveleCizen described the best wavelet
matched tree to represent a signal. Anughge a method for finding the maximal
projection of the given signal on to the scalingspace, but he does not give how to
choice wavelet filter banks.

2.8 MATCH WAVELET TO SIGNAL DETECTION

DESIGNING ALGRITHM

The criterion of wavelet matching signaltésminimize an error between original and
reconstruction signal only with coefficients in theale space. In order to make the

h,(n) and h(n) be low-pass and high-pass filters respectively,ahjective function

Equ.(8) is modified as following

E=we'(t)d +wy({ (1-H,€“Yde)+, Hfe“Yde) . . 281)

where w, and w, are the stop frequency of the pass-band and stog-tespectively,

and w w; are weights. The design procedures for construetingatch wavelet can be
presented as follows:

Step I: Give an original discrete signal x(n)

Step 2: Random guess an initial coefficient

Step 3: Compute analysis and synthesis filigirs) ,h (n), f,(n)and f,(n)
Step4:Compute the coefficient of the wavelet basis

function by pyramidal algorithm, and reconstruct

signal X(n) only with coefficients in the scale space.

Step5: Compute the objective function in Equ.(22).

Step 6: Adjust the coefficierr by optimal algorithm, such as Nelder-Mead simplex
method.

Step7: If the objective functions not reached at minimum, go to step 3 again; other

than end the calculation.
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2.9 ANEW APPROACH FOR ESTIMATION OF STATISTICALLY
MATCHED WAVELET

It is well known that a number of natural and maade phenomenon exhibit self-
similar characteristics. Also known as fractal meses, these waveforms arise in
natural landscapes, ocean waves, and distributioeachquakes and have found
profound applications in various engineering fieldkke image analysis,
characterization of texture in bone radiographsyoek traffic analysis etc.

These processes are in general non-stationarythaydexhibit self-similarity in the

statistical sense. A class of these signals isedall f# processes, which have

measured power spectral density (psd) that decays factor of]/ f£. Wornell [7]
emphasized the role of wavelet basis expansionkagaunen—Loeve-type expansion
for ]/f" processes. Since processes simultaneously exBiaiistical scale

invariance and time invariance, wavelet-like balsaging both scaling and shifting

can best represent these signals.

The wavelet transform has emerged as an altern&ivieaditional Fourier-based
analysis techniques for the analysis of non-statipsignals. However, unlike Fourier
methods, wavelet transforms do not have a unigassbahich is one of the reasons
why wavelets are finding applications in diverselds and is a topic of current
research. Since the basis here is not unique niatisral to seek a wavelet that is best
in a particular context. Particularly, in the cottef signal/image compression, an
issue of great research interest is to find a wevéhat can provide the best

representation for a given signal.

M-Band Wavelets:

Similar to the two-band wavelet system, one carnndef multi-resolution analysis
(MRA) with a scaling factor of M to construct M-bdwwavelets. Motivation for a
larger value of M comes from the desire to haveaenilexible tiling of the time

scale than that resulting from the M=2 wavelet, @ndlso comes from multirate
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filterbank theory. For the two-band wavelet systéime, scaling function and wavelet

function are defined by the two-scale differenceatmpn as follows:

o) => fof20(2t =), ONTZ oo (2.9.1)
A

a,(n

—u“ ho(-n)

—» hy(-n)

d
1) %M »‘ f(n) —

-f— =
| :
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—

=

o
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Fig 16 M-band wavelet

Yt)y=~1(nNy2p(2-n),Un0Z o, (2.9.2)

For a two-band perfect reconstruction biorthogdii@rbank, the scaling filterofand
its dual iy , wavelet filter f, and its dual hare required to satisfy the following

conditions :

h(n) =(=20)" fo(N =) (2.9.3)
=D NN, (2.9.4)

where N is any odd delay.

The scaling function ¢g(t)and ¢(t) wavelet function are related tf, and f via
(2.9.1) and (2.9.2). Dual scaling functiog(t) and dual wavelet functiog/'(t) are
related toh, and hvia similar equations. The wavelet function is s&dhave
vanishing moments of degree N if
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_ftkl//(t)dt = 0,f0r k=0,1,2, ... N..ooveoveeeeee e (2.9.5)

This equation can be transferred to discrete mosneinf,, where the K moment of

f, is defined as
My(K) =D N FL(N) e (2.9.6)

Requiring the moments ofy(t)to be zero is equivalent to putting the discrete
moments of f,to zero. For a more general multi-resolution foratioin, consider an

M-band uniformly decimated filter bank shown in g above to which the sampled

version(a,(n)) of the continuous time input signaft) is applied as input.

@t)=> f,(OYyMgMt-n),On0Z (2.9.7)

()= fF(MYM@EAMt—n),0n0Z o i=12,3,.. M-1.......o... (2.9.8)

Here,f, is the synthesis lowpass filtdf,to f,,_, are synthesis bandpass filters, and

fy -, Is the synthesis highpass filter. Unlike the M=#se, there are M-1 wavelets

associated with the scaling function governed bgvabmother wavelet equation.
However, just as for the M=2 case, the multiplidilyscaling function and scaling
coefficients are unique and are the solution ofidbascursive equation defined in
scaling function , and we can have multi-resoluapproximation associated with the
M-band scaling and wavelet functions. There are Blghal spaces spanned by the

M-1 wavelets at each scale j.
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2.10 BRIEF OVERVIEW OF THE THEORY OF SELF SIMILAR
PROCESSES

A continuous-time random process is called selflamif its statistical properties are

scale invariant. Symbolically, it is represented as

X(Ct) =™ X)L (2.10.1)

where the random process x(t) is self similar vgigf similarity index H (also called
the Hurst exponent) for any scale parameter ¢ J0e. equality in (2.1.14) holds in
the statistical sense only. If, in addition to thise process has stationary increments,

it isdenoted H-sssi.

2.11 FRACTIONAL BROWNIAN MOTION:

An (H-sssi) Gaussian process Xx(t) with<H <1 is called fractional Brownian

motion (FBm) and is denoted &, (t) . For the value H=1/2 , the resulting process is
the well-known Wiener process. Although an FBm pgscis a nonstationary process,
Flandrin has shown, using time-frequency represientathat the averaged PSD of
this process follows a power law and is directlopartional to ]/|f|/3 with

LB =2H +1, where f is the frequency. Therefore, in gendhase processes are also

called 1/ f# processes. FBm has a generalized derivative amefrised fractional

Gaussian noise (FGn). Corresponding to a discrati@ set, discrete FBm is defined

as

BulK]l = Bl KTy o, (2.11.1)

Where T is the sampling period. Since the process issalilar for any value of ¢ >

0, therefore, can be taken to be equal to one withass of generality. The mean
value, variance, and autocorrelation function efdiscrete Gaussian procdgs #

are given by

E{BLLKI} =0 e (2.11.2)
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1
var(B, [k} =k T oy (ki K) = S0 (k™ = [ky =™ ]k ™)

e (2.11.3)

Where o =var{B, (1)} =1/I(2H +1)|sinH }, i.e., it is a zero mean, self similar, non

stationary random process. Next, discrete FGn eastelined as

XulKI=By[K =BJ K] o, (2.11.4)

2.12 M" ORDER FRACTIONAL BROWNIAN MOTION  (m-FBm):

FBm with 0 < H < 1 is called the 1-FBm, and theresponding firstorder incremental

process is called the 1-FGn. Similarly, the m-FBwcpss is denoteB,,  (t) with m-

1 < H < m, and the corresponding mth-order incradeprocess is defined as m-
FGn process. It is given as

X, = BB, (0= > (<) [rj“jBH,m(t ) @121

Where | is a real number, and is called a lag,ransl an integer
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Fig:17 Analysis end of M-band wavelet system
2.13 ESTIMATION OF H PARAMETER

The maximum likelihood estimation method presenied “Fractional Brownian
motion: A maximum likelihood estimator and its d@pation to image texture,” can be
used to estimate parameter H. In “Fractional Br@mnimotion: A maximum
likelihood estimator and its application to imagettre,” the method is presented for
a process with 0 < H < 1 that can be easily extéden-FBm processes. If the input
process is m-FBm, then its mth-order incrementalcess will be an m-FGn

stationary process. Since it is stationary, maxinlikelihood (ML) estimation is

performed using a discrete m-FGn vector X and otk H:

Tp-1
H = max (—N |Ogm

m-1<H <m

= logR [ ). (2.13.1)

Where R, is the autocorrelation matrix of a discrete m-Fiocess.
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2.14 ESTIMATION OF STATISTICALLY MATCHED HIGHPASS
WAVELET FILTER OF ANALYSIS FILTERBANK

Consider an analysis filterbank structure in abdigaere of the M-band wavelet
system to which the sampled version of given camtirs time signal a(t) is applied as

input, i.e., a,, =a(n)sampled version of the input signal or approximatio
coefficients of the signal at scale j=0 . Héyeis the lowpass filterh,,h,...,h,_,are
bandpass filters, andh,_, is the highpass filter such that,(n) represents the
approximation coefficients at scale j = -1 , amtl,,(n),d_,,(n),....d_,, ,0)

represents the finer information in wavelet subepaat scale j = -1 . Let us assume

that the length of filteh,, , is N=5; then,d_,,,_,(n) can be written in terms of filter

weights as

d; () =hy-(Oa(Mn)+h,_(Da,Mn+1)
+hv1—1(2)a0(M1+ 2)+m_1(3p0 a\/h‘i' 3)+hw—1(4;10 (\/h+ 4 (2.14.1)

The signald_,,, _,(n) provides the detail or highpass information. Efer, we

would like to express this signal as smootheningresignal. Now if the center

weight h,,_,(2) of the highpass filteh,,_, is set to unity, then the above equation is

rewritten as

() =M1+, O M) +h, (1)
xg,(Mn+1)+h, . (38, (Vn+31+h,_, (4R, (n+ 4} (2.14.2)

=a,(Mn+2)-a,(Mn+ 2)=e(n)
Where

&, (Mn+2)=-{h,_,(0)a,(Mn)+h,_,(La,(Mn+1)
+h,,(3)a,(Mn+3)+h, (4, Mn+4)] e (2.14.4)

...................... (2.14.3)

~51 ~

DELHI COLLEGE OF ENGINEERING, DELHI UNIVERSITY



The interpretation of the above equation is as belmwact , is the central idea of the
present work. This equation has been put in the ealfoim to derive an interesting
interpolation for the same. This play a key roletlwe estimation of the matched

wavelet . With the centre weight fixed to unityprin above equationd,(Mn+2)is
the smoother estimate @ (Mn+2)from the past as well as from future samples.
Thus d_,,, ,(n)is the error in estimatinga,(Mn+2)from its neighbourhood and,

hence, represents additional finer information. Thisa to estimate an analysis
wavelet filter is similar to a sharpening filtereasin image enhancement. Since

d,\_.(n) represents error signal between the actual vafua,@Mn+2)and its
estimated valu&y,(Mn+2), we should minimize the mean square value ofehisr

signal. Here , the resulting filtdy,,_,is observed to be a high pass filter , which is in

conformity with the result of the sharpening filte image enhancement . from

above equation this can also be represented asvill

d_; () =€) :ao(Nh"'J])_WgAc.................................(2.14.5)

Where J, =index of centre weight of filteh,,_, and N= length of dual wavelet filter

hM -1

A =qa(Mna(Mn+l)...a,(Mn+J,—1g,Mn+J +1)...

LaMIEN-D] e (2.14.6)
W, =[h, _(0)h, ,(D)...h, @~ Dh, @+ 1. by, N= D], (2.14.7)
He(N] =HalMn+J)] 28 al M+ )W AL +EW AAW, ...............(2.14.8)
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To minimize E[e°(n)], the derivation ofE[e*(n)] with respect to Wis equal to zero.

0E[e?(n

Bl ] _ Efay(Mn+I)ATT+2RW, =0 p1ag
AW,

= E[a,(MNn+J)AIT=RW oo .(2.14.10)

Therefore, if statistics of the input signal are wno,then using above filter equation

h,_, can be computed. The wavelet structure is idesallted for self-similar or, say,

]/ f# processes, and the wavelet basis acts like a K¢ basis foﬂ/fﬂ processes.

Therefore, consider input signal a(t) as a selflainprocess with self similarity index
H.

2.14.1 Algorithm 1

The algorithm to estimate statistically matched pags analysis wavelet filter is

explained below:

Step 1: First, find the self-similarity index H far given input signal by the ML
estimation method presented in Fractional Browmnation. The procedure is

i) Form the mth-order incremental process (i.es¢iite m-FGN) from the given input
signal starting from . Compute the autocorrelatioatrix of the resulting m-FGn
process with (2.14.11):

m _ 08y gy [ 2M . 2H
Feit my (K) > (-1) j;m( 1) (m+j]|k+ 1 (2.14.11)

i) Next, plot the graph of bracketed term for was values of H. If the graph is
convex upward, the value of H corresponding to mmaxin the graph is the correct
value of H.
iii) If the graph is linear, increment m, and repstps i) and ii).
Step 2) Compute the autocorrelation matrix RagfMn) with (2.14.11) for a fixed
length N of the analysis wavelet filter.
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rgn (Mn, Mn,) =M 2" g (-1)"{|n, - n2|2H
. j j
e
i=0 J n, n,

whered} =07,

Step 3) Estimate the analysis wavelet filter usidd4.10) for the sufficiently high
value of time index n. The resulting filter is thighpass analysis wavelet filter.

2.15 DESIGN OF FIR PERFECT RECONSTRUCTION BIORTHOGONAL
FILTERBANK

The four filters hy,h, f,, f,of the two-band perfect reconstruction biorthogonal

filterbank structure are related by (2.9.3)and .@.8lere , all the filters are FIR
filters. First,the highpass analysis wavelet filteis estimated as mentioned in above

section.

Now compute the scaling filtef,. Since the integer translates @ft) and ¢(t) form
the basis of ¥ and W respectively, in b, f,(2m—n)and f,(2m-n) form the basis
of |? for integer values of m. similarlig,(n—2m) and h,(n-2m)form the dual basis

of I*for integer value of m. Therefore

Zh)(n—Zm)fO(n—Z‘nz):a'(rnl—mz),ljml,szZ ee(2.15.1)

And D hy(Mh(N) =0 (2.15.2)
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2.15.1 Algorithm 2

The complete algorithm to estimate a two-band comhpatpported statistically
matched wavelet with desired support and a desitedber of vanishing moments

from a given signal is as follows:

Step 1-3: Estimate the statistically matched amalysivelet filterh, of orderN, from

a given input signal using steps 1 to 3 of abogerahm.

Step 4: If it is desired to design wavelet filtgrof order N, > N, , then append extra
zeros before and aftdy such that its order i, .

Step 5: Use (2.9.4) to compute the synthesis sgélter f,.

Step 6: Use (2.15.1)and (2.15.2) and (2.9.5) ané.12) to compute the analysis
scaling filterh, .

Step 7: Use (2.9.4) to compute the synthesis wafittés f,.

Step 8: Design the scaling and wavelet functioosfthe scaling and

wavelet filter using 2—scale recursive relation®(P) and (2.9.2).
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2.16 DESIGN OF STATISTICALLY MATCHED SEMIORTHOGONA L 2-
BAND WAVELET SYSTEM

h(n) = (=1)"hg(N;=N) i (2.16.0)

Where N is odd delay.

E(Z) =U@NA@ZV(D) oo (2.16.2)

Where U(z) and V(z) are unimodular matrices, &{d) is a diagonal matrix.

Algorithm 3

Thus, the complete algorithm to estimate a semigadhal two-band statistically

matched wavelet from a given signal is as follows.

Step 1-3: Estimate the statistically matched amalysivelet filter h from a given
input signal using Steps 1 to 3 of above section.

Step 4: Use (2.16.1) to compute analysis scalitey fiy, .

Step 5: Form the polyphase decomposition matrix E@h analysis filtersy, and h, .
Carry out the Smith-McMillan form decomposition @$ in (2.16.2). Find R(z) and
using R(z) anddet(d(z)) , compute the synthesis filters and, hence, dethign

structure of the PR filterbank.
Step 6: Design the scaling and wavelet functiomsnfrthe synthesis scaling and

wavelet filter.

The resulting wavelet corresponding to the highpsgsthesis filter is usually
infinitely supported. However, a subclass of theseelets have finite support when

det(d(z)) is a monomial and results in a compactly supponadelet.
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2.17 Expected results of biorthogonal wavelet for enusic clip is
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Wavelet function
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Wavelet function
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CHAPTER-3
LITERATURE SURVEY ON FRACTIONAL DELAY
FILTER

3.1 INTRODUCTION TO FRACTIONAL DELAY FILTERS

A fractional delay filter is a device for band-lited interpolation between samples. It
finds applications in numerous fields of signalgassing, including communications,
array processing, speech processing, and musicndlgdy and time-delay

estimations, not only the sampling frequency bet délctual sampling instants are of
crucial importance. a comprehensive study of FIR @hpass filter design techniques
for band-limited approximation of a fractional dajidelay. The sampling rate must
satisfy the Nyquist criteria in order for a samplet to represent adequately the
original continuous signal. The appropriate sampletg is alone is not sufficient for

many applications also the sampling instants megirbperly selected.
Fractional delay filter design is used to approxenthe delay filterexp™“® with a

delay D for the full band|a.1 <, using FIR filters or IIR allpass filters. Fractidna

delay filter design is necessary only when sampngritical, i.e. Nyquist sampling.

When the sampling rate is higher than the Nyquaist, rthe ideal delay filteexp ~'“®
for the base banqu|<]—T only needs to be approximated, wheres the ratio of
r

sampling rate over the Nyquist rate.

Fractional delay means, assuming uniform samplanglelay that is a non integer
multiple of the sample interval. Fractional deldtefs are those filters which exhibit
near unity magnitude response and a flat groupydedaich is not necessarily an
integer multiple of the sampling interval. FIR FiRers arediscrete-time interpolators
which approximate the signal in betwessmmple points aa linear combination of

sample values on either sidethe desired signal value.

Designing FD filters involves determining the cea#nts of an FIR filter such that

its response best approximates the complex valgepiéncy response of the desired

FD. One fundamental advantage of digital signalcessing techniques over
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traditional analog methods is the easy implemeamadif a constant delay; the signal

samples are simply stored in a buffer memory fergiven time.

3.2 COMPARISON OF FIR AND IIR FILTER DESIGN

We can compare the above fractional delay filter®rms of their frequency response
error (FRE) magnitudeThe useful range of delay D is different for FIRdaadlpass
filters. In the case of FIR filters, the best apg@mmation is obtained when
interpolating between the middle taps in the caseda-length ones. The squared
approximation error function are symmetric abowd thidpoint of the FIR filterln
the case of allpass filters, the error curves aganaetric. The stability of allpass

fillers must be taken into account. Fractional del@ters yields the best
approximation when the total delay D is closegofor FIR filters and close to N for

allpass filters.

CONCLUSION: The design of high quality FD filteis difficult if a very small
delay is required. one possibility is to use a bBigbampling rate if accurate and small

fractional delays are needed.
3.3 LAGRANGES INTERPOLATOR

The fractional delay filters should have the follogicharacteristics:

1. Lowpass characteristics with an almost flat nitagle response in the passband
2. Magnitude response less than unity at all fragi@s, so as not to cause instability
3. Accurate model of the desired fractional delay

4. Easy and intuitive incorporation into the votratt model.

According to valimaki Lagrange’s interpolators aree type of FIR filter that are both
easy to implement and have the desire propelisésdlabove. Among IIR filters,
thiran allpass filters are also considered suitabiece they meet the listed

requirements. In this work, only Lagrange's intémpmrs have been used because
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being FIR filters it is intuitively easier to undésnd how they work in a given

application. Their design and characteristics @ declared.

While designing a digital filter, the ideal magmtu and frequency responses are
always kept in mind. The response of an ideal ivael delay filter was described
later in this thesis. If an FIR FD filter is beidgsigned, the general form of an Nth
order filter whose length is L=N+1;

N

H(z)= ) h(n)z 33

n=0
An error function E(®) is defined as the difference between the actdlthe ideal

filters at a given frequency
E(w)=H(w)-Hig(w)

Frequency-domain filter design involves minimizithg above error metric according
to criteria that lead to the filter design goalsnigemet. It may be useful in certain
applications to use a filter with zero errorst0. In other situations the squared error
integrated over a range of frequencies, may bemimeid. Different constraints on the

error E() lead to different types of filters.

Lagrange's interpolators belong to a class ofréilealled maximally flat filters they
have a constant magnitude response around a partitaquency of interest. The
response of Lagrange's interpolators is made ickrnt that of the ideal interpolators
at zero frequency. The derivatives of the errorcfiom E() are set to zero at the

frequency of interest:

— =0 foralln=0,1,2,... Nuvveoreeee oo, (3.32

The N+1 linear equations that follows above equatend can be solved to obtain

N+1 coefficients of the FIR filter. The resultaet ®f equations is of the form shown
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below, where D is as before, a positive real nunrepresenting the desired total

delay:

N
D K™(K) = D™ 0r RZ0,1.2, o Ne oo (3.3.3)
k=0

On solving this equation , a closed form represt@n of the FIR filter coefficients

can be obtained.

M D-k

h n)= , =

() DO T for =012 Mo (3.34)
k#zn

The ease of computing filter taps is an importaattdre of Lagrange's interpolators.
By virtue of their design criterion, they exhibitfat magnitude response at low
frequencies with no ripples. The magnitude resp@rsk group delay characteristics

of odd and even-length filtes are shown in result.

For fractional delay of D=0.5 , the point of intelation is located mid-way between
the two center filter taps. The filter impulse resge for a third-order filter is shown
in result. the filter is perfectly symmetric andetphase is linear in the entire
frequency range of the interpolators. This is bayaein the group delay plot. For the
values D=0.5in (0,1) , the odd order filter aré syymmetric. For an even length filter
, the point of interpolation lies between the tvamital samples. In such a scenario,
the delay characteristics are superior to odd-lengterpolators.only odd order
Lagrange's interpolators are used in this work.idtalso important to analyze the
magnitude response of the interpolators. In spesgithesis , the upper value of
frequencies that are of interest is about 5 KHz.il§Vthe waveguide model being
used in this work produces speed output at a sampéite of 44.1KHz , the spatial
resolution of the vocal tract is twice as much.sTisi because one segment length is
0.397cm m which is equivalent to a sampling rateB82KHz. The interpolation
method to be used for length variations can bealised as “spatial interpolation”
where the samples are 1/88200 s apart. The 0 —z5blddd thus corresponds to a
maximum normalization frequency of about 0.06. ewerirst order Lagrange's
interpolation has a very flat passband up to a atmed frequency of 0.1, so the use

of a sample first order filter is adequate for thighly over-sampled system being
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used. Linear interpolation is simply a two filtexps, b, 1-o] wherea is the desired

fractional delay.

3.4 FRACTIONALLY DELAY FILTER DESIGN BASED ON TRUNC ATED
LAGRANGE’S INTERPOLATION

A new design method for fractional delay filterssed on truncating the impulse
response of the Lagrange interpolation filter isgented. The truncated Lagrange
fractional delay filter introduces a wider approzition bandwidth than the Lagrange
filter. However, because of truncation, a rippleuszd by the Gibbs phenomenon
appears in the filter's frequency response. Prapeices of filter order and prototype
filter order allow adjusting the overshoot to a it level and simultaneously
reducing the overall frequency-response error. désign of the proposed filter is
computationally efficient, because it is based otympomial formulas, which have

common terms for all coefficients.

Lagrange’s interpolation is a common method in aigmocessing. It is used for the
interpolation of band-limited signals, for instapae sampling rate conversion and in
fractional delay (FD) filters Lagrange interpolatiads used to determine the
coefficients of a finite impulse response (FIR}eidil for a given fractional delayed
Such a filter approximately produces a time delfaghe Form (G +d)T , where B

is an integer , d is a fractional Number (0 < T)<dnd T is the sampling interval.
Harmonics proposed the maximally-flat approximatafnthe ideal fractional delay
and noted that when the point at which the appration error and its N derivates
are set to zero is chosen to be the zero frequeheysolution is equivalent to the
Lagrange interpolation. Kootsookos and Williamsascdvered that the coefficients
of even-order Lagrange FD filters can be obtaimedhfthe truncated sinc function

using the binomial window.

Valimaki showed that the same is true for odd-oldegrange FD filters. Lagrange

interpolation converges to sinc interpolation as éinder N approaches infinity. The
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implementation cost of variable Lagrange interpotatcan be reduced by using a
structure based on the Taylor series. the popylafiLagrange interpolation is due to
its easy coefficient update rule, which uses cldsech formulae that are N th-order
polynomials, where N is the filter order. Additidramlvantages of Lagrange FD filters
include the accurate approximation of fractiondaget low frequencies and the fact
that its magnitude response does not exceed uilite latter property makes
Lagrange FD filters a useful choice for feedbacucttres, in which it is necessary to
restrict the loop gain to ensure stability. The m@iawback of Lagrange FD filters is
that the approximation bandwidth is narrow, andsiwidened slowly as the filter
order is increased .A number of coefficients at beginning and the end of the
coefficient vector of a prototype Lagrange FD filere deleted to reduce the filter
length. This way, the bandwidth of approximatiom d¢&e extended with respect to
that of a Lagrange FD filter of the same order. Thu@cation introduces a ripple in
the frequency response, known as the Gibbs phermmevrhich typically appears in
FIR filters, whose coefficients are samples ofumdated ideal impulse response. As
the order of the prototype filter is increased, tesponse of the truncated Lagrange
FD filter approaches that of a truncated sinc HEerfi The new technique can be
interpreted as a hybrid method that combines ptigsenof the Lagrange and the

truncated sinc FD filters and allows mixing themamappropriate proportion.

3.5 NEW DESIGN METHODS AND ITS PROPERTIES:

The new design method is based on discarding aal egqumber of coefficients from
both sides of the impulse response of the Lagr&fyélter, which will be referred to
as the prototype filter in the following. The cldsirm formula to compute the

coefficients of an M th-order Lagrange FD filter(i), is given as

M D-k
h (n) = EL—H T fOrn= 0120 M (35.)
k#n
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where D is a real number that corresponds to thteeydeom the beginning (n=0)of
the impulse response. An Nth-order truncated LaggaRD filter is obtained by

casting off K coefficient from each end of the prototype filéex

O,when0sn< K, -1
h_(n) =<h_(n),whenK, < n< N + K,
O,whenN + K, +1<n< M

e (3.5.2)

where M > N is the prototype filter order, and kK a positive integer({(>%).

Therefore, the truncated Lagrange interpolatort@arepresented as
hr (n)= h.(n+K,) , for n=0,1,2,...,N.
The explicit formula to compute the coefficientstbé truncated Lagrange FD filter

of order N is represented as follows

hT (n) = - D—_k —_
L k:|0_| TR —k T =020 N (3.5.3)
k#zn+K,

In the designs the same number of prototype fitteefficients,l , are deleted

symmetrically from the beginning and end of theftoent vector, thatis, M =N +

2K;. Although the truncation operation brings about tBibbs phenomenon, the
overshoot is small compared to the overshoot otrinecated sinc filter of the same
order. the frequency-response error (FRE) for shene filters. It is seen that
truncating the Lagrange interpolator results inrameased FRE at low frequencies.
This is the price to be paid for widening the baitiix the Lagrange and truncated
sinc FD filters have the largest and the smalleS8EMvalues. The MSE of the
truncated Lagrange filter decreases as the pratofijer order is increased. As the

prototype filter order becomes larger, the MSE eargonverge.
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3.5.1 Coefficient update

In FD filters, the coefficients depend on the delalue, which may change often. If
updating the coefficients calls for heavy compuwtasi the filtering algorithm

becomes inefficient for high-speed applicationserEffiore, it is necessary to find a
way to reduce the computational complexity. An Ntder truncated Lagrange FD
filter with prototype filter order M has N + 1 dfieients, each of which is an M th-
order polynomial in D. Direct calculation of coeints along with one step of FIR
filtering requires (M+1)(N+1)multiplications and M¢1)=N additions. A technique
to reduce the computational complexity is to useak-up table, provided that there
is enough memory available. Method for decreadiegcomputations is to implement
the truncated Lagrange FD filter using the Farramacsure . Then the number of
computations can be reduced to (N+H#HM multiplications and N (N+1)+M

additions. A modified Farrow structure has beenppsed, which yields a further

(N+12)°

reduction in the number of multipliers. In Farrotusture, v
+

multiplications

and N +M+1 additions are required.

3.5.2 HOW TO CHOOSE M AND N:

The design of the truncated Lagrange filter coasidtchoosing the values of M and
N such that its response best approximates theedesponse. The overshoot of the
magnitude response and the bandwidth are the reatmres according to which the
design parameters can be determined. the behavidhe overshoot and normalized
bandwidth of the truncated Lagrange FD filter. Tiemalized bandwidth expresses
the frequency at which the magnitude response esa8tDb for a given filter order
N, as the prototype filter order M becomes lartjeg, normalized bandwidth becomes
wider. The undesirable effect of the enlargementhef prototype filter order is the
increase in the overshoot of the filter, which ni&ychosen to be small enough to be
insignificant for parameter values are the smaldsand N that yield the desired

response with sufficient accuracy.
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3.6 IDEAL SOLUTION:

Assuming that the (real-valued) discrete-time digepresents a band-limited base
band signal, the implementation of a constant dedap be considered as an
approximation of the ideal discrete-time linear gaallpass filter with unity

magnitude and constant group delay of the givenefal The corresponding impulse

response is obtained via the inverse discrete-fimier transform

1 7 : :
h(n)=— | H(e'*)e'"dw
(n) 2;7_{, (e*) FOr Al N oo (3.6.1)
— D
Hig (&) = €7 (3.6.2)
sinf[zI(n-D) _ .
n)=——————-—==sinc(n—-Drmr
hq (n) 7(n-D) ( Yforalln woveeeeeeeeeeceeeeeie e (3.6.3)
which has the shape of the familiar sinc functiefirted as
: sin (/T x
sinc(x) = sin{rx) e (3.6.4)
TT X

When the desired deldy assumes an integer value, the impulse respons®Zq.
reduces to a single impulse mt= D, but for non-integer values @ the impulse
response is an infinitely long, shifted and samplkedsion of the sinc function
Unfortunately, the ideal impulse response is ndy anfinitely long but also non

causal, which makes it impossible to implemem itgal-time applications.
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CHAPTER-4
LAGRANGE’S MULTIPLIER

Lagrange multipliers are a very useful technique nmultivariable calculus.
Lagrange's multipliers are useful ame of the most common problems in calculus is
that of finding maxima or minima (in general, "extra") of a function, but it is often
difficult to find a closed form for the function img extremized. Such difficulties
often arise when one wishes to maximize or minimazé&nction subject to fixed
outside conditions or constraints. The method ajraage multipliers is a powerful
tool for solving this class of problems without timeed to explicitly solve the
conditions and use them to eliminate extra varmbl@agrange multipliers are useful
when some of the variables in the simplest deseoripof a problem are made

redundant by the constraints.
A example : therhilkmaid problem™
To give a specific, intuitive illustration of thidnd of problem, we will consider a

classic example which | believe is known as the I[KMaid problem”. It can be

phrased as follows:

gl

Fig 23
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It's milking time at the farm, and the milkmaid Hasen sent to the field to get the
day's milk. She's in a hurry to get back for a deit a handsome young goatherd, so
she wants to finish her job as quickly as possidmwvever, before she can gather the
milk , she has to rinse out her bucket in the neaifker. Just when she reaches point
M, our heroine spots the cow, way down at p@ntBecause she is in a hurry, she
wants to take the shortest possible path from whkeeis to the river and then to the
cow. If the near bank of the river is a curve $gitig) the function g(x, y) = 0, what is
the shortest path for the milkmaid to take?

To put this into more mathematical terms, the makanwants to find the poirR for
which the distance ¥{,P) from M to P plus the distance B(C) from P to C is a
minimum (we assume that the field is flat, so aigtit line is the shortest distance
between two points). It's not quite this simplewuwer: if that's the whole problem,
then we could just choo$e= M (or P = C, or for that matteP anywhere on the line
betweenM and C): we have to impose the constrathiat P is a point on the
riverbank. Formally, we must minimize the functig®) = d(M,P) + d[P, C), subject
to the constraint that Bf = 0.

4.1 Graphical inspiration for the method

Fig 24
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Our first way of thinking about this problem candigtained directly from the picture
itself. We'll use an obscure fact from geometry: dgery pointP on a given ellipse,
the total distance from one focus of the ellipséPtand then to the other focus is
exactly the same. In our problem, that means ti@iilkmaid could get to the cow
by way of any point on a given ellipse in the saam@ount of time: the ellipses are
curves of constant ). Therefore, to find the desired poiRAton the riverbank, we
must simply find the smallest ellipse that intetsebe curve of the river. Just to be
clear, only the "constantRJ" property is really important; the fact that thesurves
are ellipses is just a lucky convenience (ellipmeseasy to draw). The same idea will
work no matter what shape the curves happen tolrbe.image at right shows a
sequence of ellipses of larger and larger size wifos areM andC, ending with the
one that is just tangekt the riverbank. This is a very significant woitls obvious
from the picture that the "perfect” ellipse and theer are truly tangential to each
other at the ideal poirR. More mathematically, this means that the norneaiter to
the ellipse is in the same direction as the nomeltor to the riverbank. A few
minutes' thought about pictures like this will coroe you that this fact is not specific
to this problem: it is a general property whenexar have constraints. And that is the

insight that leads us to the method of Lagrangdiptigirs.

4.2 The mathematics of Lagrange multipliers

In multivariable calculus, the gradient of a funatih is a normal vector to a curve (in
two dimensions) or a surface (in higher dimensi@msjvhich h is constant:

n = grad(h(P)). The length of the normal vector doesn't mat@@y constant multiple
of grad(h(P)) is also a normal vector. In our case, we have functions whose

normal vectors are parallel, so

grad(f(P)) =X grad(g(P))......covvve et e e (422.1)

The unknown constant multipliér is necessary because the magnitudes of the two
gradients may be different. (Remember, all we kngwhat their directions are the
same.) In D dimensions, we now have D+1 equation®+#1 unknowns. D of the

unknowns are the coordinatesh(e.g. X, y, and z for D = 3), and the other istibgv
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unknown constanf.. The equation for the gradients derived above iseator
equation, so it provides D equations of constraiahce got stuck on an exam at this
point: don't let it happen to you! The original stnaint equation ¢f) = 0 is the final

equation in the system.

Thus, in general, a unigue solution exists. As angnmaximum/minimum problems,
cases do exist with multiple solutions. There camnebe an infinite number of
solutions if the constraints are particularly degyate: imagine if the milkmaid and
the cow were both already standing right at thekbzfra straight river, for example.
In many cases, the actual value of the Lagrangdipher isn't interesting, but there
are some situations in which it can give usefubinfation (as discussed below).
That's it: that's all there is to Lagrange mulépsi Just set the gradient of the function
you want to extremize equal to the gradient ofdbestraint function. You will get a
vector's worth of (algebraic) equations, and togetwith the original constraint

equation they determine the solution.

A formal mathematical inspiration

There is another way to think of Lagrange multiigdi¢hat may be more helpful in
some situations and that can provide a better wasemmember the details of the
technique (particularly with multiple constraints @escribed below). Once again, we
start with a function ) that we wish to extremize, subject to the conditihat gP)

= 0. Now, the usual way in which we extremize acfion in multivariable calculus is
to setgrad(f(P)) = 0. How can we put this condition together wtitle constraint that
we have?

One answer is to add a new variabl® the problem, and to define a new function to

extremize:

FP,A) ZTP) = A G(P) v vevee e eeeee e e (8.2.2)

(Some references call this F "the Lagrangian famtti| am not familiar with that
usage, although it must be related to the somewimailar "Lagrangian" used in

advanced physics.)
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We next setgrad(F(P, 1)) = 0, but keep in mind that the gradient is now+DL
dimensional: one of its components is a partiaivdérve with respect t@. If you set
this new component of the gradient equal to zeva, get the constraint equatiorPy(

= 0. Meanwhile, the old components of the gradiesditX as a constant, so it just
pulls through. Thus, the other D equations areipe@cthe D equations found in the
graphical approach above. As presented here, thigust a trick to help you
reconstruct the equations you need. However, foseéhwvho go on to use Lagrange
multipliers in the calculus of variations, thisgenerally the most useful approach. |
suspect that it is in fact very fundamental; my owents about the meaning of the
multiplier below are a step toward exploring itnmore depth, but | have never spent

the time to work out the details.

Several constraints at once

If you have more than one constraint, all you needo is to replace the right hand
side of the equation with the sum of the gradieriteach constraint function, each
with its own (different!) Lagrange multiplier . This usually only relevant in at least
three dimensions (since two constraints in two disnens generally intersect at
isolated points). Again, it is easy to understans graphically. Consider the example
shown at right: the solution is constrained todirethe brown plane (as an equation,
"g(P) = 0") and also to lie on the purple ellipsoid(@h= 0"). For both to be true, the
solution must lie on the black ellipse where the iwtersect. | have drawn several
normal vectors to each constraint surface along ititersection. The important
observation is that both normal vectors are perngerat to the intersection curve at
each point. In fact, any vector perpendicular tocdn be written as a linear
combination of the two normal vectors. (Assuming tivo are linearly independent!
If not, the two constraints may already give a #esolution: in our example, this
would happen if the plane constraint was exactigéat to the ellipsoid constraint at
a single point.) The significance of this becomésaic when we consider a three
dimensional analogue of the milkmaid problem. Thek llipsoids at right all have
the same two foci (which are faintly visible asdialots in the middle), and represent
surfaces of constant total distance for travel fnme focus to the surface and back to

the other. As in two dimensions, the optimal ebipsis tangento the constraint
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curve, and consequently its normal vector is peatfmemar to the combined constraint
(as shown). Thus, the normal vector can be writera linear combination of the

normal vectors of the two constraint surfaces.daations, this statement reads

grad(f(P)) =1 grad(g(P)) + ngrad(h(P))......cccovvvviiiiiiiiiiiii e e (4.2.3)

just as described above. The generalization to manstraints and higher dimensions

is exactly the same.

4.3 The meaning of the multiplier

As a final note, I'll say a few words about whag ttagrange multiplier "means”. In
the more formal approach described two sectionselihe constraint function g)
can be thought of as "competing" with the desiwgttfion fE) to "pull" the pointP

to its minimum or maximum.

The Lagrange multipliek can be thought of as a measure of how haR) bas to
pull in order to make those "forces" balance outtba constraint surface. (This
generalizes naturally to multiple constraints, vhhigenerally "pull" in different

directions.) This analogy is inspired by the phg€ potential energy.
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WORK DONE

IMPLEMENTATION

1. DESIGN OF UNIT DELAY FILTER

2. DESIGN OF FRACTIONAL DELAY FILTER(Lagrange’s iatpolator (FIR))

3. COMPARISON OF THEIR CHARACTERISTIC

4. DESIGN OF LAGRANGE’S MULTIPLIER

5. DESIGN OF WAVELETS(orthogonal)

6. COMPARISON OF RESULTS USING FRACTIONALLY DELAYEPILTR

AND UNIT DELAY FILTER.
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CONCLUSION AND FUTURE SCOPE

To conclude this dissertation gives us the detaditemvledge of key issues in the field
of communication named “ Design of Matched Waveising Fractionally delayed

filter”. We introduced the theory and literaturensy behind design of matched
wavelet and design of fractionally delayed filtardadiscuss the basic design of
matched wavelet and fractionally delayed filterpogmrties of matched wavelet,
performance of matched and even properties oftifraally delayed filter ,

performance of fractionally delayed filter in vas®fields of their applications. We
identified some factors that could result in thesige of matched wavelet using
fractional delay filters not performing to its potml. These factors includes
randomness of signals, statistical signals etcd @@ noise effect and issues of
implementing them is crucial for proper functiobaliWe have discussed and
reserved some for our discussion latter pursuitsves hope to carry that in our next

work.

In this dissertation we focused our attention andisign of matched wavelet using
fractionally delayed filter, using Lagrange’s mplier to get random ness of signal
information and for non stationary signals. We usegrange's interpolator filter

(FIR) and designed it for fractional delay, so aim is to fine tune the signal and
improve the performance of matched wavelet on $gridere after discussion and
the result we got , we can conclude that the maiteveevelet designed by fractionally
delayed filters are better than matched waveletgyded by unit delay filters.

To support my work, | have simulated the entire kvon MATLAB 7.0.1. At this
stage my work should be considered as a prelimiaaryt has plenty of scope for
future investigation and analysis. Major work cam ¢arry in the field of image

processing and signal processing.
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RESULTS
Results of fractional delay filter

Magnitude with normalized frequency
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Phase with normalized frequency
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All this results are of orthogonal wavelet.

Results for unit delay filter when applied to image

% 10 scaling function
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4 T T T T T

Results of fractional delay filter when appliedritages
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Results for the same sentence spoke by threeretitfeeople

Lamda value for this three tests are
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Results for unit delay filter and fractional defdiers are as below

Testl for unit delay

w 1078 scaling function
0at i
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Testl for fractional delay

-
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Result for test 2

Test 2 for unit delay
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Fractional delay test2
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Results for test3

For unit delay filter

e scaling function
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For fractional delay

w10 scaling function
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