
A

Dissertation

On

DESIGN OF A NEW LANGUAGE BASED ON

XFORMS + XFDL AND CONVERSION TO XFDL

Submitted in Partial fulfillment of the requirements

for the award of Degree of

MASTER OF ENGINEERING
(Computer Technology and Application)

Submitted By

MINAKSHI ANAND

College Roll No: 03/CTA/05

University Roll No. 2003

Under the Guidance of:

Prof. D Roy Choudhury

Department Of Computer Engineering

Delhi College of Engineering, Delhi

DEPARTMENT OF COMPUTER ENGINEERING

DELHI COLLEGE OF ENGINEERING

DELHI UNIVERSITY

2005-2007

CERTIFICATE

This is to certify that the work contained in this dissertation entitled “Design of A

New Language Based On XForms + XFDL and Conversion to XFDL ” by

Minakshi Anand in the requirement for the partial fulfillment for the award of the

degree of Master of Engineering in Computer Technology & Application, Delhi

College of Engineering is an account of her work carried out under my guidance in

the academic year 2006-2007.

This work embodies in this dissertation has not been submitted for the award o f any

other degree to the best of my knowledge.

Prof. D Roy Choudhury

Head of Department

Department of Computer Engineering

Delhi College of Engineering

 Dr. S C Gupta

 Sr. Technical Director

 National Informatics Center

 Delhi

Delhi

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extent my heartiest felt gratitude to

everybody who helped me throughout the course of this project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my

learned supervisors Dr. S C Gupta and Prof. D Roy Choudhury for their invaluable

guidance, encouragement and patient reviews. Their continuous inspiration only has

made me complete this dissertation. Both of them kept on boosting me time and again

for putting an extra ounce of effort to realize this work.

I would like to specially thank Kalpesh Kumar Meena and Dhiraj Kumar Singh for

their constant support in the lab. I would also like to take this opportunity to present

my sincere regards to my teachers Prof. Goldie Gabrani, Dr. S. K. Saxena, Mrs. Rajni

Jindal, Mr. Manoj Sethi and Mr. Rajeev Kumar for their support and encouragement.

I am grateful to my parents for their moral support all the time, they have been always

around to cheer me up in the odd times of this work. I am also thankful to my

classmates for their unconditional support and motivation during this work. Being at

DCE with them has been a lifetime experience for me, all the time we spend together

enjoying life to its fullest, the birthday parties, placement parties and photo sessions

discussing new topic or technology would remain with me forever.

I want to thank the IBM Research Scientist Dr. John M. Boyer for his valuable

suggestions which helped us a lot during this project. Last but not least, special thanks

to the members of World Wide Web Consortium (W3C).

Minakshi Anand

M.E. (Computer Technology and Applications)

College Roll No. 03/CTA/05

University Roll No. 2003

Department of Computer Engineering

Delhi College of Engineering, Delhi-110042

ABSTRACT

XForms is a W3C Forms standard that separates purpose from the presentation. The

W3C XForms recommendation specifies 3 parts – model, view and control. XForms

gives a way to specify data, the calculations and validations on the data in a

declarative way. XML is used to specify data. For calculations, XForms provides

several functions of its own and borrow functions form XPath as well. This enables us

to write huge real world forms without the need of scripting. This makes coding forms

much simpler than it is today. Though XForms is simple, it still contains some code

which the form designer cannot easily relate to. In this thesis, we have tried to

simplify various XForms tags.

XForms provides a device-independent view part which can be combined with any

presentation option. XFDL (eXtensible Forms Description Language), developed as a

simpler presentation language for business forms, has graduated to adopt XForms to

represent data, calculations and validations. That is, it provides a good presentation

option for XForms. But, it makes code (even for simple forms) quite big and

repetitive. Though, XFDL is much simple and designer – friendly as compared to

HTML or any existing Forms Standard, it may be tedious to write the same tags again

and again. IBM Forms Designer is a product that helps design XFDL Forms but as it

runs on eclipse, it consumes a lot of memory. Plus, it’s a proprietary product. A

designer may want to write code in a simple text or xml editor. To make this simpler,

we have eliminated the repetitive part of the forms.

This thesis introduces a Forms Language that combines the aspects of XForms

and XFDL and makes coding for the designer much simpler. The tags

introduced are much more user-friendly. The implementation part includes a

converter that converts the simplified code to XForms + XFDL code. Coding of

the converter is done in java using the DOM API available in the Xerces (An

XML Parser).

TABLE OF CONTENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

1. INTRODUCTION.. 1

1.1 The Past Present, and Future of Web Forms.. 1

1.2 Motivation .. 2

1.3 HTML .. 2

1.4 XML ... 3

1.4.1 Elements .. 3

1.4.2 Namespaces .. 4

1.4.3 Attributes .. 5

1.4.4 Comments .. 5

1.4.5 The XML Declaration .. 6

1.4.6 Well-formed and Valid XML .. 6

1.4.7 Why XML is Important? ... 7

1.5 XHTML ... 8

1.6 Limitations of HTML Forms, Advantages of Xforms .. 8

1.7 Objective ... 9

2. XFORMS .. 11

2.1 Introduction ... 11

2.2 Goals of XForms .. 13

2.3 The XForms Model .. 13

2.3.1 Structural Elements ... 14

2.3.2 Common Attributes .. 15

2.3.3 Model Item Properties .. 16

2.3.4 Making the Connection – Binding ... 17

2.3.5 Multiple Models ... 18

2.3.6 Multiple Instances .. 18

2.4 The XForms Model ... 19

2.4.1 Form Controls .. 19

2.4.2 Grouping .. 22

2.4.3 Dynamic Presentation .. 23

2.5 XML Events .. 24

2.5.1 The Old Way .. 24

2.5.2 Declarative Actions, Displacing Script .. 25

2.5.3 XForms Actions ... 26

2.5.4 XForms Events ... 27

2.5.5 Stages of XForms Processing .. 27

2.6 Submit .. 29

2.6.1 When to Submit ... 29

2.6.2 What to Submit ... 29

2.6.3 Where and How to Submit ... 29

2.6.4 The Submission Element ... 30

3. XFDL (eXTENSIBLE Forms Description Language) .. 31

3.1 XFDL Features .. 31

3.2 The Structure of XFDL Forms .. 34

3.2.1 Top-Level Structure ... 34

3.2.2 XFDL Items ... 35

3.2.3 XFDL Options ... 38

3.2.4 Implicit Options ... 40

3.3 Signatures in XFDL .. 41

3.3.1 Applying Signature Filters ... 41

3.3.2 Applying Multiple Signatures .. 42

3.3.3 Securing Signed Elements ... 42

3.3.4 Preventing Layout Changes ... 43

3.3.5 Preventing Exploitable Overlaps of Signed Elements 44

3.4 The XFDL Compute System ... 44

4. DESIGN ... 45

4.1 XML – Based Language ... 45

4.2 MVC Model .. 45

4.3 Default Namespaces .. 46

4.4 The <calc> tag .. 47

4.5 The <valid> tag ... 47

4.6 Submission of Encrypted Data .. 48

4.7 Grouping of similar tags ... 49

4.8 Default Presentation Options .. 50

4.9 Seperation of Layout Information ... 51

4.10 Modifications in the <table> .. 53

4.11 The <select> clause ... 57

5. IMPLEMENTATION .. 59

5.1 XML Parsers ... 59

5.2 The DOM Parser ... 61

5.2.1 DOM APIs ... 62

5.2.2 Reading XML Data into a DOM ... 63

5.2.3 Creating a new DOM ... 66

5.3 The Conversion ... 67

5.4 Architecture of the converter .. 68

5.4.1 The main package .. 68

5.4.2 The model package .. 69

5.4.3 The control package .. 71

5.4.4 The view package .. 71

6. RESULTS (SAMPLE FORMS).. 77

6.1 SAMPLE FORM 1 (Discount Form) ... 77

7. CONCLUSION AND FUTUTRE WORK ... 89

8. APPENDIX .. 90

A Mapping Tables .. 90

9. REFERENCES .. 95

LIST OF FIGURES

Fig 2.1 Internal Architecture of XForms ... 12

Fig 2.2 XForms Presentation Options .. 12

Fig 2.3 XForms Submission .. 13

Fig 2.4 Stages of XForms processing .. 28

Fig 3.1 Hierarchy of Transaction Record Validity ... 31

Fig 4.1 Architecture of the new Language ... 46

Fig 5.1 The DOM Interface Hierarchy ... 63

Fig 5.2 Steps in creating a DOM Tree ... 65

Fig 5.3 Conversion Steps ... 68

Fig 5.4 Parts of the converter ... 68

Fig 5.5 The main package ... 69

Fig 5.6 Model and control packages .. 71

Fig 5.7 The view Package ... 72

Fig 5.8 The select Package .. 73

Fig 5.9 The pane package .. 74

Fig 5.10 The table package .. 75

Fig 5.11 The action package ... 76

LIST OF TABLES

Table 4.1 List of Default Skins .. 51

Table 5.1 A Comparison of the SAX and DOM Parsers ... 60

LIST OF ABBREVIATIONS

API Application Program Interface

CSS Cascading Style Sheets

DOM Document Object Model

DTD Document Type Definition

HTML Hyper Text Markup Language

JAXP Java API for XML Parsing

MIP Model Item Properties

MVC Model-View-Controller

P3P Platform for Privacy Preferences

RFC Request for Comments

SAX Simple API for XML

UI User Interface

URI Uniform Resource Identifier

W3C World Wide Web Consortium

XHTML eXtensible Hyper Text Markup Language

XFDL eXtensible Forms Description Language

XML eXtensible Markup Language

XSL eXtensible Style Sheets Language

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 1

1. INTRODUCTION

1.1 The Past, Present, and Future of Web Forms

As a general rule, the more interactive a web site is, the more heavily the site's

designers rely on web forms, a general term for all different kinds of technologies

used to gather information from users. Without forms, web sites are far less

interesting. Form-less web sites were the norm in the early days of the Web and

provided a one-way deluge of static information.

The addition of forms to Hypertext Markup Language (HTML), the primary language

used in web pages, launched an entirely new way of surfing the Web. Using HTML

forms, searching for information became possible on a worldwide scale. Sites such as

Yahoo! quickly became the most popular "portals" of entry on the Web. Later, as

developers pushed the limits of forms technology farther, web sites became even

more interactive and customizable.

Shortly after the initial tempering of HTML, various individuals began considering

the usefulness of forms alongside hypertext. HTML Version 2.0, as presented in a

document called Request for Comments (RFC) 1866, was the first time that web

forms were seriously considered for standardization. That RFC captured HTML as

found in common use prior to June 1994. At this point, HTML already included

forms, thanks to a 1993 proposal called HTML+.

Care and maintenance of the HTML family of specifications have since been handed

over to the World Wide Web Consortium, or W3C. The last non-XML-based version

of HTML was version 4.01, which didn't change forms processing much. New

development of the standard is taking place on a closely related technology called

XHTML, where the X indicates an XML foundation. XHTML 1.0 and 1.1 were

largely concerned with details of the transition to XML and ways to combine

vocabularies, not with major changes to the language.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 2

XHTML 2.0, in contrast, is making some improvements that aren't compatible with

earlier flavors of HTML. The largest such change is the adoption of XForms as a

replacement for the older HTML forms technology.

The XForms standard is device- independent and therefore can be combined with any

presentation language like HTML, XFDL (eXtensible Forms Description Language),

SMIL (Simple Multimedia Integration Language), SVG (Scalar Vector Graphics) etc.

1.2 MOTIVATION

I always faced a lot of problems coding forms in HTML. Though, at a time when

HTML was developed, it changed the entire web scenerio, coding of today’s forms in

HTML requires use of large amount of scripting and finally the code becomes

unmanagable. So, much simpler standards based on XML are being developed. One

such standard, I happened to use was XForms. It follows the basic rule that everything

can be specified using markup, and there is no need of scripting. But, XForms has

certain tags that difficult are to understand. So, we have tried to simplify these.

As XForms requires a presentation language for completeness, we used XFDL. In the

process, we identified some loopholes in XFDL as well and thus, removed those in

our new simplified language (an XML Language).

1.3 HTML

HTML is a non-proprietary format based upon SGML, and can be created and

processed by a wide range of tools, from simple plain text editors - you type it in from

scratch- to sophisticated WYSIWYG authoring tools. HTML uses tags such as <h1>

and </h1> to structure text into headings, paragraphs, lists, hypertext links etc.

The introduction of the forms chapter in HTML 4.01 reads: "An HTML form is a

section of a document containing normal content, markup, special elements called

controls (checkboxes, radio buttons, menus, etc.), and labels on those controls. Users

generally 'complete' a form by modifying its controls (entering text, selecting menu

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 3

items, etc.), before submitting the form to an agent for processing (e.g., to a web

server, to a mail server, etc.)."

Forms represent a structured exchange of data. In HTML forms, the structure of the

collected data, called a form data set, is a set of name/value pairs. The names and

values that are included in this set are solely determined by the controls present within

the form, so that adding a new control element, as well as adding to the user interface,

also adds a new name/value pair to the data set. Many authors take for granted this

basic violation of the separation between the data layer and the user interface layer—a

problem that XForms has gone to considerable lengths to alleviate.

1.4 XML

XML is a text-based markup language that is fast becoming the standard for data

interchange on the Web. XML(eXtensible Markup Language) provides a tag-based

syntax for structuring data and applying markups to documents. But unlike HTML,

XML tags identify the data, rather than specifying how to display it. Where an HTML

tag says something like "display this data in bold font"(...), an XML tag acts

like a field name in your program. It puts a label on a piece of data that identifies it

(for example: <message>...</message>).

Documents that conform to XML may be made up of a variety of syntactic constructs

such as elements, namespace declarations, attributes, processing instructions,

comments and text.

1.4.1 Elements

<tagname></tagname>

<tagname/>

<tagname>children</tagname>

Elements typically make up the majority of the content of an XML document.Every

XML document has exactly one top-level element, known as the document element.

Elements have a name and may also have children. These children may themselves be

elements or may be processing instructions, comments, CDATA sections, or

characters. Elements may also be annotated with attributes.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 4

1.4.2 Namespaces

<prefix:localname xmlns:prefix='namespace URI'/>

<prefix:localname xmlns:prefix='namespace URI'>

</prefix:localname>

<prefix:localname xmlns:prefix='namespace URI'>children

</prefix:localname>

Because XML allows designers to chose their own tagnames, it is possible that two or

more designers may choose the same tagnames for some or all of their elements.

XML namespaces provide a way to distinguish deterministically between XML

elements that have the same local name but are, in fact, from different vocabularies.

This is done by associating an element with a namespace. A namespace acts as a

scope for all elements associated with it. Namespaces themselves also have names. A

namespace name is a uniform resource identifier (URI). Such a URI serves as a

unique string and need not be able to be dereferenced. The namespace name and the

local name of the element together form a globally unique name known as a qualified

name.

Namespace declarations appear inside an element start tag and are used to map a

namespace name to another, typically shorter, string known as a namespace prefix.

The syntax for a namespace declaration is xmlns:prefix='URI'. It is also possible to

map a namespace name to no prefix using a default namespace declaration. The

syntax for a default namespace declaration is xmlns='URI'. In both cases, the URI

may appear in single quotes (') or double quotes ("). Only one default namespace

declaration may appear on an element. Any number of nondefault namespace

declarations may appear on an element, provided they all have different prefix parts.

Examples:

Qualified and unqualified elements

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 5

Qualified and unqualified elements using a default namespace declaration

Qualified elements

Qualified elements using a default namespace declaration

1.4.3 Attributes

name='value'

name="value"

Elements can be annotated with attributes. Attributes can be used to encode actual

data or to provide metadata about an element—that is, provide extra information

about the content of the element on which they appear. Attributes appear as

name/value pairs separated by an equal sign (=). Attribute names have the same

construction rules as element names. Attribute values are textual in nature and must

appear either in single quotes or double quotes. An element may have any number of

attributes, but they must all have different names. Unprefixed attributes are not in

any namespace even if a default namespace declaration is in scope.

1.4.4 Comments

<!-- comment text -->

XML supports comments that are used to provide information to humans about the

actual XML content. They are not used to encode actual data. Comments can appear

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 6

anywhere in the document. The character sequence -- may not appear inside a

comment. Other markup characters such as less than, greater than, and ampersand

(&),may appear inside comments but are not treated as markup.

1.4.5 The XML declaration

<?xml version='1.0' encoding='character encoding'

standalone='yes|no'?>

XML documents can contain an XML declaration that if present, must be the first

construct in the document. An XML declaration is made up of as many as three

name/value pairs, syntactically identical to attributes. The three attributes are a

mandatory version attribute and optional encoding and standalone attributes.

The order of these attributes within an XML declaration is fixed.

All XML declarations have a version attribute with a value that must be 1.0. XML

documents are inherently Unicode, even when stored in a non-Unicode character

encoding. The XML recommendation defines several possible values for the encoding

attribute. If an XML document can be read with no reference to external sources, it is

said to be a stand-alone document. Such documents can be annotated with a

standalone attribute with a value of yes in the XML declaration.

1.4.6 Well-formed and Valid XML

All XML must be well formed. A well-formed XML document is one in which, in

addition to all the constructs being syntactically correct, there is exactly one toplevel

element, all open tags have a corresponding close tag or use the empty element

shorthand syntax, and all tags are correctly nested (that is, close tags do not

overlap). In addition, all the attributes of an element must have different names. If

attributes are namespace qualified then the combination of namespace name and local

name must be different. Similarly, all the namespace declarations of an element must

be for different prefixes. All namespace prefixes used must have a corresponding

namespace declaration that is in scope.

A valid XML document is one that conforms to a DTD (Document Type Definition)

or an XML Schema. That is, the type and contents of all the elements are in

conformance with the corresponding DTD or schema.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 7

1.4.7 Why Is XML Important?

There are a number of reasons for XML's surging acceptance. This section lists a few

of the most prominent.

1. Plain Text

Since XML is not a binary format, you can create and edit files with anything from a

standard text editor to a visual development environment. That makes it easy to debug

your programs, and makes it useful for storing small amounts of data. At the other end

of the spectrum, an XML front end to a database makes it possible to efficiently store

large amounts of XML data as well. So XML provides scalability for anything from

small configuration files to a company-wide data repository.

2. Data Identification

XML tells you what kind of data you have, not how to display it. Because the

markup tags identify the information and break up the data into parts, an email

program can process it, a search program can look for messages sent to particular

people, and an address book can extract the address information from the rest of the

message. In short, because the different parts of the information have been identified,

they can be used in different ways by different applications.

3. Easily Processed

As mentioned earlier, regular and consistent notation makes it easier to build a

program to process XML data. For example, in HTML a <dt> tag can be delimited by

</dt>, another <dt>, <dd>, or </dl>. That makes for some difficult programming. But

in XML, the <dt> tag must always have a </dt> terminator, or else it will be defined

as a <dt/> tag. (Otherwise, the XML parser won't be able to read the data.) And since

XML is a vendor-neutral standard, you can choose among several XML parsers,

any one of which takes the work out of processing XML data.

4. Hierarchical

Finally, XML documents benefit from their hierarchical structure. Hierarchical

document structures are, in general, faster to access because you can drill down to the

part you need, like stepping through a table of contents.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 8

1.5 XHTML

The Extensible HyperText Markup Language (XHTML) is a family of current and

future document types and modules that reproduce, subset, and extend HTML,

reformulated in XML. XHTML Family document types are all XML-based, and

ultimately are designed to work in conjunction with XML-based user agents. XHTML

is the successor of HTML.

1.6 Limitations of HTML Forms, Advantages of XForms

1. According to developers, the most commonly cited problem with HTML

forms is their dependency on scripting languages. Real-world HTML forms

are reliant on script to accomplish many common tasks such as marking

controls as required, performing validations and calculations, displaying error

messages, and managing dynamic layout. This dependency results in complex

documents, which are expensive and time-consuming to maintain, since a full-

time programmer is practically necessary when dealing with that much script.

XForms helps reduce the need for script in several ways: by defining a

framework for simple, XPath-based calculations and validations, by providing

better user feedback on the status of the form, through dynamic features such

as repeating tables and optional sections, and through a system of XForms

Actions—elements that cause commonly needed actions such as setting focus

or changing a data value.

2. A second limitation of HTML forms is the difficulty of initializing form

data, as commonly happens when web sites "remember" past users and

provide them the courtesy of not having to repeatedly enter information. As

shown earlier, each form control has its own unique way of defining initial

data, with small bits of initialization data spread all across the document. This

means that in order to process a blank form into a filled form, either a new

document needs to be constructed piece by piece, or an existing document

needs to be patched in numerous places—one of the reasons why template-

replacement facilities are commonly found in application servers.

Constructing such forms is CPU-intensive and leads to bottlenecks on high-

volume servers.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 9

In XForms, form data is provided from an initial XML file, which can be

external to the form definition. Since XForms is also flexible enough to deal

directly with most XML data formats, piping initial data into a form is

typically a simple matter of pointing a src attribute to an existing XML data

source.

3. A third limitation of HTML forms is that the encoding formats, urlencoded or

multipart, represent only "flat" data, or name/value pairs. Many types of

forms, including purchase orders, would benefit from a richer data

representation.

XML is a better foundation for most business documents than a flattened set

of names and values. Since it has XML support as a fundamental requirement,

XForms excels at helping users create those kinds of documents.

4. More subtle, but still serious, is a fourth fundamental design flaw in HTML

forms: a hidden assumption of a one-step process—from a client to a

server—with processing finishing there. In the real world, forms often travel

in more complicated paths. For example, a vacation request form might go to a

supervisor for approval, then to the human resources department, and finally

to accounting for final processing. Managing HTML forms in such a workflow

scenario involves reinterpreting the data format at every stage. Perhaps this is

one reason why HTML forms aren't commonly seen in use for workflow.

XForms enables a different pattern: it allows form data, as an XML file, to be

routed to various workstations, as needed. At each stop, the data is loaded into

a form, which provides a viewport into editing all or parts of the document,

and submitted again. This process can be repeated as many times as necessary,

with any number of participants.

1.7 OBJECTIVE

The objective of this thesis is to

 Design a new simplified language which gives the functionality of XForms +

XFDL.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 10

 The new language provides shorter and simpler code as compared to XForms

+ XFDL.

 Design a converter that converts the simplified code into XForms + XFDL

code which can be displayed using the IBM Workplace Forms Viewer.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 11

2. XFORMS

2.1 Introduction

Web applications and electronic commerce solutions have sparked the demand for

better Web forms with richer interactions. XForms is the response to this demand, and

provides a new platform-independent markup language for online interaction between

a person and another, usually remote, agent. XForms are the successor to HTML

forms, and benefit from the lessons learned from HTML forms.

"XForms" is W3C's name for a specification of Web forms that can be used with a

wide variety of platforms including desktop computers, hand helds, information

appliances, and even paper. XForms started life as a subgroup of the HTML

Working Group, but has now been spun off as an independent Activity.

Traditional HTML Web forms don't separate the purpose from the presentation of a

form. XForms, in contrast, are comprised of separate sections that describe what the

form does, and how the form looks. This allows for flexible presentation options,

including classic XHTML forms, to be attached to an XML form definition.

XForms is an XML application that represents the next generation of forms for the

Web. By splitting traditional XHTML forms into three parts—XForms model,

instance data, and user interface—it separates presentation from content, allows

reuse, gives strong typing—reducing the number of round-trips to the server, as well

as offering device independence and a reduced need for scripting.

The XForms User Interface provides a standard set of visual controls that are

targeted toward replacing today's XHTML form controls. These form controls are

directly usable inside XHTML and other XML documents, like SVG. Other groups,

such as the Voice

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 12

Fig. 2.1 Internal Architecture of XForms

Browser Working Group, may also independently develop user interface components

for XForms.

Fig. 2.2 XForms Presentation Options

An important concept in XForms is that forms collect data, which is expressed as

XML instance data. Among other duties, the XForms Model describes the structure

of the instance data. This is important, since like XML, forms represent a structured

interchange of data. Workflow, auto-fill, and pre-fill form applications are supported

through the use of instance data.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 13

Finally, there needs to be a channel for instance data to flow to and from the XForms

Processor. For this, the XForms Submit Protocol defines how XForms send and

receive data, including the ability to suspend and resume the completion of a form.

Fig . 2.3 XForms Submission

2.2 Goals of XForms

 Support for handheld, television, and desktop browsers, plus printers and

scanners

 Richer user interface to meet the needs of business, consumer and device

control applications

 Decoupled data, logic and presentation

 Improved internationalization

 Support for structured form data

 Advanced forms logic

 Multiple forms per page, and pages per form

 Suspend and Resume support

 Seamless integration with other XML tag sets

2.3 The XForms Model

XForms Model is the name given to the form description. That name was chosen

mainly because it wasn't "data model," but also to evoke thoughts of the Model-View-

Controller (MVC) design pattern in programming. In MVC, a model contains all

the essential data, and one or more views provide a viewpoint to examine or interact

with the data. The XForms Model is analogous to a MVC model, and form controls

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 14

serve the function of views. (There's nothing that directly maps to a controller in

XForms, though portions of the processing model and XForms Events play a similar

role.)

A model item is the name for an XPath node with the addition of certain XForms

properties, formally called model item properties. The connection between model

item properties and form controls is called binding, which is accomplished through a

set of XML elements that comprise the XForms Model.

2.3.1 Structural Elements

The XForms Model is made up of a number of different elements, outlined here.

1. The model Element - This element is the local root of the definition of the

XForms Model. It is typically found in a non-rendered area of the containing

document. Eg -the head section in XHTML can contain an XForms Model.

2. The instance Element - This element serves as a container for initial instance

data. The contents of this element are simply data that will be both read and

written during form interaction, nothing more.

Instead of inline content, instance may use Linking Attributes (that is to say,

src) to point to external instance data.

3. The bind Element - This element establishes conditions that are continuously

applied to the instance data. With instance data defined neatly by the instance

element, the question remains of how to annotate instance data nodes with

properties necessary for forms. Each model item property is represented by an

attribute on this element- type, readonly, Required, relevant, calculate,

constraint, p3ptype.

The properties are applied through an additional attribute, nodeset, which selects

a node-set.

4. The submission Element – Specifies how,where and what data is submitted.

2.3.2 Common Attributes

The Common attribute collection contains the Binding Attributes—Single Node and

Node-set. A number of situations in XForms call for a reference into instance data.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 15

Binding attributes provide this feature. The following section describes these

attributes :

 ref - Whenever the intent of the binding attributes is to select a single node, the

ref attribute will be present. It contains an XPath path expression. In cases where

the selected node-set happens to have more than one node, the first node rule

applies, which removes all nodes other than the first, according to the order the

nodes appear in the document.

 nodeset - Whenever the intent of the binding attributes is to select a node-set of

any size, the nodeset attribute will be present. It contains an XPath path

expression.

 model - In larger or more complex documents, it will be common to have

multiple XForms Models. When this is the case, an additional attribute is needed

to indicate to which XForms Model the binding attaches. The value of this

attribute is of type IDREF, and so a model element in the same document must

have an attribute of type ID with a matching value.

 bind - In some cases, such as when a graphic design professional who isn't

concerned with XPath is laying out a form, it isn't desirable to have XPath strewn

about on every set of binding attributes. The bind attribute, which takes

precedence over any of ref, nodeset, or model, refers back to an already-defined

node-set on a bind element. The value of this attribute is of type IDREF, and so a

bind element in the same document must have an attribute of type ID with a

matching value.

It's worth noting that the term binding, as used in XForms, can refer to two separate

things. UI Binding occurs on an attribute of a form control element, and binds the

form control to a particular model item. In dynamic forms, the association to a model

item can jump around, causing the form control to be a window to different parts of

the data at different times. The other use of binding, Model Binding, occurs on the

element bind, selecting an entire node-set to which a set of model item properties gets

applied. It is a serious problem to have a dynamic model binding expression, since

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 16

that complicates life behind-the-scenes for an XForms Processor, which can cause

difficult-to-detect errors.

2.3.3 Model Item Properties

An individual property that can be applied to a node is called a model item property.

Some of the properties are XPath expressions (called computed expressions in the

specification), which the XForms Processor tracks and reevaluates as necessary:

 Readonly – This property signals whether a node is read-only, in which case form

controls attached to the node won't allow the user to change data.

 Required – This property signals whether a value is required in this node for the

form to be considered valid. A node satisfies the required condition when it is

convertible into a string with one or more characters.

 Relevant – This property signals whether a node is currently relevant to the form.

Form controls bound to non-relevant nodes are either disabled or completely

invisible. Non-relevant nodes are not even submitted with the rest of the data.

 Calculate - This property defines a calculation used to determine the value of the

node.

 Constraint - This property imposes an additional XPath-based constraint on the

validity of the attached node.

The remaining properties are static, and don't get reevaluated:

 type – This property associates an XML Schema datatype with an instance data

node. The unusual thing about this property is that it's technically unnecessary.

The right XML Schema incantations can accomplish the same result. In many

cases, however, using this model item property is more convenient than using

XML Schema features.

 p3ptype - This property associates a P3P datatype identifier with a node.The

Platform for Privacy Preferences (P3P) is a W3C specification that describes a

machine-readable profile of what personally identifiable information is collected

by a web site—especially forms. The main use of this property is to give P3P-

compliant browsers enough information, at a granular enough level, to offer users

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 17

flexible choices in how much personal information they give out, and to whom.

Another use of this property is as a key for autocomplete features.

Some of the model item properties have an effect on child nodes as well. The rules

for this behavior can be summarized like this:

 Setting a node to readonly sets all child nodes to readonly, unless specifically

overridden.

 Setting a node to non-relevant sets all child nodes to non-relevant, unless

specifically overridden.

 For all other model item properties, setting that property on a node has no effect

on child nodes.

2.3.4 Making the Connection—Binding

A bind has two ends, one side in the XForms Model, and the other side at a form

control. On the bind element within the XForms Model, the nodeset attribute holds

the Model Binding Expression. On the other end, in the user interface, is the UI

Binding Expression. This end may be bound two ways, using either IDREFs or

XPath.

1. With IDREFs - The recommended way to perform binding is to put an id

attribute on each bind element, and refer back to this with a bind attribute on

each form control:

 <!-- in the XForms Model -->
 <xforms:bind nodeset="email" id="mybind"

 required="true()"/>

 ...

 <!-- later in the document -->

 <xforms:input bind="mybind"...>

This approach is distinguished by the use of the bind attribute on form controls.

The main advantage of this approach is that it maintains separation between the model

and the view. If the structure of the instance data were to change, only the attributes

on the bind elements would need to be updated.

2. With XPath - Another way to bind is with XPath expressions on the form

controls:

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 18

 <!-- in the XForms Model -->

 <xforms:bind nodeset="email" id="mybind" required="true()"/>

 ...

 <!-- later in the document -->

 <xforms:input ref="email"...>

This approach is distinguished by the use of ref attributes on form controls. Many

view this approach as simpler, since it cuts out one level of indirection. It is also more

fragile, however, since the XPath expressions to locate nodes appear in two places. If

the structure of the instance data were to change, both the attributes on the bind

element and the ref attributes on the form controls would need to change.

2.3.5 Multiple Models

It's common to have multiple forms in the same document, and thus have multiple

XForms Models. The document markup for this is straightforward:

<!-- in the XForms Model 1 -->

<xform:model id="m1">

 <xforms:bind nodeset="email" type="my:email"/>

 ...

</xforms:model>

<xforms:model id="m2">

 <xforms:bind nodeset="search" type="my:query"/>

 ...

</xforms:model>

<!-- later in the document -->

<xforms:input ref="email" model="m1"...>

<xforms:input ref="search" model="m2"...>

When using IDREF binding, this causes no additional problems, since the ID the form

control points to is necessarily unique in the document. When using XPath binding,

however, additional information is needed. In any document with two or more

XForms Models, every XPath-style binding needs an additional attribute, model, to

indicate which model is being bound to. By design, each XForms Model is a self-

contained unit, and options for cross-model communication are limited.

2.3.6 Multiple Instances

A common scenario is that a form needs some extra data, perhaps for a calculation. In

HTML forms, hidden fields could be used for this. But in XForms, the initial form

data is XML, which is already widely deployed. Often, it's not possible to modify

existing DTDs and XML Schemas to add new forms-specific elements and attributes

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 19

to legacy XML. In these cases, it is possible to set aside additional XForms Instances

as temporary storage.

On the markup side, this, too, is straightforward—using multiple instance elements:

<!-- in the XForms Model -->

<xforms:model>

 <xforms:instance id="formdata">

 <my:root>

 ...

 </my:root>

 </xforms:instance>

 <xforms:instance id="userid" src="scripts/getuserid"/>

 ...

 <xforms:bind nodeset="my:root/..."/>

 <xforms:bind nodeset="instance('userid')/..."/>

 ...

</xforms:model>

A similar problem to having multiple models occurs when you try to write a XPath

expression that reaches across instances. By default, XPath expressions will always

point into the first instance. The function instance(), which takes an IDREF of an

instance element, resets the XPath context to a different instance (but always within

the same XForms Model).

2.4 XForms User Interface

2.4.1 Form controls

They are windows onto the form data kept in the XForms Model. In principle, this

was true also for HTML forms, although the design of XForms makes a much sharper

separation. The following sections describe the form controls included in XForms.

 input - This form control is quite similar to its HTML forms counterpart, as it

permits the entry of any character data. There are some significant improvements,

however, such as the ability to use an XML Schema datatype to optimize the user

experience of entering the data.eg - date control can be entered through a calendar

interface.

 <input ref="date">

 <!-- bound to node with XML Schema type xs:date -->

 <label>Ship By:</label>

 </input>

 secret - This form control is nearly identical to its HTML forms counterpart. It

offers only a cursory level of security, since the collected data isn't encrypted in

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 20

any way, merely obscured for presentation. For end-to-end security, additional

measures such as SSL are necessary.

 output - This is the only form control that doesn't accept user input. Output

renders data from an XForms Model as inline text, normally indistinguishable

from other text on the page.

 <output ref="/my:employee/my:name">
 <label>Name:</label>

 </output>

 upload - HTML forms had a limited file upload control, but the XForms version

surpasses it in many ways.

 <upload bind="attachment1">
 <label>Select a file</label>

 <filename bind="fname1"/>

 <mediatype bind="mt1"/>

 </upload>

 range - This form control wasn't present in HTML forms. It provides an intuitive

way to enter a bounded value. The upper and lower bounds are set by the

attributes start and end, respectively, and the suggested interval by the attribute

step.

<range start="0" end="10" step="1" ref="quan" model="po">

 <label>Quantity</label>

 </range>

 trigger - This form control is similar to the HTML element button and in fact

was called that in earlier XForms drafts. The final name emphasizes that this form

control really is a trigger for XForms Actions—a push button is just one possible

rendering. Other possibilities include images, hyperlinks, mouse gestures, and

voice activation. The rendering of this form control is often similar to the submit

element.

<trigger>

 <label>Login</label>

 ...

 </trigger>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 21

 submit - This form control is a specialization of trigger, with the effect of

submitting the form. The submit parameters are taken from the element that

matches the IDREF specified on the attribute submission.

 <submit submission="formdata">
 <label>Buy</label>

 </submit>

 select1 - This form control represents selection from a list with the intent of

enforcing the selection of exactly one item.Any control that expresses the goal of

picking things from a list, including conventional radio buttons and checkboxes

fall into this category.

Some graphic designers are unnerved about the generality of this form control,

and would prefer to explicitly indicate that they want, say, checkboxes instead of a

drop-down list. This is what the appearance attribute is all about.

appearance="full" - To always render all of the choices, a list of checkboxes or

radiobuttons is used.

appearance="compact" - To render a more compact list, a listbox that can have

scroll bars to limit itself to a particular size, is used.

appearance="minimal" - To render a minimal list, as little as a single item is

shown, with additional choices appearing, like a drop-down menu, upon request.

 select - This form control represents selection from a list with the intent of

allowing nothing, one thing, or multiple things to be selected. It shares many

common features with select1.

<select ref="cctype">

 <label>List For Specifying All Card Types</label>

 <item>

 <label>Master Card</label>

 <value>MC</value>

 </item>

 <item>

 <label>Visa Card</label>

 <value>VI</value>

 </item>

 <item>

 <label>American Express</label>

 <value>AE</value>

 </item>

 <item>

 <label>Diners Club</label>

 <value>DC</value>

 </item>

 </select>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 22

 help, hint, and alert - In XForms, every form control can have a help element,

which contains a message that's provided upon an explicit request (such as

pushing the Help or F1 key). The help message is delivered in a way that is

equivalent to a modeless message. Likewise, form controls can have a hint

element, which contains a message that's shown at the discretion of the XForms

Processor, for instance, if the user hovers the mouse over a form control for more

than a given amount of time.

A third kind of element, alert, contains a message to be shown to the user when

an error condition (like a form control failing validation) happens.

Like label, these elements can also get their contents from an external source

(e.g., through the src attribute), or from the instance data (e.g., through ref and

the other single-node binding attributes).

2.4.2 Grouping

Groups make possible a number of conveniences, but also have a functional aspect. In

nearly every respect, a group is another kind of form control, and thus model item

properties such as relevant and required can apply to a group, and override those

properties on any contained form controls. This is most useful when an entire section

of a form needs to change based on some condition in the instance data.Groups can

also help authors with a couple of shortcuts:

 The group element can be a convenient place to declare the XForms Namespace

as the default namespace, to reduce the clutter of repeated prefixes or additional

declarations.

 Binding attributes can be declared, to set a new context node for any binding

expressions that occur within the group

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 23

2.4.3 Dynamic Presentation

For years now, developers have used complicated scripting and other desperate

measures to create "dynamic forms." For instance, one commercial product used

HTML divs to represent individual "pages" of a multi-page form, with script to swap

the current page. Using XForms, the same effect can be accomplished declaratively.

switch and case

The switch element is a container for case elements, usually two or more.At any given

time, the contents of exactly one of the cases will be rendered in the final document,

and the rest of the cases will be suppressed.One use of this is to provide tabbed

interfaces.

<switch>

 <case id=“default”>Not Initialized</case>

 <case id=“ready”>Initialized</case>

</switch>

… <toggle ev:event=“xforms-ready” case=“ready” />

More generally, switch is useful for simulating pages, showing and hiding portions of

the form, and enhancing the usability of forms by suppressing parts that don't matter

at a given moment.

Each case element has a selected attribute, defaulted if necessary, that is visible to the

host document, including DOM and CSS interfaces. Additionally, xforms-select and

xforms-deselect events are dispatched to the individual cases, allowing event handlers

to respond in a centralized manner to changes.

The actual switch is accomplished by an XForms Action named toggle, which takes a

parameter of an IDREF that refers to the particular case that will become active.

Repeating Line Items

One of the most sorely missed features in HTML forms comes by many names:

tables, grid controls, or line items. The basic concept is that many forms in common

use don't fit in well with a flat list of form controls. The primary means of

accomplishing this in XForms is the repeat element. The nodeset attribute of repeat

selects a number of nodes, and the contents of the element, both from XForms and

from the host language, are effectively repeated once for each resulting node. One

way to think of this is to "unroll" the repeat, so that the following:

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 24

<repeat nodeset="item">

 <input ref="@quantity" .../>

</repeat>

has a similar effect, when the nodeset returns three item nodes, to:

<input ref="item[1]/@quantity" .../>

<input ref="item[2]/@quantity" .../>

<input ref="item[3]/@quantity" .../>

2.5 XML Events

An event is the representation of some asynchronous occurrence (such as a mouse

click on the presentation of the element, or an arithmetical error in the value of an

attribute of the element, or any of unthinkably many other possibilities) that gets

associated with an element (targeted at it) in an XML document.

In the DOM model of events, the general behavior is that when an event occurs it is

dispatched by passing it down the document tree in a phase called capture to the

element where the event occurred (called its target), where it then may be passed back

up the tree again in the phase called bubbling. In general an event can be responded to

at any element in the path (an observer) in either phase by causing an action, and/or

by stopping the event, and/or by cancelling the default action for the event.

An action is some way of responding to an event; a handler is some specification for

such an action, for instance using scripting or some other method. A listener is a

binding of such a handler to an event targeting some element in a document.

2.5.1 The Old Way

In the design of HTML forms, script is used whenever some specific action is needed.

For example, a form might have a button that copies values from a "ship to" section

onto a "bill to" section. In HTML forms plus script, the following code would

accomplish this:

<script type="text/javascript"> <!--

function copyAddresses() {

 var frm = document.forms[0];

 frm.shipAddr.value = frm.billAddr.value;

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 25

 frm.shipCity.value = frm.billCity.value;

 frm.shipProv.value = frm.billProv.value;

 frm.shipPostCode.value = frm.billPostCode.value;

} --> </script>

It would then be activated by a button, with an event-specific attribute, specified like

this:

<input type="button" id="cp" value="Copy values"

onclick="copyAddresses()"/>

In terms of DOM Level 2 Events, this represents a registration of an observer on the

input element, watching for the DOM click event at the target, and handling the event

by calling a short script. As a result, the script in the onclick attribute will get called

when the user clicks on the button.

Disadvantages of this approach:

 A special hardwired attribute, in this case onclick, is needed. This is inflexible

and clutters the language.

 Script is difficult to maintain, especially when bits of script are scattered

throughout the document.

 This won't work in browsers that don't support scripting.

2.5.2 Declarative Actions, Displacing Script

XML Events help specify the same thing as above, declaratively, that is, without the

use of scripting. Handlers can come from two sources. XForms defines a number of

handlers, called XForms Actions, discussed below. Additionally, the host language

can define handlers, as is the case with script. With XForms Actions, the earlier

example can be done without any script at all, like this:

<trigger>

 <label>Copy values</label>

 <action ev:event="DOMActivate">

 <setvalue ref="Shipping/Addr" value="../Billing/Addr"/>

 <setvalue ref="Shipping/City" value="../Billing/City"/>

 <setvalue ref="Shipping/Prov" value="../Billing/Prov"/>

 <setvalue ref="Shiping/PostCode" value="../Billing/PostCode"/>

 </action>

</trigger>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 26

2.5.3 XForms Actions

The following sections describe all of the XForms Actions defined in XForms. Any of

the following can be invoked in such a way that the processing described for the

element happens in response to a given event.

 xforms:delete Deletes a row of elements from a table. The elements are first

deleted from the XForms model, then the table’s repeat deletes the visible items

that were linked to those data elements.

 xforms:insert Allows you to add a row of elements to a table. This function

copies a row of elements in the data model, then inserts the copy in the desired

location in the data model. Once the copy is inserted in the data model, the table’s

repeat creates corresponding items that are displayed to the user.

 xforms:message Sets a message that is displayed to the user in a small dialog

box. 3 levels of messages are provided – modal, modeless and ephemeral.

 xforms:rebuild Causes the form viewing application to rebuild any internal data

structures that are used to track computational dependencies within a particular

model.

 xforms:recalculate Causes the forms viewing application to recalculate any

instance data that is affected by computations and is not up-to-date. This affects

all data instances in the designated model.

 xforms:refresh Causes the forms viewing application to update all user interface

elements linked to a particular model, so that they match the underlying data in

the XForms model.

 xforms:revalidate Causes the forms viewing application to validate all instance

data in a particular model. This ensures that all validation checks have been

performed. In general, the XForms processor automatically runs the above 4

actions when required.

 xforms:reset Returns a particular XForms model to the state it was in when the

form was opened. This allows the user the reset the contents of the form to their

″starting point″, which can increase usability of the form.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 27

 xforms:send Triggers an XForms submission. The submission must already be

defined in the XForms model.

 xforms:setfocus Sets the focus to a particular presentation element in the form.

 xforms:setindex Sets the index for the xforms:repeat element in a table. This

determines which row in the table receives the focus. Rows use one-based

indexing. This means that the first row has an index of 1, the second and index of

2, and so on.

 xforms:setvalue Sets the value for a specified element in the data model.

 xforms:toggle Selects one of the cases in an xforms:switch and makes it active.

When one case is selected, all other cases in the switch are deselected.

2.5.4 XForms Events

Events are one of four major types:

1. lifecycle - An event that deals with setting up or tearing down the XForms engine.

2. notification - An event indicating something took place.

3. interaction - An event that triggers some kind of processing. Cancelling the event

(when that is possible) stops the default processing.

4. error handling - An event indicating an error or some other unusual situation

occurred.

2.5.5 Stages of XForms Processing

The life-cycle of an XForms processor can be divided into several categories, which is

a useful viewpoint for a form author. By scrutinizing what you want to accomplish,

you can narrow down the potentially huge list of events to a more manageable list.

 Initialization

Obviously, the first step is to initialize all the machinery underlying XForms. The

initialization process was extensively discussed, the main decision point being how

much stuff gets initialized before versus after the event happens. To make everybody

happy, no fewer than three separate initialization events were defined, some of which

fire multiple times.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 28

 Interaction

The major portion of XForms processing involves interacting with the user, to the end

of producing an XML document. During interaction, two different kinds of events

are important: events that provide a notification that something happened, and

events that cause something to happen. Both kinds of events are important to form

authors.

Fig. 2.4 Stages of XForms processing

 Submit

Sending the form data on its way is the goal of most forms, at least in theory.In

practice, the submission attempt might not get very far, such as when the form

contains invalid data. Other problems too, such as a crashed server, can prevent the

submission from completing. For this reason, the submission process includes extra

events that help the form author determine whether the submission was successful.

 Deinitialization

In HTML forms, submitting the form and loading a new page always happened at the

same time. In XForms, however, the author has more granular control of the process.

Thus, even though there is a single deinitialization event, it's still worth discussion of

when it happens.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 29

 Error Condition

Error processing is a tricky subject. In HTML forms, nearly any error is tolerated

without generating error messages (but often at the expense of erratic or unpredictable

behavior). In XForms, any number of problems can cause a fatal error, which will

prevent a form from displaying properly.

2.6 Submit

The four main questions in submitting form data are when, what, where, and how.

The following sections discuss each of these questions.

2.6.1 When to Submit

Submit happens when the user presses the big button labeled "Submit," right?

Formally, a submission is initiated when an event called xforms-submit arrives at

the submission element. The reason for a separate event is so that submission can be

requested in other situations, such as pressing Enter or meeting other conditions. The

XForms Action send can explicitly send out the submission event, and the form

control named submit, which otherwise behaves exactly like trigger, also

dispatches an xforms-submit event.

2.6.2 What to Submit

XForms defines ways to reduce the amount of XML that gets selected for submission.

One of the most powerful techniques for managing complexity is to divide and

conquer using multiple XForms Models. Using multiple models can help but the

strong separation between XForms Models can get in the way. Another option is to

use multiple instances, which can use either inline or remote XML, within the same

model. Once a particular instance document is selected, XForms still provides

additional ways to prune the XML tree. One way is to specify a subtree of the

instance data that gets submitted, using either the ref attribute (XPath expression)

or bind attribute (IDREF to a bind element). Finally, any node that has a relevant

property that evaluates to false will not be present in the submitted data.

2.6.3 Where and How to Submit

The questions of where and how are closely related, because the target of submission

is a URI. The first part of a URI, called the scheme, indicates the general approach

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 30

for the submit transaction, as in "http," "file," or "mailto." The remainder of the URI

gives more specific information on where the destination for the data is to be.

Additionally, there need to be rules for how the in-memory instance data gets written

down as a pattern of bytes on the wire.

2.6.4 The Submission Element

The submission element defines the parameters for serializing and submitting instance

data. An XForms Model can contain any number of submission elements.Most of the

action takes place in the attributes of this element.

 ref and bind - These attributes are functionally equivalent to binding attributes

and are used to select a particular node that is selected, along with all its children.

 action (required) - This attribute holds a URI to which the submission will be

directed.

 method - This required attribute provides additional information that, combined

with the URI scheme in the action attribute, determines how the submission

process will proceed. Possible values are "get", "put", "post", "form-data-post",

"urlencoded-post".

 replace - This attribute describes what should happen with the response

document (if any) that is returned from the submission action. Possible values are

"all", "instance", "none".

 separator - This attribute, which applies only to urlencoded serialization,

specifies the separator character to be used between name/value pairs. Possible

values are "&" or ";". The default is ";".

 mediatype - This attribute selects the Internet media type to be associated with

the serialized instance data, and has a default of application/xml.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 31

3. XFDL

Extensible Forms Description Language (XFDL), developed by John Boyer and Tim

Bray, is an application of XML that allows organizations to move their paper-based

forms systems to the Internet while maintaining the necessary attributes of paper-

based transaction records. More specifically, the features that paper forms offer (data

structures, user interfaces, and transaction records), must be integrated into electronic

commerce systems. XFDL was designed for implementation in business-to-business

electronic commerce and intra-organizational information transactions.

XFDL replicates the legal requirements of Paper forms. These requirements are based

on 3 key concepts : security, non-repudiation, and auditability. These concepts are

based on a foundation of authorization, signer authentication, document

authentication, and context preservation. Figure 3.1 illustrates the relationships

between these concepts.

Fig. 3.1 Hierarchy of Transaction Record Validity

3.1 XFDL Features

The features of the language include support for a high-precision interface, fine-

grained computations and integrated input validation, multiple overlapping digital

signatures, and legally-binding transaction records.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 32

1. XFDL is a Document-Centric Markup Language

XFDL takes a "document-centric" approach to digital forms by storing each necessary

element of a viable transaction record in one securable file. It is the key feature in

creating non-repudiable transaction records - the "message" must accurately record

the full transaction context in order to achieve the essential purpose of digital

signatures. Just like a paper form, the content, context, and structure of an XFDL form

are all stored together. In the event of a dispute, an XFDL document can be recalled

and used to prove the exact nature of a transaction. An organization can therefore

create a "forms repository" of XFDL documents that provide legally-admissible

transaction records for dispute reconciliation, business audits, chain-of-custody

processes, and so on.

2. XFDL is a Computational Language

Unlike most XML languages, XFDL is also a programming language. XFDL is smart

enough to make decisions, handle arithmetic, and respond to user input.

This computational power, or logic, is embedded into the XFDL document and

becomes part of the transaction record that is digitally signed. Embedded logic also

gives XFDL documents offline functionality, as an external connection to a script or

some other source of programmatic intelligence is not required. This also makes

XFDL documents useful for nomadic, or disconnected, data collection using portable

computers and hand-held appliances.

3. XFDL is Assertion-Based

XFDL's computational logic is expressed using assertions. Unlike most traditional

programming languages that function on a procedural mode, there is no thread of

execution to be managed in XFDL. Creating computations in XFDL is much like

using a spreadsheet. For example, to make Field1 the sum of Field2 and Field3,

Field1 is "told" that this is the case. As the user interacts with the form, changing the

values of Field2 and Field3, the XFDL language makes sure that the assertion is

always true.

XFDL was engineered as an assertion-based language for two reasons. The first is

readability. The type of logic that is normally used in complex forms is very easy to

describe using assertions. The second is that it is very easy to freeze the exact state of

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 33

a document when the user decides to save it, sign it, or send it to a server. Capturing

the exact state of a program written in a procedural language would require the

acquisition of a great deal of information, such as the heap, the call stack, the data and

code segments, and so on.

4. XFDL is Human-Readable Plain Text

A core design tenet of both XML and XFDL is human readability. File formats for

transaction records obviously need to be machine-readable, but can be more "future-

proof" if they are also human-readable. XFDL is designed to create transaction

records whose life span may be much longer than any particular Internet technology

or vendor.

5. XFDL is a Publicly Accessible Open Standard Based on XML

XFDL derives several benefits from having a human readable XML syntax. Any

document format, such as XFDL, which claims to be human readable must be a

publicly accessible open standard. This is necessary to ensure that the semantics of the

XML elements are known. As a natural consequence of this, organizations can share

structured information gathered by XFDL documents with other organizations

without a costly translation process. This is also valuable for organizations that want

to share data among internal departments whose systems may be based on

fundamentally different ontology.

6. XFDL is Extensible, Allowing Application-Specific/Server-Side Logic

Although the most important function on a non-repudiable transaction - the digital

signature - occurs on the client machine, the full lifetime of a transaction can be quite

complex and involve processing by modules other than a forms viewer. In a "fat-

client" application design, these modules will run on the client machine, whereas the

"thin-client" application architecture will have these modules on the server side. In

either case, the ability to add custom functions to XFDL computes and, in general, to

use XFDL's computation engine within custom items and options designed for

modules other than a viewer is a key component in managing a transaction record's

lifetime from a single source document.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 34

7. Precision Layout for Dense Business and Government Forms

Unlike HTML and Java-based forms, XFDL documents allow precise recreation of

the layout and appearance of paper forms on the Web. Although the acceptance of

web technologies such as CSS and XSL promise to offer greater interface control,

these technologies currently only address the need for precise presentation, not the

need for viable transaction records. For instance, a style sheet cannot currently be

inextricably bound to user-entered data.

8. Digital Signature Security and Flexibility

XFDL defines a technology-neutral digital signature interface that allows it to work

with most common digital signature systems, such as RSA, DSS, biometric tokens,

and so on. For cryptographic signatures, the signer's public key certificate is included

with the encrypted hash. In addition to verifying the encrypted hash, the certificate

authority signature on the signer's public key certificate is also verified using a

certificate authority certificate on the verifying box. This simplifies the delivery of the

signer's public key while preventing substitution attacks.

The digital signature hash value is not just computed on the entered data, as is the

case with HTML forms. The XFDL elements that contain the content, context, and

structure of the original form are "locked down" by the digital signature, in much the

same way that a paper form is considered to be immutable once signed.

XFDL also supports multiple overlapping signatures that apply to different sections

of a form. Many complex paper forms require multiple levels of input and approval.

In this case, a multi-section form is used to gather the appropriate information and

signatures. In practice, an XFDL form can be routed through an electronic workflow

system, with each user adding the required information and digital signature until the

document is complete.

3.2 The Structure of XFDL Forms

3.2.1 Top-Level Structure

An XFDL form is an XML 1.0 document whose root element tag is XFDL. This

element must be in the XFDL namespace,

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 35

<XFDL xmlns="http://www.ibm.com/xmlns/prod/X 7.1"> ...</XFDL>

The XFDL element may contain many namespace attributes. By convention, the

XFDL namespace is declared to be the default and it is also assigned to the prefix

’xfdl’.The XFDL element must contain a <globalpage> element as the first child

element, followed by one or more <page> elements.

<!ELEMENT XFDL (globalpage, page+)>

The <globalpage> element must contain a single <global> element, which can

contain zero or more option elements. These are referred to as form global options;

they typically contain information applicable to the whole form or default settings for

options appearing in the element content of pages. The <globalpage> and <global>

elements must contain an attribute called sid which must be set to the value global.

<!ELEMENT XFDL (globalpage, page+)>

<!ELEMENT global (%options;*)>

<!ATTLIST globalpage sid CDATA #REQUIRED #FIXED "global">

A <page> element contains a <global> element followed by zero or more ’item’

elements. The options in the page’s global element typically contain information

applicable to the whole page or default settings for options appearing within element

content of items. The page global options take precedence over form global options.

A page is also required to have a ’sid’ attribute, which provides an identifier that is

unique among all <page> elements (sid is short for scope identifier).

<!ELEMENT page (global, %items;*)>

3.2.2 XFDL Items

An item is a single object in a page of a form. Some items represent GUI widgets,

such as buttons, check boxes, popup lists, and text fields. Other items are used to

carry information such as attached word processing documents or digital

signatures.Each item must have a sid attribute, which provides a scope identifier that

uniquely identifies the item from among all child items of its parent element.

An item can contain zero or more option elements. The options define the

characteristics of the item. XForms user interface controls appear as options of XFDL

items, and the XFDL item is said to be the skin of the XForms form control that it

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 36

contains. XFDL allows elements in custom namespaces to appear at the item level (as

long as they contain an xfdl:sid attribute. Following are the various XFDL Items :

 action - A non-visible item that can perform similar tasks to a button (print,

cancel, submit, and so on) either after a certain period of time or with a regular

frequency.

Skin for: <xforms:submit>, <xforms:trigger>

 box - An item that provides a graphic effect used to visually group a set of the

GUI widgets on the page. A box is drawn under all widgets on a page. This item is

useful in some circumstances, but it is usually better to use a pane item (see

below) to both visually and logically group related user interface elements.

 button - Performs one of a variety of tasks when pressed by the user, such as

saving, printing, canceling, submitting, digitally signing the form, viewing

documents enclosed in the form, and so on. A button can have a text or image

face.

Skin for: <xforms:submit>, <xforms:trigger>, <xforms:upload>

 check - Defines a single check box.

Skin for: <xforms:input>

 checkgroup - Defines a group of checkboxes that operate together to provide a

multiselection capability.

Skin for: <xforms:select>, <xforms:select1>

 combobox - An edit field combined with a popup list; its value can be either

selected or typed.

Skin for: <xforms:select1> (select or type input), <xforms:input> (date selector)

 data - Used to carry binary information using base-64 encoding and compression,

such as enclosed files or digital images, using base-64 encoding. This item

appears when advanced XFDL enclosure mechanisms are used. When a basic

<xforms:upload> is used, the data appears in an <xforms:instance> data node.

 field - Used to capture single- or multiple-line textual input from the user; it

includes input validation and formatting features as well as enriched text

capabilities.

Skin for: <xforms:input> (single-line text), <xforms:secret> (single-line, write-

only), <xforms:textarea> (for multiline plain text or enriched text)

 label - Shows either an image or a single or multiple line text value.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 37

 Skin for: <xforms:output>

 line- A simple graphic effect used as a separator.

 list - Shows a list box populated with choices from which the user may select one.

Skin for: <xforms:select>, <xforms:select1>

 pane - Provides an hierarchic grouping capability for other items that are defined

within the content of the pane. Also, may provide the ability to switch between

multiple groupings.

Skin for: <xforms:group>, <xforms:switch>

 popup - Shows either the text of the currently selected choice or a label if there is

no selection; the popup provides a small button that causes the list of selectable

choices to appear, from which the user may select one.

Skin for: <xforms:select1>

 radiogroup - Defines a group of radio buttons. Initially none may be selected, but

a maximum of one radio button can be selected within the group.

 signature - Receives the signature that ultimately results when a user presses a

signature button.

Skin for: <xforms:select1>

 slider - Creates a sliding control, similar to a volume control, that lets the user set

a value within a specific range.

Skin for: <xforms:range>

 spacer - An invisible GUI widget that facilitates spacing in the relational

positioning scheme.

 table - Provides a template of XFDL items that are to be duplicated according to

the amount of data available to be displayed. This item provides the ability to

dynamically adjust the form rendition based on the amount of data and the amount

of changes to that data.

Skin for: <xforms:repeat>

 toolbar - Items associated with a toolbar item appear in a separate window pane

above the pane for the form page; it is the typical location for page switching and

other buttons as its contents are not printed if the form is rendered on paper.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 38

3.2.3 XFDL Options

An option defines a named property of an item, page, or form. Options can appear as

form globals, page globals, or as the contents of items.

 acclabel - Provides a special description of input items that is read by screen

reading software.

 active - Specifies whether an item is active or inactive. In XFDL items containing

XForms controls, the default for this option is set by the relevant model item

property.

 bgcolor, fontcolor, labelbgcolor, and labelfontcolor - Specify the colors for an

item or its label using either predefined names or RGB triplets in decimal or

hexadecimal notation.

 border and labelborder - Control whether an item or its label has a border.

 colorinfo - Records the colors used to draw the form when the user signs the

form.This is only necessary when the operating system colors are used instead of

the colors defined in the form (which is a feature for users with vision

impairments).

 coordinates - Receives the location of a mouse click on an image, if the image is

in a button.

 cursortype - Displays different cursor icons when the user hovers over a button.

 data and datagroup - Used to create an association between data items and the

buttons that provide file enclosure functionality.

 delay - Used in an action item to specify the timing for the event and whether it

should be repeated.

 excludedmetadata - Used to store special information that is automatically

excluded from signatures.

 filename and mimetype - Give additional information about an enclosed

document.

 fontinfo and labelfontinfo - Defines the typeface, point size, and special effects

(bold, italics, and underline) for the font used to display the item’s value or label.

 format - Contains sub-elements that parameterize input validation for the item’s

value.

 formid - Defines a unique identifier for the form, such as a serial number.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 39

 image - Identifies the data item containing the image for the button or label.

 imagemode - Specifies the display behavior of the image within the data item; the

image may be clipped, resized, or scaled to fit the item.

 itemlocation, size and thickness - Help to define the location and size of the item.

 justify - Controls whether text in the item should be left, center, or right justified.

 label - Associates a simple text label with the item; labels can also be created

independently with a label item.

 linespacing - Adjusts the spacing between lines of text in an item.

 mimedata - Used to store large binary data blocks encoded in bas-64 gzip

compressed or base-64 format.

 next and previous - Link the item into the tab order of the page.

 padding - Defines how much extra whitespace is put around the pane item.

 pageid - Defines a unique identifier for a page, such as a serial number.

 printbgcolor, printlabelbgcolor, printfontcolor, and printlabelfontcolor - Provide

the ability to set printing colors for each indicated option different from the

display colors on the screen.

 printvisible - Determines whether an item should be visible when the form is

printed. Has no effect on the visibility of the item on the screen.

 Printsettings - Parameterizes the paper rendition of a form.

 readonly - Sets the item to be readonly. In XFDL items containing XForms

controls, the default for this option is set by the readonly model item property.

 rowpadding - Defines how much space is applied to the top and bottom of a table

row.

 rtf - Contains the rich text value of rich text fields.

 requirements - Specifies the requirements for the Web Services to be used by the

form.

 saveformat and transmitformat - Control how the form is written (XFDL,

HTML) when it is saved or submitted.

 scrollhoriz and scrollvert - Control whether a text field item has horizontal and

vertical scroll bars or whether it wordwraps, allows vertical sliding, and so on.

 texttype - Sets whether a field contains plain text or rich text.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 40

 transmitdatagoups, transmitformat, transmitgroups, transmititiemrefs,

transmititems, transmitnamespaces, transmitoptionrefs, transmitoptions, and

transmitpagerefs - Work together to allow you to transmit form submissions.

 triggeritem - Set in the form globals to identify which action, button, or cell

activated a form transmission or cancellation.

 type - Specifies whether the action, button, or cell item will perform a network

operation, print, save, digitally sign, and so on.

 url - Provides the address for a page switch, or for a network link or submission.

 value - Holds the primary text associated with the item. In XFDL items that

contain XForms controls, this option (and all options, such as those that are

computed) are treated as transient, which means that any updates to the content

are not serialized when the form is written because the updates are reflected in

instance data.

 visible - Determines whether the item should be shown to the user or made

invisible.

 webservices - Defines the nameof the Web Services used by the form.

 writeonly - Sets the item to be writeonly. This option is only for use with field

items that do not skin XForms controls.

3.2.4 Implicit Options

There are some options that are defined within XFDL for the purpose of allowing

them to be referenced without being defined by the form author. These options are

dynamically added to the document object model (DOM) of the XFDL form while it

is being processed, and they are removed when it is serialized. These options tend to

be informational in nature or representative of events that can occur while the form is

being processed.

 activated, focused, and mouseover - Indicates whether the form, page or item has

been activated or focused or contains the mouse pointer.

 dirtyflag - In the form global item, this option indicates whether the end-user of

the form viewing program has changed the form.

 focuseditem - At the page global level, records the scope identifier of the item that

currently has the focus.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 41

 itemprevious, itemnext, itemfirst, itemlast - Used to help create a doubly linked

list of items in each page. The itemprevious and itemnext options occur in each

item, and itemfirst and itemlast appear at the page global level.

 keypress - Records a keypress by the user that was not used as input to an XFDL

item. The keypress is propagated upwards to the page and form global items.

 pageprevious, pagenext, pagefirst, pagelast - Used to help create a doubly linked

list of pages in the form. The pageprevious and pagenext options occur in each

page, and pagefirst and pagelast appear at the form global level.

 printing - In the form global item, this option indicates whether the form is

currently printing.

 version - Appears in the form global item and defines the version of XFDL used

to write the form. It is obtained from the XFDL namespace declaration.

3.3 Signatures in XFDL

Signatures are often used to sign only a portion of a document. Furthermore, a

secondary signature is often used to sign the rest of the document while also

endorsing the first part of the document. The classic example of this is the ―For Office

Use Only‖ section in any form. The implementation of digital signatures in XFDL

must support scenarios like this, allowing both for filtering of what is signed and for

overlapping signatures.

Furthermore, while digital signatures clearly identify the user, the application of

digital signatures must also add a measure of security to the document itself. That is,

once a document is signed, it should be impossible to change any of the information

that was signed.

 3.3.1 Applying Signature Filters

XFDL supports a filtering system for signatures. In effect, this allows any

combination of form elements to be either included or excluded from a signature,

which in turn allows forms to be divided into logical sections for the purposes of

signing.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 42

XFDL includes a series of signature filters. Each filter applies to a different cross-

section of XFDL elements. For example, the signitems and signitemrefs filters control

which items are signed or ignored, while the signoptions and signoptionrefs filters

control which options are signed or ignored. Each level of filter also has an assigned

order of precedence. For example, filters at the option level override filters at the item

level.

By using these filters in combination, XFDL provides complete control over which

elements are omitted from a signature (or alternately to indicate which elements

should be included in a signature, though ’inclusive logic’ filters should be used

sparingly and with great care). The complete list of available filters is: signitems,

signoptions, signpagerefs, signdatagroups, signgroups, signitemrefs,

signnamespaces, and signoptionrefs.

3.3.2 Applying Multiple Signatures

Documents often require multiple signatures. Furthermore, it is common practice for

some signatures to endorse other signatures. These secondary signatures can be said

to overlap the original signatures, since they sign both the document and the

original signature. For example, an insurance claim requires the claimant to sign the

document. Later, the insurance adjuster may also have to sign the document, both to

endorse the information provided by the claimant and to endorse information they

have added to the claim.

XFDL allows any number of signatures in a single document. The signatures will sign

separate portions of the form, or will overlap with other signatures, as specified by the

filters used. For example, the first signature may use a set of filters that includes all

elements in the top half of a page. The second signature may use a filter that includes

the first signature and the top half of the page. Finally, a third signature might use a

filter that includes the entire page and both the first and second signatures.

3.3.3 Securing Signed Elements

Paper documents rely on ink to secure the document. That is, once a document is

signed, it is difficult to change the document because it is difficult to erase ink from

paper. The very nature of paper and ink enforce the security of the document, since

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 43

attempts to change the document generally leave detectable traces. In contrast, digital

documents do not share this type of inherent security.

For this reason, the XFDL processor must provide the necessary security. Once an

element in a document is signed, it is implicit that future readers should be unable to

change that element.

3.3.4 Preventing Layout Changes

Once a document is signed, it is also implicit that the layout of that document should

be secure. For example, if it were possible to move a paragraph, or even a line, the

meaning of the document could be changed. To reflect this, any software processing

XFDL must maintain the position of signed visual elements. This means that both the

position and the size of the visual elements must be secured.

Thus, when a document is signed, the width, height, and position of all visible signed

elements must be recorded. XFDL provides the layoutinfo option as a place to store

this information within a given signature element. Furthermore, the layoutinfo option

itself should be signed as part of the signature, ensuring that it cannot be changed.

The layout can later be tested by re-calculating the position of all signed elements

and comparing this to the information stored in the layoutinfo option for that

signature. If the information does not match, then the document has been modified

and cannot be trusted.

The software processing the XFDL should perform this layout test at the following

times:

 Immediately after a signature is created, it should test the entire document. This

ensures that the process of generating the signature did not change the

information.

 Whenever a page of the document is viewed, it should test the signed contents of

that page.

 Whenever an item is computationally added, deleted, or moved, it should test the

appropriate page.

 Whenever the details of a signature are viewed, it should test all portions of the

document signed by that signature.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 44

3.3.5 Preventing Exploitable Overlaps of Signed Elements

Unlike paper documents, digital documents also offer the potential for visual elements

to overlap. For example, it is possible to create a block of text in a document, and to

then obscure or hide that text with a second, overlapping block of text. In this

scenario, even if the first block of text was secured with a signature, it would be

possible to move the second block of text after the document was signed. This would

change the meaning of the document by revealing information that was previously

hidden.

Since the guiding principle of signatures is that ″you sign what you see,″ a scenario

in which visual items are hidden or significantly overlapped cannot be allowed. If the

signer cannot see elements of the form, then the signature cannot be considered valid.

Exceptions for box items. Boxes are often used to visually create sections in a

document, and will overlap other visual elements as a result. This overlap may be

allowed.

3.4 The XFDL Compute System

XFDL computes are required to make changes to the presentation layer that are not

related to data, such as color changes and so on. In general, using XForms computes

to manipulate data and XFDL computes to manipulate the presentation layer will

create a clean separation of duties that creates few conflicts.

An XFDL compute can be either a mathematical or conditional expression. A

conditional expression has three parts separated by the ternary ?: operator. The first

part is a Decision, which yields a boolean result. The consequences for a true and

false boolean result recurse to the definition of Compute, permitting arbitrary nesting

of decision logic.

Compute ::= Expr | Decision '?' Compute ':' Compute

The decision logic can apply logical-or (|| or 'or'), logical-and (&& or 'and'), and

logical negation (!) to the results of logical comparisons.

A mathematical expression, denoted Expr, can include addition, subtraction, string

concatenation (+.), multiplication, division, integer modulus, unary minus, and

exponentiation.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 45

4. DESIGN

A number of modifications are made in XForms and XFDL. The new language has

the following features –

4.1 XML – Based Language

The WWW Forms technology started with HTML. HTML provided for the

presentation but there was no common format for the representation of data. Then

came XML which provided a common format for representation of data. Today, all

web technologies are being developed around XML. A major criteria for acceptance

of new languages is whether it would fit into the XML Workflows. XForms and

XFDL are XML based. So, we had to ensure that any modifications we make conform

with the XML syntax.

4.2 MVC Model

Our language follows a Model-View-Controller programming model as does XForms.

But there is nothing in XForms that directly maps to the controller layer. Some

consider the control part as the declarative calculations and validations present under

the model tag of XForms. Others may consider the dynamic presentation part as the

control because that helps us control the presentation. Still others consider XML

Events and XFroms Actions as the control. We are in favour of the first concept and

have separated the calculations and validations (which we consider the control) from

the model part into the control part.

Under the model tag are the schema and instance data for the form. We provide a

separate control tag which has 2 child elements - <calc> and <valid> for

calculations and validations respectively.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 46

Fig. 4.1 Architecture of the new Language

4.3 Default Namespaces

The most commonly used namespaces in XForms + XFDL forms need not be

specified in our language. As the converter knows which tag belongs to which

namespace, it will be assigned the corresponding namespace.

The following namespaces are included into the file by default, others need to be

specified. Or if we want to change the prefixes for the existing namespaces,

namespace needs to be defined explicitly.

<XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xforms="http://www.w3.org/2002/xforms"

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom"

 xmlns:ev="http://www.w3.org/2001/xml-events"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

Namespaces

Form Document

XForms Model +

XML

Data +

Submission *

 Action *

Calc * Valid *

View Control +

Layout + Page +

Control +

XForms

Action *

XML

Schema *

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 47

4.4 The <calc> tag

In XForms, the calculations are represented by <bind> statements that is to calculate

the value of a variable, we bind it to the expression used to calculate its value. In our

language, we have specified the calculations using the <calc> tag which has 2 child

elements - <var> for variable whose value is being calculated, <expr> which

contains the expression.

Example :

In the code given below, 4 <bind>s correspond to one <calc> because using our

<calc> tag any no. of variables can be specified separated by commas. Four variables

are specified in one <var> tag, <expr> contains the corresponding four expressions.

4.5 The <valid> tag

In XForms, the validations are also represented by <bind> statements that is we can

bind various model item properties (MIPs) eg – relevant, required, type, p3ptype etc.

to a variable. In our language, we have specify the validations using the <valid> tag

which has 2 child elements - <var> for variable being validated, and the second tag

depends on the property being specified eg- it is <relevant> for the relevant property.

Example :

<xforms:bind nodeset="/purchaseOrder/payment/as"

relevant="/purchaseOrder/totals/rowcount > 0"> </xforms:bind>

<xforms:bind nodeset="/purchaseOrder/payment/cc"

relevant="../as='credit'"> </xforms:bind>

<xforms:bind nodeset="/purchaseOrder/payment/exp"

relevant="../as='credit'" type="xsd:date"> </xforms:bind>

<xforms:bind nodeset="/purchaseOrder/payment/customernumber"

relevant="../as='cash'"> </xforms:bind>

XForms Code

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 48

In the above code, again 4 <bind>s correspond to one <valid> because using our

<valid> tag any no. of variables can be specified separated by commas. <relevant> tag

specifies the comma-seperated property for the variables. But if the properties are

different, they must be specified using separate <valid> tags as grouping can only be

done for similar things.

4.6 Submission of Encrypted Data

XForms provides various encodings to submit the data but no encryption method is

provided. Data submitted as XML can be read and understood by anybody. To protect

the data, we have proposed a mechanism in which, if the submission element has a

encryption attribute on it which specifies the encryption algorithm to be used, the data

is submitted in encrypted form rather than xml (assuming that encoding specified is

xml).

Example :

<submission id=”submit1” how=”post” where=”file:data.xml”

encryption=”RSA”/>

In this example, the data is submitted as xml to the file data.xml. The text portion of

the elements in this file will be encoded using the RSA encryption algorithm. Thus,

text cannot be easily read by anybody. We will of course want to select an algorithm

which is difficult to break, in order to provide maximum security.

<valid path="purchaseOrder/payment">

 <var> /as,/cc,/exp,/customernumber </var>

<relevant> purchaseOrder/totals/rowcount >0,

 /as='credit',

 /as='credit',

 /as='cash'

</relevant>

</valid>

New Code

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 49

4.7 Grouping of similar tags

As seen in the <valid> tag above, variables for which same property needs to be

specified are grouped into one <valid>. The same concept in applied throughout the

language. This reduces the length of of the code by a huge ratio. The effect can be

best seen in real-world forms which have thousands of lines of code. Having a look at

such a code reveals there is a large amount of repetition.

To remove this repetitive code, we eg- combine 4 <input> elements into one <input>

element and separate the features of each by commas. This leads to a constraint in our

language as compared to other XML based languages – the text cannot contain

commas. But this problem can be solved by including the comma(,) into the list of

prohibited characters for XML and like apostrophe is represented as &apos: , comma

can be represented as &com; (All prohibited characters begin with a ampersand(&)

and end with a semicolon(;)).

Example :

In the example below, <xforms:output> is enclosed within <xfdl:label> tag. As

specified in the earlier chapters, all XForms tags must be enclosed within XFDL tags

for the form to run on a XFDL processor. 4 outputs are specified. In our language,

these can be grouped to form one <output> tag.

The resultant reduction in length can be noticed by just having a look at the form.

Reducing the size of the code in important for a person who wants to type the form

code in a simple textpad or wordpad because tools may not be always available. This

will also result in minor reduction in the memory occupied by the form code though

this is not a significant factor.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 50

4.8 Default Presentation Options

It is tedious to write code in XFDL using XForms because for the form to run on a

XFDL processor, each XForms tag must be enclosed within a XFDL tag eg-

<xforms:input> may be enclosed within <field>,<check> or <combobox>. But in

most of the forms you see, you will find <xforms:input> enclosed within <field>. So,

we have taken <field> as the default enclosure for <xforms:input>. If <xforms:input>

needs to be enclosed within <combobox>, our language provides a displayType

attribute on each XForms item. If displayType attribute is not provided, default

enclosure is used.

<label sid="cnt">

 <xforms:output ref="/purchaseOrder/totals/rowcount">

 <xforms:label>No. of items = </xforms:label>

 </xforms:output>

</label>

<label sid="sub">

<xforms:output ref="/purchaseOrder/totals/subtotal">

 <xforms:label>Subtotal = </xforms:label>

 </xforms:output>

</label>

<label sid="tax">

 <xforms:output ref="/purchaseOrder/totals/tax">

 <xforms:label>Tax = </xforms:label>

 </xforms:output>

</label>

<label sid="total1">

 <xforms:output ref="/purchaseOrder/totals/total">

 <xforms:label>Total = </xforms:label>

 </xforms:output>

</label>

XForms Code

<output path="purchaseOrder/totals">

 <id> cnt,sub,tax,total1 </id>

<what> /rowcount,/subtotal,tax,total </what>

 <label>No. of items = ,Subtotal = ,

Tax = ,Total = </label>

</output>

New Code

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 51

This has been done for all the XForms form controls. The following table indicates

the default enclosures for each.

Form Control Possible Skins Default Skin

output label label

input field, check, combobox field

secret, textarea field field

select list, checkgroup list

select1 list, popup, combobox,

radiogroup, checkgroup

popup

range slider slider

upload button button

Submit, trigger button, action button

group, switch pane pane

repeat table table

Table 4.1 List of Default Skins

XForms Code New Code

<check sid="healthPlan_check">

 <xforms:input

ref="healthinfo/healthPlan">

 </xforms:input>

 <label>Active Health Plan</label>

</check>

<input displayType="check"

id="healthPlan_check"

what="healthinfo/healthPlan"

label="Active Health Plan>

</input>

4.9 Seperation of Layout Information

Layout means the size and location of various items on the page being displayed. As

layout information deals with the presentation, it is specified in XFDL and XForms is

not concerned with it. In any real-world form coded using XFDL, you will find the

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 52

<itemlocation> tag placed within each and every item of the form.This tag is used to

specify the x and y coordinates at which the item must be placed on the form. It may

also specify the width and height of the item.

In the language that we propose, we separate this layout information from the actual

item specification. That is ,the properties of the items is specified separately and

layout separately.The itemlocation is also a property of the items, but as it is common

to each item, it can be specified at a separate place.

A XFDL form has a number of pages and therefore, each page will have seperate

layout. The information must be specified in the new <layout> tag which is the

subelement of the <page> element. The example below shows how this can be done.

Notice the reduction in size of the code. This is even more for larger forms.

XForms Code

<page sid="page1">

<global sid="global"/>

<label sid="persInfo_label">

 <value>Personal Information</value>

 <itemlocation>

 <x>20</x>

 <y>30</y>

 </itemlocation>

</label>

<label sid="name">

 <value>Name : </value>

 <itemlocation>

 <x>20</x>

 <y>60</y>

 </itemlocation>

</label>

<label sid="name_out">

 <xforms:output ref="info/name">

 </xforms:output>

 <itemlocation>

 <x>60</x>

 <y>60</y>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 53

 </itemlocation>

</label>

</page>

4.10 Modifications in the <table>

Most forms that display or input similar information for more than entity, use tables.

Eg- A shop has several items, each having a name, price and may have some discount

on it. Suppose, we want to represent this information for 10 items, then it is best done

using tables.

XForms supports dynamic presentation through the repeat tag, which helps in

creating a table whose rows can be dynamically increased or decreased. So, most of

the tables seen in real-world forms have 2 buttons at the bottom, one for inserting

rows into the table and other for deleting them.

But, XFDL just provides the table tag, and no explicit support for the header row of

the table and buttons at the bottom. Even HTML tables have a header row but in

XFDL, we have to create the header row using separate label tags as can be seen in

the example below.

<page id="page1">

 <label>

 <id> persInfo_label, name </id>

 <value>Personal Information, Name :</value>

 </label>

 <output id="name_out" what="info/name"/>

 <layout>

 <items>

 <id> persInfo_label, name, name_out

 </id>

 <coord> (20,30), (20,60), (60,60)

 </coord>

 </items>

 </layout>

</page>

New Code

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 54

Example :

For creating the following table, the original code and the new code are shown –

There are 2 possible syntaxes that we propose for <table> :

 First code below has labels for each input and output within the table. These

labels can be used to provide the header row for the table but remember, these

labels appear only once in the table and not as many times as the input or

output appears.

 The second code shows an explicit heading tag.

Both the tables contain a trigger tag for the insert and delete buttons at the end of

the table. Instead of creating separate buttons, we have included this within the

table. The <type> element specifies the type of the button – whether it is for

insertion or deletion. These types are introduced by us and are not build into

XFDL.

XForms Code

<label sid="label1">

<value>Number</value>

</label>

<label sid="label2">

<value>Name</value>

</label>

<label sid="label3">

<value>Price</value>

</label>

<label sid="label4">

<value>Discount</value>

</label>

<label sid="label5">

<value>Discounted Price</value>

</label>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 55

<table sid="itemtable">

<xforms:repeat id="repeat1"

nodeset="/purchaseOrder/items/item">

<field sid="field1">

<xforms:input ref="units">

<xforms:hint> The units of this item

</xforms:hint>

</xforms:input>

</field>

<field sid="field2">

<xforms:input ref="name">

<xforms:hint> The name of this item

</xforms:hint>

</xforms:input>

</field>

<field sid="field3">

<xforms:input ref="price">

<xforms:hint>The price of this item

</xforms:hint>

</xforms:input>

</field>

<label sid="output1">

<xforms:output ref="discount">

</xforms:output>

</label>

<label sid="output2">

<xforms:output ref="total">

</xforms:output>

</label>

</xforms:repeat>

</table>

<button sid="insert">

 <xforms:trigger id="insert1">

 <xforms:label>Add item</xforms:label>

 <xforms:action ev:event="DOMActivate">

<xforms:insert at="index('repeat1')"

nodeset="/purchaseOrder/items/item"

position="after">

</xforms:insert>

 </xforms:action>

 </xforms:trigger>

</button>

<button sid="delete">

 <xforms:trigger id="delete1">

 <xforms:label>Delete item</xforms:label>

 <xforms:action ev:event="DOMActivate">

<xforms:delete at="index('repeat1')"

nodeset="/purchaseOrder/items/item">

</xforms:delete>

 </xforms:action>

 </xforms:trigger>

</button>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 56

<table>

<heading>

 <id>no1,name1,price1,dis1,disprice1</id>

<value>Number,Name,Price,Discount,Discounted

Price</value>

 </heading>

 <repeat what="purchaseOrder/items/item" id="repeat1">

 <input>

 <id>unts,nm,pr</id>

 <what>/uints,/name,/price</what>

 <hint>The units of this item,

 The name of this item,

 The price of this item

 </hint>

 </input>

 <output>

 <id>discnt,tot</id>

 <what>/discount,/total</what>

 </output>

 </repeat>

 <trigger>

 <id> insert1, delete1 </id>

 <label> Add item, Delete item </label>

 <type> insert, delete </type>

 </trigger>

</table>

Second Code

<table>

 <repeat what="purchaseOrder/items/item" id="repeat1">

 <input>

 <id>unts,nm,pr</id>

 <label>Number, Name, Price </label>

 <what>/uints,/name,/price</what>

 <hint>The units of this item,

 The name of this item,

 The price of this item

 </hint>

 </input>

 <output>

 <id>discnt,tot</id>

 <label>Discount, Discounted Price</label>

 <what>/discount,/total</what>

 </output>

 </repeat>

 <trigger>

 <id> insert1, delete1 </id>

 <label> Add item, Delete item </label>

 <type> insert, delete </type>

</trigger>

</table>

First Code

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 57

4.11 The <select> clause

There are 2 clauses in XForms – select and select1, to specify selection of one or

more and one item respectively. We have combined these into one clause that is

<select> with a type attribute whose possible values are one or many. The default

value for the type attribute is many that means, the <select> without the type attribute

is equivalent to XForms select.

Secondly,XFroms provides 2 versions of select – one contains the itemset element

that refers to the instance data and the in the other, items are explicitly specified.

Following examples show the new code for each of these.

Example (1) :

<checkgroup sid="currency">

<xforms:select ref="currency" appearance="full">

<xforms:label >Select the currencies you accept:

</xforms:label>

<xforms:item>

<xforms:label>US Dollars </xforms:label>

<xforms:value> USD </xforms:value>

</xforms:item>

<xforms:item>

<xforms:label>CDN Dollars </xforms:label>

<xforms:value> CDN </xforms:value>

</xforms:item>

<xforms:item>

<xforms:label>Euro</xforms:label>

<xforms:value>Euro</xforms:value>

</xforms:item>

</xforms:select>

</checkgroup>

XForms Code

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 58

Example (2) :

<select id=”currency” what="currency">

<label>Select the currencies you accept: </label>

<items what="instance(‟currency‟)/choice">

<label what="@show"> </label>

<value what="instance(„currency‟)/choice">

</value>

</items>

</select>

New Code

<checkgroup sid="currency">

<xforms:select ref="currency" appearance="full">

<xforms:label>Select the currencies you accept:

</xforms:label>

<xforms:itemset

nodeset="instance(‟currency‟)/choice">

<xforms:label ref="@show"> </xforms:label>

<xforms:value ref="."> </xforms:value>

</xforms:itemset>

</xforms:select>

</checkgroup>

XForms Code

<select id=”currency” displayType =”checkgroup”

what=“currency”>

<label> Select the currencies you accept:</label>

<items>

<label>US Dollars, CDN Dollars, Euro </label>

 <value> USD, CDN, Euro </value>

</items>

</select>

New Code

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 59

5. IMPLEMENTATION

5.1 XML Parsers

A parser is a piece of program that takes a physical representation of some data and

converts it into an in-memory form for the program as a whole to use. An XML

Parser is a parser that is designed to read XML and create a way for programs to use

XML. The main types of parsers are : SAX, DOM and pull.

1. SAX

SAX stands for Simple API for XML. Its main characteristic is that as it reads each

unit of XML, it creates an event that the calling program can use. This allows the

calling program to ignore the bits it doesn't care about, and just keep or use what it

likes. The disadvantage is that the calling program must keep track of everything it

might ever need.

2. DOM

DOM (Document Object Model) is an official recommendation of the W3C. It differs

from SAX in that it builds the entire XML document representation in memory

and then hands the calling program the whole chunk of memory. DOM can be very

memory intensive as the entire tree has to be stored in the memory.

3. Pull Parser

SAX is a push parser, since it pushes events out to the calling application. Pull

parsers, on the other hand, sit and wait for the application to come calling. They ask

for the next available event, and the application basically loops until it runs out of

XML.

Pull parsers are useful in streaming applications, which are areas where either the data

is too large to fit in memory, or the data is being assembled just in time for the next

stage to use it. It is designed to be used with large data sources, and unlike SAX

which returns every event, the pull parser can choose to skip events (or in some

implementations, whole sections of the document) that it is not interested in. The

adapters are designed to work with both the SAX and the pull parser interfaces.

http://www.stylusstudio.com/xml/parser.html#sax
http://www.stylusstudio.com/xml/parser.html#dom
http://www.stylusstudio.com/xml/parser.html#pull

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 60

SAX

DOM

Origin Previously result of xml-dev

community, started as Java

only interface. Now maintained

by the SourceForge organization.

W3C Organization

recommendation.

DOM is not an API.

Interface type

Primarily a java interface only.

Now interfaces available on most

programming languages

Language and platform –

neutral recommendation.

Resource

consumption

Limited impact

High impact on memory and

processing resource as the

DOM create in-memory

representation of the XML

document

How it

operates

Event based interface. Events

are triggered where the SAX

parser encounters an XML tag.

Parses the XML document first,

and then creates an in-memory

representation of XML file as a

nodes tree.

Document

handling

Read-only parser Can manipulate nodes and add ,

delete nodes.

Examples

of Ideal

situations

for use

When memory/processing power

is restricted. When XML

documents size is very large and

no random access is required.

When Random access of XML

documents is required. For

manipulation of in-memory

structure of an XML document.

When support for Namespaces

is desirable.

Table 5.1 A Comparison of the SAX and DOM Parsers

Another way that parsers are classified is - Validating versus non-validating

parsers. Validating parsers validate XML documents as they parse them, while non-

validating parsers don't. In other words, if an XML document is well-formed, a non-

validating parser doesn't care if that document follows the rules defined in a DTD or

schema, or even if there are any rules for that document at all.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 61

There are 2 reasons that we use a non-validating parser :

 Speed and efficiency. It takes a significant amount of effort for an XML parser to

read a DTD or schema, then set up a rules engine that makes sure every element

and attribute in an XML document follows the rules.

 If you're sure that an XML document is valid (maybe it's generated from a

database query, for example), you may be able to get away with skipping

validation. Depending on how complicated the document rules are, this can save a

significant amount of time and memory.

How to use a parser

Generally, the following 3 steps are involved in programs using parsers :

1. Create a parser object

2. Point the parser object at your XML document

3. Process the results

5.2 The DOM Parser

When you parse an XML document with a DOM parser, you get a hierarchical data

structure (a DOM tree) that represents everything the parser found in the XML

document. You can then use functions of the DOM to manipulate the tree. You can

search for things in the tree, move branches around, add new branches, or delete parts

of the tree.

From a Java-language perspective, a Node is an interface. The Node is the base

datatype of the DOM; everything in a DOM tree is a Node of one type or another.

DOM also defines a number of subinterfaces to the Node interface:

 Element : Represents an XML element in the source document.

 Attr : Represents an attribute of an XML element.

 Text : The content of an element. This means that an element with text

contains text node children; the text of the element is not a property of the

element itself.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 62

 Document : Represents the entire XML document. Exactly one Document

object exists for each XML document you parse.

Additional node types are: Comment, ProcessingInstruction, and CDATASection,

which represents a CDATA section.

5.2.1 DOM APIs

JAXP, the Java API for XML Parsing specifies certain common tasks that the

DOM and SAX standards leave out. Specifically, creating parser objects is not

defined by the DOM or SAX standards.

The Document Object Model implementation is defined in the following packages:

 org.w3c.dom - Defines the DOM programming interfaces for XML (and,

optionally, HTML) documents, as specified by the W3C.

 javax.xml.parsers - Defines the DocumentBuilderFactory class and the

DocumentBuilder class, which returns an object that implements the W3C

Document interface. This package also defines the ParserConfigurationException

class for reporting errors.

We can use the DocumentBuilder newDocument() method to create an empty

Document that implements the org.w3c.dom.Document interface. Alternatively, we

can use one of the builder's parse methods to create a Document from existing XML

data.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 63

Fig. 5.1 The DOM Interface Hierarchy

5.2.2 Reading XML Data into a DOM

The following steps are involved in creating a DOM from an existing XML file :

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 64

1. Import the Required Classes

These lines import the JAXP APIs that we will be using:

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.FactoryConfigurationError;

import javax.xml.parsers.ParserConfigurationException;

These lines import the exception details for exceptions that can be thrown when the

XML document is parsed. DOMExceptions are only thrown when traversing or

manipulating a DOM. Errors that occur during parsing are reported using a same

mechanism as SAX:

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

Finally, import the W3C definition for a DOM and DOM exceptions:

import org.w3c.dom.Document;

import org.w3c.dom.DOMException;

2. Declare the DOM

The org.w3c.dom.Document class is the W3C name for a Document Object Model

(DOM). Whether we parse an XML document or create one, a Document instance

will result.

static Document document;

3. Handle Errors

Next, we put in the error handling logic. The error-handling code for DOM and SAX

applications are very similar:

try {

} catch (SAXException sxe) {

// Error generated during parsing

Exception x = sxe;

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 65

if (sxe.getException() != null)

x = sxe.getException();

x.printStackTrace();

} catch (ParserConfigurationException pce) {

// Parser with specified options can't be built

pce.printStackTrace();

} catch (IOException ioe) {

// I/O error

ioe.printStackTrace();

}

4. Instantiate the Factory

Next, we add the code highlighted below to obtain an instance of a factory that can

give us a document builder:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

5. Get a Parser and Parse the File

DocumentBuilder builder = factory.newDocumentBuilder();

document = builder.parse(new File(argv[0]));

Fig. 5.2 Steps in creating a DOM Tree

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 66

6. Setting DOM parser features

After getting the document object, we may want to configure the factory. The most

important methods are:

setValidating(boolean) - Sets the factory's validation property.

isValidating() - Returns true if the factory creates validating parsers, false otherwise.

setNamespaceAware(boolean) - Sets the factory's namespace-aware property.

isNamespaceAware() - Returns true if the factory creates namespace-aware parsers,

false otherwise.

setIgnoringElementContentWhitespace(boolean) - Sets the factory's whitespace

property. If this is true, the parsers created by the factory won't create nodes for the

ignorable whitespace in the document.

isIgnoringElementContentWhitespace() - Returns true if the factory creates parsers

that ignore whitespace, false otherwise.

5.2.3 Creating a new DOM

We are still going to create a document builder factory, but this time you're going to

tell it create a new DOM instead of parsing an existing XML document.

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

try {

DocumentBuilder builder = factory.newDocumentBuilder();

document = builder.newDocument();

In this code, you replaced the line that does the parsing with one that creates a DOM.

And since we are going to be working with Element objects, we add the statement to

import that class at the top of the program:

import org.w3c.dom.Document;

import org.w3c.dom.DOMException;

import org.w3c.dom.Element;

//create an element XFDL and its children

Element root = (Element) document.createElement(―XFDL");

document.appendChild(root);

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 67

root.appendChild(document.createTextNode("some"));

root.appendChild(document.createTextNode(" "));

root.appendChild(document.createTextNode("text"));

For more details on DOM methods, refer [18].

5.3 The Conversion

The design chapter describes the modifications made to the XForms and XFDL. Our

implementation part includes the conversion of this code into the XFDL code. The

final form can be displayed in the IBM Workplace Forms Viewer which supports

XForms + XFDL.

For the conversion, we have used the Java Apache Xerces Parser which comes with

Java v1.4 and above. For lower versions of java, it can be integrated by downloading

it from http://xerces.apache.org.

It is a fully conforming XML Schema processor.

 Supports Simple API for XML (SAX) 2.0.2

 Supports Document Object Model (DOM) Level 3

 Support XML 1.0 and Namespaces in XML 1.1 Recommendation

The conversion involves the following steps :

1. Read in the modified code and create a DOM Tree from it, by using a DOM

Parser as decribed above.

2. This DOM Tree is subjected to the conversion code, which performs the

appropriate conversion. The result is a new DOM tree.

3. The final DOM tree is then serialized to get an XML document (actually a

XForms + XFDL document).

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 68

Fig. 5.3 Conversion Steps

5.4 Architecture of the converter

As can be seen from the figure below, the converter consists of 4 major parts (coded

in java as 4 separate packages).

Fig. 5.4 Parts of the converter

5.4.1 The main package

This package contains the beginning code for the converter that is, code for parsing

the XML file and create DOM tree. Also, it contains code to create the final XFDL

document. It contains the following classes.

Converter

model control view main

 DOM Tree

Modified

DOM Tree

Modified

Code File

(XML)

CONVERTER

(Java Code)

Serialize

XForms

+

XFDL

Code

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 69

(i) convert – parses our modified code file and creates the DOM tree. It instantiates

the createXFDL, createModelObject and createViewObject classes.

(ii) createXFDL – This class creates a new Document object, adds root element to

it, and prints this to a XFDL file. It also sets the namespace attributes on the root

element which specifies all the namespaces that can be used within the document.

Fig. 5.5 The main package

(iii) separate - This class contains the code for converting the comma-seperated list

of parameters into individual elements and appends the value of path to relative

parameters. It is placed in the main class as it is a common class instantiated by

various other classes. The code present here helps us to separate the similar tags that

we did combine in our language.

(iv) prototype Cache – protoCache is used to store the prototype information.

Whenever a new prototype is encountered in the globals section of the form, an

instance of this class is created and it stores the prototype for later reference by any of

the form controls.

(v) layout Cache – layoutCache reads the layout information within the <layout>

tag and creates a cache that stores the ids and the corresponding location and size in

formation. Each form control can call this class to obtain its location information.

5.4.2 The model package

This package contains the model part of the MVC paradigm. It contains the classes

shown in the figure below :

convert

createXFDL

separate

protoCache

layoutCache

main

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 70

(i) createModelObject – This class reads in the model elements and their properties

from the modified code file, and creates the model objects. It also instantiates the

createControlObject and createModelElement classes.

(ii) model – This class stores the model item properties namely model id, data file

name or the actual data and schema.

(iii) createModelElement – This class takes the model object as input, and creates

a model Element from it for storage in the new file. It instantiates the

createBindSubmissionElement class as in the final XFDL file, bind and submission

elements are part of the model itself.

(iv) createInstanceObject – A model can have various instances that represent the

data instance. Each instance may be identified by an id. In our language, within the

instance tag, we may give the file name or the actual data. This class reads the data

within the <data> tag and stores it within the instance object.

(v) instance – This class stores the instance properties like nodelist of the children

and the id.

(vi) createInstanceElement – This class creates the appropriate instance tag from

the instance object. It checks if the child node of instance element is a text node. If it

is, that means the user has given a file name which contains the instance, so it copies

the file name into the src attribute. If the child is an element node, it imports all the

children as such.

In the same way, there are 3 classes for handling the schema namely,

createSchemaObject, schema, createSchemaElement.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 71

Fig. 5.6 model and control packages

5.4.3 The control package

It contains the code for calculations, validations and submissions. All these

elements are converted to binds. It contains the following classes. The classes provide

the similar functionalities as the corresponding classes in the model package. That is,

createControlObject creates the control object that stores the control properties. As the

name signifies, createBindSubmissionElement creates the bind elements from calc

and valid elements and submission elements from the corresponding submission

elements.

The Encryption handler

One modification made is the option for submission of encrypted data. In the

encryption element, the user can mention encryption method to use. We use java

inbuilt functions for the encryption. Whenever the submit button is clicked and

encryption is set, the handler corresponding to the encryption is activated and data is

submitted in the encrypted form. The handler is of course provided on the submit

event.

5.4.4 The view package

This package contains a number of sub-packages for each specific presentation

element. Following figure shows the view package, its classes and its sub-packages.

View contains the following classes –

createControlObject

control

createCalcObject

calc

createValidObject

valid

createSubmissionObject

submission

createBindSubmissionElement

Control

model

createModelObject

model

createModelElement

createSchemaObject

schema

createSchemaElement

createInstanceObject

instance

createInstanceElement

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 72

se
le

ct

cr
ea

te
V

ie
w

O
b
je

ct

v
ie

w

cr
ea

te
P

ag
eO

b
je

ct

p
ag

e

cr
ea

te
P

ag
eE

le
m

en
t

cl
a
ss

es

cr
ea

te
S

u
b
m

it
O

b
je

ct

su
b
m

it

cr
ea

te
S

u
b
m

it
E

le
m

en
t

su
b

m
it

v
ie

w

in
p

u
t

cr
ea

te
In

p
u
tO

b
je

ct

in
p
u
t

cr
ea

te
In

p
u
tE

le
m

en
t

cr
ea

te
T

ri
g
g
er

O
b
je

ct

tr
ig

g
er

cr
ea

te
T

ri
g
g
er

E
le

m
en

t

cr
ea

te
O

u
tp

u
tO

b
je

ct

o
u
tp

u
t

cr
ea

te
O

u
tp

u
tE

le
m

en
t

cr
ea

te
U

p
lo

ad
O

b
je

ct

u
p
lo

ad

cr
ea

te
U

p
lo

ad
E

le
m

en
t

cr
ea

te
R

an
g
eO

b
je

ct

ra
n
g
e

cr
ea

te
R

an
g
eE

le
m

en
t

re
p

ea
t

sw
it

c
h

g
ro

u
p

a
ct

io
n

o
u

tp
u

t

tr
ig

g
er

u

p
lo

a
d

ra
n

g
e

F
ig

.
5
.7

 T
h

e
v
ie

w
 P

a
ck

a
g
e

la
b

el

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 73

 createViewObject

 view

 createPageObject

 page

 createPageElement

There is no view element present in the XFDL file. The packages input, output,

range, submit, trigger and upload have been specified in detail. The other packages

namely action, select, switch, repeat, group further contain sub-packages which are

depicted in separate package diagrams.

1. The select package – It contains the 3 files for creating the select element itself

and a package items for creating the item or itemset element from the items

element. Items further calls the label,value and copy classes.

Fig. 5.8 The select package

2. The pane package – An XFDL pane may contain xforms:switch and

xforms:group. The switch inturn contains case and its classes. Group module may

call any of the form controls.

select

createSelectObject

select

createSelectElement

classes

items

classes

createItemsObject

items

createItemsElement

value

createValueObject

value

createValueElement

createCopyObject

copy

createCopyElement

copy

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 74

Fig. 5.9 The pane package

3. The table package – The table package contains classes for drawing the table,

extracting the heading form the labels, creating the repeat construct and the

default buttons – add and delete.

pane

switch group

createPaneObject

pane

createPaneElement

classes

classes

createSwitchObject

switch

createSwitchElement

case

createCaseObject

case

createCaseElement

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 75

4. The action package – The action package contains the following classes –

createActionObject, action, createActionElement and subpackages as shown in the

figure.

cr
ea

te
T

ab
le

O
b
je

ct

ta
b
le

cr
ea

te
T

ab
le

E
le

m
en

t

cl
a
ss

es

cr
ea

te
R

ep
ea

tO
b
je

ct

re
p
ea

t

cr
ea

te
R

ep
ea

tE
le

m
en

t

cl
a

ss
es

ta
b

le

cr
ea

te
H

ea
d
O

b
je

ct

h
ea

d

cr
ea

te
H

ea
d

E
le

m
en

t

cr
ea

te
A

d
d
O

b
je

ct

ad
d

cr
ea

te
A

d
d
E

le
m

en
t

cr
ea

te
D

el
et

eO
b
je

ct

d
el

et
e

cr
ea

te
D

el
et

eE
le

m
en

t

h
ea

d
in

g

a
d

d
B

u
tt

o
n

d

el
B

u
tt

o
n

F
ig

.
5
.1

0
 T

h
e

ta
b

le
 P

a
ck

a
g
e

re
p

ea
t

b
u

tt
o
n

s

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 76

cr
ea

te
A

ct
io

n
O

b
je

ct

ac
ti

o
n

cr
ea

te
A

ct
io

n
E

le
m

en
t

cl
a
ss

es

cr
ea

te
D

el
et

eO
b
je

ct

d
el

et
e

cr
ea

te
D

el
et

eE
le

m
en

t

d
el

et
e

a
ct

io
n

d
is

p
a
tc

h

cr
ea

te
D

is
p
at

ch
O

b
je

ct

d
is

p
at

ch

cr
ea

te
D

is
p
at

ch
E

le
m

en
t

cr
ea

te
R

ec
al

cu
la

te
O

b
je

ct

re
ca

lc
u
la

te

cr
ea

te
R

ec
al

cu
la

te
E

le
m

en
t

cr
ea

te
S

en
d
O

b
je

ct

se
n
d

cr
ea

te
S

en
d
E

le
m

en
t

cr
ea

te
R

es
et

O
b
je

ct

re
se

t

cr
ea

te
R

es
et

E
le

m
en

t

cr
ea

te
R

ef
re

sh
O

b
je

ct

re
fr

es
h

cr
ea

te
R

ef
re

sh
E

le
m

en
t

se
n

d

re
ca

lc
u

la
te

re
se

t

re
fr

es
h

F
ig

.
5
.1

1
 T

h
e

a
ct

io
n

 P
a
ck

a
g
e

cr
ea

te
T

o
g
g
le

O
b
je

ct

to
g
g
le

cr
ea

te
T

o
g
g
le

E
le

m
en

t

to
g
g
le

in
se

r
t

cr
ea

te
In

se
rt

O
b
je

ct

in
se

rt

cr
ea

te
In

se
rt

E
le

m
en

t

cr
ea

te
M

es
sa

g
eO

b
je

ct

m
es

sa
g
e

cr
ea

te
M

es
sa

g
eE

le
m

en
t

m
es

sa
g
e

re
v

a
li

d
a
te

cr
ea

te
R

ev
al

id
at

eO
b
je

ct

re
v
al

id
at

e

cr
ea

te
R

ev
al

id
at

eE
le

m
en

t

lo
a
d

cr
ea

te
L

o
ad

O
b
je

ct

lo
ad

cr
ea

te
L

o
ad

E
le

m
en

t

re
b

u
il

d

cr
ea

te
R

eB
u
il

d
O

b
je

ct

re
b
u
il

d

cr
ea

te
R

eb
u
il

d
E

le
m

en
t

se
tf

o
cu

s

cr
ea

te
S

et
fo

cu
sO

b
je

ct

se
tf

o
cu

s

cr
ea

te
S

et
fo

cu
sE

le
m

en
t

cr
ea

te
S

et
in

d
ex

O
b
je

ct

se
ti

n
d
ex

cr
ea

te
S

et
in

d
ex

E
le

m
en

t

se
ti

n
d

ex

se
tv

a
lu

e

cr
ea

te
S

et
v
al

u
eO

b
je

ct

se
tv

al
u
e

cr
ea

te
S

et
v
lu

eE
le

m
en

t

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 77

6. RESULTS (SAMPLE FORMS)

6.1 SAMPLE FORM 1 (DISCOUNT FORM)

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 78

purchaseOrder.xml (The Data file)

<?xml version="1.0" encoding="ISO-8859-1"?>

<purchaseOrder xmlns="" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <items>

 <item>

 <name>Browser</name>

 <units>1</units>

 <price>100</price>

 <total>0</total>

 <discount>0</discount>

 </item>

 <item>

 <name>PDA</name>

 <units>1</units>

 <price>500</price>

 <total>0</total>

 <discount>0</discount>

 </item>

 <item>

 <name>Java debugger</name>

 <units>1</units>

 <price>1500</price>

 <total>0</total>

 <discount>0</discount>

 </item>

 </items>

 <totals>

 <subtotal>0</subtotal>

 <tax>0</tax>

 <total>0</total>

 <rowcount>0</rowcount>

 </totals>

 <info>

 <tax>0.22</tax>

 </info>

 <payment>

 <as>credit</as>

 <cc/>

 <exp>2006-03-06</exp>

 <customernumber>123</customernumber>

 </payment>

</purchaseOrder>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 79

XForms + XFDL Form

<?xml version="1.0" encoding="UTF-8"?>

<XFDL xmlns:custom=”http://www.ibm.com/xmlns/prod/XFDL/Custom”
xmlns:ev="http://www.w3.org/2001/xml-events"

xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

xmlns:xforms="http://www.w3.org/2002/xforms"

xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<globalpage sid="global">

 <global sid="global">

 <xformsmodels>

 <xforms:model>

<xforms:instance src="purchaseorder.xml">

</xforms:instance>

<xforms:bind nodeset="/purchaseOrder/items/item/units"

type="xsd:integer"></xforms:bind>

 <xforms:bind nodeset="/purchaseOrder/totals">

<xforms:bind

calculate="sum(../../items/item/total)"

nodeset="subtotal"></xforms:bind>

<xforms:bind calculate="round(../subtotal *

../../info/tax)" nodeset="tax"></xforms:bind>

<xforms:bind calculate="../subtotal + ../tax"

nodeset="total"></xforms:bind>

<xforms:bind calculate

="sum(/purchaseOrder/items/item/units)"

nodeset="rowcount"></xforms:bind>

 </xforms:bind>

<xforms:bind calculate=" ((../units * ../price)>1000)

*(../units * ../price * 0.1)" nodeset

="/purchaseOrder/items/item/discount">

</xforms:bind>

<xforms:bind calculate="../units * ../price -

../discount" nodeset="/purchaseOrder/items/item/total"

relevant="../units > 0"> </xforms:bind>

<xforms:bind nodeset="/purchaseOrder/payment/as"

relevant="/purchaseOrder/totals/rowcount > 0">

</xforms:bind>

<xforms:bind nodeset="/purchaseOrder/payment/cc"

relevant="../as='credit'"> </xforms:bind>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 80

<xforms:bind nodeset="/purchaseOrder/payment/exp"

relevant="../as='credit'" type="xsd:date">

</xforms:bind>

<xforms:bind nodeset

="/purchaseOrder/payment/customernumber"

relevant="../as='cash'"> </xforms:bind>

<xforms:submission action="file:data.xml" id="submit1"

method="put" ref="/purchaseOrder" replace="none">

</xforms:submission>

 </xforms:model>

 </xformsmodels>

 </global>

</globalpage>

<page sid="page1">

 <global sid="global">

 <label>Discount Form</label>

 </global>

 <label sid="label1">

 <value>Shop</value>

 <itemlocation>

 <x>200</x>

 <y>50</y>

 </itemlocation>

 <fontinfo>

 <fontname>Helvetica</fontname>

 <size>15</size>

 <effect>bold</effect>

 </fontinfo>

 </label>

 <label sid="label2">

 <value>Number</value>

 <itemlocation>

 <below>label1</below>

 </itemlocation>

 </label>

 <label sid="label3">

 <value>Name</value>

 <itemlocation>

 <after>label2</after>

 <width>105</width>

 </itemlocation>

 </label>

 <label sid="label4">

 <value>Price</value>

 <itemlocation>

 <after>label3</after>

 <width>45</width>

 </itemlocation>

 </label>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 81

 <label sid="label5">

 <value>Discount</value>

 <itemlocation>

 <after>label4</after>

 </itemlocation>

 </label>

 <label sid="label6">

 <value>Discounted Price</value>

 <itemlocation>

 <after>label5</after>

 </itemlocation>

 </label>

 <table sid="itemtable">

 <border>on</border>

<xforms:repeat id="repeat1" nodeset

="/purchaseOrder/items/item">

 <field sid="field1">

 <xforms:input ref="units">

<xforms:hint>The units of this

item</xforms:hint>

 </xforms:input>

 <itemlocation>

 <width>50</width>

 </itemlocation>

 </field>

 <field sid="field2">

 <xforms:input ref="name">

<xforms:hint>The name of this item

</xforms:hint>

 </xforms:input>

 <itemlocation>

 <width>100</width>

 <after>field1</after>

 </itemlocation>

 </field>

 <field sid="field3">

 <xforms:input ref="price">

<xforms:hint>The price of this item

</xforms:hint>

 </xforms:input>

 <itemlocation>

 <width>50</width>

 <after>field2</after>

 </itemlocation>

 </field>

 <label sid="label7">

 <xforms:output ref="discount">

 </xforms:output>

 <itemlocation>

 <width>50</width>

 <after>field3</after>

 </itemlocation>

 </label>

 <label sid="label8">

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 82

 <xforms:output ref="total">

</xforms:output>

 <itemlocation>

 <width>50</width>

 <after>label7</after>

 </itemlocation>

 </label>

 </xforms:repeat>

 <itemlocation>

 <below>label6</below>

 </itemlocation>

 </table>

 <label sid="label9">

 <xforms:output ref="/purchaseOrder/totals/rowcount">

 <xforms:label>No. of items = </xforms:label>

 </xforms:output>

 <itemlocation>

 <below>itemtable</below>

 <offsety>20</offsety>

 </itemlocation>

 </label>

 <label sid="label10">

 <xforms:output ref="/purchaseOrder/totals/subtotal">

 <xforms:label>Subtotal = </xforms:label>

 <xforms:hint>Subtotal</xforms:hint>

 </xforms:output>

 <itemlocation>

 <below>label9</below>

 </itemlocation>

 </label>

 <label sid="label11">

 <xforms:output ref="/purchaseOrder/totals/tax">

 <xforms:label>Tax = </xforms:label>

 <xforms:hint>Tax</xforms:hint>

 </xforms:output>

 <itemlocation>

 <below>label10</below>

 </itemlocation>

 </label>

 <label sid="label12">

 <xforms:output ref="/purchaseOrder/totals/total">

 <xforms:label>Total = </xforms:label>

 <xforms:hint>Total</xforms:hint>

 </xforms:output>

 <itemlocation>

 <below>label11</below>

 </itemlocation>

 </label>

 <button sid="insert">

 <xforms:trigger>

 <xforms:label>Add item</xforms:label>

 <xforms:action ev:event="DOMActivate">

<xforms:insert at="index('repeat1')" nodeset=

"/purchaseOrder/items/item" position

="after"></xforms:insert>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 83

<xforms:setvalue ref=

"/purchaseOrder/items/item[index('repeat1')]/

price" value="'100'"></xforms:setvalue>

<xforms:setvalue ref=

"/purchaseOrder/items/item[index('repeat1')]/

units" value="'1'"></xforms:setvalue>

 </xforms:action>

 </xforms:trigger>

 <itemlocation>

 <below>label12</below>

 <offsety>20</offsety>

 </itemlocation>

 </button>

 <button sid="delete">

 <xforms:trigger>

 <xforms:label>Delete item</xforms:label>

 <xforms:action ev:event="DOMActivate">

<xforms:delete at="index('repeat1')" nodeset=

"/purchaseOrder/items/item"></xforms:delete>

 </xforms:action>

 </xforms:trigger>

 <itemlocation>

 <after>insert</after>

 </itemlocation>

 </button>

 <list sid="payment">

<xforms:select1 appearance="compact" ref=

"/purchaseOrder/payment/as">

 <xforms:label>Select payment method</xforms:label>

 <xforms:item>

 <xforms:label>Credit card</xforms:label>

 <xforms:value>credit</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Bill me!</xforms:label>

 <xforms:value>cash</xforms:value>

 </xforms:item>

 </xforms:select1>

 <itemlocation>

 <below>delete</below>

 <offsety>20</offsety>

 </itemlocation>

 </list>

 <field sid="field4">

 <xforms:input ref="/purchaseOrder/payment/cc">

 <xforms:label>Credit card number</xforms:label>

 </xforms:input>

 <itemlocation>

 <below>payment</below>

 <width>120</width>

 </itemlocation>

 </field>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 84

 <field sid="field5">

 <xforms:input ref="/purchaseOrder/payment/exp">

 <xforms:label>Expiration date</xforms:label>

 </xforms:input>

 <itemlocation>

 <below>field4</below>

 <width>120</width>

 </itemlocation>

 </field>

 <field sid="field6">

 <xforms:input

ref="/purchaseOrder/payment/customernumber">

 <xforms:label>Customer number</xforms:label>

 </xforms:input>

 <itemlocation>

 <below>field5</below>

 <width>120</width>

 </itemlocation>

 </field>

 <button sid="subm">

 <xforms:submit submission="submit1">

 <xforms:label>Buy!</xforms:label>

 </xforms:submit>

 <itemlocation>

 <below>field6</below>

 </itemlocation>

 </button>

</page>

</XFDL>

New Code

<xforms>

<model>

 <!-- Standard Namespaces included by default -->

 <data>purchaseOrder.xml</data>

 </model>

 <control>

 <calc path="purchaseOrder/items">

 <!-- Relative Path starts with / -->

 <var>/subtotal,/tax,/total,/rowcount</var>

 <expr>sum(purchaseOrder/items/item/total),

round(purchaseOrder/totals/subtotal *

purchaseOrder/info/tax),

purchaseOrder/totals/subtotal +

purchaseOrder/totals/tax,

 sum(purchaseOrder/items/item/units)

 </expr>

 </calc>

 <calc path="purchaseOrder/items/item">

 <cond>(/units * /price)>1000</cond>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 85

 <var>/discount</var>

 <expr>

 /units * /price * 0.1

 </expr>

 </calc>

 <calc path="purchaseOrder/items/item">

 <var>/total</var>

 <expr>

 /units * /price - /discount

 </expr>

 </calc>

 <valid path="purchaseOrder/payment">

 <var>/as,/cc,/exp,/customernumber</var>

 <relevant>purchaseOrder/totals/rowcount >0,

 as='credit', as='credit', as='cash'

 </relevant>

 </valid>

 <valid path="purchaseOrder">

 <var>/items/item/units,/payment/exp</var>

 <type>xsd:integer,xsd:date</type>

 </valid>

<submission id="submit1" how="put" where="file:data.xml

what="/purchaseOrder"/>

</control>

 <view>

 <page id="page1" title="Discount Form">

 <label id="label1">

 <value>Shop</value>

 <fontinfo>

 <fontname>Helvetica</fontname>

 <size>15</size>

 <effect>bold</effect>

 </fontinfo>

 </label>

 <table border=”on”>

 <repeat what="purchaseOrder/items/item"

id="repeat1">

 <input>

 <id>field1,field2,field3</id>

 <label>Number,Name,Price</label>

 <var>/uints,/name,/price</var>

 <hint>The units of this item,

 The name of this item,

 The price of this item

 </hint>

 </input>

 <output>

 <id>label7,label8</id>

 <label>Discount,Discounted

Price</label>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 86

 <var>/discount,/total</var>

 </output>

 </repeat>

 </table>

 <output path="purchaseOrder/totals">

 <id>label9,label10,label11,label12</id>

 <var>/rowcount,/subtotal,/tax,/total</var>

<label>No. of items = ,Subtotal = ,Tax = ,Total =

</label>

 <hint>,Subtotal,Tax,Total</hint>

 </output>

 <trigger id="insert">

 <label>Add item</label>

<action event="DOMActivate" path=

"purchaseOrder/items">

 <insert what="/item" at="index('repeat1')" />

<setvalue what=

"/item[index('repeat1')]/price"

value="'100'"></setvalue>

<setvalue what=

"/item[index('repeat1')]/units"

value="'1'"></setvalue>

 </action>

 </trigger>

 <trigger id="delete">

 <label>Delete item</label>

 <action event="DOMActivate">

<delete what="purchaseOrder/items/item"

at="index('repeat1')" />

 </action>

 </trigger>

<select type="one" id="payment" what=

"purchaseOrder/payment/as" diplayType="list">

 <label>Select payment method</label>

 <items>

 <value>credit,cash</value>

 <label>Credit card,Bill Me</label>

 </items>

 </select>

 <input path="purchaseOrder/payment">

 <id>cc,exp,cust</id>

 <var>cc,exp,customernumber</var>

<label>Credit card number,Expiration date,Customer

number </label>

 </input>

 <submit id="subm" what="submit1" >

 <label>Buy!</label>

 </submit>

 <layout>

 <item id="label1" coord="(200,50)"/>

 <items>

 <id>field2,field3,label7,label8</id>

 <after>field1,field2,field3,label7</after>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 87

 <width>100,50,50,50</width>

 </items>

 <items>

 <id>itemtable,label9,label10,label11,label12,

insert,payment,subm</id>

<below>label1,itemtable,label9,label10,

label11,label12,delete,field6</below>

 <offsety>0,20,0,0,0,20,20,0</offsety>

 </items>

 <item id="delete" after="insert"/>

 <items>

 <id>field1,field4,field5,field6</id>

 <below>label1,payment,field4,field5</below>

 <width>50,120,120,120</width>

 </items>

 </layout>

 </view>

</xforms>

The above code is much simpler and shows about 50% reduction in length.

data.xml (The file to which data is submitted)

<purchaseOrder xmlns="" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <items>

 <item>

 <name>Browser</name>

 <units>1</units>

 <price>100</price>

 <total>100</total>

 <discount>0</discount>

 </item>

 <item>

 <name>PDA</name>

 <units>1</units>

 <price>500</price>

 <total>500</total>

 <discount>0</discount>

 </item>

 <item>

 <name>Java debugger</name>

 <units>1</units>

 <price>1500</price>

 <total>1350</total>

 <discount>150</discount>

 </item>

 </items>

 <totals>

 <subtotal>1950</subtotal>

 <tax>429</tax>

 <total>2379</total>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 88

 <rowcount>3</rowcount>

 </totals>

 <info>

 <tax>0.22</tax>

 </info>

 <payment>

 <as>credit</as>

 <cc></cc>

 <exp>2006-03-06</exp>

 </payment>

</purchaseOrder>

Another form was simplified, taken from the sample forms provided with the IBM

Viewer v2.6. It consists of 2 pages. This is a very complicated form and has been

simplified using our design. But due to limitation of space, we are not able to provide

the codes here. The original code was about 48 pages in length and the modified code

is 28 pages, a reduction of about 42%. This is the only measure that can be provided

here.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 89

7. CONCLUSION AND FUTURE WORK

Forms are an important part of the Web, and they continue to be the primary means

for enabling interactive Web applications. Web applications and electronic commerce

solutions have sparked the demand for better Web forms with richer interactions.

HTML Forms are no more sufficient to fulfill the requirements for today’s forms.

XForms is the response to the demand for more sophisticated forms, and provides a

new platform-independent markup language. But, XForms is difficult to use and this

is one of the major reason for forms still being coded using HTML + scripting. As

form developers already know some form of scripting, they prefer to design forms in

this traditional way.

XForms needs to be made simpler and developer-friendly for it to become popular.

We have tried to achieve this in this thesis. As XForms requires a presentation

language, after much research on various presentation options, we found XFDL as the

most suitable option for e-commerce and other sophisticated forms. But, we found a

scope for simplification in this language as well.

The modifications made include – seperation of the data and control parts in XForms,

provision for default presentation options for XForms + XFDL forms, seperation of

layout information from the items of the form, improvisation in the table tag,

combining similar tags into one by using the comma operator. The above

modifications make the code simpler to understand and write, and smaller in size.

A converter is designed which converts our modified code into XForms + XFDL

code. The resultant form can be displayed using the IBM Workplace Forms Viewer.

The future work includes design of an engine which can support the modified code.

That is, instead of converting to the XFDL code, an independent engine can support

this language.

Also, XHTML can be simplified along the same lines. XHTML must also include the

concept of defining some features and reuse it again and again in the form. This

concept is supported by CSS (Cascading Stylesheets) but CSS is a non-XML

standard. The requirement is to have a XML version for CSS which can be used with

XHTML.

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 90

APPENDIX A

Mapping Tables

Following are the tables mapping the modified language with XForms + XFDL

languages :

General Features

Purpose

XForms + XFDL

Our Language

XML Based Yes Yes

Root

Element

<XFDL> <xforms>

Default

Namespaces

No, Namespaces must be explicitly defined

<XFDL xmlns=

"http://www.ibm.com/xmlns/prod/XFDL/7.0"

xmlns:xforms=

"http://www.w3.org/2002/xforms"

xmlns:custom="http://www.ibm.com/xmlns/pr

od/XFDL/Custom"

xmlns:ev="http://www.w3.org/2001/xml-

events"

xmlns:xsd=

"http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSch

ema-instance">

Yes, these namespaces are defined

by default.

Other

Namespaces

<XFDL xmlns:prefix=‖URI‖ ……….> <xforms xmlns:prefix=‖URI‖>

globalpage <globalpage sid="global">

XXX

Global

options

<global sid="global"> <global>

Identfier

sid (scope identifier) id (identifier)

Page

definition

<page> <page>

Seperation

of common

information

XXX <global>

 <common tag id=‖id‖>

 common info

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 91

reused

using use

 </common tag>

</global>

<common tag use=‖id‖/>

actions Xforms Actions Same

functions XForms + XPath + XFDL Functions Some additional functions namely

concat, str, max, min, atan2, avg,

count, and some financial functions

events XML Events Same

Custom

options

Allowed Allowed, namespace for custom

items is by default ―custom‖

Model and Control

Purpose

XForms + XFDL

Our Language

XForms

Model

<xformsmodels> (All models within this tag)

XXX

To specify

a data

model

<xforms: model id=‖modelId‖ schema

=‖filename‖ ………>

 <xforms:instance src=‖filename‖/>

 Or

 <xforms:instance>

 ….Instance data…

 </xforms:instance>

 <xforms:schema> Schema

 </xforms:schema>

 . …Control part …

</xforms:model>

<model id=‖modelId‖ schema

=‖filename‖>

 <data>filename

 Or

 ….Data…. </data>

 <schema> filename or

 xml schema </schema>

</model>

To specify

instance

<xforms:instance> <data>

control <xforms:model ….. events=‖ ‖

function=‖QName‖>

 <xforms:bind nodeset=‖Path‖

 calculate or property …. >

 </xforms:bind>

 <xforms:submission …. />

 <xforms:action> ……..

 </xforms:action>

</xforms:model>

<control events=‖ ―

function=‖QName‖>

<calc> calculations </calc>

<valid> validations </valid>

<submission ….. />

<action> …….. </action>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 92

calculations <xforms:bind nodeset=‖Path‖

calculate=‖expr‖/>

<xforms:bind 2 ….

Separate binds <xforms:bind>

<calc>

 <var> var1,var2 … </var>

 <expr> expr1,expr2...

 </expr>

</calc>

validations <xforms:bind nodeset=‖Path‖

relevant or another property …. =‖condition‖/>

<xforms:bind 2 ….

Separate binds <xforms:bind>

<valid>

 <var> var1,var2 … </var>

 <any property>

expr1,expr2...

 </any property>

</valid>

submission <xforms:submission id=‖id‖ action= ―file or

URI‖ ref=‖what to submit ― method= ―http

method (get|put|post)‖ ……. />

<submission id=‖id‖ where= ‖file

or URI‖ what=‖ ‖ how=‖method‖

………. />

Submission

of

encrypted

data

No, data submitted as xml is visible to all Yes,

<submission id=‖id‖ encryption=

‖encryption algo‖ ………. />

View (Form Controls)

Purpose

XForms + XFDL

Our Language

Input (field) <field sid=‖id‖>

<xforms:input ref=‖Path‖ ……. >

 <xforms:label>label

 </xforms:label>

 help|hint|alert|action

</xforms:input>

</field>

<input id=‖id‖ what=‖Path‖ …….

 help|hint|alert|action|label >

</input>

More than

one input

<field sid=‖id1‖>

<xforms:input ref=‖Path‖ ……. >

 <xforms:label>label

 </xforms:label>

 help|hint|alert|action

</xforms:input>

</field>

<field sid=‖id2‖ ….. same as above>

</field>

<input ……. >

 <id> id1,id2 </id>

 <what> Path1 </what>

 <help|hint|alert|action|label>

</input>

Default

Enclosure

No, eg- field must always skin input Yes

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 93

secret <field sid=‖id‖>

<xforms:secret ref=‖Path‖ …… >

 help|hint|alert|action|label

</xforms:secret>

</field>

<input type=‖secret‖ id=‖id‖

what=‖Path‖ …….

 help|hint|alert|action|label >

</input>

textarea <field sid=‖id‖>

<xforms:textarea ref=‖Path‖ …… > ……

</xforms:textarea>

</field>

<input type=‖textarea‖ id=‖id‖

what=‖Path‖ … > ……… </input>

output <label sid=‖id‖>

<xforms:output ref=‖Path‖ …… > ……

</xforms:output>

</label>

<output id=‖id‖ what=‖Path‖ … >

……… </output>

select

<checkgroup sid=‖id‖>

 <xforms:select ref=‖Path‖ …>

 <xforms:label>…

 </xforms:label>

 <xforms:item>...

 <xforms:label>…

 </xforms:label>

 <xforms:value>…

 <xforms:value>

 </xforms:item>

 <xforms:item>...

 <xforms:label>…

 </xforms:label>

 <xforms:value>…

 <xforms:value>

 </xforms:item>

 <xforms:select>

</checkgroup>

<select displayType=‖checkgroup‖

id=‖id‖ what=‖Path‖ >

 <label>… </label>

 <items>

 <label>label1,2,…

 </label>

 <value>value1,2…

 </value>

 </items>

</select>

select1 <select1 …>

<select type=‖one‖ …>

Set of items

within the

select clause

Itemset

items

Table

heading

As separate labels before the table tag Labels within the elements of the

table

Insert/delete

buttons

As separate buttons outside the table, have to

be explicitly linked to the table through the

ref attribute

Part of the table itself. Advantage :

need not be linked to the table

<trigger>

<id>but1,but2</id>

<type>add,delete</type>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 94

<label>……</label>

</trigger>

Seperation of

layout

information

No, coordinate information present in each

item

Yes, separate layout for each page

Location and

size of items

<itemlocation>

 <x> x-coordinate </x>

 <y> y-coordinate </y>

 <width> ….. </width>

 <height> …. </height>

 …………..

</itemlocation> within each item

<layout>

 <items>

 <id> id1, id2 ….</id>

 <coord>(x1,y1), (x2,y2) ,

 </coord>

 <width> … , … </width>

 <height> … , …</height>

 </items>

 …………

</layout> at the end of page

coordinates <x> x -coord </x>

<y> y-coord </y>

<coord> (x,y) </coord>

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 95

REFERENCES

XML

[1] Aaron Skonnard, Martin Gudgin ,―Essential XML Quick Reference, A

 Programmer’s Reference to XML, XPath,XSLT, XML Schema‖, Addison –

 Wesley Publication

[2] Tim Bray, October, 2000, ―Extensible Markup Language (XML) 1.0 (Second

 Edition)‖, available at http://www.w3.org/TR/REC-xml .

[3] Tim Bray 1998, 2000, ―Namespaces in XML‖, available at

 http://www.w3.org/TR/REC-xml/-names.

[4] developerWorks, August 2002, "Introduction to XML".

[5] Erik T. Ray ,‖Learning XML, 2nd Edition‖, published by O'Reilly.

[6] Elliotte Rusty Harold and W. Scott Means, “XML in a Nutshell, 2nd Edition”,

 published by O'Reilly.

XForms

[7] Micah Dubinko, ―O'Reilly XForms Essentials‖

[8] ―XForms1.0, W3C Recommendation,14Oct,2003 ―,available at

 http://www.w3.org/TR/2003/REC-xforms-20031014/

[9] Steven Pemberton, ―XForms for HTML Authors‖, W3C Submission, 28

October 2003, available at www.w3.org/MarkUp/Forms/2003/xforms-for-

html-authors.html

[10] Steven Pemberton, ―XForms for HTML Authors‖, W3C Submission,2006-
08-08, available at http://www.w3.org/MarkUp/Forms/2006/xforms-for-html-

authors-part2.html

[11] XForms - The Next Generation of Web Forms, W3C Submission, available at

www.w3.org/MarkUp/Forms/

[12] Richard Cardone, Danny Soroker, Alpana Tiwari, ―Using XForms to Simplify

 Web Programming.‖

[13] Steven Pemberton, ―XForms Quick Reference‖, W3C Submission, available at

www.w3.org/MarkUp/Forms/2006/xforms-qr.html

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml/-names
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.cwi.nl/~steven/
http://www.w3.org/MarkUp/Forms/2003/xforms-for-html-authors.html
http://www.w3.org/MarkUp/Forms/2003/xforms-for-html-authors.html
http://www.cwi.nl/~steven/
http://www.w3.org/MarkUp/Forms/2006/xforms-for-html-authors-part2.html
http://www.w3.org/MarkUp/Forms/2006/xforms-for-html-authors-part2.html
http://www.w3.org/MarkUp/Forms/
http://www.cwi.nl/~steven/
http://www.w3.org/MarkUp/Forms/2006/xforms-qr.html

DESIGN OF A NEW LANGUAGE BASED ON XFORMS + XFDL AND CONVERSION TO XFDL

Delhi College of Engineering 96

XFDL

[14] ―XFDL Specification‖, IBM Workplace Forms, version 2.7.

[15] J. Boyer, T. Bray, & M. Gordon, ―Extensible Forms Description Language

 (XFDL) 4.0‖, W3C Note, available at: http://www.w3.org/TR/NOTE-XFDL

[16] Barclay T. Blair and John Boyer , ―XFDL: Creating Electronic Commerce

 Transaction Records Using XML‖

[17] John Boyer, ―Enterprise-level Web Form Applications with XForms and

 XFDL‖, IBM Corporation, November 2005

Parser

[18] Eric Armstrong, ―Working with XML - The Java API for Xml Parsing (JAXP)

 Tutorial‖, [Version 1.1, Update 31 -- 21 Aug 2001]

[19] Xerces Parser, available at http://xerces.apache.org

[20] developerWorks, July 2003, "Understanding DOM".

[21] Brett McLaughlin , ―Java and XML, 2nd Edition‖.

[22] Doug Tidwell , ―XML programming in Java technology, Part 1,2,3‖.

[23] LeHors, Arnaud, ―Document Object Model (DOM) Level 2 Core

Specification‖, available at http://www.w3.org/TR/DOM-Level-2-Core/ ,1999

http://www.w3.org/TR/NOTE-XFDL
http://xerces.apache.org/
http://www.w3.org/TR/DOM-Level-2-Core/

	front page
	minakshi certi
	ACKNOWLEDGEMENT
	Table of Contents
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Main Thesis

